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PURPOSE

This final report is prepared in accordance with the requirements of contract NASw-572,

modification No. 6, between the National Aeronautics and Space Administration and the

Westinghouse Electric Corporation (reference WGD-38521). The general objective of this

contract is the advancement of the state-of-the-art in the design of highly reliable electronic

systems associated with the national space effort. The scope of this objective includes the

development of techniques for constructing electronic systems which are invulnerable to the

effects of relatively large numbers of internal component failures. The research reported

herein has as its objective the development of techniques for efficiently allocating a limited

number of test points within modularly redundant digital systems, and the estimation of

system reliability based on the results obtained from limited testing.
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I. INTRODUCTION

The steadily increasing sophistication of space missions has been reflected in an increas-

ed complexity of spaceborne electronic data processing and control systems. This increase

in complexity tends to lower the reliability of systems which normally operate in an environ-

ment where the cost of system failure is extremely high. In many cases, this cost may include

the loss of human life in addition to the loss of a space vehicle and an aborted mission.

Several investigators have shown that the reliability of electronic systems can be greatly

increased through the proper use of redundant equipment. By far the largest portion of the

analytical work in this area has been concentrated on the development of synthesis techniques

and the estimation of the initial reliability of redundant systems. Relatively little work has

been done on the development of procedures for testing redundant systems and for estimating

their reliability when one or more system components may be failed at the time of the estimation.

Pre-launch testing of spaceborne electronic systems is becoming more and more difficult

as systems increase in complexity while decreasing in physical size. The testing problem

will soon become worse as in-flight tests are used to determine the choice of alternative actions

in deep space probes. The nature of redundant systems further complicates this problem be-

cause component failures which are undetectable by in-system operational exercises often

increase the vulnerability of systems to future component failures. The combination of the

above factors will tend to severely limit the usefulness of complex redundant spaceborne

systems unless suitable methods of prelaunch and in-flight testing and test evaluation can be

developed. The development of these methods should provide a sound basis upon which space

vehicle launch or mid-course decisions can be made.

The user of a spaceborne electronic equipment has three different situations in which

he may wish to test the equipment. The first situation exists when the equipment is being

examined in a shop environment prior to being mounted in the space vehicle. In this situation,

time is usually not of the essence and exhaustive testing is desirable to the limit permitted by

the physical design of the equipment. The second situation exists when the equipment has

been mounted in the vehicle, and a test is to be made just prior to launch. In this case, time

is of the essence and does not permit an exhaustive test of an entire redundant data processing
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system. Thethird situationexists only during long term, multi-phase space missions where

a test is made near the end of a phase to determine which of the possible alternatives should

be followed during the next phase. In most of the latter cases the decision made simply

determines whether to continue or terminate the mission depending on the probability of

successfully completing the next phase. In this case, both time and the complexity of the re-

quired test equipment are of vital interest.

In the latter two situations, there exists an obvious need for a technique to facilitate

making an accurate estimate of the probability of successfully completing the mission based

on information gained from testing only part of the system before or during the mission. Even

in the shop environment, a similar need often exists because the use of tightly packaged micro-

miniature circuitry may severely limit the amount of individual subsystem testing which can be

performed. This is true regardless of the time permitted for the test or the availability of

sophisticated test equipment.

The problem may be more precisely stated in the following manner. At some time, tl,

the user of a redundant digital system desires to estimate, as accurately as possible, the

probability that a system will operate continuously until some later time, t 2. The user must

make the estimate in some reasonably short period of time, using a limited amount of test

equipment and a limited number of accessible test points. The general problem is to develop a

test philosophy and a compatible statistical analysis procedure which will permit this user to

confidently make decisions based on his estimate of the probability of successfully completing

the mission. The accuracy of his estimate must reflect the cost associated with a wrong

decision.

Within the general problem area, a natural dichotomy exists between the test design

problem and the statistical estimation problem. Although these two problems are intimately

related, they represent two separable points of emphasis, and they may be associated with

slightly different short-range goals. The goal of a given test program is the development of

a test procedure which will provide the most failure state information at a fixed cost or,

conversely, a fixed amount of information of a minimal cost. In this context, time, number of

system test points and test equipment all may be assumed to have an associated cost per unit.

On the other hand, the goal of the statistical reliability estimation problem is the development

of a technique for using the test results to provide the most accurate obtainable system

reliability estimate. The recognition of this division is not meant to imply, however, that the

two problems should be considered independently.

This report describes the results of a study program to develop a practical solution to

this general problem. Section II describes a procedure for estimating the probability that a
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redundantsystemwill successfullycompletea mission, usingtheinformationobtainedfrom

limited testingwithin thesystem. SectionIII describesa techniquefor optimallyallocatingthe
llmited numberof test pointswithina redundantdigital system.

Boththetest pointallocationtechniqueandthe compatiblereliability analysisprocedure
havebeenprogrammedin theFORTRANIV language.Descriptionsof thetwocomputer
programsappearin appendicesA andB. Theprogramshavebeendocumentedin sufficient

detail to enablea redundantsystemdesigneror user to perform ananalysisof the system
usingtheprograms.

As an illustration of theapplicabilityof thecomputerprogramsto practical systems,they
havebeenappliedto a specificredundantsystemdesignconfiguration-themodularlyredundant
Mariner C SpacecraftSequencer.Thedetailsandresultsof this applicationare describedin
sectionIV.

A set of assumptionshasbeenmadeto preciselydefinetheproblemboundaries. This

set of assumptionswasintendedto focusthe studyeffort onthe membersof aclassof systems
whichare mostlikely to beusedin thefield in the relativelynearfuture. Theseassumptions
are enumeratedbelow.

1. Onlyorder-three redundantsystemsare considered.

2. Systemsare socomplexthat exhaustivetestingof eachsubsystemis not feasibleat
thetime of interest.

3. Theindividualsubsystemsfail at a constantrate; hence,theyhaveexponential
reliability functions.

4. Thedesignfailure ratesof systemcomponentsare assumedto be true.

5. Thetestscanbemaderapidlyenoughsothat nofailures will occurduringthetest
period.

6. Thesystemcanbeexercisedsufficientlyto assurethat it is functionallyoperational
at the time of test.
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II. RELIABILITY ANALYSIS PROCEDURE

The exact reliability analysis of the redundant system is a difficult process which is not

easily applied to the general system. There are two generalized reliability approximation

techniques which have been considered as a base for a procedure to estimate, after limited

testing, the probability of mission success of the general redundant system. The first

technique is the minimal cuts analysis procedure, developed by Esary and Proschan. The

second technique is the block model analysis procedure developed by D.K. Rubin, of JPL.

Both of these methods produce a lower bound estimate of the true reliability of the general

complex redundant system.

The definition of system reliability for both the minimal cuts technique and the block

model procedure, is the probability that the system is successful at time t, given that all its

components were operational at time zero and that there is no repair.

Both of the analysis procedures are based on the concept of coherent systems. This

term refers to the effect of subsystem failures on the operation of the system. A coherent

system is defined by four conditions:

1. If when a group of circuits in the system is failed causing the system to be failed,

the occurrence of any additional failure or failures will not return the system to a

successful condition;

2. If when a group of circuits in the system are successful and the system is successful,

the system will not fail if some of the failed components are returned to the

successful condition;

3. When all the circuits in the system are successful the system will be successful and,

4. When all the circuits in the system are failed the system is failed.

The assumption of coherence produces an inherent pessimism in both analysis procedures,

even for simple series-connected systems.

The block model technique was chosen as the basis for the reliability analysis procedure

in the present study. There are a number of advantages gained from the selection of this

procedure over the minimal cuts technique.
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Mr. Rubin'sstudyhasincluded a comparison of the two procedures. He has proved that

for series-connected triple modularly redundant systems, the block model produces a greater

lower-bound than does the minimal cuts. No exact error analysis has been performed to

determine exactly the closeness of either of the two lower-bounds to the actual reliability of

the general complex modularly redundant network. However, sample calculations for specific

systems of some complexity have indicated that the block model is indeed superior to the

minimal cuts model.

The block model procedure is inherently simpler in concept than the minimal cuts tech-

nique. Computer implementation of the block model is correspondingly simpler and produces

a program which is shorter in both length and computer running time.

The reliability analysis program produced during the present study is required to be

written in FORTRAN IV, to be highly machine-independent. The minimal cuts procedure

has been previously programmed by Westinghouse, as a part of a larger computer program

designed to synthesize modularly redundant systems. The program, written in the FAP

language, is not documented, however. The amount of effort, therefore, to extract the

minimal cuts protion of the FAP program and convert it to FORTRAN IV would be much greater

than that necessary to program the block model procedure. The effort required to completely

reprogram the minimal cuts procedure would also be greater than that needed to program the

block model procedure. For these reasons, the block model has been chosen as the basis for

the reliability analysis procedure.

The following section describes briefly the minimal cuts technique. This is followed by

a discussion of the block model procedure used in the reliability analysis program.

A. MINIMAL CUTS TECHNIQUE

A cut is a set of circuits such that if they fail the system will have failed regardless of

the condition of the other circuits in the system. The system may have a large number of cuts

and a particular circuit may be in more than one of them. An example of a coherent system

is shown in figure 1. As long as any path through successful circuits exists between the two

terminals of the system, the system is said to be successful. A circuit failure opens the

path between the two terminals of the circuit.

2-2



O

Figure 1. Exampleof a CoherentNetwork

-'D

Table1. TheCutsofthe Networkin Figure 1.

CutNo. Circuits in theCut

1. 1,2
2. 1,2,3
3. 1,2,4

4. 1,2,5
5. 1,2,3,4
6. 1,2,3,5
7. 1,2,4,5

8. 1,2,3,4,5
9. 4,5

10. 3,4,5
11. 2,4,5
12. 1,4,5
13. 2, 3,4,5

14. 1,3,4,5
15. 1,3,5
16. 2,3,4
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Thecutsof this systemare listed in table 1. The numbers of the circuits describe the

cuts. The failure of any of the cuts will cause the network of figure 1 to fail.

A minimal cut is defined as a cut in which there is no subset of circuits whose failure

alone will cause the system to fail. From table 1 the minimal cuts of the network in figure

1 can easily be recognized. They are listed in table 2 along with their probabilities of

occurrence. Since the symbol Pi represents the probability of success, of the ith circuit, then

(1-Pi) is the probability that the ith circuit fails.

Table 2. The Minimal Cuts of the Network in Figure 1.

Min. Cut No. Circuits in the Min. Cut Probability of Failure
of the Min. Cut

1. 1, 2 (1-p 1) (l-P2)

2. 4, 5 (1-p 4) (1-p 5)

3. 1, 3, 5 (1-p 1) (l-P3) (1-Ps)

4. 2,3,4 (1-p 2) (1-p 3) (1-p 4)

The lower bound approximation to reliability depends on the identification of all the mini-

mal cuts in the network. Esary and Proschan found that a lower bound to system reliability is

the probability that none of the system's minimal cuts fails. For the example, this lower

bound, RLB is:

RLB = [1
[1- (l-P2)(1-p 3) (l-P4) ] (II-1)

This relationship can be written for general systems if the_jth minimal cut is denoted by

the set S.. The members of the jth minimal cut are given by i_ S.. The probability of failure
-3 - -3

of the jth minimal cut is:

r] (1-pi)

i _ s. (ii-2)
]

The lower bound to the system reliability is the probability that none of the system's

minimal cuts fail or:

RLB = I-[ [ 1- l'[ (l-Pi) ] (II-3)allj b i _ S.
]

The minimal cuts of a multiple-line redundant network have three characteristics which

are sufficient to establish their identity. These are listed below. For these characteristics,

m denotes the order of redundancy and specifies the minimum number of correct circuits

required in each stage.

1. All the members of the minimal cut are circuits in a restored function or in

the functions or restorers that are the error-linked sources of that restored

function.
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2. Thefailure of eachmemberof theminimal cut will cause one output line of

the restored function to be in error, and each member will be in a different

position, or rank.

3. The failure of a minimal cut will cause exactly m-k+l output lines of the

restored function to be in error, hence a minimal cut will have m-k+l mem-

bers.

For an order-three redundant system, these characteristics may be used to construct

an expression for the minimal cuts lower bound on system reliability. For an order-three

network, the minimal cut will consist of 2 subsystems, each in a different position and each

either in the restored function or in its error-linked sources. There are two kinds of minimal

cuts in an order-three network. The first kind includes those cuts in which both subsystems are

in the same function or restorer. Every function or restorer in the network will contribute

this type of cut. The probability of failure of a cut of this nature in function x is:

(1-Px)2 (II-4)

There are three ways to choose the subsystems which are failed in a particular function

or restorer. Then each will contribute three minimal cuts. The probability that failure does

not occur because of failure of minimal cuts of the first kind is:

n [1-( dx )(l_px)2]
all x

The symbol d represents a Boolean function which is 1 if stage x is present in the system,
X

and Oil stage x is not present.

The second kind of minimal cut includes two fsubsystems, one in each of two function or

restorer stages. Two subsystems are in the same minimal cut only if they are both error-

linked sources of the same restored function. The probability of a minimal cut of the second

kind, one in functionxand one in function y_ is:

(1-Px) (1-py) (II-6)

Minimal cuts of the second kind are present in functions x and y only if the Boolean

function

dix diy ] =1 (II-7)

x/y

is satisfied. Equation II-7 says that both x and y are error-linked sources of the same

restored function, i.
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Thentheprobabilitythata cut of the second kind does not fail in function x and y is:

1-(dix diy)x_ ] (1-Px) (1-Py) (II-8)

Subsystems in the same rank cannot be in the same minimal cut. There are three ranks

from which the first member of the minimal cut may be chosen from function x but once this

choice is made, there are only two ranks in function y__from which the second member of the

cut may be chosen. There are then 6 minimal cuts which include one subsystem in function x

and one subsystem in function y__.

With this information, the probability that a minimal cut of the second kind does not

fail in a system can be written:

6

- (1-Px) (1-Py) ] (II-9)YI [ I (dix diy) x_y
all x _ y
all i

Now with the results of (II-5) and (II-9) the total minimal cut reliability expression for an

order-three system is written.

3 6

['I diy ) (l_Px)(l_py)] }

all i

(II-lO)

This equation is valid for a system in which all subsystems in all stages have the same

reliability. For the general case in which the subsystem reliabilities may differ, the cubic

and sixth power terms in (II-10) must be expanded.

The minimal cuts technique is conceptually more complex than the block model procedure.

In addition, the computer implementation of the minimal cuts is both more lengthy and slower

than the block model implementation.

B. BLOCK MODEL ANALYSIS METHOD

The procedure for estimating the reliability of partially tested redundant systems used

in this study is based on the block model analysis technique, developed by D. K. Rubin, of

J. P.L. In the block model procedure, it is assumed that the failure of majority of replicas

of a subsystem will cause a system failure. It is further assumed that the analysis is made at

time zero, and that all units, or subsystems, are operating correctly. For the present study,

these latter two assumptions have been relaxed and the procedure correspondingly modified

to include information obtained from system test data. The following paragraphs describe
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| first the basic block analysis procedure. This is followed by a section explaining the modi-

fied procedure used in the computer program implementation.

The block model analysis procedure yields a lower-bound estimate of the reliability of

triple-modularly redundant systems of any arbitrary configuration. The procedure begins by

grouping together subsystems, or stages, each of whose unit failures can combine with unit

failures of another stage to cause system failure. Units in each group are isolated from those

in other groups. For example, figure 2 shows, in block diagram form,

A

B

C

1 2 V 3 4

Figure 2. Portion of a Series-connected System

a portion of a series-connected, triple modularly redundant system. The boxes represent

subsystems, or units, and the circles represent restorers, or voters. The failure of a unit

in stage 1 can combine with a failure of a unit in stage 2 to produce system failure. Similarly,

failure of units in stages 3 and 4 can combine with those of the voter stage, V, or with each

other's failures, to produce system failure. The failure of a unit in stage 1 or 2, however,

cannot combine with the failure of a unit in stages 3, 4, or V to produce system failure. There

are therefore two groups, or blocks which can be formed: group 1, composed of stages 1 and 2,

and group 2, composed of stages 3, 4, and V. Since the failure of a unit in one group cannot

combine with the failure of a unit in another group to cause system failure, the groups are

independent, and the reliability of each group may be computed independently of the other

groups. The resultant reliabilities may then be multiplied to produce the system reliability,

according to the series-chain rule.

Figure 3 shows the reliability model for the system of figure 2. If it is assumed that

the subsystem units

|
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I I
[ J

P2 = p2 PV

BLOCK 1 BLOCK 2

I
/

Figure 3. Block Reliability Model of the System in figure 2.

in figure 2 have equal reliabilities, p, and that the voter units have equal reliabilities, Pv'
2

then the reliabilities of the units in block 1 are p . By the same argument, the reliability of
2

a unit in block 2 is p Pv" The reliability of each block may be computed by the formula PB =

3p2-2p 3, where p is the block unit reliability. The system reliability estimate is then the

product of the PB'S:

R = [I p (II-II)
all i B.

I

The rules described above for forming the blocks of a given system can be shown to

reduce to one rule for series-connected systems: namely, that the units of a block consist

of all of the units providing direct or indirect inputs to a given restorer, and which are also

failure-linked to the restored stage. It is assumed that every system output has a restorer.

For simple, series-connected systems, all of the blocks defined by this method will be

failure-independent from one another, and the resulting system reliability estimate is the

exact system reliability. For complex systems involving feedback, feedforward, and multiple

fan-out, however, the blocks will not actually be independent. The system reliability estimate,

therefore, will not be the actual reliability, but will be a lower-bound estimate.

As an example, figure 4 shows one such complex system. The rectangles in the figure

symbolize triplicated stages in the triple modularly redundant system, and the ovals indicate

the triplicated majority voters. The blocks for this system can be formed in accordance

with the rule above. For example, the output of function 3 has three error-linked sources:
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function 1, function 2, and of course, function 3. These three stages therefore form one

block of the system. A second block is composed of the error-linked sources of function 5.

They are: function 5, voter 3, function 2, function 4, function1, and because of the feedback

ioop, function 6 and voter 5. The remaining three blocks are formed in the same manner.

Figure 4. Majority-voted Triple-Modularly Redundant System.

The five blocks for the system are listed in table 3. The numbers in the table refer to the

stage numbers in figure 4. The lettered numbers, such as V3 and V5, refer to the voters

following the stages of the same numbers.

Blocks for the S 'stem in Figure 4.Table 3.

Block 1 Block 2 Block 3 Block 4 Block 5

1

2

3

1

2

4

6

7

8

V3

V5

1

2

4

5

6

V3

V5

6

9

V3

V5

V8

10

11

V8

It is obvious that the resulting blocks are not failure-independent. Many of the stages

appear on two or more blocks. Thus the reliability estimate is a lower-bound approximation

to the actual system reliability.
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C. MODIFIEDBLOCKANALYSISMETHOD

Theblockmodelanalysistechniquehasbeenmodifiedto includeinformationobtained
from partial testing. Theproceduresfor formingblocksandcombiningblock reliabilities
remainexactlythesame. Theindividualunit reliabilities, however,mustbealteredto
reflect test datashowingthemto befailed or workingat the time of thetest. Therevised

unit reliability is theproductof twoprobabilities: (1)Theprobability that theunit is working
at thetime of thetest, and(2) theconditionalprobability that theunit will beworkingat the
endof the mission, giventhat it wasworkingat test time.

That is,
r. _-

1

where Pi(W(tt))

and Pi(W(tm) / W(tt))

[Pi (W(tt))] x [Pi(W(tm)/W(tt)) ] , (I1-12)

is the probability that subsystemi is operational at test time, tt;

is the conditional probability that subsystemi will operate

continuously until mission end, tm, given that it was operational

at t t.

The first probability may be changed to reflect operational information obtained from test data,

whereas the second probability remains unchanged.

For this discussion, a single "test point" tests all three ranks at its location. The

information obtained from a test point at a given location shows which of the three ranks is

failed, if a failure exists at the location. A more comprehensive discussion of the test point

is included later, in section III-A.

The method of computing a revised estimate of a unit's reliability can be most easily

shown by a few brief examples.

Example 1. A segment of a typical triple modularly redundant system is shown in figure

5. A test point is located after stage 3, as indicated by the triangle. If the test data indicates

that all three ranks are operating, the probabilities that the units are working at test time is 1.0.

-k i(t2-tl) k is the failure rate of unit i, t 2Therefore, the new unit reliability will be e , where i

is the mission end time, and t 1 is the time of test. The revised block reliability is now

P (tm - tt)/ P (tt - to), (II-13)

2-10
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where P (tm - tt)

and P (t t - to)

is the probability that at least two of the three ranks succeed from

test time to mission end.

is the probability that the block is operating at test time. This

latter factor is a result of the basic assumption that the system is

functionally operational at test time.

For this example, the latter factor is, of course, unity, since the block was tested.

Example 2: See Figure 6 on the following page.

The assumptions are now made that test points are located after stages 2 and 3,

and that the test points indicate that rank A of stage 2 has failed, while all other ranks are

operational. All units except unit 2A, therefore, are working, and have a new probability of

working at the time of test. This probability is unity (1). The corresponding probability for

unit 2A is, of course, zero.

Example 3: See Figure 7 on the following page.

For this example, the existence of only one test point, showing all ranks of stage

2 working, is assumed.

C2--_ ._

2

Figure 5. All three ranks observed as operational.
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(t)

- F

W

W

W

W

W

(3) _

Figure 6. A failure observed in one rank.

A

B (2)

W

W

Figure 7.

(3)

A tested block and an untested block with a common stage.
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As a result, all units in stages 1 and 2 have a probability of operating at test, of unity (1).

Nothing is known about the state of the units in stage 3, however, so their probabilities are un-

changed. Since the block consisting of stages 1 and 3 is untested, the block's reliability is

computed with the constraints that units 1A, 1B, and 1C are working, and that at least 2 of

the ranks in the block are working at the time of the test.

Example 4: There is one additional test situation which must be handled in a manner

differing from that of the three examples above. Assume that the test point in figure 7 does

not show all three ranks working, but instead indicates an error at the output of rank A. In

this case, the probability that subsystem A in stage 1 is operational at test time cannot be set

to zero. The error in rank A of the tested block may have had no effect on the output of the

untested stage. Subsystem 1A may be operating, while subsystem 2A is failed. The probability

that 2A is operational must therefore be calculated.

Assume that Pl is the a priori (without test data) probability that a subsystem in stage 1

is operational at test time, and P2 is the a prior probability that a unit in stage 2 is operational

Then the probability that at least one subsystem in rank A of the tested block is failed is given

by

PF(A) = 1 - plp 2. (II-14)

The probability that subsystem 1A is working is then given by the equation

1 _fl_-pI )p : 1 (II-15)

1 _l-plP2

In general, the probability that a subsystem common to both a tested-failed rank and an

untested block is operational at test time is

1 (l-Pc) (II-16)
PC =

1 - n Pi
i=l

1
where p

c

PC

Pi

and n

The revised probability pl c

block.

is the revised probability that the common subsystem is operational at

test time.

is the a priori probability that the common subsystem is operational at

test time

is the a priori probability that subsystem i in the tested-failed rank is

operational at test time

is the total number of subsystems in the tested-failed rank

is used in the calculation of the reliability estimate of the untested
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Theforegoingexamplesillustrate themaintypesof modificationsto bemadeto
the blockanalysisprocedure. In testedblocks, theprobabilitiesthat individualunitsare

workingat testare changedaccordingto thetestdata. In untestedblocks, theprobabilities
of all untestedunits remainunchanged.Thereliabilities of all blocksare changed,however,

by computingthemaccordingto theconstraintthat at least2 ranksare operating,sincethe

systemis operating.

1. TestDataEffects

As an illustration of theeffectof test dataonthereliability estimateof a redundant

system,a numberofcomputerrunshavebeenmadewith thereliability analysisprogram.

Considerthe simplesystemin figure 8. Fachboxrepresentsa triple modularly

redundantstageof thesystem,andeachcircle representsa set of

INPUT _ _ __'_A ,C)__.

OUTPUTS

Figure 8. Example S stem with Two Test Points.

three voters. There are two test points, at the locations indicated by the numbered triangles.

All units are assumed to have equal failure rates. Test point 1 is assumed to have indicated

a failure in one rank, and test point 2 indicates no failures. Table 4 below shows the result-

ing system reliability estimates for several different test times. The initial system reliability

estimate, assuming that all units are operational at time zero, is 0. 992469. The total

mission time is TM

Table 4. Reliability Estimates for System in Figure 8.

Failure Observed at Test Point One

Test Time

TM/4

TM/2

3TM/4

Probability of Success

0.932153

0.954256

0.976869
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Table5 showsa numberof reliability estimatesfor the samesystem,with thesame
test pointsandinitial reliability estimate. In this case,however,nofailures areobservedat
the testpoints.

Table5. Reliability Estimatesfor Systemin Figure 8.

NoFailuresObserved

TestTime Reliability

TM/4

TM/2
3TM/4

0.994953
0.997052

0.998742

As expected,thereliability estimateincreasesasthetest is performedlater into themission.

Thereliability estimatesfor the secondcase,with noobservedfailures, are significantly
higherthanthoseof thefirst case.

D. COMPUTER PROGRAM CAPABILITY

The reliabilityanalysis program computes an estimate of system reliability,using the

modified block model method. The program firstconstructs the listsof blocks for the

system, and then modifies subsystem reliabilitiesin accordance with the test data. The

reliabilityestimate for each of the blocks is then calculated, and the system reliability

estimate is the series product of the block reliabilityestimates. As stated earlier, the block

reliabilityestimates are calculated with the constraint that the system is functionally

operational at the time the test and estimation are performed.

The program has the capability to estimate the reliabilityafter test for virtually any

triple-modularly redundant digitalsystem. Any degree of system complexity will be handled

by the program, including feedback, feedforward, and multiple fan-in and fan-out. Every

stage in the system, including restorer stages, must be order-three redundant.

The program has, in addition, an option to calculate an estimate of the initial

reliability of the system; i.e. the reliability at time zero, assuming that all system com-

ponents are operational. This estimate is computed by the unmodified block model method.

The initial reliability estimate can be used as a comparison with the estimate based on the

test data.

The reliability analysis program is written in FORTRAN IV, making it highly machine-

independent. The size of the system to be analyzed will be limited only by individual computer

storage limitations and allowable running time.
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III. TEST POINT ALLOCATION PROCEDURE

A. TEST POINT DEFINITION AND IMPLEMENTATION

The general term "test point" may be defined in anyone of a number of specific ways.

For example, the term could refer to allof the circuitry required to verify the operation of

a particular subsystem within a redundant system, or the operation of one rank of a system.

In either of these cases, the test circuitry would in general be sufficientlycomplex to pro-

duce a significanteffecton the reliabilityof the system and on the confidence factor associated

with any test results. Similar, although less detrimental, effects would be noted in the case

of a "testpoint" defined as all of the equipment necessary to compare the operation of two

of the subsystem or signal replicas at a given stage and subsequently determine the opera-

tionalstatus of both replicas.

For the purposes of this study, the term "testpoint" can have either one of two closely

related meanings. Itmay mean a set ofsimple contact points at which triplicatedsubsystem

outputs can be sampled, or itmay mean a set of circuits used to detect differences between

three nominally identicaloutput signals. In the first case, simple difference detector

circuits are fabricated as part of the external test equipment while in the second case these

circuits are builtinto the operational equipment.

The important common factors about the two types of test points are that the same test

information is ultimately produced by either type, and the design of all test points of one

type is the same. The information produced is, of course, the exact rank, if any, which is

in error. Assuming that in any particular system, only one type of test point will be used,

any size, weight, power consumption or initial cost constraints can be immediately converted

to a single maximum number of test points constraint. To this analytical advantage of having

only one constraint, is added the advantage of requiring extremely simple test circuitry of a

type having little or no effect on the basic system design, the system reliability, or on the

confidence factor associated with the test results. For the purposes of this study, these

latter factors, therefore, are assumed to be negligible.

As often happens, the price of test point simplicity is paid for by a reduction in

information obtainable relative to a more complicated test mechanism. In this case, the

information that is lost is that which shows the exact subsystem location of a failure which

causes any observed signal error. Lacking this information, the observer may have difficulty
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in assessing the true implications of an observed error relative to the status of the overall

system. This difficulty is illustrated by the following example.

X OBSERVED

Y

Z

Figure 9. A Segment of One Rank of a Redundant

Digital System.

Referring to Figure 9, if an error observed at point X is the result of a failure in subsystem

B, the reliability of the rest of the system is significantly greater than if the failure is in

subsystem A. Interestingly enough, a double failure, ioe., failures in both A and B, has

exactly the same effect on system reliability as a failure in A but not B.

The reliability analysis problem is further complicated if multiple errors are observed

along interconnecting strings. For example, if errors are observed at both X and Y, the

observer still does not know if A alone has failed, or if B and C have failed. Again the

reliability estimate for the rest of the system varies, depending on which of the possible

failure patterns exists. The combined failures of A, B and C are equivalent to a single

failure in A alone.

Section II above describes the procedure used in estimating the effect on the reliability

caused by observed signal errors.

B. TEST POINT VALUE CRITERIA

Any attempt to develop a procedure for allocating test points within a redundant system

must be preceded by the development of some function defining the "value" of a test point.

That is, what mathematical criterion should be used in deciding the optimum placement of

each succeeding test point added to a system. The most desirable criterion would be one

which defines the most "valuable" test point location as that which will allow a test point to

supply information which will have the greatest effect on the system reliability estimate.

This effect would be measured by the change in the system reliability estimate relative to

an estimate made without the information of a test point at that location or competing test

point locations.
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1. Criterion Based on the Expected Change in the Reliability Estimate.

Consider a test point value criterion based on direct measurement of the expected

change in the estimate of reliability. Assume that we wish to determine the value of placing

a test point at the output of the block or stage shown in figure 10. We must first measure

INPUT

I I
I I

I
B

I I

I I
I I

OUTPUT

Figure 10. Potential Test Point Location

the expected reliability without a test point.

equal failure rates.

is given by:

Assume that the subsystems in the block have

The probability that the block is functionally operational at test time

R tl,=3[p tlto,]22[p,tlto,]3
where p (tl-t o) is the conditional probability that a subsystem will be operating at test time,

tl, given that it was operational at t o.

The probability that the block is operational at the end of the mission, tm, is given

similarly by the formula:

R(tm) =3[p (tm-to)] 2-2 [p (tm-to)]3 (III-2)

Now, one of the basic assumptions of the present study is that the system is functionally

opeartional at the time of test, t 1. Therefore, it is known that every block in the system is

functionally operational; i. e., that at least two of the three subsystems in every stage are

working at test time. The expected reliability of the block in figure III-2 can then be

computed from equations (III-1) and (III-2).

3 [P(tm-to) ] 2
R =

It is:

-2 [P(tm-to) ] 3

-2 [P(tl-to) ] 3

(III-3)

R is the conditional probability that the block will operate continuously until tm, given that

it was functionally operational at t 1.
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Let us nowdefineatestpoint valuefunction, thepurposeof which is to measure the expected

change in the reliability estimate, caused by the addition of a test point at a given location

in a system. The value function is

-Iv= ( i pIR)I -R . (m-4)

In this equation,

PI = the conditional probability that a particular failure pattern, i, will be observed
1

at the location, given that the system is working.

R. = the reliability estimate of the block, given that failure pattern i is observed.
1

R = the expected reliability estimate without the information of the test point.

Since the block is assumed to be functionally operational at test time, there are two possible

observed failure patterns at a test point: (1) there is a failure in one rank of the block, or

(2) there are no failures; all ranks are operational. The probability that failure pattern (1)

will be observed is given by the following equation:

3 [P(tl-t o) ]2 [l_P(tl_to)]

PI= 3 [P(tl-to)]2-2 [P(tl-to)] 3

The probability that failure pattern (2) will be observed is:

(III-5)

P(tl_to ] 3

P2 = 3 [P(tl-to)] 2 -2 [P(tl-to) 3] (III-6)

If failure pattern (1) is observed, the reliability estimate of the block is

R1 = [P(tm_tl ) ]2 (III-7)

Similarly, the reliability estimate of the block when failure pattern (2) is observed, is

R2= ([P(tm-tl)]2) (3-2 [P(tm-tl) ] ). (III-8)

Z
For a given test point, then, the quantity all i P'I Ri' the expected reliability estimate with

test information, becomes

_ P" Ri = Pl R1 + P2 R2" (III-9)all i 1

II

I
I

I
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When equations (III-5) through (HI-8) are substituted in equation (III-9), the result is

_" P.R.= 3 [P(t 1-t°)l 2 (1- [P(tl-t°)] ) [P(tm-t 1)]2 [P(tl-t°)] 3 [P(tm-t 1)] 2<[3- 2

all i 1 1 3[P(tl-to)]2 -2 [P(tl-to)] 3 (III-10)

which reduces to

3[P(tl-to)] 2[P(tm-tl)]2 -2[P(tl-to)]3[p(tm-tl)] 3

P.R. -- (III-ll)all i i 1

3[P(tl-to)]2 - 2[P(tl-to)]3

However, the product P(tl-t o) • P(tm-t 1) is equal to the probability P(tm-to) , since all

subsystem P's are assumed to be exponentials. Therefore, equation (III-11) can be

reduced further, to

3 [P(tm-to)] 2- 2 [P(tm-to)] 3

Z P.R. = (III-12)
all i i 1

3 [P(tl-to)]2 -2 [P(tl-to)] 3

Equation (III-12) is the expected reliability estimate of the block with a test point. It

can be seen, however, that this equation is identically equal to equation (III-3), the expected

reliability estimate without the test point. When these equations are substituted into the

value function equation (III-4), the result is zero:

1 _ PiRi ) _'R = IR-R I-----0. (III-13)V = ( all i

The expected reliabilityestimate with test data is identicallyequal to that without test data.

Of course, a given set of test data will produce, in general, a change in the reliability

estimate. But a value function to measure the a priori change will always result in zero

value for all test points. Because of this basic difficulty,a different approach to the

definitionof a test point value function has been taken. This approach is based on one of the

basic principles of information theory.

2. Information Theory Criterion.

It is known that in a situationin which there is a binary (two possible outcomes) result,

the average amount ofinformation obtained isafunction ofthe results' probabilitiesofoccurrence.

This information is a maximum when the two results are equally probable. The result

obtained from a test point in a redundant digitalsystem is such a binary situation. The test

point can observe either one failure or no failures. Because any redundant systems under

consideration are expected to be operating in a high reliability(above 0.95) region, the
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amountof informationobtainedfrom atest point canbemaximizedby maximizingthe
probabilityof observinga failure at thepotentialtest pointlocation. This is the location
mostnearly equalizingtheprobabilityof observingeither thefailed or workingstate. It
canbeconcluded,therefore, that eachsucceedingtestpoint addedto thesystemshouldbe
locatedat thepointin thesystemat whichtheprobabilityof observinganerroneoussignal
is at a maximum.

It is onthe basisof this conclusionthatthetest point allocationcomputerprogram

hasbeendeveloped.Thevalueof placinga testpoint at a potentiallocationis definedasthe
conditionalprobabilitythata failure will beobserved,giventhat the systemis functionally
operational. Thecomputerprogramhasbeenconstructedto handlelow reliability systems,
wheretheprobabilitiesthata failure will beobservedat a givenlocationmaybegreater
than0.5. In suchsystemstheoptimumplacementwill not, in general, beat thepoint of
maximumprobabilityof failure, but rather at thepoint at whichtheprobability is closestto
0.5. For this reason,the "value"whichprogramactuallycomputesis thedifferencebetween
theprobabilityof failure and0.5. For highreliability systems,however,the effectivevalue
criterion definesthemostvaluabletestpointlocationasthepointwith maximumprobability
of failure.

, ]
I i

I
B BLOCK

I I OUTPUT

C

I I
L J

Figure 11. Block Output, Potential Test Point Location

Assume that a potentialtest point location is the output of the block shown in figure ii. The

probability that a subsystem is operational is P(tl-to);the subsystems in all three ranks

have equal failure rates. The value of placing a test point at the block's output is therefore

IP(tl-t°)1 3

V = 1 -- (III-14)

[P(t,-to,]2[P(,,-,o,]
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If we assume that the subsystems have unequal failure rates, this value function

equation must be expanded. The resulting function is:

V:- 1_

[Pa(tl-to) ] [Pb(tl-to )] [Pc(tl-to) ]

[Pc(tl-to)] (,II-15)

The potential test point locations are defined as the outputs of the blocks in the block

reliability model. Each test point, therefore, could be located at either the output of a

restored function or a system output. It can be seen that at this location in a given block,

the total number of subsystems tested is greater than at any other location in the block.

This test point allocation procedure follows the techniques used in the block reliability

model, i.e. the blocks are considered to be failure-independent. The placement of each

succeeding test point therefore is not dependent on the locations of the previously allocated

points.

a) Example Allocation.

A typical system to which the test point allocation procedure could be applied

is shown in figure 12. There are five possible test point locations: the outputs of stages

3, 5, and 8 and at the two system outputs, stages 9 and 11. The allocation procedure was

applied to this system, using the computer

Figure 12. Majority-voted Triple-modularly Redundant System.
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program. All unitsweregivenequalfailure ratesof 0.2106x10-4 per unit time. Thetest

time wasset at 50time units. Theresultingallocations,with their corresponding'_values"
are shownin table 6.

Table6. TestPointsAllocatedto theSystemin Figure 12.

TESTPT VALUE LOCATEAT
NUMBER STAGE

81

2

3

4

5

0.24751x10-1

0.21713x10-1

0.15590x10-1

0.94028x10-2

0.94028x10-2

5

9

11

3

C. COMPUTERPROGRAMCAPABILITY

Thetestpointallocationprogramallocatesa limited numberof testpointswithina
triple-modularly redundantdigital system. Theprogramcalculatesthevalueof placinga
test pointat eachofthe potentialtestpointlocations. Sincethepotentialtest pointlocations
consistof theoutputsof all of theblocksin theblockmodel, theprogramcalculatesthe
probabilitythat anerroneoussignalwill beobservedat eachof theblockoutputs.

Theresult of theprogramis anorderedlist of thepotentialtest pointlocations, listed
in order of decreasingvalue. Theusermaythenefficiently allocatea limited number(N)
of testpointswithin thesystembyplacingthemat thefirst N locationsin the list.

The computerprogramwill handlevirtually anytriple-modularly redundantdigital
system. All of thestagesin the system, includingvoter stages,mustbeorder-three
redundant.Virtually anydegreeof systemcomplexitycanbeaccomodatedby theprogram,
includingfeedback,feedforward,andmultiple fan-in andfan-out.

Thetest pointallocationprogramis written in FORTRANIV, makingit highly
machine-independent.Thesizeandcomplexityof thesystemto whichtheprogramallocates
testpointsis limited only by individualcomputerstorageandrunningtime limitations.
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IV.PROGRAMS APPLIED TO THE MARINER

C SEQUENCER

In order to demonstrate the applicability of both computer programs to practicable

systems, they have been applied to a specific system design configuration. The system

used is the Mariner C Redundant Spacecraft Sequencer, previously developed for the Jet

Propulsion Laboratories. *

The first step in the application of the programs to a specific system is the conversion

of the system to block diagram form and the subsequent formation of a model of the system.

The stages in the system model are then numbered according to a specific procedure. The

parameters of the system model are read into the program from the model configuration.

The construction of a system model is described in detail in appendices A and B.

The completed system model of the redundant sequencer is shown in figure 13. All

of the output relay circuitry was assumed to be external to the system. Each of the boxes

in the figure represents a function stage, and the circles indicate the restorer stages. The

individual stages shown in dotted lines in the figure represent special "artificial" stages

added to the system. The use of artificial stages is described in the appendices. The

purpose of the artificial input stages nos. 1000, 1001, and 1002 is to shorten certain

table searching in the programs, and thus decrease program running time. The pairs of

artificial output function and restorer stages were added to allow the programs to include

the corresponding system outputs in the list of potential test point locations. The single

artificial restorer stages are added to all system outputs which are not restored.

The failure rates of the subsystems in each stage are shown in table 7. The failure

rates were drawn from the component failure rates listed in the Task II report of the

sequencer design study.

Table 8 shows the results of the test point allocation program. The restorers are

listed in the order in which test points should be added to the system. The corresponding

value of placing a test point at each of the restorers is also shown.

The reliability analysis program was applied to the redundant sequencer by assigning

test points to the first ten test point locations allocated by the test point allocation program.

Five different sets of observations at the ten locations were assumed. Table 9 shows the

assumed test observations for each of the five sets.

• NASA contract No. NAS 7-100; JPL Subcontract No. 950777, Design Study

for a Redundant Spacecraft Sequencer.
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Table 7. Block Model Sybsystem Failure Rates

Failure Rates
Stages %/1000 Hours

1 0.05004

2 0. 03710

3 0.03812

4 0.02398

5 0.00642

6 0.01238

7 0.00999

8-13 0.00100

14 0. 01433

15 0.00459

16 0.00376

17 0.00399

18 0.00366

19 0.00100

20 0.00466

21 0. 00170

Failure Rates

Stages %/1000 Hours

22 0.

23 0.

24 0.

25 0.

26 0.

27 0.

28-30 0.

31 0.

32 0.

33 0.

34 0.

35 0.

36 0.

37 0.

38 0.

39 0.

00100

01584

01188

00596

00900

04940

00100

01270

00226

00339

00256

00279

00792

00100

00792

00100

Failure Rates

Stages %/1000 Hours

40 0.00792

41-45 0. 00100
46 0. 00916

47 0. 00206

48 0. 00143

49 0.00206

50 0. 00143

51 0.00206

52 0.00100

53 0.04777

54 0. 00200

55 0. 00143

56, 57 0. 00100

58-67 0

68-i14 O. 00300

115-134 0

For each of the five reliability estimates, the total mission time was assumed to be

7,000 hours. The time of the test was set at 5,000 hours after the system time - zero,

the time at which all components are assumed to have been operational. The resulting

reliability estimate for each of the five sets of test data is shown in table 10. The initial

reliability estimate, at time - zero is 0. 999169.
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Table 8. Test PointsAllocatedto SequencerModel

Test Pt.

Number

Value of

Placing Test Point

Locate at

Restorer Number

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36
37

513548280-00
511247780-00
509875730-00
508612420-00

508393590-00
508118720-00
507956980-00
507903650-00
507824170-00
507808920-00
506581750-00
506430430-00
506320670-00
505965800-00
505610970-00
505584060-00
505584060-00
505487620-00
505230400-00
505175490-00
505086230-00
505041540-00
501372470-00
501348630-00
500749600-00
500599770-00
500599770-00
500449870-00
500449870-00
500449870-00
500449870-00
500449870-00
500449870-00
500449870-00
500449870-00
500449870-00
500449870-00

93
i16
118
123

8O
ll2

95
68

I14
94
70
69
73
74
85

127
72
87
88

lOl
I02
I00
ll3

79
120
If9

76
134
133
132
131
130
129
128
126
125

153
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Table 9. Setsof TestObservationsAssumed

Test Point
Location

93

116

118

123

80

112

95

68

114

94

Set 1 Set 2
Rank Observed as Failed

Set 3 Set 4 Set 5

Table 10. Resulting Sequencer Reliability Estimates

Set Reliability Estimate

1 0. 999903

2 0. 982376

3 0.978401

4 0. 970831

5 0. 958743
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V. CONCLUSIONS

The reliability figure obtained from the foregoing technique is not an exact solution

to the reliability of complex systems, but a lower-bound estimate. However, since failure

rate estimates themselves are subject to inaccuracies, the analysis time required to pro-

duce an exact reliability estimate of each different system to be analyzed is difficult to

justify. The block model analysis technique is the simplest and most accurate approximation

to system reliability available.

In the test point allocation procedure, the system model used is the block reliability

model. The potential test point locations consist of all of the block outputs, the points at

which all stages in each block can be tested. Since the block model assumes independence

between all blocks, the solution to the value of placing a test point at each of the potential

locations is calculated independently of all other locations. The allocation procedure provides

optimal placement of a limited number of test points consistent with the independence

assumptions of the block model.

The test point allocation technique and the reliability analysis procedure described

herein are sufficiently generalized to facilitate their application to virtually any physically

realizable system. The modified block reliability analysis procedure is completely com-

patible with t_e test point allocation procedure described. Test data obtained from the

allocated test points can be used directly in the estimation of system reliability.

Both procedures have been programmed in the FORTRAN IV language for implementa-

tion on a general purpose digital computer. The programs provide an extremely simple,

efficient means for estimating the reliability of triple-modularly redundant digital systems

of any arbitrary configuration. The size and/or complexity of the system to which the

procedures may be applied is limited only by computer storage and running time limitations.
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I. INTRODUCTION

The test point allocation program allocates a limited number of test points within a

modularly redundant digital system. It provides an extremely simple, fast means of

determining the optimal placement of test points within a system. The program is written

in FORTRAN IV; it is therefore highly machine-independent.

A. WHAT THE PROGRAM DOES

The test point allocation program allocates a limited number of test points within a

modularly redundant digital system. The program computes the value I of placing a test

point at each of the available test point locations in the system. The available test point

locations are composed of the inputs to each of the restQrers in the system model.

The actual results of the program is a listing of all restorers in the system model, in

the order in which test points should be added to the system. Listed with each restorer is the

value of placing a test point at that restorer location. With these results, the user can

efficiently allocate any limited number of test points to the system, up to a maximum of one

test point at each restorer.

B. SYSTEM CONFIGURATION LIMITATIONS

The test point allocation program can be applied only to majority-voted redundant

digital systems. The systems must, in addition, be order-three redundant; i. e., all stages,

including voter stages, must be triplicated. Within these limitations, there are no restric-

tions on the configuration of the system. Virtually any degree of system complexity can be

handled by the program, including feedback loops, feed-forward, multiple fan-in and fan-out.

The size of the system is limited only by computer storage limitations and computer running

time.

A summary flow diagram of the test point allocation program is shown in figure A-1. A

detailed flow diagram appears in section V of this appendix.

I-The value of a test point is defined in section III-A of the main body of this report.
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Figure A-1. Summary Flow Diagram of the Test Point Allocation Program
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II. HOW TO USE THE PROGRAM

The system to which test points are to be allocated is first converted to simple block

diagram form. A system model is then constructed which is very similar to the block diagram.

Finally, an ID number is assigned to each stage of the system, according to a procedure

described below. The system model thus completed, the exact system configuration can be

read into the program. The necessary input data describing the system is compiled directly

from the system model.

The following paragraphs describe, first, the construction of the system model, and

secondly, the input data required by the program.

A. SYSTEM MODEL

The first step in the construction of the system model is the conversion of the system to

block diagram form. Each of the "boxes" in the block diagram indicates either a function

stage or a restorer stage. The usual procedure is to use boxes to indicate the function stages,

and circles to indicate restorer stages. All interconnections between stages are shown in the

diagram, as well as the location of inputs from outside the system and outputs to external

equipment. A failure rate is then assigned to each of the three units, or subsystems, in every

stage.

1. Artificial Stages

The next step in the modelling procedure is the addition to the block diagram of

artificial stages. There are two places in the system at which they might be added: (1) at

all of the system inputs, and (2) at some of the system outputs. The following paragraphs

describe all of the situations in which these artificial stages are used.

a) Artificial Input Stages

The purpose of placing artificial stages at system inputs is to shorten the

program running time, by eliminating unecessary table searching.

Figure A-2 is a block diagram of a simple system to which the program could

be applied. The two system inputs are

A2-1



SYSTEM

INPUTS

Figure A-2. System Block Diagram, Input Stages Needed

labeled A and B. An artificial stage is added to both A and B, as shown in figure A-3.

input labels A and B in figure A-2 have been replaced by the two artificial stages.

The

Figure A-3. Input Stages Added to figure A-2

The addition of these input stages completes the model for the system shown. Any failure

rate, including zero, can be applied to the artificial input stages because the program does not

include these failure rates in any calculations.

b) Artificial Output Stages

The first place at which an artificial output stage must be added is at every

system output which does not come directly from a restorer. This situation is shown in

figure A-4. The two system outputs are labeled A and B. Output B is not restored,
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A

B

SYSTEM

OUTPUTS

Figure A-4. System needing Artificial Output Stages

so an artificial restorer stage must be added, as shown in figure A-5.

/ SYSTEM
MODEL

B JOUTPUTS

Figure A-5. Output stage added to output B of figure A-4.

There is one other situation in which an output stage must be added. This

occurs when the output of an internal restorer is also a system output, and the user wishes to

include this output as a potential test point location. Since the program considers placing

test points only at restorer inputs, the system model must be altered. The block diagram

shown in figure A-6 illustrates this case.
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i= A I SYSTEM
OUTPUTS

B

Figure A-6. Potential test point at output A

Assume that the user wishes to include output A as a potential test point location. Since the

program considers only restorer inputs as potential locations, an artificial restorer stage

must be added at point A. The system model permits restorers to be placed only at the

outputs of function stages, however, so an artificial function stage must be inserted between

the system restorer and the artificial output restorer. The units in this function stage must be

assigned zero failure rates, so that they do not affect the test point value calculations for

point A. The failure rates for the artificial restorer stage do not enter into any calculations,

so their values are unimportant.

2. Stage ID Numbers

The final step in the construction of the system model is the assignment of an ID

number to every stage in the system. The procedure is as follows. First, the function stages,

excluding artificial input stages, are numbered from 1 to N, where N is the total number of

actual function stages. The restorer stages are then numbered in the following manner. The

restorer of function i is assigned an ID number of N+i. The restorer of function 1 is assigned

an I'D number of N + 1, and the restorer of function N has an ]13 number of 2N, etc. This

numbering procedure enables the program to distinguish between functions and restorers.

Finally the artificial input stages are assigned ID numbers of 1,000 or greater, in any order.

This enables the program to recognize system inputs when tracing signal paths, thereby

eliminating much unnecessary table searching. (For systems with a total number of stages,

excluding artificial input stages, of 1,000 or greater, the number 1,000 can be raised in the

program by changing the instruction on lines 55 and 96 of the program listing. )
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Thenumberingof thesystemmodelstagesin theabovemannercompletestheconstruction
of the model. Theprograminputdatadefiningthe systemis takendirectly from the resulting
model.

B. INPUTDATACARDSREQUIRED

This sectionlists thenecessaryinputdatacardsfor thetestpoint allocationprogram.
Thecardsare listed in theorder in whichtheymustappearin thedatadeck. Corresponding

FORMAT statements and READ specifications for each item are also shown. Each of the

following paragraphs describes one data card or group of data cards. (NOTE: The FORMAT

(1415) used to read many of the data cards which have less than 14 items. It is simply a

generalized FORMAT, used to reduced the number of separate FORMAT statements. )

LCT, NOF. FORMAT (1415). READ LCT, NOF.

LCT is the length of the connection table, i.e., the total number of interconnections in

the system model. NOF is the total number of functions in the system model, excluding

restorers.

IFR. FORMAT (1415) READ (IFR(IT), IT=l, LCT).

IFR is the list of stages which provide inputs to other stages in the system model.

These stages include any artificial input stages. The position of each entry in IFR must be

exactly the same as the position of the corresponding stage in the ITO list, the stage which

receives the input.

ITQ FORMAT (1415) READ (IWO(IW), IT=l, LCT).

ITO is the list of stages which recieve outputs from other stages in the system model.

These stages include any artificial output stages in the model. The position of each entry in

ITO must be exactly the same as the position of the corresponding stage in the IFR list, the

stage which provides the input.

TO, T1. FORMAT (2F10. 0). READ TO, T1.

TO is the time zero of the system model; i.e. the time at which all system components

are assumed to have been operational. T1 is the time at which the test will be made. The

units used for these times must, of course, correspond to the time unit used for the failure

rates.

IEQULR. FORMAT (1415) READ IEQULR.

This is the equal reliability flag which indicates, if it equals one, that all three units in

every stage have equal failure rates. If different failure rates are assigned to the units of

any stage, IEQULR is made zero and a separate failure rate is read in for every unit in the

system.
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P (IST, i, 1). FORMAT(6E 12.6). READ (P(IST, I, I), IST=I, KNO)

This is the list of failure rates for the system units. One failure rate is read in for

each stage in the system, and this value is used for the three units in the stage. The failure

rates for the function stages are read in first, followed by those of the restorer stages. For

the case of a function which is not restored, the field corresponding to the appropriate

restorer number may be left blank. The failure values for non-present voters is not used by

the program. This RF.AD statement is used only when IEQULR=I. If IEQULR=0, the following

read statement is used.

P(IST, IRK, I). FORMAT (6E12.6). READ ((P(IST, IRK, 1), IRK=l, 3), IST=I, KNOF).

This is the listof failure rates for the system units. One failure rate is read in for each

unit in the system. The failure rates of the three units in a stage are read in consecutively,

and values are read in according to stage ID numbers; i.e. function stages first, followed by

restorer stages. This READ statement is used only when IEQULR=0. If IEQULR=I, the

preceding read statement is used.

LPRINT. FORMAT (1415). READ LPRINT.

This is the printout option flag, which specifies which of two printout modes will be

employed. When LPRINT=0 the "normal operation" mode is used, in which the program

prints only a listing of input data and final results of the analysis. When IPRINT=I, the

"debug operation" is employed, in which the program prints the above information, plus

many of the intermediate computational results.
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III. OUTPUT TO BE EXPECTED

This section outlines the printout to be expected from the test point allocation program.

The first part of the section describes the output obtained during normal operation of the

program.

Following this is a description of the output available during possible debugging operations,

providing the user with a more extensive view of the intermediate computational results. An

input data constant, LPRINT, specifies which of the output options will be used in any one pro-

gram run.

A. NORMAL OPERATION

The normal operation printout mode is specified by settingthe input data constant,

LPRINT, to zero. In this mode, the program prints, first, a listingof the input data

specifying the system which has been analyzed, and, secondly, the results of the analysis.

The first item to be printed isa complete listof the system interconnections. This

listingis followed by the statement of the total number of system function stages, the zero

time of the system, TO, and the time oftest, TI. Next, the failure rate of each unit, or

subsystem, is listed. The failure rates of the units in each restorer are listedon the same

line as those of the corresponding function stage.

The printout of the results of the program analysis consists of a listingof the optimum

test point locations. These locations are listed as the restorers at which the test points

should be located, arranged in descending order of test point value. The listingis arranged

in table form. Each line consists of: (I)the number of the test point; (2) the value of placing

itat the indicated location; and (3) the restorer at whose input the test point should be located.

A sample of the printout from the normal operation mode is shown on the following page.
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TEST POINT ALLOCATIONS

SYSTEM INTERCONNECTIONS

FROM TO FROM TO
m_m_mme m_mm_mm

1000 1 1 6
5 _ 2 7

FROM TO FROM TO

6 2 6 5
3 8 _ 9

FROM TO

5 3

THIS SYSTEM CONTAINS 5 FUNCTIONS

TIME ZERO : O,

TEST TIME : 50,

UNIT FAILURE RATES

STAGE
I
2

5

TEST PT.

NUMBER

........... FUNCTIONS ..........

RANK I RANK 2 RANK 3
,100503-03 ,100503-03 ,100503-03
,100503-03 ,I00503-03 ,100503-03

,100503-03 ,100503-03 ,10050_-03
,100503-03 ,I00503-03 ,100503-03

,100503-03 ,100b03-03 ,100503-03

VALUE OF PLACING

A TEST POINT

........... RESTORERS ..........

RANK I RANK 2 RANK 3

.I00503-03 ,100503-03 ,100503-03
,I00b03-03 ,I00503-03 ,100503-03

,I00b03-03 ,100503-U3 ,100503-03

,100b03-03 ,100503-03 ,100503m03
.I00b03-03 .100503-03 ,100503-03

LOCATE AT
RESTORER NUMt_EH

1 ,5W3583020-00 9
2 ,5_3583020m00 8
3 ,529Wl1690--00 7

,51_888_10-00 b

B. DEBUG OPERATION

The debug operation printout mode is specified by setting the input data constant,

LPRINT, to one. In this mode, the program prints all of the information provided by the

normal operation mode. In addition, further information is printed to enable a user to examine

some of the intermediate computational operations in greater detail.

The first additional listing is composed of the stages which would be tested at the first

potential test point location examined by the program. This list is followed by the conditional

probability that a failure will be observed at that location, given that the system is working.

The program then prints the value of placing a test point at that location. These items are

printed for each potential test point location in turn, as it is examined.

With the additional information of the debug operation mode, the program user can

obtain a check on both the operation of the program and the correctness of the input data. The

listing of the stages tested at each potential test point location provides a further check on the

completeness of the system connection list, in addition to that provided by the printing of the

input data.

A sample of the printout from the debug operation mode is shown on the following page.

The system represented in this case is the same one previously shown for the normal

operation mode.
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TEST POINT ALLOCATIONS

SYSTEM INTERCONNECTIONS

FROM TO FROM TO

1000 1 1 6
5 _ 2 7

THIS SYSTEM CONTAINS

TIME ZERO = O,
TEST TIME : 50,

FROM TO FROM TO

6 2 6 5
3 B _ g

5 FUNCTIONS

FROH TO

5 3

UNIT FAILURE RATES

STAGE
1
@
3

5

........... FUNCTIONS ..........
RANK I RANK 2 RANK 3

,100505-05 ,100503-03 ,100503-03
,100503-05 ,100503-03 ,I00503-03
,100503m03 ,100503m03 ,100503--03
,100503--03 ,100503--03 ,100503--03
,100503"03 ,100503-05 ,I00503-03

........... RESTORERS ..........

RANK I RANK 2 RANK 3
,I00503-03 ,I00503-03 ,I00503-03

,100503-03 ,100503-03 ,100503-03
,100503-03 ,100503-03 ,100505-03
,100503-03 ,100503-03 ,100505-03
,100b03-03 ,100505-03 ,100505-03

POTENTIAL TEST LOCATION AT RESTORER NO,

TESTEO STAGES

b

1
PROBABILITY THAT A FAILURE IS OBSERVED: ,IWB8BW-OI
VALUE OF PLACING A TEST POINT HERE: ,51W8_8-00

POTENTIAL TEST LOCATION AT RESTORER NO,

TESTED STAGES

7

2 6
PROBABILITY THAT A FAILURE IS OBSERVED= ,29_117-01
VALUE OF PLACING A TEST POINT HERE= ,_29q12-00

POTENTIAL TEST LOCATION AT RESTORER NO,
TESTED STAGES

8

3 5 6
PROBABILITY THAT A FAILURE IS OBSERVED= ,_35830-01

VALUE OF PLACING A TEST POINT HERE: ,b_3583-00

POTENTIAL TEST LOCATION AT RESTORER NO,

TESTED STAGES

9

W 5 6
PROBABILITY THAT A FAILURE IS OBSERVED= ,W35830ROI

VALUE OF PLACING A TEST POINT HERE: ,5_3563-00

TEST PT, VALUE OF PLACING LOCATE AT

NUMBER A TEST POINT RESTORER NUMBER

1 ,5_3583020-00 9
2 ,5W3583020-00 B
3 ,529_11690-00 7

,51_BBB_ZO-O0 b
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IV.PROGRAM VARIABLES AND
CONSTANTS

This section contains a list of important program variables and constants with a brief

explanation of each item. It is intended as an aid to the program user who requires a more

detailed description of the program operations.

B1 - Non-subscripted variable - B1 is the probability that rank i of a given

block is operational at test time. This quantity is used in the calculation

of the value of placing a test point at the output of the block.

B2 - Non-subscripted variable - B2 is the probability that rank 2 of a given

block is operational at test time. It is used in exactly the same manner

as B1.

B3 - Non-subscripted variable - B3 is the probability that rank 3 of a given

block is operational at test time. It is used in exactly the same way as

BI.

IBR - Subscripted variable - This array is used to store the locations in the

block lists. It stores the ID numbers of stages with multiple inputs, in

the order in which they are encountered during the tracing of a signal

path. When the beginning of a path is reached, the program goes to the

last entry in IBR, which is the ID number of the last branch location

passed. The program then traces the next branch with an input to this

location.

IBRX - Subscripted variable - This array is used to store the locations in the

connection table of the branch locations stored in IBR. This connection

table location is used as a starting point in the search for the next

branch with an input to the fan-in stage.

IEQULR - Non-subscripted constant - may have one of two values:

0 - a separate failure rate is read in for each unit in every stage.

1 - a failure rate is read in for each stage, and the value is used as the

failure rate for each of the three units in the stage.
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IFR

IORDRD

LPRINT

IRL

IRST

ITO

IUSD

- Subscripted constants - This array is the "from" list of the connection

table. It stores the ID numbers of the stages which provide inputs to

other stages in the system model. A given system connection will initiate

two entries in the connection table: the stage providing the output will

be entered in the "from" list, IFR, and the stage receiving this output

will be entered the same location in the "to" list, ITO.

Subscripted variables - This array stores an ordered list of restorer

locations at which test points may be placed. The restorers are listed

in order of descending "value". There is a one-to-one correspondence

between the location of restorers in IORDRD, and the location of asso-

ciated values in PORDRD.

- Non-subscripted constant - This is the printout option flag, which speci-

fies which of two printout options will be employed. LPRINT may have

one of two values:

0 - "Normal operation" mode. The program prints a listing of input

data specifying the system analyzed, plus the final analysis results.

1 - "Debug operation" mode. In addition to the printout obtained in the

normal mode, the program prints many of the intermediate compu-

tational results.

- Subscripted variable - This matrix stores the completed block lists,

after they are completed. IRL stores one complete list for each restorer

and system output.

- Subscripted variable - This array holds the complete list of restorer ID

numbers. The list is compiled from the connection table, by searching

through the table for ID numbers which are greater than NOF, the num-

ber of functions, and less than 1,000.

- Subscripted constants - This array is the "to" list of the connection

table. It stores the ID numbers of stages which receive outputs of other

stages in the system model. See IFR, in this section.

- Subscripted variable - This array is used in the generation of a list of

subsystems which have multiple inputs (fan-in units). This latter list is

used in the construction of the block lists. It is constructed by searching

through the connection table for stages with two or more inputs. When

a stage ID number is put in the fan-in list NFB, then the corresponding
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KNOF

LCT

LCTI

LL

NFB

NFI

NI

NOF

NR

NRT

location in IUSD is changed from zero to one. This assures that the

program does not examine the connection table entry repeatedly. There

is a one-to-one correspondence between connection table locations and

IUSD locations.

- Non-subscripted constant - KNOF is equal to twice the number of func-

tions in the system model (KNOF = 2x NOF This is the total number of

stages in a system with NOF functions, all of which are restored.

- Non-subscripted constant - LCT is the Length of the Connection Table,

the total number of connections in the system model.

- Non-subscripted constant - LCT1 is equal to LCT-1. It is used as a DO

index limit for table searching.

- Subscripted variables - LL stores the lengths of the block lists stored

in IRL.

- Subscripted variable - This array holds a list of fan-ins; i. e., stages

having two or more inputs. NFB is used for locating branches during

the construction of block lists. It is compiled by a comparison of entries

in the connection table.

- Non-subscripted variable - NFI is the total number of stages in the sys-

tem model which have two or more inputs. The value of NFI is therefore

the length of the fan-in list, NFB.

- Subscripted variable - This array stores the number of inputs to each of

the stages on the fan-in list, NFB. There is a one-to-one correspondence

between entries in NFI and those in NFB.

- Non-subscripted constant - NOF is the total Number of Functions in the

system model.

Non-subscripted variable - NR is used as a DO loop index. Its value at

a given time represents the location in the voter list of the voter whose

block list is being utilized.

- Non-subscripted variable - NRT is equal to the total number of restorers

in the system model. Its value is computed during the construction of

the voter list, IRST.
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P

PF

PORDRD

R

TO

T1

Subscriptedvariables - This array storesall of theunit failure rates,
whichare readin as data. It stores, also, theprobability thateachunit

in thesystemmodelis operationalat test time. This latter item is

computedby theprogram. Thereare twostoragelocations in P for

each unit, or subsystem, in the system model.

Subscripted variables - This array stores the list of values computed for

all block lists. These values indicate the optimum placement of test

points within the system model.

Subscripted variables - This array stores an ordered list of the values

stored in PF. A list of the restorers associated with this ordered list

is stored in IORDRD.

Non-subscripted variable - R is the probability that the last block con-

structed is functionally operational; i.e., that at least two of its three

ranks are operational.

Non-subscripted constant - TO is the time zero of the system; i.e. the

time at which all subsystems are assumed to have been operational.

The units used for TO must be the same as those of T1 and the subsystem

failure rates.

Non-subscripted constant - T1 is the time of test. The units used for

T1 must be the same as those of TO and the subsystem failure rates.
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V. PROGRAM FLOW CHART

The following pages contain a detailed flow chart of the test point allocation program.

Q 1
READ: NUMBER ¢F INTERC_NNECTIONS,

NUMBER OF FUNCTBbNS, CONNFCTI<bN

TABLF, TIME ZERO, TEST TIME, IEQULR

FLAG AND FAILURE RATE LIST, NUMBER
<bF _bUTPUT V_TERS AND ASSOCIATED

ID NUMBERS..

SPECIFYING SYSTEM I

I CLFAR
STORAGE ]

1N_T=°I

D_, IIJ=l, LCT_

Y_
ID,, ij=l,N,Ff-_

: tiT* (tij):)
_" IRST(IJ)

COMPILE RESTORER LIST

1
I IRST (IJ)=IT_ (IIJ) ]

INR_=NR_II

_<

_>
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[LCT1--LCT-Il

IDOI1=I,LCTII"

I13:I1+II

[DO,I2=I3.LeT}:

COMPILE FAN-IN LIST,

NFB WITH NO. OF INPUTS,
NI

< ::*

[,usD(j2):1]

<

[ NFB(I10)=ITO(I1)

I10=I10+l ]

<

= I

I NFI=I10-1 ]
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?

I DO, I=l, LCT

f"
[DO, II=l, KN_F _

[ IRL(II, NR)=IFR(I)

I,RUH,_):o ]

©

@
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<
>

D_b, 13=1, KN_F

<

I2:LCT

= IF

13 :KN_bF
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il

H
II

I
I

I
I

I

I

I

I
P
}

MI5 =KN_bF+I-I5

_BR

>

D_I6=I, NFI

IF <

"NF B( I6 ):IBR( MI5

[NI(I6)=NI(I6)-I ]

[rr,×:rBr_Mrs)+,]

[DX :IBRx(_5)+I/
__ ,BRX(MIS)=O ]

J
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D _ INX =1, KN_F [_

@,
] LL(NR)=INX-1 ]

LS=LL(NR/

[L,c:mL(M,._R)]

P(L¢_C, 1, 2)=EXP(P(L_C, 1, 1)_(TO-T1))]

BI:BI*P(L¢C, 1, 2) I

R=3 _(Bl_2.) -2.:_(B1_,-_3.)PF(NR)=I. -((BI_ _3. )/R)

C¢_ MPUTE PRc_BABILITY

OF _ BSERVING A FAILURE

IN THE BLcbCK

( :)

I

B1 =1.0

: B2=l. 0
B3=l. 0

LS =LL(NR)

[L(_C =IRL(MI, NR) l

P(L_C, 1, 2)=EXP(P(L_C, 1, 1)t_(TO-T1))

P(LOC, 2.2)=EXP(P(LOC, 2. 1)J-(TO-T1))

P(LOC. 3, 2)=FXP(P(LOC, 3, 1)1_ (TO-T1))

Sl=m P(L¢C, 1.211
B2--B2 P(L4'C, 2.2) IB3=B3 P(L,#C, 3, 21

R=BI_B2+B1 t_B3+B2t_B3-2. _Bll B2_ B3

PF(NR)=I. -((BI_ B2 I_B3)/R)
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|

<_

!D_ JJ--1,LS_,

[IBRX(JJ)--IRUJJ,NR)I

II=IRST(NR) ]B1 =PF(NR)

WRITE IBRX, LLST OF STAGES TESTED
WRITE I1, POTENTIAL LOCATION 9WRITE B1, PROBABILITY OF A FAILURE

]p_c._--,-Io.5-P_ I

[ BI=PF(NR) [

J
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i
I
I
i

?
"ID_N--I,NRTi

i
IC_R:° I

io__R=I,NRT_

I C_SMPR=PH(NR)NINDX(N)=NR

I

_ m

qbRDER LIST _F VALUES

<

P_bRDRD(N):CCMPR

NIX=NINDX(N)

PF(NIX)=O

ID_N=,,NRT

NT=NINDX(N)I_bRDRD(N):IRST(NT)

WRITE I_RDRD AND IqbRDRD, THE
VALUE OF PLACING TEST POINT AT \

LOCATION, AND C_RRESP_bNDING L_CATI_SNS: ]

SPECIFYING _PTIMUM TEST P_INT /

A LL_bCATI_bN PATTERN J
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VI.FORTRAN IV PROGRAM LISTING

The following pages contain a complete FORTRAN IV listing of the test point allocation

program.
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00100
00101
00105
0010_
00105
00111
00117
00125
00131
0013_
00135
001_0

001_6
00151
00152
0015_
00155
00166
00171
00173
00202
00205
00211
00211
00211
00225
OO230
00231
00232
00233
0023_
00235
002_0
002_1
002_
002_
002_5
002_o
00251
0025_
O0257
00262
00265

00270
00271
00272
00273
00275
00275
00277
00300
00301
0030_
00307
00310
00313

O031b
00321

00322
00323
0032_
00325
00327
00332
00333

10

2,
3,

5,

6,
7,
8,
9,

10,

11,
12,

13,

15,

16,
17,
18.
19,

20,
21.
22,
23,
2W,
25,
26,
27,

29,
30,

31,
32,

33.

35,
3b,

37,
38,

39,

WO,

W2,

WW,
W5,

48,

W9,
50,
51,
52,
53,
5W,
55,

56,
57,
58,

59,
60,

61,
62,

63,
6W,
65,

C TEST PT ALLOCATION
DIMENSION IRL(150,75),IFR(2001,ITO(200),IRST(75)PNFB(150)
DIMENSION NI(150)eIBRTI50)wIBRX(150)eLL(75)wNINDX(150),IUSD(200)
DIMENSION P(150p3p2)pPF(75)pPORDRD(75)wIORDRD(75)

400 READ(5p3OI)LCTpNOF
READ(b,301)(IFR(IT),IT=I'LCT)
READ(b,3OI)(ITO(IT),IT=I'LCI)

READ(5,305)TO,TI
READ(b,3OI)IEQULR

KNOF:2*NOF
IF(IEQULR)450,450,451

451 READ(5,3OT)(P(IST,I,I),IST:I,KNOF)
DO 800 IST=IpKNOF
P(ISTw2pl)=P(ISTplPl)

800 P(ISTp3pl)=P(ISTplpl)
60 TO 601

450 READ(b,307)((p(IST,IRK,1),IRK_lp3),IST:I,KNOF)
601 REAO(b,5OI)LPRINT

WRITE{6,309)
WRITE(6,310)(IFR(1),ITO(1),I:I,LCT)

WRITE(6,311)NOF

WRITE(6,312)TO,T1
WRITE(6,314)(N,P{N,I,I),P(N,2,1),P(N,3,1),P(N+NOF,I,lfwP(N÷NOF,2,1

I),P(N+NOF,3,1),N:I,NOF)
C..... CLEAR STORAGE

DO I0_ LLI:I,KNOF
IBR(LLI)=O
IBRX(LLI):O

NI(LLI):O

NFR(LL1)=O
IUSD{LLI):O

DO IOb NR=I,NOF

IRST(NR):O
lOB IRL(LL1,NR):O

R:I,
C ..... COMPILE RESTORER LISt

NRT=O
DO 102 IIJ:I,LCT
IF(IIO(IIJ)-NOF)102,102,103

103 IF(ITO(IIJ)-IO00)I04,I02,i02

10_ DO 101 IJ:I,NOF

IF(IIO(IIJ)-IRST(Id})I05,102'I05
I05 IF(IRST(IJ))IO6,106,101

106 IRST(IJ)=ITO(IIJ)

NRT:NHT+I
GO TO 102

101 CONTINUE
102 CONTINUE

C ..... COMPILE FAN-IN LIST,NFB,AND NO, OF INPUTS,NI

IlO:l
LCTI=LCT-I

DO 90_ II:I,LCTI
IF(IU_D{II))901,901,908

901 13:11+I

DO 906 12:I3,LCT
IF(ITO(12)-ITO(II))90b,902,90b

902 IF(NI(IIO))903,g03,gO_
903 NI(IIO):2

GO TO 905
90_ NI(IIO):NI(IIO)+I

905 IUSD(I2):I
906 CONTINUE

IF(NI(IIO))90t_,908,907
907 NFB(IIO)=ITO(II}

IlO:IlO+I
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00334
00356
00536
00357
00342
00345

0034b

O0551
00353
0035b
00361
00364
00365
00366
00370
00373
00376
00377
00400
00403
00406
00410
00410
00411
00411
00412
00415
00416
00421
00424
00427
00432
00433
00434
00435
00430
004_0

004_0
00_2

004_5
004_6

OO451
00454
00457
00460

00463
00464
00465
00460
00467
00470
00473

00476
00501
00502
OOb03
00504
00500
00510
00512
00515
00520
00521
00522
0052_

66.
67.
68,
69.
70.
71.
72.
73.
74.
75.
70.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
86.
89.
90,
91.
92.
93.
94.
96.
96.
97.
96.
99.

100.
101,
102,
103.
104.
I05,
106,
107,
108.
109,

110.
111.
112.
115.
114,
115.
116°
117.
118.
119,
120,
121.
122.
123.
124.
125.
120.
127.
128,
129.
130.

908 CONTINUE

NFI=IIO-1

C ..... BEGIN COMPILING ISOLATED BLOCKS
111 DO 70 NR=I,NRT

NMBR=IRST(NR)

9 O0 3 I=I,LCT
IF(ITO(1)-NMBR)3,2,3

5 CONTINUE
2 DO 15 II=I,KNOF

IF(IRL(II,NR)-IFR(1))l;,25,14
14 IF(IRLIII,NR)}16,16,15
16 IRL(II,NR)=IFR(1)

GO TO 4
15 CONTINUE

4 IF(IFR(I)-NOF)5,5fl09
109 IF(IFR(I)-lOOO)25ellOb110
110 IRL(IIwNR)=O

GO TO 25
5 DO 7 II=I,NFI

IF(NFB(I1)-IFR(1))7,817

7 CONTINUE
NMBR=IFR(I)

C--_--IFR IS NOT A FAN-IN STAGE
GO TO 9

C ..... IFR IS A FAN-IN STAGE
8 NI(I1)=NI(I1)-I

00 10 I2=I,LCT
IF(ITO(12)-IFR(I)) 10p11,10

11 DO 12 13=I,KNOF
IF(IBR(13)-ITO(I2))18)19,1_

18 IF(IBR(13))20,20,12

20 IBR{13)=ITO(I2)
19 IBRX(I3)=I2

I=I2
GO TO 2

12 CONTINUE

10 CONTINUE
C ..... END OF BRANCH---SEARCH FOR NEXT BRANCH

25 DO 26 IS=lpKNOF
MI5=KNOF÷I-I5
IF(IBR(MI5))2b'26,27

27 DO 28 Ib=I,NFI
IF(NFB(I6)-IBR(MIS))28p29p28

29 NI(IB)=NI(16)-I

IF(NI(16))]O,30,22
30 IBR(MI5):O

IDX:IBRX(MI5)+I
IBRX(MIb)=O
GO TO 31

22 IDX=IBRX(MIS)+I
31 DO 32 I7=IDX,LCT

IF(ITO(I7)-NFb(Ib))52P55,32

33 IF(IBR(MIS))35,35,3_
34 IBRX(NIb)=I7

55 I:17
GO TO 2

52 CONTINUE
28 CONTINUE

26 CONTINUE

DO 39 INX=I,KNOF
IF(IRL(INX,NR))38,SB,39

38 LL(NR)=INX-I
GO TO 502

59 CONTINUE
LL(NR)=KNOF
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00525
00530
00531
00532
00535
0053b
00537
00541
00542
00543
00544
00545
00546
00547
00550
00553
00554
00555
00556
00557
00560
00561
00565
00564
00565
00570
00573

00575
00570

O0577
00602

00610
00613
00514
00617
00620
00620
00623
00623
00625
00630
00630

00631
00634
00637

00640
00641
00643
00643
0064_
00645
00646
00650

00653
0065_
00654
00656
OOb6b
00667
00670
00671

00572
00673
0067_
00673

131,
132,
133.

135.
136,
137.
138,
139.
1_0.

1_2o
1_3.

1_5.
1_6.
1_7°
1_8,
149.
150.
151,

152.
153,
154.
155.
156.
157,

158,
159.
160o
161°
162,
153°
154.
165,
166.
167°
168,
169.
170°
171.
172.
175.
174.
175,

176°
177°
178.
179.
180,
181,
182,
183.
184.

185,
186,
187.
188,
189.
190.
191,
192o
195.

194°
195.

502 IF(IEQULR)503,503e453
453 BI=I,O

LS=LL(NR)
00 _54 MI=I,L5
LOC=IRL(MlpNR)
P(LOC_IP2)=EXP(P(LOC.I,1)*(TO&T1))

45_ BI=BI*P(LOC,Ip2)
R=3,,(BI**2,]-2,t(Bl**3.)
PF(NR)=I,-((BI**3*)/Rf
GO TO 619

503 Bl:l.O

B2:l,O
B3=I,O
LS=LL(NR)
DO 50_ Ml=lpL5
LOC=IRL(MIpNR)
P(LOCplp2)=EXP(P(LOCelpl)*(TO&T1))
P(LOC_2p2)=EXP(P(LOCe2pl)*(TO_T1))
P(LOCp3_2)=EXP(P(LOCe3pl)*(TO&T1))
BI=BI*P(LOCplp2)
B2=B2*P(LOCp2p2)

504 B3=B3*P(LOC,3,2)
R=BI,B2+BI*B3+B2*B3-2.*BI*B2*B3
PF(NR)=I,-((BI*B2*B3)/R)

619 IF(LPRINT)621e621w620
620 DO 623 dJ=leL5
623 IBRX(JJ)=IRL(JJpNR)

II=IRST(NR)
BI=PF(NH)
WRITE(6,315)I1
WRITE(6,316)(IBRX(JJ)eJJ=I,LS)
WRITE(6p317)BI

b21 PF(NR)=I.-ABS(O.5-PF(NR))
IF(LPRINT)70p70_622

62_ BI=PF(NR)
WRITE(Gp318)BI

C ..... MAKE IRL LIST FOR NEXT RESTORER ON LIST

70 CONTINUE
C ..... ORDER LIST OF FAILURE PROBABILITIES

DO 403 N=lpNRT
COMPR:O,

C ..... FIND HIGHE5T OF REMAINING (PF_S

DO 402 NR:lpNRT
IF(COHPR-PF(NR))401,401,402

401 COMPR:PF (NR)

NINDX (N) =NR

402 CONTINUE
PORDRD(N]:COMPR

C..... DELETE HIGHESl PF FROM PF(NR)
NIX=NINUX(N)
PF(NIX)=O

403 CONTINUE

DO 404 N:I,NRT

NT=NINDX (N)
404 IORDRU(N):IRST (NT)

C ..... PRINT RESULTS
WRITE(6_490){N,PORDR_(N),IORORD(N)_N=l_NRT)

703 GO TO 400

301 FORMAT(14IS)
305 FORMAT(2FIO,O)
307 FORMAT(bE12,6)

309 FORMAT(23HITEST POINT ALLOCATIONS///)
310 FORMAT(24H SYSTEM INTERCONNECTIONS//3X,WTHFROM

1 TO FROM TO FROM TO/3X_WTH .......

2 ........ /(5(I6,14)))

TO
m_m_mmo

FROM TO FROM
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0067; 196,
00675 197,
00676 198,
00676 199,

00076 2uO,

00676 201,
00677 202.
00677 203,
00700 20_,
00701 205.
00702 206.
00703 207,
0070_ 208,

311 FORMAI(21HOTHIS SYSTEM CONTAINSpI3,1XpgHFUNCTIONS/)

312 FORMAT(12H TIME ZERO =FT.O/12H TEST TIME =FT.O//)

31_ FORMAT(lgH UNIT FAILURE RATESI/llXp30H ....... ----FUNCTIONS ........

I--,8X,30H ........... RESTORERS" ......... 12X_SHSTAGEpWXw6HRANK lw6X_

26HRANK 2_6Xp6HRANK 5pBXw6HRANK IpbXe6HRANK 2pBX_6HRANK 3/(I5'2XeEl
51,6p2(E12,6)pEI_.bp2(E12,6)))

_90 FORMAT(gHITEST PT,mSX_IbHVALUE OF PLACINGp7XtgHLOCATE AT/8H NUMBE
1R_8Xp12HA TEST POINTp6XpISHRESTORER NUMBER//(I6pE23,9_I13))

315 FORMAT(_OHIPOTENTIAL TEST LOCATION AT RESTORER NO,I5)
516 FORMAT(14H TESTED STAGES//(SIIO))
317 FORMAT(_OH PROBABILITY THAT A FAILURE IS OBSERVED=Eli,6)
318 FORMAT(56H VALUE OF PLACING A TEST POINT HERE=Ell,6)

END

END OF LISTING,
PHASE I TIME = 1SEC,

PHASE 2 TIME = 0 SEC,
PHASE 3 TIME = I SEC,
PHASE W TIME = 0 SEC.
PHASE 5 TIME : 0 SEC,

PHASE 6 TIME = I SEC,

0 *DIAGNOSTIC* MESSAGE(S).

TOTAL COMPILATION TIME : 3 SEC
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I. INTRODUCTION

The reliability analysis program calculates an estimate of the reliability of a modularly

redundant system, using the results obtained from a limited number of test points. It pro-

vides an extremely simple means of determining the probability that a system will be func-

tionally operational at the end of a given time period. The program is completely compatible

with the test point allocation program described in Appendix A. The failed/working informa-

tion generated by the test points allocated by the latter program is used directly in the relia-

bility estimation program.

The program is written in FORTRAN IV; it is therefore highly machine-independent.

A. WHAT THE PROGRAM DOES

The reliability analysis program computes an estimate of the reliability of a triple-

modularly redundant digital system, given that the system is functionally operational at the

time of test, and given the failed/working results of a limited number of test points.

The reliability estimate produced by the program is based on the Block Model technique

described in section II, part B of the body of this report. In order to include test information

in the estimate, a modified version of the technique has been developed for use in the pro-

gram. The modified technique is also described in the body of this report, in section II,

part C.

The program uses three distinct time variables: TO, T1, and T M, as illustrated in

figure B-1. It is assumed that, at TO, the system is completely failure-free; i. e., that

every system component is operational. The time period of interest to the user, i.e., the

mission time, is the period from T O to T M. The limited testing is performed at T1, some

time between T O and T M. It is further assumed, as mentioned above, that the system is

functionally operational at T1; i.e. that at least two of the three subsystems in every stage

are operational at test time.

In addition to the reliability estimate based on tests performed at T1, the program

contains an option for computing an estimate of the initial reliability at T o, with no test data,

but with the assumption that all subsystems are operational.
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TEST

I 'l I

TO T I TM

Figure B-I. The Time Variables Used

B. SYSTEM CONFIGURATION LIMITATIONS

The reliability analysis program can be applied only to majority-voted redundant digital

systems. The systems must, in addition, be order-three redundant; i. e., all stages, in-

eluding voter stages, must be triplicated. Within these limitations, there are no restrictions

on the configuration of the system. Virtually any degree of system complexity can be handled

by the program. The size of the system which can be analyzed by the program is limited only

by computer running time available, and individual computer storage limitations.

C. TEST POINT INFORMATION REQUIRED

All of the test points which produce information usable by the reliability analysis pro-

gram are located at the inputs of restorers.

In the program, therefore, the location of each test point is specified by the restorer

at whose input the test point is located. The test result from each of these test points is read

into the program in the form of the rank, if any, which is observed as incorrect. Since the

system is assumed to be functionally operational at the time of the test, only one rank can

be failed at each test point location.

A summary flow chart of the program is shown in figure B-2. A detailed flow chart

appears in section V of this appendix.
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Figure B-2. Summary Flow Diagram of the Reliability Analysis Program
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II. HOW TO USE THE PROGRAM

The system to be analyzed is first converted to simple block diagram form. A system

model is then constructed which is very similar to the block diagram. Finally, an ID number

is assigned to each stage of the system,according to a procedure described below. The system

model thus completed, the exact system configuration can be read into the program. The nec-

essary input data describing the system is compiled directly from the system model.

The following paragraphs describe, first, the construction of the system model, and

secondly, the input data required by the program.

A. SYSTEM MODEL

If the system to be analyzed has first had test points allocated to it by the test point al-

location program, the same system model used for that program can be used for the reliability

analysis program. If not, this section describes the construction of the model.

The first step in the construction of the system model is the conversion of the system to

block diagram form. Each of the "boxes" in the block diagram indicates either a function

stage or a restorer stage. The usual procedure is to use boxes to indicate the function stages,

and circles to indicate restorer stages. All interconnections between stages are shown in the

diagram, as well as the location of inputs from outside the system and outputs to external

equipment. A failure rate is then assigned to each of the three units, or subsystem in every

stage.

1. Artificial Stages

The next step in the modeling procedure is the addition to the block diagram of

artificial stages. There are two places in the system at which they might be added; at all of

the system inputs and at some of the system outputs. The following paragraphs describe all

of the situations in which these artificial stages are used.

a) Artificial Input Stages

The purpose of placing artificial stages at system inputs is to shorten the program

running time, by eliminating unnecessary table searching.

Figure B-3 is a block diagram of a simple system to which the program could

be applied. The two system inputs are labeled A and B. An artificial stage is added to both

in figure B-4. The input labels A and B in figure B-3 have been replaced by the two artificial

input stages.
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SYSTEM I A
INPUTS

B

Figure B-3. System Block Diagram, Input Stages Needed.

Figure B-4. Input Stages Added to Figure B-3.

The addition of these input stages completes the model for the system shown. Any failure rate,

including zero, can be applied to the artificial inputs because the program does not include

these failure rates in any calculations.

b) Artificial Output Stages

The first place at which an artificial output stage must be added is at every

system output which does not come directly from a restorer. This situation is shown in

figure B-5. The two system outputs are labeled A and B. Output B is not restored, so an

artificial restorer stage must be added, as shown in figure B-6.
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I SYSTEM
OUTPUTS

Figure B-5. Artificial Output Stage Needed.

w

SYSTEM
MODEL

OUTPUTS

Figure B-6. Output Stage added to Output B of Figure B-5.

There is one other situation in which an output stage must be added. This occurs

when the output of an internal restorer is also a system output, and a test point is located at

this output. Since the program considers test points placed only at restorer inputs, the sys-

tem model must be altered. The block diagram shown in figure B-7 illustrates this case.

Assume that the user has placed a test point at output A, as shown by the X in the figure.

Since the program considers only restorer inputs as test point locations, an artificial re-

storer stage must be added at point A. The system model permits restorers to be placed

only at the outputs of function stages, however, so an artificial function stage must be in-

serted between the system restorer and the artificial output restorer. The units in this

function stage must be assigned zero failure rates, so that they do not affect the system

B2-3



×

.A}B

SYSTEM

OUTPUTS

Figure B-7. Test Point at Output A.

reliability calculatons. The failure rates for the artificial restorer stage will not enter into

any reliability calculations, so their values are unimportant.

2. Stage ID Numbers

The final step in the construction of the system model is the assignment of an ID

number to every stage in the system. The procedure is as follows. First, the function

stages, excluding artificial input stages, are numbered from 1 to N, where N is the total

number of actual function stages. The restorer stages are then numbered in the following

manner. The restorer of function i is assigned an ID number of N + i. The resistor of func-

tion 1 is assigned an ID number of N + 1, and the restorer of function N has an ID number of

2N, etc. This numbering procedure enables the program to distinguish between functions

and restorers. Finally the artificial input stages are assigned ID numbers of 1,000 or

greater, in any order. This enables the program to recognize system inputs when tracing

signal paths, thereby eliminating much unnecessary table searching. (For systems containing

a total number of stages, excluding artificial input stages, of 1,000 or greater, the number

1,000 may be raised in the program by changing the instruction on lines 55 and 96 of the pro-

gram listing. )

The numbering of the system model stages in the above manner completes the con-

struction of the model. The program input data defining the system is taken directly from

the resulting model.
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B. INPUTDATACARDSREQUIRED

This sectionlists thenecessaryinputdatacardsfor the reliability analysisprogram.

Thecardsare listed in theorder inwhichtheymustappearin thedatadeck. Corresponding
FORMATstatementsandREADspecificationsfor eachitem are also shown. Eachof the
followingparagraphsdescribesonedatacardor groupof datacards. (NOTE:TheFORMAT

(1415)is usedto read manyof the datacardswhichhavelessthan14items. It is simply a
generalizedFORMAT,usedto reducedthenumberof separateFORMATstatements.)

LCT, NOF. FORMAT (1415). READ LCT, NOF.

LCT is the length of the connection table, i.e., the total number of interconnections in

the system model. NOF is the total number of functions in the system model, excluding re-

storers.

IFR. FORMAT (1415)READ (IFR (IT),IT = I, LCT).

IFR is the listof stages which provide inputs to other stages in the system model. These

stages include any artificialinput stages. The position of each entry in IFR must be exactly

the same as the position of the corresponding stage in the fro list,which receives the input.

ITO. FORMAT (1415). READ (ITO (IT),IT = i, LCT).

ITO is the listof stages which receive outputs from other stages in the system model.

These stages include any artificialoutput stages in the model. The position of each entry in

ITO must be exactly the same as the position of the corresponding stage in the IFR list,which

provides the input.

TO_ T1, TM. FORMAT (3F10.0). READ TO, T1,TM.

TO is the time zero of the system model; i. e., the time at which all system components

are assumed to have been operational. T1 is the time of the test. TM is the end-of-mission

time. The units used for all times must, of course, correspond to that used for the unit

failure rates.

ITZREL. FORMAT (1415). READ ITZREL.

This is the time-zero-reliability flag, which specifies whether the program will com-

pute the system reliability estimate at time zero, without test data (ITZREL = 1), or not

compute it (ITZREL = 0).

NTP. FORMAT (1415). READ NTP.

This is the total number of test points applied to the system.
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ITEST. FORMAT (1415). READ ((ITEST (NR, NFR), NFR - 1,2), NR = 1, NTP).

This is the testresults data. The data consists of a listof the restorers that have test

points at their inputs, together with a listof the rank observed as failed at each of these

locations. The listof test point locations as read in, is alternated with the listof failed

ranks; i.e., each restorer number is followed by the rank observed as failed at that location.

IEQULR. FORMAT (1415). READ IEQULR.

This equal reliabilityflag indicates, ifitequals one, that all three units in every stage

have equal failure rates. Ifdifferent failure rates are assigned to the units of any stage,

IEQULR is made zero and a separate failure rate is read in for every unit in the system.

P (IST, i, 1). FORMAT (6E 12.6). READ (P (IST, 1, 1), IST = i, KNOF).

This is the listof failure rates for the system units. One failure rate is read in for

each stage in the system, and this value is used for the three units in the stage. The failure

rates for the function stages are read in first, followed by those of the restorer stages. For

the case of a function which is not restored, the field corresponding to the appropriate re-

storer number may be leftblank. The failure values for non-present voters is not used by

the program. This READ stagement is used only when IEQULR = I. IfIEQULR = 0, the

following read statement is used.

P(IST_ IRK, i). FORMAT (6E12.6). READ (P (IST,IRK, 1), IRK = 1,3), IST = I, KNOF).

This is the listof failure rates for the system units. One failure rate is read in for

each unit in the system. The failure rates of the three units in a stage are read in consecu-

tively, and values are read in according to stage ID numbers; i.e. function stages first, fol-

lowed by restorer stages. This READ statement is used only when IEQULR = 0. If

IEQULR = 1, the preceding read statement is used.

NOV. FORM_AT (1415).READ NOV.

This constant represents the number of output voters whose stage reliabilityestimates

are to be included inthe overall system reliabilityestimate.

NVR (NV). FORMAT (1415). READ (NVR (NV), NV = I, NOV).

This is the listof ]]9numbers for output voter stages whose reliabilityestimates are

to be included in the system reliabilityestimate. This READ statement is used only when

NOV is non-zero.
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LPRINT. FORMAT (1415). READ LPRINT.

This is the printout option flag, which specifies which of two printout modes will be

employed. When LPRINT= 0, the "normal operation" mode is used, in which the program

prints only a listing of input data and final results of the analysis. When LPRINT= 1, the

"debug operation" is employed, in which the program prints the above information, plus

many of the intermediate computational results.
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III. OUTPUT TO BE EXPECTED

This section outlines the printout to be expected from the test point allocation program.

The first part of the section describes the output obtained during normal operation of the pro-

gram. Following this is a description of the output available during possible debugging

operations, providing the user with a more extensive view of the intermediate computational

results. An input data constant, LPRINT, specifies which of the output options will be used

in any one program run.

A. NORMAL OPERATION

The normal operation printout mode is specified by setting the input data constant,

LPRINT, to zero. In this mode, the program prints, first, a listing of the input data speci-

fying the system which has been analyzed, and, secondly, the results of the analysis.

The first item to be printed is a complete list of the system interconnections. This

listing is followed by the statement of the total number of system function stages, then the

zero time of the system, TO, the time of test, T1, and the time of the mission end, TM.

The test data used in the reliability estimation are then printed. This is a two column

list. The first column contains the ID number of each restorer at which a test point is located.

The second column lists the rank that is observed as failed at each of the test locations. As

mentioned earlier, this item is zero if no erroneous signal is observed at the test point.

Next, the failure rate of each unit, or subsystem, is listed. The failure rates of the

units in each restorer are listed on the same line as those of the corresponding function

stage.

The printout of the results of the analysis consists of the statement of the estimate of

the system reliability at test time. In addition, if the user has specified the calculation of

the initial, time zero reliability estimate, this value is printed.

A sample of the printout obtained during the normal operation mode is shown on the

following page.
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POST-TEST RELIABILITY ANALYSIS

SYSTEM INTERCONNECTIONS

FROM TO FROM IO FROM TO

1000 1 1 6 6 2
5 _ 2 7 3 B

THIS SYSTEM CONTAINS

FROM TO FROM TO

6 5 S 3

g

5 FUNCTIONS

TIME ZERO : O,
TEST TIME : 50,

MISSION TiME : I00,

TEST DATA

RESTORER RANK
TESTED FAILED

7 0
8 1

UNIT FAILURE RATES
........... FLINCTIONS ..................... RESTORERS

STAGE RANK i RANK 2 RANK 3 RANK 1 RANK 2 RAHK 3
I ,100503-03 ,lUOb03-03 ,100503-03 ,I00b03-03 ,100503-03 ,100503Q03

2 ,I00503-03 ,I00503-03 ,I00503-03 ,100503-03 ,I00503-03 ,100503m03
3 ,I00503-03 ,I00503-03 ,i00503-05 ,I00b03-03 ,I00503-03 ,I00b03-03

W ,I00503m03 ,100503--03 ,100503--03 ,I00b03--03 ,I00503-D3 ,I00503m03

5 ,100503-03 ,100505-03 ,100503-03 ,100503-03 ,100503-03 ,100503=03

BEFORE TEST,SYSTEM MISSION RELIABILITY (TIME LERO TO MISSION END):

AFTER TEST, SYSTEM MISSION RELIABILITY (TEST TI_iE TO _ISSION END):

,092_69-00

,95425b-00

B. DEBUG OPERATION

The debug operation printout mode is specified by setting the input data constant,

LPRINT, to one. In this mode, the program prints all of the information provided by the nor-

mal operation mode. In addition, further information is printed to enable a user to examine

some of the intermediate computational operations in greater detail.

The first addition item printed, following the input data listing, is the storage block

IUNKN. This is a list of all of the stages which are in untested blocks; i. e., stages which

are failure - linked to untested restored functions. In this two column listing, the first col-

umn lists every stage in the system; the second column contains a 1 (one) if the corresponding

stage is in an untested block, and a 0 (zero) if a stage is not in an untested block.

The next listing is the storage block 1WORK. This is a list of all subsystems which the

test data indicate are operational at test time. The subsystems are listed by stage and rank.

A 1 (one) indicates that a given subsystem is definitely operational at test time, and a 0 (zero)

indicates either that the subsystem is failed or that the operational state cannot be determined

from the data.

The block IFAIL is printed next. In this listing, a non-zero entry specifies that the

subsystem is in the failed rank of a tested block. The value of the entry is equal to the number

of tested-failed ranks in which the subsystem is located.
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The next listing contains the two probabilities which together form the reliability esti-

mate of each subsystem in the system. The first is the probability that a given subsystem is

operational at test time. The second is the conditional probability that the subsystem will be

operational at the mission end, given that it was operating at test time. The product of these

is the subsystem reliability estimate used in the estimation of the system reliability.

Following this are the lists of stages which form each of the untested blocks. Each

block list is followed by the product of the reliabilities of the blocks listed.

The final additional items printed during the debug operation mode are the lists of stages

which form each of the tested blocks in the system. Each list is followed by the product of the

reliabilities of the blocks listed at that point. The final system reliability estimate is the

product of the untested block reliability estimates and the tested block reliability estimates.

A sample of the printout obtained during the debug operation mode is shown.

POST-TEST RELIABILITY ANALYSIS

SYSTEM INTERCONNECTIONS

FROM TO FROM TO FROM TO FROM TO FROM TO
mill _i III_

1000 1 1 6 6 2 b b 5 3
5 _ 2 7 3 8 g 9

THIS SYSTEM CONTAINS 5 FUNCTIONS

TIME ZERO = O,
TEST TIME = 50,
MISSION TIME = 100,

TEST UATA
RESTORER RANK

TESTED FAILED
7 0
8 1

UNIT FAILURE RATES

STAGE
1
2
3

5

..... " ..... FUNCTIONS ..........
RANK 1 RANK 2 RANK 3

,100503-03 ,100503-03 ,100503"03

,100505-03 ,100503-03 ,100505-05
,100505-03 ,100505-03 ,100505-05
,100505-03 °100505-03 ,100503-05
,100505-03 ,100503-03 ,100505-05

........... RESTORERS ..........

RANK I RANK 2 RANK 5

,100503-03 ,100503-03 ,100b0_-03
,100b05-03 _100505"U3 ,100505-03

,100b03-0_ ,100503"03 ,100505-03
,100505-03 ,100503-03 ,100503-03
,100503-03 ,100503-03 ,100505-03
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STAGES IN UNTESTED BLOCKS

STAGE I=YESfO=NO
1 1
2 0
3 0

5 1
6 1
7 0
8 0
9 0

10 0

UNITS OBSERVED AS OPERATIONAL

STAGE --RANK---
1 2 3

1 0 0 0
2 I 1 1
3 0 1 1

0 0 0
b 0 1 1
6 I 1 1
7 0 0 0
8 0 0 0
9 0 0 0

10 0 0 0

UNITS IN TESTED FAILED RANKS

STAGE --RANK---
1 2 3

1 0 0 0
2 0 0 0
3 1 0 0

0 0 0
b 1 0 0
b 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0

10 0 0 0

SUBSYSTEM PROBABILITIES

PROBABILITY OF OPERATION AT TI

STAGE RANK I RANK 2 RANK 3

1
2
3

5
6
7
8
9

10

,99_987 ,99_987 ,9949_7
1,000000 1.000000 1.000000

,000000 1,000000 1,000000
,99_987 ,99_987 .99_987
,_987_ 1,000000 1,000000

1,000000 1,000000 1.000000
,994987 ,99_987 o99_987
,99_987 ,99_987 o99_987
.99_987 ,99_987 o99_987
,99_987 ,99_987 ,99_987

B3-4

PROBABILITY OF OPERATION AT TMp
GIVEN THAT OPERATIONAL AI TI

RANK 1 RANK 2 RANK 3

.9949_7 ,99;987 ,99;987

.99;987 ,99;987 ,99;987
,000000 ,99_987 ,99_9_I

,99_9_7 ,99_987 ,99_987
.99_987 o99_987 .99_987
,99_987 ,99_987 ,99_987
,99_987 ,99_987 ,99_987
,99_987 ,99_987 o99_987
.99_987 ,99_987 ,99_9_1
,99_9_7 ,99_987 ,99_987



UNTESTED BLOCKS R_LIABILITY

UNTESTED BLOCK NO, 1 CONTAINS THE FOLLOWING STAGES

I

PRODUCT OF RELIABILITIES OF ALL UNTESTED BLOCKS AUOVE- ,999777-00

UNTESTED bLOCK NO, 2 CONTAINS THE FOLLOWING STAGES

5
6

PRODUCT OF RELIABILITIES OF ALL UNTESTED BLOCKS AUOVE" ,964417-00

TESTEU BLOCKS RELIAHILITY

TESTEU BLOC_ NO, I CONTAINS THE _OLLOWlNG STAGES

2
6

PRODUCT OF RELIABILITIES OF ALL TESTEL) _LOCKS ABOVE- ,g99702-00

TESTED BLOCK NO, 2 CONTAINS THE FOLLOWING STAGES

3
5

b

PRODUCT OF RELIAblLITIES OF ALL TESTED BLOCKS ABOVE: ,910010-00

BEFORE TESTpSYSTEM MISSION RELIABILITY (TIME ZERO I0 _ISSION END):

AFTER TESTp SYSTEM MISSION RELIABILITY (TEST TIME TO MISSION END)=
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IV.PROGRAM VARIABLES AND
CONSTANTS

This section contains a list of important program variables and constants with a brief

explanation of each item. It is intended as an aid to the investigator who requires a more

detailed description of the program than is provided by a program user's manual.

IBR Subscripted variable - This array is used during the construction of the block

lists. It stores the ID numbers of stages with multiple inputs, in the order in

which they are encountered during the tracing of a signal path. When the begin-

ning of a path is reached, the program goes to the last entry in IBR, which is

the ID number of the last branch location passed. The program then traces the

next branch with an input to this location.

IBRX Subscripted variable - This array is used to store the locations in the connection

table of the branch locations stored in IBR. This connection table location is used

as a starting point in the search for the next branch with an input to the fan-in

stage.

IEQULR Non-subscripted constant - may have one of two values:

0 - a separate failure rate is read in for each unit in every stage.

1 - a failure rate is read in for each stage, and the value is used as the failure

rate for each of the three units in the stage.

IFAIL Subscripted variable - This array is used to store the locations of all units which

appear in the failed rank of a tested block. There is a one-to-one correspondence

between the locations in IFAIL and the locations in the system. When a unit in a

given system location is found in a failed rank, the corresponding location in

IFAIL is increased by one.

IFR Subscripted constants - This array is the "from" list of the connection table. It

stores the ID numbers of the stages which provide inputs to other stages in the

system model. A given system connection will initiate two entries in the con-

nection table: the stage providing the output will be entered in the "from" list,

IFR, and the stage receiving this output will be entered the same location in the

"to" list, ITO.

B4-1



LPRINT

IRL

IRST

ITEST

ITO

ITZREL

IUNKN

IUSD

Non-subscripted constant - This is the printout option flag, which specifies which

of two printout options will be employed. LPRINT may have one of two

values:

0 - "Normal operation" mode. The program prints a listing of input data specify-

ing the system analyzed, plus the final analysis results.

1 - "Debug operation" mode. In addition to the printout obtained in the normal

mode, the program prints many of the intermediate computational results.

Subscripted variable - This matrix stores the completed block lists, after they

are completed. IRL stores one complete list for each restorer and system output.

Subscripted variable - This array holds the complete list of restorer ID numbers.

The list is compiled from the connection table, by searching through the table for

ID numbers which are greater than NOF, the number of functions and less than

I,000.

Subscripted constants - This array stores the test point data. There are two

entries for each test point: The firstentry is the restorer before which the test

point is located; the second entry is the rank that was observed as failed. Ifa

given test point indicates no failure, the rank number is zero.

Subscripted constants - This array is the "to" listof the connection table. It

stores the ID numbers of stages which receive outputs of other stages in the system

model. See IFR, in this section.

Non-subscripted constant - This is the Time - Zero - Reliabilityflag. Itmay have

one of two values:

0 - The program does not compute the initialsystem reliability.

I - The program computes the initialreliabilityof the system at time zero, as-

suming that all units are operational.

Subscripted variable - This matrix holds a listof stages which are included in

untested blocks. IUNKN is initiallyset to zero, and ones are inserted in appro-

priate locations in accordance with the test data and the block lists. There is a

one-to-one correspondence between the stage ID numbers and the IUNKN locations.

Subscripted variable - This array is used in the generation of a listof subsystems

which have multiple inputs (fan-in units). This latterlist is used in the construc-

tion of the block lists. Itis constructed by searching through the connection

table for stages with two or more inputs. When a stage ID number is put in the
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IWORK

KNOF

LCT

LCT1

LL

NFB

NFI

NI

NOF

NOV

fan- in list NFB, then the corresponding location in IUSD is changed from zero to

one. This assures that the program does not examine the connection table entry

repeatedly. There is a one-to-one correspondence between connection table

locations and IUSD locations.

Subscripted variable - IWORK stores the locations in the system model of units

which are in working ranks of tested blocks. There is a one-to-one correspondence

between the stage and rank locations in the model, and the IWORK locations. When

a subsystem is observed to be in the working rank of a tested block, the cor-

responding location in IWORK is changed from zero to one.

Non-subscripted constant - KNOF is equal to twice the number of functions in the

system model (KNOF = 2 X NOF). This is the total number of stages in a system

with NOF functions, all of which are restored.

Non-subscripted constant - LCT is the Length of the Connection Table, the total

number of connections in the system model.

Non-subscripted constant - LCT1 is equal to LCT - 1. It is used as a DO index

limit for table searching.

Subscripted variables - LL stores the lengths of the block lists stored in IRL.

Subscripted variable - This array holds a list of fan-ins; i. e., stages having two

or more inputs. NFB is used for locating branches during the construction of

block lists. It is compiled by a comparison of entries in the connection table.

Non-subscripted variable - NFI is the total number of stages in the system model

which have two or more inputs. The value of NFI is therefore the length of the

fan-in list, NFB.

Subscripted variable - This array stores the number of inputs to each of the stages

on the fan-in list, NFB. There is a one-to-one correspondence between entries

in NFI and those in NFB.

Non-subscripted constant - NOF is the total Number of Functions in the system

model.

Non-subscripted constant - NOV is the total Number of Output Voters whose re-

liability estimates are to be included in the system reliability estimate. Since

the blocks consist only of inputs to voters, any output voters will not be included

in the estimation of system reliability. NOV indicates to the program, if non-zero,

that there are NOV voters whose reliability estimates must be included separately.
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NR

NRT

NTP

NVR

P

PP

PTSTD

PUNT

R

B4-4

Non-subscripted variable - NR is used as a DO loop index. Its value at a given

time represents the location in the voter list of the voter whose block list is

being utilized.

- Non-subscripted variable - NRT is equal to the total number of restorers in the

system modeU Its value is computed during the construction of the voter list,

IRST.

- Non-subscripted constant - equal to the totalNumber of Test Points in the test

point list, ITEST.

- Subscripted constants - This is a list of output voters whose reliability estimates

are to be included in the system reliability estimate. This list is read into the

program.

- Subscripted variables - This array stores:

1. Unit failure rates.

2. Probability that a unit is working at test time.

3. Probability that a unit will operate until mission end, given that it was

working at test time.

The first item is read in. The second and third items are computed from the

first, in accordance with the test data. There are three locations in P for

every unit, or subsystem, in the system model.

- Subscripted variables - This array stores the probabilities that each rank in

every block is working at test time. There are two locations available for each

rank in each block. The first location the probability without test data. The

second location stores the probability with test data, if it is necessary to change

the probability.

- Non-subscripted variable - PTSTD stores the reliability estimate for all tested

blocks. It is made up of the product of the tested blocks' reliability estimates.

Non-subscripted variable - PUNT stores the reliability estimate for all untested

blocks. It is made up of the product of the untested blocks' reliability estimates.

Non-subscripted variable - R is the initial reliability of the system at time zero,

without the inclusion of test information. In the calculation of this value, it is

assumed that all subsystems are operational.

I

I

I

!

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I



REL

TM

TO

T1

Non-subscripted variable - REL is the system reliability estimate, calculated

at test time, and based on the test data. REL is the product of PTSTD and

PUNT.

Non-subscripted constant - TM is the time of the mission end. The units of TM

must be the same as the units of T1, TO, and the subsystem failure rates.

Non-subscripted constant - TO is the time zero of the system; i.e. the time at

which all subsystems are assumed to have been operational. The units used for

TO must be the same as those of T1, TM, and the subsystem failure rates.

Non-subscripted constant - T1 is the time of test. The units used for T1 must

be the same as those of TO, TM, and the subsystem failure rates.
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V. PROGRAM FLOW CHART

The following pages contain a detailed flow chart of the reliability analysis program.
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COMPILE FAN-IN LIST,

ILCT':LCT,I

IDOI,=I,LCT,

I_3=I''II

[DO, I2=I3, LCTt-

X

NI(I10):2 -< > NI([

[
[iosD (_J2)-_]

<
m

[ NFB(I10)=ITO([') [

I_I°:I_°-_I

[NFI=II0-11

NFB WITH NO. OF iNPUTS,
NI

10):NI(II0)+I[

I

I

11

I

I
II
l
I

II
I
i
l

II
l
II
I
i
l
II
l



IRI,(II. NR)=IFR(I)

] NMBR=IRST(NR) ]

DO, II:l. KNOF _.
/

/

_-RL(II. NR)=O I

0

: DO I. I:I.NFI 4 _
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D_, I2=1, LCT

12):IFR(1)

D,_, 13=I, KNOF

>

<

13 :KN_F

<

IF

I2:LCT

I

I

I

I

I

I

I

I

|

|

|

|

I
I
I
I
I
I



?
!

{ D* 16=l, NFI ',_-

{ NI(16):NI(16)-11

>

l

1
{

<

l? >
_ °

IBR(MI5)=O

IDX=IBRX(MI5)+I

IBRX(MI5) =O

-_ IBRX(MI5)=I7 ]
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D_b, INX=I, KNOF

LL(NR)--INX- 1 I

B1 10
B2=l. 0

B3=l. 0

LS =LL(NR)

I D_MI=I, LS

L_bC:IRL(M1, NR' [

__A__
P(L@C, 1, 5:EXP(P(L_C, 1, 1)_(TO-TM))

p(L_bC, 2, :)=EXP(P(L_C, 2, 1)_(TO-TM))
P(L_C, 3, :)=EXP(P(L_SC, 3, 1)_(TO-TM))

BI=BI_P ._'C, 1, 2)
B2=B2_P _C, 2, 2)

B3=B3_P(L¢C, 3, 2)

[ R:R_(BlxB2 +BI_B3+B2_B3-2. _ BI_B2_B3 }]

[ LL(NR)=KN_F ]
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?
D _IST=I, KN_F [

D ¢_ IRK=l, 3 ]=

P(IST, IRK, 2)=EXP(P(IST, IRK, 1)'_(TO-T1)) ]P(IST, IRK, 3)=EXP(P(IST, IRK, 1)_(T1-TM))

1
_IH IF _ <

K:3z_ >

IDa, IT:l, NTP

[I_, NR_=I, NRT

=_
[LS--_.L(_)I

[L:ITEST(IT, 2)]

I D _ IS=i, LS [

[L_C=IRL(IS,_I
],

[D¢_, IS=l, LS_---_

[ L_C=IRL(IS, NR )_

[IFAIL(L_bC, L):IFAIL(L_h_, L)+I]

IW_bRK(L_C, I)=I

IW¢ RK(L_bC, 2)-I

IW_RK(LqbC, 3)=I
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q

)
p

<

[D¢_. ZS=I, LS_---_

[L,co,RL(,s,_R_
l

IW_bRK(L_bC, 3)=I

]

[,w,_RK(L_,C,,)d]
[ IW#RK(L_C, 2):1_

[L¢c:I_L(Is, NR)]

I

I

I

Ill

I

I
I
I
I

I
I

I

I
I
I
I
I
I
I



Io.ls :I,KNoFD_ IRK=l, 3

I IFAIL(IST, IRK)=O

<

( WRITEIUNKN_

( _,_ _w,._)

( WRITEIFAIL )
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Ho,,_ I,_T]
i

LS:LL(NR)

PP(1, NR)=I.

PP(2, NR)=I.'

PP(3, NR)=I.

_ r

_FAIL(L¢C, 1):O_"'_ pp(l' NR)=PP(I, NR)_P(L#C, 2,2) I

> PP(2, NR)=PP(2, NR)_P(L_C, 2, 2) 1

_PP(3, NR)=PP(3, NR)_P(L 4_c, 3, 2) 1

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I



IRK:3

D_, IST=I, KNCF

D_, IRK=l, 3

D_, IRK=l, 3

L
IF

!__ IST :KN_F /

_ P

>
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I]_O

I_,, NR1.NRT]'-

I_s,JL_NR_I

I D ¢# IS =1, LS]"!- |

It,,, L.NR_i:

= __, , . /_

P(IST, _RK, 2)_ _

I [FAIL(IST, IRK)=IFAIL(IST, IRK)- 1I1 =I1 _ 1

l ,
131: P(IST, IRK. 2)-PP(IRK, NIR) I _ < .._F"-._ _ [ Ill= P(IST, IRK, 2)-PP(I3. NR)

1. - PP(IRK, NR) _'<'_I__'_ 1. - PP(I3, NR)I4 NR+I I4:NR,1

l

l l
PP(I3, I2) pP(IRK, NR)_B1 [ PI'(I3, I2)=PP(I3, I2)_B1pI-{i_, inK, 2)-- I P(IST, IRK, 2)

L P(IST, IRK, 2)=B1J "i [ P(IST, IRK, 2):B1 ]
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1

1

1

CALCULATE UNTESTED BLOCKS

R ELIABILITI ES

P1B=PlB'J P(L_'C. 1, 2) I

P2B=P21?_P(L_bCo 2,2) 1

P3B=P3B_ P(L_C, 3,2)

PlT=PIT_ P(L_C, I,3)

P2T=P2T_ P(L_C, 2, 3) l

P3T=P3T_P(L_C, 3, 3) l

+
PIT =PIT'*PIB

P2T=P2T_ P2B

P3T--P3T_#P3B

PTl PIT_P2T

PT2 =PIT_P3T

PT3=P2Tt P3T

PT4=2. _ PIT_,P2T*_P3T

PB1 :P1B_-P2B

PB2 :P1B_,P3B

i PB3=P2BC_P3B

PB4=2. _ P1B_,P2B _P3B

PUNT:PUNT _ (PT1 +PT2 +PT3- PT4)/(PB1 +PB2 +PB3- PB4)

LS:LL(NR)

PlB=l. 0

P2B=I. 0

P3B-1.0

P1T=I. 0

P2T=I. 0

P3T-I. 0

TE STAGF

LOC, MEMBER OF
'ESTED BLOCK
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U-- ?
IpTSTD-'.°I

l
IDa, IT=l, NTP_

CALCULATE TESTED BLOCKS

BELIA BILITIES

.I
l

I
LID,.I_:i,LSI

I
[ L*C:IRL(IS, NR)[

WRITF STAGF L_C, >
MEMBFR OF TFSTED

BLOCK

PI=PI-_P(I_C. 1.2)_P(LqbC, I. 3)

p2 =P2_-P(LqbC. 2.2)_P(L_C, 2.3)

P.3=P3_P(L_C. 3.2)_ P(I_C. 3, 3)

PTSTD=PTSTD_(PI_P2+PI_-P3+P2_P3-2.0_-Pl-_P2_P3) I

WRITE PTSTD, THE

PRODUCT OF TESTED

BLOCK RELIABILITIE S
>

i

[REL=_UNT_PTS_I
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l

l
i
|

I D_ NV=I, N_V

l

i
RTI=3._ (P(L_f,C, 1, 2) K_2. )
RT3--2.. (P(L4,C, 1, 2)_N 3. )
RMI=RTI_ (P(L'bC, I,3)_ 2.)

RM3=RT3_(P(L_bC, I,3)_ 3.}

}
R=R_(RMI-RM3) I

REL=REL_ (RMI- RM3)/(RT I-RT3) I

j.,

w_. _ _A_A }
/

WRITE R, THE
RELIABILITY AT

TIME ZER'b, WITH NO
TEST DATA

I
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Vl. FORTRAN IV. PROGRAM LISTING

The following pages contain a complete FORTRAN IV listing of the reliability analysis

program.

00100
O010U

00101

00105
0010_

00105

0010b
00112

00120

00126
00133

00130
001_i

00152
00155

00150
00161

00167
00172
00173
00175
00176
00207

00212
00215

00225
O0_2b
00_30

00237
002_2
002_7
00260

00260
00260
0027_

00277

00300
00301

00502
00305

0030_
00305
00510

00311
0051_

00517

00320
00525

le

2.
3.

5,

b.
7.
8,
9.

10.
11.
12.
13.

15°
lb°
17.
18.
19.
20.
21.
22°
25,
2%°
25.
2b,
27,
28,
29,
30.
31°
32,
33,

35.
3b,
37,

39,

_.1°

_.4.,
_5.

_,7,

C POST TEST
C ..... PROGRAM TO ESTIMATE REDUNDANT SYSTEM RELIABILITY AFTER TEST

DIMENSION IRL(150,75)fIFR(2001,ITOI200),IRST(75}pNFB{150)

DIMENSION NI(150),IBR(150},IBRX(158),LL(?5),NVR(75)pIUSD(200|
DIMENSION ITEST(75,Z),IFAIL(IbO,3),IWORK(150,3),PP(6,75)

DIMENSION IUNKN(150),P(150,3,3)

_00 READ(5,5OI}LCT,NOF

READ{5,3OI)(IFR(IT),IT=I,LCT)
REAb(5,5OI)(ITO(IT},IT=I,LCT)
READ(5,305}TO,TI,TM

READ(b,3OI)ITZREL
READ(5,3OI)NTP

READ(5,301){(ITEST(NR,NFR),NFR:Ip2)phR:IpNTP)
READ(bp3OI)IEQULR
KNOF:2*NOF

IF(IEQULR)675,675,676

b7b READ(b,307)(P(IST,I,I),IST=I,KNOF)
DO 677 IST=I,KNOF

P(IST,2,1):P(IST,I,I)
677 P(IST,3,1)=P(IST,I,1)

GO TO 678
675 READ(5'507)((P(IST'IRK,I)pIRK_I,3)pIST:I,KNOF)
67_ RLAD(5'501)NOV

IF(NOV)b01,601,801

801 READ(5,5OI)(NVR(NV),NV:I,NOV)
b01 READ(5,5OI)IPRINT

WRITE(6,309)

WRITE(6,310}(IFR(1),ITO(I),I:I,LCT)
WRITE(6,311)NOF
WRITE(b,312)TO,TI,TM

WRITE(b,313)((ITEST(I,J),J=I,2),I=1,NrP)

WRITE(6,31W)(N,P(N'I'l)pP(N,261),P(N,3,1),P(N÷NOF,I,II,P(N÷NOF,2pl
I),P(N÷NOF,3,1),N;I,NOF)

C ..... CLEAR SIORABE

DO 108 LLI:I,KNOF
IBR(LL1):O

IBRX(LL1):O

IRST(LLI):O
NI(LLI)=O
NFB(LL1)=O
IUSD(LLI)=O
DO lOB NR=IpNOF
IRST(NR)=O

IOB IRL(LL1,NR):O

DO BOO IST:I,KNOF
IUNKN(IST)=O

DO 800 IRK:I,5
IWORK(IST,IRK):O
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00324

00327

00327
00330

00331

00334
00337

003W2

00345
00350

00353

00354
00355

00356
00360

00360
00562
00363

00364
00367
00372
00373
00376

00401

00404
00_05

00_06
00_07

00410
00_12
OOql5
O0_Ib
00W17
00421
00_21
00_22
00_25

00_26

00431
0043_

00436
00441

0044_

O0_W7

00_50
00451
00_53

00_56
00_61

00_62
00463
00_65

00471
00473

00473
00474
0047_
00_75
00_7b
00501
00504
00507

00512
00515
0051o

00517

49. 800 IFAIL(IST,IRK)=O

50. R:I.
51. C..... COMPILE RESTORER LIST

52, NRT:O
53, DO 102 IIJ:I,LCT

54, IF(ITO(IIJ)-NOF)I02,102'103

55, 103 IF(ITO(IIJ)-IO00)IO4,102,102
56, 104 DO 101 IJ:I,NOF

57, IF(ITO(IIJ)-IRST(IO))I05,102'I05

58. lOb IF(IRST(IJ))IOb,106,101
59, lOb IRST(IJ):ITO(IIJ)

60, NRT:NRT+I
61. GO TO 102

62, 101 CONTINUE
63. 102 CONTINUE

64, C ..... COMPILE FAN-IN LIST,NFB,WITH NO,
65. IlO:l
66. LCTI:LCT-I

67. DO 908 II:I,LCT1

68, IF(IUSD(II))901,901,908
69. 901 I3:11+I

70. DO 906 I2:I3,LCT
71. IF(ITO(I2)-ITO(I1))906,902,906
72, 902 IF(NI(IIO))903,905,904
73, 903 NI(IlO):2
74, GO TO g05

75. 90_ NI(IIO):NI(IIO}+I
76, 905 IUSO(12):l

77. 905 CONTINUE
78. IF(NI(IIO))90_,908,907

79, 907 NFS(IIO):ITO(I1)

80, IlO:IlO÷1
81. 906 CONTINUE

62. NFI:IIO-I
83. C ..... BEGIN COMPILING ISOLATED BLOCKS

84° _11 DO 7G NR:I,NRT
85. NMBR:IRST(NR}

80, 9 DO 3 I:Z,LCT

87. IF(ITO(1)-NMHH)3,2,5
88, 3 CONTINUE

89, 2 DO 15 II:I,KNOF
90, IF(IRL(II,NR)-IFR(1))14,25,14

91. 1_ IF(IRL(II,NR))I6,16,15

92. Ib IRL(II,NR}:IFR(1)
93. GO TO 4
94, 15 CONTINUE
95. 4 IF(IFR(1)-NOF)5,5,109

96. 109 IF(IFH(1)-lO00)25,110,110

97, II0 IRL(II,NR):O
98. GO TO 25
99, 5 DO 7 II:I,NFI

I00. IF(NFB(I1)-IFR(1))7,8,7
I01, 7 CONTINUE

102, NMBR:IFR(1)
103. C ..... IFR IS NOT A FAN-IN STAGE

I04, GO TO 9
105. C ..... IFR IS A FAN-IN STAGE

lOb, 8 NI(II):NI(II)-I
107. DO I0 I2:I,LCT
I08. IF(ITOII2)-IFHII)) 10,11,10

109, II DO 12 I3:I,KNOF
II0. IF(IBR(13)-ITO(12))IS,19,18

III. 18 IF(IBR(13))20,20,12

I12, 20 IBR(IS):ITO(I2)
113. 19 IBRX(I3):I2
114, I:I2

OF INPUTS, N I

B6-2



00520
00521
00523
00523
00525
00530

00531
00534
O0537
00542

00545
00546
00547
00550
00551
00552
00553
00556
00561
00564
00565
00566
00567
00571
00575
00575
00600
00603
00604
00605
00607
00610
00613

00614
00615
00610
00617
00622
00025
00624
00025

00626
00627

0063O
00632
00632
00633
00633
00535
006_0
OO643
0064_
00644

00647
00652
00655
00660
00662
00663
00666
00067
00672
00673
00674

00676
00676

115.
lib,
117,
116.
119.
120.
121.
122.
123,
124.
125,

126.
127.
128.
129,
130.
131.
152.
133.

135.
136.
137.
138.
139°
140.
141°
142o
145°
1440
145.
146.
147°

148,
149.
150.
151.
152.
153.

155.

156,
157,
158.
159°
160°
161.
162o
163.
164.
165.
lbb.
167°
168.
169°
170°
171.
172°
173°
174°
175.
176.
177.
178°
179.
180.

GO TO 2
12 CONTINUE
10 CONTINUE

C..... END OF BRANCH---SEARCH FOR NEXT BRANCH
25 O0 26 I5=leKNOF

MI5=KNOF+I-I5
IF(IBR(MI5))26e26p27

27 DO 28 Ib=IpNFI
IF(NFU(16)-IBR(MIS))28p29t28

29 NI(16):NI(IG)-I

IF(NI(IG))30,30f22
30 IBR(MI5)=O

IDX=IBRX(MI5)+I
IBRX(MI5)=O

GO TO 31
22 IDX=IBRX(MI5)+I

51 DO 32 I7=IDXtLCT
IF(ITO(IT)-NFB(I6))32t33p32

33 IF(IBR(MI5))35p35p34
34 IBRX(MI5)=I7
35 I:I7

GO TO 2
32 CONTINUE
28 CONTINUE

2b CONTINUE

00 39 INX=IPKNOF
IF(IRL(INXPNR))3Bp38w39

58 LL(NR)=INX-1
GO TO 502

39 CONTINUE
LL(NR)=KNOF

502 IF(ITZREL)7Op7Op503
503 B1:1.0

B2=1,0
B3=I,0

LS=LL(NR)
00 50_ MI=IpLS
LOC=IRL(MIpNR)

P(LOCwlw2)=EXP(P(LOCtlpl)*(TO'TM))
P(LOCp2p2)=EXP(P(LOCp2PI)*(TO&TM))
P(LOC,3p2}=EXP(P(LOC,3pl)*(TO_TM))

BI=BI*P(LOCpl_2)
B2=B2*P(LOCp2p2)

504 B3=B3*P(LOCw3p2)

R=R*(BI*B2+BI*B3+B2*B3-2,*BI*B2*BS)

C..... MAKE IRL LIST FOR NEXT RESTORER ON LIST
70 CONTINUE

C ..... COMPUTE PROBS. FOR ALL UNITS
DO 250 IST=lpKNOF
DO 250 IRK=lp3
P(ISTeIRKw2)=EXP(P(ISTpIRKtl)*(TO-T1))

250 P(IST,IRK,3):EXP(P(IST,IRK,1)i(T1-TM))
C..... FIHD ALL TESTED BLOCKS-PUT UNITS IN IWORK

DO 401 IT=lpNTP
DO 402 NR=lpNRT
IF(IRST(NR]-ITEST(IT,I))WO2eWO3p402

402 CONTINUE

403 LS=LL(NR)
IF(ITEST(ITP2))404,_04,405

405 L=ITEST(ITp2)
DO 410 IS=ZPLS
LOC=IRL(ISpNR)
IFAIL(LOCpL)=IFAIL(LOC,L)+I

410 CONTINUE
GO TO 406

C..... NO FAILURES IN THIS STRING

OR IFAIL
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00677
00702
00703

O0704

00705
00707

OO71O

OO710
00713
O0715
OO717
O0720
00722
00722
00723
00726

00727
00730

00732
O0732
00733

00736
O0737

OO74O
00742
OO742
00744
00747
00752
00755
00757

00760
00763

00764
00760
00765
00765
00770
00775
00776
01001

01004
01005

01010
01013

OlOlb

01024
01025

01037
01041

01041
01041
01052
01055
01056

01057
01060
01051
01064
01065

01070
01071
01074
01075
01100
01101
01101

181.
182,

183,

184,
185,

186.

187,
186.

189.
lEO.

191.

192.
193.
194.

195,

195.

197.
196.
199.

200,
201.

202.
203.
204.
205.
206.
207.
208.
209.
210.
211,
212.
213.

214.
215.
216,
217.
216.
219.
220.
221.

222.
223,

224°

225°
225°

227.
228.
229.
230.
231.
232.
233.
234,
235.
236,
237°
236.
239.
240.
241.
242.
243,
244.
245.
246.
247.

q04 DO 408 IS=I,LS

LOC:IRL(IS,NR)

IWORK(LOC,I):I
IWORK(LOCp2)=I

406 IWORK(LOCp3):I

GO TO 401
WOb IF(L-2)414p415p415

C ..... FAILURE IN RANK ONE

WI4 DO 409 IS:I,LS
LOC=IRL(ISpNR)
IWORK(LOCP2):I

W09 IWORK(LOC,3)=I
GO TO 401

C..... FAILURE IN RANK TWO
415 DO 420 IS=lpLS

LOC=IRL(ISwNR)

IWORK(LOCpl)=I

420 IWORK(LOC,3)=I
GO TO 401

C..... FAILURE IN RANK THREE
410 DO q21 IS=lwLS

LOC=IRL(ISpNR)
IWO_K(LOCpl)=I

W21 IWORK(LOC,2)=I
401 CONTINUE

C ..... FIND ALL UNTESTED BLOCKS--PUT STAGES IN IUNKN

O0 417 NR:IwNRT
DO 418 IT:IwNTP

IF(ITEST(IT,I)-IRST(NR))418,417,41_
Wlb CONTINUE

LS:LL{NR)
DO 419 IS:I,LS
LOC:IHL(IS,NR)

WIg IUNKN(LOC)=I
417 CONTINUE

C ..... ALL UNITS AR_ ON PROPER LISTS

C ..... COHPARE FAILED AND WORKING LISTS
DO 422 IST:I,KNOF
DO 422 IRK:Iw3
IF(IFAIL(IST,IRK))422_422,423

423 IF(IWORK(ISTplRK))422_422p424
W24 IFAIL(ISTpIRK)=O
422 COUTINUE

IF(IPRINT)621p621p620

620 WRITE(B,317)

WRITE(6,320)(IST,IUNKN(IST),IST:t,KNOF)
WRITE(6,319)

WRITE(6P321)(IItIWORK(IIpl)pIWORK(I1,2}PIWORK(IIP3)pII:IPKNOF)
WRITE(6,318)

WRITE(b,321)(II,IFAIL(II,I),IFAIL(II,2),IFAIL(II'3},II:I'KNOF)
C..... ALL LISTS COMPARED AND COMPLETED

C..... COMPUTE PROB.PROD.FOR EACH IRL LIST
621 DO 251NR:lpNRT

LS=LL(NR)
PP(I,NR):I.
PP(2,NR):I.
PP(3pNR)=I.
DO 251 IS:I,LS

LOC=IRL(IS,NR)
IF(IFAIL(LOC,1))254,254,253

253 PP(IrNR)=PP(lpNR)*P(LOC_I,2)
254 IF(IFAIL(LOC,2)]257p257,255
255 PP(2tNR)=PP(2pNR)*P(LOCp2,2)
257 IF(IFAIL(LOC,3))251,251p258
25_ PP(3,NR)=PP(3,NR)*P(LOC_3,2)
251 CONTINUE

C..... BEGIN COMPUTING RELIABILITIES
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01101
0110_
O11O7
01112
01116
01116
01116
O1121
01124
01127
01127
01132
01132
01135

Ol13b
01137
01137

01140

01141
U1142
01145

01146
UI151
01154

01157
01162
01164
01167
01172
01173

01174
01175
01176

01201
01_02

01203

01206
01210

01211
01212

01213

0121_
01217

01221
01222

01225
01227
01231
01234

01237

01241
01241

01255
01256

01256
01260
01261

01264
0126/
01272

01274
01277
01300
01303

01304
01305

2#80
2_9.
250.
251,
252.
253.
25#0
255.
256.
257.
25_.
259.
260,
261o
262,
265.
26_.

265.
266.
267.
268.
269.
270.
271.
272.
273.
27#.
275,
276,
277,
27_,
279,
280.
281.
282°
283°
28_°
2_5,
28b,
287.
288°
289.
290.
291.

292.
293°
29_.
295°
296.
297.
298.
299.
300.
301.
302.
303.
30_.
305.

306_
507.

308.
309.
310,

311.
312.
313,

C..... COMPUTE WORKING UNITS RELIABILITIES
DO 433 IST:I,KNOF
DO 433 IRK=l,3

IF(IWORK(IST,IRK))W33_433,43_
43_ P(IST,IRK,2):I.0
433 CONTINUE

C ..... COMPUTE FAILED UNITS RELIABILITIES
DO 438 IST=I,KNOF
DO 438 IRK:I,3

IF(IFAIL(IST,IRK))438_38,439

C..... ONE OH MORE FAILED LISTS
439 IF(IUNKN(IST))441,441_442

C ..... NOT ON UNTESTED LIST
441 P(ISTpIRKp2)=O.

P(IST,IRKf3)=O.
GO TO 438

C ..... ONE OH MORE FAILE_ LISTS AND UNTESTED LIST
442 II:0

13=IRK+3

DO 515 NR:I,NRT
LS=LL(NR)
DO 514 IS:I,LS

IF(IRL(IS,NR)-IST)51_,510,514
510 DO 511 I:I,NRT

IF(ITEST(I,I)-IRST{NH;)511,512,511
511 CONTINUE

512 IF(ITEST(I,2)-IRK)515,513,515
513 IF(IS-1)522,522,523
522 P(IST,IRK,2):O.

GO TO 438
523 IFAIL(ISTeIRK)=IFAIL(IST,IRK)-I

ll:II+l

IF(11-2)517,518,518

517 RI:(P(IST,IRK,2)-PP(IRK,NR))/(1.-PP(IRK,NR))
I4:Nk+l

DO 519 I2:I4,NRT

519 PP(I3,I2):(PP(IRK,NR)*_I)/P(IST,IRK,2)
P(IST,IRK,2):UI

GO TO 521

516 BI:(P(IST,IRK,2)-PP(13,NR))/(1.-PPTI3,_R))
IW:Nk+I

00 520 I2:I4,NRT

520 PP(I3,I2):(PP(I3,I2)*_I)/P(IST,IR_,2)

P(IST,IRK,2):B1
521 IF(IFAIL(IST,IRK))438_438,515
514 COrJTINUE

515 CONTINUE
43_ CONTINUE

4_9 IF(IPRINT)623,623,622
b22 WRITE(6,322)

WRITE(6,323)(IST,P(IST,I,2),P(IST,2,2),P(IST,3,2),P(IST,I,3),P(IST
1,2,3),P(IST,3,3),IST:I,KNOF)
I1:0

WRITE(6,324)

C ..... COMPUTE RELIABILITY OF UNTESTED STRINGS (BLOCKS)
62_ PUNT:I.0

DO 450 NR:I,NRT

DO 451 IT:I,NTP
IF(ITEST(IT,I)-IRST(NR))451,450,451

451 CONTINUE

IF(IPRINT)625,625,624
624 II=II+l

WRITE(Gp325)II
625 LS:LL(NR)

PI_:I,O
P2B:I.O
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01306
01307
01310
01311
01312
01315
0131b
01321
01324
01325
0132b
01327
01330
01331
01333
01334
01335

0133b
O1337

01340
01341

01342

01343
01344
0134b
0134b

01347
01352

01355

01355
01357

01360
01363

01364
0136b
01371
0137_

01377
01401

01404
01405

01410
01411

01412
01413

01414

01417
01420
01423

0142O
01_27
01_30

01432
01433
0143b

01_41
01441
01443
01444

01447
01452

01453
01_54

01455
0145b

01457

314.

315,

31b.
317.

318.

319,
320.

321.
322.

323,

324.
325,

32b,

327,
328.

329,

330,

331.

332,
333.
334.
335.

33b,
337.
338,

339,
340,

341,
.342.

343.
344.

345,

34b,
347.
348,
349.
350.

351,

352.
353,
354.

355.

35b,
357,

358,
359,

360,
361,
362,
363,

364,
365,

36o.
367.
368.
369.
370,
371,

372,
373.
374,
375.
376.

377,
378.
379,

P3B=I.0
PIT=I,0
P2T=I.0
P3T=I.0
DO 452 IS=I,LS
LOC=IRL(IS,NR)
IF(IPRINT)b27,b27p62b

62b WRITE(be326)LOC
b27 PIR=P1B_P(LOC,I,2)

p2B=P2B_P(LOCe2p2)
P3B=P3B_P(LOCt3,2)
PIT=PIT_P(LOCplp3)
P2T=P2T_P(LOCp2p3)

45_ P3T=P3T_P(LOC,3,3)
PIT=PIT*PIB
P2T=P2T_P2B
P3T=P3T*P3B
PTI=PIT*P2T
PT2=PIT*P3T
PT3=P2T*P3T
PT4=P1T*P2T*P3T*2.0
P_I=P1B_P2B
Pb2=PIB_P3B
PB3=P2R*P3B
PB4=PIB=P2B*P3B*2.0
PUNT=PUNT*(PTI+PT2÷PT3-PT4)/(PPI+P_2+Pb3-PB4)
IF(IPRINT)450,_50,628

b28 WRITE(6,327)PUNT
_50 CONIlNUE

C ..... COMPUTE RELIABILITY OF TESTED STRINGS {_LOCKS)

PTSTD=I.0

IF(IPHINT)630,630,629

b29 II:0
WRITE(6,328)

b30 DO 453 IT:I,NTP
DO 45_ NR=lpNRT
IF(ITESI(ITwl)-IRST(NH))454,455,45_

454 CONTINUE
455 IF(IPRINT)632,632,631
b31 II:II+I

WRITE(6,329)I1

b32 LS:LL(NR}
P1:1,0
P2:1.0
P3=I.O
O0 45b IS:I,LS

LOC=IRL(IS,NR)

IF(IPRINT)634,634,633
633 WRITE(6,326)LOC
634 PI=PI=P(LOCelp2)*P(LOC,Ip3)

P2=P2*P(LOCp2,2)*P(LOCe2_3)
45b P3=P3=P(LOC,3,2)*P(LOCe3,3)

PTSTD:PTSTD*(PI*P2+PI*P3+P2*P3-2.O*PI*P2*P3)
IF(IPHINT)453,453,635

635 WRITE(6,330)PTSTD

453 CONTINUE

C ..... COMPUTE SYSTEm RELIABILITY AFTER TEST
REL:PUNT.PTSTD
IF(NOV)460,460,457

457 DO 458 NV=I,NOV
LOC=NVR(NV)

RTI=3.*(P(LOC,1,2)**2;)
RT3:2.*(P(LOC,1,2)_*3.)
RMI=RTI*(P(LOC,1,3)**2.)
RM3=RI3*(P(LOC,le3)**3.)
RmR*(_M1-R_3)
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01_60
01_60
01_62
01_65
01_70
01_73
01_7_
O1475
01_76
01477
01500
01501
01501

01501

01502
01503

01503

01504
0150_
01505

01505
01505

01505
01506

01505
01507

01507

01510
01511

01512

01513
01514

01515

01516
01516

01516
01516

01517

01520
01520
01521
01522
01522
01523

0152_

01524
01525

01525
01526

380.
381.
382o
383.
38_,
385.
386.
387.
388.
389.
390.
391.

392.

393.
39_.
395.
396.

397.
398.

399.

_00.
401.

402.
403o
40_,
405.
40b.

407.
408.
409.

410.
_11.
_12,
413.

414.

415.
415.

417,
418.
419.

420.
_21,

422,
423.

424,

425,
_2b,

427.
428.

W58 REL=REL=(RNI-RM3)/(RTI-RT3)
C ..... PRINT RESULTS

W60 IF(ITZREL)703,703,505
505 WRITE(6,315)R
703 WRITE(b,316)REL

GO TO 400
200 FORMAT(IOIIO)

301 FORMAT(1415)
305 FORMAT(3FIO.O)

307 FORMAT(bEI2.6)

309 FORMAT(31HIPOST-TEST RELIABILITY ANALYSIS///)
310 FORMAT(24H SYSTEM INTERCONNECTIONST/3X,W?HFROM TO FROM TO FROM

1 TO FROM TO FROM TO/3X,WIH ...........................
2 ........ /(5(I6,I4)))

311 FORMAT(21HOTHIS SYSTEM CONTAINS,13,1X,gHFUNCTIONS/)

312 FORMAT(12H TIME ZERO =Fg.O/12H TEST TIME =F9.0/15H MISSION TIME =F

16.0//)
313 FORMAT(IOH TEST DATA/3X, BHRESTORER,4X,4HRANK/_X,6HTESTED,_X,bHFAI

ILED/(IB,19))
314 FORMAT(19HOUNIT FAILURE RATES//IIX,30H ........... FUNCTIONS ........

I--,BX,30H ........... RESTORERS .......... /2X,SHSTAGE,4X,GHRANK 1,6X,
26HRANK 2,6X,6HRANK 3,BX,6HRANK I,bX,6HRANK 2,bX,6HRANK 3/(I5,2X,E1

31.6,2(EI2.b),EI4.b,2(EI2.6)))

316 FORMAT(bBHOBEFORE TEST,SYSTEM MISSION RELIABILITY (TIME ZERO TO MI
1SSION END): E12.6)

316 FORMAT(b8HOAFTER TEST, SYSTEM MISSION RELIABILITY (TEST TIME TO MI

ISSION END): E12.6)
317 FORMAT(26HISTAGES IN UNTESTED BLOCKS//)

318 FORMAT(29HIUNITS IN TESTED FAILED RANKS//)
319 FORMAI(3OHIUNITS OBSERVED AS OPERATIONAL//)

320 FORMAT(22H STAGE I=YES,O=NO/(17,111))
321 FORMAT(22H STAGE --RANK_--/13X,9H1 2 3/(217,214))

322 FORMAT(24HISU_SYSTEM PROBABILITIES#/)

323 FORMAT(IIX,3OHPRO_ABILITY OF OPERATION AT TI,10X,31HPROBABILITY OF

I OPERATION AT TM,/52X,2BHGIVEN THAT OPERATIONAL AT T1/GH STAGE, 7X
2,bHRANK 1,WX,bHRANK 2,WX,bHRANK 3,14X_6HRANK 1,4X,GHRANK 2,WXebHRA
3NK 3//(IW,5X,3F10.b,IOX,3F10.o))

32W FORMAr(28HIUNTESTED BLOCK_ RELIABILITY/)

325 FORMAT(19HOUNTESTED BLOCK NO.,I3,31H CONTAINS THE FOLLOWING STAGE

IS/I)
32_ FORMAT(125)

327 FORMAT(b5H PRODUCT OF RELIABILITIES OF ALL UNTESTED BLOCKS ABOVE=E
III.6)

328 FORMAT(26HITESTED BLOCKS RELIABILITY/)
329 FORMAT(17HOTESTEO BLOCK NO.,I3,31H CONTAINS THE FOLLOWING SIAGES/

I/)

330 RELIABILITIES OF ALL TESTED BLOCKS ABOVEZEllFORMAT(53H PRODUCT OF

l.b)
END

END OF LISTING.
PHASE I TIME = I SEC.

PHASE 2 TIME = 0 SEC.
PHASE 3 TIME = 1SEC,
PHASE _ TIME = 0 SEC°
PHASE 5 TIME : I SEC.

0 *DIAGNOSTIC* MESSAGE(S).
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