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INFLUENCE OF LARGE DEFORMATIONS AND MIDPLANE FORCES
ON THE PLASTIC BEHAVIOR OF IMPULSIVELY
LOADED PLATES

By

FEdwin T. Kruszewski

ABSTRACT

This dissertation deals with an analysis of impulsively loaded
plastic plates that includes effects of large deformations and midplane
forces. Specifically, it deals with a circular plate of uniform
thickness simply supported at its edges. The impulsive loading 1is
characterized by an initial velocity distribution.

The analysis assumes that the plate is an isotropic, rigid, ideally
plastic material. Shear deformations and longitudinal inertia are
neglected. Both bending and midj .one forces are considered. The
midplane forces can be either applied prior to the impulse or generated
by deformations of the midplane. Deformations of the cross section are
based on the assumption that a line initially normal to the midplane
remains straight and normal after deformation. Strains are nonlinear
with respect to transverse displacements but contain only linear radial
displacement terms. Finally, the Tresca yleld criteria are used.

An interaction equation is derived between the plastic moment and
normal force. The relationship indicates that the greater the midplane

force the smaller the required bending moment for plastic flow. When the



midplane force reaches & maximum value, the plate no longer carries a
moment .

Byuilibrium equations are derived for the motion of the plate which
are consistent with the von Karman plate theory. Governing equations
are then developed for the three possible phases of motion. The initial
Phase 1 includes a bending hinge that travels from the support to the
center of the plate. Phase 2, which is initiated when the hinge reaches
the center, continues until either the motion ceases or a portion of the
plate becomes a membrane. Phase 3 described the motion of the membrane
hinge from its initial point of origin to its final stopping point.

These governing equations are solved for two types of bending-
moment —midplane-force interaction relationships. One relationship is
based on dlsplacement of the neutral surface from the midplane surface.
The second is based on the magnitude of the midplane forces. Both types
of plastic plate behavior are examined.

Plots of final central deformation for various applied midplane
forces and impulses are presented that clearly i1llustrate that even
small amounts of midplane forces have a significant effect on the final
deformation of plastic plates. Numerical results of the large deforma-
tional analyses are also presented. Plots are given showing the
influence of the magnitude of the impulse on bending hinge velocity,
initiation of membrane behavior, location of the membrane hinge, and
the final deformation of the plate.

A comparison is made between results of the large deformational

analysis and experimental date. It shows excellent agreement. For the



small and intermediate range of impulses the agreement is within
experimental scatter. For the large impulses the calculated deformations
are slightly conservative. Reasons for tnis deviation are discussed.
Finally a critical examination is made of the various other suggested
approaches that have possible application to the behavior of plastic

plates.
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V. INTRODUCTION

The problem of the impulsively loaded plastic structure is of
interest to designers in several diversified areas. As early as 1951,
(see ref. 1) the U.S. Navy undertook a study of this problem in order
to provide information to its ship designers about proper torpedo
protection. The purpose of this study was to understand the response
and to predict the damage done to steel plates of ships and submarines
by underwater explosions. The development of high energy explosive
devices that can be detonated above ground has caused the designers of
buildings to become interested in the problem. Here the impulsive loads
are generated by shock waves traveling through the atmc.-phere rather
than water. Rather recently, solutions to this problem have been sought
by the designers of spececraft.

The outer sheli of a spacecraft must be designed to withstand the
rather harsh enviromment of space. Meteoroids are one of the more severe
environmental hazards. Meteoroids are extra terrestrial particles, in
orbit about the sun, .l..i~h travel at velocities as high as 210,000 feet
per second. Because of their extremely high velocity, even the smaller
meteoroids can do a considerable amount of damage. For example, the
large hole in the 3/16-inch aluminum plate, shown in figure 1, was made
by the small 1/16-inch-diameter projectile (also shown in fig. 1) at an
impact velocity of only 30,000 feet per second. At the highest meteorold
velocity this small projectile could penetrate a plate over an inch and

a quarter thick.
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In order to alleviate this damage, spacecraft designers use a s0-
called "bumper" concept. This concept is based on the fact that wher
a high velocity particle impacts a thin sheet of material both the
projectile and the sheet material are shattered and vaporized into a
cloud of debris. The use of this exterior wall or bumper thus changes
the design consideration of the main wall from & penetration problem
to one dealing with the momentum exchange between this cloud of debris
and the main wall.

Until recently, two basic approaches were used for the analyses of
impulsive loaded plates: a pure membrane approach (refs. 1 and 2) and
a pure bending approach (refs. 3 and 4). Neither gives an entirely
satisfactory answer. The former results in calculated deformations
that are less than those experienced by the actual plate, hence uncon-
servative. The latter gives deformations that are much greater than
actual and hence too conservative.

Recently, N. Jones (ref. 5) linked the two types of behavior.

He permitted the plate to carry both maximum plastic moment and maximum
plastic normal force during the first stage of deformation and full
plastic normal force in the last stage. This, therefore, results in
i'inal deformations that are less than those of the membrane approaches
and hence should be in poorer agreement with experiment.

The purpose of this investigation is to develop a method of analysis
that includes both bending and midplane forces and permits both flexural
and membrane behavior of the plate. The analysis will deal specifically

with a simply supported circular plate with an initial uniform velocity.




The equilibrium equations will be those appropriate to large deflections
of plates as discussed in reference 6. The yield condition used in the
analysis has been used by many investigators for moment axial-force
interaction (see, for example, refs. 7 and 8). This yield condition
defines the moment midplane-force interaction by examining the stress
distribution in the cross section. It permits toth to occur simultan-
eously; however, both for:es can never be maximum at the same time.

Furthermore, one cannot exist if the other is at its maximum.




VI. REVIEW OF PERTINENT LITERATURE

General Considerations and Background

There exists in literature only a limited number of theoretical
analyses dealing with impulsively loaded plastic plates. The majority
of the work that does exist is based on the assumption that the material
is an isotropic, rigid plastic material whose behavior is consistent
with the Tresca yield condition. The impulsive loading 1s characterized
in these studies by the assumption that the structure is subjected only
to an initial velocity distribution.

The first analytical study of a plastic plate with such an initial
condition was made by G. E. Hudson (see ref. 1). In this study, the
author treated a simply supported plate as a membrane, neglecting all
bending loads and bending displacements. Initlally, the entire plate
was assumed to be plastic and traveling st & uniform velocity of Vo-

A hinge developed at the boundary and traveled normal to 1it.

The assumed deformation of the membrane is shown in figure 2. The
hinge, at a distance p from the center, separates the circular
membrane into two regions: & flat circular inner region that moves
with & uniform transverse velocity of V,; and an outer region that is
assumed to be rigid and conical in shape. Thus, plastic flow takes
place only in the central or inner region. The hinge, with its
associated discontinuity of slope, then travels with a uniform velocity
until the inner circle is reduced to a point. Once the hinge reaches

the center, 1t is assumed to remain there until the plate ceases to move.




An evaluation of this pure membrane approach is found in reference 2.
Using an analysis similar to Hudson, Frederick compared his calculated
results with experimental data on steel plates. Some of these results
are reproduced in figure 3. In this figure experimental and theoretical
deflection profiles are compared. Note that the calculated deflections
are somewhat lower in value than those found experimentally. This, of
course, is due in part to the assumption of a rigid outer region and the
omission of all bending deformations.

Frederick also examined two other factors that could influence the
theoretically calculated deformations of the impulsively loaded membrane:
the inclusion in the analysis of work hardening effects and the con-
sideration of the Von Mises yield conditlon in place of the Tresca
condition. Neither factor, however, was found to be of great importance.
As shown in figure 3, work hardening has little effect on the final
deformation. 1In fact, it tends to reduce the calculated deflections
and hence, for this analysis, causes a poorer comparison with experiment.

In direct contrast to the approaches discussed in references 1
and 2, which considered only the membrane response of the plate,

A. J. Wang (ref. 3) proposed an analysis of the deflections of

a plastic plate under impulse loading that considered only the small
deflection bending response of the plate. His analysis, like those of
references 1 and 2, was based on the Tresca yield condition. His
resulting flow rules, however, were different.

The plastic flow rules, used by Wang, were first discussed by

Prager in reference 9. Hopkins and Prager (ref. 10) applied
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these rules to dynamic problems, and developed a criteria for the
existence and subsequent behavior of discontinuities across a hinge.

In this work the author pointed out that if both the plate
displacement and velocity are continuous, the followlng conditions
across the hinge must be maintained. For & stationary hinge circle,
the slope across a hinge in the radial directlon 1s discontinuous,
as, for example, in the case of the statically loaded plate in
reference 11. For a moving hinge circie, the slope in the radial
direction must be contimuous. The accelerations for this case, however,
can be discontinuous.

Conseguently, the pure bending solution presented by Wang (ref. 3)
differs from the pure membrane approach in references 1 and 2 in several
respects. The slope in the radisl direction is continuous across the
hinge. Plastic flow occurs in both the inner and outer regions of the
plate. Finally, the velocity of the hinge is not uniform.

Through the use of an extensive experimental program,

A. L. Florence (ref. 4) made a critical evaluation of the small
deflection bending analysis. 1In thls experimertal program, 22 aluminum
and 20 steel plstes were subjected to impulsive loadings. The final
measured deformations of these plates were then compared to theoretical
calculations based on an analysic of Wang.

Some of the results of reference 4 have been reproduced in
figures 4 and 5. In figure 4 theoretical and experimental nondimen-

sionalized deflections are plotted as a function of a nondimensional
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radial position, %. These results show that, when only small deflection
bending loads and curvatures are considered, the theoretical results
considerably overestimate the experimentally obtained deflections.

Results in figure 4 are for one value of impulsive loading. How
these comparisons are affected by changes in the magnitude of the
impulsive loading is shown in figure 5. Here both theoretlcal and
experimental deflections at the center of the plate are plotted as a
function of the magnitude of the impulse. These results show that the
correlation rapidly deteriorates with increasing deflection. This is
primarily due to the increased importance of membrane forces and
midplane distortion. Florence concluded from these results that a
full treatment of the problem requires inclusion of membrane forces.

Overestimations of calculated deflections by a bending analysis
were also found by Gerald May and Kurt Gerstle (ref. 12) for the
case of statically loaded plates. Here, a finite element approach was
used in which elements were considered to be either entirely elastic
or plastic. .

Jones (ref. 5) realizing the importance of the interaction of
bending and midplane forces, attempted to link the bending and membrane
behavior of plates in an analysis of impulsively loaded, simply supported
plates. Similarly to the other investigators, he divided the motion of
the plate into two phases.

The first phase consisted of the initial deformations in which the
hinge circle traveled from the support to the center of the plate. The

anaiysis of thic phase assumed that the central portion could resist




both a plastic moment, ﬁp, and a plastic midplane force, ﬁp. The
magnitudz ¢f each of the forces, however, was assumed to be large
enough to cause plastic behavior by themselves. In the outer region of
this Phase 1 motion, the midplane force was assumed to be the maximum
plastic value while the plastic moment rangea “rom full maximum value
at the hinge to zero at the support. Jones also assumed that the motion
of the hinge was the same as that obtained by Wang for the pure bending
assumption.

In Phase 2 of the motion Jones assumed that only membrane forces
were acting, thét is, ﬁp = Q. Consequently, in Jones' analysis, the

late always carried the maximum plastic midplane force, N

p* In

addition for a large portion of its motion, it also carries a plsstic
moment. , ﬁp.

The question of plastic midplane force and bending-moment inter-
action has been quite extensively examined for beams (see, for example,
refs. 7, 13, and 14). (Reference 1! is an excellent survey of analyses
for plastic behavior; it is restricted, however, to work dore on veams.)
This interaction has also been examined for statically loaded plates
(see, for exumple, refs. 15, 16, and 17). The yield condition that

has evolved from all these studies relates the plastic loads present

at any point in a structure by the following relationship:

M N - -
ﬁf + <ﬁ2> =1 where M, and N, are the maximum plastic moment and
o]

axial force. It is this yield condition that will be used herein.
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Review of Literature In Associated Areas

An excellent review of all the phases of plasticity essential to
development of plasticity analyses is given by Olszak, Mroz, and Perzyns
in referernce 15. This summary deals not only with the fundamental
basic approaches and constitutive equations but also stresses the
application of the theory to various practical problem areas such as
plates and shells, soil mecharics, three-dimensional problems, and
axially symmetric problems. This reference also devoted a whole chapter
to dynamical problems. Fach section is followed by a complete
bibliography.

An equally thorough survey, out limited only to analyses of beams
under dynamic loading, is found In reference 13.

The preceding section dealt only with the state of the art
pertaining to the specific problem being analyz=d herein; that is, a
simply supported circular plate constructed of a perfect rigid plastic
material and subjected to an initial uniform velocity. There are,
however, analyses dealing with other problems that need mentioning
both for the sake of completeness and, in some cases, for their possible
application to the large deformation aspect of the present analysis.

In references 18 and 19, Thomson studied the plastic behavior of
simply supported circular plates under nonuniform transverse impulses.
Only the bending behavior of the plates was considered. The plate was
assumed to be impacted by an axisymmetric impulse that induced

an initial velocity with a general radial Gaussian distribution.
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Perzyna (ref. 20) investigated the effects of a time variation
of a loading on plastic deformations of a simply supported circular
plate. This aralysis, like Thomson's, assumed that the material was
a rigid plastic behaving in a manner consistent with the Tresca yield
criteria, and considered only the bending mode of deformations. The
pressure loading was taken to be uniform in both the radial and
tangential directions. The magnitude of the pressure, however, varied
with time. Perzyra found that for a given total 1mpulse the character
of the time precsure function had little effect on the firal shape of
the plate.

Plastic behavior of plates with other types of boundary conditions
has also been investigated for the bending case. Wang and Hopkins
(ref. 21) gave results for circular plates vith built-in edges. Shapiro
(ref. 22) investigated the plastic response of an annular plate. This
rigid plastic plate was assumed fixed at inner radius and the outer rim
was subjected to a constant velocity for a finite length of time.
Finally Mroz (ref. 22) investigated the case of simply supported
annular plates for two different conditions: for a uniform lateral
loading with simply supported inner ring and for a uniform shear force

applied to the inner periphery whose edges are considered free.
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VII. SYMBOLS

nondimensional central deformation of the plate

value of A when plate motion stops

constants of integration (see eqs. (103), (115), and
(129))

function of n defined by equation (131)

nondimensional impulse defined in equations (1€) and (17)

Bessel function of the first kind of order O

curvature of plate in r and 6 directions, respectively

bending-moment resultant

value of M for plastic behavior

value of M at the hinge circle

maximum bending moment plate can sustain, doh2

value of M in the r and 6 directions

twisting moment

midplane force

value of N for plastic behuvior

value of N at the hinge circle

maximum midplane force plate can sustain, 2ggh

value of N in the r and 6 direction

shear force in r and 6 direction

radius of plate

initial velocity of plate

nondimensional displacement of plate,

)

16
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function defined by equation (46)

nondimensional distance between midplane and neutral
surface, %%

half depth of plate

natural logarithm

nondimensional membrane radius

initial value of n

final value of n

loading per unit area of plate

radial coordinate

distance along midplane in radial direction

dimensional time

radial displacement of middle surface

transverse deflection of middle surface of plate

coordinate along axis of symmetry

distance between middle surface and neutral surface of
the plate

angle between the neutral surface and r coordinate

strains at any point of cross section in r and ¢
directions, respectively

strains in midplane surface in r and 6 directions,
respectively

dummy variable

dummy variable

tangential coordinate
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A constent
7] mass of plate per unit area
£ nondimensional radial coordinate, §
P plastic bending hinge circle radius
pl value of p at the initiation of the membrane hinge
r?920, normal stress in r, 6, and 2z direction, respectively
0o yleld stress
O71s07759TTT principal stresses o1 > o171 > OTTT
T’ T2’ Trz shear stresses
T nondimensional time, gﬁz
T value of 1 when plastic bending hinge -eaches center
of plate
Ts value of T when plastic membrane hinge is initiated
Subscripts
r radial direction
e circumferential direction
t differentiation with respect to t
T difterentiation with respect to =~
A line over the symbol M denotes a dimensional moment such that
M= ﬁ%. A line over the symbol N denotes a dimersional midplane such
that N = ﬁl. A dot over the symbol denotes differentiation with

o
respect to time, t.




VIII. DERIVATION OF BASIC EQUATIONS

Assumptions

The purpose of the present work is to develop an analytical method
for the prediction of the plastic behavior of impulsively loaded plates
that will combine both membrane forces and bending. To do this the
analysis must contain large deflection effects and permit midplane
distortions along with bending distortionc.

The plate that is to be analyzed and the coordinate system that is
to be used 1s shown in figure 6. The plate 1s circular, has a radius
R, a thickness 2h, and 1s simply supported at its edges. The lmposed
initial conditions are that the displacement, w(r,0), is zero and the
initial velocity, w(r,0), is a constant, V,.

The analytical method will be based on the following assumptions.
The plate is assumed to be an isotropic, rigid, 1deally plastic material.
Consequently, both elastic and work hardening effects will not be
included in the analysis. Although midplane forces and distortions
are permitted, inertia effects in the radial direction are omitted.
Shear deformations and rotary inertia effects are also neglected. The
equilibrium and resulting governing equations used in this analysis will
be consistent with those of the von Karman plaie theory. This theory,
as discussed in reference 24, neglects third and higher order terms of

the dependent variable so that

sln =g

19
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and
B2

cos =1 - %

The followins sections will discuss some of the basic governing equations

for such behavior.

Fquilibrium Considerations

The forces acting on the plate and on a typical element are shown
in figure 7. These forces consist of bending moments Er and Ee,
midplane forces Er and ﬁe, a shear force ar’ and a uniformly
distributed loading p. In the case of the loading symbols, all symbols
with bars above will denote dimensional forces, while the force symbols
without the bars will represent nondimensional forces. All forces are
shown in figure 7 1n their positive direction and all are specified per
unit length of line element in the middle surface of the plate. Due to

the cylindrical symmetry of loading, the shear stresses Trg 8nd T28

vanish. Consequently the shear forces 59 and the torque Mer also

vanish. With the assumption that the plate thickness (2h) is much

smaller than the radius R, the influence of stresses o, and -

Z rz

is small and hence negligible.

From figure 7(a) the summation of forces in the midplane direction

results in

%(rﬁr) “Ty =0 (1)
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(a) Forces on differential element.

"§©|

! i
|
|

(b) Forces on finite central portion of plate.

Figure 7.- Forces on plate elements.




23

From figure 7(b) the summation of forces in the transverse direction
gives an expression for the transverse shear, 5,,

R - for (F - weg )¢ (2)
where the term MWy represents the inertial loading due to transverse
motion, and u 1s the mass of the plate per unit area. The problem
discussed herein deals only with the impulsive loading that results in
an 1nitial velocity of the plastic plate. The loading term, P,
therefore, is zero and will not be incluc<C in the remainder of the
analyses,

The summation of moments in figure 7{a) results in the equation

- My - -
Mp +r = - Mg = 1 (3)

dr
Eliminating the shear force Q. from equation (3) (see eq. (2))

results in the equilibrium equation

d, =\ = dw, [T
=—(rMy) - Mg = -rlp <+ uwg el dl (&)
or or o
Equations (1) and (4), therefore, represent the equilibrium
equations for the plastic plate with midplane forces. These equations,
of course, are identical to the vo. Karman plate equations obtained by

considering large deflections of circular plates (see, for example,

ref. 6).

¥
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Nondimensionalization

In order to simplify the derivations and to obtain the natural
parameters of the mechanism involved, the remaining analyses will be
written in nondimensional terms. The following nondimensional parameters
are therefore defined.

The moment is normalized with respect to ﬁo where
= 2
M, = h0, (5)

and o, 1s the critical yield stress. More will be said about this
stress in the section on Plastic Flow Considerations. ﬁo represents
the maximum bending moment the plate can possibly carry. Conseguently,

the absolute value of the nondimensionalized bending momernt

" =§.; (6)
can never be greater than unity. Similarly the nondimensionalized
normal force is

N = ﬁﬁ: (7)
where

T, = 2hog (8)
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ﬁo is the maximum normal force possible and, similarly to M,

|n|

can never exceed unity. The nondimensional form of the shear force,

Qr, is

The nondimensionalized radial coordinate, ¢, displacement,

and time, 171, are defined as follows

_I‘
£ = R
- ¥
=i
and
Vot
T = %n

Equilibrium equations (1), (2), and (4) can now be written in

nordimensional form as

gag‘(iNr) -Ny=0

W | 31 fﬁ
= _N — P
G =M S vy

(9)

W,

(10)

(11)

(12)

(13)

(14)
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3 OW 6 [E l;—)
gmg-%=&w¥+1%‘mww (15

where I 1is a nondimensioiia)ized momentum defined as

22
uV."R
I-= “2 (16)
12h°N,
or
WV 2R
I-= (17)
2hndq

Deformation Considerations

Consistent with all of the previously mentioned analyses on the
plastic behavior of plates, the deformations of the cross section will
be based on the assumption that a line initially normal to the midplane
remalns straight and normal after deformation. Consequently the strain
at any point in the cross section of the plate can be written as:

For the radial direction
T, = e + 2K, (18)
For the tangential or 6 direction

Ee = € + 2Ky (19)
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where z is the distance from the midplane. The strains, ¢, and €9

are the midplane strains and K. and Kg are the respective curvatures.

The curvatures are defined as

2
Kp = - é—‘é’ (20)
or
and
1 ow
= .= = 21
Kg W (21)
while the midplane strains are given by
2
Ju . 1fow
= 9u L 1OW 22
T3 e<ar (22)
and
€ = ¢ (23)

where u 1s the displacement of the midplane in the r direction

(u 1is considered positive when the displacements are in <che positive
r direction). If only small displacements are to be considered, the
second term in ejuation (22) can be neglected. Note that the strains
are written from a Lagrangian viewpoint and no nonlinearities due to

radial displacements are considered.
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Plastic Flow Considerations

Plastic behavior of the plate will be governed by the Tresca yield
criteria. This criteria states that plastic yielding will begin when

the maximum shear stress reaches a certain critical value, that is

Ogr = O g
I IIT _ "o
T, I e—— I e—— (2).4.)

where o1 and o1y 8are, respectively, the maximum and minimum
principal stresses and o, the critical yield stress of the material.
With the assumption that the transverse normal stress is negligible
(0, = 0), the Tresca condition can be graphicially represented as shown
in figure 8 in terms of o, and g -

Any combination of g, and % that falls on this boundary will
initiate plastic flow. Any subsequent plastic flow will occur tangent
to the surface of the yield diagrem. For example, if Oy and Og
fall on the line AB (see fig. 8), plastic flow will occur perpendicular
to AB 1in a menner that the radial strain rate, ér: is zero. For
stress combinations along AF, ée will be zero. At the vertices of
the diagrams the specific direction of plastic flow is not defined;
both stresses, however, are defined. Thus, for all points on this
diagram two conditions are specified: either both stresses or a
direction of strain rate and a relationship between the stresses.

For pure bending of a plate the moment along a plastic flow line

2

is unique and equal to h Up. Similarly when only midplane forces are

considered the plastic membrane force is unique and equal to 2hoo.
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Figur: 8.- Tresca yield diagram.
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However, when both midplane forces and bending are permitted, then
there are no unique values of M or N at the initiation of plastic
flow.

A typical cross section for this case is shown in figure 9.
Notice that the development of a midplane force causes the plastic

stress distribution to create a neutral surface at some distance =z

o
from the midplane. The plastic moment and membrane force are then
given by
= 2 2
Mp = (b = 257)0g (25)
and
N, = 2240, (26)

Notice that the plastic moment and membrane forces are coupled through
2o

This.coupling indicates that, while there is no unique value of the
plastic midplane force, ﬁb or moment ﬁp, there is an interaction of
the two. Elimination of 2z, from equations (25, and (2€) gives the

form of this interaction

- = 42
Mo  (Bp\ _
() - &0

In nondimensional form equations (25), (26), and (27) can be

written as
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Midplane
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Figure 9.- Distribution of stresses in cross section of plate.




My =1 - 2 (28)
Np = -Z (29)
and
My + N = 1 (30)
where
z = ih? (31)

The interaction equation (eq. (27) or eq. (30)) gives a relationship
between the plastic moment Mp and the plastic normasl force Np. As
long as ﬁb is less than ﬁg(Np < 1) a plastic moment exists. However,
as soon as the plastic normal force becomes ﬁo(Nb = 1) then ﬁp
becomes zero and the sectlon no longer carries moment. These interaction
relationships are especially useful if the value of the lateral load is
prescribeg, as in an analyses involving the bending behavior of a
plastic plate with applied lateral loads.

When the deformations of the plate become large, lateral loads are
generated by the stretching, u(r,t), of the midplane.

With the condition that at the support u(R,t) 1is zero, an

integral expression for u can be written

u = L/R du = k/'R (ds - dr) (32)

r r
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| s dr -——-1’\
{ .

7[——._/4‘;- w + dw

dg

where s 1s the distance measured aslong the midplane. From the above

sketch it can be seen that
182 = aw° + dr® (33)

Substitution of equation (33) in equation (32) results in

R 2
ar | 1+(5_W)-1ar (3%)
r or
which, for the case where g¥ < 1, can be approximated by
R 2
u= | %(a—") ar (35)
Vo ar

The separation of the neutral and midplane surfaces creates a
coupling between slope and midplane distortion, u. This coupling is
achieved through the previously mentioned assumption of straight normals.
That is, a line perpendicular to the neutral surface before deformation
will remain straight and normal after deformation. Consequently, in the
radial direction the midplane distortion, u, is related to the radial

slope by the equation
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u =20 5= (36)

With equatlons (35) and (36) 2, can be expressed in terms of the

slope as

M/‘R 1(ow 2dr
» 2\or
% © Sw (37)

or

or in nondimensional terms

o] [

f ; (S-Wg)Edg (38)

The magnitude of Z depends on the shape of the disp.acement.
From equation (29) and the knowledge that ‘Np‘ <1, |z| must also
be less than 1. Consequently, those portions of the plate where the
absolute value of Z 1s greater than unity must be acting as a membrane

(that is, they carry no moment) and there is no valid unique relationship

between slope and displacement.




IX. DERIVATION OF GOVERNING BQUATIONS

Discusaion of Physical Behavior

The following section is a description of the physical behavior of
a plate as it reacts to the initial impulse. It should not in any way
be construed as a statement of assumptions. On the contrary, the
mechanisms and behavior described all result from the basic assumptions
and considerations discussed in the previous chapter. These will becomc
evident as the analysis in the following sections proceeds.

The purpose of this approach is twofold: First, it will give the
reader a clearer understanding of the motivation and significance of
the analytical work that follows. Second, it will permit the author to
define and classify certain regions and behaviors before proving their
existence.

Just after the initial mcment of impact, the plate is separated
into two plastic regions by a hinge circle, as shown in figure 10.

The hinge, which originates at the support, travels at a velocity

o, until it reaches the center. The central portion of this plate

(0 < r < pR) travels at a uniform transverse veiocity equal to the
initial velocity, Vo. Such motion has been observed experimentally
(see ref. 26). The stress conditions are such that 0, = 0y = 0. At
any time, t, the displacement w 1in the central region is Vbt.

In nondimensional terms the central displacement is

w(o,t) = A(T) = 27 0<g<p (39)

35
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Thus the nondimensional velocity in the central region is
w.(0,7) = AL(v) =2 0<g<p (40)

In the outer region (p < ¢ < 1) only the tangential stress, Oy s

is plastic. The velocitlies are linear with

I
N>

w.(e,T) = (41)

and

|
(@]

We(l,7) = (k2)

This phase of the motion will be referred to as Phase 1. Note that
the displacement of any point on the plate during this phase depends
only on the fuaction p(r). Thus the parameter p could be thought
of as a time parameter.

Once the hinge circle reaches the center of the plate, Phase 2 of
the motlon begins (see fig. 10). This phase of motion is similar to
that occurring in the outer region for Phase 1. The gtress, Oy, 1s
plastic and the velocity distribution linear.

If during either Phase 1 or Phase 2 the motion and loading of the
plate is such that midplane force N becomes 1, the behavior of the
plate is changed.

A hinge circle, which will be referred to as a merbrane hinge,
forms at this point (¢ = n) (see fig. 10). Thie hinge divides the
pPlate into two reglons. The outer region, n < ¢ <1, carries both

midplane forces and moments and behaves as before. The inner portion
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0 < ¢ <n behaves like a membrane. It carries no bending and transmits
only a constant tensile load. This membrane hinge then travels at a
velocity, n., toward the support. This phase of the motion will be

referred to as Phase 3.

Analysis of Phase 1 Behavior

This phase of the plate behavior is typical of the initial phase
of motion used by all of the previously mentioned investigators of
ideaily plastic, circular plate behavior (see, for example, refs. 10
and 11). Because of the rotational symmetry of the loading the maximum
stress in a circular plate must occur at the center. Thus the plate
cannot reach the flow limit without becoming plastic at the center.

Due to rotational symmetry the radial and tangential stresses must be
equal, thus o, = Oy = Oge Therefore, the material at this point is in
regime A of the T: “sca yield hexagon (see fig. 8). At the simply
supported boundary, the radial moment must vanish so that o, = 0.

This portion of the plate must be in regime AB of the Tresca yield
hexagon.

Consequently, the plate 1s assumed divided into two regions: =
central portion in which the material is in regime A, and an outer
region where the material is in regime AB. These two regiorc are
separated at ¢ = p by a plastic hinge.

The inner portion of the plate /¢ < p) forms a circular plate with

midplane forces at its outer edge ({ = p). The magnitude of these radial

midplane forces, N,, is .aken to be Np- Because of the symmetrical
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loading condition imposed on the plate, the stresses at the center must

be such that Np =N A solution thet satisfies these boundary condi -

6
tions and the equilibrium equation (eq. (13)) is that the stresses are

such that N. = N, for all interior points. Therefore, Nr is not a

]
functicn of position and

for all points in the inner region. Since the midplane force, Np,
can be a function only of time, the plastic moments must also be a

function only of time (see eq. (30) so that

M, = Mg = M 0<t<p (L4 )

With equations (43) and (4l4) the equilibrium equation (eq. (4)) reduces

to

re oW
6IJ' W, 40 = 2N S 0<¢g<p 45)

in order to solve this governing equatiorn a separation of variables

technique will be used in which

wie,t) = A(7)w(e) (46)

Substitution of equation (46) into the integral differential equation

(eqg. (45)) results, after some simplification, in




4o

W 3°A
£ — 3] ——
Bg 572

(47)

Since the left side of equation (47) is a function of ¢ and the right

side a function of 7, both must be ejual to some constant, A,

W
€ g; 31
- — = 2
[g _ I\OA
wt a¢

/
/
Yo

Hence the governing equation for W is

p— E_
g§H+)\2/ We dt = 0
Ot o

Differentiating equation (49) gives

d°W . dW | o=
E—— +—+ AWt =0
a2 at

Solution of equation (50) results in
W=J,(n)
The deflectior in this iuaner region can now b~ written as

wier) = AT (Ae) 0<p<t

(48)

(+9)

(50)

(51)

(52)

i " oS s ™ g B T e e ~ser
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The initial condition of the problem states that the velocity

everywhere is equal to 2 so that
w.(£,0) = AT (N) = 2 (53)

Thus A must be zero and the velocity in the inner region is

Wp =2 0<g<p (54)
so that

=0 0<g<p (55)

W=or 0<eg<p (56)

In the outer region (p < ¢ < 1) the following conditions apply.
At the hinge, ¢ = p, the stresses are continuous, so that o, = 0y = o,.
At the support, ¢ =1, op = 0. This portion of the plate, therefore,

is in regime AB of the Tresca yleld criteria. In this regime the

plastic flow is such that the strain rate in the radial direction E},
is zero for all points in the cross section (see eq. (18)) so that
Er = ér + ZKr =0 (57)

Since this equation must hold for all values of z

€r = Kp =0 (58)
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This condition coupled with equation (20) gives

3w
BgeaT

=0 (59)

As the velocity is continuous across the hinge

Wo(p,7) =2 (60)
while at the support ¢ =1
We(l,7T) =0 (61)
The solution of equation (59) consistent with boundary, conditions,
equations (60) and (61), gives
Wo=o[2=§ p<e<1 (62)
T 1-op

Bquation (62) represents the velocity distribution of the plate in
the outer region. 8Since p 1s a function of T the acceleration of

the plate 1n this region is

o, -8)

o p<t<1l (63)
(1-p2 "

TT
where e is the velocity of the hinge circle.
A relationship for Py van be obtained through the use of the

equilibrium expressioas.




43

Integreiion of the midplane-force equilibrium equation (eq. (13))
with the boundary condition that N, = Ny = Np at the hinge (see

eq. (43)) gives

¢
tN, = / Ng ¢ + PN, (64)
p
Integration of the moment equation (eq. (15)) with the boundary
conditions for moment at the hinge, M. = Mg = M, (see eq. (44))

gives

~

3 i € v
ng=pMp+pred§-2u[p gnrg%’d§+61j [fo wTTCdgjdw

p

(65)

The third term on the right side of equation (65) can be rewritten
through the use of integration by parts as follows

O{ENy.)

ow _ -
j EN. 3¢ dg = EWN, - Uf W 3t dg (66)

This integral can now be written in terms of Np and Ng through the

use of equations (13) and (64)

g
J oo Eag oy v [ wgac - [ as (67)
4 v p




Ly

Substitution of equation (67) in equation (65) gives

£ g
EM. = oMy + fp Mg df - 2pWN, + 20W(p)N, - 2wfp Ny dt

+2L§W9d§+6IL§[f*

Wer & dcjldv (68)
)
Equation (68) gives the value of the radial moment at any point ¢.

The governing equation for p_ 1s obtained by evaluation of equation (68)
at the support ¢ = 1.

At the support
Ww(l,7r) =0 (69)

and
Mp(1,7) =0 (70)

Thus

1 1 1 v
M, + 20W(p)X, + f Mg dag + 2f WN, de = -61/ [f
p p P

Wep € d;]dw
[0}
(T1)

Thr-ugh the use of equations (55) and (63) the inertia term of

equation (71) can be evaluated

i

v
[f Wer & dC]dv = % pr(1 = p)(1 + 3p) (72)
P o
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Substitution of equation (72) into equation (71) gives
1 1
I{1 - p)(1 + 3p)p, = =pM, - 20W(p)N, - fp Mg dg - 2fp WNg dg

(73)

From the interaction equation between plastic normal forces and
plastic moments (eq. (30)) and the expression for W(p) from

equation (56) (W(p) = 21), equation (73) becomes
o 1 1
I(1 - p)(1 + 3p)p, = =1 = bpN,T + pN . + jp Needg - 2/p WN, de

(74)

Equation (74) can also be written in terms of the displacement of

the neutral surface with the use of equation (29)

1 1l
I(1 - p)(1 + 3p)pT = =1 + bpZr + pzp2 + ‘jf szg + 2\/~ Wz deg
P P

(15)

Equations (74) and (75) are the governing equations for the hinge
circle in the Phase 1 motion. The equations are dependent on the shape
of the displacements and the values of the midplane forces. If only
bending is considered, that is Ne =0 or Z =0, the equation reduces
to that obtained by Wang in his bending solution for impulsively loaded

plates (see ref. 3).
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Analysis of Phase 2 Behavior

Phase 1 motion will continue until one of two conditions occurs.
Either the hinge circle reaches the center of the plate or a portion of
the plate becomes a membrane (that is, the plastic moment vanishes).
The former case will be considered in this section.

Let be the time it takes the hinge circle in Phase 1 to reach

1
the center of the plate. Then the displacement and velocity at that

time will be (see eqs. (54) and (56))

W(O,Tl) = 27y

and
WT(O,T].) = 2 (77)

Hence these conditions form the initial conditions for-the Phase 2
motion.

The radial stresses in this phase range from % at the center
to zero at the support. Hence the material behaves in & manner similar
to that in the outer region of the Phase 1 motion. The radiasl sirain
rates are zero and the velocity varies linearly from A, at the center

tc zero at the support. Thus

Wo=A(1-4¢) (78)
and

Wor=A_(1-%) (79)

where A represents the deflection at the center of the plate.
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The governing equations for this phase are identical to equation (71)

in Phase 1 with p set equal to zero.

1 v 1 1
61 / [fo Wer b dg}w = - jo Mg dg - efo WNg d (80)

Yo

The inertia term for this phase beccmes (see eq. (79)

L 14 1
61fo [fo Wt dg]d\l/ =5 1A, (81)

Substituting equation (81) into equation (80) gives

1 1
1 =
'éIATT"L/; Medg-afo WN, dg (82)

which in terms of Ne is

1 1 2 !
L=+ [Tl -2 g a (83)
o

(o]

and in terms of Z 1is

-

1, 1
A, = -1 + U/\ 2°dg + 2\/P WZ dg (84)
o )

Equations (83) and (84), as in Phase 1, reduce to the pure “ending
case for Ne = 2 = 0., These governing equations apply until either the

motion of the plate stops or a portion of the plate becomes a membrane.
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Equations (74) and \ 3) (or egs. (75) and (84)) are sufficient to
define the motion of plates where the apylied impulse, I, is small.
When the impulse becomes large enough to cause a pc=tion of the plate

to be a membrane, an additional phase of motion must be considered.

Analysis of Phase 3 Behavior

As the deformations increase the midplane forces also increase,
If the initial impulse, I, is large enough, the midplane forces Ln the
central portion of the plate will become equal to one. Thus the bending
moment vanishes and this portion of the plate behaves as a membrane.

Let the time at which a portion of the plate becomes a membrane be
Ty As time increases, the size oI the membrane region elso increases.
The rlate is thus separated into two regions: one in which there is no
moment and & second in which there is an interaction of moment and
midplane force.

In the inner region, 0<g <r, MB = 0 and Ne = 1, In addition,

N, = Ny at the center. These conditions along with equilibrium equation

(eq. (13)) result in

N, =Ng =1 0<¢g<n (85)

for the entire inner region. Consequently, this region is in regime A
of the Tresca yield diagram. The point of separation of the membrane

portion of the plate, § = n, can then be thought of as a membrane hinge.
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The moment equilibrium equation (eg. (15)) reduces at ¢ = n to

- 51] oo ¢ de (86)
(o]

where the slope %%
n
The governing equations for the motion of this hinge can be obtained

is evaluated at ¢ = n.

from the governing equation for the outer portion of the plate
(n <g <1). This governing equation is identical to that for outer

portion of Phase 1 motion with n substituted for p (see eq. (71)).

enw(n)+Lluedg+2flwuedg=-6Ifl[f(,*wﬂgd§:]dv
n n

(87)

(Note that the conditions N, = Ny =1 and M, =M, = 0 were vied.)

With the use of equation (30), equation (87) becomes

1 ¥ 1 1
Glfn [/0 W"§d§}d\¥=-(l-n)-2nw(n)+/;l Nezdg-an WN, de

(88)

In terms of Z (see eq. (29))

1 v 1 1
6 [ = (1 - n) - 2
Ib,n [jo wTTcdg]dw (1 - n) - 2nW(n) + fn z°dg + e/; WZ dg

n<l<1 (89)
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As in Phase 1 motion, wggf = 0, so that the velocity is linear

wT=(w)/l'§) n<g<l (90)

where (w;)n is the velocity at the membrane hinge.




X. SOLUTIONS OF GOVERNING EQUATIONS

In Chapter IX the governing equations for the bending hinge, o,
the membrane hinge, n, and the center deflection, A, were derived.

No assumptions were made in this section so that these equations are
exact within the framework of the basic assumptions, equilibrium
equations, and flow conditions discussed in Chapter VIII.

Note that these governing equations contain either a Né or Z
and a deflection W. Consequently, & solution can be obtained if scme
assumptions concerning these terms are made.

The deflection term appears only in a definite integral. Further-
more, the value of the deflection is always known at both endpoints of
the definite integral, that is, W(p) =2 , W(0) = A, and W(1) = O.
Consequently, only the assumption of shape of the deflection profile
is necessary.

An assumption of conical surfaces will be made in the sections to
follow. Such deformational surfaces have been observed experimentally
for dynamic loading (see ref. 26) and have been used by others in
solving membrane type problems. For example, both Hudson in reference 1
and Frederick in reference 2 made this assumption in their treatment of
impulsively loaded membranes. Onat and Haythornthwaite (ref. 25) also
made the same assumption in a study dealing with the influence of midplane
forces on plastic plates under static loading.

In order to solve the governing equations in the form of
equations (74) and (83), some knowledge of the value of Ny 1s also

necessary. If one recalls that in the elastic solution a circular plate

51




uniformly loaded at its supports has constant midplane stresses throughout
the plate, it is tempting to assume that the plastic plate has a similar
distribution. Applying this reasoning to the plastic plates with large
impulses, the entire plate could be assumed a membrane and Ny set

equal to one.

This approach, however, does not take into account midplane forces
that are developed by the distortion of the midplane of the plate. The
failure to recognize this fact reflects itself in two ways: First the
midplane forces are a constant. Second, and more important, no portion
of the plate 1s permitted to become a membrane. Thus an accurate
solution to impulsively loaded plates must be based on the governing
equations that contain the neutral surface displacement 2 (egs. (75)
and (84)). It also must, when appropriate, utilize the Phase 3 governing
egquations (eqs. (89) and (90)). Solutions using the assumption of
constant midplane forces are of interest. They can serve as an
evaluation of the influence of midplane forces on the deflections of
plastic plates. In addition, the solution for Ne =1 gives a limiting
case of maximum midplane force. Thus both solutions will be developed

in the following sections.

Bending of Plates Under Isteral Ioads

In the analysis to follow the midplane forces will be assumed
constant throughout the plate. With the exception of the limiting case
of Né = 1, the plate will always carry a plastic moment and at no time

will the plate become a membrane. Consequently, this case can be thought
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of as an analysis of the bending behavior of a plastic plate that has
been loaded by lateral loads, Ny, prior to the application of the
impulse. This analysis will not recognize midplane deformations due
to large deflections.

The governing equation for Phase 1 (eg. (74)) reduces for this

case to

1
I(1 - p)(1 + 3p)pT = N92 -1 - upNeT - znef W dg (91)
p

If the deflected surface is assumed to be a conicel surface
W=27 0<g<p

1 (92

W~ or[~——4%& p<g<1
1-p

so that W(p) = 2r and W(1) = 0. Substitution of equation (92) into

equation (91) results in a nonlinear differential equation
I(1 - p)(1 + 3p)py = =(1 = Ng?) - 2Ngr(1 + p) (93)

This equation is solved in appendix A through the use of a finite
difference approach. Numerical results are given for values of Né
ranging from O to 1.0 and for a range of impulses, I, from 0.4 to 11.6.
Exact solutions are obtained for the limiting cases of Ny equal to
zero and 1. Time histories of the hinge circle, p, are tabulated in

appendix A for a wide range of I and Ng -
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Phase 1 motion will continue until the hinge circle reaches the
center. Let 7T, be the time at which this occurs. At T = L the

deformation at the center will be

Ww(0,m) = A(r)) = 27} (9%)
The velocity at the center will be

w.(o,m) =A (1)) =2 (95)

The value of T is tabulated in appendix A as & function of impulse
I eand midplane force Ne. The values of 717 with the corresponding
values of displacement A(Tl) and velocity 2 serve as the initial
values of the Phase 2 motion.

The governing equation for Phase 2 (eq. (83)) reduces to

1
Arr = (1 - Ng?) - 2Nef W dg (96)
(o]

-

Consistent with the assumption of conical surfaces
W=4a(1-¢) (97)
Thus the governing equation becomes
A, = -2(1 - Ng2) - 2NgA (98)

The first integration of equation (98) can be achieved by

multiplying the equation by A..
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AALL = 'E?(l - Nez) + ENGAJAT (99)

The integral of equation (99) can now be written as
1102 = 22(1 - Ng2)A - NgA% + O (100)

where C; 1is the constant of integration.

The initial conditions for Phase 2 are

A(r) =2 (102)
Therefore

Substitution of equation (103) into equation (100) gives the

expression for the velocity of the center of the plate as

1.2 = 4(1 - N2A - 2Nga2 + LT + Br (1 - Ng2) + 812Ny (10b)

The final deformation a® the ceater of the plate, Ap, can now be

obtained from equation (1u4) by setting A, = O.

Nohp® + 2(1 = Ng2)Ag = 21 + br (1 - N,2) + bry 2Ny (105)
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large Deflection of Plates

The analyses in this section will consider the midplane forces
that are developed by large deformations of the plate. Consequently,
governing equations (75), (84), v.1d (89) will be used as these equations
contain the parameter Z. As previcisly discussed, this parameter is a
measure of the displacement of the neutral surface from the midplane.
The definition of 2 1s given in equation (38) in terms of the
midplane displacement W. For the assumption of conical surfaces

equation (38) reduces to

=X
Z--2 (106)
For Phase 1
W=2r 0<g<p
and (107)
1-t
We-or p<t <l
l-p
Thus
Z= -1 0<t<p
(108)

7 = or[—t <g <1
....-,-l-p p ¢
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The governing equation for Phase 1 can now be written as
Il - p)(1 + 3p)oy = =1 = (2p + 1)7° (109)

A numerical solution of equation (109) using a finite difference
approach is given in appendix B. Numerical values are calculated for a
range of impuises from I equal to 0.2 to 12.

Note that at T = O equation (109) reduce: to the differential
equation for pure bend;ng (see ref. 3). Thus for small values of 7
the behavior of the hinge approximates that obtained for a plastic plate
in bending. As time becomes large, however, the magnitude of the hinge
velocity Pr increases over that for the bending case. This increase
in hinge velocity results in a decrease in final deformation.

Phase 1 motion continues until the hinge circle reaches the center

of the plate. At this time, T = Ty deformation of the cenrter is
¥(0,7)) = A(ry) = 21y (110)
and its velocity is
w.(0,7)) = A (r) =2 (111)

Thus equations (110) and (111) serve as initial corditi-ne for
Phagse 2. The governing equations for this phase are given by

equation (84). Using equation (106), equation (84) becomes

%m,,--l-éf: wag (112)
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which can be approximated with the use of the conical surface assumption

by

21 . = 4 - A° (113)

By a procedure similar to that used for the golution of

equation (98), equation (113) can be integrated to get
2 - - %(12 +42) + ¢, (114)

The constant of integration Co can be evaluated by use of the

initial conditions (egs. (110) and (111))
LT + 2212 4+ br.2)
C2 = 4T + —3—(1 + Tl (115)

Substitution of equation (115) into equation (1lL) gives an
expression for the velocity of the center of the plate during Phase 2
motion

2 (271)

IA © = LT + 3

(12 + (2r))?) - %(12 + A%) (116)

The final deformation of the center AF can be evaluated from

equation (116) by setting A, equsl to zero. Thus

Ap(12 + Ag?) = 121 + (2v)) (12 + (2r))2) (117)
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At first glance it would seem that equation (117) can provide a
solution for the final deformation of the center of all impulsively
loaded plates. There are, however, restrictions on the use of this
equation.

Equation (117) is based on the assumption that only Phase 1 and
Phase 2 behavior occurs during the deformation of the plate. Both of
these phases assume that an interaction of bending and midplane forces
occurs. It has been shown that as the plastic midplane forces, N,
increased the value of the plastic moments, M, decreased until a
value of N equal to cne is reached. The moment at that time is zero
and that portion of the plate became a membrane. Thus the behavior
described under Phase 1 and Phase 2 is correct only for that portion of
the deformation that does not generate a midplane force such that N2
is greater than one. In terms of Z +this condition states that 22
is less than one, and hence the deflection W must be less than 2
(see eq. (106)).

Consequently, equation (117) can be used to calculate the final
deformation of the plate only if the impulse, I, is small enough so
that the deformation cf the plate is less than 2. When the plate is
subjected to impulses greater +han this value, a Phase 3 motion will
begin. The plate will be separated into two parts. In the central
region vhere the deflection is greater than two, no bending moments
are present and the plate behaves as a membrane. In the outer region

a coupling of midplane rorces and bending moments occurs and the plate
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in this region behaves as it did in Phase 1. The point of separation

of these regions, ¢ = n, is defined by
W(n,r) = 2 (118)

This point then forms a membrane hinge. This portion of the motion of
the plate 1s referred to as Phase 3.

The time, 75, at which the Phase 3 motion begins is defined as
W(e,y) = 2 (119)

Using the expression for Z given in equation (106) and the value
of the deflection at the membrane hinge, n, given by equation (119),

the governing equation for Phase 3 (2q. (89)) becomes

GILI[LWWTTCdg]d¢=-(l+3n) - ¢ fnl wrae (120)

In order to evaluate the left side of equation (120) the accelera-
tion of the outer region (n < ¢ < 1) must be evaluated. The velocity
of the region is given in equation (90) in terms of the position of
hinge and the transverse velocity at the hinge point W._(n,T).

Since the displacement at the hinge is by definition equal to a
constant 2 (see eq. (118)), the transverse velocity is dependent on the
slope of the deflection curve at the hinge and the velocity of the hinge,
n_. In addition, as the deformation of the plate 1s monotonically

increasing, the membrane hinge must be traveling toward the support.

Thus
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2

n (121)

w.(n,t) = I r

with equations (90) and (121) the velocity of the plate in the

outer region is given by
W o= —————(1 -¢) n<t{<1 (122)

The acceleration can now be written as

(123)

Substitution of equation (123) into equation (120) and performing
the necessary integration results in the following differential

equation

1
11 - n)ng, + 20, 2)(1 + 3n) = -(1 + 30) - £ fn wadt (124)

Equation (124) can now be approximated with the assumption of

conical surfaces in which W(n,7) =2 and W(1,T) = 0, to give

1{(1 - n)n.. + 20 °J1 + 3n) = -2(2 - n) (125)
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The solution to this differential equation results in the velocity
and position of the membrane hinge. The integrating factor for the

above eguation is

2n,
(1 + n)5(1 + 3n)

Multiplying equation (125) by this factor gives

14 e = - - dn (126)
A1 _ )t (1 + 3n)(1 - n)* 47

Hence the integral of equation (126) is

2
n, 1 108 72 64 1+ 3n
—_—7 | = - 811 c
I(l-n)“ 192&1'H)+(1-n)2+(1-n)3+ €T -n | T

-

If the Phase 3 behavior begins while the plate is in Phase 2,
the membrane hinge occurs at the center of the plate, that is, at

n = 0. The hinge velocity at that time i1s (from eq. (121))

(ny) = 3 Ar(72) (128)

The constant of integration, Cj, in equation (127) can now be

evaluated and is given by

s = Tnp) + s(2b) (129)
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Substituting equation (129) into equation (127) gives

n.2

I|——| = -F(n) + I(n)} (130)
(1 - n)
where
_ 1 108 72 64 1+3n)_
F(n) = 1| o) + o n)2 + . n)} + 81 log(l — ) ok
(131)

Values of this function for a range of n from O to 1.0 are gilven
in appendix C. The motion of the plate stops when n. =0, therefore,

the final position of the membrane hinge is given by

F(np) = I(nT)i (132a)
or with equation (128)
F(ng) = § A 2(7p) (132b)

The velocity, A_.(T5), can be evaluated from equation (116), since

the deflection A 1is known to be 2 at T = To. Therefore

A(rp) = b+ [(or) {22 + (2r)? ) - 32]:%1 (133)

Equation (132) applies to the condition where the membrane behavior
is initiated during the Phase 2 motion of the plate. If the impulse is

graat enough, membrane behavior can be initiated during Phase 1, that is,
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before the bending hinge reaches the center of the plate. Since membrane
behavior occurs when deflections are greater than 2 (see eq. (118)) and

from equation (107)
W(g,T) = 2r 0<g<p (134)

the Phase 3 behavior of the plate is initiated directly from Phase 1
for all impulses where T becomes greater than unity.
For this case the midplane forces are constant in the central region

(0 < g <p). The membrane hinge must thus originate at the point

£ = by = n_ .

The differential equation for Phase 3 in this case is identical to
the previous case. The solution to the differential equation is given
by equation (127). The initial conditions, however, are different. The

initial position of the membrane hinge, n

o» 1s equal to the position of

the bending hinge, p;, at time, + = 1. Thus
n, = (1) = Py (135)

The transverse velocity of the plate at the hinge 1s 2. Thus from

equation (121)

(n)y = (1= 1ng) = (1 = py) (136)

Evaluation of the constant of equation (127) for thc atove condition

glves
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2
Cy = (nr)o 41| 208 72 b + 81 log(l—I—égg)
(1-n)* 1921 -7 (1-n)2 (1-ny)3 1 -n,

(137)

with equation (137) and noting that n, = p;, the expression for

the velocity can be written as

2 (nT)z
1|-—T—| = 1|——21| - F(n) + F(oy) (138)
(1-w] @ -e)

where F(n) 1is defined by equation (131).

The motion stops when n_ 1is zero, hence the position of the

T

hinge when the plate comes to rest, np, is given by

(ny)2
F(np) = T -——r-l-f—ﬂ-,— + F(py) (139)
(l - f31)+
With the use of equation (136)
F(ng) = I|——— |+ F(p) (140)
(l - pl)

The final position of the membrane hinge is now known. If the center
portion of the plate does not turn into a membrane until the plate is
in Phase 2, equations (132) and (133) apply. If the center turns into

a membrane during the first phase of the motion, equation (140) applies.
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The inner portion of the plate (0 < ¢ < n) during this time behaves
like a membrane. That is, it carries no bending and transmits only a
constant tensile load in the direction of its midplane. A very detailed
and thorough discussion of such behavior 1s given by Hudson (ref. 1)
and by Frederick (ref. 2). Some of the more pertinent aspects of the
motion are repeated herein.

When Phase 3 motion is initlated during Phase 1 motion, the membrane
portion of the plate behaves as follows. The bending hinge that
originated during Phase 1 continues to travel inward toward the center
of the plate. As the hinge sweeps over each annular material element
in the flat central region, it tilte it into the shape of an annular
truncated conical element behind the hinge. As the material cannot
support bendiry, it is assumed no significant amount of work 1s done in
bending. In addition, it is assumed that no thinning of the plate takes
place. The portion of the plate passed over by the hinge 1s assumed to
move in a manner that makes its slope agree with the slope of the outer
portion of the plate. Thus when the motion of the membrane portion of
the plate stops, which occurs after the hinge reaches the center, that
portion forms & cone with a slope equal to the slope of the outer
portion.

This conical behavior is also assumed if the Phase 3 motion is

initiated from Phase 2 motion. Thus

Ap -2
np  1-np

(1k1)
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(142)



XI. DISCUSSION OF NUMERICAL RESULTS

erimental Results

Before proceeding with a discussion of the numerical results and
the all-important comparisons with experimental data, it would seem
appropriate to first discuss the detalls of the experiments. All of
the data used herein were obtained from an extensive experimental
investigation performed by Florence. The deteils of the experiments and
the resulting data were discussed in reference 4 from which much of the
following discussion 1s taken. It is being repeated here for the sake
of completeness.

The experiments were very thorough, covering a wide range of
impulsive loadings and plates of two different materials: aluminum
and steel. The aluminum plates were 6061-T6 and the steel plates were
1018 cold rolled steel.

A sketch of the experimental setup is shown in figure 11. The
plates were all nominally 1/4-inch thick and 8-1/2 inches in diameter.
The specimens were supported on an annular steel plate with an 8-inch
inside diameter. The impulse was generated by the detonation of an
8-inch diameter of sheet explosive (DuPont EL-506D). The sheet
explosive was cut to fit the opening in the upper support. A similar
disk of solid neoprene, 1/8 of an inch in thicknees, was placed between
the explosive and the specimen. This served to reduce the high pesk
pressure in the shock wave entering the plate and tended to eliminsate

plastic waves, possible changes of material properties, and spallation.
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The upper support was used to control the rebound. An outside steel
ring served as a spacer to prevent the edge of the plate from striking
the upper support during the rebound.

Dimensioné and properties of the plate used in the experiment are
given in table I. The yield stress was taken to be the average valve
of static tensile tests of both with and acrots grain specimens. Each
experimental stress-strain curve was replaced by a bilinear stress-
strain curve. The strain-hardening portion of the curves was obtained
by fitting a straight line through data points above 3- to L _percent
strain.

Twenty-two aluminum and 20 steei plates were tested. The values
of the initial impulse imparted to the plate were obtained by firing
free plates in front of a double-flash X-ray unit. The rigid-body
displacement in the predetermined time between X-ray pictures gave the
initial plate velocity.

The permanent central deflections were obtained through the use of
a traveling microscope. The values of this permanent deflection along
with the measured initial dimensional impulses are tabulated in table II.
Also shown in this table are the corresponding values of nondimensional

impulse 1I.

large Deflection Effects
The analyses based on consideration of large deflectional effects

will be used to predict the behavior of the experimental specimens.
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TABLE I.- DIMENSIONS AND PROPERTIES OF SPECIMENS*

terial | Yleld stress, Density, | Depth, | Radius,
Mater 1b/1n5 1b-sec?/in? | 1in. in.
Aluminum 42,000 0.000253 0.251 4.0
6061-T6

C.R. Steel 79,000 0.000732 0.241 4.0
1018

TABLE II.- EXPERIMENTAL RESULTS*

Steel plates Aluminum plates
Impulse | Exper. uvo Impulse | Exper. Vg
I Ap |lbesec/m®| I Ap |1lb-sec/m?
6.97 8.66 0.505 12.71 | 13.k2 0.317
6.86 8 .43 0.501 10.56 9.94 0.289
5.54 T.4b 0.450 10.49 | 10.96 0.288
5.20 7T.14 0.436 10.13 | 10.61 0.283
4.69 7.00 0.41k 7.53 8.06 0.244
3.52 6.41 0.359 7.28 | 8.54 0.240
3.33 5.81 0.349 7.28 8.32 0.240
3.2 5.54 0.344 7.28 8.4 0.24%0
3.00 5.05 0.331 6.17 8.06 0.221
2.70 4 .48 0.314 6.07 7.7 0.219
2.66 4.75 0.312 4 .66 6.34 0.192
2.02 3.78 0.272 4.61 7.08 0.191
1.82 3.22 0.258 4 .28 5.99 0.184
1.26 2.56 0.215 2.81 L .94 0.149
0.67 1.06 0.157 2.62 L.84 0.144
0.67 1.03 0.156 2.55 k.05 0.142
0.67 1.20 0.156 2.52 k.69 0.141
0.64 1.49 0.153 2.44 4,27 0.139
0.41 0.80 0.123% 2.3% 3.89 0.136
0.4 0.83 0.121 1.91 3.12 0.123
1.76 3.70 0.118
1.47 3.16 0.108

*Data taken from reference 4.




T2

Examination of the experimental setup shows that there are no
mechanisms i{o provide a midplane force prior to impulse. Thus the
plates must begin their motion in the pure bending mode. All specimens
must, therefore, start with a deformational behavior similar to the
Phase 1 behavior discussed herein.

The governing equation for the motion of the hinge circle during
Phase 1 is given by equation (109). A solution to this equation is
given in appendix B. Numerical results for the position of the hinge
circle at any time T are given for a range of impulses I from 0.2
to 12. Typical plots of these values are shown in figure 12.

The discussion in Chapter X pointed out that Phase 1 motion continues
until one of two possible conditions occurs. Either the hinge circle
reaches the center of the plate (p = 0) or the time T reaches a value
of one. From figure 12 it can be seen that the former condition applies
to the smaller values of Ilmpulse (I < 1.5) while the latter occurs for
the larger impulses where I 1is greater than 1.5.

In this phase of motion (Phase 1) the nondimensional displacement
of the central portion of the plate is equal to twice the time +T. Thus
for lmpulses greater than 1.5 the deflection of the central portion
reaches a value of 2 (Z of one) before the t.inge circle reaches the
center. Once this value of deflection is reached the central portion
of the plate becomes a membrane., (A nondimensional displacement of 2
is equivalent to an actual displacement of 2h, that 1s, the thickness

of the plate.) The position of the hinge, P1, when the central portion

< £ SRR - » = TR R
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TABLE III.- THEORETICAL RESULTS

Py gt np 3
0.2 —— 0.192 —— 0.56
0.3 - 0.280 -——- 0.83
0.l —— 0.366 -— 1.07
0.5 —— 0.1h7 _— 1.27
0.6 ——- 0.520 - 1.46
0.7 - 0.595 —— 1.65
0.8 — 0.651 . 1.80
0.9 — 0.710 ——- 1.94
1.0 - 0.768 0.04k4 2.09
1.1 —— 0.820 0.103 2.23
1.2 _— 0.868 0.156 2.37
1.3 - 0.910 0.210 2.50
1.4 - 0.953 0.240 2.63
1.5 — 0.992 0.274 2.75
1.6 0 .04k ——— 0.326 2.97
1.7 0.085 -——- 0.368 3.17
1.8 0.120 ——— 0.403 3.35
1.9 0.151 ——— 0.434 3.53
2.0 0.179 - 0.460 3.71
k.o 0.455 ~—- 0.694 6.54
6.0 0.564 -—- 0.773 8.81
8.0 0.627 —— 0.816 10.85
10.0 0.668 - 0.842 12.67
12.0 0.699 _——— 0.862 14.50
14,0 0.722 ——— 0.875 16.00




Th

1.0

Hinge circle p

Time T

Figure 12.- Motion of bending hinge for various values of impulse.
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initially becomes a membrane is a function of I as shown in figure 13
(see also table III).

For impulses less than 1.5 the hinge circle reaches the center of
the plate before any portion of the plate can become a membrane
(r <1). The value of the time, T, at which this occurs is plotted
as a function of I in figure 14 (see also table III).

Subsequent motion of the plate depends on the magnitude of the
impulse. For the large impulses (I > 1.5) the plate goes directly from
Phase 1 to Phase 3 behavior. The initial location of the membrane is
given by Py in table III. The displacement at the hinge point at this
time, W(n,T5) is two ard the velocity, W*(n,Tg) is also two (see
eqs. (118) and (41)). The final position of the membrane hinge is
calculated from equation (140) and its values are tabulated in table III
for various values of I. It 1s also plotted as a function of I 1in
figure 15. The final plastic deformations of the center of the plates
are calculated from equation (142) and are tabulated in table III.

For impulses less than 1.5 the plate goes from the Phase 1 tc the
Phase 2 motion. The initial center deflection for this phase is given
by 271 and the velocity by 2. The values of T, @are obtained from
table III for the appropriate values of I. If the impulse on the plate
is small enough, the motion of the plate will stop before the central
part of the plate becomes a membrane. The final deformation is then

calculated from equation (117). This happens for all impulses smaller
than 0.95.
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If the impulse is in the intermediate range (0.95 < I <1.5), the
center of the plate turns into a membrane before the motion of the plate
ends. For this case the final position of the membrane hinge is calcu-
lated from equation (132). These values are shown in table III and
figure 15. The final deformation as calculated from equation (142) is
also tabulated in table III.

A comparison of the calculated deformations at the center of the
simply supported plate to those obtained experimentally is shown in
figure 16 for the small and intermediate impulses and in figure 17 for
the complete range of impulses from O to 1l4. The circles represent the
experimental data from the 22 aluminum plates; the squares are from the
data of the 20 steel plates. The so0lid curve was obtained from the
present large deformation theory. The dashed curve is based on Wang's
plastic bending theory.

The comparisons between the calculated and experimental deformations
are very good, especially in the small and intermediate impulse range.
For impulses less than 4-1/2 the agreement between theory and experiment
is within experimental scatter. As the impulse increases above 5, the
calculated deformations become larger than those measured. This devia-
tion from experiment can be attributed, at least in part, to the omission
of strain hardening effects. Inclusion of strain hardening effects
certainly would cause a reduction in calculated permanent deformation.
Furthermore, these effects would become increasingly importaiit with the

additional strains caused by increased impulse.
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Figure 15. Final position of membrane hinge as a function of impulse.




g c

*®1ep TejuamTIadXs YjzTM suosiaedmod
pue sasTndwr 93BIPIWLISJUT PUB [TBWS JOJ UOTROITISP [BIFUS) -*9T 3an3td

0'c

71

I ‘ostndug

21 8" 0 ©°0

| ! | ! |

quamtIadxs T993S 0O
juawtaadxs unutumily O

RI03Y] BUIPUDY e evmmmm

£x09Y3 UOTIEMIOISP 3BIw]

ot

&y cuopgoergep TEIUSD




81

*e31up Tejuswigadxs yjzIm
suostxedmwod pus sasTndw] 3FIBT JOJ UOTFOSTIOP (BIquU3) =-* )T 2JnBTH

I ‘osTndur

/7 jusutxadxs T9a3g 0

7 juswtsadXxs wnuiuNTy O

d £105Y3 BUTPUSY e e

yd £1094} UOTIVEIOFIP IBIVT wmemsmmer

9¢

dy ¢uop3oargep TBI3UBY




82

The bending theory of Wang gives poor agreement even for tae low
values of impulse where no membrane behavior is present. As the value
of the impulse is increased so that portions of the plate turn into a
membrane, the difference between the bending and large deformation
theories becomes substantial. This difference 18 largely due to the
neglect of the restraints provided by the midplane forces. This effect

will be further discussed in the next section.

lateral Ioad Effects

The influence of the lateral loads on the deformational behavior
of plastic plates can be seen by examining some of the numerical results
given in appendix A for the case of plate bending with lateral loads.

The governing equations for Phase 1 motion for this case were given
by equation (93). The equation was solved numerically in appendix A for
various assigned values of Ng. As the values of Ny are assumed tc be
constant in the analyses, 1 plastic bending moment is present at all
times. Thus no membrane behavior is considered regardless of the magni-
tude of the deformation. Even for the limiting case of Ne = 1, the
plate does not behave as a membrane as the flow conditions for the
interaction case is used, that is, €, = 0. Consequently, egquation (93)
is considered to be the governing equation for the motion of the hinge
even after the deformation becomes greater than 2 (vt > 1).

The final deformation of the plate was calculated from equation (105).
The results are shown in figure 18, where the central deflection of the

plate 1s plotted as a function of the uniform lateral loads, N, for




Central deflection, AF
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Midplane forces, N

Figure 18.- Influen:ze of midplane forces on central deflection.
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various values of the impulse, I. Examination of these curves shows
that for small impulses where the deformations are also relatively small,
the midplane forces do not significantly influence the final deformation.
However, with increasing values of impulse and correspondingly larger
deformations, the influence of the midplane forces 1s greatly increased.
For example, for an impulse of 10 the calculated central deformation
of the plate 1s reduced by almost 60 percent with the introduction of a
midplane force of only 0.2 of the maximum (N = 0.2). Once the midplane
forces reach a value in the range of 0.2 to 0.3, further increases of
this force are not as effective in reducing the central deformation. In
the case of an impulse of 10 in the above example, an introductlon of a
midplane force of 0.2 caused a reduction of deformation from 30 to 12.5.
Further increase of the force to its maximum of 1.0, however, reduces

the deformation only to a value of 7.0.




XII. COMPARISON OF LARGE DEFORMATION THEORY TO EXPERIMENTAL

RESULTS AND OTHER METHODS OF ANALYSES

This section will be devoted to a critical examination of the
various methods of analyses that have possible application to deformations
of plastic plates. Conclusions as to the accuracy of these methods are
based on the deformational results for impuisively loaded plates. These
conclusions, however, are believed to be valid for other loading condi-
tions when applied on a deformational tasis.

Five methods of analysis will be discussed.

1. The large deformation theory developed herein.

2. The bending theory of Wang from reference 3.

3. An analysis based on maximum midplane forces.

L. The membrane theory of Frederick from reference 2.

5. The midplane interaction analysis of Jones from reference 5.

The calculated central deflections are shown in figure 19 as a
function of impulse from all five of these analyses. In addition, the

experimental results from Florence (ref. i) are plotted for comparison.

large Deformation Theory

The results from this analysis, replotted from figure 17, are shown
as a s0lid line in figure 19. Recall that in this analysis the inter-
action between plastic bending moments and midplane forces are based
entirely on the deflectional behavior of the plate. As long as the
displacements are less than the thickness of the plate (W < 2) this

interaction is present. However, when the deflections become greater
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than the tliickness, the central portion of the plate becomes a membrane
and thereafter supports no bending moment. The motion of the bending
and membrane hinges, which are the governing factors of the final defor-
mation, is obtained from solutions of appropriate governing equations.
From figure 19, it can be seen that the comparisons to theory are
excellent for deformations of the order of 2 to 3 times the thickness
(W of 4 to 6). For lsrger deformations the theory becomes slightly
ccnservative. This, however, should be expected in the light of the
basic assumptions of the theory. The assumption that the plate material
is a rigid plastic neglects both elasticity and strain-hardening effects.
Each of these would tend to reduce the calculated final deformation if
included. In addition, the assumption that the shape of the outer region
of the plate 1s conical tends to underestimate the speed of the hihge
circles and thus increases the calculated deflection. The inclusion of
all three of these effects would, therefore, bring the theoretical

calculations into even better agreement with the experiment.

Bending Theory

The results from this analysis are shown in figure 19 as a dash—
double-dot line. In terms of the parameters used herein, the central

deflection 1s based on the equation

Ap = 31 (143)

Figure 19 shows that the comparison between the bending theory and
experiment 1s extremely poor even for the lower values of permanent

deformation. Because of this poor comparison it would seem 111 advised
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to use this approach when accurate deflections are desired. As the
method always gives permanent deformations that are above that obtained
experimentally, the results of a bending analysis car be used to give
very conservative estimates of permanent deformations.

It has been previously pointed out that the behavior of the bending
hinge circle in Phase 1 1s directly related to the final deformation of
the plate. The larger the speed of the bending hinge the smaller the
permanent deformation. Thus the conservativeness of thé bending theory

is due primarily to a calculated hinge circle speed tha" 1is too low.

Maximum Midplane Force Analysis

The results of this analysis are shown in figure 19 as a dot-dashed
line. This analysis is identical to that for the large deformation
except for the interaction relationship of moments and midplane forces.
The interaction relationship used in the midplane force analysis is not
dependent on deformations. Instead, it is based on the assumption that
the deflections will be so large that the entire plate will carry the
maximum midplane force of ﬁ;(N = 1). This, therefore, necessitates
that the bending moment vanish. The final deformation results for this
case were discussed in a previous section and correspond to the values of
Ap for N =1.0 in figure 18.

The comparison of the central deformation calculated by the maximum
midplane force assumption to the experimentel results show that this
method of analysis is unconservative, for the large deformations where the

method should be most applicable. This unconservativeness in calculated
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deformation reflects a calculated hinge circle velority that is too
large. The assumption that only midplane forces are present is, there-
fore, as poor an assumption as one where only bending moments are

permitted.

Membrane Theory of Frederick

The results from this analysis are showu in figure 19 as a short
dashed line. 1In terms of the parameters used h=rein the central

deflection atc calculated in reference 2 is given by

(1hk)

The comparison of the experimental data and the theoretical results
shows excellent agreement for the larger deformations. For small defor-
mations the agreement 1s very poor. However, it should be noted that the
theoretical model used by Frederick was never intended to be used for

small deformations.

As the analysis has many assumptions it is difficult for the author
to fully understand the theoretical reasons for the good agreement
obtained for larger impulses as opposed to the very poor agreement in
the lower impulse range.

The analysis does assume that only membrane forces are present
which 1s the same assumption used by the maximum midplane force
analysis Jjust described. The behavior of the membrane is also assumed

to be similar to the Phase 1 and Phase 2 behLavior described herein.
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The outer portion of the membrane in Phase 1 and the total membrane in
Phase 2, however, are assumed to be rigid in Frederick's approach. Both
of these assumptions should cause the membrane analysis to underestimate
the final deformation. The third important difference of the two methods
is that the membrane analysis assumes that the hinge velocity 1s uniform
and dependent only on the initial velocity and the yleld stress and
density of the plate material. Thus it must be this assumption that

compensates for the unconservatism of the other two.

Interaction Analysis of Jones

The results of Jones' analysis are shown in figure 19 as a long
dashed curve. The data for this curve were taken from a figure in
reference 5.

As can be seen from figure 19, Jones' analysis gives slightly
unconservative results in the higher impulse or deformation range.
Addition of the neglected strain hardening and elasticity effects would
result in even more unconservative results. His calculations for small
permanent deformations are in very pcor sgreement.

Jones assumed in his analysis that since the deformations were
large, the midplane forces would always be at their maximum. He also
permitted the plate to carry bending moments during the Phase 1 motion.
These moments ranged from the maximum ﬁo at the bending hinge to zero
at the support. Therefore, he violated the interaction relationship
based on the Tresca yleld condition. His flow conditions were the same

as those used in the constant midplane-force analysis. Thus it would
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seem that his calculated deformations should be smaller than those

showed by the dot-dashed line. The fact that they are not smaller is

due to an additional assumption used by Jones concerning the hinge
velocity. In particular, h® assumed the hinge velocity to be the same

as that obtained by Wang for ihe bending case. As was shown in the
section dealing with the comparison of the bending theory, this predicted
hinge velocity is very much smaller than it should be. This lower value
of velocity must then be responsible for increasing the value of his

calculated deformation above that of the dot-dashed curve.




XIII. CONCLUDING REMARKS

An analysis of a simply supported circular plate under an impulsive
loading has been pre;ented. The analysis considers the influence of
both bending and midplane forces and includes large deformation effects.
Shear and rotary inertia effects are neglected. The plate material is
assumed to be isotropic and a rigid plastic. The yield criteria are
based on the Tresca condition.

Governing equations were develcped and solved for three phases of
motion. The initial Phase 1 included a bending hinge that traveled from
the support to the center of the plate. Phase 2, yhich was initiated
when the hinge reached the center, continued until either the motion
ceagsed or a portion of the plate became a membrane. Phase 3 described
the motion of the membrane hinge from its initial point to its final
resting position.

Two types of bending-moment-—midplane-force interaction relationshins
were studied: One was based on displacement of the neutral surface from
the midrlane surface. The second was based on the magnitude of midplane
forces cnly. The furmer relationship took account of large deformations
and midplane distortions and hence allowvd regions of the plate to
behave as a membrane. The latter only considered the lateral forces
and no membrane behavior was permitted.

Comparisons of the analytical resuvlts with experimental data resulted

in the following conclusions.

92
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1. Interaction relationships based on large deformations should
be used in order to get reliable data for a complete range of deflections
and impulses.

2. Analyses of plastic plates based on bending behavior alone give
highly conservative results and hence should only be used to get con=-
servative estimates of the permsnent deformations.

3. Even a small amount of midplane force has a significant effect
on the final deformations of plastic plates.

L. Analyses of plastic plates based on maximum membrane forces
throughout the plate tend to be seriously unconservative. This method
should not be used unless accompanied by a conservative assumption to
counteract this influence. Under no conditions should this assumption
be used to study deformr.tional behaviors of plates with deforma..ns of
the order of one to two plate thicknesses.

5. For final deformations of the order of five thicknesses and
greater the influence of strain hardening and elasticity becomes
im.ortant.

Elasticity effects can be approximately accounted for in the
Present analyses by incorporating an elastic phase of motion prior to
the Phase 1 motion considered herein. This elastic phase could be used
to evaluate the energy dissipated in elastic deformational behavior and
correct the initial velocity conditions on Phase 1, accordingly.

A more accurate and sophisticated approach, however, would be to

permit the plastic behavior to initiate at the center of the plate and
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then spread toward the supports. To do this it would be necessary to
define another hinge circle separating the elastic and plastic portions
of the plate.

Another possible area of refinement is in the analysis of the
membrane portion of the plate. An initial effort in this arca should

deal with the influence of reduced thickness.
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XVI. APPENDIX A

SOLUTION OF GOVERNING EQUATIONS FOR BENDING OF PLATES

UNDER UNTFORM LATERAL IOADS

The governing equation for Phase 1 in terms of the impulse I and

the lateral load, Ny, is (see eq. (93)

. -(1 - Ng2) - 2NgT(1 + p)
T I(1 - p)(1 + 3p)

(a-1)

The initial condition for this phase is that p =1 for T = 0.
This phase ends at 1 = T when p = O. Phase 2 motion then begins
and continues until a final deformation 1s reached. The equation for

the final deformation is given by equation /105) as
2 2 - 2 2
NyAp~ + 2(1 - N, JAp = 2T + br (1 - Ny ) + bry Ny (A-2)

For the case of pure bending (Ne = 0) the solutions for

equation (A-1) can be found in closed form as

lop-Papd-T (a-3)

so that

T, =1 (A=l)

99
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The solution of equation (A-2) for Ny =0 1s then
Ap =31 (A-5)
For the case of the maximum midplane force (Ne = 1) the solution of
equation (A-l) 1is

2 = I[%(l + p)2 -8(1 +p) + 4 log i&_%_ﬂl + 1%] (A-6)

so that
7,2 = 0.72741 (A-T)
The solution of equation (A-2) then can be written as

AF? = 21 + br® (A-8)

Ap = 2.21 \T (2-9)

For the general case equatioa (A-1) is solved numerically for Y

and the value of Ap calculated from equation (A-2). The flow

diagrams, computer program, and numerical results follow.
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——————— N=N+1
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FINAL DEFORMATION OF IMPULSIVELY LOADED PLATES

WITH MIDPLANE FORCES

h Ny 0 0.1 0.2 | 0.3 o4 0.6 {0.8 [1.0
04 ] 1.20 | === 1.10 | === 1.09]1.15|1.25|1.k0
08| 240 | == | 2.01| === | 1.88[1.85|1.90|1.98
1.2| 3.60| === | 2.80| --- | 2.52|2.41|2.39|2.k2
1.6 4.80| «== | 3.51| --= | 3.07|2.88]2.81|2.80
L.o|12.00| 8.19| 6.83| 6.06| 5.56 |4.96 | 4.63 |4 k2
6.0118.00 {10.05| 8.95| 7.83| 7.11|6.24|5.74 5.4
8.0 | 24.00 |15.50 | 10.77| 9.33| 8.43 |7.32'| 6.68 | 6.25

10.0 | 30.00 {15.71 | 12.38 | 10.67 | 9.58 |8.27 | 7.50 | 6.99

12.0 | 36.00 | 17.73 | 13.84 | 11.87 | 10.63 { 9.13 | 8.25 | 7.66
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COEFS{2)=-1.0
COEFS{3)=-1.0
COEFS(4)=1.0-DTAU/FI
CALL FALG (COEFS+340sR,TEMP,IERR)
IF (IERR.NELO) PRINT 5,4 IERR
5 FORMAT(//10X*ERROR IN FALG SUBROUTINE®*/)
00 6 M=],3
IF (AIMAGI(R(M)).EQ.0.0) GO Tu B
6 CONTINUE
PRINT 7
7 FORMAT(//10X®ALL ROOTS COMPLEX®/)
8 RHO(1)=REAL(R(M))
CALCULATE INITIAL RHOT VALUE
RHOT(1)=a={ 2. *NTHETA®*TAU(1)&(1.+RHO(L) }¢(1.—NTHETA%%2))/(FI®(l.-
LRHO(1) }#{1.+3.*RHO(1)))
PRINT 9, NyTAUIN) sRHOIN) yRHOT (N}
9 FORMAT (4XXN%, L EXSTAUR,1 7X*RHO#*, 1 TXSRHOT*//2X1343{5XEL15.8) )
BEGIN ITERATION ON RHO, TAU, RHOY
10 N=N+1
DELRHO=PADT (N—1)*DTAU
RHO(N) =RHO { N~1 } +DEL RHO
TAUIN)=TAU(N-1)+DTAU
RHOT(N)=={ 2. *NTHETA®TAU(N) (1. +RHO(N) )+ (1. ~NTHETA%#2))/
LIFI*(1.~RHO(N) )*(1.+3.#RHOIN)))

(@]

QUTPUT
RHO ~RADIUS OF HINGE CIRCLE
RHOT - VELOCITY OF HINGE CIRCLE
TAU - TIME OF HINGE CIRCLE

L R R N gl

IF (MOD(N, IPFN).EQ.0) PRINT 11y NeTAUIN),RHO(N) sRHOTIN)
11 FORMAT(2XI3,3(5XEL15.8))
IF MAXIMUM NUMBER OF ITERATIONS IS REACHED OR RADIUS IRHO)
BECOMES NEGATIVE -- STOP
IF (N.GT.MAXN) GO TO 12
IF {RHO(N).LT.0.0) GO TO 20
GO TO 10
12 PRINT 13
13 FORMAT({//10X®MAXIMUM N REACHED®*//)
G0 TO 14
C INTERPOLATE FOR TIME AT WHICH RHO=0
20 TAUA=TAU(N~1)+RHO(N-1)¢DTAU/(RHO(N-1)-RHO(N)}
CALCULATE AF

(a9}
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INFLUENCE OF UNIFORM MID-PLANE FORCES ON
PLASTIC BENDING UNDER IMPULSIVE LOADING

ROBINSON-KRUSZEWSKI

DATE 03/07/6%

JTAU=

10
20
390
40
50
60
70
80
90
100
110
120
130
140
150
160
170
189
1+0
200
210
220
230
240
250
260
270
280
290

«010 [= 4.0

TAU

1.00000000F=02
1.00000000E-01
2.00000000E-01
3.00000000£-01
4.00900000E-01
5.00000000E-01
6.00000000E-01
7.00000000E-01
3.00000000£-01
9.00000000£-01
1.00000000E +00
1.10000000E +00
1.20000000E+00
1.30000000E+00
1.40000000F +00
1.50000000E+00
1.60000000F +GU
1.70000000E+00
1.80000000E+00
1.90009000F+00
2.0Q000000E+00
2.10000000E+00
2.20000000E+00
2.30000000E+00
? .42000000E+00
2.50000000E+00
2.60000000E+00
2.70000000F+00
2.80000000E+00
2.90000000E+00

TAUA= 2.91461683E+00

SRD-A1998,

TIME 19.16.59.

NTHETA= .10

RHO

9.64325054E-01
8.80608619€-01
8.29276011£-01
7.87761936£-01
7.51066650€E-01
T7.17236100E-01
6.85452608E-01
6.54993972E-01
6.25537314E-01
5.96822057E~-01
5.68655887E-01
5.40890256E-01
5.13405705E~-01
4.86102527€E-01
4.58894475€E-01
4431 704306E-01
4.04460408E-01
3.77094097€-01
3.49537255¢E-01
3.21720101€-01
2.93568869€-01
2.65003209E-01
2.35933030E-01
2.06254428E-01
1.75844160E-01
1.44551752E-01
1.12187711E~-01
7.85050049E~-02
4.31682146E-02
5.698641823€E~03

FEBRUARY 1968,

RDV-122

RHOTY

—1.78916444E +09
-5.90849807€-01
-4.46368495E~G1
-3,84295030E-01
-2,48865004E~-01
-3.25934887E-01
-3.10040640E-01
~2.98576451E--01
-2.90178280€-01
-2.833859153€-01
~2.79242542E-01
-2.75932814E-01
-2.73696801E-01
-2.72375324E-01
~2.71860561E-01
-2.72082392€-"1
-2.73000154E )1
-2.74597925E J1
-2.76882340:-01
-2.7988248.1-01
-2.83651821€-01
~2.882723806-01
-2.93862061E-01
-3.00566357E-01
-3.08677131E~01
-3.18463206€-01
-3.30421985€6-01
-3.45270934E-01
-3,64140668E-01
-3.88931569E-01

AF(1)= 8.19444091E+00 0.



DTAU=

10

20

30

40

50

60

70

80C

99
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
250
300
310
320
330
340
350
360
370
380
390

«0lU I= 6.0

TAU

1.02000000E-02
1.03000000€E-01
2.00000000E-C1
3. 00000000E-C1
4.10300000E-01
5.020000000£-01
5.4J30000C0F-01
1.00000000E-01
3. 09000000F-01
9., 00000000E-01
1.00030000E+00
1.10002000E+00
1.20000000E+00
1.32300J9000F+00
1.40000000E+00
1.53900000E+00
1.560000000E+400
1.70000000E+00
1.80000000E+00
1.90000000E+00
2.00000000E+0Q0
2.10000000E+00
2.2C009000E+00
2+.300000C0E+00
2.40000000E+00
2. 520000000E+00
2. 60000000E+00
2.70000000E+00
2.80000000E+00
2.30000000E¢00
3.00000000E+30
3.10000000E+00
3.20000000E+00
3.32000000E+00
3.40000000E+00
3.50000000€E+00
3.60000000E+00
3.70000000E+00
3.80000000E+00
3.90000000€+00

TAUA= 3.96887600E+00

112

NTHETA= .10

RHO

9.70920305£-01
9.03063513€E-01
8.61766565E~01
8.28546299€-01
1.99320530E-01
T.72536510E-01
T.47407232E-01
T.23469545E-01
7.00423916E-01
6.78063379E-01
6.56237641€-01
6.34833178E-01
5.13761395E-Cl
5.92951187E-01
5.72344043€£-01
5.51890703€E-01
5.31548791E-01
5.11281098€E-01
4.91054284E-01
4.70837881E-01
4.50603495E-01
4.30324150E~-01
4.09973721E-01
3.89526432E-01
3.68956381E-01
3.48237078€-01
3.27340963E-01
3.06238895E~-01
2.84399565€E-01
2.63288822E-01
2.41368855E-01
2.19097184E-01
1.96425369E-01
1.73297335E~-01
1.49647132E-01
1.25395857E~-01
1.00447334E-01
7.46818134E-02
4.79464922E-02
2.00405872E-02

RHOT

-1.45591684E+00
~4.76542157€E-01
-3.57967732E-01
-3.06689393E~01
-2.7T152995E-01
=2.57796503€E-01
-2.44148330€-01
—2+34071958E-01
-2.26404202€-01
—2.20452673E-01
-2.15777627E-01
-2.12085787E-01
-2.09174050€-01
~2.06897600E-01
-2.05150854E-01
-2.03855581E-01
—-2.02953236E-01
—-2.02399863E-01
-2.02162642E-01
-2.02217512€E-01
-2.02547533€-01
-2.03141766E-01
-2.03994533£-01
-2+05104988E-01
-2.06476927€-01
-2.08118830E-01
-2.10044133E-01
-2.12271744E-01
~2.14826851E-01
24177421 00E-91
-2.210592617€-01
-2.24831598E-01
-2429127129E-01
-2.34033422€-01
-2+39664469E-01
-2.46171003E-01
-2.53756336E-01
-2.62701583E-01
-2.734076015-01
-2.86468443E-01

AF(1l)= 1.10328784E+01 0.




DTAU=

.010 I= 8.0

TAU

1.00000000€E-02
1. 00000000E-01
2.00000000E~01
3.00000000E-01
4.00000000E-01
5.00000000E-01
6. 00000000£-01
7.00000000E-01
8. 00000000E-01
9.00000000E-01
1.00000000E+00
1.10000000€+00
1.20000000E+00
1.30000000E+00
1.40000000E+00
1.50000000E+00
1.60000000E+00
1. 70000000E+00
1.80000000E+00
1.90000000E+00
2.00000000E+00
2.1G000000E +00
2.20000000€E+00
2.30000000E+00
2.40000000E+00
2.50000000E+00
2.60000000E+00
2.70000700€+00
2.8000G>00E+00
2.90000000E+00
3.00000000E+00
3.10000000€E+00
3.20000000E+00
3.30000000E+00
3.40000000€E+00
3.50000000E+00
3.60000000E+00
3.70000000E+00
3.80000000E+00
3.90000000E+00
4.00000000E+00
4.10000000E+00
4.20000000E+00
4.30000000E+00
4.40000000E+00
4.50000000E+00
4.600N0000E+00
4.7000C000€E400
4.800C0000E+00
4.90000000E+00

TAUA= 4.89329104E+00

113

NTHETA= .10

RHO

9.74841259¢-01
9.16326172%-01
8.80865910E-01
8.52424119€E-01
8.2T465145E-01
8.04644527E-01
7.83281360E~01
7.62975496E-01
T.43468716E-01
T.24583180€E-01
7.06190328E-01
6.88193650€~01
6.70518442E-01
6.53105376E~-01
6.35906281E-01
6.18881280E-01
6.01996768E-01
5.85223962E-01
5.68537832E-01
5.51916284E-01
5.35339542E-01
5.18789656E-01
5.02250107E-01
4.85705492E-01
4.69141248E-01
4.52543431E-01
4.35898509€E-01
4.19193184E-01
4.02414222E-01
3.85548295E-01
3.68581820E-01
3.51500794E~-01
3.342906297°-91
3.16935300E-C1
2.99420462E 01
2.517265164E-01
2.63835133E-01
2.457256437E-01
2.27374371E-01
2.08756207E-01
1.89841949€E-01
1.70598595€-01
1.50988172E~01
1.3096648TE-01
1.10481461E-01
8.9470867T7E-02
6.78591765E-02
4.55530486E-02
2.24346799E-02
-1.64840441€E-03

RHOT

~-1.25834155€+00
-4.U9768396E-01
-3.06837213€-01
-2.62193667€E-01
-2.36378952€E-01
~2.19375231€-01
-2.07306725E-01
-1.98320631€-01
-1.91407420€-01
-1.85965423€E-01
-1.81611781E-01
-1.78090411€-01
~1.75223193€-01
~1.72882294€-01
-1.70973617e-01
-1.69426458E-01
-1.68186795E~-01
-1.67212815€E-01
-1.66471834E-01
-1.65938140€-01
~1.65591453£-01
~1l.65415811€-01
-1.65398746E-01
~1.65530685€-01
~1.65804499€E-01
-1.66215180E-01
-1.667596 08€-01
=1.67436390€-01
-1.68245765E-01
-1.69189566E-01
~1.70271225€-01
~1.T7T1495841£-01
-1.723870294E-01
—1le74403421E-01
-1.76106262E-01
~1.77992394E-01
-1.80078373E-01
-1.82384310€-01
~1.84934637E-01
~1.87759118€E-01
—-1.90894202E-01
-1.94384851E-01
-1.98287061€-01
-2.02671374E-01
-2.07627906E~-01
-2.13273698E-01
=2.19763777€E-01
-2.27308355€-01
-2.36200640€E-01
-2.46863946E-01

AF{1)= 1.35000324E+01 O.



DTAU=

390
400
410
420
430

450
460
470
480
490
500
510
520
530
540
550
560
570

.010 I= 10.0

TAU

1.00000000E~02
1.00000000E~-01
2.00000000E-01
3.00000000E-01
4.0G000000E-01
5.00000000E-01
6.00000000€E-01
7.00000000E-01
8.00000000E-01
9.00000000E-01
1.00000000E+00
1.10000000E+00
1.20000000E +00
1.30000000E+00
1.40000000E+00
1.50000000€E+00
1.60000000€E+00
1. 70000000E+00
1.80000000E+00
1.90000000€ +00
2.00000000E+00
2.10000000E+00
2.20000000E+00
2.30000000E+00
2.40000000F+00
2.50000000E+00
2.60000000E+00
2.70000000E+00
2.80000000E+00
2.90000000E+00
3.00000000E+00
3.10000000E+00
3.20000000E+00
3.30000000E+00
3.40000000E+00
3.50000000E+00
3.60000000E+00
3.70000000E+00
3.80000000E+00
3.90000000E+00
4.00000000c+400
4.10000000E+0C
4.20000000E+00
4.30000000E+00
4.40000000E+00
4.50000000E+400
4.60000000E+00
4, TO000000E+00
4. 80000000E+400
4.90000000E+00
5. 00000000E+00
5.10000000E +00
5.20000000E+00
5.30000000E+00
5.40000000E+00
5.50000000€E+00
5.60000000E +00
5. T0000000E+00

TAUA= 5.72618326E+00

114

NTHETA= .10

RHO

9.77512541E-01
9.25325755€-01
8.93789604F-01
8.68543162E-01
B.46423763E-01
8.26228895E~-01
8.07349736E-01
7.894 o712E-01
T7.72235296E-01
7.55610935€E~-01
T.39441233E-01
7.23640529E-01
7.08142740E-01
6.92895607E-01
6.77856930E-01
6.62992005E-01
6.48271829€E-01
6.33671807€-01
6.19170799€-01
6.04750412E-01
3.90394448E-01
5.76088482E-C1
5.61819528E-01
5.47575765E-01
5.33346325E-01
5.19121108E-01
5.04890634E-01
4.90645910€-01
4.76378326C-01
4.62079550€E-01
4.47741444E-01
4.33355983E-01
4.18915180E-01
4.04411012E-01
3.89835349E-01
3.75179885E-01
3.60436062E-01
3.45594994E-01
3.30647383E-01
3.15583429E-01
3.00392729€E-01
2.85064160E-01
2.69585754E-01
2.53944540€E-01
2.38126370E-01
2.22115701€-01
2.05895347E-01
1.89446164E-01
1.72746669E-01
1.55772.62€E-01
1.38496132€-01
1.20885483E-01
1.02903542E-01
8.45067381E-02
6.56432367E-02
4.62504968e-02
2.62518380E-02
5.551453056-03

RHOT

=1.12396677E+00
=3.64759686E-01
-2.72570989€-01
~2.32520735€E-01
-2.09312512€-01
-1.93983812€E-01
=1.83066526E-01
-1.74902351€-01
-1.68587443E-01
-1.63582866E-01
=1.59545450€-01
=1.56245431E-01
-1.53522768€-01
-1.51262375€-01
-1.49379298E-01
-1.47809448E-01
=1.46503596E-01
=1.45423346E-01
=1.44538372€-01
=1.43824476E-01
-1.43262190€E-01
-1.42835757€-01
-1.42532377€E-01
-1.42341639€-01
-1.42255089E-01
-1.42265905E-01
=1.42368641E-01
-1.42559032E-01
=1.42833847€E-01
-1.43190771E-01
-1.43628325E-01
-1.44145803E-01
=1.44743235€E-01
-1.45421362E-01
-1.46181636E-01
-1.47026235€E-01
~1.47958086E-01
-1.4898J920€E-01
-1.50099337E-01
-1.51318898€E-01
-1.52646240E-01
-1.54089229€E-01
-1.55657145E-01
=1.57360928E-01
~1.59213471E-01
-1.61230013€E-01
-1.63428623E-01
-1.65830838E-01
~1.68462488E-01
-171354782€-01
=1.74545767€E-01
-1.78082300€E-01
-1.82022784E-01
=1.86441014E-01
=1.91431731E-01
-1.97118842E-01
=2.03667968E-01
-2.11306288E-01

AF(1)= 1.57110046E+01 O.



DTAU= .010 I= 12.0
N TAU

1 1.00000000E-02
10 1.00000000E-01
20 2.00000000E-01
30 3. 00000000€E~01
40 4.00000000€E~01
50 5.00000000E-01
60 6. 0000N00V0E-O!
70 7.00000000E-01
80 8.00000000€E-01
90 9. 00000000€-01
100 1.00000000€ +00
110 1.10000000E+00
120 1.20000000€+00
130 1.30000000E+00
140 1.40000000E+00
150 1.50000000€+00
160 1.60000000E+00
170 1.70000000E+00
180 1.80000000E+00
190 1.90000000E+00
200 2.00000000€+00
210 2410000000E+00
220 2.20000000E+00
230 2.30000000E+00
240 2.,40000000E+00
250 2. 50000000E+00
260 2+60000000E+00
270 2. 70000000€E+00
280 2.80000000E+00
290 2.90000000€+00
300 3.00000000E+00
310 3.1000C000E+00
320 3.20005000€E+00
330 3.30000000E+00
340 3.40000000€E+00
350 3.50000000E+00
360 3.60000000F+00
370 3.70000000E+00
380 3.80000000E+00
390 3.90000000E+00
400 4.00000000E+00
410 4.10000000E+00
420 4.20000000E+00
430 4.30000000€+00
440G 4.40000000€+00
450 4.500000C0E+*00
460 4. 60000000E+00
470 4.70000000E+00
480 4.80000000€+00
490 4.90000000£+00
500 5.00000000E+00
510 . 10000000E+00
520 5.20000000E+00
530 5.30000000€+00
540 5.40000000£+00
550 5.50000000E+00
560 5. 60000000E+00
570 5.70000000E+00
580 5.80000000E+00
590 5.90000000E+00
600 6. 00000000E+00
610 6.10000000€E+00
620 6.20000000E+00
630 6.300C0000E+00
640 6.40000000E+00
650 6.50C00000£+00

TAUA= 6,49013851E+00

115

NTHETA= .10

RHO

9.79482068E~-01
9.31942759E-01
9.03273630€~01
8.80353384E-0i
B8.60294723E-01
R.41999875€E-01
8.264913135€-01
8.08708225€-01
7.93174896E-01
7.76168650E-01
7.63585329E-01
T.49347046E-01
7.35393813€-01
7.21578299E-01
7.08162383€-01
6.94814824€E-01
6.81609617E-01
6.68524819E-01
6.55541681E-01
6.42644003E-01
6.29817633E-01
6.17050089E-01
6.04330254E-01
5.91648135€-01
5.78994672E~01
5.66361576E-01
5.73741202€-01
5.41126435E-01
5.28510604E-01
5.,15887396E-01
5.03250795E-01
4.90595015€E-01
4.77914454E-01
4.,65203638E-01
4.52457185E-01
4.39669T56E-01
4.26836024E-01
4.13950628E-01
4,01008143E-01
3.88003037E-01
3.74929637€-01
3.61782086E-01
3.48554303E-01
3.35239937€E-01
3.21832318€E~-01
3.08324403E-01
2+94708715€-01
2.80977275€E-01
2.57121524E-01
2.53132235E-01
2.38999407E-01
2.24712146E-01
2.10258519€E-01
1.95625388E-01
1.80798197E-91
1.65760731E-01
1.50494805€-01
1.34979892E-01
1.19192644E-01
1.03106296E~01
8.668989115-02
6.99072796€E~02
5.27157759E-02
3.50643513E~-02
1.68911267€-02
-1.88018629€E-03

RHOT

~1.02501141E+00
-3.31818643€-01
~2.47589073E-01
-2.,10957800€-01
-1.89702092€-01
-1.75639072€-01
~1.65601972€-01
-1.58076381E-01
~1452236742E-01
~1.47590687€~-01
-1.43824595€-01
~1.40728393€-01
-1.38155668E-01
~1.36001040£-01
-1.34186629€-01
-1.32653591€-01
~1.31356527€-01
~1.30260326£-01
~1.29336538E~-01
-1.28562795E~-01
-1.27920829€-01
-1.27395742€-01
~1.26975287€-01
-1.26649347E-01
-1.26409530€-01
~1.26248869E-01
=1.26161575€-01
-1.26142851E-01
-1.26188745€-01
-1.26296033E-01
=1.26462121E-01
-1.26684978E-01
-1.26963074E-01
-1.27295335€-01
-1.27681110€-01
-1.28120150€E-01
-1.28612584E~-01
~1.29158918€-01
-1.29760029€-01
-1:30417171E-01
-1.31131988E-01
-1.31906533E-01
~1.32743297€-01
-1.33645240£~-01
-1.34615841E~01
-1.35659155€-01
-1.36779878E-01
~1.°7983442E-01
~1.39276112E~01
-1.40665123€-01
~1.42158839€-01
-1.43766947€-01
-1.45500711€-01
~1.47373279€-~01
~1.49400073€-01
~1.51599290€-01
~1.53992545€-01
-1.56605712€E-01
-1.59470031€-01
-1.62623596E-01
-1.66113382€-01
-1.69998059€-01
-1.74351978€-01
~-1.79270963£-01
-1.84880937E~01
-1.91351228€-01

AF(l)= 1.77316318E+01 O.




JTAU=

13
20

40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220

<010 I= 4.0

Tau

1.00000000E-02
1.00003000E-01
2.00000000E~01
3.00092000€E~-C1
4.00030000E-01
5.00000000E-01
6. 00000000E-01
7.00000000E-01
8. 00000000€-01
3,00000000E-01
1.000000008+00
1.10000000E+00
1.230000006+00
1.30000000E+00
1.40090000E+00
1.500000 10E+00
1.50000000E+00
1. 70000G00E+00
1.30000000E+00
1. 90000000F+00
2. 003CN0000E+00
2.10000000E+00
2.20002000E+00

TAUA= 2.22664056LE+00
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NTHETA= .30

RHO

9.64325054E~01
8.83079455E-01
8.29850092€6-01
71.84796684E-0Q1
7.43433701€-01
7.04096361E~01
6.65954302€~-01
6.28521061€£-01
5.914779R1€E-01
5.5455075TE-01
5.17700254£~01
4.,80640346£-01
4,43233950£-01
4.05503099E-01
3.67166796FE-01
3.28133154E-01
2.88240532E-01
2.47296147E-01
2.05059849E-01
1.61219031&-01
1.15346693E-01
6.68252393E-0:
1.46928062E~02

RHQOT

-1.65930084E+00
-5.99399137€~-01
-4.75617618€-01
~4.26411059€-01
~4.00713649€E-01
-3.85310289€-01
-3,76899482€-01
~3.,71755821€-01
~3.69217355€-01
~3.68634642E~01
-3.69636088€e-01
=3.72017456E-01
-3.75687237E-0L
-3.80640581E-01
- 1.86950393£-01
~e94T7714389E-01
-4,04358260E-01
-4.161207G9e-01
~4.30590822E-01
~4.48745583E-01
~4472047373€-01
~5.03055674E~-01
~9%.46639318E~01

AFll1)= 6.06151369E+00 0.




DTAU=

10
20
30
40
50
60

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
2170
280
250

<010

TAUA=

[= 6.0

TAU

1.00000000E-02
1.00900000E~01
?2.0000000908-01
3.00037000E~-01
4.00000000E-01
5. 00000000E~01
6. 00000000E~01
T.0J009000E=31
5+ 00000000E-01
9.00000000E-01
1.03002000E+00
1.10000000F£+00
1.200929000UE+00
1.30000000F+00
1.40000000E+00
1.50000" *0E+0QC
1.6000C.,0€+00
1.70020000€+00
1.8002000GC:+00
1.90002000E+00
2.000000G0E+0Q0
2.10003000E+Q0
2.20000000F+00
2.300Q00000E+00
2.40000000E+00
2.52000000F+00
2.60000000E+400
2+ 70002000E+00
2.80003000E+00
2.+90000000F+00

2.89937918€£+00
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NTHETA= .30

RHO

9.709203u5e-01
0.05042592E-01
8.62162169E-01
8.26030295C-01
7.92992244E-01
T.61636653E-Cl
7.31475909E-01
7.01945258E-01
6.72859333¢-01
6.+4049382E-01
6.15391936E-01
5.86791596€£-01
5.58170838E~01
5.29463%555€-01
5.00610699E-01
4.71557143E~901
4.42249235E-01
4.12632710E-31
3,82650744E-01
3.52241934€-01
3.21338031E~-01
2.89861181F-01
2571720374201
2.24806645E~-01
1.90966271E-01
1.56090749E-01
1.19901286E-01
§.21235722E-02
4.23439742E-02

-5.29385935£-05

RHOT

-1.35028152E+400
-4.83920921E-01
-3.32135256kE-01
-3.41189167€-01
-3.193631567€-01
-3.06255513z-01
=2.917926021E-01
=2.9253557¢c-01
-2.89109391£-01
~2.37085491F~-01
—2.861210¢4.-01
- 2.85999355E-01
—2.86581688E-0.

-2.87780342E-01

—2489543450€-01
~2.91846087€-01
—2.94685360£-01
-2.98378142E-01
-3,02060868€E-01
-3.06691195E-01
-3.12051730€-01
-3.14256398E-01
-3.254605T7€-01

-3.33877083€-01

~3.43301812€E-01
=3.55656067E-01
-3.70059969E-01
-3.87967205€E-01
~4.10932380€-01
-4.41698084£-01

AF(1)= 7.83052918E+00 O.




BE A

-

DTAU= .0l10 I= 8.0
N TAU

1 1.00000000E-02
10 1.,00000000E-01
20 2,00000000E-01
30 3.00000000€-01
49 4.,00000000E-01
50 5.00000000E-01
60 6.00000000€-01
70 7.0000N000E-01
80 8.0J000000E-01
90 9. 02000000€-01
100 1.00000000E400
110 1.10000000E+00
120 1.20000000F+00
130 1.30000000E+00
140 1.40000000€E+00
150 1.50000000E+0C
169 1.60000000€+00
170 1.70000000E+00
180 1.8900C00CE+0Q0
190 1.90000000E+00
200 ?2.00000000E+00
210 2.10000000E+00
220 2.20000000E+00
230 2.30000000E+00
240 2.400000C0E+0)
250 2+.50000000E+00
250 2.+ 60000000€400
270 2.709000000F+00
289 2+.R0C00000CE+00
290 2.90000000£+00
300 3.0009000UE+00
310 3.17000000E+00
320 3.20000000€+00
330 3.30000000€+0C
340 3.400030000E400

TAUA= 3.47422873E+00
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NTHETA= .30

RHO

9.74841259€-01
9.18020804E-01
8.F1172035€-01
8.50198230e-01
8.219364726E-01
7.95218984E-01
7+.694T0951E-01
7.44362849E~01
7.19636461E~01
6.95300531€-01
6:.71103719E-01
6.47019816E-01
6.22989064E-01
5.93962751E-01
5.74899682E-01
5.50763761€-01
5.26522261E-01
5.02144521E~-01
4.77600925€-01
4.52862026E~01
4.27897T1T76E~-01
4,02676769E-01
3.771565474F-01
3.51327379€-01
3.25122014E-01
2.98503763E-01
2.71420375£-01
2.43811036€-01
2.15603800€-01
1.86712063E-01
1.57029579E-01
1.26423176E-01
9.47217110E-02
6.16935354E-02
2.70421116E-02

RHOT

-1.16706206E+00
—4,16354E78E~01
- 3.27306352E-01
-2.921296 00E-01
-2.72887229€-01
-2.61165355F~-01
-2.53%465.6E-01
~2+43432740E~01
—2+44374077€E-01
-2.42677274E-01
~2.,41237796E-01
-2.40459059E£-01
—=2.40210177E-01
-2.40402386E-01
~2.40975216£-01
-2.41888063£-01
-2.43114938¢c-01
—2.44641152E-01
~2.464061266£-01
-2.48577913E-01
-2.51001265E-01
-2.53749043€-01
—2.56847033€-01
-2.60330135€-01
~2.64244060E-01
-2.68647859E-01
-2.73617609E-01
-2.79251781E-01
-2.85679159F-01
-2.93070750€£-01
-3.01658248E-01
-3.11763669E-01
-3.234490955€E-01
—3.386064492€E-01
-3.57114905€-01

AF(l)= 9.33474990E+00 0.




DTAU=

N

10
20
30
40
50
60
70
80
90

100

110

120

130

140

150

160

170

180

190

200

219

220

230

240

250

260

270

280

290

300

310

320

330

340

150

360

370

380

390

«J10 I= 10.0

TAU

1. 00002000c-02
1.00009000€E-01
2.00000000E-01
3.00000000E-01
4.00900000E-91
5.20000000£-01
6.0J30990000E-01
7.03300000E-01
8+ G0O00000E-01
9.00302000F-01
1.00009000t400
1.10990009E+00
1.20009000E+00
1.30000000E+00
1.40000000E+00
1.50000000E+00
1.60000000E+00
1. 70000000E+00
1.80000000E+00
1.90000000E+00
2.00000000E+00
2.10000000E+00
2.20000000E+00
2+.30000000E+00
2.40000000E+00
2.50000000CE+00
2.60000000E+00
2. 70000000€E+00
2+ 82000000E+00
2.90000000E+00
3.00000000E+00
3.12000000E+00
3.20000000E+G0
3.30000000E+00
3.40000000E+00
3.50000000E+00
3.60000000€E+00
3.70000000E+00
3.800000G0E+00
3.90000000£+00

TAUA= 3,98350950E+00
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NTHETA= .30

RHO

9.77512541E-01
9.26830068E-01
3,94041693€-01
8.66524316E-71
8.41449T48E-01
8.17774825€-01
7.949867126-01
7.72792333€-01
7.5100726TE-01
7.29507198E-01
7.08203747€-01
6.870312808-01
6.659391 T9E-01
6.4483705TE-01
6.23841657E-01
6.02774754E-01
5.81661694E-01
5.60480327E~01
5.39210214€-01
5.17832003E-01
4.96326923E-01
4.74676352E-01
4.52861435E-01
4.30862713E-01
4.08659761E-01
3.86230806E~01
3.63552304E-01
3.40598460E-01
3.17340668E-01
2.93746820E-01
2.69730454E-01
2.45399681E-01
2.205557172E-01
1.951913106~01
1.69237668E-01
1.42611512E-01
1.15209812E-01
8.69024T38£-02
5.752106 TOF-02
2.68407346E-02

RHOT

—1.04244728E+00
-3,.70767273€-01
~2491498125€E-01
-2.59331921£-01
—24419435 75E-01
-2.31268482E-01
—2.24247963€-01
—=2.19450800c-01
—-2.16114732E-01
=2.13796342E-01
-2.12220736E-01
—2.11209229€-01
=2.10641477E-01
—2410434296E-01
—-2.10529190€E-01
—-2.,10884682E-01
-2.11471452E-01
-2.12269169E-01
-2.13264392€-01
-2.14449183E-01
—2.15820193E-01
-2.17378095E-01
-2.19127276E-C1
~2.21075744£-01
—2.23235222€E-01
=2.25621438E-01
-2.28254607€E-01
-2.31160165E-01
—2+34369797E-01
—-2.37922866E-01
-2.41868384€-01
-2.46267757€E~01
-2.51198646E-01
-2.56760497E-01
-2.63082652E-01
-2.70336557E-01
~2.78754743E-01
-2.88661502E-01
~3.00524804E-01
-3.15049329€E-01

AF{l)= 1.06660980E+01 O.




DTAU= .0l0 I= 12.0
N TAU

1 1. 00000000€-02
10 1.00000000E-01
20 2.00000000€E-01
30 3.00000000E-01
40 4.00000000E-01
50 5.00000000£E-01
60 6.00000000E-01
70 7.00000000E-01
80 8.00000000E-01
90 9.00000000E-01
100 1.00000000E+00
110 1.10000000E+00
120 1.20000000€+00
130 1.30000000£+00
140 1.40000000E+00
1€0 1.50000000E+00
160 1.60000000E+00
170 1.70000000€+00
180 1.80000000E+00
190 1.90000000E+00
200 2.00000000E+00
210 2.10000000E+00
220 2.20000000€+00
230 2.30000000E+00
240 2.40000000E+00
250 2. 50000000E+00
260 2.60000000E+00
270 2. 70000000E+00
280 2.80000000E+00
290 2. 90000000€E+00
300 3.00000000E+00
310 3.10000000E+00
320 3.20000000E+00
330 3.30000000E+00
340 3.40000000E+00
350 3.50000000€E+00
360 3.60000000E+00
370 3.70000000E+00
380 3.80000000E+00
390 3.90000000E+00
400 4.00000000E+00
410 4.10000000E+00
420 4.20000000E+00
430 4.30000000E+00
440 4.40000000E+00

DATE 03/07/68

TAUA= 4,.445TT7991E+00

NTHETA= .30

RHO

9.79482068E-01
9.33308355€-01
9.03489370€-01
B.T78491927E-01
8.55734784E~-01
8.34266320E-01
8.13619147e-01
7.93526577E-01
T.73821202€-01
7.54390578E-01
7.35155168E-01
T.16056312E-01
6.97049185E-01
6.78098445E-01
6.59175420E-01
6.40256216E-01
6.21320411E-01
6.,02350111€-01
5.83329264E-01
5.64243133E-01
£.45077891€E-01
5.25820286E-01
5.06457372E~-901
4.86976267E-01
4.67363936E-01
4.47606988E-01
4.27691473E-01
4.,07602675€E-01
3.87324886E-01
3.66841162€-01
3.46133041E-01
3.25180215€-01
3.03960141€-01
2.82447565E-01
2.60613937€£-01
2.38626674E-01
2.15848221€£-01
1.92834824E-01
1.69334917E-01
1.45286929E-01
1.20616263E-01
9.52310032€E-02
6.90156399E~-02
4.18215542€E-02
1.34519527€-02

RHOT

-9.50677410€E-01
=3.37379753E-01
-2.64921333€-01
-2.356457041€-01
-2.19477010€-01
-2.09618146E-01
-2.03087304€-01
-1.98577062E-01
-1.95390653€E-01
~1.93122307e-01
-1.91520002€-01
~1.90419417E-01
-1.89709340€-01
-1.89312306E-01
~189173175€-01
-1.82252100€E-01
-1.89520038E-01
-1.89955810£E-01
-1.90544120E-01
-1.91274204E-01
-1.92138902E-01
~-1.93134015E-01
-1.94257872E-01
-1.95511045€-01
-1.96896191E-01
—1.98417984E-01
-2.00083141€E-01
~2.01900529E~-01
-2.03881360E-01
-2.06039482E-01
-2.08391785€£-01
-2.10958752€-01
-2413765192E-01
-2.16841217€-01
—-2.20223552€-01
-2.23957302€-01
~-2.28098377E-01
-2.32716863E-01
~2.37901814E-01
—2.43768207€-01
~-2.50467328E-01
~2.58202753E-01
—2.67255892E~-01
-2.78028639E-01
-2.91118574E-C1

AF(l)= 1.18731443E+01 0.

TIME 19.17.02.
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03/07/68 LRC SCOPE 3.0 6600B—65K 02/16/68
19.16.44.5RD4924.

19.16.4%4. LRC COMPUTER COMPLEX
19.16.45.J0B+1+0644,40000. Al9398, 24

19.16.45. MARTHA RUBINSON,RDV122, 1148 2011
19.16.45.RUN(S)
19.16.49.SETINDF.
19.16.50.LG0.
19.17.02.E0F ENCOUNTERED BY NAMELIST
19.17.02.EXIT
19.17.02.SPPRINT{OUTPUT,3)
19.17.03.CPU 002.206238 SEC.
19.17.03.P°PU 011.701952 SEC.
SRD4924. PRINT-PP 00806 LINES
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XVII. APPENDIX B

SOLUTION OF GOVERNING EQUATIONS FOR PHASE 1

The governing equation for Phase 1 can be written as (see eq. (109)

_ l+(2p+l)1’2
T I(1 - p)(1 + 3p)

p (B-1)

The initial conditlions for this phase are that p =1 at 1 = 0.
The motion is terminated if either the hinge circle becomes zero or the
time, T, becomes one. The equation was solved numerically. The flow
diagram, computer program, and numerical results follow.

In order to avoid the singular point at p = 1, the motion of the
hinge during the first time interval (At = 0.01) was calculated from
the bending case. This procedure is valid as at T =0 when p = 1.0.
The differential equation 1s exactly that obtained for the pure bending

solution.
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Eiiva

Calculate

reange
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N=1
Calculate
p(K), o (N)

L

N=N+1

Y

Calculate
oo, o(N)
7(N) D,‘,(N)
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SRO4911. LRC COMPUTER COMPLEX
JUBy 140644440000, AL998, 2, MARTHA ROBIMSON,ROV122, 1148 2011
PROGFAM PLATESL (INPUT,OUTPUT)

000003 DIMENSION CGEFS(4)+TAU(500) s RHO{500) + RHOT (500 ) \RESULT(2)

€C0003 REAL B4 IEs INC

3€0003 COMPLEX R{3),TEMP(E)

000003 NAMEL [ST/ INPUT/DTAU, 18, [E, INCoMAXN, [PFN

acocea PRINT 1

000007 1 FORMAT (*1LARGE DEFORMATIONAL ANALYSIS OF PLASTIC*/* PLATES UNDER I
LNPULSIVE LOADING*/* ROBINSON-KRUSZEWSKI, SRD-A1998, FEBRUARY 1968,
2 ROV-122%)

000007 CALL CAYTIM (RESULT)

0C0011 PRINT 2, RESULT

ococ1? 2 FGRMAT ($OCATE®A10, 5X#T IME#AL10)

0cooL?

0C0022
000031
0€0033
0C0034
000035
0C0C40
0C0044
0€0064
0C0064
0C€C074

0€0074
0CCCTs
000077
acolo0
0g¢o103
aco107
0colle
0Co1Llé6

C INPUT LCATA i

¥ DTAU - TIME INCREMENT

’ IB — INITIAL IMPULSE LOAD

* IE — FINAL IMPULSE LOAD

* INC — INCREMENT ON IMPUL SE LOAD

* MAXN = MAXIMUM NUMBER OF ITERATIONS ON VELOCITY, TIME AND RADIUS
* IPFN - PRINT FREQUENCY

3 READ INPUT
CALCULATE TOTAL NUMBER OF IMPULSE LOADS AND INITIALIZE TIME

NN=ABS((IE-IB)/INC)+1.0
TAU(1)=0TAY
DO 14 I=1NN
N=1
IF {1.EC.1) Fl=]B
IF (1.GTo1) FIsFI+INC
IF ({I1.GT+2) AND.IMOD(I+2).NE.O)) PRINT 41

41 FORMAT(%1%*)
PRINT 4y DTAU,FI

4 FOFRMAT(///% CTAU=SFS5.3,5X¢]=sF5,1//)

CALCULATE INITIAL RHO VALUE
COEFS(1)=1.0
COEFS{(2)=-1.0
COEFS(3)=-1.0
COEFS{4)=1.0-CTAU/F 1
CALL FALG (COEFS+3,CeRy TEMP,IERR)
IF (JERR,NELO) PRINT 5, IERR
S FORMAT(//10X*ERROR IN FALG SUBROUTINE*/)

00 6 M=1,3




0¢0120
000124
0C0l126
000131
0C0131

0C0134

0C0154
0C0l67

0CC167
000171
0C0173
0C0175
000177

0€0220
0€0240
000240
000244
000247
000251
0€C255
000255
0coz261
0C0261
000264
0€0266

6

7
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IF (AIMAGIR(M)) .EQ.0.0) GO TO 8
CONT INUE

PRINT 7

FORMAT (//10X*ALL ROOTS COMPLEX*/)

8 RHO(1)=REAL{R(M))
CALCULATE INITIAL RHOT VALUE

9

RHOT L) == (Lo ¢TAU(L )28 (1. ¢2.*RHO(LI))/7(FI®{ 1. ~RHO({1})®(]1,¢3.¢
LRHO( 1) ))

PRINT 94 NoTAU(N},RHOIN),RHOTIN)

FORMAT(4X®i & 11 XSTAL® 1 TXRRHO®, L 7X*RHOT®//2XT3,3 (5XELS.8))

C BEGIN ITERATION ON TAU, RHV, "HOT

c
*
»
*
*

10

N=N¢1

DELRHO=RH T{N-1)*DTAU

RHO(N)=RHO{N-1)+DELRHO

TAUIN)=TAUIN-1)+DTAU

RHOT IN)=~ (1. +TAUIN)*#28{]1 .42 4RHO(N) ) ) /{FI*( 1. ~RHO(N) )} *( 1. +3.%
LRHO(N)))

QuTPUT
RHO - RADIUS OF HINGE CIRCLE
TAU - TIME OF HINGE CIRCLE
RHOT -~ VELOCIYY OF HINGE CIRCLE

N

11

12
13
14

- ITERATICN NUMBER

IF {MOD(N, IPFN).EQ.0) PRINT 11y NoTAUUIN) +RHO(N) ¢ RHOT (N}
FORMAT (2XT13+3(5XEL5 .8} )

IF {N.GT.NMAX)} GO TO 12

IF ((l.~RHC(N)).LT.0.0) GO TO 14

IF (N.LE.2) GO TO 1C

IF ((TAU(N-2)-1,0).CT.0.0) GO TO 14
G0 70 10

PRINT 13

FORMAT(//10X*MAX IMUM N REACHED®//)
CONTINUE

sToP

END



PROGRAM LENGTH INCLUDING I/0

0C516

FUNCTION

STZTEMENT ASSIGNMENTS

1 -
5

1C
14

ASSIGNMENTS
CC0323 2
000363 7
000167 i1
000261 41

BLOCK NAMES AND LENGTHS

VARTABLE
COEFS -
1 -
INC -
N -
RESULT
TEMP -

START CF
0C€C214

START OF
0C0415

START OF
0€0434

ASSIGNMENTS
000444
003443
003410
CC3444
003404
003417

CCNSTANTS

TEMPORARIES

INCIRECTS

DELRHO
18
IPFN
NMAX
R0

UNUSEC COMPILER SPACE

0€3400

BUFFERS

000343
000370
€0040C5
000351

003450
0034Ce6
003441
003451
001434
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CTav
1€

NN
RHOT

000017
€00131
000255

003437
003407
003447
003442
002420

Fl
LERR
MA XN

TAU

000353
000375
0004.0

003445
003446
003440
n03411
60045C



Ctme mag

0.4101,  NORMAL
~=-TIMF---L00A0 MODE
Fah LUAGLR 034454
- PROGP AM—-—- ADORESS -
PLATESI €001c0
TYSTEm uoT616
et 016561
Cartim a6tie
INFLTN Cicte?
tALG Cle21s
LICN AR TAS]
(tird Qtelts
NOE R Clalds
tec s
~~FNERY~----ALDRE S5~
PLAYES] ceclol
LANTRY Gor61?
LYSTEm cLocc?
SYSTEm cottey
SYSTEMP corer
(134 00161
e (X Erod
v GCTNe
FENGEML AGTT82
[STL RN 01C%6
tavem aton?
INPUTN 0107%0
(218 01214
rRSPRU, 0l3%5¢4
IR, €13578
POV IL. [48 13} ]
OPRU,. €138e
(Av. 713113}
<iot. c13sn
{(PIN. G1327%
. C13407
Cttua Clatls
[ Clegne
(429 016379
(347 Ciswal
(PLY LS P3
(LA 1% 348
CRCI9Y (15568

“c-=UNSATISHIHU EXTERNALS-----

CONTHOL
mel}eol? = e[ YPEmmmn

FuA TABLES G34202

PLATEST
OLIPTC

INPUTN
KCOER

PLATES]
FALG

PLATESL
INPUTIN
ouTePIC
1NPUT
KOBER

PLATESL

PLATES
PLATESL
PLATES]

curerc

ouTeIC

SYSTEN
ouTeIC
INPUTN
CUTPTC

aut» I
INPUTN

CUTPTC

CAYTIM

Q00102
01u57s

Gil1e620
015140

000367
013120

000365
al1220t7
01C%7e
0l1s31
015141
00010%
000166
000227
000266
000387
aoollo
o002t

€00206

010613

C10e 1

€102%7
010603
011312
010650

010571
010756

010565

010724

USER===8 0=l Ml ocooccmecccccFul LOAN-~L0A LOAD--BINK COMN--LINGTH--

011430

000106
001170
000230
200324
000360

01Ce)s

ol0621

010730

128

==LABEL EC-=~COMMON-~

REFERENCFS

000113
ooCi N
0002%%
00C330

0l Cosl

01C3e

REFERENCES

00011
coerr
000297
000332

009ten

000118
040212
000281
000938

0193%

60C1e2
000214
0002e3
[.-Li3 )

090090

200182
000214
000269
anoIv?
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LARGE DEFCRMATICNAL ANALYSIS OF PLASTIC

PLATES UNCEF IMPULSIVE LOADING
RCBINSCA-KRLSZEWSKI »

DATE G3/Ce/68

DTAL= .C1C I= 2.0

N TAU

1 1.00CCOCCOE-02
10 1.000C00C0E-O1
20 2.00CCO0C0E-OL
30 3.000C0CC0E-OL
40 4 ,0000230C0E-O1
5C 5.00CCOCCOE-T1
60 6.00000000E-01
iC 1.CC0COCC0c-01
80 8..00€00CCt-Cl
9C S L 0000000E-0O1
100 1.CGCCOCCCE+OO

0TAL= .C1C I= 4.0

N TAU

1 1.CG6CCIGCCE-02
1G 1.G0CC0O0COE-CL
20 2.00000CC0E-O1
30 2.,000¢c8CCCE-C1
4C 4 ,£0000000E-01
5C £.C0CCCCCCE-DL
60 6 .00000000VE-O1
1C 1.CCCCOCCOE-CL
80 8.00000000t-C1
9C $«300C0OCCCE-O1
1C0 1.00000000E+00

SRD—-A1993, FEERUARY 1968,

TIME 20.41.43.

RHO

9.4935465CE-01
€.2€503242E-C1
7.52148293E-01
6. ET7216567E-01
6.24269401E-01
5.6C554158E-01
4+.941S3799E-01
4.23944539E-01
3.481763533e-Cl
2.675921C4E-01
1.79Cl2621€-01

RHO

9.04325054E-01
3.8C€C7841E-01
B.28€19291E-01
7. 24379886E-01
71.42234159E-01
€.5¢:75%3806c-01
6.50C90242E-01
6.1015748CE-C1
€.€1€613021€E-01
5.101527€1E-01
4,55¢10761E-01

ROV-122

RHAT

~2+56633899E+400
-8.60407945E-01
-6.82851812E-01
-6433697190E-01
~6.29870185E-01
—6.49277874E-01
-6.,83213669€-01
-T7.27998205E-01
-7.8282586(CE-01
-8.495737C9E-01
-94,343237915-01

RHOT

-1.80062C63E+0C
-5.90846328E-01
-4.62953323E-01
—4,25719558E-01
-4,20060823c-901
-4,29964743E-01
—4.487544C4E-01
-4.73256340E-01
-9.01038204E-01
-5.31739944£-01
-5.64785698€£~-01



DA IVE

10

30
40
50

70
80
90
10C

DTAU=

10
20
30
40
50
€
70
8C
90
100

«01C

«01C

TAU

1.00000CG00E-02
1.C0CCO0000E~-G1
2.00000000E-01
3.CG0CCCCOE-CL
4.000€0000c-01
5.00000000E-01
€.000000C0E~-C1
7.00G00000E-01
8.C0000CC0OE-O1
5.C0000000E-01
1.CCOCOCOOE+D0

TAU

1.000000C0E-02
1.C0C00000E-01
2.+0C000CCOE~-01
3.000000C0E-01
4.CCCCCCCOE-C1i
5.000000C0E-01
6.00CCO000E-O1
1.C0000CCOE-C1
£.C0G000C0E-01
S.C0CCO0COE-O1
1.000000G0E+00
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RHO

9.7C520305E~01
G.03C65367E-01
8.61227120E-01
8.25765008E-01
1.92(63572E-01
7.58248952E-01
1.23345159E-01
€.£6785771E~01
6.482379C1E-01
€.074177632E-01
5.643658518E-01

RHO

S. 14t4125GE-01
9.16323031E-01
8.8(297088E-01
8.50C05267£-01
8.21156722E-01
7.92231636E-01
T.623930448E-01
1.211536C6E-01
6.98236316E-01
6.€3467CS6E~01
6.26141673E-01

RHOT

-1.46522169E+00
-4 .76550575E-01
-3, 71626288E-01
=3.40734513E-01
~3.35563586E-01
=3.42970621E-01
-3.57429945€E-01
~3.76101593E-01
-3.97332427E-01
-4.20343948€£-01
~4.,444706C5€E-01

RHOT

~1.26637469E+00
-4.09731482€-01
-3.18725378E~-01
~2.91793207€-01
-2.87118176E-01
-2.93251285E-01
-3.,05500383E-01
-3.21258145€-01
=3.39145222€E-01
~3.58320151E-01
-3.78288098E-01



DTAU= CL(C

10
20
30
40
50
60
10
80
90
100

0TAL= .(C1(

10
20
30
40
50
6C

80
SsC
100

TAU

1.C00C00C0E-02
1.C00000C0E-01
2.0CCCOCLOE-O1
3.00000000E-01
4.0CC00000E-01
£.000C0COCE-C1
6.000000C0E-O!L
1.CCCCCCCOE-01
8.00000000€-01
$.CCCCOGO0E-O1
1.00000CCOE+Q0

I= 12.0

TAU

1.0CCC00C0E-C2
1.00C00000E-01
2.CCCCO0COE-O1
3.00000000E-01
4.0CGC00CO0E-01
5.000C0C00E~-O1
6.00000000E-01
1.0CCCOCCOE-01
8.00000000€-01
$.00000CCOE~O1
1.00CCO0COE+00
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RHO

S.77512541E-01
9.252290€5E-01
8.93369278E-01
3.6€373491E-01
8.4C7656777E-01
8.15101715€E-01
71.88630139E-01
1.6CS27210E-01
7.31743604£-01
7.00632761E-01
6.6€409874E-01

RHO

5.7¢4820685-01
$.31946283E-01
9.02889257E-01
8.783686C1E-01
8.55120781E-01
£.31€25262E-01
8.C7800665E-01
1.82661535E-01
71.56183372E-01
1.28236227€-01
€.9E747338E-01

RHCY

-1.13113659€E+00
~3.64774921F¢-01
-2+83240056£-01
-2.59066132E-01
=2.54792094£-01
-2.601993G7E-01
-2.70970510E-01
~-2.84867606E-01
-3.,066C7661E-01
~3.17422915E-01
=3.34852462E-01

RHOT

-1.03154632€+00
-3.31834924£-01
~2.57352622E-01
~2+35238060E-01
~2312835€49E-01
-2.36158683E-01
~2.45907867E-01
~2.58482927E-01
-2.72705358E-01
~2.87866609E-01
-3.0353707¢€E-01



D1AU=

10

30
40
50
60
70
80
90
1¢C

DYAU=

10
20
30
4C
50
60

80
90
100

«C1C

«01C

l‘\= 14.0

TAU

1.00CCO0COE~-02
1.00CCO000E-01
2.00000000E-01
3.000CC0CCE-O1
4 .,00000000E-01
5.00CC0000E~OL
6.00000000E-C1
7.0C000C00E-01
8,00000CCCE-C]
6.,00000000£-01
1.COCO0CCOE+OO

I= 16.0

TAU

1.00000000E-02
1.€00C00C0E-C1
2.00000000E-01
3.CC0000C0E-01
4.000C00C0OE-C1
5.00000000E-01
€.0C0CCCO0E-O1
7.00000000E-01
8.0C0000C0E-0O1
5.CC0G00C0E~01
1.G0CCOCCCE+00
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RHO

9.81011420€~01
5.37073S38E-01
9.10256151E-01
8.87641213E-01
8.6€2C7594E-01
8.44733200E-01
€.2258823CE-01
71.99417352E-01
1. 75C14706E-01
7.49262413E-01
1.22C960C1E-01

RHO

9.82¢43330E-C1
9.41197612€E-01
9.16174345E-01
8.95084436E-01
8.75101421E-C1
8.55082496€-01
8434439220E-01
8,12€840285E-01
1.90(94500E-01
7.6€093258E-Cl1
1.4C7782C5E-01

RHOT

-9.54283778€-01
=3.06396242¢E-01
-2.37407313€-01
~216904737E-01
~24.13214769E-01
-2.17687642E-01
-2.26661812€-01
-2.38234367E-01
-2.513C9793E-01
-2.65227619E-01
~2.79585154E-01

RHOT

-8.92092324£-01
-2.85992394E-01
-2.214382%3E-01
-2.02241365E-01
-1.98769786E-01
-2.02928337e-01
-2.11288325€E-01
-24220664<7E-01
-2.34235152€E-01
-2.47173616£-01
~2.60502145€E-01



DTAU=

10
20
30
40
50
60
10
80
S0
100

DIAL=

«C1l¢

«C1C

I= 18.0

TAU

1.C0CCO0COE~-02
1.00000000E-01
£.G00000CCE-CI
3.000000C0E~-01
4,00GC0000E-01
$.00C00000E-01
6.CC0C0000E-01
1.0GCC0000E-C1
8 .00000000E~-01
$.CGCCOCCOE~-0L
1.000000COE+00

I= 20.0

TAU

1.0CCCCOCOE-C2
1.000000C0E-01
2.C00000C0E-O1
3.000C00C0E-01
4 .00000000E-01
5.CCCCOCCOE-OL
6 .00000000€-01
7.06C000C0E-O1
8 .00CCO0COE-0O1
$.00000000E-01

~140CCCCCCOE+OO
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RA0

$,82263156E-C1
9.44606869E~01
$.21(63053£-01
9.01228586E-01
8.82439802€-01
£.62€618262E-01
8.44210132E-01
8. 232603€16E-C1
8.02520068E-01
7.75<57682E-01
7.5€153042E-01

RHO

9.£4125486E-01
9.47486469E-01
9,.,25189353E-01
9.06412572E-01
8.EEC27S66E-01
8.7C813749E~-01
8.52444521E-01
8.332253C1€-01
€,125861755€£-01
7.51€33808€-01
7.6S116623E-01

RHOT

-8.40637554E-01
=2.69159456E-01
-2.08282849E-01
-1.90171210E-01
-1.86884528E-01
-1.90787597e-01
-1.98645141€E-01
-2.08773523€E-01
-2.20201743E-01
~2432342675E-01
-2.44836267E-01

RHOT

=7.97150195E-01
-2.54966813E-01
-1.97203850E-01
-1.80012680€-01
-1.76884850E-C1
~1.80575023€E-01
-1.88011519€-01
~1,97595440E-01
-2.08404C89E-01
-2.19879C69E-01
-2.31677393€E-01
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02/C6/68 LRC SCOPE 3.0 6600B--65K C€2/16/68
2C.41.33.5RC4911.,

20.41,.23, LRC CCMPUTER CCMPLEX
20.41.33.J0By1+40644,40000, Al998, 2

2C.41.33. MARTHA RCBINSGN.RDV122, 1148 2011
20441 .34 .,RUN(S)
2C.41.38, SETINOF,
20.41.39.LGC.
2C.41.45,85T0P
2041445, SPPRINTI(CLTPUT,3)
20.41.47.CFU 000.G65C224 SEC.
2Ce41.47.PPL C06.35E40C SEC.
SRD4S11. PRINT-PP CC292 LINES
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XVIII. APPENDIX C

VALUES OF F(n)

The value of the function F(n) 1s needed to evaluate the final
deformation. Since the argument of F(n) is limited between O and 1,

it was expedient to generate a table for this function.



0.00
.01
.02
.03
« 04
.05
«06
.07
.08
.09
.10
11
«12
.13
o 14
15

.17
.18

«28
.29

.31
«32
o33
o34
«35
«36
o 37
«38
.39
40
Ul
42
o43
JAub
45
L U6
47
48
49
.50

F(X)

0.

k.02093263E-02
8.08746017E~-02
1,22051904E-01
1,63797750E-01
2,06169417E~01
2,49225241E~01
2,93024925E-01
3.37629834E-01
3.83103291E-01
4,.29510892E~01
4.76920811E~01
5.25404131E-01
5.,75035184E-01
6.25891907E-01
6.78056228E~-01
7.31614470E-01
7.86657786E-01
8.43282629L=01
9.01591261&-01
9.61692300E~01
1.02370132E+00
1,08774151C+00
1.15394437E+00
1,22245053E+00
1.29341057E+00
1,36698601E+00
1.44335031E+00
1,52269007E+00
1.60520631E+00
1.69111587E+00
1,78065300E+00
1,87407114E+00
1.97164490E+00
2.07367220E+00
2,18047681E+00
2,29241109E+00
2.40985908E+00
2,53324005E+00
2,66301240E+00
2.79967822E+00
2.94378828E+00
3.09594788E+00
3,25682332E+00
3,42714951E+00
3.60773845E+00
3.79948909E+00
4L,00339864E+00
4.,22057561E+00
b.45225484E+00
4.,69981495E+00
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o51
+52
«53
54
«55
+56
57
«58
«59
«60
.61
«62
«63
o 64
«65
+66
.67
.68
. 69
.70
.71
o 72
.73
o 74
.75
o 76
.77
.78
.79
.80
.81
.82
«83
.84
.85
+86
.87
.88
«89
+90
«91
.92
<93
« 94
+95
.96
«97
.98
.99

4L.,96479867E+00
5.24893643E+00
5.55417411E+00
5.88270543E+00
6.23701027E+00
6.61989978E+00
7.03457006E+00
7.48466593E+00
7.97435731E+00
8.,50843084E+00
9.09240044E+00
9.73264126E+00
1.04365528E+01
1,12127588E+01
1.20713527c+01
1.,30242020E+01
1.40853277E+01
1.52713783E+01
1,66022301E+01
1.81017486E+01
1.979876u5E+01
2,17283338E+01
2,39333795E+01
2,64668506E+01
2.93945880E+01
3.27991738E+01
3.67851575E+01
4L.14862437E+01
4,70753123E+01
5.,37785952c+01
6.18960611E+01
7.18312529E+01
8.%135823LE+01
9.95774710E+01
1,19246106E+02
1,44724337E+02
1.78369766E+02
2,23799110E+02
2.86752518E+02
3.76710856E+02
5.10094046E+02
7.17020114E+02
1.05679676E+03
1.65723304E+03
2.82847838E+03
5.45742996E+03
1.27818794E+04
4.26332497E+04
3.3714L0837E+05
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