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INFLUENCE OF LARGE DEFORMATIONS AND MIDPLANE FORCES

ON THE PLASTIC BEHAVIOR OF IMPULSIVELY

LOADED PLATES

By

Edwin T. Kruszewski

ABSTRACT

This dissertation deals with an analysis of impulsively loaded

plastic plates that includes effects of large deformations and midplane

forces. Specifically, it deals with a circular plate of uniform

thickness simply supported at its edges. The impulsive loading is

characterized by an initial velocity distribution.

The analysis assumes that the plate is an isotropic, rigid, ideally

plastic material. Shear deformations and longitudinal inertia are

neglected. Both bending and midi " ne forces are considered. The

midplane forces can be either applied prior to the impulse or generated

by deformations of the midplane. Deformations of the cross section are

based on the assumption that a line initially normal to the midplane

remains straight and normal after deformation. Strains are nonlinear

with respect to transverse displacements but contain only linear radial

displacement terms. Finally, the Tresca yield criteria are used.

An interaction equation is derived between the plastic moment and

normal force. The relationship indicates that the greater the midplane

force the smaller the required bending moment for plastic flow. When the



midplane force reaches a maximum value, the plate no longer carries a

moment.

Dquilibrium equations are derived for the motion of the plate which

are consistent with the von Karman plate theory. Governing equations

are then developed for the three possible phases of motion. The initial

Phase 1 includes a bending hinge that travels from the support to the

center of the plate. Phase 2, which is initiated when the hinge reaches

the center, continues until either the motion ceases or a portion of the

plate becomes a membrane. Phase 3 described the motion of the membrane

hinge from its initial point of origin to its final stopping point.

These governing equations are solved for two types of bending-

moment —midplane-force interaction relationships. One relationship is

based on displacement of the neutral surface from the midplane surface.

The second is based on the magnitude of the midplane forces. Both types

of plastic plate behavior are examined.

Plots of final central deformation for various applied midplane

forces and impulses are presented that clearly illustrate that even

small amounts of midplane forces have a significant effect on the final

deformation of plastic plates. Numerical results of the large deforma-

tional analyses are also presented. Plots are given showing the

influence of the magnitude of the impulse on bending hinge velocity,

initiation of membrane behavior, location of the membrane hinge, and

the final deformation of the plate.

A comparison is made between results of the large deformational

analysis and experimental data. It shows excellent agreement. For the



small and intermediate range of impulses the agreement is within

experimental scatter. For the large impulses the calculated deformations

are slightly conservative. treasons for this deviation are discussed.

Finally a critical examination is made of the various other suggested

approaches that have possible application to the behavior of plastic

plates.
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V. INTRODUCTION

The problem of the impulsively loaded plastic structure is of

interest to designers in several diversified areas. As early as 1951,

(see ref. 1) the U.S. Navy undertook a study of this problem in order

to provide information to its ship designers about proper torpedo

protection. The purpose of this study was to understand the response

and to predict the damage done to steel plates of ships and submarines

by underwater explosions. The development of high energy explosive

devices that can be detonated above ground has caused the designers of

buildings to become interested in the problem. Here the impulsive loads

are generated by shock waves traveling through the atmc.-Ahere rather

than water. Rather recently, solutions to this problem have been sought

by the designers of spacecraft.

The outer shell of a spacecraft must be designed to withstand the

rather harsh environment of space. Meteoroids are one of the more severe

environmental hazards. Meteoroids are extra terrestrial particles, in

orbit about the sun,	 travel at velocities as high as 210,000 feet

per second. Because of their extremely high velocity, even the smaller

meteoroids can do a considerable amount of damage. For example, the

large hole in the 3/16-inch aluminum plate, shown in figure 1, was made

by the small 116-inch-diameter projectile (also shown in fig. 1) at an

impact velocity of only 30,000 feet per second. At the highest meteoroid

velocity this small projectile could penetrate a plate over an inch and

a quarter thick.

1
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3

In order to alleviate this damage, spacecraft designers use a so-

called "bumper" concept. This concept is based on the fact that when

a high velocity particle impacts a thin sheet of material both the

projectile and the sheet material are shattered and vaporized into a

cloud of debris. The use of this exterior wall or bumper thus changes

the design consideration of the main wall from a penetration problem

to one dealing with the momentum exchange between this cloud of debris

and the main wall.

Until recently, two basic approaches were used for the analyses of

impulsive loaded plates: a pure membrane approach (refs. 1 and 2) and

a pure bending approach (refs. 3 and 4). Neither gives an entirely

satisfactory answer. The former results in calculated deformations

that are less than those experienced by the actual plate, hence uncon-

servative. The latter gives deformations that are much greater than

actual and hence too conservative.

Recently, N. Jones (ref. 5) linked the two types of behavior.

He permitted the plate to carry both maximum plastic moment and maximum

plastic normal force during the first stage of deformation and full

plastic normal force in the last stage. This, therefore, results in

final deformations that are less than those of the membrane approaches

and hence should be in poorer agreement with experiment.

The purpose of this investigation is to develop a method of analysis

that includes both bending and midplane forces and permits both flexural

and membrane behavior of the plate. The analysis will deal specifically

with a simply supported circular plate with an initial uniform velocity.
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The equilibrium equations will be those appropriate to large deflections

of plates as discussed in reference 6. The yield condition used in the

analysis has been used by many investigators for moment axial-force

interaction (see, for example, refs. 7 and 8). This yield condition

I,	 defines the moment midplane-force interaction by examining the stress

distribution in the cross section. It permits both to occur simultan-

eously; however, both for•2es can never be maximum at the same time.

Furthermore, one cannot exist if the other is at its maximum.



VI. REVIEW OF PERTINENT LITERATURE

General Considerations and Background

There exists in literature only a limited number of theoretical

analyses dealing with impulsively loaded plastic plates. The majority

of the work that does exist is based on the assumption that the material

is an isotropic, rigid plastic material whose behavior is consistent

with the Tresca yield condition. The impulsive loading is characterized

in these studies by the assumption that the structure is subjected only

to an initial velocity distribution.

The first analytical study of a plastic plate with such an initial

condition was made by G. E. Hudson (see ref. 1). In this study, the

author treated a simply supported plate as a membrane, neglecting all

bending loads and bending displacements. Initially, the entire plate

was assumed to be plastic and traveling at a uniform velocity of Vo.

A hinge developed at the boundary and traveled normal to it.

The assumed deformation of the membrane is shown in figure 2. The

hinge, at a distance p from the center, separates the circular

membrane into two regions: a flat circular inner region that moves

with a uniform transverse velocity of V o ; and an outer region that is

assumed to be rigid and conical in shape. Thus, plastic flow takes

place only in the central or inner region. The hinge, with its

associated discontinuity of slope, then travels with a uniform velocity

until the inner circle is reduced to a point. Once the hinge reaches

the center, it is assumed to remain there until the plate ceases to move.

5



6

An evaluation of this pure membrane approach is found in reference 2.

Using an analysis similar to Hudson, Frederick compared his calculated

results with experimental data on steel plates. Some of these results

are reproduced in figure 3. In this figure experimental and theoretical

deflection profiles are compared. Note that the calculated deflections

are somewhat lower in value than those found experimentally. This, of

course, is due in part to the assumption of a rigid outer region and the

omission of all bending deformations.

Frederick also examined two other factors that could influence the

theoretically calculated deformations of the impulsively loaded membrane:

the inclusion in the analysis of work hardening effects and the con-

sideration of the Von Mises yield condition in place of the Tresca

condition. Neither factor, however, was found to be of great importance.

As shown in figure 3, work hardening has little effect on the final

deformation. In fact, it tends to reduce the calculated deflections

and hence, for this analysis, causes a poorer comparison with experiment.

In direct contrast to the approaches discussed in references 1

and 2, which considered only the membrane response of the plate,

A. J. Wang (ref. 3) proposed an analysis of the deflections of

a plastic plate under impulse loading that considered only the small

deflection bending response of the plate. His analysis, like those of

references 1 and 2, was based on the Tresca yield condition. His

resulting flow rules, however, were different.

The plastic flow rules, used by Wang, were first discussed by

Prager in reference 9. Hopkins and Prager (ref. 10) applied
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these rules to dynamic problems, and developed a criteria for the

existence and subsequent behavior of discontinuities across a hinge.

In this work the author pointed out that if both the plate

displacement and velocity are continuous, the following conditions

across the hinge must be maintained. For a stationary hinge circle,

the slope across a hinge in the radial direction is discontinuous,

as, for example, in the case of the statically loaded plate in

reference 11. For a moving hinge circle, the slope in the radial

direction must be continuous. The accelerations for this case, however,

can be discontinuous.

Consequently, the pure bending solution presented by Wang (ref. 3)

differs from the pure membrane approach in references 1 and 2 in several

respects. The slope in the radial direction is continuous across the

hinge. Plastic flow occurs in both the inner and outer regions of the

plate. Finally, the velocity of the hinge is not uniform.

Through the use of an extensive experimental program,

A. L. Florence (ref. 4) made a critical evaluation of the small

deflection bending analysis. In this experimertal program, 22 aluminum

and 20 steel plates were subjected to impulsive loadings. The final

measured deformations of these plates were then compared to theoretical

calculations based on an analysis of Wang.

Some of the results of reference 4 have been reproduced in

figures 4 and 5. In figure 4 theoretical and experimental nondim.en-

sionalized deflections are plotted as a function of a nondimensional
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radial position, R. These results show that, when only small deflection

bending loads and curvatures are considered, the theoretical results

considerably overestimate the experimentally obtained deflections.

Results in figure 4 are for one value of impulsive loading. How

these comparisons are affected by changes in the magnitude of the

impulsive loading is shown in figure 5. Here both theoretical and

experimental deflections at the center of the plate are plotted as a

function of the magnitude of the impulse. These results show that the

correlation rapidly deteriorates with increasing deflection. This is

primarily due to the increased importance of membrane forces and

midplane distortion. Florence concluded from these results that a

full treatment of the problem requires inclusion of membrane forces.

Overestimations of calculated deflections by a bending analysis

were also found by Gerald May and Kurt Gerstle (ref. 12) for the

case of statically loaded plates. Here, a finite element approach was

used in which elements were considered to be either entirely elastic

or plastic.

Jones (ref. 5) realizing the importance of the interaction of

bending and midplane forces, attempted to link the bending and membrane

behavior of plates in an analysis of impulsively loaded, simply supported

plates. Similarly to the other investigators, he divided the motion of

the plate into two phases.

The first phase consisted of the initial deformations in which the

hinge circle traveled from the support to the center of the plate. The

anay_is of this phase assumed that the central portion could resist
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both a plastic moment, 14 , 
and a plastic midplane force, Np . The

magnitude of each of the forces, however, was assumed to be large

enough to cause plastic behavior by themselves. In the outer region of

this Phase 1 motion, the midplane force was assumed to be the maximum

plastic value while the plastic moment rangea °rom full maximum value

at the hinge to zero at the support. Jones also assumed that the motion

of the hinge was the same as that obtained by Wang for the pure bending

assumption.

In Phase 2 of the motion Jones assumed that only membrane forces

were acting, that is, Mp = 0. Consequently, in Jones' analysis, the

plate always carried the maximum plastic midplane force, Np . In

addition for a large portion of its motion, it also carries a plv-.stic

moment, Mp.

The question of plastic midplane force and bending-moment inter-

action has been quite extensively examined for beams (see, for example,

refs. 7, 13, and 14). (Reference 1 1' is an excellent survey of analyses

for plastic behavior; it is restricted, however, to work done on beams.)

This interaction has also been examined for statically loaded plates

(see, for example, refs. 15, 16, and 17). The yield condition that

has evolved from all these studies relates the plastic loads present

at any point in a structure by the following relationship:

M 
	 N	 _

— + No = 1 where Mo and No are the maximum plastic moment and
Mo	 No

axial force. It is this yield condition that will be used herein.
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Review of Literature In Associated Areas

An excellent review of all the phases of plasticity essential to

development of plasticity analyses is given by Olszak, Mroz, and Perzyna

in reference 15• This summary deals not only with the fundamental

basic approaches and constitutive equations but also stresses the

application of the theory to various practical problem areas such as

plates and shells, soil mechanics, three-dimensional problems, and

axially symmetric problems. This reference also devoted a whole chapter

to dynamical problems. Each section is followed by a complete

bibliography.

An equally thorough survey, but limited only to analyses of beams

under dynamic loading, is found fn reference 13.

The preceding section dealt only with the state of the art

pertaining to the specific problem being analyzed herein; that is, a

simply supported circular plate constructed of a perfect rigid plastic

material and subjected to an initial uniform velocity. There are,

however, analyses dealing with other problems that need mentioning

both for the sake of completeness and, ;n some cases; for their possible

application to the large deformation aspect of the present analysis.

In references 18 and 19, Thomson studied the plastic behavior of

simply supported circular plates under nonuniform transverse impulses.

Only the bending behavior of the plates was considered. The plate was

assumed to be impacted by an axisymmetric impulse that induced

an initial velocity with a general radial Gaussian distribution.
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Perzyna (ref. 20) investigated the effects of a time variation

of a loading on plastic deformations of a simply supported circular

plate. This analysis, like Thomson's, assumed that the material was

a rigid plastic behaving in a manner consistent with the Tresca yield

criteria, and considered only the bending mode of deformations. The

pressure loading was taken to be uniform in both the radial and

tangential directions. The magnitude of the pressure, however, varied

with time. Perzyra found that for a given total im pulse the character

of the time pressure function had little effect on the final. shape of

the plate.

Plastic behavior of plates with other types of boundary conditions

has also been investigated for the bending case. Wang and Hopkins

(ref. 21) gave results for circular plates i•ith built-in edges. Shapiro

(ref. 22) investigated the plastic response of an annular plate. This

rigid plastic plate was assumed fixed at inner radius and the outer rim

was subjected to a constant velocity for a finite length of time.

Finally Mroz (ref. 22) investigated the case of simply supported

annular plates for two different conditions: for a uniform lateral

loading with simply supported inner ring and for a uniform shear force

applied to the inner periphery whose edges are considered free.



VII. SYMBOLS

A nondimensional central deformation of the plate

AF value of	 A	 When plate motion stops

Cl ,C21 C3 constants of integration (see eqs. (103), (115), and

(129))

F(n) function of	 n	 defined by equation (131)

I nondimensional impulse defined in equations (16) and (17)

Jo Bessel function of the first kind of order 	 0

Kr,,Ke curvature of plate in	 r	 and	 8	 directions, respectively

M bending-moment resultant

MP
value of	 M	 for plastic behavior

M 
value of	 M	 at the hinge circle

MO maximum bending moment plate can sustain, 	 aoh2

Mr ,M9 value of	 M	 in the	 r	 and	 9	 directions

Mre twisting moment

N midplane force

N 
value of	 N	 for plastic behavior

N value of	 N	 at the hinge circle

No maximum midplane force plate can sustain, 	 2aoh

Nr ,Ne value of	 N	 in the	 r	 and	 a	 direction

Qr,QIC-
shear force in	 r	 and	 a	 direction

R radius of plate

Vo initial velocity of plate

W nondimensional displacement of plate, 	 wh

16
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W	 function defined by equation (46)

z	 nondimensional distance between midplane and neutral

surface, zo
h

h	 half depth of plate

log	 natural logarithm

n	 nondimensional membrane radius

no	initial value of n

r'F	 final value of n

p	 loading per unit area of plate

r	 radial coordinate

s	 distance along midplane in radial direction

t	 dimensional time

u	 radial displacement of middle surface

w	 transverse deflection of middle surface of plate

z	 coordinate along axis of symmetry

zo	 distance between middle surface and neutral surface of

the plate

p	 angle between the neutral surface and r coordinate

Er ,Ea	strains at any point of cross section in r and 8

directions, respectively

Er ,Ee	 strains in midplane surface in r and 9 directions,

respectively

dummy variable

dummy variable

8	 tangential coordinate
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X	 constent

µ	 mass of plate per unit area

nondimensional radial coordinate,
R

P	 plastic bending hinge circle radius

P1 	value of p at the initiation of the membrane hinge

cr'co'cz	 normal stress in r, 8, and z direction, respectively

Qo	 yield stress

cI'cII'°III	 principal stresses aI > OII I QIII

Tre TZO,Trz	
shear stresses

T	 nondimensional time, Vot
2h

Ti	 value of T when plastic bending :tinge = •eaches center

of plate

T2	 value of T when plastic membrane hinge is initiated

Subscripts

r	 radial direction

6	 circumferential direction

t	 differentiation with respect to t

T	 differentiation with respect to T

A line over the symbol M denotes a dimensional moment such that

M = ±-.  A line over the symbol N denotes a dimensional midplane such
MO

that N = N A dot over the symbol denotes differentiation with0

respect to time, t.



VIII. DERIVATION OF BASIC EQUATIONS

Assumptions

The purpose of the present work is to develop an analytical method

for the prediction of the plastic behavior of impulsively loaded plates

that will combine both membrane forces and bending. To do this the

analysis must contain large deflection effects and permit midplane

distortions along with bending distortions.

The plate that is to be analyzed and the 2oordinate system that is

to be used is shown in figure 6. The plate is circular, has a radius
R, a thickness 2h, and is simply supported at its edges. The imposed

initial conditions are that the displacement, w(r,0), is zero and the

initial velocity, wt(r,0), is a constant, Vo.

The analytical method will be based on the following assumptions.

The plate is assumed to be an isotropic, rigid, ideally plastic material.

Consequently, both elastic and work hardening effects will not be

included in the analysis. Although midplane forces and distortions

are permitted, inertia effects in the radial direction are omitted.

Shear deformations and rotary inertia effects are also neglected. The

equilibrium and resulting governing equations used in this analysis will

be consistent with those of the von Karman plate theory. This theory,

as discussed in reference 24, neglects third and higher order terms of

the dependent variable so that

sin p - p

19
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and

cos p_ 1 - 2 p2

The following sections will discuss some of the basic governing equations

for such behavior.

Equilibrium Considerations

The forces acting on the plate and on a typical element are shown

in figure 7. These forces consist of bending moments M r and Me,

midplane forces Nr and Ne, a shear force Qr, and a uniformly

distributed loading T. In the case of the loading symbols, all symbols

with bars above will denote dimensional forces, while the force symbols

•	 without the bars will represent nondimensional forces. All forces are

shown in figure 7 in their positive direction and all are specified per

unit length of line element in the middle surface of the plate. Due to

the cylindrical symmetry of loading, the shear stresses Tre and Tz8

vanish. consequently the shear forces Q19 and the torque Mer also

vanish. With the assumption that the plate thickness (2h) is much

smaller than the radius R, the influence of stresses a z and Trz

is small and hence negligible.

From figure 7(a) the summation of forces in the midplane direction

results in

a (rNr ) - N8 = 0	 (1)
ar
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^r

/ ^	 P

it
Oe

Me

UI^Y,

F^Ir

3r

vi
it + r dr
r	 ^Y,

r+CQdr

ar

(a) Forces on differential element.

r
dr

`'`r

Y'

(b) Forces on finite central portion of plate.

Figure 7, Forces on plate elements.

1
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From figure 7(b) the summation of forces in the transverse direction

gives an expression for the transverse shear, Qr,

_	 _	 r  _

Qr = -Nr ar r J	 (p - µwtt)t dt	 (2)
0

where the term µwtt represents the inertial loading due to transverse

motion, and µ is the mass of the plate per unit area. The problem

discussed herein deals only with the impulsive loading that results in

an initial velocity of the plastic plate. The loading term, p,

therefore, is zero and will not be inclu^--d in the remainder of the

analyses.

The summation of moments in figure 7(a) results in the equation

aMr
Mr + r	 - Ms = rQr	(3)ar

Eliminating the shear force Qr from equation (3) (see eq. (2))

results in the equilibrium equation

7-

_ _	 r
(rMr) - Me = -rNr ar + J
	

µwttt d^	 (4)
0

Equations (1) and (4), therefore, represent the equilibrium

equations for the plastic plate with midplane forces. These equations,

of course, are identical to the vo_, Karman plate equations obtained by

considering large deflections of circular plates (see, for example,

ref. 6).
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Nondimensionalization

In order to simplify the derivations and to obtain the natural

parameters of the mechanism involved,the remaining analyses will be

written in nondimensional terms. The following nondimensional parameters

are therefore defined.

The moment is normalized with respect to H; o where

Mo = h2ao	 (5)

and ao is the critical yield stress. More will be said about this

stress in the section on Plastic Flow Considerations. k represents

the maximum bending moment the plate can possibly carry. Consequently,

the absolute value of the nondimensionalized bending moment

M = Mo
	

(^)

can never be greater than unity. Similarly the nondimensionalized

normal force is

N = N
	 (+)No

where

No = 2hao	 (8)
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No is the maximum normal force possible and, similarly to M, INI

can never exceed unity. The nondimensional form of the shear force,

Qr, is

RQr
Q7. _ hN

o	
(9 )

The nondimensionalized radial coordinate, t, displacement, W,

and time, T, are defined as follows

9 = r	 (10)
R

W = h	 (11)

and

vot
T = 2h	 (12)

Equilibrium equations (1), (2), and (4) can now be written in

nordimensional form as

6 ( E Nr) - Ng = 0	 (13)

Qr= -N aw +3z 10, w * d*	 (14)
r at 	 TT
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a
- (EMr) - Me = -2kNr dw + 61 of WTT* der	 (15)

where I is a nondimensiui.ajized momentum defined as

PV- 
2
R
2

(16)
12h

2

 No

or

2 2

1 = 4V° 
R	

(17)
240 a

Deformation Considerations

Consistent with all of the previously mentioned analyses on the

plastic behavior of plates, the deformations of the cross section will

be based on the assumption that a line initially normal to the midplane

remains straight and normal after deformation. Consequently the strain

at any point in the cross section of the plate can be written as:

For the radial direction

Er = Er + zKr 	(18)

For the tangential or 6 direction

I=

E8 = E8 + zf^	 (19)
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where z is the distance from the midplane. The strains, E r, and E8,

are the midplane strains and Kr. and K6 are the respective curvatures.

The curvatures are defined as

Kr = - a2 
W	

(20)
art

KO	
1 aW	

(21)
r ar

While the midplane strains are given by

Er 
_ au + 1 aw 2	 (22)

ar 2^ar)

Ee = r	 (23)

where u is the displacement of the midplane in the r direction

(u is considered positive when. the displacements are in the positive

r direction). If only small displacements are to be considered, the

second term in equation (22) can be neglected. Note that the strains

are written from a Lagrangian viewpoint and no nonlinearities due to

radial displacements are considered.

and

and
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Plastic Flow Considerations

Plastic behavior of the plate will be governed by the Tresca yield

riteria. This criteria states that plastic yielding will begin when

the maximum shear stress reaches a certain critical value, that is

T	 = 0I-0III=ao	 (24)max	 2	 2

where a  and aIII are, respectively, the maximum and minimum

principal stresses and ao the critical yield stress of the material.

With the assumption that the transverse normal stress is negligible

(az = 0), the Tresca condition can be graphically represented as shown

in figure 8 in terms of ar and aq .

Any combination of ar and aq that falls on this boundary will

initiate plastic flow. Any subsequent plastic flow will occur tangent

to the surface of the yield diagram. For example, if ar and a 

fall on the line AB (see fig. 8), plastic flow will occur perpendicular

to AB in a manner that the radial strain rate, Er, is zero. For

stress combinations along AF, E8 will be zero. At the vertices of

the diagrams the specific direction of plastic f]ow is not defined;

both stresses, %owever, are defined. Thus, for all points on this

diagram two conditions are specified: either both stresses or a

direction of strain rate and a relationship between the stresses.

For pure bending of a plate the moment along a plastic flow line

is unique and equal to h2 co. Similarly when only midplane forces are

considered the plastic membrane force is unique and equal to 2hao.
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Figure 8.- Tresca yield diagram.
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However, when both midplane forces and bending are permitted, then

there are no unique values of M or N at the initiation of plastic

flow.

A typical cross section for this case is shown in figure 9.

Notice that the development of a midplane force causes the plastic

stress distribution to create a neutral surface at some distance zo

from the midplane. The plastic moment and membrane force are then

given by

M  = (h2 - zO2 )aO	(25)

and

N  = -2zoQo
	 (26)

Notice that the plastic moment and membrane forces are coupled through

zo.

This coupling indicates that, while there is no unique value of the

plastic midplane force, Np or moment Mp, there is an interaction of

the two. Elimination of zo from equations (25, and (26) gives the

form of this interaction

Mp	 Np 2

MO + (No)	
1	 (27)

In nondimensional form equations (25), (26), and (27) can be

written as



iMidplane

Zo Neutral

Surface

Q0
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go

Figure 9.- Distribution of stresses in cross section of plate.



32

Mp = 1 - Z2	(28)

Np = -Z	 (29)

and

M  + Np2 = 1	 (30)

where

Z = 2 h	 (31)

The interaction equation (eq. (27) or eq. (30)) gives a relationship

between the plastic moment MP 
and the plastic normal force N p . As

long as Np is less than No(Np < 1) a plastic moment exists. However,

as soon as the plastic normal force becomes N o (Np = 1) then Mp

bf,comes zero and the section no longer carries moment. These interaction

relationships are especially useful if the value of the lateral load is

prescribed, as in an analyses involving the bending behavior of a

plastic plate with applied lateral loads.

When the deformations of the plate become large, lateral loads are

generated by the stretching, u(r,t), of the midplane.

With the condition that at the support u(R,t) is zero, an

integral expression for u can be written

rRR
u = J	 du =	 (ds - dr)	 (32)

Jrr 



33

dr
1

W

w+dw

d8

where s is the distance measured along the midplane. From the above

sketch it can be seen that

	

ds2 = dw2 + dr2	 (33)

Substitution of equation (33) in equation (32) results in

u= J R (FOY dr	 (34)
r

which, for the case where ar < 1, can be approximated by

u	 R 2lT 
)2,,,7
dr	 (35)

The separation of the neutral and midplane surfaces creates a

coupling between slope and midplane distortion, u. This coupling is

achieved through the previously mentioned assumption of straight normals.

That is, a line perpendicular to the neutral surface before deformation

will remain straight and normal after deformation. Consequently, in the

radial direction the midplane distortion, u, is related to the radial

slope by the equation
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U = zo 
ar	

(36)

With eauetions (35) and (36) zo can be expressed in terms of the

slope as

J R 1(tr
` 2dr

r 1)

zo =
aw	

(37)

ar

or in nondimensional terms

1 f 1 (; 12dt	 (38)

Z =	 aW
at

The magnitude of Z depends on the shape of the displacement.

From equation (29) and the knowledge that INp) < 1, IZI must also

be less than 1. Consequently, those portions of the plate where the

absolute value of Z is greater than unity must be acting as a membrane

(that is, they carry no moment) and there is no valid unique relationship

between slope and displacement.



IX. DERIVATION OF GOVERNING EQUATIONS

Discussion of Physical Behavior

The following section is a description of the physical behavior of

a plate as it reacts to the initial impulse. It should not in any way

be construed as a statement of assumptions. On the contrary, the

mechanisms and behavior described all result from the basic assumptions

and considerations discussed in the previous chapter. These will become

evident as the analysis in the following sections proceeds.

The purpose of this approach is twofold: First, it will give the

reader a clearer understanding of the motivation and significance of

the analytical work that follows. Second, it will permit the author to

define and classify certain regions and behaviors before proving their

existence.

Just after the initial moment of impact, the plate is separated

into two plastic regions by a hinge circle, as shown in figure 10.

The hinge, which originates at the support, travels at a velocity

PT until it reaches the center. The central portion of this plate

(0 < r < pR) travels at a uniform transverse velocity equal to the

initial velocity, Vo . Such motion has been observed experimentally

(see ref. 26). The stress conditions are such that r = a e = co. At

any time, t, the displacement w in.'-he central region is V0t.

In nondimensional terms the central displacement is

W(O,T) = A(T) = 2T	 0 < t < P	 (39)

35
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Thus the nondimensional velocity in the central region is

WT (O,T) = A r (T) = 2	 0 < E < P	 (4o)

In the outer region (p < E < 1) only the tangential stress, Qe,

is plastic. The velocities are linear wJth

WT (P, T ) = 2	 (41)

and

WT(1,T) = O	 (4=)

This phase of the motion will be referred to as Phase 1. Note that

the displacement of any point on the plate during this phase depends

only on the function p(T). Thus the parameter p could be thought

of as a time parameter.

Once the hinge circle reaches the center of the plate, Phase 2 of

the motion begins (see fig. 10). This phase of motion is similar to

that occurring in the outer region for Phase 1. The stress, oe, is

plastic and the velocity distribution linear.

If during either Phase 1 or Phase 2 the motion and loading of the

plate is such that midplane force N becomes 1, the behavior of the

plate is changed.

A :tinge circle, which will be referred to as a merbrane hinge,

forms at this point	 n) (see fig. 10). This hinge divides the

plate into two regions. The outer region, n < t < 1, carries both

midplane forces and moments and behaves as before. The inner portion
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0 < t < n behaves like a membrane. It carries no bend i ng and transmits

only a constant tensile load. This membrane hinge then travels at a

velocity, nT , toward the support. This phase of the motion will be

referred to as Phase 3.

Analysis of Phase 1 Behavior

This phase of the plate behavior is typical of the initial phase

of motion used by all of the previously mentioned investigators of

ideally plastic, circular plate behavior (see, for example, refs. 10

and 11). Because of the rotational symmetry of the loading the maximum

stress in a circular plate must occur at the center. Thus the plate

cannot reach the flow limit without becoming plastic at the center.

Due to rotational symmetry the radial and tangential stresses must be

equal, thus ar = ae = ao• Therefore, the material at this point is in

regime A of the ' ! ,sca yield hexagon (see fig. 8) . At the simply

supported boundary, the radial moment must vanish so that ar = 0.

This portion of the plate must be in regime AB of the Tresca yield

hexagon.

Consequently, the plate is assumed divided into two regions: a

central portion in which the material is in regime A, and an outer

region where the material is in regime AB. These two regior. ,7 are

separated at t = p by a plastic hinge.

The inner portion of the plate tF < p) forms a circular plate with

midplane forces at its outer edge (t = p). The magnitude of these radial

midplane forces, Nr , is .aken to be Np . Because of the symmetrical
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loading condition imposed on the plate, the stresses at the center must

be such that Nr = No* A solution that satisfies these boundary condi-

tions and the equilibrium equation (eq. (13)) is that the stresses are

such that Nr = N  for all interior points. Therefore, Nr is not a

function of position and

Nr =Ne =NP 	0<t <P
	

(43)

for all points in the inner region. Since the midplane force, NP,

can be a function only of time, the plastic moments must also be a

function only of time (see eq. (30) so that

Mr =Me =MP 	0 <^ <P
	

(44)

With equations (43) and (44) the equilibrium equation ( eq. (4)) reduces

to

61j o
rt 

WTT^ d5 = 2E P 6
	

0 < g < P	 145)

In order to solve this governing equation. a separation of variables

technique will be used in which

W(E, T ) = A(T)W(g)
	

(46)

Substitution of equation (46) into the integral differential equation

(eq. (45)) results, &-f- ter some simplification, in



4o

aW	 31 a2A
a ^	 a,2

(47)
r	 NpA
{	 W^ dt 

Since the left side of equation (47) is a function of t and the right

side a function of T, both must be equal to some constant, X,

t 6—W 	

62 A
a^	

)T2
— = -A2

hr
Wt d^

ki o

Hence the governing equation for W is

+A2 1 ^Wtdt=0
0

Differentiating equation (49) gives

^ d-22 +a^+A2W^ =0

Solution of equation (50) results in

W= Jo(?O

The deflection in this liner region can now b, written as

(48)

(49)

(50)

(51)

W(ET) = AJO (Xg)	 0 < P < t	 (52)
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The initial condition of the problem states that the velocity

everywhere is equal to 2 so that

WT (t,0 ) = ATJo( TS) = 2	 (53)

Thus X must be zero and the velocity in the inner region is

	

WT =2	 0<t <p	 (54)

so that

	

wTT = O	 o<t<p	 (55)

	

W 2	 0<g<p	 (56)

In the outer region (p < t < 1) the following conditions apply.

At the hinge,	 = p, the stresses are continuous, so that a r = ae = ao•

At the support,	 = 1, ar = 0. This portion of the plate, therefore,

is in regime AB of the Tresca yield criteria. In this regime the

plastic flow is such that the strain rate in the radial direction er,

is zero for all points in the cross section (see eq. (18)) so that

Cr = er + zKr = 0	 (57)

Since this equation must hold for all values of z

4 = Kr = 0	 (58)
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This condition coupled with equation (20) gives

63W = o	 (59)
at2aT

As the velocity is continuous across the hinge

WT (P, T ) = 2	 (6o)

While at the support t = 1

WT (1,T) = 0	 (61)

The solution of equation (59) consistent with boundary conditions,

equations (60) and (61), gives

WT = 2I 
1J	

p < t < 1	 (62)

Equation (62) represents the velocity distribution of the plate in

the outer region. Since p is a function of T the acceleration of

the plate in this region is

WTT = 2 ( 1 - ^)2 
PT 	P < t < 1	 (63)

(1 - P)

where p  is the velocity of the hinge circle.

A relationship for PT can be obtained through the use of the

equilibrium expressios.
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Integra-LAon of the midplane-force equilibrium equation (eq. (13))

with the boundary condition that Nr = No = NP at the hinge (see

eq. ( 43)) gives

tNr = J t 
Ne dt + pNp 	 (64)

P

Integration of the moment equation (eq. (15)) with the boundary

conditions for moment at the hinge, Mr = Me = Mp , (see eq. (44))

gives

Wr	 PMP + J	 Me dt

P
- 2 ^r

P
t Nr 76f dt + 61J

p
J	 WTT	 dt d*
o

(65)

The third term on the right side of equation (65) can be rewritten

through the use of integration by parts as follows

j	 i^(tN 1

J 
tNr 

aW 
dt 

= tWNr - ^r W a-r1 
dg	

(66)

This integral can now be written in terms of NP and No through the

use of equations (13) and (64)

J gNr aW dt = PWNp + W 1 t Ne dt - 	 WNe dg	 (67)
-P
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Substitution of equation (67) in equation (65) gives

tMr = PMp + J t M8 dt - 2pWNp + 2pW(P)Np - 2W f No d5
P	 P

+ 2 J t WN8 dt + 61 it f WTT t dC]d*	 (68)
P	 P	 o

Equation (68) gives the value of the radial moment at any point t.

The governing equation for p  is obtained by evaluation of equation (68)

at the support t = 1.

At the support

W(l,T) = o	 (69)

and

Mr(lpT) = O	 (70)

Thus

pMp + 2PW(P)Na + f 1 M9 dt + 2 f 1 WN8 dt = -61
J 

1 f WTT t dt d*
P	 p	 p	 o

(71)

Thrragh the use of equations (55) and (63) the inertia term of

equation (71) can be evaluated

f 1 fey

	

WTT } dt]d* = 6 PT (1 - P)(1 + 3P) 	 (72)
P	 0
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Substitution of equation (72) into equation (71) gives

1I(1 - P)(1 + 3P)PT = -pMp - 2pW(p)Np - jo Medt - 2 f 1 WNe dg
 P

(73)

From the interaction equation between plastic normal forces and

plastic moments (eq. (30)) and the expression for W(p) from

equation (56) (W(p) = 2T), equation (73) becomes

(1	 1
I(1 - P)(1 + 3P)PT = -1 - 4pNpT + pNp2 + 

J N62dt - 2 j WNe dg
P	 P

(74)

Equation (74) can also be written in terms of the displacement of

the neutral surface with the use of equation (29)

I1

	 (1
-'p)(1 + 3p)pT =-1 + 4pZT + pZp2 + 	 Z2dk + 2 J WZ dt

P	 P

(75)

Equations (74) and (75) are the governing equations for the hinge

circle in the Phase 1 motion. The equations are dependent on the shape

of the displacements and the values of the midplane forces. If only

bending is considered, that is N. z 0 or Z = 0, the equation reduces

to that obtained by Wang in his bending solution for impulsively loaded

plates (see ref. 3).
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Analysis of Phase 2 Behavior

Phase 1 motion will continue until one of two conditions occurs.

Either the hinge circle reaches the center of the plate or a portion of

the plate becomes a membrane (that is, the plastic moment vanishes).

The former case will be considered in this section.

Let T1 be the time it takes the hinge circle in Phase 1 to reach

the center of the plate. Then the displacement and velocity at that

time will be (see eqs. (54) and (56))

	

W(O,T1 ) = 2T1	 (76)

and

WT(0,Tl) = 2
	

(77)

Hence these conditions form the initial conditions for..-the Phase 2

motion.

The radial stresses in this phase range from 
o at the center

to zero at the support. Hence the material behaves in a manner similar

-to that in the outer region of the Phase 1 motion. The radial strain

rates are zero and the velocity varies linearly from AT at the center

to zero at the support. Thus

	

WT = AT(l - 0	 (78)

and

	

WTT ATT 1 - 0
	

(79)

where A represents the deflection at the center of the plate.
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The governing equations for this phase are identical to equation (71)

in Phase 1 with p set equal to zero.

1	 ^	 1	 1
61	 J WTT t dt day = -	 M8 dt - 2 1 WN8 d	 (80)

^o	 o	 J	 o	 ^o

The inertia term for this phase bec(,mes (see eq. (79)

f161 J f WTT dt d* 2 ITT	
(81)

O	 O

Substituting equation (81) into equation (80) gives

P 1	

1

IATT = -	 M9 dt - 

2	
W% dt	 (82)

0	 0

which in terms cf N0 is

2 IArT = -1 + f 1 Ne 2dt - 2 J 1 WNe dg	 (83)
0	 0

and in terms of Z is

1 ^	 1

2 "'TT = -1 +
	 Z`dt + 2	 WZ dt	 (84)

O	 o

Equations (83) and (84), as in Phase 1, reduce to the pure trending

case for N8 = Z = 0. These governing equations apply until either the

motion of the plate stops or a portion of the plate becomes a membrane.
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Equations (74) and \ '-jl (or eqs. (75) and (84)) are sufficient to

define the motion of plates where the applied impulse, I, is small.

When the impulse becomes large enough to cause a po rtion of the plate

to be a membrane, an additional phase of motion must be considered.

Analysis of Phase 3 Behavior

As the deformations increase the midplane forces also increase.

If the initial impulse, I, is large enough, the midplane forces in the

central portion of the plate will become equal to one. Thus thf. bending

moment vanishes and this portion of the plate behaves as a membrane.

Let the time at which a portion of the plate becomes a membrane be

T2 . As time increases, the size of the membrane region also increases.

The plate is thus separated into two regions: one in which there is no

moment and a second in which there is an interaction of moment and

midplane force.

In the inner region, 0 < t < n, i- = 0 and N8 = 1. In addition,

Nr = N. at the center. These conditions along with equilibrium equation

(eq. (13)) result in

Nr =NB =1	 0<t <n	 (85)

for the entire inner region. Consequently, this region is in regime A

of the Tresca yield diagram. The point of separation of the membrane

portion of the plate, t = n, can then be thought of as a membrane hinge.



49

The moment equilibrium equation ( eq. (15)) reduces at t = n to

-n

n 
aW 

= 31 J WTT t dt	 (86)
at n
	 o

inhere the slope 
awl	

is evaluated at ^ = n.
n^ 

The governing equations for the motion of this hinge can be obtained

from the governing equation for the outer portion of the plate

(n < E < 1). This governing equation is identical to that for outer

portion of Phase 1 motion with n substituted for p (see eq. (71)).

2nW(n)+ J l MO dt+2f
n

1 WNedt=-61^ J WTTtdtd*
n 	 n	 o

(87)

(Note that the conditions Np = Nn = 1 and Mp = Mn = 0 were r.3ed.)

With the use of equation (30), equation (87) becomes

1	 V^	 (' 1	 1
	61 J	 J WTT t d^ d* = -( 1 - n) - 2nW(n) + J N82dt - 2 J WNe dt

	

n	 o	 n	 n

(88)

In terms of Z (see eq. (29))

	

61 ► 	 I WTT td day = -(1 - n) - 2nW(n) + 1 1 Z2dt + 2 J 1 WZ dt
n	 o	 n	 n

n < t <1	 (89)
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As in Phase 1 motion, WtET = 0, so that the velocity is linear

WT = (WT) 
/1

ni l _ n
	

n < < 1	 (90)

where (WT)n is the velocity at the membrane hinge.



X. SOLUTIONS OF GOVERNING EQUATIONS

In Chapter IX the governing equations for the bending hinge, p,

the membrane hinge, n, and the center deflection, A, were derived.

No assumptions were made in this section so that these equations are

exact within the framework of the basic assumptions, equilibrium

equations, and flow conditions discussed in Chapter VIII.

Note that these governing equations contain either a % or Z

and a deflection W. Consequently, a solution can be obtained if scme

assumptions concerning these germs are made.

The deflection term appears only in a definite integral. Further-

more, the value of the deflection is always known at both endpoints of

the definite integral, that is, W(p) = 2 , W(0) = A, and W(1) = 0.

Consequently, only the assumption of shape of the deflection profile

is necessary.

An assumption of conical surfaces will be made in the sections to

follow. Such deformational surfaces have been observed experimentally

for dynamic loading (see ref. 26) and have been used by others in

solving membrane type problems. For example, both Hudson in reference 1

and Frederick in reference 2 made this assumption in their treatment of

impulsively loaded membranes. Onat and Haythornthwaite (ref. 25) also

made the same assumption in a study deal{.ng with the influence of midplane

forces on plastic plates under static loading.

In order to solve the governing equations in the form of

equations (74) and (83), some knowledge of the value of No is also

necessary. If one recalls that in the elastic solution a circular plate

51
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uniformly loaded at its supports has constant midplane stresses throughout

the plate, it is tempting to assume that the plastic plate has a similar

distribution. Applying this rea3oning to the plastic plates with large

impulses, the entire plate could be assumed a membrane and Ne set

equal to one.

This approach, however, does not take into account midplane forces

that are developed by the distortion of the midplane of the plate. The

failure to recognize this fact reflects itself in two ways: First the

midplane forces are a constant. Second, and more important, no portion

of the plate is permitted to become a membrane. Thus an accurate

solution to impulsively loaded plates must be based on the governing

equations that contain the neutral surface displacement Z (eqs. (75)

and (84)). It also must, when appropriate, utilize the Phase 3 governing

equations (eqs. (89) and (90)). Solutions using the assumption of

constant midplane forces are of interest. They can serve as an

evaluation of the influence of midplane forces on the deflections of

plastic plates. In addition, the solution for N  = 1 gives a limiting

case of maximum midplane force. Thus both solutions will be developed

in the following sections.

Bending of Plates Under Lateral Loads

In the analysis to follow the midplane forces will be assumed

constant throughout the plate. With the exception of the limiting case

of N8 = 1, the plate will always carry a plastic moment and at no time

will the plate become a membrane. Consequently, this case can be thought
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of as an analysis of the bending behavior of a plastic plate that has

been loaded by lateral loads, Ne, prior to the application of the

impulse. This analysis will not recognize midplane deformations due

to large deflections.

The governing equation for Phase 1 (eq. (74)) reduces for this

case to

r1
I ( l - P)( 1 + 3P)PT = 

NO  - 1 - 4PNeT - 2Ne 
J 

W dt	 (91)
P

If the deflected surface is assumed to be a conical surface

W 2	 0< <p

(92)

W =2-r	 p< <1
1 - P,

so that W(p) = 2T and W(1) = 0. Substitution of equation (92) into

equation (91) results in a nonlinear differential equation

I(1 - PM + 3P)PT = - (1 - N9 2) - 2Ne T(1 + P)	 (93)

This equation is solved in appendix A through the use of a finite

difference approach. Numerical results are given for values of N.

ranging from 0 to 1.0 and for a range of impulses, I, from 0.4 to 11.6.

Exact solutions are obtained for the limiting cases of Ne equal to

zero and 1. Time histories of the hinge circle, p, are tabulated in

appendix A for a widq range of I and No.
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Phase 1 motion will continue until the hinge circle reaches the

center. Let Tl be the time at which this occurs. At T = Tl the

deformation at the center will be

W(O,Tl ) = A(Tl ) = 2T1	 (94)

The velocity at the center will be

WT (O,Tl ) = AT (Tl ) = 2	 (95)

The value of Tl is tabulated in appendix A as a function of impulse

I and midplane force Ne. The values of Tl with the corresponding

values of displacement A(T1) and velocity 2 serve as the initial

values of the Phase 2 motion.

•	 The governing equation for Phase 2 (eq. (83)) reduces to

(' 12 IATT = - (1 - NO2 ) - 2N8 J W dt	 (96)
0

Consistent with the assumption of conical surfaces

W = A(1 - t)
	

(97)

Thus the governing equation becomes

IATT = -2 ( l - Ne2 ) - 2NeA	 (98)

The first integration of equation (98) can be achieved by

multiplying the equation by AT.
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IATATT = - ^2 (1 - Ng 2 ) + 2NO AJAT 	 (99)

The integral of equation (99) can now be written as

2 IA-r2 = -2(1 - NO 2 )A - NOA2 + Cl	 (100)

where C1 is the constant of integration.

The initial conditions for Phase 2 are

A(Tl ) = 2T1 	(101)

AT ( Tl ) = 2	 (102)

Therefore

Cl = 2I + 4Tl (1 - No 2)+ 4T12Ne 	(103)

Substitution of equation ( 103) into equation (100) gives the

expression for the velocity of the center of the plate as

IA-2 = -4 ( 1 - N62 )A - 2NeA2 + 41 + 8T1 (1 - N82 ) + 8T 12N8	 (104)

The final deformation at the center of the plate, AF , can now be

obtained from equation ( lv4) by setting AT = 0.

N8AF2 + 2(1 - N82 )AF = 2I + 4T1 (1 - N82 ) + 4T12N8	 (105)
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Large Deflection of Plates

The analyses in this section will consider the midplane forces

that are developed by large deformations of the plate. Consequently,

governing equations (75), (84), L-id (89) will be used as these equations

contain the parameter Z. As previ-sly discussed, this parameter is a

measure of the displacement of the neutral surface from the midplane.

The definition of Z is given in equation (38) in terms of the

midplane displacement W. For the assumption of conical surfaces

equation (38) reduces to

Z = - 2	 (lo6)

For Phase 1

W = 2T	 0 < t < p

and
	

(107)

W - 2T 1	 p < < 1
1 - p

Thus

Z = -T 	0 < g < p

(lo8)

Z = -T(1 - p)	 p < t < 1
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The governing equation for Phase 1 can now be written as

Vi - P)( 1 + 3P)PT = -1 - ( 2P + 1)T2	(109)

A numerical solution of equation ( 109) using a finite difference

approach is given in appendix B. Numerical values are calculated for a

range of impulses from I equal to 0.2 to 12.

Note that at T - 0 equation ( 109) reduce ^<: to the differential

equation for pure bending ( see ref. 3). Thus for small values of T

the behavior of the hinge approximates that obtained for a plastic ple.te

in bending. As time becomes large, however, the magnitude of the hinge

velocity p  increases over that for the bending case. This increase

in hinge velocity results in a decrease in final deformation.

Phase 1 motion continues until the hinge circle reaches the center

of the plate. At this time, T - T l , deformation of the center is

1^(O,Tl ) - A(Tl ) - 2T1 	(110)

and its velocity is

wT(O,Tl) = AT (Tl ) = 2	 (111)

Thus equations ( 110) and (111) serve as initial coraitiina for

Phase 2. The governing equations for this phase are given by

equation (84). Using equation (106), equation (84) becomes

2 IATT - -1 -	 J 1 W2d,	 (112)
0
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which can be approximated with the use of the conical surface assumption

by

21ATT : -4 - A2 	(113)

By a procedure similar to that used for the solution of

equation (98), equation (113) can be integrated to get

IAT2 = - 3(12 + A2 ) + C2	 (114)

The constant of integration C2 can be evaluated by use of the

initial conditions (eqs. (110) and (111))

•	 c2 = 41 + 231 (12 + 4T12 )	 (1l5)

Substitution of equation (115) into equation (114) gives an

expression for the velocity of the center of the plate during Phase 2

motion

IAT2 = 41 + (231) (12 + ( 2T1 ) 2 5 - 3(12 + A2 )	 ( 116)

The final deformation of the center A P can be evaluated from

equation (116) by setting A T equal to zero. Thus

AF (12 + AF2 ) - 121 + (2T1) ( 12 + (2Tl ) 2 )	 (117)
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At first glance it would seem that equation (117) can provide a

solution for the final deformation of the center of all impulsively

loaded plates. There are, however, restrictions on the uLe of this

equation.

Equation (117) is based on the assumption that only Phase 1 and

Phase 2 behavior occurs during the deformation of the plate. Both of

these phases assume that an intera,-tion of bending and midplane forces

occurs. It has been shown that as the plastic midplane forces, N,

increased the value of the plastic moments, M, decreased until a

value of N equal to one is reached. The moment at that time is zero

and that portion of the plate became a membrane. Thus the behavior

described under Phase 1 and Phase 2 is correct only for that porti.on of

the deformation that does not generate a midplane force such that N2

is greater than one. In terms of Z this condition states that Z2

is less than one, and hence the deflection W must be less than 2

(see eq. (106)).

Consequently, equation (117) can be used to calculate the final

deformation of the plate only if the impulse, I, is small enough so

that the deformation of the plate is less than * 2. When the plate is

subjected to impulses greater than this value, a Phase 3 motion will

begin. The plate will be separated into two parts. In the central

region where the deflection is greater than two, no bending moments

are present and the plate behaves as a membrane. In the outer region

a coupling of midplane forces and bending moments occurs and the plate
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in this region behaves as it did in Phase 1. The point of separation

of these regions, E = n, is defined by

W(n,T) = 2
	

(118)

This point then forms a membrane hinge. This portion of the motion of

the plate is referred to as Phase 3.

The time, T2, at which the Phase 3 motion begins is defined as

W(P,T2 ) = 2
	

(119)

Using the expression for Z giver, in equation ( 106) and the value

of the deflection at the membrane hinge, n, given by equation (119),

the governing equation for Phase 3 (^q. (89)) becomes

(' 1	 ^r	 (' 1
61

 J
	 WTT t dt d* = -(1 + 3n) - j J W2dt	 (120)
n 

J o	 n

In order to evaluate the left side of equation (120) the accelera-

tion of the outer region ( n < E < 1) must be evaluated. The velocity

of the region is given in equation (90) in terms of the position of

hinge and the transverse velocity at the hinge point WT(n,T).

Since the displacement at the hinge is by definition equal to a

constant 2 (see eq. ( 118)), the transverse velocity is dependent on the

slope of the deflection curve at the hinge and the velocity of the hinge,

nT . In addition, as the deformation of the plate is monotonically

increasing, the membrane hinge must be traveling toward the support.

Thus
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WT (n,t) = 1 2 n nT	(121)

With equations (90) and (121) the velocity of the plate in the

outer region is given by

WT =	
nT 
	 n < < 1	 (122)T	 (1 - n)2

The acceleration can now be written as

WTT = [71- n)3 ((1 - n)nTT + 2nT2 ) (1 - ^ )	 n < t < 1
- 

(123)

Substitution of equation (123) into equation (120) and performing

the necessary integration results in the following differential

equation

I C
('^11 _ n)nTT + 2nT2](1 + 3n) _ -(1 + 3n) - ^ 	 W2dt	 (124)

n

Equation (124) can now be approximated with the assumption of

conical surfaces in which W(n,T) = 2 and W(1 1 T) = 0, to give

I [( 1  - n)nTT + 2nT2](1 + 3n) = -2(1 - n)	 (125)
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The solution to this differential equation results in the velocity

and position of the membrane hinge. The integrating factor for the

above equation is

2nT

(1 + n)5 (1 + 3n)

Multiplying equation (125) by this factor gives

I d	 nT2	 = -	 4	 do	 (126)

	

dT (1 - n) 4	(1 + 3n)(1 - n)4 dT

Hence the integral of equation (126) is

2
I nT	 = - 1	 108 +	 72	 +	 64	 + 81 l0 1 + n + C

( 1 	 n)4	 192 (1 - n)	 (1 _ n)2	(1 _ n)3	 g 1 - n	 3

(127)

If the Phase 3 behavior begins while the plate is in Phase 2,

the membrane hinge occurs at the center of the plate, that is, at

n = 0. The hinge velocity at that time is (from eq. (121))

(n.r)o = 2 AT ( T2 )	 (128)

The constant of integration, C30 in equation (127) can now be

evaluated and is given by

C3 = I(nT )o + 192(244)	 (129)



63

Subst-Auting equation (129) into equation (127) gives

2
I nT	 _ -F(n) + I(nT )o	 (130)

(1 - n)

where

F(n) = 
192 (1l n) +	 72 2 +	 3 + 81 log(i + nn - 244]

n	 1 - n)(1	 )	 ( 

(131)

Values of this function for a range of n from 0 to 1.0 are given

in appendix C. The motion of the plate stops when n T = 0, therefore,

the final position of the membrane hinge is given by

F(nF) = I(nT)o
	 (132a)

or with equation (128)

F(nF ) = 4 AT2 ( T2 )	 (132b)

The velocity, AT ( T2 ), can be evaluated from equation (116), since

the deflection A is known to be 2 at T = T2 . Therefore

AT2 ( T2 ) = k + C(2T1 ) (12 + (2T1 ) 2 } - 32] 1	 (133)

Equation (132) applies to the condition where the membrane behavior

is initiated daring the Phase 2 motion of the plate. If the impulse is

great enough, membrane behavior can be initiated during Phase 1, that is,
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before the bending hinge reaches the center of the plate. Since membrane

behavior occurs when deflections are greater than 2 (see eq. (118)) and

from equation (107)

W(E, T ) = 2T	 0 < t < p	 (134)

the Phase 3 behavior of the plate is initiated directly from Phase 1

for all impulses where T becomes greater than unity.

For this case the midplane forces are constant in the central region

(0 < t < p). The membrane hinge must thus originate at the point

= pl = no.

The differential equation for Phase 3 in this case is identical to

the previous case. The solution to the differential equation is given

by equation (127). The initial conditions, however, are different. The

initial position of the membrane hinge, nC , is equal to the position of

the bending hinge, pl , at time, T = 1. Thus

no =p(1) =pl	 (135)

The transverse velocity of the plate at the hinge is 2. Thus from

equation (121)

( nT ) o = ( 1 - no ) = ( 1 - pl)	 (136)

Evaluation of the constant of equation (127) for tho above condition

gives
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2

C - I (nT)O + 1	 108 +	 72	 +	 64

_	
+ 81 log 1 +

3	 (1 _ no)4 192 1 - no	 ( l _ no ) 2	 (1	 no )3	 1- no

(137)

With equation (137) and noting that no = pl , the expression for

the velocity can be written as

P ( n 2

I nT —T = I	 o-4 - F(n) + F(Pl )	 (138)
(1 - tl )	 (1 _ pi)

where F(n) is defined by equation (131).

The motion stops when n  is zero, hence the position of the

hinge when the plate comes to rest, nF, is given by

F ( nF) = I	
(11T)o	

+ F(Pl)	 (139)
Ti - F71)+

With the use of equation (136)

F ( nF ) = I	 1 2 + F(Pl )	 (140)
(1 - Pl)

The final position of the membrane hinge is now known. If the center

portion of the plate does not turn into a membrane until the plate is

in Phase 2, equations (132) and (133) apply. If the center turns into

a membrane during the first phase of the motion, equation (140) applies.
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The inner portion of the plate (0 < t < n) during this time behaves

like a membrane. That is, it carries no bending and transmits only a

constant tensile load in the direction of its midplane. A very detailed

and thorough discussion of such behavior is given by Hudson (ref. 1)

and by Frederick (ref. 2). Some of the more pertinent aspects of the

motion are repeated herein.

When Phase 3 motion is initiated during Phase 1 motion, the membrane

portion of the plate behaves as follows. The bending hinge that

originated during Phase 1 continues to travel inward toward the center

of the plate. As the hinge sweeps over each annular material element

in the flat central region, it tilts it into the shape of an annular

truncated conical element behind the hinge. As the material cannot

support bendir, it is assumed no significant amount of work is done in

bending. In audition, it is assumed that no thinning of the plate takes

place. The portion of the plate passed over by the hinge is assumed to

move in a manner that makes its slope agree with the slope of the outer

portion of the plate. Thus when the motion of the membrane portion of

the plate stops, which occurs after the hinge reaches the center, that

portion forms a cone with a slope equal to the slope of the outer

portion.

This conical behavior is also assumed if the Phase 3 motion is

initiated from Phase 2 motion. Thus

AF _ 2	 2	 (141)nF
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2nF	 2	 (142)AF =2+ 1 _nF1 - n 



XI. DISCUSSION OF NUMERICAL RESULTS

Experimental Results

Before proceeding with a discussion of the numerical results and

the all-important comparisons with experimental data, it would seem

appropriate to first discuss the details of the experiments. All of

the data used herein were obtained from an extensive experimental

investigation performed by Florence. The details of the experiments and

the resulting data were discussed in reference 4 from which much of the

following discussion is taken. It is being repeated here for the sake

of completeness.

The experiments were very thorough, covering a wide range of

impulsive loadings and plates of two different materials: aluminum

and steel. The aluminum plates were 6061-T6 and the steel plates were

1018 cold rolled steel.

A sketch of the experimental setup is shown in figure 11. The

plates were all nominally 1/4-inch thick and 8-1/2 inches in diameter.

The specimens were supported on an annular steel plate with an 8-inch

inside diameter. The impulse was generated by the detonation of an

8-inch diameter of sheet explosive (DuPont EL-506D). The sheet

explosive was cut to fit the opening in the upper support. A similar

disk of solid neoprene, 1/8 of an inch in thickness, was placed between

the explosive and the specimen. This served to reduce the high peak

pressure in the shock wave entering the plate and tended to eliminate

plastic waves, possible changes of material properties, and spallation.

68
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The upper support was used to control the rebound. An outside steel

ring served as a spacer to prevent the edge of the plate from striking

the upper support during the rebound.

Dimensions and properties of the plate used in the experiment are

given in table I. The yield stress was taken to be the average value

of static tensile tests of both with and acroc:s grain specimens. FSRch

experimental stress-strain curve was replaced by a bilinear stress-

strain curve. The strain-hardening portion of the curves was obtained

by fitting a straight line through data points above 3- to 4-percent

strain.

Twenty-two aluminum and 20 steel plates were tested. The values

of the initial impulse imparted to the plate were obtained by firing

free plates in front of a double-flash X-ray unit. The rigid-body

displacement in the predetermined time between X-ray pictures gave the

initial plate velocity.

The permanent central deflections were obtained through the use of

a traveling microscope. The values of this permanent deflection along

with the measured initial dimensional impulses are tabulated in table II.

Also shown in this table are the corresponding values of nondimensional

impulse I.

Large Deflection Effects

The analyses based on consideration of large deflectional effects

will be used to predict the behavior of the experimental specimens.
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TABLE I.- DIMENSIONS AND PROPERTIES CP SPECIMENS*

Material Yield st5ess,
Win

Density, 2
lb-sec /in

Depth,
in.

Radius,
in.

Alumintim 42,000 0.000253 0.251 4 .0
6o61-T6

C.R. Steel
1018

79,E 0.000732 0.241 4.o

0ULTS*

gun plates

cper •
AF

4vo
lb-sec/m2

i.42 0.317
0.94 0.289
) .96 o.288 
).61 0.283

3.o6 o.244
3.54 0.240
3.32 0.240
3.41 0.240
3.06 0.221
r.75 0.219

i.34 0.192
r.o8 0.191
5.99 0.184
x.94 0.149
F.84 0.144
x.05 0.142
E.69 0.141
^ .27 0.139
5.89 o.136

5.12 0.123
5.70 0.118
5.16 0.108



72

Examination of the experimental setup shows that there are no

mechanisms to provide a midplane force prior to impulse. Thus the

plates must begin their motion in the pure bending mode. All specimens

must, therefore, start with a deformational behavior similar to the

Phase 1 behavior discussed herein.

The governing equation for the motion of the hinge circle during

Phase 1 is given by equation (109)• A solution to this equation is

given in appendix B. Numerical results for the position of the hinge

circle at any time T are given for a range of impulses I from 0.2

to 12. Typical plots of these values are shown in figure 12.

The discussion in Chapter X pointed out that Phase 1 motion continues

until one of two possible conditions occurs. Either the hinge circle

reaches the center of the plate (p = 0) or the time T reaches a value

of one. From figure 12 it can be seen that the former condition applie3

to the smaller values of impulse (I < 1.5) while the latter occurs for

the larger impulses where I is greater than 1.5.

In this phase of motion (Phase 1) the nondimensional displacement

of the central portion of the plate is equal to twice the time T. Thus

for impulses greater than 1.5 the deflection of the central portion

reaches a value of 2 (Z of one) before the hinge circle reaches the

center. Once this value of deflection is reached the central portion

of the plate becomes a membrane. (A nondimensional displacement of 2

is equivalent to an actual displacement of 2h, that is, the thickness

of the plate.) The position of the hinge, pl , when the central portion
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TABLE III.- THEORETICAL RESULTS

I 1	 01 T1 nF, AF,

0.2 --- 0.192 --- 0.56
0.3 --- o.28o --- o.83
o.4 --- 0.366 --- 1.07
0.5 --- o.447 --- 1.27
o.6 --- 0.52o --- 1.46
0.7 --- 0.595 --- 1.65
o.8 --- 0.651 --- 1.8o
0.9 --- 0.710 --- 1.94
1.0 --- 0.768 o.o44 2.09
1.1 --- 0.820 0.103 2.23
1.2 --- o.868 0.156 2.37
1.3 --- 0.910 0.210 2.50
1.4 --- 0.953 0.240 2.63
1.5 --- 0.992 0.274 2.75
1.6 o.o44 --- 0.326 2.97
1.7 o.o85 --- 0.368 3.17
1.8 0.120 --- 0.403 3.35
1.9 0.151 --- o.434 3.53
2.0 0.179 --- o.46o 3.71
4.o o.455 --- o.694 6.54
6.o 0.564 --- 0.773 8.81
8.o o.627 --- 0.816 1o.85

10.0 0.668 --- 0.842 12.67
12.0 0. 699 --- 0.862 14.50
14.o 0.722 --- 0.875 16.00
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initially becomes a membrane is a function of I as shown in figure 13

(see also table III).

For impulses less than 1.5 the hinge circle reaches the center of

the plate before any portion of the plate can become a membrane

(T < 1). The value of the time, Tl , at which this occurs is plotted

as a function of I in figure 14 (see also table III).

Subsequent motion of the plate depends on the magnitude of the

impulse. For the large impulses (I > 1.5) the plate goes directly from

Phase 1 to Phase 3 behavior. The initial location of the membrane is

given by p  in table III. The displacement at the hinge point at this

time, W(n,T2) is two and the velocity, WT(n,Tp) is also two (see

eqs. (118) and (41)). The final position of the membrane hinge is

calculated from equation (140) and its values are tabulated in table III

for various values of I. It is also plotted as a function of I in

figure 15. The final plastic deformations of the center of the plates

are calculated from equation (142) and are tabulated in table III.

For impulses less than 1.5 the plate goes from the Phase 1 tc the

Phase 2 motion. The initial center deflection for this phase is given

by 2T1 and the velocity by 2. The values of Tl are obtained from

table III for the appropriate values of I. If the impulse on the plate

is small enough, the motion of the plate will stop before the central

part of the plate becomes a membrane. The final deformation is then

calculated from equation (117). This happens for all impulses smaller

than 0.95.
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If the impulse is in the intermediate range (0.95 < I < 1.5), the

center of the plate turns into a membrane before the motion of the plate

ends. For this case the final position of the membrane hinge is calcu-

lated from equation (132). These values are shown in table III and

figure 15. The final deformation as calculated from equation (142) is

also tabulated in table III.

A comparison of the calculated deformations at the center of the

simply supported plate to those obtained experimentally is shown in

figure 16 for the small and intermediate impulses and in figure 1T for

the complete range of impulses from 0 to 14. The circles represent the

experimental data from the 22 aluminum plates; the squares are from the

data of the 20 steel plates. The solid curve was obtained from the

present large deformation theory. The dashed curve is based on Wang's

plastic bending theory.

The comparisons between the calculated and experimental deformations

are very good, especially in the small and intermediate impulse range.

For impulses less than 4-1/2 the agreement between theory and experiment

is within experimental scatter. As the impulse increases above 5, the

calculated deformations become larger than those measured. This devia-

tion from experiment can be attributed, at least in part, to the omission

of strain hardening effects. Inclusion of strain hardening effects

certainly would cause a reduction in calculated permanent deformation.

Furthermore, these effects would become increasingly importaf;t with the

additional strains caused by increased impulse.
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The bending theory of Wang gives poor agreement even for the low

values of impulse where no membrane behavior is present. As the value

of the impulse is increased so that portions of the plate turn into a

membrane, the difference between the bending and large deformation

theories becomes substantial. This difference is largely due to the

neglect of the restraints provided by the midplane forces. This effect

will be further discussed in the next section.

Lateral Load Effects

The influence of the lateral loads on the deformational behavior

of plastic plates can be seen by examining some of the numerical results

given in appendix A for the case of plate bending with lateral loads.

The governing equations for Phase 1 motion for this case were given

by equation (93). The equation was solved numerically in appendix A for

various assigned values of N8 . As the values of N8 are assumed to be

constant in the analyses, i plastic bending moment is present at all

times. Thus no membrane behavior is considered regardless of the magni-

tude of the deformation. Even for the limiting case of N8 = 1, the

plate does not behave as a membrane as the flow conditions for the

interaction case is used, that is, e r = 0. Consequently, eq ,iation (93)

is considered to be the governing equation for the motion of the hinge

even after the deformation becomes greater than 2 (T > 1).

The final deformation of the plate was calculated from equation (105).

The results are shown in figure 18, where the central deflection of the

plate is plotted as a function of the uniform lateral loads, N, for
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various values of the impulse, I. Examination of these curves shows

that for small. impulses where the deformations are also relatively small,

the midplane forces do not significantly influence the final deformation.

However, with increasing values of impulse and correspondingly larger

deformations, the influence of the midplane forces is greatly increased.

For example, for an impulse of 10 the calculated central deformation

of the plate is reduced by almost 60 percent with the introduction of a

midplane force of only 0.2 of the maximum (N = 0.2). Once the midplane

forces reach a value in the range of 0.2 to 0.3, further increases of

this force are not as effective in reducing the central deformation. In

the case of an impulse of 10 in the above example, an introduction of a

midplane force of 0.2 caused a reduction of deformation from 30 to 12.5.

Further increase of the force to its maximum of 1.0, however, reduces

the deformation only to a value of 7.0.



XTI. COMPARISON 01' LARGE DEFORMATION THEORY TO EXPERIMENTAL

RESULTS AND OTHER METHODS OF ANALYSES

This section will be devoted to a critical examination of the

various methods of analyses that have possible application to deformations

of plastic plates. Conclusions as to the accuracy of these methods are

based on the deformational results for impulsively loaded plates. These

conclusions, however, are believed to be valid for other loading condi-

tions when applied on a deformational basis.

Five methods of analysis will be discussed.

1. The large deformation theory developed herein.

2. The bending theory of Wang from reference 3.

3. An analysis based on maximum midplane forces.

4. The membrane theory of Frederick from reference 2.

5. The midplane interaction analysis of Jones from reference 5.

The calculated central deflections are shown in figure 19 as a

function of impulse from all five of these analyses. In addition, the

experimental results from Florence (ref. 4) are plotted for comparison.

Isrgee Deformation Theory

The results from this analysis, replotted from figure 17, are shown

as a solid line in figure 19. Recall that in this analysis the inter-

action between plastic bending moments and midplane forces are based

entirely on the deflections) behavior of the plate. As long as the

displacements are less than the thickness of the plate (W < 2) this

interaction is present. However, when the deflections become greater
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than the thickness, the central portion of the plate becomes a membrane

and thereafter supports no bending moment. The motion of the bending

and membrane hinges, which are the governing factors of the final defor-

mation, is obtained from solutions of appropriate governing equations.

From figure 19, it can be seen that the comparisons to theory are

excellent for deformations of the order of 2 to 3 times the thickness

(w of 4 to 6). For larger deformations the theory becomes slightly

conservative. This, however, should be expected in the light of the

basic assumptions of the theory. The assumption that the plate material

is a rigid plastic neglects both elasticity and strain-hardening effects.

Each of these would tend to reduce the calculated final deformation if

included. In addition, the assumption that the shape of the outer region

of the plate is conical tends to underestimate the speed of the hinge

circles and thus increases the calculated deflection. The inclusion of

all three of these effects would, therefore, bring the theoretical

calculations into even better agreement with the experiment.

Bending Theory

The results from this analysis are shown in figure 19 as a dash-

double-dot line. In terms of the parameters used herein, the central

deflection is based on the equation

AF = 31	 (143)

Figure 19 shows that the comparison between the bending theory and

experiment is extremely poor even for the lower values of permanent

deformation. Because of this poor comparison it would seem ill advised



88

to use this approach when accurate deflections are desired. As the

method always gives permanent deformations that are above that obtained

experimentally, the results of a bending analysis car be used to give

very conservative estimates of permanent deformations.

It has been pr elviou-sly pointer' out that the behavior of the bending

hinge circle in Phase 1 is directly related to the final deformation of

the plate. The larger the speed of the bending hinge the smaller the

permanent deformation. Thus the conservativeness of the bending theory

is due primarily to a calculated hinge circle speed tha, is too low.

Maximum Midplane Force Analysis

The results of this analysis are shown in figure 19 as a dot-dashed

line. This analysis is identical to that for the large deformation

except for the interaction relationship of moments and midplane forces.

The interaction relationship used in the midplane force analysis is not

dependent on deformations. Instead, it is based on the assumption that

the deflections will be so large that the entire plate will carry the

maximum midplane force of iJ (N = 1). This, therefore, necessitates

that the bending moment vanish. The final deformation results for this

case were discussed in a previous section and correspond to the values of

AF for N = 1.0 in figure 18.

The comparison of the central deformation calculated by the maximum

midplane force assumption to the experimental results show that this

method of analysis is unconservative, for the large deformations where the

method should be most applicable. This unconservativeness in calculated
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deformation reflects a calculated hinge circle velocity that is too

large. The assumption that only midplane forces are present is, there-

fore, as poor an assumption as one where only bending moments are

permitted.

Membrane Theory of Frederick

The results from this analysis are shown in figure 19 as a short

dashed line. In terms of the parameters used herein the central

deflection as calculated in reference 2 is given by

AF =	 12I \2	 (144)

1 - 12I \ f

The comparison of the experimental data and the theoretical results

shows excellent agreement for the larger deformations. For small defor-

mat:.ons the agreement is very poor. However, it should be noted that the

theoretical model used by Frederick was never intended to be used for

small deformations.

As the analysis has many assumptions it is difficult for the author

to fully understand the theoretical reasons for the good agreement

obtained for larger impulses as opposed to the very poor agreement in

the lower impulse range.

The analysis does assume that only membrane forces are present

which is the same assumption used by the maximum midplane force

analysis just described. The behavior of the membrane is also as3umed

to be similar to the Phase 1 and Phase 2 behavior described herein.
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The outer portion of the membrane in Phase 1 and the total membrane in

Phase 2, however, are assumed to be rigid in Frederick's approach. Both

of these assumptions should cause the membrane analysis to underestimate

the final deformation. The third important difference of the two methods

is that the membrane analysis assumes that the hinge velocity is uniform

and dependent only on the initial velocity and the yield stress and

density of the plate material. Thus it must be this assumption that

compensates for the unconservatism of the other two.

Interaction Analysis of Jones

The results of Jones' analysis are shown in figure 19 as a long

dashed curve. The data for this curve were taken from a figure in

reference 5.

As can be seen from figure 19, Jones' analysis gives slightly

unconservative results in the higher impulse or deformation range.

Addition of the neglected strain hardening Rnr' elasticity effects would

result in even more unconservative results. His calculations for small

permanent deformations are in very poor agreement.

Jones assumed in his analysis that since the deformations were

large, the midplane forces would always be at their maximum. He also

permitted the plate to carry bending moments during the Phase 1 motion.

These moments ranged from the maximum M  at the bending hinge to zero

at the support. Therefore, he violated the interaction relationship

based on the Tresca yield condition. His flow conditions were the same

as those used in the constant midplane-force analysis. Thus it would
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seem that his calculated deformations should be smaller than those

showed by the dot-dashed line. The fact that they are not smaller is

due to an additional assumption used by Jones concerning the hinge

velocity. In particular, he assumFd the hinge velocity to be the same

as that obtained by Wang for the bending case. As was shown in the

section dealing with the comparison of the bending theory, this predicted

hinge velocity is very much smaller than it should be. This lower value

of velocity must then be responsible for increasing the value of his

calculated deformation above that of the dot-dashed curve.



XIII. CONCLUDING REMARKS

An analysis of a simply supported circular plate under an impulsive

loading has been presented. The analysis considers the influence of

both bending and midplane forces and includes large deformation effects.

Shear and rotary inertia effects are neglected. The plate material is

assumed to be isotropic and a rigid plastic. The yield criteria are

based on the Tresca condition.

Governing equations were developed and solved for three phases of

motion. The initial Phase 1 included a bending hinge that traveled from

the support to the center of the plate. Phase 2, which was initiated

when the hinge reached th c_ center, continued until either the motion

ceased or a portion of the plate became a membrane. Phase 3 described

the motion of the membrane hinge from its initial point to its final

resting position.

Two types of bending-moment—midplane-force interaction relationships

were studied: One was based on displacement of the neutral surface from

`	 the midplane surface. The second was based on the magnitude of midplane

forces only. The former relationship took account of large deformations

and midplane distortions and hence allowed regions of the plate to

behave as a membrane. The latter only considered the lateral forces

and no membrane behavior was permitted.

Comparisons of the analytical results with experimental data resulted

in the following conclusions.

92
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1. Interaction relationships based on large deformations should

be used in order to get reliable data for a complete range of deflections

and impulses.

2. Analyses of plastic plates based on bending behavior alone give

highly conservative results and hence should only be used to get con-

servative estimates of the permanent deformations.

3. Even a small amount of midplane force has a significant effect

on the final deformations of plastic plates.

4. Analyses of plastic plates based on maximum membrane forces

throughout the plate tend to be seriously unconservative. This method

should not be used unless accompanied by a conservative assumption to

counteract this influence. Under no conditions should this assumption

be used to study deformational behaviors of plates with deform i.a .—Is of

the order of one to two plate thicknesses.

5• For final deformations of the order of five thicknesses and

greater the influence of strain hardening and elasticity becomes

im•.^ ^tant .

Elasticity effects can be approximately accounted for in the

present analyses by incorporating an elastic phase of motion prior to

the Phase 1 motion considered herein. This elastic phase could be used

to evaluate the energy dissipated in elastic deformational behavior and

correct the initial velocity conditions on Phase 1 1 accordingly.

A more accurate and sophisticated approach, however, would be to

permit the plastic behavior to initiate at the center of the plate and
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then spread toward the supports. To do this it would be necessary to

define another hinge circle separating the elastic and plastic portions

of the plate.

Another possible area of refinement is in the analysis of the

membrane portion of the plate. An initial effort in this area should

deal with the influence of reduced thickness.
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XVI. APPENDIX A

SOLUTION OF GOVERNING EQUATIONS FOR BENDING OF PLATES

UNDER UNIFORM LATERAL LOADS

The governing equation for Phase 1 in terms of the impulse I and

the lateral load, Ne, is (see eq. (93)

-(1 - No 2) - 2NeT(1 + P)
PT	

I(1 - P)(1 + 3P)
(A-1)

The initial condition for this phase is that p = 1 for T = 0.

This phase ends at T = T1
 

when p = 0. Phase 2 motion then begins

and continues until a final deformation is reached. The equation for

the final deformation is given by equation !105) as

NOAF2 + 2(1 - No 2 )AF = 2I + 4Tl (1 - Ne 2 ) + 4T12NO	 (A-2)

For the case of pure bending (N. = 0) the solutions for

equation (A-1) can be found in closed form as

1 - P - P2 + P3 = 1	 (A-3)

so that

T1 =I
	

(A-4)
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The solution of equation (A-2) for N. = 0 is then

AF = 31	 (A-5)

For the case of the maximum midplane force (N8 = 1) the solution of

equation (A-1) is

T2 = 12(1 + p) 2 - 8(1 + p) + 4 log (1 2 p) 
+ 10	 (A-6)

so that

T12 = 0.72741	 (A-7)

The solution of equation (A-2) then can be written as

AF  = 2I + 4T12 	 (A-8)

AF = 2.21
	

(A-9)

For the general case equation (A-1) is solved numerically for T1

and the value of AF calculated from equation (A-2). The flow

diagrams, computer program, and numerical results follow.
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FINAL DEFORMATION OF DPULSIVELY LOADED PLATES

WITH MIDPLA.NE FORCES

I Ne o 0.1 0.2 0.3 0.4 0.6 0.8 i.o

0.4 1.20 --- 1.10 --- 1.09 1.15 1.25 1.40

0.8 2.40 --- 2.01 --- 1.88 1.85 1.90 1.98

1.2 3.60 --- 2.80 --- 2.52 2.41 2.39 2.42

1.6 4.80 --- 3.51 --- 3.07 2.88 2.81 2.80

4.0 12.00 8.19 6.83 6.06 5.56 4.96 4.63 4.42

6.0 18.00 10.03 8.95 7.83 7.11 6.24 5.74 5.41

8.0 24.00 13.50 10.77 9.33 8.43 7.32 6.68 6.25

10.0 30.00 15.71 12.38 10.67 9.58 8.27 7.50 6.99

12.0 36.00 17.73

-

13.84

- i

11.87 1 10.63 9.13 1 8.25 1 7.66
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lo6

000075 COEFS421=-1.0
000076 CUEFS(31--1.0
000077 COEFS(4)=1.0-DTAU/FI
000102 CALL FALG (COEFS93909R9TEMP,IERR)
000106 IF	 (IERR.NE.01	 PRINT 5 9	IERP,
000115 5 FORMAT(//LOX*ERROR IN FALG SUBROUTINE */)
000115 DO 6 M=193
000117 IF	 (AIMAG(R(MI).E0.0.0)	 GO	 TJ 8
000123 6 CONTINUE
000125 PRINT 7
000130 7 FORMAT(//LOX*ALL ROOTS COMPLEX*/)
000130 8 RHO(1)-REAL(R(MI)

CALCULATE	 INITIAL RHOT VALUE
000133 RHOT(L) --(2.*NTHETA*TAU(1)*(1.+RHO(1))+(1.-NIHE7A **2))/(FI*(1.-

1RHO(l))*(1.+3.*RHO(1)1)
OP0156 PRINT 9 9 N9TAU(N)9RH0(N)9RHOT(N)
000172 9 FORMAT14X*N *911X*TAU*917X*RHO*917X*RHOT*//2XI3v3(5XE15.8)1

C BEGIN ITERATION ON RHO. TAUS RHOT
000172 10 N=N+1
000174 DELRHO-PAOT(N-I)*DTAU
000176 RHOINI=RHO(N-1)+DELRHO
000200 TAU(N)=TAU(N-1)+DTAU
000202 RHOT(N)=-(2.*NTHETA*TAU(N)*(1.+RHO(N) ►+ll.-NTHETA **21) /

I(Fl*(i.-RHO(N))*(1.+3.*RHO(N)I)

C OUTPUT
* RHO -RADIUS OF HINGE CIRCLE
* RHOT - VELOCITY OF HINGE CIRCLE
* TAU - TIME OF HINGE CIRCLE

000227 IF	 (MOO(NrIPFN1.EQ.0)	 PRINT	 11 9 	 N9TAU(N)rRHO(Nl9RHOT(N)
000247 11 FORMAT(2XI393(5XE15.8))

C IF MAXIMUM NUMBER OF ITERATIONS	 IS REACHED OR RADIUS ':RHO)
C BECOMES NEGATIVE -- STOP

000247 IF (N.GT.MAXNI	 GO TO 12
000253 IF	 (RHO(N).LT.O.01	 GO TO 20
000254 GO TO 10
000254 12 PRINT 13
000260 13 FORMAT(//LOX*MAXIMUM N REACHED*//)
000260 GO TO 14

C INTERPOLATE FOR TIME AT WHICH RHO-0
000261 20 TAUA-TAU(N-1)+RHO(N-1)*DTAU/IRHO(N- I)-RHO(N)1

CALCULATE AF
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INFLUENCE OF UNIFORM MID-PLANE FORCES ON
PLASTIC BENDING UNDER IMPULSIVE LOADING
ROBINSON-KRUSZEWSKI, SRO-A1998, FEBRUARY 1968, RDV-122

DATE 03/07/68	 TIME 19.16.59.

DTAU= .01U	 I=	 4.0 NTHETA=	 .10

N TAU RHO RHOT

1 1.00000000F-02 9.64325054E-01 -1.78916444E+Ot)
10 1.00000000E-01 8.80608619E-01 -5.90849807E-0.1
20 2.00000000E-01 8.29276011E- O1 -4.46368495E-C+1
30 3.00000000E-01 7.87761936E-01 -3.84295030E-01
40 4.0090,J000E-01 7.51066650E-01 -?.48865004E-31
50 5.00000000E-01 7.172861UOE-01 -3.25934887E-,01
60 6.00000000E-01 6.85452608E-01 -3.10040640E--01
70 7.00000000E-01 6.54993972E-01 -2.98576451E--01
8U 8.00000000E-01 6.25537314E-01 -2.9017.8280E-01
90 9.00000000E-01 5.96822057E-01 -2.83859153E-01
100 1.00000000E+00 5.68655887E-01 -2.79242542E-01
110 1.10000000E+00 5.40890256E-01 -2.75932814E-01
120 1.20000000E+00 5.13405705E-01 -2.73696801E-01
130 1.30000000E+00 4.86102527E-01 - 2.7237532,(:E- O1
140 1.40000000E+00 4.58894475E-01 -2.71860561E-01
150 1.50000000E+00 4.31704306E-01 -2.72082392E-`1
160 1.60000000F+OU 4.04460408E-01 -2.73000154E )l
170 1.70000000E+00 3.77094097E-01 -2.74597925E J1
180 1.80030000E+00 3.49537255E-01 -2.7668234V=-Ol
1'-+0 1.90009000F+00 3.21720101E-01 -2.7988248.'E-01
200 2.00000000E+00 2.93568869E-01 -2.83651821E-01
210 2.16000000E+00 2.65003209E-01 -2.88272380k-01
220 2.20000000E+00 2.35933030E-01 -2.93862061E-01
230 2.30000000E+00 2.06254428E-01 -3.00586357E-01
2.40 7.40000000E+00 1.75844160E-01 -3.08677131E-01
250 2.50000000E+00 1.44551752E-01 -3.18463206E-01
260 2.60000000E+00 1.12187711E-01 -3.30421985E-01
270 2.70000000E+00 7.85050049E-02 -3.45270934E-01
280 2.80000000E+00 4.31682146E-02 -3.64140668E-01
290 2.90000000E+00 5.69841823E-03 -3.88931569E-01

TAUA= 2.91461683E+00 	 AF(1)= 8.19444091E+00 0.
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UTAU= .010	 [=	 6.0 NTHETA=	 .10

N TAU RHO RHOT

1 1.01000000E-02 9.70920305E-01 -1.45591684E+00
10 1.0,3000000E-01 9.03063513E-01 -4.76542157E-01
20 2.03000000E-01 8.61766565E-01 -3.57967732E-01
30 3.000OJOOOE-01 8.28546299E-01 -3.0668939dE-01
40 4.00.300000E-01 7.99320530E-01 -2.77152995E-01
50 5.J0000000E-01 7.72536510E-01 -2.57796503E-01
60 6.0000000OF-01 7.47407232E-01 -2.44148330E-01
70 7.00000000E-01 7.23469545E-01 -2.34071958E-01
8G 3.0000000OF-01 7.00423916E-01 -2.26404202E-01
90 9.000000L)OE-01 6.78063379E-01 -2.20452673E-01

100 1.00010000E+00 6.56237641E-01 -2.15777627E-01
110 1.10001000E+00 6.34833178E-01 -2.12085787E-01
120 1.20000000E+00 6.13761395E-01 -2.09174050E-01
130 1.330J:)000F+00 5.92951187E-01 -2.068976 OOE-01
140 1.40000000E+00 5.72344043E-01 -2.05150854E-01
150 1.50100000E+00 5.51890703E-01 -2.03855581E-01
160 1.60000000E+00 5.31548791E-01 -2.02953236E-01
170 1.70000000[+00 5.11281098E-01 -2.02399863E-01
180 1.80000000E+00 4.91054284E-01 -2.02162642E-01
190 1.90000000E+00 4.70837881E-01 -2.02217512E-01
200 2.00000000E+00 4.50603495E-01 -2.02547533E-01
210 2.10000000E+00 4.30324150E-01 -2.03141766E-01
220 2.2000JOOOE+00 4.09973721E-01 -2.03994533E-01
230 2.30000000E+00 3.89526432.E-01 -2.05104988E-01
240 2.40000000E+00 3.68956381E-01 -2.06476927E-01
250 2.5J000000E+00 3.48237078E-01 -2.08118830E-01
260 2.60000000E+00 3.27340963E-01 -2.10044133E-01
270 2.70000000E+00 3.06238895E-01 -2.12271744E-01
280 2.80000000F+00 2.84399565E-01 -2.14826851E-01
290 2.90000000F+00 2.63288822E-01 -2.17742100E- O1
300 3.00000000E+00 2.41368855E-01 -2.21059267E-01
310 3.10000000E+00 2.19097184E-01 -2.24831598E-01
320 3.20000000E+00 1.96425369E-01 - 2.29127129E -01
330 3.31000000E+00 1.73297335E-01 -2.34033422E-01
340 3.40000000E+00 1.49647132E-01 -2.39664469E-01
350 3.50000000E+00 1.25395857E-01 -2.46171003E-01
360 3.60000000E+00 1.00447334E-01 -2.53756336E -01
370 3.70000000E+00 7.46818134E-02 -2.62701583E-01
380 3.80000000E+00 4.79464922E-02 -2.73407601E-01
390 3.90000000E+00 2.00405872E-02 -2.86468443E-01

TAUA= 3.96887600E ►00	 AF M = 1.10328784E+01 0.
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DTAU= .010
	

1= 8.0	 NTHETA= .10

N
	

TAU	 RHO
	

RHOT

1
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490

1.00000000E-02
1.00000000E-01
2.00000000E-01
3.00000000E-01
4.00000000E-01
5.00000000E-01
6.00000000E-01
7.00000000E-01
8.00000000E-01
9.00000000E-01
1.00000000E+00
1.10000000E+00
1.20000000E+00
1.30000000E+00
1.40000000E+00
1.50000000E+00
1.60000000E+00
1.70000000E+00
1.80000000E+00
1.90000000E+00
2.00000000E+00
2.10000000E+00
2.20000000E+00
2.30000000E+00
2.40000000E+00
2.50000000E+00
2.60000000E+00
2.70000000E+00
2.80000C3 00E+00
2.90000000E+00
3.00000000E+00
3.10000000E+00
3.20000000E+00
3.30000000E+00
3.40000000E+00
3.50000000E+00
3.60000000E+00
3. 70000000E+00
3.80000000E+00
3.90000000E+00
4.00000000E+00
4.10000000E+00
4.20000000E+00
4.30000000E+00
4.40000000E+00
4.50 000000E+00
4.6000000E+00
4.70uG,•JOOE+00
4.800f 0000E+00
4.90000000E+00

9.74841259E-01
9.16326172=-01
8.80865910E-01
8.52424119E-01
8.27465145E-01
8.04644527E-01
7.83281360E-01
7.62975496E-01
7.43468716E-01
7.24583180E-01
7.06190328E-01
6.88193650E-01
6.70518442E-01
6. 531053 76E-01
6.35906281E-01
6. 18881280E-01
6.01996768E-01
5.85223962E-01
5.68537832E-01
5.51916284E-01
5.35339542E-01
5.18789656E-01
5.02250107E-01
4.85705492E-01
4.69141248E-01
4.52543431E-01
4.35898509E-01
4.19193184E-01
4.02414222E-01
3.85548295E-01
3.68581820E-01.
3.51500794E-01
3.3429062n'--01
3. 16935'1u0E-01
2.994204&2E,01
2.0172651LE-01
2.63835133E-01
2.45 725437E-01
2.27374371E-01
2.08756207E-01
1.89841949E-01
1.70598595E-01
1.50988172E-01
1.30966487E-01
1.10481461E-01
8.94708677E-02
6.78591765E-02
4.55530486E-02
2.24346799E-02

-1.64840441E-03

-1.25834155E+00
-4.u9768396E-01
-3.06837213E-01
-2.62193667E-01
-2.36378952E-01
-2. 19375231E-01
-2.07306725E-01
-1.98320631E-01
-1.91407420E-01
-1.85965423E-01
-1.81611781E-01
-1. 78090411E-01
-1.75223193E-01
-1.72882294E-01
-1.70973617E-01
-1.69426458E-01
-1.68186795E-01
-1.67212815E-01
-1.66471834E-01
-1.65938140E-01
-1.65591453E-01
-1.65415811E-01
-1.65398746E-01
-1.65530685E-01
-1.65804499E-01
-1.66215180E-01
-1.66759608E-01
-1.67436390E-01
-1.68245765E-01
-1.69189566E-01
-•l.70271225E-01
-..71495841E-01
-1.72870294E-01
-1.74403421E-01
-1.76106262E-01
-1.77992394E-01
-1.80078373E-01
-1.82384310E-01
-1.84934637E-01
-1.87759118E-01
-1.90894202E-01
-1.94384851E-01
-1.98287061E-01
-2.02671374E-01
-2.07627906E-01
-2.13273698E-01
-2.19763777E-01
-2.27308355E-01
-2.36200640E-01
-2.46863946E-01

TAUA= 4.89329104E+00
	

Af(l)- 1.35000324E+01 0.
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OTAU= .010	 1= 10.0	 NTHETA=	 .10

TAU	 RHO	 R HOT

1
10
20
30
40
50
6U
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
31G
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570

1.00000000E-02
1.00000000E-01
2.000OOOOOF-01
3.00000000E-01
4.000OUOOOE-01
5.00000000E-01
6.0000OOOOF-01
7.00000000E-01
H.000OOOOOE-01
9.0000000UE-01
1.00000000E+00
1.10000000E+00
1.20000000E+00
1.3000UOOOF+00
1.40000000E+00
1.50000000E+00
1.60000000E+00
1.70000000E+00
1.80000000E+00
1.90000000E+00
2.000OOOOOE+00
2.10000000E+00
2.20000000E+00
2.30000000E+00
2.40000000F+00
2.5000UOOOE+00
2.60000000E+00
2.70000000E+00
2.60000000E+00
2.90000000E+00
3.00000000E+00
3.10000000E+00
3.2000UOOOE+00
3.30000000E+00
3.40000000E+00
3.50000000E+00
3.60000000E+00
3.70000000E+00
3.80000000E+00
3.9000UOOOE+00
4.00000000E+00
4.10000000E+0C
4.20000000E+00
4.30000000E+00
4.40000GOOE+00
4.50000000E+00
4.60000000E+00
4.70000000E+00
4.80000000E+00
4.90000000E+00
5.00000000E+00
5.10000000E+00
5.20000000E+00
5. 300000UOE+00
5.40000000E+00
5.50000OUOE+00
5.60000000E+00
5.70000000E+00

9.77512541E-01
9.25325755E-01
6.93789604r-OL
8.66543162E-01
9.46423763E-01
8.26228895E-01
8.07149736E-01
7.894 712E-01
7.72235296E-01
7.55610935E-01
7.39441233E-('1
7.23640529E-01
7.08142740E-01
6.92995607E-01
6.77856930E-01
6.62992005E-01
6.48271829E-OL
6.33671807E-01
6.19170799E-01
6.04750412E-01

.90394448E-01
5.76088482E-01
5.61819528E-01
5.47575765E-01
5.33346325E-01
5.19121108E-01
5.04890634E-01
4.906459LOE-01
4.76378326[-01
4.62079550E-01
4.47741444E-01
4.33355983E-01
4.18915180E-01
4.04411012E-01
3.89835349E-01
3.75179885E-01
3.60436062E-01
3.45594994E-01
3.30647383E-01
3.15583429E-01
3.00392729E-01
2.85064160E-01
2.69585754E-01
2.53944540E-01
2.38126370E-01
2.22115701E-01
2.05995347F-01
1.89446164E-01
1.72746669E-01
1.55772,62E-01
1.38496132E-01
1.20985483E-01
1.02903542E-01
8.45067381E-02
6.56432367E-02
4.62504968[-02
2.62518390E-02
5.55145305E-03

-1.12396677E+00
-3.64759686E-01
-2.72570989E-01
-2.32520735E-01
-2.09312512E-01
-1.93983812E-01
-1.83066526E-01
-1.74902351E-01
-1.68587443E-01
-1.63582866E-01
-1.59545450E-01
-1.56245431E-01
-1.53522768E-01
-1.51262375E-01
-,.49379298E-U1
-1.47809448E-01
-1.46503596E-OL
-1.45423346E-01
-1.44538372E-01
-1.43824476E-01
-1.43262190E-01
-1.42835757E-01
-1.42532377E-01
-1.42341639E-01
-1.42255089E-01
-1.42265905E-01
-1.42'368641E-01
-1.42559032E-01
-1.42833847E-01
-1.43L90771E-01
-1.43628325E-01
-1.44145803E-01
-1.44743235E-OL
-1.45421362E-01
-L.46181636E-01
-1.47026235E-01
-1.47958086E-OL
-1.4898920E-01
-1.50099337E-01
-1.51318898E-01
-1.52646240E-01
-1.54089229E-01
-1.55657145E-01
-1.57360928E-01
-1.59213471E-01
-1.61230013E-01
-1.63428623E-01
-1.65830838E-OL
-1.68462488E-01
-1.71354782E-01
-1.74545767E-OL
-1.78082300E-01
-1.82022784E-01
-1.86441014E-01
-1.91431731E-01
-1.97118842E-01
-2.03667968E-01
-2.11306288E-01

TAUA= 5.72618326E+00	 AF111 = 1.57110046E+01 0.
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OTAU= .010	 1.	 12.0 NTHETA-	 to

N TAU RHO RHOT

L 1.00000000E-02 9.79482068E-OL -L.02501141E+00
10 1.00000000E-01 9.31942759E-01 -3.31818643E-01
20 2.00000000E-01 9.03273630E-01 -2.47589073E-01
30 3.00000000E-01 8.80353384E-01 -2.10957800E-01
40 4.00000000E-01 8.60294723E-01 -1.89702092E-01
50 5.00000000E-01 8.41999875E-01 -1.75639072E-OL
60 6.000On00UE-01 8.24913135E-01 -1.65601972E-01
70 7.000OOOOOE-01 8.08708225E-OL -1.58076381E-01
80 8.00000000E-01 7.93174896E-01 -1.52236742E-01
90 9.000OOOOOE-01 7.76168650E-OL -1.47590687E-OL

100 1.00000000E+00 7.63585329E-01 -1.43824595E-01
110 1.10000000E+00 7.49347046E-01 -1.40728393E-0L
120 1.20000000E+00 7.35393813E-01 -1.38155668E-01
130 1.30000000E+00 7.21678299E-01 -1.36001040E-01
140 1.40000000E+00 7.08162383E-01 -1.34186629E-01
150 1.50000000E+00 6.94814824E-01 -1.32653591E-01
160 1.60000000E+00 6.81609617E-01 -1.3356527E-01
170 1.70000000E+00 6.68524819E-01 -1.302603')6E-01
180 1.80000000E+00 6.5554168LE-01 -1.29336538E-01
190 1.90000000E+00 6.42644003E-01 -1.28562795E-01
200 2.00000000E+00 6.298L7633E-01 -1.27920829E-01
210 2.10000000E+00 6.17050089E-OL -1.27395742E-01
220 2.20000000E+00 6.04330254E-OL -1.26975287E-01
230 2.30000000E+00 5.91648135E-01 -1.26649347E-01
240 2.40000000E+00 5.789946,2E-01 -1.26409530E-01
250 2.50000000E+00 5.66361576E-01 -1.26248869E-01
260 2.60000000E+00 5.r3741202E-01 -1.26161575E-01
270 2.70000000E+00 5.41126435E-Ot -1.26t42851E-01
280 2.80000000E+00 5.28510604E-01 -1.26188745E-01
290 2.90000000E+00 5.15887396E-01 -1.26296033E-01
300 3.0000U0OOE+00 5.03250795E-01 -1.26462121E-01
310 3.10000000E+00 4.90595OL5E-01 -1.26684978E-01
320 3.2000j000E+00 4.77914454E-01 -1.26963074E-01
330 3.30000000E+00 4.65203638E-01 -1.27295335E-Oi
340 3.40000000E+00 4.52457185E-0L -1.27681110E-01
350 3.50000000E+00 4.39669756E-01 -1.28120150E-01
360 3.60000000E+00 4.26836024E-01 -1,28612584E-01
370 3.70000000E+00 4.13950628E-01 -1.29158918E-Ot
380 3.80000000E+00 4.01008143E-01 -1.29760029E-01
390 3.90000000E+00 3.88003037E-01 -L<30417171E-01
400 4.00000000E+00 3.74929637E-01 -1.31131988E-01
410 4.10000000E+00 3.61782086E-01 -1.31906533E-01
420 4.20000000E+00 3.48554303E-01 -1.32743297E-01
430 4.30000000E+00 3.35239937E-01 -1.33645240E-01
440 4.40000000E+00 3.21832318E-01 -1.3461584LE-01
450 4.50000000E+00 3.08324403E-01 -1.35659155E-01
460 4.60000000E+00 2..94708715E-01 -1.36779978E-Ot
470 4.70000000E+00 2.80977275E-01 -L."7983442E-OL
480 4.80000000E+00 2.57121524E-01 -1.39276112E-01
490 4.90000000E+00 2.53132235E-OL -1.40665123E-01
500 5.00000000E+00 2.38999407E-01 -1.42158839E-01
510 .10000000E+00 2.24712146E-01 -1.43766947E-01
520 5.20000000E+00 2.10258519E-01 -1.45500711E-01
530 5.30000000E+00 1.95625388E-01 -1.47373279E-01
540 5..40000000E+00 1.80798197E-01 -1.49400073E-01
550 5.50000000E+00 1.65760731E-01 -1.51599290E-01
560 5.60000000E+00 1.50494805E-01 -1.53992545E-01
570 5.70000000E+00 1.34979892E-01 -1.56605712E-01
580 5.80000000E+00 1.19192644E-01 -1.59470031E-01
590 5.90000000E+00 1.03106296E-01. -1.62623596E-01
600 6.00000UOOE+00 8.668989L1°-02 -L.66113382E-01
610 6.10000000E+00 6.99072796E-02 -1.69998059E-01
620 6.20000000E+00 5.271577591-02 -1.74351978E-01
630 6.30000000E+00 3.50643S13E-02 -1.79270963E-01
640 6.40000000E+00 1.68911267E-02 -1.84880937E-01
650 6.5000OOOOE+00 -1.88018629E-03 -1.91351228E-01

TAUA- 6.49013851E+00	 AF111- 1.77316318E+01	 0.
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JTAU= .010	 1=	 4.0 NTHETA=	 .30

N TAU RHO RHOT

1 1.00000000E-02 9.64325054E-01 -1.65930084E+00
10 1.00000000E-01 8.83079455E-01 -5.99399137E-01
20 2.00000000E-01 8.29850692F-01 -4.75617618E-01
30 3.00000000E-01 7.84796684E-01 -4.26411059E-J1
40 4.00J)0000E-01 7.43433701E-01 -4.00713649E-01
50 5.00000000E-01 7.04096361E-01 -3.85610289E-01
60 6.000000OOE-01 6.65954302E-01 -3.76899482E-01
70 7.00000000E-01 6.28521061E-01 -3.71755821F-01
80 P,.00000000E-01 5.91477981E-01 -3.69217355E-01
90 9.O0000000E-01 5.54556757E-01 -3.68634642E-01

100 1.00000000i-+OO 5.17700254E-01 -3.69636088E-01
110 1.10000000E+00 4.80640346E-01 -3.72017456E- U1
120 1.21)000000E+00 4.43233950E-01 -3.75687237E-0_
130 1.30000000E+00 4.05503099E-01 -3.80640581E-01
140 1.40000000E+00 3.67166796E-01 -.86950393E-01
150 1.50000000E+00 3.28133154E-01 -:1.94771489E-01
160 1.60000000E+00 2.88240532E-01 -4.04358260E-01
170 1.70000600E+00 2.47296147E-01 -4.16100709E-01
180 1.•30000000E+00 2.05059849E-01 -4.30590822E-01
190 1.90000000F+00 1.6i219031E-01 -4.487455b3E-01
200 2.00000000E+00 1.15346693E-01 -4.72047373E-01
210 2.10000000E+00 6.68252393E-02 -5.03055674E-01
220 2.20,100000E+00 1.46928062E-02 -5.46619318E-01

TAUA= 2.22664b5bEr'OJ 	 AF(1)= 6.06151369E+00	 0.
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0TAU = .01 1
	

I= 6.0
	

NTHETA= .30

1
10
20
30
40
50
60
70
80
9U

100
110
120
130
140
150
160
1O
180
191
200
210
220
230
240
250
260
270
280
2SO

i Au

1.00000000E-02
1 . 00000000E-'i 1
l.OJ000000E-01
3.000'.)OOOOE-01
4.00000000E-01
5.00000000E-01
6.00000000E-01
7.OJ00')000E-;)1
5.00000000E-01
9.00000000E-01
1.01009000E+00
1.10000000E+00
1.2000000UE+00
1.30000000F+00
1.40000UOUE+00
1.50000' `OE+OC,
1.60000'_ )OE+00
1.70000000F+00
1.80000006"+00
1.90000000E+00
2.00000000E+00
2.10000000E+00
2.20000000E+00
2,30000000E+00
2.40000000E+00
2.50000000E+00
2.6000UOOOE+00
2.70000000E+00
2.80000000E+00
2.90000000E+00

RHO

9.709203u5E-U1
O.U5042592F-01
8.62162169F-31
8.26030295E-01
'/.92992244E-01
7.61696653E-C1
7.31475909E-01
7.01945258E-01
6.72859333r'-01
6.44049382E-01
6.15391936E-01
5.86791596E-01
5.58170838E-01
5.29463555E-01
5.00610699E-01
4.71557143E-01
4.42249215E-01
4.1263?710E- O1
3.82650744E-01
3.52241934E-01
3.21338031E-01
2.89 861181 F- O 1
2.5 7 720374E-01
2.24806645E-01
1.90986271E-01
1.56090749E-01
1.19901286F- 01
8.21235722E-02
4.23439742E-02

-5.29385935E-05

kHOT

-1.35028152F+00
-4.83920921E-01
-3.82135256F_-01
-3.41189167E-01
-3.19363167E-01
-3.06255518E-01
-2.97926021E-01
-2.9253557cE-01
-2.89109391E-01
-2.87085491F-01
-2.861210; -4

._ - 01
- 2. 85999355E-01
-2.86581688E-0:
-2.87780342E-01
-2.89543450E- O1
-2.91846087E-01
-2.94685360E-01
-2.98078142E-01
- 3.0206086 8E- 01
-3.06691195r_-01
- 3. 12051730E-U1
-3.18256398E-01
-3.25460577E-01
-3.33877088E-01
-3.43301812E-01
- 3.5565606 7E-01
-3.70059969E-0:
-3. 87967205E-01
-4.10932380E-01
-4.41698084E-01

TAUA= 2.89987918E+00	 AF(1)= 7.83052918E+00 0.
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DTAU= .010	 1=	 8.0 NTHETA=	 .30

N TAU RHO RHOT

1 1.00000000E-02 9.74841259E-01 -1.16706206E+00
10 1.00000000E-01 9.18020904E-01 -4.16354f.78E- O1
20 2.OJ000000E-01 8.$'1172035E-01 -3.27706352E-01
30 3.00000000E-01 8.50198230E-01 -2.92129600E-01
40 4.00000000E-01 8.21936426E-01 -2.72887229E-U1
50 5.00001)OOOF-01 7.95218984E-01 -?. 1165355F-01
60 6.00000000E-01 7.69470951E-01 -2.535465.6E-01
70 7.0000r)000F-01 7.44362849E-01 -2.43,-32740E-01
80 d.OJ000000E-01 7.19646461E-01 -2.4074077E-01
90 9.09000000E-01 6.95300531E-01 -2.`•2677274F-01

100 1.00000000E+00 6:71103719E-01 -2.41237796E-01
110 1.10000000E+00 6.4'1019816E-01 -2.40459059E-01
120 1.20000000F+00 6.2.989064E-01 -2.40210177E-01
130 1.30000000E+00 5.93962751E-01 -2.4040.2.386E-01
140 1.40000000E+00 5.74899682E-01 -2.40975216E-01
150 1.50000000E+OC 5.50763761E-01 -2.41868063E-01
160 1.60000000E+00 5.26522261E-01 -2.43114938E-U1
170 1.70000000E+00 5.02144521E-01 -2.44641152E-01
180 1.800000OOE+00 4.77600925E-01 -2.46461266E-01
190 1.9()009000E+00 4.52862026E-01 -2.48577913E-01
200 7.0000JOOOE+UO 4.27897776E-01 -2.51001265E-01
210 2.10000000E+00 4.02676769E-01 -2.53749043E-01
220 2.20000000E+00 3.77165474F-01 -2.56847033E-01
230 2.>0000000E+00 3.51327379E-01 -2.60330135E-01
240 2.40000000E+03 3.25122014E-01 -2.64244060E-01
250 2.50000000E+00 2.98503763E-01 -2.68647859E-0:
cS0 2.60000000E+00 2.71420375E-01 -2.73617609E-01
270 2.7000000OF+00 2.43d11036E-01 -2.79251781E-01
280 2.8000000CE+00 2.15603800E-01 -2.85679159F-01
290 2.90000000E+00 1.86712063E-01 -2.93070750E-01
300 3.0000000uE+00 1.57029579E-01 -3.01658248E-01
310 3.11)000O00E+00 1.26423176E-01 -3.11763669E-01
320 3.20000000E+00 9.47217110E-02 -3.23,449055E-01
330 3.3000ODOOE+00 6.16985354E-02 -3.38604492E-01
340 3.400OJJOOE+00 2.70421116E-02 -3.57114905E-01

TAUA= 3.47422878E+00	 AF(I)= 9.33474990E+00 0.
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')TAU= .010	 I=	 10.0 NTHETA=	 .30

N TAU RHO RHOT

1 1.00001000E-02 9.77512541E-01 -1.04244728E+00
10 1.00000000E-01 9.26830068E-01 -3.7076727dE-01
20 2.000000OOE-01 9.94041693E-01 -2.91498125E-01
30 3.00000000E-01 8.66524316E-01 -2.59331921E-01
40 4.00000000E-01 8.41449748E-01 -2.419435 75E-01
50 5.00000000E-01 8.17774825E-01 -2.31268482E-01
60 6.03090000E-01 7.94986712E-01 -2.24247963E-01
70 7.OU000000E-Ji 7.72792333E-01 -2.19450800E-01
80 s.00000000E-01 7.51007267E-01 -2.16114732E-01
90 9.0000000OF-01 7.29507198E-01 -2.13796342E-01

100 1.0000,)OOOF+00 7.08ZO3747E-01 -2.12220736E-01
110 1.10000000E+00 6.87031280E-01 -2.11209229E-01
120 1.20000000E+00 6.65939179E-01 -2.10641477E-01
130 1.30000000E+00 6.448d7057E-01 -2.10434296E-01
140 1.40000000E+00 6.23841657E-01 -2.10529190E-01
150 1.50000000E+00 6.02774754E-01 -2.10884682E-01

'	 160 1.60000000E+00 5.81661694E-01 -2.11471452E-01
170 1.70000000E+00 5.60480327E-01 -2.12269169E-01
180 1.80000000E+00 5.39210214E-01 -2.13264392E-01

-	 190 1.90000000£+00 5.17832003E-01 -2.14449183E-01
200 2.00000000E+00 4.96326923E-01 -2.15820193E-01
210 2.10000000E+00 4.74676352E-01 -2.17378095E-01
220 2.20000000E+00 4.52861435E-01 -2.19127276E-01
230 2.30000000E+00 4.30862713E-01 -2.21075744E-01
240 2.40000000E+00 4.08659761E-01 -2.23235222E-01
250 2.50000000E+00 3.86230806E-01 -2.25621438E-01
260 2.60000000E+00 3.63552304E-01 -2.28254607E-01
270 2.70000000E+00 3.40598460E-01 -2.31160165E-01
280 2.80000000E+00 3.17340668F-01 -2.34369797E-01
290 2.90000000E+00 2.93746820E-01 -2.37922866E-01
300 3.00000000E+00 2.69780454E-01 -2.41868384E-01
310 3.10000000E+00 2.45399681E-01 -2.46267757E-01
320 3.20000000E+00 2.20555772E-01 -2.51199646E-01
330 3.30000000E+00 1.95191310E-0l -2.56760497E-01
340 3.40000000E+00 1.69237668E-01 -2.63082652E-01
150 3.50000000E+00 1.42611512E-01 -2.70336557E-01
360 3.60000000E+00 1.15209812E-01 -2.78754743E-01
370 3.70000000E+00 8.69024738E-02 -2.88661502E-01
380 3.80000000E+00 5.7521067OF-02 -3.00524804E-01
390 3.90000000E+00 2.68407346E-02 -3.15049329E-01

TAUA= 3.98350950E+00	 AFIL)= 1.06660980E+01 0.
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DTAU= .010
	

I= 12.0
	

NTHETA= .30

N
	

TAU
	 RHO

	
RHOT

1
10
20
30
40
50
60
70
80
90

100
110
120
130
140
1150
160
170
180
190
200
210
220
230
240
250
260
270
260
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

1.00000000E-02
1.00000000E-01
2.00000000E-01
3.00000000E-01
4.00000000E-01
5.00000000E-01
6.00000000E-01
7.00000000E-01
8.00000000E-01
9.00000000E-01
1.00000000E+00
1.10000000E+00
1.20000000E+00
1.30000000E+00
1.40000000E+00
1.50000000E+00
1.60000000E+00
1.70000000E+00
1.80000000E+00
1.90000000E+00
2.00000000E+00
2.10000000E+00
2.20000000E+00
2.30000000E+00
2.40000000E+00
2.50000000E+00
2.60000000E+00
2.70000000E+00
2.80000000E+00
2.90000000E+00
3.00000000E+00
3.10000000E+00
3.20000000E+00
3.30000000E+00
3.40000000E+00
3.50000000E+00
3.60000000E+00
3.70000000E+00
3.80000000E+00
3.90000000E+00
4.00000000E+00
4.10000000E+00
4.20000000E+00
4.30000000E+00
4.40000000E+00

9.79482068E-01
9.33308355E-01
9.03489370E-01
8.78491927E-OL
8.55734784E-01
8.34266320E-01
8.13619147E-01
7.93526577E-01
7.73821202E-01
7.54390578E- 01
7.35155168E-01
7.16056312E-01
6.97049185E-01
6.78098445E-01
6.59175420E-01
6.40256216E-01
6.21320411E-01
6.02350111E-01
5.83329264E-01
5.64243133E-OL
5.45077891E-01
5.25820286E-01
5.06457372E-01
4.86976267E-01
4.67363936E-01
4.47606988E-01
4.27691473E-01
4.076026 75E- O1
3.87324886E-01
3.66841162E-01
3.46133041E-01
3.25180215E-01
3.03960141E-01
2.82447565E-01
2.60613937E-01
2.38426674E-01
2.15848221E-01
1.92834824E-01
1.69334917E-01
1.45286929E-01
1.20616263E-01
9.52310032E-02
6.90156399E-02
4.18215542E-02
1.34519527E-02

-9.50677410E-01
-3.37379753E-01
-2.64921333E-01
-2.35457041E-01
-2.19477010E-01
-2.09618146E-01
-2.03087304E-01
-1.98577062E-01
-1.95390653E-01
-1.93122307E-01
-1.91520002E-01
-1.90419417E-01
-1. 89709340E- O 1
-1.89312306E-01
-1.89173175E-01
-1.81252100E-01
-1.89520038E- O1
-1.89955810E-01
-1.90544120E-01
-1.91274204E-01
-1.92138902E-01
-1.93134015E-01
-1.942 578 72 E- Ol
-1.95511045E-01
-1.96896191E-01
-1.98417984E-01
-2.00083141E-01
-2.01900529E-01
-2.03881360E-01
-2.06039482E-01
-2.08391785E-01
-2.10958752E-01
-2.13765192E-01
-2.16841217E-01
-2.20223552E-01
-2.23957302E-01
-2.28098377E-01
-2.32716863E-01
-2.37901814E-01
-2.43768207E-01
-2.50467328E-01
-2.58202753E-01
-2.67255892E-01
-2.78028639E-01
-2.91118574E-01

TAUA= 4.44577991E+00	 Af(1)= 1.18731443E+01 0.

DATE 03/07/68	 TIME 19.17.02.
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03/07/68 LRC SCOPE 3.0 	 66008--65K 02/16/68
19.16.44.SRD4924.
19.16.44.	 LRC COMPUTER COMPLEX
19.16.45.JO8,1,0644,40000.	 A1998,	 29
19.16.45. MARTHA ROBINSON,RDV122, 1148 2011
19.16.45.RUN(S)
19.16.49.SETINDF.
19.16.50.L60.
19.17.02.EOF ENCOUNTERED BY NAMELIST
19.17.02.EXIT
19.17.02.SPPRINT(OUTPUT,3)
19.17.03.CPU	 002.206238 SEC.
19.17.03.PPU	 011.701952 SEC.

SR04924. PRINT-PP 00806 LINES
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XVII. APPENDIX B

SOLUTION OF GOVERNING EQUATIONS FOR PHASE 1

The governing equation for Phase 1 can be written as (see eq. (109)

1 + (2p + 1)T2
(B-1)PT = - I(l - 

p ) (1 + 3P) 

The initial conditions for this phase are that p = 1 at T = 0.

The motion is terminated if either the hinge circle becomes zero or the

time, T, becomes one. The equation was solved numerically. The flow

diagram, computer program, and numerical results follow.

.

	

	 In order to avoid the singular point at p = 1, the motion of the

hinge during the first time interval (OT = 0.01) was calculated from

the bending case. This procedure is val{ A? as at T = 0 when p = 1.0.

The differential equation is exactly that obtained for the pure bending

solution.



Read
input
data

Calculate
renge
of I

Begin loop
on I

Call FALL

N =1
Calculate

(N), PT(N)

N = N + 1

Calculate
AP, P(N)

-r (N ) PI.(N)
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SR04911.	 LRC COMPUTER COMPLEX
JUB91 ► 0644940000.	 A1998.	 2 ► MARTHA ROB[NCON ► ROV1229 1148 2011

PROGFAM PLATES( (INPUT.OUTPUT)
000003	 DIMENSION CCEFS(4) ► TAU(500).RHO(500).RHOT1500) ► RESULT(2)
000003	 REAL I0.[E91NC
000003	 COMPLEX R1319TEMP(E)
000003	 NAMELIST/INPUT/DTAU.IB.IE .INC ► MAXN.IPFN
OC00O3	 PRINT 1
000007 1 FORMAT(*1LARGE DEFORMATIONAL ANALYSIS OF PLASTIC*/* PLATES UNDER 1

IMPULSIVE LOADING*/* ROBINSON-KRUSZENSK[, SRD-A1998. FEBRUARY 19699
2 ROV-122*)

000007	 CALL CAYTIM (RESULT)
000011	 PRINT 29 RESULT
OCCC17	 2 FORMAT(*OCATE*A1095X*TIME*ALO)

C INPUT CATA
*	 DTAU - TIME INCREMENT
*	 IB - INITIAL IMPULSE L0AD
*	 IE - FINAL IMPULSE LOAD
*	 INC - INCREMENT ON IMPULSE LOAD
*	 MAXN - MAXIMUM NUMBER OF ITERATIONS ON VELOCITY * TIME AND RADIUS
*	 IPFN - PRINT FREQUENCY

000017	 3 READ INPUT
CALCULATE TOTAL NUMBER OF IMPULSE LOADS AND INITIALIZE TIME

000022	 NN-ABSI(IE-IB)/INC)+1.0
000031	 TAU(!)=OTAI)
000033	 DO 14 1 =19NN
000034	 N=1
000035	 IF (I.EG.11 FI=IB
OCOC40	 IF II.GT.11 FI-FI+INC
000044	 IF (II.GT.1).AND.(MODII.2I.NE.0)l PRINT 41
000064	 41 FORMAT(*1*)
000064	 PRINT 49 OTAU.F[
OCC074	 4 FOPMAT(///* CTAU-*F5.3 9 5X*I= *F5.1//)

CALCULATE INITIAL RHO VALUE
000074	 COEFS(1)=1.0
OCCC76	 COEFS121--1.0
000077	 COEFS(3)--1.0
OCO100	 COEFS(4)=1.0-CTAU/FI
000103	 CALL FALG (COEFS.3.O.R.TEMP ► [ERR)
000107	 IF (IERR.):E.0) PRINT 5. IERR
000116	 5 FORMAT(//LOX*ERROR IN FALG SUBROUTINE*/)
000116	 00 6 M=1.3
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000120	 IF IAIMAG(R(M)1.E0.0.0) GO TO 8
000124	 6 CONTINUE
000126	 PRINT 7
000131	 7 FORMAT(//LOX*ALL ROOTS COMPLEX*/)

000131	 8 RHO(1)=REALIR(Ml)
CALCULATE INITIAL RHOT VALUE

000134	 RHOT(I)--( 1.+TAU11)**2*(1.+2.*RHO(11)1/(F(*(1: RHO(1)1*(1.+3.*
IRHO( 11) )

000154	 PRINT 9 * N9TAU(N)#RM01N)rRH0T(NI

000167	 9 FORMAT(4X*tt*rllX*TAL**I7X*RHO**17X*RHOT*//2Xf3*3(5XE15.8))

C BEGIN ITERATION ON TAU * RHO, °HOT
OCC167	 10 N-N+1
000171	 OELRHO-RH t(N-1)*DTAU
000173	 RHO(N)-RHOIN-1)+OELRHO
000175	 7AU(NI-TAU(N-1)+DTAU
000177	 RHOT(N)--I1.+TAU(N)**2*(1.+2.*RHO(N)) ) /(FI*(1.—RHO(Nl)*(1.+3.*

1RHO(N)l)

C OUTPUT
• RHO — RADIUS OF HINGE CIRCLE
* TAU — TIME OF HINGE CIRCLE
* RHOT — VELOCITY OF HINGE CIRCLE
* N — ITERATION NUMBER

000220 IF	 (MOD(N * IPFN).E0.0)	 PRINT	 11 * NrTAUfNI*RHOINIsRHOT(N)

000240 11	 FORMAT(2XI3*315XE15.8))
000240 IF (N.GT.NMAX) GO TO 12
000244 IF	 I(l.—RHO(N)).LT.0.0) GO TO	 14
000247 IF	 (N.LE.2) GO TO IC
000251 IF	 ((TAU(N-2)-1.0I.GT.0.01 GO TO 14
OCC255 GO TO 10
000255 12 PRINT 13
000261 13 FORMAT(//LOX*MAXIMUM N REACHED*//)
000261 14 CONTINUE
000264 STOP
000266 END
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PROGRAM LENGTH INCLUDING 	 1/0 BUFFERS
OC7516

FUNCTION ASSIGNMENTS

SIfTEMENT ASSIGNMENTS
1	 - 000323	 2	 - 000343
5	 - 000363	 7	 - 000370
1C	 - 000167	 11	 - 0004C5
14	 - 000261	 41	 - 000351

BLOCK NAMES AND LENGTHS

VARIAELE ASSIGNMENTS
COEFS	 - 000444	 OELRHO - 003450
1	 - 003443	 111	 - 003406
INC	 - 003410	 IPFN	 - 003441
N	 - OC3444	 NM/!X	 - 003451
RESULT - 003404	 pa0	 - 001434
TEMP	 - 003417

START CF CCNSTANTS
OCC314

START OF TEMPORARIES
000415

START OF INOIRECTS
000434

UNUSED COMPILER SPACE
OC3400

3	 - 000017	 4	 - 000353
6	 - 000131	 9	 - 000376
12	 - 000255	 13	 - 0004'10

CTAU -	 003437 F1 -	 003445
IE -	 003407 IERR -	 003446
M -	 003447 MAXN -	 003440
NN -	 003442 R -	 103411
RHOT -	 002420 TAU -	 L00450
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CCp t	 M AT	 10.41.41. NOPMAL CONTROL 000100 OMIIS 000000	 000000
---II Mf---l0NO M00(	 --LI--L2 ----- TYPE ---------------US EA---.F--- CAtt ------ — ----- F M IOAO- -L ►A IOM- -lINN cCPN--IFNGTU--
IAA LUAUI p 034454	 iNA	 IAOLES 014202
-P p 11G ► AM---- ►OOPESS- --L A6ELEC --- COMMON--
PLAtE51 0001(0
•T STFM 107616
(L i PIC 11IC56I
1AYT I M n10716
I AFLTh LIC147
$AL I• Olt 213
!ICN c13111
(Itp A 014115
AI Of P 0.4.34
(PC CIS 321
--f NI OV ----- ACCPf55- PEFEPFNCFS
PIAIESI COClOI
LAhfPY 001617 PLATESI 000102

!YSIfM CIIICC2 CLIPTC OIUSTS
INPUTN 011420 011430
PCUE0 015140

ST!TF MC C01141
3Tslf	 p 00117•.

t ilt 001671 PLATESI 000361
FAIG 013110

!ILp LG1111 PLATESI 000365

1 3 II ^C1i14 INPUTN 012207

/Pht pP I 01,1131 UUTPTC OICS16
11PU It. 011431
AUOEP 01,141

LUIPIL OIC563 PLATESI 000105 000106 000113 OOOtl1 000116 000161 008163
000166 000170 OOcltt coot TI OJON2 000216 000215
000227 000230 0001511 00025T 600261 000261 000265
000266 000326 000170 0001tt 000114 000/36 000111
000157 000360

•	 ► AYTIM 010717 PLATESI 000110

INPUTN 010150 PLATESI 000121

#AEG 01r214 PLATESI 000206

AAS►NU. O3lSN
#12! AN. c13 S15
POtF II. c1S63) ttTPTC 010611

so" u. 0136	 I
ur. o47e6s UUTPIC 010616 010615 WWI

u01. c11s3.
CPE N. 013275 SYSTEM clo2s7

OUYPIC 010603
INPUTN 011312

51U. C11401 CUTPTC 010650

cf IMA 01.11s OUIPTC 010571
INPUTN 010756

PLUEM 0141 " CUTPTC 010165 010621

[iC 015315 CAYTI4 010724 030130 OIC136

(11C4 OISf46
(K .." (1h546
---- UNSAII M U EkTtNNALS--- -- AEFt Pt NCES
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LARGE OEFCRMATICNAL ANALYSIS OF PLASTIC
PLATES UNCEP IMPULSIVE LOADING
RC8IKSCA-KRLSZE%SKI. SRD-A19989 fEeRUARY 19689 ROV-122

DATE C3/0E/68	 TIME 20.41.43.

DTAU= .CIC	 I= 2.0

N
	

TAU
	

RH 0
	

RHOT

1
10
20
30
40
SC
60
7C
80
90

100

1.00000CCOE-02
1.00000OCOE-01
2.00000OCOE-01
3.O000OCCOE-01
4.0000)OCOE-01
5.0000OCCOE-01
6.00000000E-01
7.00000CCOc-01
8.1000OOCCE-C 1
S.L0000000E-01
1.00000CCCE+00

9.4935465CE-01
E.2ES03242E-01
7.52748293E-01
6.E72165WE-01
6.24269401E-01
5.6C554158E-01
4.94198 799E-01
4.23944539E-01
3.48763533E-C1
2.675921C4E-01
1.79C12621E-01

-2.56633899E+00
-8.60407945E-01
-6.82851812E-01
-6.33697190E-01
-6.29870185E-01
-6.49277874E-01
-6.83213669E-OL
-7.27998205E-01
-7.8282586CE-31
-8.495737C9E-0 L
-9.34323791E-01

DTAb= .OLC
	

I= 4.0

N
	

TAU
	

RHO
	

R HOT

1
1C
20
30
40
5C
60
7C
80
90
100

1.COCCO000E-02
I C3000000E-01
2.00000000E-01
2000000CCOE-C1
4.00000000E-01
5.000CCCCCE-01
6.00000000E-01
7.00000CCOE-01
8.00000000E-C1
S.0000OCCCE-01
1.00000000E+00

9.64325054E-01
8.8C6C7841E-01
3.28619291E-01
7.84379886E-01
7.42234159E-01
6.S5Z^7598oE-01
6.5 bC 90 24 3E-01
6.1015748CE-01
5.61614031E-01
5.10152761E-01
4.55`_10761E-01

-1.80062C63E+00
-5.90846328E-01
-4.62953323E-01
-4.25719558E-01
-4.20060823E-01
-4.29964743E-01
-4.487544C4E-01
-4.73,356340E-01
-5.01038204E-01
-5.31739944E-01
-5.64785698E-01
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OTAU= .01C
	

I= 6.0

1
10
20
30
40
50
6C
70
80
90

lOC

TAU

1.00000000E-02
1.C00000OOE-01
2 .000OOOOOE-01
3.000CCCCOE-01
4.00000OOOE-01
5.00000000E-01
6.00000000E-C1
7.00000000E-01
8.000OOCCOE-01
9.000000OOE-01
I CCOCOCOOE+00

RHO

9.7C S20 305E-01
S.03C65367E-01
8.6 1227120E-01
8.25765008E-0 1
7.92C63572E-01
7.58248952E-01
7.23345159E-01
6.E6786771E-01
6.48237901E-01
6.C7477632E-01
5.6 4 365618E-01

RHOT

-1.46522169E+00
-4.76550575E-01
-3. 71626268E-01
-3.40734513E-01
-3.35563586E-01
-3.42970621E-01
-3.57429945E-01
-3. 76101593E-01
-3.97382427E-01
-4.20343948E-01
-4.444706C5E-01

OTAU= .01C
	

I= 8.0

1
10
20
30
40
50
6C
70
8C
90

100

TAU

1.00000000E-02
1.000OOOOOE-01
2.00000CCOE-01
3.000OOOCOE-01
4.00000CCOE-Ci
5.00OOOOCOE-01
6.00000OOOE-01
7.000OOCCOE-01
B.0000OOCOE-01
S.00000OCOE-01
1.00000000E+00

RHO

S.74E4125SE-01
9.16329031E-01
8.8 C 397 08 8 E-O 1
8.50005267E-01
8.21156 722 E-01
7.92231636E-0I
7.62390448E-01
I.211536C6E- 01
6.98236316E-01
6.63467CS6E-01
6.26-041673E-01

RHOT

-1.26637469E+00
-4.09781482E-01
-3.18725378E-01
-2.91793207E-01
-2.87118176E-01
-2.93291285E-01
-3.05500383E-01
-3.21259145E-01
-3.39145222E-01
-3.58320151E-01
-3.78288098E-01
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oTAU= .Cl(
	

1= 10.0

N
	 TAU	 RHO	 RHCT

1
10
20
30
40
50
60
70
80
90

100

1.00000OOOE-02
1.00000000E-01
2.00000CCOE-01
3.00000000E-01
4.00000000E-01
5.00G000OCE-01
6.00000000E-01
7.0000OOCOE-01
8.000000OOE-01
S.00000GOOE-01
1.00000000E+00

9.71512541E-01
9.25329065E-01
6.93369278E-01
9.66373491E-01
8.4C766777E-01
8.15101715E-01
7.88630139E-01
7.6CS27210E-01
7.31743604E-01
7.00932 761 E-01
6.6E409874E-01

-1.13113659E+00
-3.64774921E-01
-2.83240056E-01
-2.59066132E-01
-2.54792094E-01
-2.601993,97E-01
-2.70970510E-01
-2.84867606E-01
-3.OG607661E-01
-3.17422915F-01
-3.3485246ZE-01

DIAL= .Cl(
	

I= 12.0

N
	

TAU	 RHO
	

RHOT

1
10
20
30
40
50
6C
70
80
SC

100

1.000C0000E-C2
1.00000000E-01
2.00000OCOE-01
3.00000000E-01
4.000GOOOOE-01
5.00000COOE-01
6.00000000E-01
7.00000OCOE-01
8.00000000E-01
So00000000E-01
1.00000OCOE+00

9.75482068E-01
9.31946283E-01
9.C2889257E-01
8.7E3686CH-01
8.55120781E-01
8.3 1E25262E-01
8.C7800665E-01
7.82661535E-01
7.56183372E-01
7.28236227E-01
E.9E747338E-01

-1.03154632E+00
-3. 31834924E-01
-2.57352622E-01
-2.35238060E-01
-2.31285649E-01
-2.36158683E-01
-2.45907867E-01
-2.58482927E-01
-2.72705358E-01
-2.87866609E-01
- 3.03537076E-01
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DTAU= .ClC
	

I= 14.0

N
	

TAU
	

RHO
	

R HOT

1
10
20
30
40
50
60
70
80
90

lOC

1.00000OCOE-02
1.00000OOOE-01
2.00000000E-01
3.00000OCCE-01
4.00000000E-01
5.00000000E-01
6.00000000E-01
7.0000000OE-01
L'.00000CCCE-C1
9.00000000E-01
1.00000CCOE+00

9.81011420E-01
9.37C73S38E-01
9.10256151E-01
8.87641213E-01
8.662C7 554E-OL
8.44733200E-01
8.22588230E-01
7.99417352E-01
7. 75 C 14 706 E-0 L
7.49262413E-01
7.22C96001E-01

-9.54283778E-01
-3.06396242E-01
-2.37407313E-01
-2.16904737E-01
-2.13214769E-01
-2.17687642E-01
-2.26661812E-OL
-2.38234367E-01
-2.513C9793E-01
-2.65227619E-01
-2.79585154E-01

DTAU= .01C
	

1= 16.0

1
10
20
30
4C
50
60
70
80
90

100

TAU

1.00000000E-02
1.00000OCOE-C1
2.00000000E-01
3.000OOOCOE-01
4.00000000E-C1
5.00000000E-01
6.000CCCOOE-01
7.00000000E-01
Eo000OOOCOE-01
S.000GOOOOE-01
L.00000OCCE+00

RHO

9.82243330E-C1
9.41197612E-01
9.16174345E-01
8.95084436E-01
8.75101431E-01
8.55082496 E-01
8.34439220E-01
8.12E40265E-01
7.9CC94500E-01
7.66093258E-C1
7.4C 778 205 E-0 1

RHOT

-8.92092324E-01
-2.85992394E-01
-2.214382S3E-01
-2.02241395E-01
-1.98769786E-01
-2.02928337E-01
-2.11288325E-01
-2.220664S7E-01
-2.34235152E-01
-2.47173616E-01
-2.60502145E-01
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OTAU= .Cl(
	

I= 18.0

N
	

TAU	 RHO
	

RHOT

1
10
20
30
40
50
60
70
80
90

100

1.00000OCOE-02
1.00000000E-01
2.G0000000E-01
3.000OOOCOE-01
4.00000000E-01
5.00000000E-01
6.00000OOOE-01
1.00000000E-C1
8.00000000E-01
S.000GOOCOE-01
1.00000000E+00

S,63263156E-CL
9.44606869E-01
S.21063053E-01
9.01228986E-01
8.82439802E-01
E.63618262E-01
8.44210132E-01
8.22903E1SE-C1
8.02520068E-01
7. 7S S 57682 E-01
7.5E .153042E-01

-8.40637554E-01
-2.69159456E-01
-2.08282849E-01
-1.90171210E-0 L
-1 .86884511 E-01
-1.90787597E-01
-1.98645141E-01
-2.08773523E-01
-2.20201 743E-01
-2.32342675E-01
-2.44836267E-01

DIAL= .C1C
	

I= 20.0

N
	

TAU	 RHO
	

RHOT

1
10
20
30
40
50
60
70
80
9C

100

1.000CCOCOE--02
1.00000000E-OL
2.0000OOCOE-01
3.00000OCOE-01
4.00000000E-01
S.CCC00000E-OL
6.00000000E-01
7.00C000OOE-01
8.00000000E-01
9.00000000E-01
1.000CCCCOE+00

9.E4125486E-01
9.4 1486469E-01
9.25189353E-01
9.06412573E-01
8.EfE2TS66E-01
8.7C813749E-01
8.52444531E-0L
8.33225301E-01
8.12586759E-01
7.91633808E-01
7.6S116623E-01

-7.97150195E-01
-2. 54966813E-01
-1.97203850E-01
-1.80012680E-01
-1.76884950E-01
-1.80575023E-01
-1.88011519E-01
-1.97595440E-01
-2.08404C89E-01
-2.19879C69E-01
-2.31677393E-01
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0°/C6168 LRC SCOPE 3.0 	 66008--65K C2/16/68
2C.41.33.SRC4911.
20.41.33.	 LRC COMPUTER CCMPLEX
20.41.33.JOB•1.0644.40000.	 A1998•	 29
2C.41.33. MARTHA RCBINSCN,RDV122s 1148 2011
20.41.34.RUN(S)
2C.41.38.SETINOF.
20.41.35.LGC.
2C.41.45.STOP
2C.41.45.SPPRINT(OLTPUT•31
20.41.47.CFU	 000.450224 SEC.
2C.41.47.PPL	 C06.35E4OC SEC.

SRD4511. PRINT—PP OC392 LINES
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s	 XVIII. APPENDIX C

VALUES OF F(n)

The value of the function F(n) is needed to evaluate the final

deformation. Since the argument of F(n) is limited between 0 and 1,

it was expedient to generate a table for this function.
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X	 FM

0.00 0.
.01 4.02093263E-02 .51 4.96479867E+00
.02 8.08746017E-02 .52 5.24893643E+00
.03 1.22051904E-01 .53 5.55417411E+00
.04 1.63797750E-01 .54 5.88270543E+00
.05 2.06169417E-01 .55 6.23701027E+00
.06 2.49225241E-01 .56 6.61989978E+00
.07 2.93024925E-01 .57 7.03457006E+00
.08 3.37629834E-01 .58 7.48466593E+00
.09 3.83103291E-01 .59 7.97435731E+00
.10 4.29510892E-01 .60 8.50843084E+00
.11 4.76920811E-01 .61 9.09240044E+00
.12 5.25404131E-01 .62 9.73264126E+00
.13 5.75035184E-01 .63 1.04365528E+01
.14 6.25891907E-01 .64 1.12127588E+01
.15 6.78056228E-01 .65 1.20713527E+01
.16 7.31614470E-01 .66 1.30242020E+01
.17 7.86657786E-01 .67 1.40853277E+01
.18 8.43282629E-01 .68 1.52713783E+01
.19 9.01591261EI-01 .69 1.66022301E+01
.20 9.61692300E-01 .70 1.81017486E+01
.21 1.02370132E+00 .71 1.97987645E+01
.22 1.087741511:+00 .72 2.17283338E+01
.23 1.15394437E+00 .73 2.39333795E+01
.24 1.22245053E+00 .74 2.64668506E+01
.25 1.29341057E+00 .75 2.93945880E+01
.26 1.36698601E+00 .76 3.27991738E+01
.27 1.44335031E+00 .77 3.67851575E+01
.28 1.52269007E+00 .78 4.14862437E+01
.29 1.60520631E+00 .79 4.70753123E+01
.30 1.69111587E+00 .80 5.37785952E+01
.31 1.78065300E+00 .81 6.18960611E+01
.32 1.87407114E+00 .82 7.18312529E+01
.33 1.97164490E+00 .83 8.':1358234E+01
.34 2.07367220E+00 .84 9.95774710E+01
.35 2.18047681E+00 .85 1.19246106E+02
.36 2.29241109E+00 .86 1.44724337E+02
.37 2.40985908E+00 .87 1.78369766E+02
.38 2.53324005E+00 .88 2.23799110E+02
.39 2.66301240E+00 .89 2.86752518E+02
.40 2.79967822E+00 .90 3.76710856E+02
.41 2.94378828E+00 .91 5.10094046E+02
.42 3.09594788E+00 .92 7.17020114E+02
.43 3.25682332E+00 .93 1.05679676E+03
.44 3.42714951E+00 .94 1.65723304E+03
.45 3.60773845E+00 .95 2.82847838E+03
.46 3.79948909E+00 .96 5.45742996E+03
.47 4.00339864E+00 .97 1.27818794E+04
.48 4.22057561E+00 .98 4.26332497E+04
.49 4.45225484E+00 .99 3.37140837E+05
.50 4.69981495E+00
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