General Disclaimer
 One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

INFLUENCE OF LARGE DEFORMATIONS AND MIDPLANE FORCES ON THE PLASTIC BEHAVIOR OF IMMULSIVELY
 LOADED PLATES

By

Edwin T. Kruszewski

Dissertation submitted to the Graduate Faculty of the Virginia Polytechnic Institute
 in partial fulfillment for the degree of

DOCIOR OF PHIIOSOPHY
 in
 Engineering Mechanics

April 1968

INFIUENCE OF LARGE DEFORMATIONS AND MIDPIANE FORCES
 ON THE PLASTIC BEHAVIOR OF DMPULSIVELY
 LOADED PLATES

By
Edwin T. Kruszewski

Abstract

This dissertation deals with an analysis of impulsively loaded plastic plates that includes effects of large deformations and midplane forces. Specifically, it deals with a circular plate of uniform thickness simply supported at its edges. The impulsive loading is characterized by an initial velocity distribution.

The analysis assumes that the plate is an isotropic, rigid, ideally plastic material. Shear deformations and longitudinal inertia are neglected. Both bending and midiane forces are considered. The midplane forces can be either applied prior to the impulse or generated by deformations of the midplane. Deformations of the cross section are based on the assumption that a line initially normal to the midplane remains straight and normal after deformation. Strains are nonlinear with respect to transverse displacements but contain only linear radial displacement terms. Finally, the Tresca yield criteria are used.

An Interaction equation is derived between the plastic moment and normal force. The relationship indicates that the greater the midplane force the smaller the required bending moment for plastic flow. When the

midplane force reaches a maximum value, the plate no longer carries a moment.

Equilibrium equations are derived for the motion of the plate which are consistent with the von Karman plate theory. Governing equations are then developed for the three possible phases of motion. The initial Phase 1 includes a bending hinge that travels from the support to the center of the plate. Phase 2, wich is initiated when the hinge reaches the center, continues until either the motion ceases or a portion of the plate becomes a membrane. Phase 3 described the motion of the membrane hinge from its initial point of origin to its final stopping point.

These governing equations are solved for two types of bendingmoment -midplane-force interaction relaiionships. One relationship is based on displacement of the neutral surface from the midplane surface. The second is based on the magnitude of the midplane forces. Both types of plastic plate behavior are examined.

Plots of final central deformation for various applied midplane forces and impulses are presented that clearly illustrate that even small amounts of midplane forces have a significant effect on the final deformation of plastic plates. Numerical results of the large deformational analyses are also presented. Plots are given showing the influence of the magnitude of the impulse on bending hinge velocity, initiation of membrane behavior, location of the membrane hinge, and the final deformation of the plate.

A comparison is made between results of the large deformational analysis and experimental data. It shows excellent agreement. For the
small and intermediate range of impulses the agreement is within experimental scatter. For the large impulses the calculated deformations are slightly conservative. Reasons for tinis deviation are discussed. Finally a critical examination is made of the various other suggested approaches that have possible application to the behavior of plastic plates.

INFLUENCE OF LARGE DEFORMATIONS AND MIDPIANE FORCES

 ON THE PLASTIC BEHAVIOR OF DMULSIVELYLOADED PLATES
by

Edwin T. Kruszewski

Dissertation submitted to the Graduate Faculty of the Virginia Polytechnic Institute in partial fulfillment for the degree of DOCTOR OF PHILOSOPHY

 inEngineering Mechanics

APPROVED:

Dr. T. E. Leinhardt

April 1968

II. TABLE OF CONTENTS

CHAPDERR PAGE
I. TITLE 1
II. TABLE OF CONTENTS 11
III. ACKNOWLEDGMENIS iv
IV. LIST OF FIGURES AND TABLES v
V. INTRODUCTION 1
VI. REVIEW OF PERTINENT LITERATURE 5
General Considerations and Background 5
Review of Literature In Associated Areas 14
VII. SYMBOIS 16
VIII. DERIVATION OF BASIC EQUATIONS 19
Assumptions 19
Equilibrium Considerations 21
Nondimensionalization 24
Deformation Considerations 26
Plastic Flow Considerations 28
IX. DERTVATION OF GOVERNING EQUATIONS 35
Discussion of Physical Behavior 35
Analysis of Phase 1 Behavior 38
Analysis of Phase 2 Behavior 46
Analysis of Phase 3 Behavior 48
X. SOLUTIONS OF GOVERNING EQUATIONS 51
Bending of Plates Under Lateral Loads 52
Large Defle:tion of Plates 56
CHAPTER PAGE
XI. DISCUSSION OF NUMERICAL RESULTS 68
Experimental Results 68
Large Deflection Effects 70
Lateral Load Effects 82
XII. COMPARISON OF LARGE DEFORMATION THEORY TO EXPERIMENTAL
RESULTS AND OTHER METHODS OF ANALYSIS 85
Large Deformation Theory 85
Bending Theory 87
Maximum Midplane-Force Analysis 88
Membrane Theory of Frederick 89
Interaction Analysis of Jones 90
XIII. CONCLUDING REMARKS 92
XIV. REFERENCES 95
XV. VITA 98
XVI. APPENDIX A - SOLUTION OF GOVERNING EQUATIONS FOR BENDING OF PLATES UNDER UNIFORM LATERAL LOADS 99
XVII. APPENDIX B - SOLUTION OF GOVERNING EQUATIONS FORPHASE 1
XVIII. APPENDIX C - VALUES OF $F(n)$

III. ACKNOWLEDGMENHS

Abstract

The author wishes to express his appre:iation to the National Aeronautics and Space Administration for permitting him to conduct this research as part of his work assignment at Langley Research Center; and to Dr. Daniel Frederick, Professor of the Engineering Mechanics Department, Virginia Polytechnic Institute, and to Dr. Robert G. Thomson of the NASA for their helpful criticisms and suggestions. He also wishes to express his appreciation to Martha Robinson, Mathematician, Structures Research Division, Langley Research Center, for her assistance in programing of the numerical solution and the subsequent calculation of the results. Finally, the author wishes to express his gratitude to his wife and children for their patience and consideration throughout his entire doctorate program.

IV. LIST OF FIGURES AND TABLES

FIGURE PAGE

1. Damage to a 3/16-inch aluminum target by a $1 / 16$-inch- diameter projectile 2
2. Membrane mechanisms of Hudson and Frederick 7
3. Membrane deflection profiles 8
4. Bending deflection profiles 10
5. Comparison of bending thecry and experimente for aluminum plates 11
6. Plastic plate and its coordinate system 20
7. Forces on plate elements 22
(a) Forces on differential element 22
(b) Forces on finite central portion of plate 22
8. Tresca yield diagram 29
9. Distribution of stresses in cross section of plate 31
10. Three possible phases of motion of plastic plates 37
11. Experimental setup used by Florence 69
12. Motion of bending hinge for various values of impulse 74
13. Position of hinge at initiation of membrane behavior as a function of impulse 76
14. Time for hinge circle to reach center of plate as a
function of impulse 77
15. Final position of membrare hinge as a function of impulse 79
v1
FIGURE PAGE
16. Central deflection for small and intermediate impulses and comparisons with experimental data 80
17. Central deflection for large impulses and comparisons with experimental data 81
18. Influence of midplane forces on central deflection 83
19. Comparison of the large deformational theory to other methods of analyses 86
TABLE
20. Dimensions and Properties of Specimens 71
21. Experimental Results 71
22. Theoretical Results 73

V. INTRODUCTION

The problem of the impulsively loaded plastic structure is of interest to designers in several diversified areas. As early as 1951, (see ref. l) the U.S. Navy undertook a study of this problem in order to provide information to its ship designers about proper torpedo protection. The purpose of this study was to understand the response and to predict the damage done to steel plates of ships and submarines by underwater explosions. The development of high energy explosive devices that can be detonated above ground has caused the designers of buildings to become interested in the problem. Here the impulsive loads are generated by shock waves traveling through the atmc phere rather than water. Rather recently, solutions to this problem have been sought by the designers of spececraft.

The outer sheli of a spacecraft must be designed to withstand the rather harsh enviromment of space. Meteoroids are one of the more severe environmental hazards. Meteoroids are extra terrestrial particles, in orbit about the sun, hisi-h travel at velocities as high as 210,000 feet per second. Because of their extremely high velocity, even the smaller meteoroids can do a considerable amount of damage. For example, the large hole in the $3 / 16-1$ nch aluminum plate, shown in figure 1 , was made by the small 1/16-inch-diameter projectile (also shown in fig. 1) at an impact velocity of only 30,000 feet per second. At the highest meteorold velocity this small projectile could penetrate a plate over an inch and a quarter thick.

In order to alleviate this damage, spacecraft designers use a so. called "bumper" concept. This concept is based on the fact that wher a high velocity particle impacts a thin sheet of material buth the projectile and the sheet material are shattered and vaporized into a cloud of debris. The use of this exterior wall or bumper thus changes the design consideration of the main wall from a penetration problem to one dealing with the momentum exchange between this cloud of debris and the main wall.

Until recently, two basic approaches were used for the analyses of impulsive loaded plates: a pure membrane approach (refs. 1 and 2) and a pure bending approach (refs. 3 and 4). Neither gives an entirely satisfactory answer. The former results in calculated deformations that are less than those experienced by the actual plate, hence unconservative. The latter gives deformations that are much greater than actual and hence too conservative.

Recently, N. Jones (ref. 5) linked the two types of behavior. He permitted the plate to carry both maximum plastic moment and maximum plastic normal force during the first stage of deformation and full plastic normal force in the last stage. This, therefore, results in Iinal deformations that are less than those of the membrane approaches and hence should be in poorer agreement with experiment.

The purpose of this investigation is to develop a method of analysis that includes both bending and midplane forces and permits both flexural and membrane behavior of the plate. The analysis will deal specifically with a simply supported circular plate with an injtial uniform velocity.

The equilibrium equations will be those appropriate to large deflections of plates as discussed in reference 6. The yield condition used in the analysis has been used by many investigators for moment axial-force interaction (see, for example, refs. 7 and 8). This yield condition defines the moment midplane-force interaction by examining the stress distribution in the cross section. It permits koth to occur simultaneously; however, both for:es can never be maximum at the same time. Furthermore, one cannot exist if the other is at its maximum.

VI. REVIEW OF PERTINENI LITERATURE

General Considerations and Background

There exists in literature only a limited number of theoretical analyses dealing with impulsively loaded plastic plates. The majority of the work that does exist is based on the assumption that the material is an isotropic, rigid plastic material whose behavior is consistent with the Tresca yield condition. The impulsive loading is characterized in these studies by the assumption that the structure is subjected only to an initial velocity distribution.

The first analytical study of a plastic plate with such an initial condition was made by G. E. Hudson (see ref. l). In this study, the author treated a simply supported plate as a membrane, neglecting all bending loads and bending displacements. Initially, the entire plate was assumed to be plastic and traveling at a uniform velocity of V_{0}. A hinge developed at the boundary and traveled normal to it.

The assumed deformation of the membrane is shown in figure 2. The hinge, at a distance $\bar{\rho}$ from the center, separates the circular membrane into two regions: a flat circular inner region that moves with a uniform transverse velocity of V_{0}; and an outer region that is assumed to be rigid and conical in shape. Thus, plastic flow takes place only in the central or inner region. The hinge, with its associated discontinuity of slope, then travels with a uniform velocity until the inner circle is reduced to a point. Once the hinge reaches the center, it is assumed to remain there until the plate ceases to move.

An evaluation of this pure membrane approach is found in reference 2. Using an analysis similar to Hudson, Frederick compared his calculated resuits with experimental data on steel plates. Some of these results are reproduced in figure 3. In this figure experimental and theoretical deflection profiles are compared. Note that the calculated deflections are somewhat lower in value than those found experimentally. This, of course, is due in part to the assumption of a rigid outer region and the omission of all bending deformations.

Frederick also examined two other factors that could influence the theoretically calculated deformations of the impulsively loaded membrane: the inclusion in the analysis of work hardening effects and the consideration of the Von Mises yield condition in place of the Tresca condition. Neither factor, however, was found to be of great importance. As shown in figure 3, work hardening has little effect on the final deformation. In fact, it tends to reduce the calculated deflections and hence, for this analysis, causes a poorer comparison with experiment.

In direct contrast to the approaches discussed in references 1 and 2 , which considered only the membrane response of the plate, A. J. Wang (ref. 3) proposed an analysis of the deflections of a plastic plate under impulse loading that considered only the small deflection bending response of the plate. His analysis, like those of references 1 and 2, was based on the Tresca yield condition. His resulting flow rules, however, were different.

The plastic flow rules, used by Wang, were first discussed by Prager in reference 9. Hopkins and Prager (ref. 10) applied

Figure 2.- Membrane mechanisms of Hudson and Frederick.

these rules to dynamic problems, and developed a criteria for the existence and subsequent behavior of discontinuities across a hinge.

In this work the author pointed out that if both the plate displacement and velocity are continuous, the following conditions across the hinge must be maintained. For a stationary hinge circle, the slope across a hinge in the radial direction is discontinuous, as, for example, in the case of the statically loaded plate in reference 11. For a moving hinge circie, the slope in the radial direction must be continuous. The accelerations for this case, however, can be discontinuous.

Consequently, the pure bending solution presented by Wang (ref. 3) differs from the pure membrane approach in references 1 and 2 in several respects. The slope in the radial direction is continuous across the hinge. Plastic flow occurs in both the inner and outer regions of the plate. Finally, the velocity of the hinge is not uniform.

Through the use of an extensive experimental program, A. L. Florence (ref. 4) made a critical evaluation of the small deflection bending analysis. In this experimertal program, 22 aluminum and 20 steel plates were subjected to impulsive loadings. The final measured deformations of these plates were then compared to theoretical calculations based on an analysis of Wang.

Some of the results of reference 4 have been reproduced in figures 4 and 5. In figure 4 theoretical and experimental nondimensionalized deflections are plotted as a function of a nondimensional

Figure 5.- Comparison of bending theory and experiments for aluminum plates.
radial position, $\frac{r}{R}$. These results show that, when only small deflection bending loads and curvatures are considered, the theoretical results considerably overestimate the experimentally obtained deflections.

Results irifigure 4 are for one value of impulsive loading. How these comparisons are affected by changes in the magnitude of the inpulsive loading is shown in figure 5. Here both theoretical and experimental deflections at the center of the plate are plotted as a function of the magnitude of the impulse. These results show that the correlation rapidly deteriorates with increasing deflection. This is primarily due to the increased importance of membrane forces and midplane distortion. Florence concluded from these results that a full treatment of the problem requires inclusion of membrane forses.

Overestimations of calculated deflections by a bending analysis were also found by Gerald May and Kurt Gerstle (ref. 12) for the case of statically loaded plates. Here, a finite element approach was used in which elements were considered to be efther entirely elastic or plastic.

Jones (ref. 5) realizing the importance of the interaction of bending and midplane forces, attempted to link the bending and membrane behavior of plates in an analysis of impulsively loaded, simply supported plates. Similarly to the other investigators, he jivided the motion of the plate into two phases.

The first phase consisted of the initial deformations in which the hinge circle traveled from the support to the center of the plate. The analysia of thic phase assumed that the central portion could resist
both a plastic moment, \bar{M}_{p}, and a plastic midplane force, \bar{N}_{p}. The magnitude of each of the forces, however, was assumed to be large enough to cause plastic behavior by themselves. In the outer region of this Phase 1 motion, the midplane force was assuned to be the maximum plastic value while the plastic moment rangea som full maximum value at the hinge to zero at the support. Jones also assumed that the motion of the hinge was the same as that obtained by Wang for the pure bending assumption.

In Phase 2 of the motion Jones assumed that only membrane forces were acting, that is, $\bar{M}_{p}=0$. Consequently, in Jones' anaiysis, the plate always carried the maximum plastic midplane force, \bar{N}_{p}. In addition for a large portion of its motion, it also carries a plestic moment, \bar{M}_{p}.

The question of plastic midplane force and bending-moment interaction has been quite extensively examined for beams (see, for example, refs. 7, 13, and 14). (Reference 1^{4} is an excellent survey of analyses for plastic behavior; it is restricted, however, to work dore on beams.) This interaction has also been examined for statically loaded plates (see, for eximple, refs. 15, 16, and 17). The yield condition that has evolved from all these studies relates the plastic loads present at any point in a structure by the following relationship: $\frac{\bar{M}_{p}}{\bar{M}_{0}}+\left(\frac{\bar{N}_{p}}{\bar{N}_{0}}\right)^{2}=1$ where \bar{M}_{0} and \bar{N}_{0} are the maximum plastic moment and axial force. It is this yield condition that will be used herein.

Review of Literature In Associated Areas

An excellent review of all the phases of plasticity essential to development of plasticity analyses is given by Olszak, Mroz, and Perzyna in refererce 15. This summary deals not only with the fundamental basic approaches and constitutive equations but also stresses the application of the theory to various practical problem areas such as plates and shells, soil mechanics, three-dimensional problems, and axially symmetric problems. This reference also devoted a whole chapter to dynamical problems. Each section is followed by a complete bibliography.

An equally thorough survey, but limited oniy to analyses of beams under dynamic loading, is found in reference 13.

The preceding section dealt only with the state of the art pertaining to the specific problem being analyzed herein; that is, a simply supported circular plate constructed of a perfect rigid plastic material and subjected to an initial uniform velocity. There are, however, analyses dealing with other problems that need mentioning both for the sake of completeness and, in some cases, for their possible application to the large deformation aspect of the present analysis.

In references 18 and 19, Thomson studied the plastic behavior or simply supported circular plates under nonuniform transverse impulses. Only the bending behavior of the plates was considered. The plate was assumed to be impacted by an axisymmetric impulse that induced an initial velocity with a general radial Gaussian distribution.

Perzync (ref. 20) investigated the effects of a time variation of a loading on plastic deformations of a simply supported circular plate. This aralysis, like Thomson's, assumed that the material was a rigid plastic behaving in a manner consistent with the Tresca yield criteria, and considered only the bending mode of deformations. The pressure loading was taken to be uniform in both the radial and tangential directions. The magnitude of the pressure, however, varied with time. Pe:zyra found that for a given total impulse the character of the time pressure function had little effect on the final shape of the plate.

Plastic behavior of plates with other types of boundary conditions has also been investigated for the bending case. Wang and Hopkins (ref. 2l) gave results for circular plates rith built-in edges. Shapiro (ref. 22) investigated the plastic response of an annular plate. This rigid plastic plate was assumed fixed at inner radius and the outer rim was subjected to a constant velocity for a finite length of time. Finally Mroz (ref. 22) investigated the case of simply supported annular plates for two different conditions: for a uniform lateral loading with simply supported inner $r i n g$ and for a uniform shear force applied to the inner periphery whose edges are considered free.

A	nondimensional central deformation of the plate
A_{F}	value of A when plate motion stops
$\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}$	constants of integration (see eqs. (103), (115), and
	(129))
$F(n)$	function of n defined by equation (131)
I	nondimensional impulse defined in equations (16) and (17)
J_{0}	Bessel function of the first kind of order 0
$\mathrm{K}_{r}, \mathrm{~K}_{\theta}$	curvature of plate in r and θ directions, respectively
M	bending-moment resultant
M_{p}	value of M for plastic behavior
M_{ρ}	value of M at the hinge circle
M_{0}	maximum bending moment plate can sustain, $\sigma_{0} h^{2}$
M_{r}, M_{θ}	value of M in the r and θ directions
$M_{r \theta}$	twisting moment
N	midplane force
N_{p}	value of N for plastic behavior
N_{p}	value of N at the hinge circle
N_{0}	maximum midplane force plate can sustain, $2 \sigma_{0} \mathrm{~h}$
$\mathrm{N}_{\mathrm{r}}, \mathrm{N}_{\theta}$	value of N in the r and θ direction
Q_{r}, Q_{θ}	shear force in r and θ direction
R	radius of plate
V_{0}	Initial velocity of plate
W	nondimensional displacement of plate, $\frac{\mathrm{W}}{\mathrm{h}}$

function defined by equation (46)
nondimensional distance between midplane and neutral surface, $\frac{z_{0}}{h}$
half depth of plate
natural logarithm
nondimensional membrane radius
initial value of n
final value of n
loading per unit area of plate
radial coordinate
distance along midplane in radial direction
dimensional time
radial displacement of middle surface
transverse deflection of middle surface of plate
coordinate along axis of symmetry
distance between middle surface and neutral surface of the plate
angle between the neutral surface and r coordinate
strains at any point of cross section in r and θ directions, respectively
strains in midplane surface in r and θ directions, respectively
dumny variable
dummy variable
tangential coordinate

VIII. DERTVATION OF BASIC EQUATIONS

Assumptions

The purpose of the present work is to develop an analytical method for the prediction of the plastic behavior of impulsively loaded plates that will combine both membrane forces and bending. To do this the analysis must contain large deflection effects and permit midplane distortions along with bending distortionc.

The plate that is to be analyzed and the coordinate system that is to be used is shown in figure 6. The plate is circular, has a radius R, a thickness $2 h$, and is simply supported at its edges. The imposed initial conditions are that the displacement, $w(r, 0)$, is zero and the initial velocity, $W_{t}(r, 0)$, is a constant, V_{O}.

The analytical method will be based on the following assumptions. The plate is assumed to be an isotropic, rigid, ideally plastic material. Consequently, both elastic and work hardening effects will not be included in the analysis. Although midplane forces and distortions are permitted, inertia effects in the radial direction are omitted. Shear deformations and rotary inertia effects are also neglected. The equilibrium and resulting governing equations used in this analysis will be consistent with those of the von Karman plaie theory. This theory, as discussed in reference 24, neglects third and higher order terms of the dependent variable so that

```
sin \beta}\approx
```


$\begin{array}{cc}\text { Boundary conditions } & \text { I_itial conditions } \\ w(R, t)=0 & w(r, 0)=0 \\ M_{r}(R, t)=0 & w_{t}(r, 0)=V_{0} \\ u(R, t)=0 & \end{array}$
Figure 6.- Plastic plate and its coordinate system.
and

```
cos \beta}\approx1-\frac{1}{2}\mp@subsup{\beta}{}{2
```

The followins sections will discuss some of the basic governing equations for such behavior.

Eguilibrium Considerations

The forces acting on the plate and on a typical element are shown in figure 7. These forces consist of bending moments \bar{M}_{T} and \bar{M}_{θ}, midplane forces \bar{N}_{r} and \bar{N}_{θ}, a shear force \bar{Q}_{T}, and a uniformly distributed loading \bar{p}. In the case of the loading symbols, all symbols with bars above will denote dimensional forces, while the force symbols Without the bars will represent nondimensional forces. All forces are shown in figure 7 in their positive direction and all are specified per unit length of line element in the middle surface of the plate. Due to the cylindrical symmetry of loading, the shear stresses $\tau_{r \theta}$ and $\tau_{z \theta}$ vanish. Consequently the shear forces \bar{Q}_{θ} and the torque $\bar{M}_{\theta r}$ also vanish. With the assumption that the plate thickness (2h) is much smaller than the radius R, the influence of stresses σ_{z} and $\tau_{r z}$ is small and hence negligible.

From figure $7(a)$ the summation of forces in the midplane direction results in

$$
\begin{equation*}
\frac{\partial}{\partial r}\left(\bar{N}_{r}\right)-\bar{N}_{\theta}=0 \tag{1}
\end{equation*}
$$

(a) Forces on differential element.

(b) Forces on finite central portion of plate.

Figure 7.- Forces on plate elements.

From figure 7(b) the summation of forces in the transverse direction gives an expression for the transverse shear, \bar{Q}_{Q},

$$
\begin{equation*}
\bar{Q}_{r}=-\bar{N}_{r} \frac{\partial w}{\partial r}-\frac{1}{r} \int_{0}^{r}\left(\bar{p}-\mu w_{t t}\right) \zeta d \zeta \tag{2}
\end{equation*}
$$

where the term $\mu W_{t t}$ represents the inertial loadirg due to transverse motion, and μ is the mass of the plate per unit area. The problem discussed herein deals only with the impulsive loading that results in an initial velocity of the plastic plate. The loading term, \bar{p}, therefore, is zero and will not be inclundi in the remainder of the analyses.

The summation of moments in figure $7(a)$ results in the equation

$$
\begin{equation*}
\bar{M}_{r}+r \frac{\partial \bar{M}_{r}}{\partial r}-\bar{M}_{\theta}=r \bar{Q}_{r} \tag{3}
\end{equation*}
$$

Eliminating the shear force $\bar{Q}_{\mathbf{r}}$ from equation (3) (see eq. (2)) results in the equilibrium equation

$$
\begin{equation*}
\frac{\partial}{\partial r}\left(r \bar{M}_{r}\right)-\bar{M}_{\theta}=-r N_{r} \frac{\partial w}{\partial r}+\int_{0}^{r} \mu w t t \zeta d \zeta \tag{4}
\end{equation*}
$$

Equations (1) and (4), therefore, represent the equilibrium equations for the plastic plate with midplane forces. These equations, of course, are identical to the vo. Karman plate equations obtained by corsidering large deflections of circular plates (see, for example, ref. 6).

Nondimensionalization

In order to simplify the derivations and to obtain the natural parameters of the mechanism involved, the remaining analyses will be written in nondimensional terms. The following nondimensional parameters are therefore defined.

The moment is normalized with respect to \bar{N}_{0} where

$$
\begin{equation*}
\bar{M}_{0}=h^{2} \sigma_{0} \tag{5}
\end{equation*}
$$

and σ_{0} is the critical yield stress. More will be said about this stress in the section on Plastic Flow Considerations. \bar{M}_{o} represents the maximum bending moment the plate can possibly carry. Consequently, the absolute value of the nondimensionalized bending moment

$$
\begin{equation*}
M=\frac{\bar{M}}{M_{0}} \tag{6}
\end{equation*}
$$

can never be greater than unity. Similarly the nondimensionalized normal force is

$$
\begin{equation*}
N=\frac{\bar{N}}{N_{\mathrm{O}}} \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{N}_{\mathrm{O}}=2 h \sigma_{0} \tag{8}
\end{equation*}
$$

\bar{N}_{0} is the maximum normal force possible and, similarly to $M,|N|$ can never exceed unity. The nondimensional form of the shear force, Q_{r}, is

$$
\begin{equation*}
Q_{r}=\frac{R \bar{Q}_{r}}{h \bar{N}_{O}} \tag{9}
\end{equation*}
$$

The nondimensionalized radial coordinate, ξ, displacement, W, and time, τ, are defined as follows

$$
\begin{align*}
& \xi=\frac{r}{R} \tag{10}\\
& W=\frac{W}{h} \tag{11}
\end{align*}
$$

and

$$
\begin{equation*}
\tau=\frac{V_{0} t}{2 h} \tag{12}
\end{equation*}
$$

Equilibrium equations (1), (2), and (4) can now be written in nordimensional form as

$$
\begin{gather*}
\frac{\partial}{\partial \xi}\left(\xi N_{r}\right)-N_{\theta}=0 \tag{13}\\
Q_{r}=-N_{r} \frac{\partial W}{\partial \xi}+\frac{3 I}{\xi} \int_{0}^{\xi} W_{T T} \psi d \psi \tag{14}
\end{gather*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial \xi}\left(\xi M_{r}\right)-M_{\theta}=-2 \xi N_{r} \frac{\partial W}{\partial \xi}+6 I \int_{0}^{\xi} W_{T T} \psi d \psi \tag{15}
\end{equation*}
$$

where I is a nondimensiviaiized momentum defired as

$$
\begin{equation*}
I=\frac{\mu V_{0}^{2} R^{2}}{12 h^{2} N_{0}} \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
I=\frac{\mu V_{0}^{2} R^{2}}{24 h^{3} \sigma_{0}} \tag{17}
\end{equation*}
$$

Deformation Considerations

Consistent with all of the previously mentioned analyses on the plastic behavior of plates, the deformations of the cross section will be based on the assumption that a line initially normal to the midplane remains straight and normal after deformation. Consequently the strain at any point in the cross section of the plate can be written as:

For the radial direction

$$
\begin{equation*}
\bar{\epsilon}_{r}=\epsilon_{r}+\mathrm{zK}_{r} \tag{18}
\end{equation*}
$$

For the tangential or θ direction

$$
\begin{equation*}
\bar{\epsilon}_{\theta}=\epsilon_{\theta}+z K_{\theta} \tag{19}
\end{equation*}
$$

where z is the distance from the midplane. The strains, ϵ_{r} and ϵ_{θ}, are the midplane strains and K_{r} and K_{θ} are the respective curvatures. The curvatures are defined as

$$
\begin{equation*}
K_{r}=-\frac{\partial^{2}{ }_{w}}{\partial r^{2}} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{\theta}=-\frac{1}{r} \frac{\partial w}{\partial r} \tag{21}
\end{equation*}
$$

While the midplane strains are given by

$$
\begin{equation*}
\epsilon_{r}=\frac{\partial u}{\partial r}+\frac{1}{2}\left(\frac{\partial w}{\partial r}\right)^{2} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\epsilon_{\theta}=\frac{u}{r} \tag{23}
\end{equation*}
$$

where u is the displacement of the midplane in the r direction (u is considered positive when the displacements are in the positive r direction). If only small displacements are to be considered, the second term in equation (22) can be neglected. Note that the strains are written from a Lagrangian viewpoint and no nonlinearities due to radial displacements are considered.

Plastic Flow Considerations

Plastic behavior of the plate will be governed by the Tresca yield riteria. This criteria states that plastic yielding will begin when the maximum shear stress reaches a certain critical value, that is

$$
\begin{equation*}
\tau_{\max }=\frac{\sigma_{I}-\sigma_{I I I}}{2}=\frac{\sigma_{0}}{2} \tag{24}
\end{equation*}
$$

where σ_{I} and $\sigma_{\text {III }}$ are, respectively, the maximum and minimum principal stresses and σ_{o} the critical yield stress of the material. With the assumption that the transverse normal stress is negligible ($\sigma_{\mathrm{z}}=0$), the Tresca condition can be graphically represented as shown in figure 8 in terms of σ_{r} and σ_{θ}.

Any combination of σ_{r} and σ_{θ} that falls on this boundary will initiate plastic flow. Any subsequent plastic flow will occur tangent to the surface of the yield diagram. For example, if σ_{r} and σ_{θ} fall on the line $A B$ (see fig. 8), plastic flow will occur perpendicular to $A B$ in a manner that the radial strain rate, $\dot{\bar{\epsilon}}_{r}$, is zero. For stress combinations along $A F, \dot{\bar{\epsilon}}_{\theta}$ will be zero. At the vertices of the diagrams the specific direction of plastic flow is not defined; both stresses, however, are defined. Thus, for all points on this diagram two conditions are specified: either both stresses or a direction of strain rate and a relationship between the stresses.

For pure bending of a plate the moment along a plastic flow line is unique and equal to $h^{2} \sigma_{0}$. Similarly when only midplane forces are considered the plastic membrane force is unique and equal to $2 h \sigma_{0}$.

Figura 8.- Tresca yield diagram.

However, when both midplane forces and bending are permitted, then there are no unique values of \bar{M} or \bar{N} at the initiation of plastic flow.

A typical cross section for this case is shown in figure 9. Notice that the development of a midplane force causes the plastic stress distribution to create a neutral surface at some distance z_{0} from the midplane. The plastic moment and membrane force are then given by

$$
\begin{equation*}
\bar{M}_{p}=\left(h^{2}-z_{o}^{2}\right) \sigma_{o} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{N}_{p}=-2 z_{0} \sigma_{0} \tag{26}
\end{equation*}
$$

Notice that the plastic moment and membrane forces are coupled through z_{0}.

This coupling indicates that, while there is no unique value of the plastic midplane force, \bar{N}_{p} or moment \bar{M}_{p}, there is an interaction of the two. Elimination of z_{0} from equations (25, and (26) gives the form of this interaction

$$
\begin{equation*}
\frac{\bar{M}_{p}}{M_{0}}+\left(\frac{\bar{N}_{p}}{N_{0}}\right)^{2}=1 \tag{27}
\end{equation*}
$$

In nondimensional form equations (25), (26), and (27) can be written as

Figure 9.- Distribution of stresses in cross section of plate.

$$
\begin{gather*}
32 \\
M_{p}=1-z^{2} \tag{28}
\end{gather*}
$$

$$
N_{p}=-z
$$

and

$$
\begin{equation*}
M_{p}+N_{p}^{2}=1 \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
z=\frac{z_{o}}{h} \tag{31}
\end{equation*}
$$

The interaction equation (eq. (27) or eq. (30)) gives a relationship between the plastic moment M_{p} and the plastic normal force N_{p}. As long as \bar{N}_{p} is less then $\bar{N}_{0}\left(N_{p}<1\right)$ a plastic moment exists. However, as soon as the plastic normal force becomes $\bar{N}_{o}\left(N_{p}=1\right)$ then \bar{M}_{p} becomes zero and the section no longer carries moment. These interaction relationships are especially useful if the value of the lateral load is prescribed, as in an analyses involving the bending behavior of a plastic plate with applied lateral loads.

When the deformations of the plate become large, lateral loads are generated by the stretching, $u(r, t)$, of the midplane.

With the condition that at the support $u(R, t)$ is zero, an integral expression for u can be written

$$
\begin{equation*}
u=\int_{r}^{R} d u=\int_{r}^{R}(d s-d r) \tag{32}
\end{equation*}
$$

where s is the distance measured along the midplane. From the above sketch it can be seen that

$$
\begin{equation*}
d s^{2}=d w^{2}+d r^{2} \tag{33}
\end{equation*}
$$

Substitution of equation (33) in equation (32) results in

$$
\begin{equation*}
u=\int_{r}^{R}\left(\sqrt{1+\left(\frac{\partial W}{\partial r}\right)^{2}}-1\right) d r \tag{34}
\end{equation*}
$$

which, for the case where $\frac{\partial w}{\partial r}<1$, can be approximated by

$$
\begin{equation*}
u=\int_{r}^{R} \frac{1}{2}\left(\frac{\partial w}{\partial r}\right)^{2} d r \tag{35}
\end{equation*}
$$

The separation of the neutral and midplane surfaces creates a coupling between slope and midplane distortion, u. This coupling is achieved through the previously mentioned assumption of straight normals. That is, a line perpendicular to the neutral surface before deformation will remain straight and normal after deformation. Consequently, in the radial direction the midplane distortion, u, is related to the radial slope by the equation

$$
\begin{equation*}
u=z_{0} \frac{\partial w}{\partial r} \tag{36}
\end{equation*}
$$

With equations (35) and (36) z_{0} can be expressed in terms of the slope as

$$
\begin{equation*}
z_{0}=\frac{\int_{r}^{R} \frac{1}{2}\left(\frac{\partial w}{\partial r}\right)^{2} d r}{\frac{\partial w}{\partial r}} \tag{37}
\end{equation*}
$$

or in nondimensional terms

$$
\begin{equation*}
z=\frac{\frac{1}{2} \int_{\xi}^{1}\left(\frac{\partial W}{\partial \zeta}\right)^{2} d \zeta}{\frac{\partial W}{\partial \xi}} \tag{38}
\end{equation*}
$$

The magnitude of Z depends on the shape of the dispiacement. From equation (29) and the knowledge that $\left|N_{p}\right|<1,|Z|$ must also be less than l. Consequently, those portions of the plate where the absolute value of Z is greater than unity must be acting as a membrane (that is, they carry no moment) and there is no valid unique relationship between slope and dispiacement.

IX. DERIVATION OF GOVERNING ERUATIONS

Discusition of Physical Behavior

The following section is a description of the physical behavior of a plate as it reacts to the initial impulse. It should not in any way be construed as a statement of assumptions. On the contrary, the mechanisms and behavior described all result from the basic assumptions and considerations discussed in the previous chapter. These wll become evident as the analysis in the following sections proceeds.

The purpose of this approach is twofold: First, it will give the reader a clearer understanding of the motivation and significance of the analytical work that follows. Second, it will permit the author to define and classify certain regions and behaviors before proving their existence.

Just after the initial moment of impact, the plate is separated into two plastic regions by a hinge circle, as shown in figure 10. The hinge, which originates at the support, travels at a velocity ρ_{T} until it reaches the center. The central portion of this plate ($0<r<\rho R$) travels at a uniform transverse veiocity equal to the initial velocity, V_{0}. Such motion has been observed experimentally (see ref. 26). The stress conditions are such that $\sigma_{r}=\sigma_{\theta}=\sigma_{0}$. At any time, t, the displacement w in ine central region is $V_{0} t$. In nondimensional terms the central displacement is

$$
\begin{equation*}
W(0, T)=A(T)=2 T \quad 0<\xi<\rho \tag{39}
\end{equation*}
$$

Thus the nondimensional velocity in the central region is

$$
\begin{equation*}
W_{\tau}(0, \tau)=A_{T}(\tau)=2 \quad 0<\xi<\rho \tag{40}
\end{equation*}
$$

In the outer region $(\rho<\xi<1)$ onl, the tangential stress, σ_{θ}, is plastic. The velocities are inear with

$$
\begin{equation*}
W_{T}(\rho, \tau)=2 \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{T}(1, T)=0 \tag{42}
\end{equation*}
$$

This phase of the motion will be referred to as Phase 1 . Note that the displacement of any point on the plate during this phase depends only on the function $\rho(T)$. Thus the parameter ρ could be thought of as a time parameter.

Once the hinge circle reaches the center of the plate, Phase 2 of the motion begins (see fig. 10). This phase of motion is similar to that occurring in the outer region for Phase 1. The stress, σ_{θ}, is plastic and the velocity distribution linear.

If during either Phase 1 or Phase 2 the motion and loading of the plate is such that midplane force N becomes 1 , the behavior of the plate is changed.

A ininge circle, which will be referred to as a membrane hinge, forms at this point $(\xi=n)($ see fig. 10). This hinge divides the plate into two regions. The outer region, $n<\xi<1$, carries both midplane forces and moments and behaves as before. The inner portion

Phase 2

$0<\xi<n$ behaves like a membrane. It carries no bending and transmits only a constant tensile load. This membrane hinge then travels at a velocity, n_{T}, toward the support. This phase of the motion will be referred to as Phase 3.

Analysis of Phase 1 Behavior

This phase of the plate behavior is typical of the initial phase of motion used by all of the previously mentioned investigators of ideaily plastic, circular plate behavior (see, for example, refs. 10 and 11). Because of the rotational symmetry of the loading the maximum stress in a circular plate must occur at the center. Thus the plate cannot reach the flow limit without becoming plastic at the center. Due to rotational symmetry the radial and tangential stresses must be equal, thus $\sigma_{r}=\sigma_{\theta}=\sigma_{0}$. Therefore, the material at this point is in regime A of the sca yield hexagon (see fig. 8). At the simply supported boundary, the radial moment must vanish so that $\sigma_{r}=0$. This portion of the plate must be in regime $A B$ of the Tresca yicld hexagon.

Consequently, the plate is assumed divided into two regions: a central portion in which the material is in regime A, and an outer region where the material is in regime $A B$. These two regions are separated at $\xi=\rho$ by a plastic hinge.

The inner portion of the plate $(s \leq \rho$) forms a circular plate with midplane forces at its outer edge ($\zeta=\rho$). The magnitude of these radial midplane forces, \mathbb{H}_{r}, is aken to be N_{ρ}. Because of the symmetrical
loading condition imposed on the plate, the stresses at the center must be such that $N_{r}=N_{\theta}$. A solution thet satisfies these boundary conditions and the equilibrium equation (eq. (13)) is that the stresses are such that $N_{r}=N_{\theta}$ for all interior points. Therefore, ${ }_{N}{ }_{r}$ is not a function of position and

$$
\begin{equation*}
N_{r}=N_{\theta}=N_{\rho} \quad 0<\xi<\rho \tag{43}
\end{equation*}
$$

for all points in the inner region. Since the midplane force, N_{ρ}, can be a function only of time, the plastic moments must also be a function only of time (see eq. (30) so that

$$
\begin{equation*}
M_{r}=M_{\theta}=M_{\rho} \quad 0<\xi<\rho \tag{44}
\end{equation*}
$$

With equations (43) and (44) the equilibrium equation (eq. (4)) reduces to

$$
\begin{equation*}
6 I \int_{0}^{\xi} W_{T \tau} \zeta d \zeta=2 \xi N_{\rho} \frac{\partial W}{\partial \xi} \quad 0<\xi<\rho \tag{45}
\end{equation*}
$$

In order to solve this governing equation a separation of variables technique will be used in which

$$
\begin{equation*}
W(\xi, \tau)=A(\tau) \bar{W}(\xi) \tag{46}
\end{equation*}
$$

Substitution of equation (46) into the integral differential equation (eq. (45)) results, after some simplification, in

$$
\frac{\xi 0}{\xi \frac{\partial \bar{W}}{\partial \xi}} \frac{3 I \frac{\partial^{2} A}{\partial \tau^{2}}}{\int_{1}^{\xi} \bar{W} \zeta d \zeta}=\frac{N_{\rho} A}{}
$$

Since the left side of equation (47) is a function of ξ and the right side a function of T, both must be ejual to some constant, λ,

$$
\begin{equation*}
\frac{\xi \frac{\partial \bar{W}}{\partial \xi}}{\int_{0}^{\xi} \bar{W} \zeta d \zeta}=-\frac{3 I \frac{\partial^{2} A}{\partial_{T}{ }^{2}}}{M_{0} A}=-\lambda^{2} \tag{48}
\end{equation*}
$$

Hence the governing equation for $\overline{\mathrm{W}}$ is

$$
\begin{equation*}
\xi \frac{\partial \bar{W}}{\partial \xi}+\lambda^{2} \int_{0}^{\xi} \bar{W} \zeta \mathrm{~d} \zeta=0 \tag{49}
\end{equation*}
$$

Differentiating equation (49) gives

$$
\begin{equation*}
\xi \frac{d^{c} \bar{W}}{d \xi^{2}}+\frac{d \bar{W}}{d \xi}+\lambda^{2} \bar{W} \xi=0 \tag{50}
\end{equation*}
$$

Solution of equation (50) results in

$$
\begin{equation*}
\bar{W}=J_{0}\left(\lambda_{\xi}\right) \tag{51}
\end{equation*}
$$

The deflection in this ianer region can now br written as

$$
\begin{equation*}
W(\xi \tau)=A_{J} J_{0}\left(\lambda_{\xi}\right) \quad 0<\rho<\xi \tag{52}
\end{equation*}
$$

The initial condition of the problem states that the velocity everywhere is equal to 2 so that

$$
\begin{equation*}
W_{T}(\xi, 0)=A_{T} J_{0}\left(\lambda_{\xi}\right)=2 \tag{53}
\end{equation*}
$$

Thus λ must be zero and the velocity in the inner region is

$$
\begin{equation*}
W_{T}=2 \quad 0<\xi<\rho \tag{54}
\end{equation*}
$$

so that

$$
\begin{array}{ll}
W_{T T}=0 & 0<\xi<\rho \\
W=2 T & 0<\xi<\rho \tag{56}
\end{array}
$$

In the outer region ($\rho<\xi<1$) the following conditions apply. At the hinge, $\xi=\rho$, the stresses are continuous, so that $\sigma_{r}=\sigma_{\theta}=\sigma_{0}$. At the support, $\xi=1, \sigma_{r}=0$. This portion of the plate, therefore, is in regime $A B$ of the Tresca yield criteria. In this regime the plastic flow is such that the strain rate in the radial direction $\dot{\bar{\epsilon}}_{\mathrm{r}}$, is zero for all points in the cross section (see eq. (18)) so that

$$
\begin{equation*}
\dot{\bar{\epsilon}}_{r}=\dot{\epsilon}_{r}+\mathrm{z} \dot{\mathrm{~K}}_{r}=0 \tag{57}
\end{equation*}
$$

Since this equation must hold for all values of z

$$
\begin{equation*}
\dot{\epsilon}_{\mathbf{r}}=\dot{\mathrm{K}}_{\mathrm{r}}=0 \tag{58}
\end{equation*}
$$

This condition coupled with equation (20) gives

$$
\begin{equation*}
\frac{\partial^{3} W}{\partial \xi^{2} \partial_{T}}=0 \tag{59}
\end{equation*}
$$

As the velocity is continuous across the hinge

$$
\begin{equation*}
W_{\tau}(\rho, \tau)=2 \tag{60}
\end{equation*}
$$

While at the support $\xi=1$

$$
\begin{equation*}
W_{T}(1, \tau)=0 \tag{61}
\end{equation*}
$$

The solution of equation (59) consistent with boundary conditions, equations (60) and (61), gives

$$
\begin{equation*}
W_{T}=2\left(\frac{1-\xi}{1-\rho}\right) \quad \rho<\xi<1 \tag{62}
\end{equation*}
$$

Equation (62) represents the velocity distribution of the plate in the outer region. Since ρ is a function of T the acceleration of the plate in this region is

$$
\begin{equation*}
W_{\tau \tau}=2 \frac{(1-\xi)}{(1-\rho)^{2}} \rho_{T} \quad \rho<\xi<1 \tag{63}
\end{equation*}
$$

where ρ_{τ} is the velocity of the hinge circle.
A relationship for ρ_{T} can be obtained through the use of the equilibrium expressions.

Integraition of the midplane-force equilibrium equation (eq. (13)) with the boundary condition that $N_{r}=N_{\theta}=N_{\rho}$ at the hinge (see eq. (43)) gives

$$
\begin{equation*}
\xi \mathbb{N}_{r}=\int_{\rho}^{\xi} N_{\theta} d \zeta+\rho N_{\rho} \tag{64}
\end{equation*}
$$

Integration of the moment equation (eq. (15)) with the boundary conditions for moment at the hinge, $M_{T}=M_{\theta}=M_{\rho}$, (see eq. (44)) gives

$$
\xi M_{r}=\rho M_{\rho}+\int_{\rho}^{\xi} M_{\theta} d \zeta-2 \int_{\rho}^{\xi} \zeta N_{r} \frac{\partial W}{\sigma \zeta} d \zeta+6 I \int_{\rho}^{\xi}\left[\int_{0}^{\psi} W_{T \tau} \zeta d \zeta\right] d \psi
$$

The third term on the right side of equation (65) can be rewritten through the use of integration by parts as fullows

$$
\begin{equation*}
\int \xi \mathbb{N}_{r} \frac{\partial W}{\partial \xi} d \xi=\xi W N_{r}-\int W \frac{\partial\left(\xi N_{r}\right)}{\partial \xi} d \xi \tag{66}
\end{equation*}
$$

This integral can now be written in terms of N_{ρ} and N_{θ} through the use of equations (13) and (64)

$$
\begin{equation*}
\int \xi N_{r} \frac{\partial W}{\partial \xi} d \xi=\rho W N_{\rho}+W \int_{\rho}^{\xi} N_{\theta} d \zeta-\int W N_{\theta} d \xi \tag{67}
\end{equation*}
$$

Substitution of equation (67) in equation (65) gives

$$
\begin{align*}
\xi M_{T}= & \rho M_{\rho}+\int_{\rho}^{\xi} M_{\theta} d \zeta-2 \rho W N_{\rho}+2 \rho W(\rho) N_{\rho}-2 W \int_{\rho}^{\xi} N_{\theta} d \zeta \\
& +2 \int_{\rho}^{\xi} W N_{\theta} d \zeta+6 I \int_{\rho}^{\xi}\left[\int_{0}^{\psi} W_{T T} \zeta d \zeta\right] d \psi \tag{68}
\end{align*}
$$

Equation (68) gives the value of the radial moment at any point ξ. The governing equation for ρ_{τ} is obtained by evaluation of equation (68) at the support $\xi=1$.

At the support

$$
\begin{equation*}
W(1, T)=0 \tag{69}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{r}(1, T)=0 \tag{70}
\end{equation*}
$$

Thus

$$
\rho M_{\rho}+2 \rho W(\rho) N_{\rho}+\int_{\rho}^{1} M_{\theta} d \xi+2 \int_{\rho}^{1} W N_{\theta} d \xi=-6 I \int_{\rho}^{1}\left[\int_{0}^{\psi} W_{T T} \zeta d \zeta\right] d \psi
$$

Thrrugh the use of equations (55) and (63) the inertia term of equation (71) can be evaluated

$$
\begin{equation*}
\int_{\rho}^{1}\left[\int_{0}^{\psi} W_{T \tau} \zeta d \zeta\right] d \psi=\frac{1}{6} \rho_{\tau}(1-\rho)(1+3 \rho) \tag{72}
\end{equation*}
$$

Substitution of equation (72) into equation (71) gives

$$
I(1-\rho)(1+3 \rho) \rho_{\tau}=-\rho M_{\rho}-2 \rho W(\rho) N_{\rho}-\int_{\rho}^{1} M_{\theta} d \xi-2 \int_{\rho}^{1} W N_{\theta} d \xi
$$

From the interaction equation between plastic normal forces and plastic moments (eq. (30)) and the expression for $W(\rho)$ from equation (56) $(W(\rho)=2 T)$, equation (73) becomes

$$
I(1-\rho)(1+3 \rho) \rho_{\tau}=-1-4 \rho N_{\rho} \tau+\rho N_{\rho}^{2}+\int_{\rho}^{1} N_{\theta}^{2} d \xi-2 \int_{\rho}^{1} W N_{\theta} d \xi
$$

Equation (74) can also be written in terms of the displacement of the neutral surface with the use of equation (29)

$$
I(1-\rho)(1+3 \rho) \rho_{\tau}=-1+4 \rho Z \tau+\rho Z_{\rho}^{2}+\int_{\rho}^{1} z^{2} d_{\xi}+2 \int_{\rho}^{1} W Z d \xi
$$

Equations (74) and (75) are the governing equations for the hinge circle in the Fhase 1 motion. The equations are dependent on the shape of the displacements and the values of the midplane forces. If only bending is considered, that is $N_{\theta}=0$ or $Z=0$, the equation reduces to that obtained by Wang in his bending solution for impulsively loaded plates (see ref. 3).

Analysis of Phase 2 Behavior

Phase 1 motion will continue until one of two conditions occurs. Either the hinge circle reaches the center of the plate or a portion of the plate becomes a membrane (that is, the plastic moment vanishes). The former case will be considered in this section.

Let τ_{1} be the time it takes the hinge circle in Phase 1 to reach the center of the plate. Then the displacement and velocity at that time will be (see eqs. (54) and (56))

$$
\begin{equation*}
W\left(0, \tau_{1}\right)=2 \tau_{1} \tag{76}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{T}\left(0, T_{1}\right)=2 \tag{77}
\end{equation*}
$$

Hence these conditions form the initial conditions for-the Phase 2 motion.

The radial stresses in this phase range from σ_{0} at the center to zero at the support. Hence the material behaves in a manner simizar to that in the outer region of the Phase 1 motion. The radial strain rates are zero and the velocity varies linearly from A_{T} at the center to zero at the support. Thus

$$
\begin{equation*}
W_{T}=A_{T}(1-\xi) \tag{78}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{T T}=A_{T T}(1-\xi) \tag{79}
\end{equation*}
$$

where A represents the deflection at the center of the plate.

The governing equations for this phase are identical to equation (71) in Phase 1 with ρ set equal to zero.

$$
\begin{equation*}
6 I \int_{0}^{1}\left[\int_{0}^{\psi} W_{\tau \tau} \zeta d \zeta\right] d \psi=-\int_{0}^{1} M_{\theta} d \xi-2 \int_{0}^{1} W N_{\theta} d \xi \tag{80}
\end{equation*}
$$

The inertia term for this phase beccmes (see eq. (79)

$$
\begin{equation*}
6 I \int_{0}^{1}\left[\int_{0}^{\psi} W_{\tau \tau} \zeta \mathrm{d} \zeta\right] d \psi=\frac{1}{2} I A_{\tau \tau} \tag{81}
\end{equation*}
$$

Substituting equation (81) into equation (80) gives

$$
\begin{equation*}
\frac{1}{2} I A_{T T}=-\int_{0}^{1} M_{\theta} d \xi-2 \int_{0}^{1} W N_{\theta} d \xi \tag{82}
\end{equation*}
$$

which in terms of N_{θ} is

$$
\begin{equation*}
\frac{1}{2} I A_{T T}=-1+\int_{0}^{1} N_{\theta}^{2} d \xi-2 \int_{0}^{1} W N_{\theta} d \xi \tag{83}
\end{equation*}
$$

and in terms of z is

$$
\begin{equation*}
\frac{1}{2} I A_{T T}=-1+\int_{0}^{1} z^{2} d \xi+2 \int_{0}^{1} W Z d \xi \tag{84}
\end{equation*}
$$

Equations (83) and (84), as in Phase l, reduce to the pure hending case for $N_{\theta}=Z=0$. These governing equations apply until either the motion of the plate stops or a portion of the plate becomes a membrane.

Equations (74) and (.3) (or eqs. (75) and (84)) are sufficient to define the motion of plates where the applied impulse, I, is small. When the impulse becomes large enough to cause a portion of the plate to be a membrane, an additional phase of motion must be considered.

Analysis of Phase 3 Behavior

As the deformations increase the midplane forces also increase. If the initial impulse, I, is large enough, the midplane forces in the central portion of the plate will become equal to one. Thus the bending moment vanishes and this portion of the plate behaves as a membrane.

Let the time at which a portion of the plate becomes a membrane be T_{2}. As time increases, the size oiv the membrane region also increases. The rlate is thus separated into two regions: one in which there is no moment and a second in which there is an interaction of moment and midplane force.

In the inner region, $0<\xi<r$., $M_{\theta}=0$ and $N_{\theta}=1$. In addition, $N_{r}=N_{\theta}$ at the center. These conditions along with equilibrium equation (eq. (13)) result in

$$
\begin{equation*}
N_{r}=N_{\theta}=1 \quad 0<\xi<n \tag{85}
\end{equation*}
$$

for the entire inner region. Consequently, this region is in regime A of the Tresca yield diagram. The point of separation of the membrane portion of the plate, $\xi=n$, can then be thought of as a membrane hinge.

The moment equilibrium equation (eq. (15)) reduces at $\xi=n$ to

$$
\begin{equation*}
\left.n \frac{\partial W}{\partial \xi}\right|_{n}=3 I \int_{0}^{n} W_{T \tau} \xi d \xi \tag{86}
\end{equation*}
$$

where the slope $\left.\frac{\partial W}{\partial \xi}\right|_{n}$ is evaluated at $\xi=n$.
The governing equations for the motion of this hinge can be obtained from the governing equation for the outer portion of the plate ($\mathrm{n}<\xi<1$). This governing equation is identical to that for outer portion of Phase 1 motion with n substituted for ρ (see eq. (71)).

$$
2 n W(n)+\int_{n}^{1} M_{\theta} d \xi+2 \int_{n}^{1} W N_{\theta} d \xi=-6 I \int_{n}^{1}\left[\int_{0}^{\psi} W_{T T} \zeta d \zeta\right] d \psi
$$

(Hote that the conditions $N_{\rho}=N_{n}=1$ and $M_{\rho}=M_{n}=0$ were \because ied.) With the use of equation (30), equation (87) becomes

$$
6 I \int_{n}^{1}\left[\int_{0}^{\psi} W_{\tau \tau} \zeta d \zeta\right] d \psi=-(1-n)-2 n W(n)+\int_{n}^{1} N_{\theta}^{2} d \xi-2 \int_{n}^{1} W N_{\theta} d \xi
$$

$$
\begin{align*}
& \text { In terms of } Z \text { (see eq. (29)) } \\
& 6 I \int_{n}^{1}\left[\int_{0}^{\psi} W_{T \tau} \zeta d \zeta\right] d \psi=-(1-n)-2 n W(n)+\int_{n}^{1} z^{2} d \xi+2 \int_{n}^{1} W Z d \xi \\
& n<\zeta<1 \tag{89}
\end{align*}
$$

As in Phase 1 motion, $W_{\xi \xi T}=0$, so that the velocity is linear

$$
\begin{equation*}
W_{T}=\left(W_{T}\right)_{n}\left(\frac{1-\xi}{1-n}\right) \quad n<\xi<1 \tag{90}
\end{equation*}
$$

where $\left(W_{T}\right)_{n}$ is the velocity at the membrane hinge.

X. SOLUTIONS OF GOVERNING EQUATIONS

In Chapter IX the governing equations for the bending hinge, ρ, the membrane hinge, n, and the center deflection, A, were derived. No assumptions were made in this section so that these equations are exact within the framework of the basic assumptions, equilibrium equations, and flow conditions discussed in Chapter VIII.

Note that these governing equations contain either a N_{θ} or Z and a deflection W. Consequently, a solution can be obtained if scme assumptions concerning these rerms are made.

The deflection term appears only in a definite integral. Furthermore, the value of the deflection is always known at both endpoints of the definite integral, that is, $W(\rho)=2, W(0)=A$, and $W(1)=0$. Consequently, only the assumption of shape of the deflection profile is necessary.

An assumption of conical surfaces will be made in the sections to follow. Such deformational surfaces have been observed experimentally for dynamic loading (see ref. 26) and have been used by others in solving membrane type problems. For example, both Hudson in reference 1 and Frederick in reference 2 made this assumption in their treatment of impulsively loaded membranes. Onat and Haythornthwaite (ref. 25) also made the same assumption in a study dealing with the influence of midplane forces on plastic plates under static loading.

In order to solve the governing equations in the form of equations (74) and (83), some knowledge of the value of N_{θ} is also necessary. If one recalls that in the elastic solution a circular plate
uniformly loaded at its supports has constant midplane stresses throughout the plate, it is tempting to assume that the plastic plate has a similar distribution. Applying this reasoning to the plastic plates with large impulses, the entire plate could be assumed a membrane and N_{θ} set equal to one.

This approach, however, does not take into account midplane forces that are developed by the distortion of the midplane of the plate. The fallure to recognize this fact reflects itself in two ways: First the midplane forces are a constant. Second, and more important, no portion of the plate is permitted to become a membrane. Thus an accurate solution to impulsively loaded plates must be based on the governing equations that contain the neutral surface displacement Z (egs. (75) and (84)). It also must, when appropriate, utilize the Phase 3 governing equations (eqs. (89) and (90)). Solutions using the assumption of constant midplane forces are of interest. They can serve as an evaluation of the influence of midplane forces on the deflections of plastic plates. In addition, the solution for $N_{\theta}=1$ gives a limiting case of maximum midplane force. Thus both solutions will be developed in the following sections.

Bending of Plates Under Lateral Loads

In the analysis to follow the midplane forces will be assumed constant throughout the plate. With the exception of the limiting case of $N_{\theta}=1$, the plate will always carry a plastic moment and at no time will the plate become a membrane. Consequently, this case can be thought
of as an analysis of the bending behavior of a plastic plate that has been loaded by lateral loads, N_{θ}, prior to the application of the impulse. This analysis will not recognize midplane deformations due to large deflections.

The governing equation for Phase 1 (eq. (74)) reduces for this case to

$$
\begin{equation*}
I(1-\rho)(1+3 \rho) \rho_{\tau}=N_{\theta}^{2}-1-4 \rho N_{\theta} T-2 N_{\theta} \int_{\rho}^{1} W d \xi \tag{91}
\end{equation*}
$$

If the deflected surface is assumed to be a conical surface

$$
\left.\begin{array}{ll}
W=2 \tau & 0<\xi<\rho \tag{92}\\
W=2 \tau\left(\frac{1-\xi}{I-\rho}\right) & \rho<\xi<1
\end{array}\right\}
$$

so that $W(\rho)=2 T$ and $W(1)=0$. Substitution of equation (92) into equation (91) results in a nonlinear differential equation

$$
\begin{equation*}
I(1-\rho)(1+3 \rho) \rho_{\tau}=-\left(1-N_{\theta}^{2}\right)-2 N_{\theta} \tau(1+\rho) \tag{93}
\end{equation*}
$$

This equation is solved in appendix A through the use of a finite difference approach. Numerical results are given for values of N_{θ} ranging from 0 to 1.0 and for a range of impulses, I, from 0.4 to 11.6 . Exact solutions are obtained for the limiting cases of N_{θ} equal to zero and 1 . Time histories of the hinge circle, ρ, are tabulated in appendix A for a wide range of I and N_{θ}.

Phase 1 motion will continue until the hinge circle reaches the center. Let T_{1} be the time at which this occurs. At $T=T_{1}$ the deformation at the center will be

$$
\begin{equation*}
\mathrm{W}\left(0, \tau_{1}\right)=\mathrm{A}\left(\tau_{1}\right)=2 \tau_{1} \tag{94}
\end{equation*}
$$

The velocity at the center will be

$$
\begin{equation*}
W_{T}\left(0, T_{1}\right)=A_{T}\left(\tau_{1}\right)=2 \tag{95}
\end{equation*}
$$

The value of τ_{1} is tabulated in appendix A as a function of impulse I and midplane force N_{θ}. The values of T_{1} with the corresponding values of displacement $A\left(\tau_{1}\right)$ and velocity 2 serve as the initial values of the Phase 2 motion.

The governing equation for Phase 2 (eq. (83)) reduces to

$$
\begin{equation*}
\frac{1}{2} I A_{T T}=-\left(1-N_{\theta}^{2}\right)-2 N_{\theta} \int_{0}^{1} W d \xi \tag{96}
\end{equation*}
$$

Consistent with the assumption of conical surfaces

$$
\begin{equation*}
\mathrm{W}=\mathrm{A}(1-\xi) \tag{97}
\end{equation*}
$$

Thus the governing equation becomes

$$
\begin{equation*}
I A_{T T}=-2\left(1-N_{\theta}{ }^{2}\right)-2 N_{\theta} A \tag{98}
\end{equation*}
$$

The first integration of equation (98) can be achieved by multiplying the equation by A_{T}.

$$
\begin{equation*}
I A_{\tau} A_{\tau \tau}=-\left[2\left(1-N_{\theta}{ }^{2}\right)+2 N_{\theta} A\right] A_{\tau} \tag{99}
\end{equation*}
$$

The integral of equation (99) can now be written as

$$
\begin{equation*}
\frac{1}{2} I A_{T}^{2}=-2\left(1-N_{\theta}^{2}\right) A-N_{\theta} A^{2}+C_{1} \tag{100}
\end{equation*}
$$

where C_{l} is the constant of integration.
The inftial conditions for Phase 2 are

$$
\begin{align*}
& \mathrm{A}\left(\tau_{1}\right)=2 \tau_{1} \tag{101}\\
& \mathrm{~A}_{\mathrm{T}}\left(\tau_{1}\right)=2 \tag{102}
\end{align*}
$$

Therefore

$$
\begin{equation*}
C_{1}=2 I+4 \tau_{1}\left(1-N_{\theta}{ }^{2}\right)+4 \tau_{1}{ }^{2} N_{\theta} \tag{103}
\end{equation*}
$$

Substitution of equation (103) into equation (100) gives the expression for the velocity of the center of the plate as

$$
\begin{equation*}
I A_{T}^{2}=-4\left(1-N_{\theta}^{2}\right) A-2 N_{\theta} A^{2}+4 I+8 \tau_{1}\left(1-N_{\theta}{ }^{2}\right)+8 \tau_{1}{ }^{2} N_{\theta} \tag{104}
\end{equation*}
$$

The final deformation $a^{ \pm}$the center of the plate, A_{F}, can now be obtained from equation (1 14) by setting $A_{T}=0$.

$$
\begin{equation*}
N_{\theta} A_{F}^{2}+2\left(1-N_{\theta}^{2}\right) A_{F}=2 I+4 \tau_{1}\left(1-N_{\theta}^{2}\right)+4 \tau_{1}^{2} N_{\theta} \tag{105}
\end{equation*}
$$

Large Defiection of Plates

The analyses in this section will consider the midpiane forces that are developed by large deformations of the plate. Consequently, governing equations (75), (84), 4ad (89) will be used as these equations contain the parameter 2 . As previnisly discussed, this parameter is a measure of the displacement of the neutral surface from the midplane.

The definition of z is given in equation (38) in terms of the midplane displacement W. For the assumption of conical surfaces equation (38) reduces to

$$
\begin{equation*}
z=-\frac{W}{2} \tag{106}
\end{equation*}
$$

For Phase 1

$$
W=2 \tau \quad 0<\xi<\rho
$$

and

$$
\begin{equation*}
W-2 T\left(\frac{1-\xi}{1-\rho}\right) \quad \rho<\xi<1 \tag{107}
\end{equation*}
$$

Thus

$$
\begin{array}{ll}
Z=-T & 0<\xi<\rho \\
Z=-T\left(\frac{1-\xi}{1-\rho}\right) & \rho<\xi<1 \tag{108}
\end{array}
$$

The governing equation for Phase 1 can now be written as

$$
\begin{equation*}
\left.I^{\prime} 1-\rho\right)(1+3 \rho) \rho_{\tau}=-1-(2 \rho+1) \tau^{2} \tag{109}
\end{equation*}
$$

A numerical solution of equation (109) using a finite difference approach is given in appendix B. Numerical values are calculated for a range of impulses from I equal to 0.2 to 12.

Note that at $T=0$ equation (109) reduces to the differential equation for pure bending (see ref. 3). Thus for small values of T the behavior of the hinge approximates that obtained for a plastic plate In bending. As time becomes large, however, the magnitude of the hinge velocity ρ_{T} increases over that for the bending case. This increase in hinge velocity results in a decrease in final deformation.

Phase 1 motion continues until the hinge circle reaches the center of the plate. At this time, $T=T_{1}$, deformation of the center is

$$
\begin{equation*}
\hbar\left(0, \tau_{1}\right)=A\left(\tau_{1}\right)=2 \tau_{1} \tag{110}
\end{equation*}
$$

and its velocity is

$$
\begin{equation*}
W_{T}\left(0, T_{1}\right)=A_{T}\left(T_{1}\right)=2 \tag{111}
\end{equation*}
$$

Thus equations (110) and (lll) serve as initial corditiono ior Phase 2. The governing equations for this phase are given by equation (84). Using equation (106), equation (84) becomes

$$
\begin{equation*}
\frac{1}{2} I A_{T T}=-1-\frac{3}{4} \int_{0}^{1} W^{2} d \xi \tag{112}
\end{equation*}
$$

which can be approximated with the use of the conical surface assumption by

$$
\begin{equation*}
2 I A_{\tau T}=-4-A^{2} \tag{113}
\end{equation*}
$$

By a procedure similar to that used for the eolution of equation (98), equation (113) can be integrated to get

$$
\begin{equation*}
I A_{T}{ }^{2}=-\frac{A}{3}\left(12+A^{2}\right)+C_{2} \tag{114}
\end{equation*}
$$

The constant of integration C_{2} can be evaluated by use of the initial conditions (eqs. (110) and (111))

$$
\begin{equation*}
C_{2}=4 I+\frac{2 \tau_{1}}{3}\left(12+4 \tau_{1}^{2}\right) \tag{115}
\end{equation*}
$$

Substitution of equation (115) into equation (114) gives an expression for the velocity of the center of the plate during Phase 2 motion

$$
\begin{equation*}
I A_{T}^{2}=4 I+\frac{\left(2 \tau_{1}\right)}{3}\left\{12+\left(2 \tau_{1}\right)^{2}\right\}-\frac{A}{3}\left(12+A^{2}\right) \tag{116}
\end{equation*}
$$

The final deformation of the center A_{F} can be evaluated from equation (116) by setting A_{T} equal to zero. Thue

$$
\begin{equation*}
A_{F}\left(12+A_{F}^{2}\right)=12 I+\left(2 \tau_{1}\right)\left\{12+\left(2 \tau_{1}\right)^{2}\right\} \tag{117}
\end{equation*}
$$

Abstract

At first glance it would seem that equation (117) can provide a solution for the final deformation of the center of all impulsively loaded plates. There are, however, restrictions on the uee of this equation.

Equation (117) is based on the assumption that only Phase 1 and Phase 2 behavior occurs during the deformation of the plate. Both of these phases assume that an interaction of bending and midplane forces occurs. It has been shown that as the plastic midplane forces, N, increased the value of the piastic moments, M, decreased until a value of N equal to one is reached. The moment at that time is zero and that portion of the plate becane a membrane. Thus the behavior described under Phase 1 and Phase 2 is correct only for that portion of the deformation that does not generate a midplane force such that N^{2} is greater than one. In terms of Z this condition states that Z^{2} is less than one, and hence the deflection W must be less than 2 (see eq. (106)).

Consequently, equation (117) can be used to calculate the final deformation of the plate only if the impulse, I, is small enough so that the deformation of the plate is less than 2 . When the plate is subjected to impulses greater than this value, a Phase 3 motion will begin. The plate will be separated into two parts. In the central region where the deflection is greater than two, no bending moments are present and the plate behaves as a membrane. In the outer region a coupling of midplane rorses and bending moments occurs and the plate
in this region behaves as it did in Phase l. The point of separation of these regions, $\xi=n$, is defined by

$$
\begin{equation*}
W(n, T)=2 \tag{118}
\end{equation*}
$$

This point then forms a membrane hinge. This portion of the motion of the plate is referred to as Phase 3.

The time, τ_{2}, at which the Phase 3 motion begins is defined as

$$
\begin{equation*}
W\left(\rho, \tau_{2}\right)=2 \tag{119}
\end{equation*}
$$

Using the expression for Z given in equation (106) and the value of the deflection at the membrane hinge, n, given by equation (119), the governing equation for Phase 3 (isq. (89)) becomes

$$
\begin{equation*}
6 I \int_{n}^{1}\left[\int_{0}^{\psi} W_{T T} \zeta d \zeta\right] d \psi=-(1+3 n)-\frac{3}{4} \int_{n}^{1} W^{2} d \xi \tag{120}
\end{equation*}
$$

In order to evaluate the left side of equation (120) the acceleration of the outer region ($n<\xi<1$) must be evaluated. The velocity of the region is given in equation (90) in terms of the position of hinge and the transverse velocity at the hinge point $W_{T}(n, T)$.

Since the displacement at the hinge is by definition equal to a constant 2 (see eq. (118)), the transverse velocity is dependent on the slope of the deflection curve at the hinge and the velocity of the hinge, n_{T}. In addition, as the deformation of the plate is monotonically increasing, the membrane hinge must be traveling toward the support. Thus

$$
\begin{equation*}
W_{T}(n, t)=\frac{2}{1-n} n_{T} \tag{121}
\end{equation*}
$$

With equations (90) and (121) the velocity of the plate in the outer region is given by

$$
\begin{equation*}
W_{T}=\frac{2 n_{T}}{(1-n)^{2}}(1-\xi) \quad n<\zeta<1 \tag{122}
\end{equation*}
$$

The acceleration can now be written as

$$
\begin{equation*}
W_{T T}=\left[\frac{2}{(1-n)^{3}}\left\{(1-n) n_{T T}+2 n_{T}^{2}\right\}\right](1-\zeta) \quad n<\zeta<1 \tag{123}
\end{equation*}
$$

Substitution of equation (123) into equation (120) and performing the necessary integration results in the following differential equation

$$
\begin{equation*}
I\left[(1-n) n_{T T}+2 n_{T}^{2}\right](1+3 n)=-(1+3 n)-\frac{3}{4} \int_{n}^{1} W^{2} d \zeta \tag{124}
\end{equation*}
$$

Equation (124) can now be approximated with the assumption of conical surfaces in which $W(n, \tau)=2$ and $W(1, \tau)=0$, to give

$$
\begin{equation*}
I\left[(1-n) n_{\tau \tau}+2 n_{\tau}^{2}\right](1+3 n)=-2(1-n) \tag{125}
\end{equation*}
$$

The solution to this differential equation results in the velocity and position of the membrane hinge. The integrating factor for the above equation is

$$
\frac{2 n_{T}}{(1+n)^{5}(1+3 n)}
$$

Multiplying equation (125) by this factor gives

$$
\begin{equation*}
I \frac{d}{d T}\left[\frac{n_{T}{ }^{2}}{(1-n)^{4}}\right]=-\frac{4}{(1+3 n)(1-n)^{4}} \frac{d n}{d \tau} \tag{126}
\end{equation*}
$$

Hence the integral of equation (126) is

$$
\begin{equation*}
I\left[\frac{n_{\tau}{ }^{2}}{(1-n)^{4}}\right]=-\frac{1}{192}\left[\frac{108}{(1-n)}+\frac{72}{(1-n)^{2}}+\frac{64}{(1-n)^{3}}+81 \log \frac{1+3 n}{1-n}\right]+c_{3} \tag{127}
\end{equation*}
$$

If the Phase 3 behavior begins while the plate is in Phase 2, the membrane hinge occurs at the center of the plate, that is, at $\mathrm{n}=0$. The hinge velocity at that time is (from eq. (121))

$$
\begin{equation*}
\left(n_{\tau}\right)_{0}=\frac{1}{2} A_{\tau}\left(\tau_{2}\right) \tag{128}
\end{equation*}
$$

The constant of integration, C_{3}, in equation (127) can now be evaluated and is given by

$$
\begin{equation*}
C_{3}=I\left(n_{T}\right)_{0}^{2}+\frac{1}{192}(244) \tag{129}
\end{equation*}
$$

Substituting equation (129) into equation (127) gives

$$
\begin{equation*}
I\left[\frac{n_{\tau}^{2}}{(1-n)^{4}}\right]=-F(n)+I\left(n_{\tau}\right)_{0}^{2} \tag{130}
\end{equation*}
$$

where

$$
\begin{equation*}
F(n)=\frac{1}{192}\left[\frac{108}{(1-n)}+\frac{72}{(1-n)^{2}}+\frac{64}{(1-n)^{3}}+81 \log \left(\frac{1+3 n}{1-n}\right)-244\right] \tag{131}
\end{equation*}
$$

Values of this function for a range of n from 0 to 1.0 are given in appendix C. The motion of the plate stops when $n_{\tau}=0$, therefore, the final position of the membrane hinge is given by

$$
\begin{equation*}
F\left(n_{F}\right)=I\left(n_{T}\right)_{0}^{2} \tag{132a}
\end{equation*}
$$

or with equation (128)

$$
\begin{equation*}
F\left(n_{F}\right)=\frac{I}{4} A_{\tau}^{2}\left(\tau_{2}\right) \tag{132b}
\end{equation*}
$$

The velocity, $A_{T}\left(\tau_{2}\right)$, can be evaluated from equation (116), since the deflection A is known to be 2 at $\tau=\tau_{2}$. Therefore

$$
\begin{equation*}
A_{\tau}^{2}\left(\tau_{2}\right)=4+\left[\left(2 \tau_{1}\right)\left\{12+\left(2 \tau_{1}\right)^{2}\right\}-32\right] \frac{1}{3 I} \tag{133}
\end{equation*}
$$

Equation (132) applies to the condition where the membrane behavior is initiated during the Phase 2 motion of the plate. If the impulse is great enough, membrane behavior can be initiated during Phase 1, that is,

64

before the bending hinge reaches the center of the plate. Since membrane behavior occurs when deflections are greater than 2 (see eq. (118)) and from equation (107)

$$
\begin{equation*}
W(\xi, \tau)=2 \tau \quad 0<\xi<\rho \tag{134}
\end{equation*}
$$

the Phase 3 behavior of the plate is initiated directly from Phase 1 for all impulses where T becomes greater than unity.

For this case the midplane forces are constant in the central region $(0<\xi<\rho)$. The membrane hinge must thus originate at the point $\xi=\rho_{1}=n_{0}$.

The differential equation for Phase 3 in this case is identical to the previous case. The solution to the differential equation is given by equation (127). The initial conditions, however, are different. The initial position of the membrane hinge, n_{c}, is equal to the position of the bending hinge, ρ_{1}, at time, $T=1$. Thus

$$
\begin{equation*}
n_{0}=\rho(1)=\rho_{1} \tag{135}
\end{equation*}
$$

The transverse velocity of the plate at the hinge is 2 . Thus from equation (121)

$$
\begin{equation*}
\left(n_{\tau}\right)_{0}=\left(1-n_{0}\right)=\left(1-\rho_{1}\right) \tag{136}
\end{equation*}
$$

Evaluation of the constant of equation (127) for the akove condition gives
$c_{3}=I \frac{\left(n_{T}\right)_{0}^{2}}{\left(1-n_{0}\right)^{4}}+\frac{1}{192}\left[\frac{108}{1-n_{0}}+\frac{72}{\left(1-n_{0}\right)^{2}}+\frac{64}{\left(1-n_{0}\right)^{3}}+81 \log \left(\frac{1+3 n_{0}}{1-n_{0}}\right)\right]$

With equation (137) and noting that $n_{0}=\rho_{1}$, the expression for the velocity can be written as

$$
\begin{equation*}
I\left[\frac{n_{T}^{2}}{(1-n)^{4}}\right]=I\left[\frac{\left(n_{T}\right)_{o}^{2}}{\left(1-\rho_{1}\right)^{4}}\right]-F(n)+F\left(\rho_{1}\right) \tag{138}
\end{equation*}
$$

where $F(n)$ is defined by equation (131).
The motion stops when n_{T} is zero, hence the position of the hinge when the plate comes to rest, n_{F}, is given by

$$
\begin{equation*}
F\left(n_{F}\right)=I\left[\frac{\left(n_{\Psi}\right)_{0}^{2}}{\left(1-\rho_{1}\right)^{1}}\right]+F\left(\rho_{1}\right) \tag{139}
\end{equation*}
$$

W1th the use of equation (136)

$$
\begin{equation*}
F\left(n_{F}\right)=I\left[\frac{1}{\left(1-\rho_{1}\right)^{2}}\right]+F\left(\rho_{1}\right) \tag{140}
\end{equation*}
$$

The final position of the membrane hinge is now known. If the center portion of the plate does not turn into a membrane until the plate is In Phase 2, equations (132) and (133) apply. If the center turns into a membrane during the first phase of the motion, equation (140) applies.

The inner portion of the plate $(0<\xi<n)$ during this time behaves like a membrane. That is, it carries no bending and transmits only a constant tensile load in the direction of its midplane. A very detailed and thorough discussion of such behavior is given by Hudson (ref. l) and by Frederick (ref. 2). Some of the more pertinent aspects of the motion are repeated herein.

When Phase 3 motion is initiated during Phase 1 motion, the membrane portion of the plate behaves as follows. The bending hinge that originated during Phase 1 continues to travel inward toward the center of the plate. As the hinge sweeps over each annular material elemert in the flat central region, it tilte it into the shape of an annular truncated conical element behind the hinge. As the material cannot support bendirg, it is assumed no significant amount of work is done in bending. In aidition, it is assumed that no thinning of the plate takes place. The portion of the plate passed over by the hinge is assumed to move in a manner that makes its slope agree with the slope of the outer portion of the plate. Thus when the motion of the membrane portion of the plate stops, which occurs after the hinge reaches the center, that portion forms a cone with a slope equal to the slope of the outer portion.

This conical behavior is also assumed if the Phase 3 motion is Initiated from Phase 2 motion. Thus

$$
\begin{equation*}
\frac{A_{F}-2}{n_{F}}=\frac{2}{1-n_{F}} \tag{141}
\end{equation*}
$$

$$
\begin{equation*}
A_{F}=2+\frac{2 n_{F}}{1-n_{F}}=\frac{2}{1-n_{F}} \tag{142}
\end{equation*}
$$

XI. DISCUSSION OF NUMERICAL RESULTS

Experimental Results

Before proceeding with a discussion of the numerical results and the all-important comparisons with experimental data, it would seem appropriate to first discuss the details of the experiments. All of the data used herein were obtained from an extensive experimental investigation performed by Florence. The details of the experiments and the resulting data were discussed in reference 4 from which much of the following discussion is taken. It is being repeated here for the sake of completeness.

The experiments were very thorough, covering a wide range of impulsive loadings and plates of two different materials: aluminum and steel. The aluminum plates were $6061-T 6$ and the steel plates were 1018 cold rolled steel.

A sketch of the experimental setup is show in figure 11. The plates were all nominally $1 / 4$-inch thick and $8-1 / 2$ inches in diameter. The specimens were supported on an annular steel plate with an 8-inch inside diameter. The impulse was generated by the detonation of an 8-inch diameter of sheet explosive (DuPont EJ-506D). The sheet explosive was cut to fit the opening in the upper support. A similar disk of solid neoprene, $1 / 8$ of an inch in thickness, was placed between the explosive and the specimen. This served to reduce the high peak pressure in the shock wave entering the plate and tended to eliminate plastic waves, possible changes of material properties, and spallation.

Figure 11.- Experimental setup used by Florence.

The upper support was used to controi the rebound. An outside steel ring served as a spacer to prevent the edge of the plate from striking the upper support during the rebound.

Dimensions and properties of the plate used in the experiment are given in table I. The yield stress was taken to be the average value of static tensile tests of both with and across grain specimens. Fach experimental stress-strain curve was replaced by a bilinear stressstrain curve. The strain-hardening portion of the curves was obtained by fitting a straight $^{\text {fine }}$ through data points above 3- to 4 -percent strain.

Twenty-two aluminum and 20 steei plates were terted. The values of the initiai impulse imparted to the plate were obtained by firing free plates in front of a double-flash X-ray unit. The rigid-body displacement in the predetermined time between X-ray pictures gave the initial plate velocity.

The permanent central deflections were obtained through the use of a traveling microscope. The values of this permanent deflection along with the measured initial dimensional impulses are tabulated in table II. Also shown in this table are the corresponding values of nondimensional. impulse I.

Large Deflection Bffects

The analyses based on consideration of large deflectional effects will be used to predict the behavior of the experimental specimens.
table I.- dimensions and properties of specimens*

Material	Yield střess, $\mathrm{lb} / 1 \mathrm{n}^{2}$	Density, $1 \mathrm{~b}-\mathrm{sec}^{2} / \mathrm{In}^{2}$	Depth, in.	Radius, In.
Aluminum $6061-\mathrm{T} 6$	42,000	0.000253	0.251	4.0
C.R. Steel 1018	79,000	0.000732	0.241	4.0

table II.- EXPERIMEAriAL RESULIS*

Steel plates			Aluminum plates		
Impulse I	Exper. ${ }^{4} \mathrm{~F}$	$\underset{\mathrm{lb}-\mathrm{sec} / \mathrm{m}^{2}}{\mu \mathrm{~V}_{\mathrm{o}}}$	$\underset{\text { I }}{\text { Impulse }}$	Exper . A_{F}	$\underset{\mathrm{lb}-\mathrm{sec} / \mathrm{m}^{2}}{\mu \mathrm{~V}_{\mathrm{o}}}$
6.97	8.66	0.505	12.71	13.42	0.317
6.86	8.43	0.501	10.56	9.94	0.289
5.54	7.44	0.450	10.49	10.96	0.288
5.20	7.14	0.436	10.13	10.61	0.283
4.69	7.00	0.414	7.53	8.06	0.244
3.52	6.41	0.359	7.28	8.54	0.240
3.33	5.81	0.349	7.28	8.32	0.240
3.24	5.54	0.344	7.28	8.41	0.240
3.00	5.05	0.331	6.17	8.06	0.221
2.70	4.48	0.314	6.07	7.75	0.219
2.66	4.75	0.312	4.66	6.34	0.192
2.02	3.78	0.272	4.61	7.08	0.191
1.82	3.22	0.258	4.28	5.99	0.184
1.26	2.56	0.215	2.81	4.94	0.149
0.67	1.06	0.157	2.62	4.84	0.144
0.67	1.03	0.156	2.55	4.05	0.142
0.67	1.20	0.156	2.52	4.69	0.141
0.64	1.49	0.153	2.44	4.27	0.139
0.41	0.80	0.123	2.34	3.89	0.136
0.40	0.83	0.121	1.91	3.12	0.123
			1.76	3.70	0.118
			1.47	3.16	0.108

*Data taken from reference 4.

Examination of the experimental setup shows that there are no mechanisms to provide a midplane force prior to impulse. Thus the plates must begin their motion in the pure bending mode. All specimens must, therefore, start with a deformational behavior similar to the Phase l behavior discussed herein.

The governing equation for the motion of the hinge circle during Phase 1 is given by equation (109). A solution to this equation is given in appendix B. Numerical results for the position of the hinge circle at any time T are given for a range of impulses I from 0.2 to 12. Typical plots of these values are shown in figure 12.

The discussion in Chapter X pointed out that Phase 1 motion continues until one of two possible conditions occurs. Either the hinge circle reaches the center of the plate ($\rho=0$) or the time τ reaches a value of one. From figure 12 it can be seen that the former condition applies to the smaller values of impulse ($I<1.5$) while the latter occurs for the larger impulses where I is greater than 1.5.

In this phase of motion (Phase 1) the nondimensional displacement of the central portion of the plate is equal to twice the time T. Thus for impulses greater than 1.5 the deflection of the central portion reaches a value of 2 (Z of one) before the ringe circle reaches the center. Once this value of deflection is reached the central portion of the plate becomes a membrane. (A nondimensional displacement of 2 is equivalent to an actual displacement of $2 h$, that is, the thickness of the plate.) The position of the hinge, ρ_{1}, when the central portion

TABLE III.- THEORETICAL RESULTS

I	ρ_{1}	${ }^{1} 1$	n_{F}	A_{F}
0.2	---	0.192	---	0.56
0.3	---	0.280	---	0.83
0.4	---	0.366	---	1.07
0.5	---	0.447	---	1.27
0.6	---	0.520	---	1.46
0.7	---	0.595	---	1.65
0.8	---	0.651	---	1.80
0.9	---	0.710	---	1.94
1.0	---	0.768	0.044	2.09
1.1	---	0.820	0.103	2.23
1.2	---	0.868	0.156	2.37
1.3	---	0.910	0.210	2.50
1.4	---	0.953	0.240	2.63
1.5	---	0.992	0.274	2.75
1.6	0.044	---	0.326	2.97
1.7	0.085	---	0.368	3.17
1.8	0.120	---	0.403	3.35
1.9	0.151	---	0.434	3.53
2.0	0.179	---	0.460	3.71
4.0	0.455	---	0.694	6.54
6.0	0.564	---	0.773	8.81
8.0	0.627	---	0.816	10.85
10.0	0.668	---	0.842	12.67
12.0	0.699	---	0.862	14.50
14.0	0.722	---	0.875	16.00

Figure l2.- Motion of bending hinge for various values of impulse.
initially becomes a membrane is a function of I as shown in figure 13 (see also table III).

For impulses less than 1.5 the hinge circle reaches the center of the plate before any portion of the plate can become a membrane $(T<1)$. The value of the time, T_{1}, at which this occurs is plotted as a function of I in figure 14 (see also table III).

Subsequent motion of the plate depends on the magnitude of the impulse. For the large impulses ($I>1.5$) the plate goes directly from Phase 1 to Phase 3 behavior. The initial location of the membrane is given by ρ_{1} in table III. The displacement at the hinge point at this time, $W\left(n, T_{2}\right)$ is two and the velocity, $W_{T}\left(n, T_{2}\right)$ is also two (see eqs. (118) and (41)). The final position of the membrane hinge is calculated from equation (140) and its values are tabulated in table III for various values of I. It is also plotted as a function of I in figure 15. The final plastic deformations of the center of the plates are calculated from equation (142) and are tabulated in table III.

For impulses less than 1.5 the plate goes from the Phase 1 tc the Phase 2 motion. The initial center deflection for this phase is given by $2 T_{1}$ and the velocity by 2 . The values of T_{1} are obtained from table III for the appropriate values of I. If the impulse on the plate is small enough, the motion of the plate will stop before the central part of the plate becomes a membrane. The final deformation is then calculated from equation (117). This happens for all impulses smaller than 0.95 .

If the impulse is in the intermediate range ($0.95<1<1.5$), the center of the plate turns into a membrane before the motion of the plate ends. For this case the final position of the membrane hinge is calculated from equation (132). These values are shown in table III and figure 15. The final deformation as calculated from equation (142) is also tabulated in table III.

A comparison of the calculated deformations at the center of the simply supported plate to those obtained experimentally is shown in figure 16 for the small and intermediate impulses and in figure 17 for the complete range of impulses from 0 to 14 . The circles represent the experimental data from the 22 aluminum plates; the squares are from the data of the 20 steel plates. The solid curve was obtained from the present large deformation theory. The dashed curve is based on Wang's plastic bending theory.

The comparisons between the calculated and experimental deformations are very good, especially in the small and intermediate impulse range. For impulses less than $4-1 / 2$ the agreement between theory and experiment is within experimental scatter. As the impulse increases above 5, the calculated deformations become larger than those measured. This deviation from experiment can be attributed, at least in part, to the omission of strain hardening effects. Inclusion of strain hardening effects certainly would cause a reduction in calculated permanent deformation. Furthermore, these effects would become increasingly important with the additional strains caused by increased impulse.

Figure 15. Final position of membrane hinge as a function of impulse.

The bending theory of Wang gives poor agreement even for tiae low values of impulse where no membrane behavior is present. As the value of the impulse is increased so that portions of the plate turn into a membrane, the difference between the bending and large deformation theories becomes substantial. This difference is largely due to the neglect of the restraints provided by the midplane forces. This effect W11l be further discussed in the next section.

Lateral Load Effects

The influence of the lateral loads on the deformational behavior of plastic plates can be seen by examining some of the numerical results given in appendix A for the case of plate bending with lateral loads.

The governing equations for Phase 1 motion for this case were given by equation (93). The equation was solved numerically in appendix A for various assigned values of N_{θ}. As the values of N_{θ} are assumed to be constant in the analyses, i plastic bending moment is present at all times. Thus no membrane behavior is considered regardless of the magnitude of the deformation. Even for the limiting case of $N_{\theta}=1$, the plate does not behave as a membrane as the flow conditions for the interaction case is used, that is, $\dot{\epsilon}_{r}=0$. Consequently, equation (93) is considered to be the governing equation for the motion of the hinge even after the deformation becomes greater than $2(\tau>1)$.

The final deformation of the plate was calculated from equation (105). The results are shown in figure 18 , where the central deflection of the plate is plotted as a function of the uniform lateral loads, N, for

Figure 18.- Influence of midplane forces on central deflection.

Abstract

various values of the impulse, I. Examination of these curves shows that for small. impulses where the deformations are also relatively small, the midplane forces do not significantly influence the final deformation. However, with increasing values of impulse and correspondingly larger deformations, the influence of the midplane forces is greatly increased.

For example, for an impulse of 10 the calculated central deformation of the plate is reduced by almost 60 percent with the introduction of a midplane force of only 0.2 of the maximum ($N=0.2$). Once the midplane forces reach a value in the range of 0.2 to 0.3 , further increases of this force are not as effective in reducing the central deformation. In the case of an impulse of 10 in the above example, an introduction of a midplane force of 0.2 caused a reduction of deformation from 30 to 12.5 . Further increase of the force to its maximum of 1.0 , however, reduces the deformation only to a value of 7.0.

XII. COMPARISON OY LARGE DEFORMATION THEORY TO EXPERDNENTAL RESULTS AND OTHER METHODS OF ANALYSES

This section will be devoted to a critical examination of the various methods of analyses that have possible application to deformations of plastic plates. Conclusions as to the accuracy of these methods are based on the deformational results for impuisively loaded plates. These conclusions, however, are believed to be valid for other loading conditions when applied on a deformational tasis.

Five methods of analysis will be discussed.

1. The large deformation theory developed herein.
2. The bending theory of Wang from reference 3 .
3. An analysis based on maximum midplane forces.
4. The membrane theory of Frederick froin reference 2.
5. The midplane interaction analysis of Jones from reference 5 .

The calculated central deflections are shown in figure 19 as a function of impulse from all five of these analyses. In addition, the experimental results from Florence (ref. 4) are plotted for comparison.

Large Deformation Theory

The results from this analysis, replotted from figure 17, are show as a solid line in figure 19. Recall that in this analysis the interaction between plastic bending moments and midplane forces are based entirely on the deflectional behavior of the plate. As long as the displacements are less than the thickness of the plate ($\mathbf{w}<2$) this interaction is present. However, when the deflections become greater

than the thickness, the central portion of the plate becomes a membrane and thereafter supports no bending moment. The motion of the bending and membrane hinges, which are the governing factors of the final deformation, is obtained from solutions of appropriate governing equations.

From figure 19, it can be seen that the comparisons to theory are excellent for deformations of the order of 2 to 3 times the thickness (W of 4 to 6). For larger deformations the theory becomes slightly conservative. This, however, should be expected in the light of the basic assumptions of the theory. The assumption that the plate material is a rigid plastic neglects both elasticity and strain-hardening effects. Each of these would tend to reduce the calculated final deformation if included. In addition, the assumption that the shape of the outer region of the plate is conical tends to underestimate the speed of the hinge circles and thus increases the calculated deflection. The inclusion of all three of these effects would, therefore, bring the theoretical calculations into even better agreement with the experiment.

Bending Theory
The results from this analysis are shown in figure 19 as a dash-double-dot line. In terms of the parameters used herein, the central deflection is based on the equation

$$
\begin{equation*}
A_{F}=3 I \tag{143}
\end{equation*}
$$

Figure 19 shows that the comparison between the bending theory and experiment is extremely poor even for the lower values of permanent deformation. Because of this poor comparison it would seem 111 advised
to use this approach when accurate deflections are desired. As the method always gives permanent deformations that are above that obtained experimentally, the results of a bending analys!s can be used to give very conservative estimates of permanent deformations.

It has been previousiy pointed out that the behavior of the bending hinge circle in Phase 1 is directly related to the final deformation of the plate. The larger the speed of the bending hinge the smaller the permanent deformation. Thus the conservativeness of the bending theory is due primarily to a calculated hinge circle speed tha is too low.

Maximum Midplane Force Analysis

The results of this analysis are shown in figure 19 as a dot-dashed line. This analysis is identical to that for the large deformation except for the interaction relationship of moments and midplane forces. The interaction relationship used in the midplane force analysis is not dependent on deformations. Instead, it is based on the assumption that the deflections will be so large that the entire plate will carry the maximum midplane force of $\overline{\mathrm{N}}_{0}(\mathrm{~N}=1)$. This, therefore, necessitates that the bending moment vanish. The final deformation results for this case were discussed in a previous section and correspond to the values of A_{F} for $N=1.0$ in figure 18.

The comparison of the central deformation calculated by the maximum midplane force assumption to the experimental results show that this method of analysis is unconservative, for the large deformations where the method should be most applicable. This unconservativeness in calculated
deformation reflects a calculated hinge circle velority that is too large. The assumption that only midplane forces are present is, therefore, as poor an assumption as one where only bending moments are permitted.

Membrane Theory of Frederick

The results from this analysis are shown in figure 19 as a short dashed line. In terms of the parameters used herein the central deflection as calculated in reference 2 is given by

$$
\begin{equation*}
A_{F}=\sqrt{\frac{12 I}{1-12 I\left(\frac{h}{R}\right)^{2}}} \tag{144}
\end{equation*}
$$

The comparison of the experimental data and the theoretical results shows excellent agreement for the larger deformations. For small deformatzons the agreement is very poor. However, it should be noted that the theoretical model used by Frederick was never intended to be used for small deformations.

As the analysis has many assumptions it is difficult for the author to fully understand the theoretical reasons for the good agreement obtained for larger impulses as opposed to the very poor agreement in the lower impulse range.

The analysis does assume that only membrane forces are present which is the same assumption used by the maximum midplane force analysis just described. The behavior of the membrane is also assumed to be similar to the Phase 1 and Phase 2 behavior described herein.

The outer portion of the membrane in Phase 1 and the total membrane in Phase 2, however, are assumed to be rigid in Frederick's approach. Both of these assumptions should cause the membrane analysis to underestimate the final deformation. The third important difference of the two methods is that the membrane analysis assumes that the hinge velocity is uniform and dependent only on the initial velocity and the yield stress and density of the plate material. Thus it must be this assumption that compensates for the unconservatism of the other two.

Interaction Analysis of Jones

The results of Jones' analysis are shown in figure 19 as a long dashed curve. The data for this curve were taken from a figure in reference 5 .

As can be seen from figure 19, Jones' analysis gives slightly unconservative results in the higher impulse or deformation range. Addition of the neglected strain hardening $\mathrm{qn}^{\boldsymbol{n}}$ elasticity effects would result i= even more unconservative results. His calculations for small permanent deformations are in very pcor agreement.

Jones assumed in his analysis that since the deformations were large, the midplane forces would always be at their maximum. He also permitted the plate to carry bending moments during the Phase 1 motion. These moments ranged from the maximum \bar{M}_{o} at the bending hinge to zero at the support. Therefore, he violated the interaction relationship based on the Tresca yield condition. His flow conditions were the same as those used in the constant midplane-force analysis. Thus it would

[^0]An analysis of a simply supported circular plate under an impulsive loading has been presented. The analysis considers the influence of both bending and midplane forces and includes large deformation effects. Shear and rotary inertia effects are neglected. The plate material is assumed to be isotropic and a rigid plastic. The yield criteria are based on the Tresca condition.

Governing equations were develcped and solved for three phases of motion. The initial Phase 1 included a bending hinge that traveled from the support to the center of the plate. Phase 2, which was initiated when the hinge reached the center, continued until either the motion ceased or a portion of the plate became a membrane. Phase 3 described the motion of the membrane hinge from its initial point to its final resting position.

Two types of bending-moment-midplane-force interaction relationshins were studied: One was based on displacement of the neutral surface from the midplane surface. The second was based on the magnitude of midplane forces only. The furmer relationship took account of large deformations and midplane distortions and hence allowid regions of the plate to behave as a membrane. The latter only considered the lateral forces and no membrane behavior was permitted.

Comparisons of the analytical results with experimental data resulted in the following conclusions.

1. Interaction relationships based on large deformations should be used in order to get reliable data for a complete range of deflections and impulses.
2. Analyses of plastic plates based on bending behavior alone give highly conservative results and hence should only be used to get conservative estimates of the permanent deformations.
3. Even a small amount of midplane force has a significant effect on the final deformations of plastic plates.
4. Analyses of plastic plates based on maximum membrane forces throughout the plate tend to be seriousiy unconservative. This method should not be used unless accompanied by a conservative assumption to counteract this influence. Under no conditions should this assimption be used to study deformetional behaviors of plates with deforni.uns of the order of one to two plate thicknesses.
5. For final deformations of the order of five thicknesses and greater the influence of strain hardening and elasticity becomes 1m?

Elasticity effects can be approximately accounted for in the present analyses by incorporating an elastic phase of motion prior to the Phase 1 motion considered herein. This elastic phase could be used to evaluate the energy dissipated in elastic deformational behavior and correct the initial velocity conditions on Phase l, accordingly.

A more accurate and sophisticated approach, however, would be to permit the plastic behavior to initiate at the center of the plate and
then spread toward the supports. To do this it would be necessary to define another hinge circle separating the elastic and plastic portions of the plate.

Another possible area of refinement is in the analysis of the membrane portion of the plate. An initial effort in this arta should deal with the influence of reduced thickness.

XIV . REFERENCES

1. Hudson, G. E.: Theory of the Dynamic Plastic Deformation of a Thin Diaphragm. Journal of Applied Physics. Vol. 22, No. 1, Jan. 1951.
2. Frederick, Daniel: Simplified Analysis of Circular Membranes Subjected to an Impulsive Loading Producing Large Plastic Deformations. 4th Mid Western Conference in Solid Mechanics, 1959.
3. Wang, A. J.: Permanent Deflection of a Plastic Plate Under Blast Loading. Journal of Applied Mechanics. Sept. 1955.
4. Florence, A. L.: Circular Plates Under a Uniformly Distributed Impulse. International Journal of Solids and Structures. Vo . 2, No. 1, Jan. 1966.
5. Jones, N.: Impulse Loading of a Simply Supported Circular Plate. Division of Engineering, Brown Univeristy. Report No. 37, Feb. 1967.
6. Timoshenko, S.: Theory of Plates and Shells. McGraw-Hill Book Company, Inc., 1940.
7. Hodge, Phillip G., Jr.: Plastic Analysis of Structures. McGraw-H:ll Book Company, Inc., 1959.
8. Florence, A. L.: Annular Plate Under a Transverse Line Impulse. ATAA Journal, Vol. 3, No. 9, Sept. 1965.
9. Prager, William: On the Use of Singular Yield Conditions and Associated Flow Rules. Journal of Applied Mechanics. Vol. 20, No. 3, Sept. 1953.
10. Hopkins, H. Geoffrey; and Prager, William: On the Dynamics of Plastic Circular Plates. Z.A.M.P. Vol. 5, 1954.

1l. Hopkins, H. G.; and Prager, W.: Load Carrying Capacities of Circular Plates. Journal of the Mechanics and Physics of Solids. Vol. 2, Oct. 1953.
12. May, Gerald W.; and Gerstle, Kurt 'i.: Elastic Plastic Behavior of Axisymmetric Plates. ASCE Structural Corference, May 1967.
13. Symonds, P. S.; and Mentel, T. J.: Impulsive Loading of Plastic Beams With Axial Constraints, Journal Mech. Physics. Solids. Vol. 6, 1958.
14. Symonds, P. S.: Survey of Methods of Analysis for Plastic Deformation of Structures Under Dynamic Loading. Division of Engineering, Brown University. Rept. BU/VSRDC/l-67, June 1967.
15. Olszak, W.; Mroz, Z.; and Perzyna, P.: Recent Trends in the Development of the Theory of Plasticity. Macmillan Co., 1963
16. Lepik, Yu R.: Plastic Flow of Thin Circular Plates Made of the Rigid-Plastic Material. Izv. Aked. Nank SSSR, OTN Mech., Wash. 1960, No. 2, 78-87.
17. Sawczuk, Antoni: On Initiation of the Membrane Action in Rigid Plastic Plates. Journal de Mecanique. Vol. 3, No. 1, March 1965.
18. Thomson, Robert G.: Plastic Deformation of Plates Subjected to a General Gaussian Distribution of Impulse. PhD Thesis, Virginia Polytechnic Inst., June 19066.
19. Thomson, Robert G.: Plastic Rehavior of Circular Plates Under Transverse Impulse Loading of Gaussian Distribution. NASA TR R-279, Jan. 1968.
20. Perzyna, P.: Dynamic Load Carrying Capacity of a Circular Plate. Arch. Mech. Stos., Vol. 10, 1958.
21. Wang, A. J.; and Hopkins, H. G.: on the Plastic Deformation of Built-in Circular Plates Under Impulsive Load. J. Mech. and Physics of Solids, Vol. 3, 1954.
22. Shapiro, G. S.: On a Rigid Flastic Annular Plate Under Impulsive Load. Prikl. Mat. Mehk., Vol. 23, 1959.
23. Mroz, A.: Plastic Deformations of Annular Plates Under Dynamic Loads. Arch. Mech. Stos., Vol. 10, 1952.
24. Reissner, Eric: Rotationally Symmetric Problems in the Theory of Thin Elastic Shelis. Third U.S. Nat. Congress of Applied Mechanics, 1958.
25. Onat, E. T.; and Haythornthwaite, R. M.: Load Carrying Capacity of Circular Piate at Large Deflection. Journal of Applied Mechanics. Vol. 23, 1956.
26. Munday, G.; and Newitt, D. M.: Deformations of Transversely Loaded Disks Under Dynamic Loads. Philosophical Transactions of The Royal Society of Iondon - Series A - Vo. 256, Dec. 1963.

The author was born in
on
He attended public schools in Pittsburgh. He received a B.S. degree in Civil Engineering from Carnegie Institute of Technology in 1942. He attended Virginia Polytechnic Institute, where he received a M.S. degree in Applied Mechanics in 1956. He was elected to both the Sigma Xi and the Phi Kappa Phi fraternities. The first 2 years after his B.S. degree he spent in aircraft industry as a stress analyst. Since then the author has been engaged in research at the Langley Research Laboratories of the National Advisory Committee for Aeronautics wiich became the National Aeronautics and Spece Administration. During this time he has carried out research in the areas of solids and dynamics authoring 28 technical papers and talks. For the past 12 years he has been responsible for the planning and direction of research in the area of structural mechanics and for the supervision of the research personnel. The author is also an instructor for the University of Virginia Extension at Hampton, Virginia, teaching graduate courses in Applied Mathematics.

SOLUTION OF GOVERNING EQUATIONS FOR BENDING OF PLATES
 UNDER UNIFORM LATERAL LOADS

The governing equation for Phase 1 in terms of the impulse I and the lateral load, N_{θ}, is (see eq. (93)

$$
\begin{equation*}
\rho_{\tau}=\frac{-\left(1-N_{\theta}{ }^{2}\right)-2 N_{\theta} T(1+\rho)}{I(1-\rho)(1+3 \rho)} \tag{A-1}
\end{equation*}
$$

The initial condition for this phase is that $\rho=1$ for $\tau=0$. This phase ends at $T=\tau_{1}$ when $\rho=0$. Phase 2 motion then begins and continues until a final deformation is reached. The equation for the final deformation is given by equation (105) as

$$
\begin{equation*}
N_{\theta} A_{F}^{2}+2\left(1-N_{\theta}^{2}\right) A_{F}=2 I+4 \tau_{1}\left(1-N_{\theta}^{2}\right)+4 \tau_{1}^{2} N_{\theta} \tag{A-2}
\end{equation*}
$$

For the case of pure bending ($N_{\theta}=0$) the solutions for equation (A-1) can be found in closed form as

$$
\begin{equation*}
1-\rho-\rho^{2}+\rho^{3}=\frac{\tau}{1} \tag{A-3}
\end{equation*}
$$

so that

$$
\begin{equation*}
\tau_{1}=I \tag{A-4}
\end{equation*}
$$

The solution of equation ($A-2$) for $N_{\theta}=0$ is then

$$
\begin{equation*}
A_{F}=3 I \tag{A-5}
\end{equation*}
$$

For the case of the maximum midplane force ($N_{\theta}=1$) the solution of equation (A-1) is

$$
\begin{equation*}
\tau^{2}=I\left[\frac{3}{2}(1+\rho)^{2}-8(1+\rho)+4 \log \frac{(1+\rho)}{2}+10\right] \tag{A-6}
\end{equation*}
$$

so that

$$
\begin{equation*}
\tau_{1}^{2}=0.7274 \mathrm{I} \tag{A-7}
\end{equation*}
$$

The solution of equation ($A-2$) then can be written as

$$
\begin{align*}
A_{F} & =2 I+4 T_{I} \tag{A-8}\\
A_{F} & =2.21 \sqrt{I} \tag{A-9}
\end{align*}
$$

For the general case equation (A-1) is solved numerically for ${ }^{T}$ and the value of A_{F} calculated from equation ($A-2$). The flow diagrams, computer program, and numerical results follow.

FINAL DEFORMATION OF IMPULSIVELY LOADED PLATES WITH MIDPLANE FORCES

$I N_{\theta}$	0	0.1	0.2	0.3	0.4	0.6	0.8	1.0
0.4	1.20	\cdots	1.10	\cdots	1.09	1.15	1.25	1.40
0.8	2.40	\cdots	2.01	\cdots	1.88	1.85	1.90	1.98
1.2	3.60	\ldots	2.80	\cdots	2.52	2.41	2.39	2.42
1.6	4.80	\cdots	3.51	\cdots	3.07	2.88	2.81	2.80
4.0	12.00	8.19	6.83	6.06	5.56	4.96	4.63	4.42
6.0	18.00	10.03	8.95	7.83	7.11	6.24	5.74	5.41
8.0	24.00	13.50	10.77	9.33	8.43	7.32	6.68	6.25
10.0	30.00	15.71	12.38	10.67	9.58	8.27	7.50	6.99
12.0	36.00	17.73	13.84	11.87	10.63	9.13	8.25	7.66

SRD4924.
J08. 1.06
2. MARTHA RORINSON,RDVI22, 11482011
A1998,
Program plates 2 (input dutput, tapezi)
OIMENSION COEFS(4),TAU(500), RHO(500),RHOT(500), RESULT(2)
OIMENSION CO(3), IN(2), XM1(5),YM1(1),F(100),A(100), YM2(1), XM2(3)
COMPLEX R(3),TEMP(2)
COMPLEX TEM(6),AFI NC
NAMELIST/INPUTIOTAU,IB,IE,INC, MAXN,IPFN,IPLOT
1 FORMATI*IINFLUENCE OF UNIFORM MID-PLANE FORCES ON*/* PLASTIC BENDI

2 FOKMAT (*DOATE*A10.5X*TIME*A10)
c input data
c input data
ib- initial impulse load
IE - FINAL IMPULSE LOAD
maxn - maximum numbek of iterations on time, radius ano velocity
IP:N - PRINT FREOUENCY
IPLOT - PLOTTING INOIC
calculate read input number of impulse load and set initial time
TAU
NN $=A B S(1)=$
$(I E-I E) / I N C)+1.0$
CALCULATE THE NORMAL FORCE (NTHETA)

MMMMMN
000007
000011
000017
000017

000034
000037
000041
000044
000052
000053
荌

n
$\stackrel{\circ}{8}$
0

```
000075
000076
000077
000102
000106
0 0 0 1 1 5
000115
000117
000123
000125
000130
000130
000133
0 0 0 1 5 6
000172
000172
0 0 0 1 7 4
000176
0 0 0 2 0 0
000202
000227
000247
000247
000253
000254
000254
000260
000260
0 0 0 2 6 1
```

```
    COEFS(2)=-1.0
```

 COEFS(2)=-1.0
 COEFS(3)=-1.0
 COEFS(3)=-1.0
 COEFS(4)=1.0-DTAU/FI
 COEFS(4)=1.0-DTAU/FI
 CALL FALG ICOEFS,3,O,R,TEMP,IERRI
 CALL FALG ICOEFS,3,O,R,TEMP,IERRI
 IF (IERR.NE.OI PRINT 5, IERH
 IF (IERR.NE.OI PRINT 5, IERH
 5 FORMAT ///10X*ERROR IN FALG SUBROUTINE*/I
 5 FORMAT ///10X*ERROR IN FALG SUBROUTINE*/I
 DO 6 M=1,3
 DO 6 M=1,3
 IF (AIMAG(R(M)).EQ.O.O) GO TU 8
 IF (AIMAG(R(M)).EQ.O.O) GO TU 8
 6 \text { continue}
 6 \text { continue}
 PRINT }
 PRINT }
 7 FORMAT(//10X*ALL ROOTS COMPLEX*/I
 7 FORMAT(//10X*ALL ROOTS COMPLEX*/I
 8 RHO(1)=REAL(R(M))
 8 RHO(1)=REAL(R(M))
 calculate initial rhot value
 calculate initial rhot value
 RHOT(1)=-12.*NTHETA*TAU(1)*(1.+RHO(1))+(1.-NTHETA**2))/(FI*(1.-
 RHOT(1)=-12.*NTHETA*TAU(1)*(1.+RHO(1))+(1.-NTHETA**2))/(FI*(1.-
 IRHO(1))*(1.+3.*RHO(1)))
 IRHO(1))*(1.+3.*RHO(1)))
 PRINT 9, N,TAU(N),RHO(N),RHOT(N)
 PRINT 9, N,TAU(N),RHO(N),RHOT(N)
 9 FORMAT (4X*N*, 11X*TAU*,17X*RHO*,17X*RHOT*//2XI3,3(5XE15.8))
 9 FORMAT (4X*N*, 11X*TAU*,17X*RHO*,17X*RHOT*//2XI3,3(5XE15.8))
 C BEGIN ITERATIDN ON RHO, TAU, RHOT
 C BEGIN ITERATIDN ON RHO, TAU, RHOT
 10 N=N+1
 10 N=N+1
 DELRHO=PHDT (N-1)#DTAU
 DELRHO=PHDT (N-1)#DTAU
 RHO(N)=RHO(N-1)+DELRHO
 RHO(N)=RHO(N-1)+DELRHO
 TAU(N)=TAU(N-1)+DTAU
 TAU(N)=TAU(N-1)+DTAU
 RHOT(N) =-(2.*NTHETA*TAU(N)*(1.+RHO(N))+(1.-NTHETA**2))/
 RHOT(N) =-(2.*NTHETA*TAU(N)*(1.+RHO(N))+(1.-NTHETA**2))/
 1(FI*(1.-RHO(N))*(1.+3.*RHO(N)I)
 1(FI*(1.-RHO(N))*(1.+3.*RHO(N)I)
 C DUTPLT
 C DUTPLT
 * RHO -RADIUS OF HINGE CIRCLE
 * RHO -RADIUS OF HINGE CIRCLE
 * RHOT - VELOCITY OF HINGE CIRCLE
 * RHOT - VELOCITY OF HINGE CIRCLE
 * TAU - TIME DF HINGE CIRCLE
 * TAU - TIME DF HINGE CIRCLE
 IF (MOD(N,IPFN).EQ.O) PRINT LI, N,TAU(N),RHO(N),RHOT(N)
 IF (MOD(N,IPFN).EQ.O) PRINT LI, N,TAU(N),RHO(N),RHOT(N)
 11 FORMAT(2XI3,3(5XE15.8))
 11 FORMAT(2XI3,3(5XE15.8))
 C IF MAXIMUM NUMBER OF ITERATIONS IS REACHED OR RADIUS :RHOI
 C IF MAXIMUM NUMBER OF ITERATIONS IS REACHED OR RADIUS :RHOI
 C BECOMES NEGATIVE -- STOP
 C BECOMES NEGATIVE -- STOP
 IF (N.GT.MAXN) GO TO }1
 IF (N.GT.MAXN) GO TO }1
 IF (RHO(NI.LT.O.OI GO TO 20
 IF (RHO(NI.LT.O.OI GO TO 20
 GO TO 10
 GO TO 10
 12 PRINT }1
 12 PRINT }1
 13 FORMAT///10X*MAXIMUM N REACHED*//1
 13 FORMAT///10X*MAXIMUM N REACHED*//1
 GO TO }1
 GO TO }1
 C INTERPOLATE FOR TIME AT WHICH RHO=O
 C INTERPOLATE FOR TIME AT WHICH RHO=O
 20 TAUA=TAU(N-1) &RHO(N-1)*DTAU/(RHO(N-1)-RHO(N))
 20 TAUA=TAU(N-1) &RHO(N-1)*DTAU/(RHO(N-1)-RHO(N))
 CALCULATE AF
    ```
    CALCULATE AF
```

CO(1) = NTHETA
$\operatorname{CO}(2)=2 . *(1 .-N T H E T A * * 2)$
$C O(3)=-2 . * F I-4 . * T A U A *(1 .-N T H E T A * * 2)-4 . * T A U A * * 2 * N T H E T A$ CALL FALG ICO, $2,0, A F$, TEM, IERRI

IF IIERR.NE.
DO 19 M=1,2
CONTINUE

$$
\begin{aligned}
& 21 \text { A(I)=REAL (AF(M)) } \\
& \text { PRINT } 16 \text {, TAUA AF } \\
& 16 \text { FIRMAT } / / 10 X \$ T A \cup A=* 1
\end{aligned}
$$

FiRMAT $/ / 10 X * T A \cup A=* E 15.8,5 X * A F(1)=* E 15.8, E 16.8,5 X * A F(2)=* E 15.8, E 16$.

PLOT RESULTS IF IPLOT=1

IF (IPLOT.EQ.O) GO TO 14
IT $=6 \mathrm{LTAPE} 2 \mathrm{I}$
DATA XMI(I)/IOHTAU
DATA XMI(1)/lOHTAU
DATA XMI(2)/10H
$\mathrm{I}=$
ENCOOE $(10,18, X M 1(3))$ FI FORMAT(F5.1)
DATA XM1

DATA XMI(4):OH NTHETA=/
FNGODE 110,18, XMI(5) NTHETA CONTINUE

18
$\rightarrow \stackrel{+}{-}$
F (IPLUT.EQ.O) GU TO 15 F (IPLOT.E
$\times M 2(1)=10 H I$

XM2 (2) $=104$ NTHETA $=$
ENCODE $(10,18$, XM2 (3) NTHETA
DATA YMZ(1)/1OHAF
CALL DDIPLT $15,1 N, N N, F, A, I B, F I, O, O, 1,3, X M 2,1, Y M 2,14, I T)$

IO 1000
l.

FUNCTIUN ASSIGNMENTS

block names and lengith

UNUSED COMPILER SPACE
002400

哣䔲 Eliti語高高 references

| | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 225020 \\ & \text { ع92020 } \end{aligned}$ | $\begin{aligned} & \begin{array}{l} 14020 \\ 9 ヶ 2020 \end{array} \end{aligned}$ | $\begin{aligned} & 114020 \\ & \varepsilon \mapsto 2020 \end{aligned}$ | 904020
 Ef2020 | $\begin{aligned} & 915020 \\ & 115910 \end{aligned}$ | $\begin{aligned} & 222020 \\ & 015910 \end{aligned}$ | $\begin{aligned} & 2 \varepsilon>0 z 0 \\ & \varepsilon \angle 20 z 0 \end{aligned}$ 905910 | 17 d 100 | 905620 | －1dino |
| 192210 | $99+10$ | $\begin{aligned} & 19 \varepsilon 020 \\ & 2 \angle E \angle 10 \end{aligned}$ | $\begin{aligned} & \angle 28020 \\ & 21 \angle 910 \end{aligned}$ | $\begin{array}{r} 120020 \\ 259910 \end{array}$ | $\begin{aligned} & \boldsymbol{2} 80020 \\ & \mathfrak{i E S 9 1 0} \end{aligned}$ | $\begin{aligned} & 910020 \\ & 9 \angle \$ 910 \end{aligned}$ | 178100 | | |
| | | | | | | | | themzo | 038510 |
| | | | | | | | | E9EEzO | $6663 d 3$ |
| | | | | | | | | ¢91Ezo | \％OJ3 |
| | | | | | | | | ヶヵちをで | \＆03d |
| | | | | | | | | 95 zezo | 203d 3 |
| | | | | 409E10 | 9／58io | 215810 | wilato | て！く£て0 | 3d3 |
| | | | | | $\begin{aligned} & 191910 \\ & \text { L9ヶETO } \end{aligned}$ | | $\begin{aligned} & \text { Sldino } \\ & \text { Jldino } \end{aligned}$ | 251120 | $8300 \times$ |
| | | | | | | $2158 z 0$ | glaino | | |
| | | | | | | ¢ 29810 | Nindil | | |
| | | | | | | 1eseto | 3ldino | 281120 | V8139 |
| | | | | | | $\begin{aligned} & \text { E1SEzo } \\ & 915 \varepsilon 10 \end{aligned}$ | $\begin{aligned} & \text { qualno } \\ & \text { jldino } \end{aligned}$ | －27120 | －us |
| | | | | | | 9¢çzo | slaino | | |
| | | | | | | 091 ¢10 | Nindid | | |
| | | | | | | $15 ¢ \mathrm{El0}$ | jidino | | |
| | | | | | | S2telo | waishs | 211120 | －NヨdO |
| | | | －25：20 | sesezo | 2ヶ5820 | こと5¢zo | qlaino | 9 9\％tzo | －1012 |
| | | | | LISEto | ع0scto | ¢9\％を10 | 31dino | $\begin{aligned} & z 051 z 0 \\ & 09 ヵ 120 \end{aligned}$ | $\begin{aligned} \cdot \dot{C x d O} \end{aligned}$ |
| | | | | | | 19ヵを10 | 31dıno | －¢bizo | － 71.500 |
| | | | | | | | | 21120 | |
| | | | | | | | | | |
| | | | 195000 | $9+5000$ | \＄25000 | 115000 | 2S3107d | $95 \% 910$ | 17 d 100 |
| | | | esemzo | 25¢0zo | 058020 | £っと0zo | | | |
| 128020 | O2E020 | 91 ¢0zo | 118020 | 190020 | 090020 | 950020 | | | |
| 050020 | 900020 | 500020 | E000z0 | st1210 | ¢StLic | わらわく10 | | | |
| 9ヶック10 | 0ヶヶ」10 | 256120 | 9selio | osedio | でEく10 | 972910 | | | |
| \＄$\$ 1910$ | عr1910 | 1 1910 | Efl910 | CEL910 | OEL910 | 922910 | 178100 | | |
| | | 2，5000 | 175000 | 185000 | SEs000 | E05000 | | | |
| zosoue | 005000 | 914000 | EL5000 | 214000 | 024000 | $99 \% 000$ | 253107d | 1ヶ1910 | Sidino |
| | | | | | E15000 | S02000 | 253107d | 290510 | 9\％s |
| | | | | | | 121000 | 253107d | | ninani |
| | | | | | | 011000 | 253107d | S4ceio | whlayo |

INFLUENCE UF UNIFORM MID-PLANE FORCES DN
PLASTIC BENDING UNDER IMPULSIVE LOADING
ROBINSON-KRUSZEWSKI, SKD-A1998, FEBRUARY 1968, RDV-122
DATE 03/07/68 TIME 19.16 .59.

| DTAU= | . $010 \quad 1=4.0$ | NTHETA $=.10$ | |
| :---: | :---: | :---: | :---: |
| N | tau | RHO | RHOT |
| 1 | 1.000000005-02 | $9.64325054 \mathrm{E}-01$ | $-1.78916444 E+0$. |
| 10 | 1.00000000E-01 | 8.80608619E-01 | -5.90849807E-01 |
| 20 | $2.00000000 E-01$ | $8.29276011 \mathrm{E}-01$ | -4.46368495E-61 |
| 30 | 3.00000000t-01 | $7.87761936 \mathrm{E}-01$ | -3.84295030E-011 |
| 40 | $4.00000000 \mathrm{E}-01$ | 7.51066650E-01 | -?.48865004E-01 |
| 50 | $5.00000000 E-01$ | $7.17296100 \mathrm{E}-01$ | -3.25934887E-01 |
| 60 | $6.00000000 \mathrm{E}-01$ | $6.85452608 \mathrm{E}-01$ | -3.10040640E-01 |
| 70 | 7.00000000E-01 | $6.54993972 \mathrm{E}-01$ | -2.98576451E-01 |
| 80 | 8.00000000E-01 | $6.25537314 \mathrm{E}-01$ | -2.9017.8280E-01 |
| 90 | 9.00000000E-01 | $5.96822057 E-01$ | -2.83 $359153 \mathrm{E}-01$ |
| 100 | $1.00000000 E+00$ | $5.68655887 E-01$ | -2.792425428-01 |
| 110 | 1.10000000E +00 | 5.40890256E-01 | -2.75932814E-01 |
| 120 | 1. $20000000 \mathrm{E}+00$ | 5.13405705E-01 | -2.73696801E-01 |
| 130 | 1.30000000E+00 | $4.86102527 \mathrm{E}-01$ | -2.72375324E-01 |
| 140 | $1.40000000 \mathrm{~F}+00$ | $4.58894475 \mathrm{E}-01$ | -2.71860561E-01 |
| 150 | 1.50000000 t 00 | $4.31704306 E-01$ | -2.72082392E-'1 |
| 160 | $1.60000000 F+00$ | $4.04460408 \mathrm{E}-01$ | -2.73000154E)1 |
| 170 | $1.70000000 \mathrm{E}+00$ | 3.77094097E-01 | -2.74597925E J1 |
| 180 | $1.80000000 \mathrm{t}+00$ | $3.49537255 \mathrm{E}-01$ | -2.7688234CE-01 |
| $1 \div 0$ | $1.90009000 F+00$ | $3.21720101 \mathrm{E}-01$ | -2.7988248. ${ }^{\text {E }}$ - 01 |
| 200 | 2.00000000E+00 | $2.93568869 \mathrm{E}-01$ | -2.83651821E-01 |
| 210 | $2.10000000 E+00$ | 2.65003209E-01 | -2.88272380E-01 |
| 220 | $2.20000000 E+00$ | $2.35933030 \mathrm{E}-01$ | -2.93862061E-01 |
| 230 | $2.30000000 E+00$ | $2.06254428 \mathrm{E}-01$ | -3.00586357E-01 |
| 240 | $7.40000000 \mathrm{E}+00$ | $1.75844160 \mathrm{E}-01$ | -3.08677131E-01 |
| 250 | $2.50000000 E+00$ | 1.44551752E-01 | -3.18463206E-01 |
| 260 | $2.60000000 \mathrm{t}+00$ | $1.12187711 \mathrm{E}-01$ | -3.30421985E-01 |
| 270 | 2. $70000000 F+00$ | 7.85050049E-02 | -3.45270934E-01 |
| 280 | $2.80000000 E+00$ | $4.31682146 \mathrm{E}-02$ | -3.64140668E-01 |
| 290 | 2.90000000E+00 | $5.69841823 \mathrm{E}-03$ | -3.88931569E-01 |

i) TAU = .010 $\quad I=6.0$ NTHETA $=.10$

| N | TAU | RHO | RHOT |
| :---: | :---: | :---: | :---: |
| 1 | 1.00000000E-02 | $9.70920305 E-01$ | -1.45591684E+00 |
| 10 | 1.00000000E-01 | $9.03063513 \mathrm{E}-01$ | -4.76542157E-01 |
| 20 | $2.00000000 \mathrm{E}-01$ | $8.61766565 \mathrm{E}-01$ | -3.57967732E-01 |
| 30 | 3.00000000E-01 | 8.28546299E-01 | -3.06689398E-01 |
| 40 | 4.00300000E-01 | 1.99320530E-01 | -2.77152995E-01 |
| 50 | 5.00000000E-01 | 7.72536510E-01 | -2.57796503E-01 |
| 60 | S. $00000000 \mathrm{~F}-01$ | $7.47407232 \mathrm{E}-01$ | -2.4414833UE-01 |
| 70 | 7.00000000E-01 | 7.23469545E-01 | -2.34071958E-01 |
| 80 | 3.00000000F-01 | $7.00423916 \mathrm{E}-01$ | -2.26404202E-01 |
| 90 | 9.00000000t-01 | 6.78063379E-01 | -2.20452673E-01 |
| 100 | 1.00000000E +00 | $6.56237641 \mathrm{E}-01$ | -2.15777627E-01 |
| 110 | 1.10009000E+00 | 6. $34833178 \mathrm{E}-01$ | -2.12085787E-01 |
| 120 | 1.20000000E +00 | 6. $13761395 \mathrm{E}-01$ | -2.09174050E-01 |
| 130 | 1.3000:3000F+00 | 5.92951187E-01 | -2.06877600E-01 |
| 140 | $1.40000000 E+00$ | 5.72344043E-01 | -2.05150854E-01 |
| 150 | 1.50000000E+00 | $5.51890703 \mathrm{E}-01$ | -2.03855581E-01 |
| 160 | 1.00000000E +00 | 5.31548791E-01 | -2.02953236E-01 |
| 170 | 1.70000000E +00 | 5.11281098E-01 | -2.02399863E-01 |
| 180 | 1. $80000000 \mathrm{E}+00$ | $4.91054284 \mathrm{E}-01$ | -2.02162642E-01 |
| 190 | 1.90000000E +00 | $4.70837881 \mathrm{E}-01$ | -2.02217512E-01 |
| 200 | 2.00000000E+00 | $4.50603495 \mathrm{E}-01$ | -2.02547533E-01 |
| 210 | 2.10000000E+00 | 4.30324150E-01 | -2.03141766E-01 |
| 220 | 2. 20000000E+00 | $4.09973721 E-01$ | -2.03994533E-01 |
| 230 | 2.300000 $00 E+00$ | 3.89526432E-01 | -2.05104988E-01 |
| 240 | $2.40000000 E+00$ | $3.68956381 \mathrm{E}-01$ | -2.06476927E-01 |
| 250 | 2. $50000000 \mathrm{E}+00$ | 3.48237078E-01 | -2.08118830E-01 |
| 260 | 2.60000000E+00 | 3.27340963E-01 | -2.10044133E-01 |
| 270 | $2.70000000 E+00$ | 3.06238895E-01 | -2.12271744E-01 |
| 280 | $2.80000000 \mathrm{~F}+00$ | 2.84399565E-01 | -2.14826851E-01 |
| 290 | $2.90000000 \mathrm{~F}+00$ | $2.63288822 \mathrm{E}-01$ | -2.17742100E-01 |
| 300 | 3.00000000E+00 | 2.41368855E-01 | -2.21059267E-01 |
| 310 | $3.10000000 E+00$ | 2.19097184E-01 | -2.24831598E-01 |
| 320 | 3.20000000E+00 | 1.96425369E-01 | -2.29127129E-01 |
| 330 | 3.30000000E+00 | 1.73297335E-01 | -2.34033422E-01 |
| 340 | 3.40000000E+00 | $1.49647132 \mathrm{E}-01$ | -2.39664469E-01 |
| 350 | $3.50000000 \mathrm{E}+00$ | 1.25395857E-01 | -2.46171003E-01 |
| 360 | $3.60000000 E+00$ | 1.00447334E-01 | -2.53756336E-01 |
| 370 | 3.70000000E+00 | 7.46818134E-02 | -2.62701583E-01 |
| 380 | $3.80000000 E+00$ | 4.79464922E-02 | -2.734076015-01 |
| 390 | 3.90000000E*00 | 2.00405872E-02 | -2.86468443E-01 |

TAUA $=3.96887600 E+00$
$A F(1)=1.10328784 E+01$
0.
DTAU $=.010 \quad 1=8.0$ NTHETA＝ .10
N
tau
$1.00000000 \mathrm{E}-02$
1． $00000000 \mathrm{E}-01$
2． $00000000 \mathrm{E}-01$
3．00000000E－01
$4.00000000 \mathrm{E}-01$
5．00000000E－01
$6.00000000 \mathrm{E}-01$
$7.00000000 \mathrm{E}-01$
$8.00000000 \mathrm{E}-01$
9． $00000000 \mathrm{E}-01$
$1.00000000 \mathrm{E}+00$
$1.10000000 \mathrm{E}+00$
$1.20000000 \mathrm{E}+00$
1． $30000000 \mathrm{E}+00$
$1.40000000 \mathrm{E}+00$
1．50000000E +00
$1.60000000 E+00$
$1.70000000 \mathrm{E}+00$
$1.80000000 \mathrm{E}+00$
1． $90000000 \mathrm{E}+00$
2． $00000000 \mathrm{E}+00$
$2.10000000 E+00$
2． $20000000 \mathrm{E}+00$
$2.30000000 \mathrm{E}+00$
$2.40000000 \mathrm{E}+00$
2． $50000000 \mathrm{E}+00$
$2.60000000 \mathrm{E}+00$
$2.70000 \% 00 E+00$
$2.80000000 \mathrm{E}+00$
2． $90000000 \mathrm{E}+00$
3． $00000000 \mathrm{E}+00$
$3.10000000 \mathrm{E}+00$
3． $20000000 \mathrm{E}+00$
3．30000000E＋00
$3.40000000 E+00$
$3.50000000 \mathrm{E}+00$
$3.60000000 E+00$
3． $70000000 \mathrm{E}+00$
$3.80000000 \mathrm{E}+00$
3．90000000E +00
$4.00000000 \mathrm{E}+00$
$4.10000000 \mathrm{E}+00$
$4.20000000 E+00$
$4.30000000 E+00$
$4.40000000 E+00$
$4.50000000 \mathrm{E}+00$
4.600 ODOOOE＋00

4．TOUGNOOOE +00
$4.800 \mathrm{C} 0000 \mathrm{E}+00$
$4.90000000 \mathrm{E}+00$

RHO
9．74841259E－01
9．163261725－01
8.8086591 OE－01 8．52424119E－01 8． $27465145 \mathrm{E}-01$ $8.04644527 E-01$ $7.83281360 \mathrm{E}-01$ $7.62975496 \mathrm{E}-01$ $7.43468716 \mathrm{E}-01$ 7． $24583180 \mathrm{E}-01$ 7．06190328E－01 $6.88193650 \mathrm{E}-01$ $6.70518442 \mathrm{E}-01$ $6.53105376 \mathrm{E}-01$ $6.35906281 \mathrm{E}-01$ 6．18881280E－01 6．01996768E－01 5．85223962E－01 5．68537832E－01 $5.51916284 \mathrm{E}-01$ $5.35339542 \mathrm{E}-01$ 5．18789656E－01 $5.02250107 \mathrm{E}-01$ 4．85705492E－01 4．69141248E－01 $4.52543431 E-01$ $4.35898509 E-01$ $4.19193184 \mathrm{E}-01$ 4．02414222E－01 $3.85548295 \mathrm{E}-01$ 3．68581820E－01 $3.51500794 \mathrm{E}-01$ 3．3429062のに－01 3．16935 ヶo OE－O1 2.99420442 E 01 2．01726514E－01 $2.63835133 E-01$ $2.45725437 \mathrm{E}-01$ 2．27374371E－01 2.087562 07E－01 $1.89841949 \mathrm{E}-01$ $1.70598595 \mathrm{E}-01$ 1．50988172E－01 $1.30966487 \mathrm{E}-01$ 1．10481461E－01 8．94708677E－02 $6.78591765 \mathrm{E}-02$ 4．55530486E－02 2．24346799E－02
－1．64840441E－03

RHOT

$-1.25834155 \mathrm{E}+00$
$-4.09768396 \mathrm{E}-01$
$-3.06837213 \mathrm{E}-01$
$-2.62193667 \mathrm{E}-01$
$-2.36378952 \mathrm{E}-01$
$-2.19375231 \mathrm{E}-01$
$-2.07306725 \mathrm{E}-01$
$-1.98320631 \mathrm{E}-01$
$-1.91407420 \mathrm{E}-01$
$-1.85965423 \mathrm{E}-01$
$-1.81611781 \mathrm{E}-01$
$-1.78090411 \mathrm{E}-01$
$-1.75223193 \mathrm{E}-01$
$-1.72882294 \mathrm{E}-01$
$-1.70973617 \mathrm{E}-01$
$-1.69426458 \mathrm{E}-01$
$-1.68186795 \mathrm{E}-01$
$-1.67212815 \mathrm{E}-01$
$-1.66471834 \mathrm{E}-01$
$-1.65938140 \mathrm{E}-01$
$-1.65591453 \mathrm{E}-01$
$-1.65415811 \mathrm{E}-01$
$-1.65398746 \mathrm{E}-01$
$-1.65530685 \mathrm{E}-01$
$-1.65804499 \mathrm{E}-01$
$-1.66215180 \mathrm{E}-01$
$-1.66759608 \mathrm{E}-01$
$-1.67436390 \mathrm{E}-01$
$-1.08245765 \mathrm{E}-01$
$-1.69189566 \mathrm{E}-01$
$-1.70271225 \mathrm{E}-01$
$-2.71495841 \mathrm{E}-01$
$-1.72870294 \mathrm{E}-01$
$-1.74403421 \mathrm{E}-01$
$-1.76106262 \mathrm{E}-01$
$-1.77992394 \mathrm{E}-01$
$-1.80078373 \mathrm{E}-01$
$-1.82384310 \mathrm{E}-01$
$-1.84934637 \mathrm{E}-01$
$-1.87759118 \mathrm{E}-01$
$-1.90894202 \mathrm{E}-01$
$-1.94384851 \mathrm{E}-01$
$-1.98287061 \mathrm{E}-01$
$-2.02671374 \mathrm{E}-01$
$-2.07627906 \mathrm{E}-01$
$-2.13273698 \mathrm{E}-01$
$-2.19763777 \mathrm{E}-01$
$-2.27308355 \mathrm{E}-01$
$-2.36200640 \mathrm{E}-01$
$-2.46863946 \mathrm{E}-01$
$T A U A=4.89329104 E+00$
$A F(1)=1.35000324 E+01 \quad 0$ ．
taU

RHO
$9.77512541 \mathrm{E}-01$ $9.25325755 \mathrm{E}-01$ $8.93789604 \mathrm{E}-01$ $8.68543162 \mathrm{E}-01$ $8.46423763 \mathrm{E}-01$ $8.26228895 \mathrm{E}-01$ $8.07349736 \mathrm{E}-01$ $7.894 \sim 712 \mathrm{E}-01$ $7.72235296 E-01$ 7. $55610935 \mathrm{E}-01$ 7.39441233E-01 $7.23640529 E-01$ $7.08142740 \mathrm{E}-01$ $6.92895607 \mathrm{E}-01$ 6.7785693 OE- 01 $6.62992005 \mathrm{E}-01$ $6.48271829 E-01$ $6.33671807 E-01$ $6.19170799 \mathrm{E}-01$ $6.04750412 \mathrm{E}-01$ 5. $90394448 \mathrm{E}-01$ $5.76088482 \mathrm{E}-\mathrm{Cl}$ $5.61819528 \mathrm{E}-01$ $5.47575765 \mathrm{E}-01$ $5.33346325 \mathrm{E}-01$ 5. $19121108 \mathrm{E}-01$ $5.04890634 \mathrm{E}-01$ $4.90645910 \mathrm{E}-01$ 4.76378326E-01 $4.62079550 \mathrm{E}-01$ $4.47741444 \mathrm{E}-01$ 4. $33355983 \mathrm{E}-01$ $4.18915180 \mathrm{E}-01$ $4.04411012 \mathrm{E}-01$ $3.89835349 \mathrm{E}-01$ 3.75179885E-01 $3.60436062 E-01$ $3.45594994 \mathrm{E}-01$ 3. $30647383 \mathrm{E}-01$ $3.15583429 \mathrm{E}-01$ $3.00392729 \mathrm{E}-01$ $2.85064160 \mathrm{E}-01$ $2.69585754 \mathrm{E}-01$ $2.53944540 \mathrm{E}-01$ $2.38126370 \mathrm{E}-01$ 2. $22115701 \mathrm{E}-01$ 2.0589534 7E-01 1. $89446164 \mathrm{E}-01$ $1.72746669 \mathrm{E}-01$ 1.55772.62E-01 $1.38496132 \mathrm{E}-01$ 1. $20885483 \mathrm{E}-01$ $1.02903542 \mathrm{E}-01$ $8.45067381 E-02$ $6.56432367 E-02$ $4.62504968 \mathrm{E}-02$ 2.625183 90E-02 $5.55145305 \mathrm{E}-03$

RHOT

$-1.12396677 E+00$ -3.64759686E-01 -2.72570989E-01 -2.32520735E-01 -2.09312512E-01 -1.93983812E-01
-1.83066526E-01
-1.74902351E-01
$-1.68587443 \mathrm{E}-01$
$-1.63582866 \mathrm{E}-01$
-1.59545450E-01
-1.56245431E-01
$-1.53522768 \mathrm{E}-01$
$-1.51262375 \mathrm{E}-01$

- $1.49379298 \mathrm{E}-01$
- $1.47809448 \mathrm{E}-01$
-1.46503596E-01
$-1.45423346 \mathrm{E}-01$
-1.44538372E-01
$-1.43824476 \mathrm{E}-01$
- $1.43262190 \mathrm{E}-01$
- $1.42835757 \mathrm{E}-01$
-1.42532377E-01
-1.42341639E-01
$-1.42255089 \mathrm{E}-01$
- $1.42265905 \mathrm{E}-01$
- $1.42368641 \mathrm{E}-01$
$-1.42559032 \mathrm{E}-01$
- 1.42833847 E -01
-1.43190771E-01
- $1.43628325 \mathrm{E}-01$
- $1.44145803 \mathrm{E}-01$
- $1.44743235 \mathrm{E}-01$
$-1.45421362 \mathrm{E}-01$
- $1.46181636 \mathrm{E}-01$
$-1.47026235 \mathrm{E}-01$
-1.47958086E-01
-1.48983920E-01
- $1.50099337 E-01$
-1.51318898E-01
$-1.52646240 \mathrm{E}-01$
$-1.54089229 E-01$
$-1.55657145 \mathrm{E}-01$
-1.57360928E-01
- $1.59213471 \mathrm{E}-01$
$-1.61230013 \mathrm{E}-01$
-1.63428623E-01
$-1.65830838 \mathrm{E}-01$
$-1.68462488 \mathrm{E}-01$
-1.71354782E-01
$-1.74545767 \mathrm{E}-01$
$-1.78082300 \mathrm{E}-01$
$-1.82022784 \mathrm{E}-01$
$-1.86441014 \mathrm{E}-01$
-1.91431731E-01
- $1.97118842 \mathrm{E}-01$
$-2.03667968 \mathrm{E}-01$
-2.1130628BE-01
$1.00000000 \mathrm{E}-02$. $00000000 \mathrm{E}-01$ 2.00000000E-01 3. $00000000 \mathrm{E}-01$ $4.00000000 \mathrm{E}-01$ 5.00000000E-01 6. 00000000E-01 7.00000000E-01 8.00000000E-01 9. 00000000E-01 1. $00000000 \mathrm{E}+00$. $10000000 \mathrm{E}+00$ $.20000000 E+00$ $1.30000000 \mathrm{E}+00$ $1.40000000 E+00$ $1.50000000 \mathrm{E}+00$ $.60000000 E+00$ $1.70000000 E+00$ $1.80000000 E+00$ $1.90000000 \mathrm{E}+00$ 2. $00000000 E+00$ 2. $10000000 \mathrm{E}+00$ $2.20000000 \mathrm{E}+00$ $2.30000000 E+00$ $2.40000000 E+00$ $2.50000000 \mathrm{E}+00$ $2.60000000 E+00$ $2.70000000 E+00$ $2.80000000 \mathrm{E}+00$ 2. $90000000 \mathrm{E}+00$ $3.00000000 \mathrm{E}+00$ $3.10000000 E+00$ $3.2000-0000 \mathrm{E}+00$ 3. $30000000 E+00$ $3.40000000 E+00$ $3.50000000 E+00$ $3.60000000 F+00$ 3. $70000000 E+00$ $3.80000000 E+00$ $3.90000000 \mathrm{E}+00$ $4.00000000 E+00$ $4.10000000 \mathrm{E}+00$ $4.20000000 \mathrm{E}+100$ $4.30000000 E+00$ $4.40000000 E+00$ $4.50000000 \mathrm{E}+00$ $4.60000000 E+00$ $4.70000000 E+00$ $4.80000000 \mathrm{E}+00$ $4.90000000 E+00$ $5.00000000 E+00$
$.10000000 \mathrm{E}+00$ $5.20000000 \mathrm{E}+00$. $30000000 E+00$ $5.40000000 E+00$ $5.50000000 E+00$ $5.60000000 E+00$ $5.70000000 \mathrm{E}+00$ $5.80000000 E+00$ $5.90000000 \mathrm{E}+00$ 6. $00000000 E+00$ $6.10000000 E+00$ $6.20000000 \mathrm{E}+00$ $6.30000000 E+00$ $6.40000000 E+00$ $6.50 C 00000 E+00$

NTHETA= . 10

| RHO | RHO |
| :---: | :---: |
| $9.79482068 \mathrm{E}-01$ | -1.02501141E+00 |
| 9.31942759E-01 | -3.31818643E-01 |
| $9.03273630 \mathrm{E}-01$ | -2.47589073E-01 |
| $8.80353384 \mathrm{E}-01$ | -2.10957800E-01 |
| 8.60294723E-01 | -1.89702092E-01 |
| 9.41999875E-01 | -1.75639072E-01 |
| 8.24913135E-01 | -1.65601972E-01 |
| $8.08708225 E-01$ | -1.58076381E-01 |
| $7.93174896 E-01$ | -1.52236742E-01 |
| $7.78168650 \mathrm{E}-01$ | -1.47590687E-01 |
| $7.63585329 \mathrm{E}-01$ | -1.43824595E-01 |
| $7.49347046 \mathrm{E}-01$ | -1.40728393E-01 |
| $7.35393813 \mathrm{E}-01$ | -1.38155668E-01 |
| 7.21578299E-01 | -1.36001040E-01 |
| $7.08162383 \mathrm{E}-01$ | -1.34186629E-01 |
| $6.94814824 E-01$ | -1.32653591E-01 |
| $6.81609617 E-01$ | -1.3.356S27E-01 |
| 6.68524819E-01 | -1.302603.)6E-01 |
| $6.55541681 \mathrm{E}-01$ | -1.29336538E-01 |
| 6.42644003E-01 | -1.28562795E-01 |
| $6.29817633 \mathrm{E}-01$ | -1.27920829E-01 |
| 6.17050089E-01 | -1.27395742E-01 |
| $6.04330254 \mathrm{E}-01$ | -1.26975287E-01 |
| $5.91648135 E-01$ | -1.26649347E-01 |
| 5.789946:2E-01 | -1.26409530E-01 |
| $5.66361576 \mathrm{E}-01$ | -1.26248869E-01 |
| $5.53741202 \mathrm{E}-01$ | -1.26161575E-01 |
| $5.41126435 \mathrm{E}-01$ | -1.26142851E-01 |
| $5.28510604 \mathrm{E}-01$ | -1.26188745E-01 |
| $5.15887396 \mathrm{E}-01$ | -i. $26296033 \mathrm{E}-01$ |
| $5.03250795 \mathrm{E}-01$ | -1.26462121E-01 |
| $4.90595015 \mathrm{E}-01$ | -1.26684978E-01 |
| $4.77914454 \mathrm{E}-01$ | -1.26963074E-01 |
| 4.65203638E-01 | -1.27295335E-0i |
| $4.52457185 \mathrm{E}-01$ | -1.27681110E-01 |
| $4.39669756 \mathrm{E}-01$ | -1.28120150E-01 |
| $4.26836024 E-01$ | -1.28612584E-01 |
| $4.13950628 \mathrm{E}-01$ | -1.29158918E-01 |
| $4.01008143 \mathrm{E}-01$ | -1.29760029E-01 |
| $3.88003037 \mathrm{E}-01$ | -1.30417171E-01 |
| $3.74929637 \mathrm{E}-01$ | -1.31131988E-01 |
| $3.61782086 \mathrm{E}-01$ | -1.3:906533E-01 |
| $3.48554303 \mathrm{E}-01$ | -1.32743297E-01 |
| 3.35239937E-01 | -1.33645240E-01 |
| $3.21832318 \mathrm{E}-01$ | -1.3461584tE-01 |
| $3.08324403 \mathrm{E}-01$ | -1.35659155E-01 |
| 2.94708715E-01 | -1.36779378E-01 |
| $2.80977275 \mathrm{E}-01$ | -1. $7983442 \mathrm{E}-01$ |
| 2.37121524E-01 | -1.39276112E-01 |
| $2.53132235 \mathrm{E}-01$ | -1.40665123E-01 |
| 2.38999407E-01 | -1.42158839E-01 |
| $2.24712146 \mathrm{E}-01$ | -1.43766947E-01 |
| $2.10258519 \mathrm{E}-01$ | -1.45500711E-01 |
| $1.95625388 \mathrm{E}-01$ | -1.47373279E-01 |
| $1.80798197 \mathrm{E}-31$ | -1.49400073E-01 |
| $1.65760731 \mathrm{E}-01$ | -1.51599290E-01 |
| 1.50494805E-01 | -1.53992545E-01 |
| $1.34979892 \mathrm{E}-01$ | -1.56605712E-01 |
| $1.19192644 \mathrm{E}-01$ | -1.59470031E-01 |
| $1.03106296 \mathrm{E}-01$. | -1.62623596E-01 |
| 8.66898911E-02 | -1.66113382E-01 |
| 6.99072796E-52 | -1.69998059E-01 |
| 5.271s?750¢-02 | -1.74351978E-01 |
| 3.50643513E-02 | -1.79270963E-01 |
| $1.68911267 \mathrm{E}-02$ | -1.84880937E-01 |
| | |

OTAU =.010 $\quad l=4.0 \quad$ NTHETA $=.30$
N
1
10 20 30 40 50 60 70 80 90 100
110 120 130
140
150
160
170
180
190
200
210
220

TAU
$1.00000000 E-02$
$1.00000000 E-01$
$2.00000000 E-01$
$3.00009000 E-01$
$4.00000000 E-01$
$5.00000000 E-01$
$6.00000000 E-01$
$7.00000000 E-01$
$9.00000000 E-01$
$9.00000000 E-01$
$1.00000000 E+00$
$1.10000000 E+00$
$1.20000000 E+00$
$1.30000000 E+00$
$1.40000000 E+00$
$1.500000,0 E+00$
$1.50000000 E+00$
$1.70000000 \mathrm{E}+00$
$1.30000000 E+00$
$1.90000000 \mathrm{E}+00$
$2.00000000 E+00$
$2.10000000 E+00$
$2.20000000 E+00$

RHO
$9.64325054 \mathrm{E}-01$
$8.83079455 \mathrm{E}-01$
$8.29850692 \mathrm{E}-01$
$7.84796684 \mathrm{E}-01$
$7.43433701 \mathrm{E}-01$
$7.04096361 \mathrm{E}-01$
$6.65954302 \mathrm{E}-01$
$6.28521061 \mathrm{E}-01$
$5.91477981 \mathrm{E}-01$
$5.54556757 \mathrm{E}-01$
$5.17700254 \mathrm{E}-01$
$4.80640346 \mathrm{E}-01$
$4.43283950 \mathrm{E}-01$
$4.05503099 \mathrm{E}-01$
$3.67166796 \mathrm{E}-01$
$3.28133154 \mathrm{E}-01$
$2.88240532 \mathrm{E}-01$
$2.47296147 \mathrm{E}-01$
$2.05059849 \mathrm{E}-01$
$1.6 \mathrm{i} 219031 \mathrm{E}-01$
$1.15346693 \mathrm{E}-01$
$6.68252393 \mathrm{E}-02$
$1.46928062 \mathrm{E}-02$

RHOT
$-1.65930084 E+00$
$-5.99399137 \mathrm{E}-01$
-4.75617618E-01
$-4.26411059 E-01$
-4.00713649E-01
-3.85810289E-01
-3.76899482E-01
-3.71755821E-01
$-3.69217355 E-01$
$-3.68634642 \mathrm{E}-01$
$-3.69636088 E-01$
$-3 . ? 2017456 \mathrm{E}-01$
-3.75687237E-0:
$-3.80640581 E-01$

- ?.86950393E-01

一 $\therefore .94771489 E-01$
-4.04358260E-01
-4.10100769E-01
-4.30590822E-01
$-4.48745583 E-01$
$-4.72047373 E-01$
$-5.03055074 \mathrm{E}-01$
$-5.46639318 \mathrm{E}-01$
$T A U A=2.22664056 E+00$
$\Delta F(1)=6.06151367 E+00 \quad 0$.
DTAU $=.010 \quad I=6.0 \quad$ NTHETA $=.30$

| N | iAU | RHO | KHOT |
| :---: | :---: | :---: | :---: |
| 1 | 1.00000000E-0? | 9.709203U5E-01 | $-1.35028152 \mathrm{~F}+00$ |
| 10 | 1.00000000E-i, 1 | $0.05042592 \mathrm{~F}-01$ | -4.83920921E-01 |
| 20 | ?.00000000s-01 | 8.62162169E- 31 | -3.321352565-01 |
| 30 | 3.00097000E-01 | $8.26030295 E-01$ | -3.41189107E-01 |
| 40 | $4.01000000 \mathrm{E}-01$ | $7.92992244 E-01$ | -3.19363167E-01 |
| 50 | $5.00000000 \mathrm{E}-01$ | $7.61696653 \mathrm{E}-\mathrm{Cl}$ | -3.06255518E-01 |
| 60 | 6.00000000E-01 | 7.31475909E-01 | -2.91926021E-01 |
| 70 | 7.0J000000E-01 | $7.01945258 \mathrm{E}-01$ | -2.9253557<E゙-01 |
| 80 | 8.00000000E-01 | $6.72859333 i-01$ | -2.89109391E-01 |
| 90 | $9.00000000 E-01$ | 6. $74049382 \mathrm{EE}-01$ | -2.87085491F-01 |
| 100 | $1.00003000 E+00$ | $6.15391930 \mathrm{E}-01$ | -2.86121024--01 |
| 110 | 1.10000000F +00 | $5.86791596 \mathrm{E}-01$ | -2.85999355E-O1 |
| 120 | 1.20030000E+00 | $5.58170838 \mathrm{E}-01$ | -2.86581688E-0. |
| 130 | $1.30000000 \mathrm{~F}+00$ | $5.29463555 \mathrm{E}-01$ | -2.87780342E-01 |
| 140 | $1.40000000 E+00$ | $5.00610699 \mathrm{E}-01$ | -2.89543450E-01 |
| 150 | 1.50000' $\mathrm{OE}+00$ | $4.71557143 \mathrm{E}-01$ | -2.91846087E-01 |
| 160 | 1.60000- $30 \mathrm{E}+00$ | $4.42249235 \mathrm{E}-\mathrm{Jl}$ | -2.94685360ㅌ-01 |
| 170 | $1.70000000 \mathrm{~F}+00$ | $4.12632710 \mathrm{E}-\mathrm{JI}$ | -2.98078142E-01 |
| 180 | 1.80000000 $2+00$ | $3.82650744 \mathrm{E}-01$ | -3.02060868E-01 |
| 190 | 1.90000000E+00 | 3.52241934E-01 | -3.06691195E-01 |
| 200 | $2.00000000 \mathrm{E}+00$ | 3.21338031E-01 | -3.12051730E-01 |
| 210 | $2.10000000 \mathrm{E}+00$ | $2.89861181 \mathrm{E}-01$ | -3.18256398E-01 |
| 220 | $2.20000000 \mathrm{~F}+00$ | $2.57720374 E-01$ | -3.25460577E-01 |
| 230 | $2.30000000 E+00$ | 2.24806645E-91 | -3.33877083E-01 |
| 240 | $2.40000000 \mathrm{E}+30$ | 1.90986271E-01 | -3.43301812E-01 |
| 250 | 2.50000000F +00 | 1.56090749E-01 | -3.55656067E-01 |
| 260 | 2.6000, $0000 \mathrm{t}+00$ | $1.19901286 \mathrm{E}-01$ | -3.70059969E-01 |
| 270 | 2. $70007000 \mathrm{E}+00$ | $8.21235722 \mathrm{E}-02$ | -3.87967205E-01 |
| 280 | 2.80000000E+00 | $4.23439742 \mathrm{E}-02$ | -4.10932380E-01 |
| 250 | $2.90000000 \mathrm{~F}+00$ | -5.29385935E-05 | -4.41698084E-01 |

$T A U A=2.89987918 E+00 \quad A F(1)=7.83052918 E+00 \quad 0$.

| N | tau | RHO | RHOY |
| :---: | :---: | :---: | :---: |
| 1 | 1.00000000E-02 | 9.74841259E-01 | $-1.16706206 E+00$ |
| 10 | $1.00000000 \mathrm{E}-01$ | $9.18020904 \mathrm{E}-01$ | -4.16354878E-0! |
| 20 | 2.00000000E-01 | 8. ${ }^{\text {2 }} 1172035 \mathrm{E}-01$ | -3.27706352E-01 |
| 30 | 3.00000000E-01 | 8.50198230E-01 | -2.92129600E-01 |
| 40 | $4.00000000 \mathrm{E}-01$ | 8.21936476E-01 | -2.72887229E-01 |
| 50 | $5.00000000 \mathrm{E}-01$ | $7.95218984 \mathrm{E}-01$ | - ? .61165355E-01 |
| 60 | 6.00000000E-01 | $7.69470951 \mathrm{E}-01$ | -2.535.465:6E-01 |
| 70 | 7.00000000F-01 | $7.44362849 \mathrm{E}-01$ | -2.43432740E-01 |
| 80 | 8.00000000E-01 | 7.19636461E-01 | -2.4.774077E-01 |
| 90 | 9.00000000E-01 | $6.95300531 \mathrm{E}-01$ | -2. $2677274 \mathrm{E}-01$ |
| 100 | 1.00000000E +00 | 6.71103719E-01 | -2.41237796E-01 |
| 110 | $1.10000000 E+00$ | 6.47019816E-01 | -2.40459059E-01 |
| 120 | $1.20000000 F+00$ | 6.22989064E-01 | -2.40210177E-01 |
| 130 | $1.30000000 E+00$ | $5.93962751 \mathrm{E}-01$ | -2.40402386E-01 |
| 140 | $1.40000000 E+00$ | 5.74899682E-01 | -2.40975216E-01 |
| 150 | 1.50000000E +00 | $5.50763761 \mathrm{E}-01$ | -2.41888063E-01 |
| 160 | $1.60000000 E+00$ | 5.26522261E-01 | -2.43114938E-01 |
| 170 | $1.70000000 E+00$ | $5.02144521 \mathrm{E}-01$ | -2.44641152E-01 |
| 180 | 1.80000000E+00 | 4.77600925E-01 | -2.46401260E-01 |
| 190 | 1.9000,000E +00 | $4.52862026 \mathrm{E}-01$ | -2.48577913E-01 |
| 200 | ?.00000.00E +00 | 4.27897776E-01 | -2.51001265E-01 |
| 210 | $2.10000000 E+00$ | 4.02676769E-01 | -2.53749043E-01 |
| 220 | $2.20000000 E+00$ | 3.77155474F-01 | -2.56847033E-01 |
| 230 | 2.30000000E+00 | 3.51327379E-01 | -2.60330135E-01 |
| 240 | $2.40000000 E+05$ | 3.25122014E-01 | -2.64244060E-01 |
| 250 | $2.50000000 E+00$ | 2.98503763E-D1 | -2.68647859E-01 |
| ¿so | 2.60000000E+00 | 2.71420375E-01 | -2.7361760YE-01 |
| 270 | 2.70000000F+00 | 2.43811036E-01 | -2.79251781E-01 |
| 280 | 2.80000000E+00 | 2.15603800E-O1 | -2.8567915 7F-01 |
| 290 | $2.90000000 \mathrm{~F}+00$ | $1.86712063 \mathrm{E}-01$ | -2.93070750E-01 |
| 300 | $3.0000000 \cup E+00$ | 1.57029579E-01 | -3.01658248E-01 |
| 310 | 3.1)000000E+00 | $1.26423176 E-01$ | -3.11763669E-01 |
| 320 | $3.20000000 E+00$ | 9.47217110E-02 | -3.23349055E-01 |
| 330 | $3.30000000 E+00$ | $6.16985354 E-02$ | -3.38604492E-01 |
| 340 | $3.40000000 E+00$ | 2.70421116E-02 | -3.57114905E-01 |

$T A U A=3.47422878 E+00$
$A F(1)=9.33474990 E+00 \quad 0$.

TAUA $=3.98350950 E+00$
$A F(1)=1.06660980 E+01 \quad 0$.
OTAU $=.010 \quad I=12.0$ NTHETA= .30

0000 +00
-60000000E+00

$280 \quad 2.80000000 E+00$
$290 \quad 2.90000000 \mathrm{E}+00$
$300 \quad 3.00000000 E+00$
$310 \quad 3.10000000 E+00$
$320 \quad 3.20000000 E+00$
$370 \quad 3.70000000 E+00$
$380 \quad 3.80000000 E+00$
$390 \quad 3.90000000 E+00$
$400 \quad 4.00000000 E+00$
$410 \quad 4.10000000 E+00$
$420 \quad 4.20000000 E+00$
$430 \quad 4.30000000 E+00$
$440 \quad 4.40000000 E+00$

RHO

$9.79482068 \mathrm{E}-01$
$9.33308355 \mathrm{E}-01$
$9.03489370 \mathrm{E}-01$
$8.78491927 \mathrm{E}-01$
$8.55734784 \mathrm{E}-01$
$8.34266320 \mathrm{E}-01$
$8.13619147 \mathrm{E}-01$
$7.93526577 \mathrm{E}-01$
$7.73821202 \mathrm{E}-01$
$7.54390578 \mathrm{E}-01$
$7.35155168 \mathrm{E}-01$
$7.16056312 \mathrm{E}-01$
$6.97049185 \mathrm{E}-01$
$6.78098445 \mathrm{E}-01$
$6.59175420 \mathrm{E}-01$
$6.40256216 \mathrm{E}-01$
$6.21320411 \mathrm{E}-01$
$6.02350111 \mathrm{E}-01$
$5.83329264 \mathrm{E}-01$
$5.64243133 \mathrm{E}-01$
$5.45077891 \mathrm{E}-01$
$5.25820286 \mathrm{E}-01$
$5.06457372 \mathrm{E}-01$ 4. $86976267 \mathrm{E}-01$
4.67363936E-01
$4.47606988 \mathrm{E}-01$
$4.27691473 E-01$
$4.07602675 \mathrm{E}-01$
$3.87324886 E-01$
3.66841162E-01
$3.46133041 \mathrm{E}-01$
3. $25180215 \mathrm{E}-01$
$3.03960141 \mathrm{E}-01$
2.82447565E-01
$2.60613937 E-01$
2. $38426674 \mathrm{E}-01$
2.15848221E-01
$1.92834824 \mathrm{E}-01$
1.69334917E-01
$1.45286929 E-01$
1.20616263E-01
$9.52310032 \mathrm{E}-02$
$6.90156399 \mathrm{E}-02$
4.18215542E-02
1.34519527E-02

RHOT

$-9.50677410 E-01$
$-3.37379753 \mathrm{E}-01$
$-2.64921333 \mathrm{E}-01$
-2.35457041E-01
-2.19477010E-01
$-2.09618146 E-01$
-2.03087304E-01
-1.98577062E-01
-1.95390653E-01
-1.93122307E-01
-1.91520002E-01
-1.90419417E-01
-1.89709340E-01
$-1.89312306 \mathrm{E}-01$
$-1.89173175 \mathrm{E}-01$
$-1.87252100 \mathrm{E}-01$
$-1.89520038 \mathrm{E}-01$
-1.89955810E-01
-1.90544120E-01
-1.91274204E-01
-1.92138902E-01
$-1.93134015 E-01$
-1.94257872E-01
$-1.95 \% 11045 \mathrm{E}-01$
-1.96896191E-01
$-1.98417984 E-01$
-2.00083141E-01
-2. $01900529 \mathrm{E}-01$
-2.03881360E-01
-2.06039482E-01
-2.08391785E-01
-2.10958752E-01
-2.13765192E-01
-2.16841217E-01
-2.20223552E-01
-2.23957302E-01
-2.28098377E-01
$-2.32716863 E-01$
$-2.37901814 \mathrm{E}-01$
-2.43768207E-01
-2.50467328E-01
-2.58202753E-01
-2.67255892E-01
-2.78028639E-01
-2.91118574E-01
$T A U A=4.44577991 E+00$

```
03/07/68 LRC SCOPE 3.0 6600B-65K 02/16/68
19.16.44.SRD4924.
19.16.44. LRC COMPUTER COMPLEX
19.16.45.JOB,1,0644,40000. Al998, 2,
19.16.45. MARTHA ROBINSON,RDV122, 1148 201I
19.16.45.RUN(S)
19.16.49.SETINDF.
19.16.50.LGO.
19.17.02.EOF ENCOUNTEREO BY NAMELIST
19.17.02.EXIT
19.17.02.SPPRINT(OUTPUT,3)
19.17.03.CPU 002.206238 SEC.
19.17.03.PPU 011.701952 SEC.
    SRD4924. PRINT-PP 00806 LINES
```


XVII. APPENDIX B

SOLUTION OF GOVERNING EQUATIONS FOR PHASE 1

The governing equation for Phase 1 can be written as (see eq. (109)

$$
\begin{equation*}
\rho_{\tau}=-\frac{1+(2 \rho+1) \tau^{2}}{I(1-\rho)(1+3 \rho)} \tag{B-1}
\end{equation*}
$$

The initial conditions for this phase are that $\rho=1$ at $\tau=0$. The motion is terminated if either the hinge circle becomes zero or the time, τ, becomes one. The equation was solved numerically. The flow diagram, computer program, and numerical results follow.

In order to avoid the singular point at $\rho=1$, the motion of the hinge during the first time interval ($\Delta T=0.01$) was calculated from the bending case. This procedure is valid as at $\tau=0$ when $\rho=1.0$. The differential equation is exactly that obtained for the pure bending solution.


```
JUB.1,0644.40000. AL998. 2, MARTHA ROBINSON,ROVI22, 1148 2011
```

```
PROGFAM PLATESI (INPUT,OUTPUTI
```

PROGFAM PLATESI (INPUT,OUTPUTI
000003
000003
CCOOO3
CCOOO3
0COOO3
0COOO3
0C0003
0C0003
0COCO3
0COCO3
000007
000007
000007
000007
0C0011
0C0011
0COC17
0COC17
0
0
OIMENSION CCEFS(4),TAU(500), RHO(500), RHOT(500),RESULT(2)
OIMENSION CCEFS(4),TAU(500), RHO(500), RHOT(500),RESULT(2)
REAL IB,IE,INC
REAL IB,IE,INC
COPPLEX R(3).TEMP(E)
COPPLEX R(3).TEMP(E)
NAMELIST/INPUT/DTAU,IB,IE,INC,MAXN,IPFN
NAMELIST/INPUT/DTAU,IB,IE,INC,MAXN,IPFN
PRINT 1
PRINT 1
l FDRMATI*ILARGE DEFORMATIONAL ANALYSIS OF PLASTIC*/* PLATES UNDER I
l FDRMATI*ILARGE DEFORMATIONAL ANALYSIS OF PLASTIC*/* PLATES UNDER I
IMPULSIVE LOADING*/* ROBINSON-KRUSZEWSKI, SRD-A199B, FEBRUARY 1968,
IMPULSIVE LOADING*/* ROBINSON-KRUSZEWSKI, SRD-A199B, FEBRUARY 1968,
2 RDV-122*)
2 RDV-122*)
CALL CAYTIM (RESULT)
CALL CAYTIM (RESULT)
PRINT 2. RESULT
PRINT 2. RESULT
FCRMAT(*OCATE*A10,5X*TIME*A10)
FCRMAT(*OCATE*A10,5X*TIME*A10)
C INPUT CATA
DTAU - TIME INCREMENI
IB - INITIAL IMPULSE LOAD
IE - FINAL IMPULSE LOAD
INC - INCREMENT ON IMPLLSE LOAD
MAXN - MAXIMUM NUMBER OF ITERATIONS ON VELOCITY, TIME AND RADIUS
IPFN - PRINT FREQUENCY
0C0017
3 READ INPUT
(alCulate total number of impulSE loadS and Initialize time
0C0022
000031
0C0033
0C0034
000035
OCOC4O
0C0O44
0C0064
0C0064
OCCO74
OC0074
0CCC76
000077
0C0100
000103
0C0107
0C0116
0C0116
NN=ABS(IIE-IB)/INC)+1.0
TAU(1)= DTA!\
DO 14 1=1.NN
N=1
IF (I.EG.1) FI=IB
IF (I.GT.1)FI=FI+INC
IF ((1.GT.2).AND.(MOD(I,2).NE.OI) PRINT 41
4l FORMAT(*l*)
PRINT 4, DTAU,FI
FFORMATI///* CTAU=*F5.3.5X*I=*F5.1//1
calCulate initial rho value
COEFS(1)=1.0
COEFS(2)=-1.0
COEFS(3)=-1.0
COEFS(4)=1.0-CTAU/FI
CALL FALG (COEFS,3,O,R,TEMP,IERR)
IF (IERR.HE.0I PRINT 5, IERR
5 FORMAT(//10X*ERROR IN FALG SUBROUTINE*//
00 6 M=1,3

```
```

0C0120
000124
000126
000131
OCO131
0C0134
0CO154
0CO167
OCC167
0C0171
OCO173
0C0175
000177
CO220
0CO240
000240
0C0244
000247
000251
0CC255
000255
0C026
0C026
0C0264
0CO266

```

PROGRAM LENGTH INCLUDING \(1 / 0\) BUFFERS OC 7516

FUNCTION ASSIGNMENTS


UNUSED COMPILER SPACE
OC3400


```

OTAU=.01C I= 6.0

```
\begin{tabular}{|c|c|c|c|}
\hline \(\lambda\) & tau & RHO & RHOT \\
\hline 1 & 1.00000000E-02 & 9.7C520305E-01 & \(-1.46522169 \mathrm{E}+00\) \\
\hline 10 & 1. COCCOOOOE-01 & 9.03C65367E-01 & -4.76550575E-01 \\
\hline 20 & \(2.00000000 \mathrm{E}-01\) & \(8.61227120 \mathrm{E}-01\) & -3.71626288E-01 \\
\hline 30 & 3.CCOCCCCOE-C1 & \(8.25765008 \mathrm{E}-01\) & -3.40734513E-01 \\
\hline 40 & \(4.00000000 \mathrm{E}-01\) & 7.92C63572E-01 & -3.35563586E-01 \\
\hline 50 & \(5.00000000 \mathrm{E}-01\) & \(7.58248952 \mathrm{E}-01\) & -3.42970621E-01 \\
\hline 6 C & 6.000000COE-C1 & \(7.23345159 E-01\) & -3.57429945E-01 \\
\hline 70 & \(7.00000000 \mathrm{E}-01\) & t. \(66786771 \mathrm{E}-01\) & -3.76101593E-01 \\
\hline 80 & 8. \(\mathrm{COOOOCCOE}-01\) & \(6.48237901 \mathrm{E}-01\) & -3.97382427E-01 \\
\hline 90 & S.00000000E-01 & 6.C7477632E-01 & -4.20343948E-01 \\
\hline 100 & 1. CCOCOCOOE + OO & \(5.64365818 \mathrm{E}-01\) & -4.444706C5E-01 \\
\hline
\end{tabular}

DTAU \(=.01 \mathrm{C} \quad \mathrm{I}=8.0\)
\(N\)

20
30
40
50
CO
70
8 C
90
100

1 1.00000000E-02
10 1.COCOOOOOE-01
IAU
2. \(00000 \mathrm{CCOE}-01\)
\(3.00000000 \mathrm{E}-01\)
4. COCCOCCOE-Ci
5.000000COE-OL
\(6.000 C 0000 E-01\)
7. C0000CCOE-01
8. COOOOOCOE-01
5. COCCOOCOE-01
\(1.00000000 \mathrm{E}+00\)

RHO
C. \(74 \mathrm{Ef} 425 \mathrm{EE}-01\)
\(9.16327031 \mathrm{E}-01\)
\(8.86397088 \mathrm{E}-01\)
\(8.50 \mathrm{CO} 267 \mathrm{E}-01\)
\(8.21156722 \mathrm{E}-01\)
\(7.92231636 \mathrm{E}-01\)
\(7.62390448 \mathrm{E}-01\)
\(7.311536 \mathrm{C}-01\)
\(6.98236316 \mathrm{E}-01\)
\(6.63467 \mathrm{C} 6 \mathrm{E}-01\)
\(6.26741673 \mathrm{E}-01\)

RHOT
\(-1.26637469 E+00\) -4.09781482E-01
-3.18725378E-01
-2.91793207E-01
-2.87118176E-01
\(-2.93291285 E-01\)
-3.05500383E-01
-3.21258145E-01
-3.39145222E-01
-3.58320151E-01
\(-3.78288098 \mathrm{E}-01\)

DTAU \(=\). CIC \(\quad I=10.0\)
\begin{tabular}{|c|c|c|c|}
\hline \(N\) & tau & RHO & RHCT \\
\hline 1 & 1.COOCOOOOE-02 & 9.7i512541E-01 & -1.13113659E+00 \\
\hline 10 & 1.COOOOUCOE-01 & 9.25229065E-01 & -3.64774921E-01 \\
\hline 20 & 2. OCCCOCCOE-01 & \(8.93369278 \mathrm{E}-01\) & -2.83240056E-01 \\
\hline 30 & 3.00000000E-01 & 9.6E373491E-01 & -2.59066132E-01 \\
\hline 40 & 4.0CC00000E-01 & 8.4C765777E-01 & -2.54792094E-01 \\
\hline 50 & \(5.000 C O C O C E-01\) & 8.15101715E-01 & -2.60199397E-01 \\
\hline 60 & \(6.00000000 E-01\) & \(7.89630139 \mathrm{E}-01\) & -2.70970510E-01 \\
\hline 70 & 7. CCCCOOCOE-01 & 7.6C527210E-01 & -2.84867606E-01 \\
\hline 80 & \(8.00000000 \mathrm{E}-01\) & 7.31743604E-01 & -3.0C607661E-01 \\
\hline 90 & C. COCCOOOOE-01 & \(7.00932161 \mathrm{E}-01\) & -3.17422915E-01 \\
\hline 100 & 1.000000C OE +00 & 6.6E409874E-01 & -3.34852462E-01 \\
\hline DIAC= & \(\mathrm{I}=12.0\) & & \\
\hline \(N\) & TAU & RHO & RHOT \\
\hline 1 & 1.000COOCOE-C2 & \(9.75482068 \mathrm{E}-01\) & \(-1.03154632 \mathrm{E}+00\) \\
\hline 10 & \(1.00000000 \mathrm{E}-01\) & 9.31946283E-01 & -3.31834924E-01 \\
\hline 20 & 2.0COCOOCOE-01 & 9.C2889257E-01 & -2.57352622E-01 \\
\hline 30 & \(3.00000000 \mathrm{E}-01\) & \&.783686C1E-01 & -2.35238060E-01 \\
\hline 40 & 4.0CCCOOOOE-01 & 8.55120781E-01 & -2.31235t49E-01 \\
\hline 50 & \(5.000 \mathrm{COCOOE}-01\) & E. \(31825262 \mathrm{E}-01\) & -2.36158683E-01 \\
\hline 6 C & \(6.00000000 \mathrm{E}-01\) & 8.C7800665E-01 & -2.45907867E-01 \\
\hline 70 & 7. OCCCOCCOE-01 & \(7.82661535 E-01\) & -2.58482927E-01 \\
\hline 80 & \(8.00000000 \mathrm{E}-01\) & \(7.56183372 \mathrm{E}-01\) & -2.72705358E-01 \\
\hline SC & 5.000000C0E-01 & 7.28236227E-01 & -2.87866609E-01 \\
\hline 100 & 1.000COOCOE +00 & E.98747338E-01 & -3.03537076E-01 \\
\hline
\end{tabular}
```

DIAU= .CIC I= 14.0

```
\begin{tabular}{|c|c|}
\hline \(N\) & tal \\
\hline 1 & 1.000C0000E-02 \\
\hline 10 & 1.00CC0000E-01 \\
\hline 20 & \(2.00000000 \mathrm{E}-01\) \\
\hline 30 & 3.000000C CE-01 \\
\hline 40 & \(4.00000000 \mathrm{E}-01\) \\
\hline 50 & 5. COCCOOOOE-01 \\
\hline 60 & 6.00000000E-01 \\
\hline 70 & 7.00000000E-01 \\
\hline 80 & 8.00000CCCE-C1 \\
\hline 90 & 9.00000000E-01 \\
\hline 10 C & 1. COCOOCCOE+00 \\
\hline
\end{tabular}

RHO
\(9.81011420 \mathrm{E}-01\) G. 37 C73S38E-01 \(9.10256151 \mathrm{E}-01\) \(8.87641213 E-01\) \(8.662 C 7544 E-01\) \(8.44733200 \mathrm{E}-01\) 8.2258823CE-01 \(7.99417352 \mathrm{E}-01\) 7.75C14706E-01 \(7.49262413 E-01\) 7.22C96001E-01

\section*{RHOT}
-9.54283778E-01
-3.06396242E-01
-2.37407313E-01
-2. \(16904737 \mathrm{E}-01\)
-2.13214769E-01
-2.17687642E-01
\(-2.26661812 E-01\)
-2.38234367E-01
-2.513C9793E-01
-2.65227619E-01
-2.79585154E-01

DTAU = .01C \(I=16.0\)
\begin{tabular}{|c|c|}
\hline \(N\) & tau \\
\hline 1 & 1.00000000E-02 \\
\hline 10 & 1.COOCOOCOE-C1 \\
\hline 20 & 2.00000000E-01 \\
\hline 30 & 3. \(20000000 \mathrm{E}-01\) \\
\hline 40 & \(4.000000 \mathrm{COE}-\mathrm{Cl}\) \\
\hline 50 & 5.00000000E-01 \\
\hline 60 & E. OCOCCCOOE-01 \\
\hline 70 & 7.00000000E-01 \\
\hline 80 & ع. OCOOOOCOE-01 \\
\hline 90 & S. CCOCOCOOE-01 \\
\hline 100 & 1. \(\mathrm{COCCOOCCE}+00\) \\
\hline
\end{tabular}

\section*{RHO}
9.8сく43330E-C1
\(9.41197612 \mathrm{E}-01\)
\(9.16174345 \mathrm{E}-01\)
\(8.95084436 \mathrm{E}-01\)
8.75101421E-01
8.55082496 E-01
8.34439220E-01
8.12840285E-01
7. 9 C \(94500 \mathrm{E}-01\)
7. \(6 \in 093258 \mathrm{E}-\mathrm{Cl}\)
7.4C7782C5E-01

\section*{RHOT}
-8.92092324E-01
-2.85992394E-01
-2.21438253E-01
-2.02241395E-01
-1.98769786E-01
-2.02928337E-01
-2.11288325E-01
-2.220664c7E-01
\(-2.34235152 \mathrm{E}-01\)
-2.47173616E-01
\(-2.60502145 \mathrm{E}-01\)
OTAU \(=. \operatorname{ClC} \quad I=18.0\)
\begin{tabular}{rc}
N & TAU \\
1 & \(1 . C O C C O O C O E-02\) \\
10 & \(1.00000000 \mathrm{E}-01\) \\
20 & \(2.000000 \mathrm{COE}-01\) \\
30 & \(3.000000 \mathrm{COE}-01\) \\
40 & \(4.00000000 \mathrm{E}-01\) \\
50 & \(5.00000000 \mathrm{E}-01\) \\
60 & \(6.000 C 0000 \mathrm{E}-01\) \\
70 & \(7.00000000 \mathrm{E}-\mathrm{Cl}\) \\
80 & \(8.00000000 \mathrm{E}-01\) \\
90 & \(\mathrm{S.COCOOCOOE}-01\) \\
100 & \(1.00000000 \mathrm{E}+00\)
\end{tabular}

RHO
\(5.82263156 \mathrm{E}-\mathrm{Cl}\)
\(9.44606869 \mathrm{E}-01\)
\(\mathrm{~S} .21 \mathrm{C} 63053 \mathrm{E}-01\)
\(9.01228 \mathrm{SBEE}-01\)
\(8.82439802 \mathrm{E}-01\)
\(8.63618262 \mathrm{E}-01\)
\(8.44210132 \mathrm{E}-01\)
\(8.23903819 \mathrm{E}-\mathrm{Cl}\)
\(8.02520068 \mathrm{E}-01\)
\(7.75 ¢ 57682 \mathrm{E}-01\)
\(7.56153042 \mathrm{E}-01\)

RHO
\(9 . \varepsilon 4125486 \mathrm{E}-01\)
\(9.41486469 \mathrm{E}-01\)
\(9.25189353 \mathrm{E}-01\)
\(9.06412573 \mathrm{E}-01\)
\(8 . \varepsilon \varepsilon \in 27566 \mathrm{E}-01\)
\(8.7 \mathrm{C} 813749 \mathrm{E}-01\)
\(8.52444531 \mathrm{E}-01\)
\(8.332253 \mathrm{C},-01\)
\(8.1258675 \mathrm{GE}-01\)
\(7.51 \in 33808 \mathrm{E}-01\)
\(7.6 \mathrm{~S} 116623 \mathrm{E}-01\)

RHOT
\(-8.40637554 \mathrm{E}-01\)
-2.69159456E-01
-2.08282849E-01
\(-1.90171210 \mathrm{E}-01\)
\(-1.868845 .38 \mathrm{E}-01\)
-1.90787597E-01
\(-1.98645141 \mathrm{E}-01\)
-2.08773523E-01
-2.20201743E-01
-2.32342675E-01
-2.44836267E-01

DTAL \(=\). CIC \(\quad I=20.0\)
\(N\)
TAU
1. OCCCCOCOE-O2

10
20
30
1.000000COE-01
2.C00000COE-01
\(3.000 C 0000 E-01\)
40
50
\(4.00000000 \mathrm{E}-01\)
5.CCCCOOCOE-01

60 6.00000000E-01
70 7.00000000E-01
80 8.000C0000E-01
9C S.00000000E-01
100 1.OCCCOCCOE+00

RHOT
-7.97150195E-01
\(-2.54966813 E-01\)
-1.97203850E-01
-1.80012680E-01
\(-1.76884950 \mathrm{E}-\mathrm{Cl}\)
-1.80575023E-01
-1.88011519E-01
-1.97595440E-01
-2.08404 C89E-01
\(-2.19879 \mathrm{C} 69 \mathrm{E}-01\)
-2.31677393E-01

\section*{134}
```

03/C6/68 LRC SCOPE 3.0 6600B--65K C2/16/68
2C.41.33.SRC4911.
20.41.23. LRC CCMPUTER CCMPLEX
20.41.33.JOB,1.0644.40000. Al998. 2.
2C.41.33. MARTHA RCBINSCN,RDV122, 1148 2011
20.41.34.RUN(S)
2C.41.38.SETINDF.
20.41.35.LGC.
2C.41.45.STOP
2(.41.45.SPPRINTIOLTPUT.3)
20.41.47.CFU 000.55C224 SEC.
2C.41.47.PPL CO6.35E4OC SEC.
SRD4S11. PRINT-PP CC392 LINES

```

\section*{XVIII. APPENDIX C}

\section*{VALUES OF \(F(n)\)}

The value of the function \(F(n)\) is needed to evaluate the final deformation. Since the argument of \(F(n)\) is limited between 0 and 1 , it was expedient to generate a table for this function.

\section*{\(X\)}
\(F(X)\)
0.
4.02093263E-02
.02
\(8.08746017 E-02\)
.52
.03
.04
.05
.06
.07
.08
.09
.10
.11
.12
.13
.14
.15
.16
.17
.18
. 19
. 20
.21
. 22
.23
.24
.25
. 26
.27
. 28
- 29
.30
.31
.32
.33
.34
.35
.36
.37
.38
.39
.40
.41
.42
.43
.44
.45
.46
.47
.48
.49
.50
1.22051904E-01 .53 .54
1.63797750E-01
.55
2.06169417E-01 .56
.57
.58
.59
.60
.61
. 62
. 63
.64
.65
. 66
. 67
.68
. 69
.70
.71
.72
.73
.74
.75
.76
.77
.78
.79
.80
.81
.82
.83
.84
.85
.86
.87
.88
.89
.90
.91
.92
.93
.94
.95
.96
.97
.98
.99
\(4.96479867 \mathrm{E}+00\)
\(5.24893643 \mathrm{E}+00\)
\(5.55417411 E+00\)
\(5.88270543 \mathrm{E}+00\)
\(6.23701027 \mathrm{E}+00\) \(6.61989978 \mathrm{E}+00\)
\(7.03457006 \mathrm{E}+00\)
\(7.48466593 \mathrm{E}+00\)
\(7.97435731 \mathrm{E}+00\)
\(8.50843084 \mathrm{E}+00\)
\(9.09240044 \mathrm{E}+00\)
\(9.73264126 \mathrm{E}+00\)
\(1.04365528 \mathrm{E}+01\)
\(1.12127588 \mathrm{E}+01\)
1. \(20713527 E+01\)
1. \(30242020 E+01\)
\(1.40853277 E+01\)
\(1.52713783 E+01\)
\(1.66022301 E+01\)
\(1.81017486 \mathrm{E}+01\)
\(1.97987645 E+01\)
\(2.17283338 \mathrm{E}+01\)
2. \(39333795 \mathrm{E}+01\)
\(2.64668506 \mathrm{E}+01\)
2.939 \(45880 E+01\)
3. \(27991738 \mathrm{E}+01\)
\(3.67851575 \mathrm{E}+01\)
\(4.14862437 \mathrm{E}+01\)
\(4.70753123 \mathrm{E}+01\)
\(5.37785952 E+01\)
\(6.18960611 E+01\)
\(7.18312529 E+01\)
\(8.14358234 E+01\)
\(9.95774710 \mathrm{E}+01\)
\(1.19246106 \mathrm{E}+02\)
\(1.44724337 E+02\)
\(1.78369766 \mathrm{E}+02\)
2. \(23799110 E+02\)
\(2.86752518 \mathrm{E}+02\)
\(3.76710856 \mathrm{E}+02\)
\(5.10094046 \mathrm{E}+02\)
\(7.17020114 E+02\)
\(1.05679676 \mathrm{E}+03\)
\(1.65723304 \mathrm{E}+03\)
\(2.82847838 \mathrm{E}+03\)
\(5.45742996 \mathrm{E}+03\)
1. \(27818794 \mathrm{E}+04\)
\(4.26332497 E+04\)
\(3.37140837 E+05\)```


[^0]:    seem that his calculated deformations should be smaller than those showed by the dot-dashed line. The fact that they are not smaller is due to an additional assumption used by Jones concerning the hinge velocity. In particular, he assumed the hinge velocity to be the same as that obtained by Wang for line bending case. As was shown in the section dealing with the comparison of the bending theory, this predicted hinge velocity is very much smaller than it should be. This lower value of velocity must then be responsible for increasing the value of his calculated deformation above that of the dot-dashed curve.

