

EXPERIMENTAL PERFORMANCE EVALUATION OF A RADIAL-INFLOW TURBINE OVER A RANGE OF SPECIFIC SPEEDS

by Milton G. Kofskey and Charles A. Wasserbauer Lewis Research Center
Cleveland, Obio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. - NOVEMBER 1966

EXPERIMENTAL PERFORMANCE EVALUATION OF A RADIAL-INFLOW TURBINE OVER A RANGE OF SPECIFIC SPEEDS
 By Milton G. Kofskey and Charles A. Wasserbauer
 Lewis Research Center
 Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

[^0]
EXPERIMENTAL PERFORMANCE EVALUATION OF A RADIAL-INFLOW
 TURBINE OVER A RANGE OF SPECIFIC SPEEDS

by Milton G. Kofskey and Charles A. Wasserbauer

Lewis Research Center

SUMMARY

An experimental investigation was made to determine the effect of specific speed on efficiency for a 4.59 -inch radial-inflow turbine. The range of specific speeds investigated (72 to 108) at equivalent design speed and pressure ratio was obtained by changing volume flow, based on rotor exit conditions. Changes in volume flow were accomplished by the use of stators having throat areas nominally $50,75,100$, and 125 percent of design. The turbine was operated with air as the working fluid.

Maximum total and static efficiencies were obtained over the specific speed range of about 80 to 90 . The peak total and static efficiencies were 0.91 and 0.87 , respectively, for the 75 -percent configuration.

An understanding of the losses which contributed to the variation of turbine performance with specific speed at design blade-jet speed ratio was made possible by an analysis which determined the magnitude of the various losses for each configuration. Stator loss was the predominant contributor to the decrease in efficiency as specific speed was reduced from a value of 86 . Rotor incidence and viscous losses were the primary contributors to the decrease in performance when specific speed was increased above the value of 90 . Stator exit static-pressure measurements showed that, at equivalent design speed and pressure ratio, rotor reaction increased as specific speed increased.

Rotor exit total-pressure and flow angle surveys indicated that low losses were obtained near the hub region of the rotor for all configurations at equivalent design speed and pressure ratio. Comparatively high losses were obtained near the outer wall. These increased losses may have resulted from tip leakage effects with blade unloading, as well as from centrifugation of low-momentum fluid to this region.

INTRODUCTION

The current Brayton-cycle space-power technology program at the Lewis Research Center includes the experimental investigation of factors which influence the performance of small radial-inflow turbines. One such factor is the specific speed parameter, which relates the operating variables of turbine rotative speed, volume flow based on exit conditions, and ideal specific work to turbine geometry and aerodynamic performance.

Reference 1 shows specific speed - efficiency correlations for a number of radialinflow turbines of various sizes and for a wide range of inlet conditions. This reference shows that high efficiency is attainable for a specific speed range from 65 to 105 , with a significant reduction in efficiency outside this range. However, turbine size, rotor tip clearance, and Reynolds number effects are present in the specific speed - efficiency correlations but are not examined separately. Therefore, the experimental investigation described herein was conducted to determine the specific speed effect on performance for a particular turbine size with rotor tip clearance and Reynolds number held constant.

Two approaches were considered to achieve the range of specific speeds. One was to design and fabricate an optimized stator and rotor configuration for each specific speed point, and the other was to use several stators with one rotor configuration. The second approach was chosen because it would minimize time and cost of the program; however, less than optimum turbine configurations may have resulted, especially at the extremes of the specific speed range.

The 4. 59 -inch-tip-diameter radial-inflow turbine of reference 2 was chosen as the research turbine. The design specific speed for this turbine is 95.6 . Three additional stators having throat areas nominally 50,75 , and 125 percent of design were fabricated. The four configurations cover a specific speed range of 68 to 107 at equivalent design speed and pressure ratio. Each configuration was investigated over a range of turbine pressure ratios at equivalent design speed.

This report presents the performance of the subject turbine for each configuration and shows the specific speed effect on turbine efficiency. Results are presented in terms of equivalent weight flow and efficiency at equivalent design speed over a range of pressure ratios. Internal flow characteristics are presented in terms of static pressure variation through the turbine and radial variation of exit flow angle and loss distribution at the rotor exit.

SYMBOLS

g gravitational constant, $32.174 \mathrm{ft} / \mathrm{sec}^{2}$
H^{\top} isentropic specific work based on total-pressure ratio, ft-1b/lb
$\Delta h \quad$ specific work, Btu/lb
J mechanical equivalent of heat, $778.029 \mathrm{ft}-\mathrm{lb} / \mathrm{Btu}$
N turbine speed, rpm
$\mathrm{N}_{\mathrm{S}} \quad$ specific speed, $\mathrm{NQ}^{1 / 2} /\left(\mathrm{H}^{\mathrm{i}}\right)^{3 / 4}, \mathrm{ft}^{3 / 4} /(\mathrm{min})\left(\sec ^{1 / 2}\right)$
p pressure, psia
Q volume flow (based on exit conditions), cu ft/sec
Re Reynolds number, w/ $\mu \mathrm{r}_{\mathrm{t}}$
\mathbf{r} radius, ft
U blade velocity, ft/sec
V absolute gas velocity, ft/sec
V_{j}-ideal jet-speed corresponding to total- to static-pressure ratio across turbine, $\left(2 \mathrm{gJ} \Delta \mathrm{h}_{\mathrm{id}}\right)^{1 / 2}, \mathrm{ft} / \mathrm{sec}$

W relative gas velocity, ft/sec
w weight flow, lb/sec
$\propto \quad$ absolute rotor exit gas flow angle measured from axial direction, deg
$\gamma \quad$ ratio of specific heats
$\delta \quad$ ratio of inlet total pressure to U. S. standard sea-level pressure, p_{1}^{\prime} / p^{*}
$\epsilon \quad$ function of γ used in relating parameters to that using air inlet conditions at $\mathbf{U} . \mathbf{S}$. standard sea-level conditions, $\frac{0.740}{\gamma}\left(\frac{\gamma+1}{2}\right) \gamma / \gamma-1$
$\eta_{\mathrm{S}} \quad$ static efficiency (based on total- to static-pressure ratio across turbine)
$\eta_{\text {tot }}$ total efficiency (based on total- to total-pressure ratio across turbine)
$\theta_{\text {cr }}$ squared ratio of critical velocity at turbine inlet to critical velocity at U. S. standard sea-level temperature, $\left(\mathrm{V}_{\mathrm{cr}, 1} / \mathrm{V}_{\mathrm{cr}}^{*}\right)^{2}$
$\mu \quad$ gas viscosity, lb/(ft)(sec)
$\nu \quad$ blade-jet speed ratio (based on rotor inlet tip speed), U_{t} / V_{j}
Subscripts:
cr condition corresponding to Mach number of unity
id ideal
w outer wall

```
tip
1 station at turbine inlet
2 station at stator exit
3 station at turbine exit
```

Superscripts:

- absolute total state
* U. S. standard sea-level conditions (temperature equal to $518.67^{\circ} \mathrm{R}$ and pressure equal to 14.696 psia)

TURBINE DESCRIPTION

The 4. 59 -inch-tip-diameter radial-inflow turbine described in reference 2 was selected for this investigation. Air equivalent design values are as follows:

Equivalent weight flow, $\mathrm{w} \epsilon \sqrt{\theta_{\mathrm{cr}}} / \delta, \mathrm{lb} / \mathrm{sec}$

Equivalent specific work, $\Delta \mathrm{h} / \theta_{\mathrm{cr}}$, Btu/lb . 11.9

Equivalent total- to static-pressure ratio, p_{1}^{1} / p_{3}. 1.540
Total to total efficiency, $\eta_{\text {tot }}$. 0.880
Total to static efficiency, $\eta_{\text {s }}$. 0.824

The range of specific speeds at equivalent design speed and pressure ratio was obtained by changing volume flow by using stators with different throat areas. This was done by essentially changing the stator blade angle. Three additional stators having nominal throat areas of 50,75 , and 125 percent of design were used to obtain nominal specific speeds of 68,83 , and 107.

Figure 1 shows the four stators and the rotor used in the investigation. The measured stator throat areas were $49.6,75.3,96.1$, and 126.1 percent of design. Hereafter, each stator and rotor combination will be referred to as the $50-, 75-$, $100-$, and 125 -percent configuration. One stator blade of each configuration had an elongated leading edge to block the flow from entering the small area end of the inlet scroll. A description of the 100 -percent configuration including velocity diagrams is given in reference 2. The 100 - and 125 -percent stators each have 14 blades, whereas the $50-$ and 75 -percent stators have 18 blades each. In order to maintain acceptable stator-blade

Figure 1. - Turbine rotor and four stators.
surface velocities, the 50-, 75-, and 125-percent stators have slightly different shapes than the 100 -percent stator.

It may be noted that, although the throat area of the 100 -percent stator was 3.9 percent smaller than design, results (as reported in ref. 2) showed that equivalent design weight flow was obtained at equivalent design speed and pressure ratio. Attainment of equivalent design weight flow results from the flow check procedure, in which the rotor throat area is increased by cutting back rotor trailing edges until equivalent design weight flow is obtained.

The rotor has 11 blades and 11 splitter vanes. These splitter vanes are used over the initial third of the rotor, thereby increasing the solidity in this region. The resultant decrease in loading was required at the hub to prevent low blade pressure-surface gas velocities.

APPARATUS, INSTRUMENTATION, AND METHODS

The test facility, instrumentation, and method of calculating performance parameters were the same as those described in reference 2, except that air was used as the working fluid. Figure 2 shows a cross-sectional sketch of the turbine test section and the instrument measuring stations. A varying area scroll was used to obtain uniform inlet conditions at the stator inlet. A center body was used at the rotor exit to obtain measurement of exit static pressure at the hub and at the outer wall. Radial surveys of total pressure, total temperature, and flow angle were made at the rotor exit.

The 100 -percent configuration was tested at nominal inlet conditions of 16.0 pounds per square inch absolute and $540^{\circ} \mathrm{R}$ and resulted in a weight flow of 0.657 pound per second at equivalent design speed and pressure ratio. A nominal Reynolds number of 277000 was calculated from this result; Reynolds number is defined herein as $\operatorname{Re}=w / \mu r_{t}$. In order to eliminate the effects of changes in Reynolds number on turbine efficiency, this parameter was held constant for all configurations at equivalent design speed and pressure ratio. Thus, the inlet total pressure was adjusted for the other configurations until a weight flow of approximately 0.657 pound per second was obtained. Table I shows the values of inlet total pressure and temperature and the pressure ratio

Figure 2. - Turbine test section and instrumentation.

TABLE I. - EXPERIMENTAL OPERATING CONDITIONS

Configuration, percent design	Inlet total pressure, psia	Inlet total temperature, ${ }^{{ }^{\mathbf{R}}} \mathbf{R}$	Pressure-ratio range
125	13.0	536	1.28 to 2.13
100	16.0	540	1.30 to 2.16
75	19.2	540	1.29 to 2.26
50	27.2	542	1.31 to 2.32

range over which the turbine was investigated for each configuration.

The turbine was rated on the basis of both total and static efficiency. Turbine inlet and exit total pressures were calculated from weight flow, static pressure, total temperature, and flow angle. In the calculations of turbine inlet total pressure, the flow was assumed to be normal to the plane defined by station 1. The exit total temperature was determined from turbine power measurements.

RESULTS AND DISCUSSION

The results of this investigation are presented in two sections. The first section includes overall results in terms of equivalent weight flow and efficiency for a range of pressure ratios at equivalent design speed with cold air as the working fluid. The effect of specific speed on turbine efficiency is then shown. The second section discusses the internal flow characteristics of the turbine as determined from exit radial surveys of angle and total- and static-pressure measurements through the turbine at equivalent design speed and pressure ratio.

Turbine Performance

Weight flow. - Figure 3 shows the variation of equivalent weight flow $w \in \sqrt{\theta_{\mathrm{cr}}} / \delta$ with inlet total- to exit static-pressure ratio at equivalent design speed. Equivalent weight flows of $0.752,0.615,0.519$, and 0.367 pound per second were obtained for the $125-, 100-, 75-$, and $50-$ percent configurations at the equivalent design pressure ratio of 1.54. The variation of weight flow with increasing pressure ratio indicated that the flow was subsonic over the entire range of pressure ratios covered. The figure also shows that near choked flow conditions were obtained for the 50 -percent configuration at the pressure ratio of 2.32 . The combination of near choked flow conditions obtained for the 50 -percent configuration and the flattening of the weight-flow curves with decreasing stator-throat area indicates that the velocity level through the stator blade row was increasing with decreasing stator throat area.

Figure 4 presents the variation of equivalent weight flow with stator throat area for equivalent design speed and pressure ratio. Equivalent weight flow is expressed as

Figure 3. - Variation of weight flow with pressure ratio and stator throat area at equivalent design speed.

Figure 4. - Variation of weight flow with stator throat area at equivalent design speed and pressure ratio. (Based on measured throat area of 100-percent stator.)
a percentage of the experimental equivalent weight flow obtained with the 100 -percent configuration. The dashed line shown on the figure represents the case where equivalent weight flow is directly proportional to stator throat area. Comparison of the experimental curve with the ideal case shows that the weight flow increases at a lower rate than the rate of area increase. This indicates that the stator pressure ratio p_{2} / p_{1}^{p} increased with increasing stator throat area and, therefore, rotor reaction increased. This change in rotor reaction resulted from the variation of stator to rotor throat area ratios of the four configurations. The change in rotor reaction among the four configurations is discussed further in the section Internal Flow Characteristics.

Efficiency. - Figure 5 shows the variation of total and static efficiency with blade-jet speed ratio for each configuration. The highest efficiencies, at design blade-jet speed ratio, were obtained with the 75-percent configuration. Total and static

Figure 5. - Variation of efficiency with blade - jet speed ratio at equivalent design speed
efficiencies were 0.91 and 0.87 , respectively, for this configuration. These values are significantly higher than the total and static efficiencies of 0.89 and 0.83 obtained with the 100 -percent configuration. At design blade-jet speed ratio, the lowest efficiencies, total and static, were obtained with the 125 -percent configuration. These values were 0.85 and 0.77 for the total and static efficiencies, respectively.

The level of rotor exit velocity, as indicated by the difference between total and static efficiency, decreases with decreasing stator throat area. For example, at the design blade-jet speed ratio of 0.697 , approximately 8 points in efficiency are attributed to rotor kinetic energy for the 125 -percent configuration, while only 3.0 points in efficiency are attributed to rotor exit kinetic energy for the 50 -percent configuration. This decrease in rotor exit velocity with decreasing stator throat area results from the change in the stator to rotor throat area ratio among the four configurations. The figure also indicates the variation of rotor exit kinetic energy with blade-jet speed ratio. Comparison
of figures 5(a) and (d) shows that there was a greater rate of change in exit kinetic energy with increasing blade-jet speed ratio (decreasing turbine pressure ratio p_{1}^{\prime} / p_{3}) for the 125 -percent configuration than for the 50 -percent configuration. This effect results from the larger variation of weight flow with pressure ratio for the 125 -percent configuration than for the other configurations, as shown in figure 3 ($p .8$).

Figure 6 shows the variation of total and static efficiency with specific speed for all four configurations investigated. The dashed line representes the variation of efficiency with specific speed at the design blade-jet speed ratio of 0.697 . The upper plot in figure 6 shows that the highest total efficiency value of 0.91 was obtained at a specific speed of approximately 86 . This efficiency value is 2.0 points higher than the efficiency of 0.89 , which was obtained at the design specific speed value of 95.6 for the 100 -percent or reference turbine configuration. It may be noted that the design blade-jet speed ratio curve (dashed line) passes through the peak efficiency point for all but the 50 -percent configuration. The heavy curve shown in the figure represents the envelope of the efficiency curves for all configurations. This curve shows that maximum total efficiency is obtained in the specific speed range of about 80 to 90 .

The lower plot in figure 6 shows the variation of static efficiency with specific speed for the four configurations. The highest efficiency value of 0.87 was also obtained at a specific speed of approximately 86 . This value of efficiency is about 3.0 points higher than that obtained for the 100 -percent or reference turbine configuration at the design specific speed of 95.6 . The lowest peak static efficiency of 0.77 was obtained at a

Figure 6. - Variation of efficiency with specific speed at equivalent design speed.
specific speed of 111. It should be pointed out, however, that part of this decrease in static efficiency results from using the same rotor with each stator. Since the 125percent configuration passes the largest volume flow of the four configurations, the rotor exit kinetic energy would be expected to be higher for this configuration.

The variation of static efficiency with specific speed for design blade-jet speed ratio (dashed line) shows the same trend as the envelope curve represented by the heavy line. The highest efficiency of 0.87 was obtained at a specific speed of 86 , and the lowest efficiency of 0.77 was obtained at a specific speed of 108 . It may be noted that both total and static efficiencies obtained at design blade-jet speed ratio occur at or very close to the peak efficiency points for the 75 - and 100-percent configurations and at lower values of efficiency for the other configurations. From these results, it appears that radial-inflow turbines should be designed for a specific speed range of about 80 to 90 for the attainment of high efficiency.

Loss distribution. - In order to obtain an understanding of the losses which contributed to the variation of turbine performance with specific speed at design blade-jet speed ratio, an analysis was made to determine the magnitude of the various losses for each configuration. The method used involved the determination of velocity diagrams for each configuration from measured turbine work, weight flow, inlet conditions of pressure and temperature, speed, stator throat area, and results of rotor exit surveys of total pressure and flow angle. Design loss distribution between the stator and rotor was used to proportion the measured overall turbine loss for the 100 -percent configuration. Stator losses for the other configurations were then assumed to vary in proportion to the average of inlet and outlet kinetic energy as determined from the velocity diagrams.

Rotor incidence losses were determined through adjustment of the actual incidence angle, which resulted in an effective relative whirl velocity different from the velocity diagram value. The adjustment depends upon the blade speed, the number of blades, the rotor diameter, and the volume flow at the rotor inlet. The use of the effective relative whirl velocity is analogous to the use of the slip factor for centrifugal impellers. The remaining losses were attributed to rotor viscous losses. Figure 7 shows the results of these calculations. The various losses, expressed in terms of efficiency, are shown as a function of specific speed. The magnitude of the exit kinetic-energy loss is shown by the difference between total and static efficiency values obtained from figure 5 (p .9) at design blade-jet speed ratio.

Figure 7 shows that rotor incidence loss increases as specific speed increases above 90. This increase in rotor incidence loss results from an increase in the stator exit flow angle (as measured from tangential) and a decrease in the stator exit velocity with increasing specific speed. Rotor viscous losses also increase substantially with increasing specific speed. The increase in rotor loss results from the increased relative velocity level through the rotor. Part of the increase in rotor viscous loss can be attributed to the manner in which the range of specific speeds was obtained. Figure 7

Figure 7. - Variation of turbine losses with specific speed at equivalent design speed and pressure ratio.
shows that there is no significant change in stator viscous losses as the specific speed is increased above a value of 86 . This would indicate that the combined losses resulting from the velocity level through the stators and the boundary-layer blockage did not change to any large degree.

Decreasing specific speed below a value of 86 results in an increase in stator viscous losses. The figure shows that the losses increase from about 5.0 points in terms of efficiency at a specific speed of 86 to about 11.0 points at a specific speed of approximately 72. These losses may be associated with the increased velocity level through the stator and the increased boundary-layer blockage due to a larger ratio of wetted area to flow area.

Calculations also indicated that rotor incidence losses were insignificant below a specific speed of 90 . Rotor viscous and exit kinetic-energy losses decreased with decreasing specific speed, since specific speed is proportional to the square root of the exit velocity when rotative speed, rotor throat area, and pressure ratio are constant.

Internal Flow Characteristics

The determination of turbine internal-flow characteristics for each configuration was based on the measured static-pressure distribution through the turbine, together with the results of a radial survey of turbine exit total pressure and flow angle.

Figure 8 shows the variation in stator exit static pressure with design stator throat area at equivalent design speed and pressure ratio for the four configurations investigated. Rotor reaction decreases and stator exit velocity increases with decreasing stator throat area, as was noted in the discussion of equivalent weight flow.

Figure 8. - Variation of stator exit static pressure with stator throat area at equivalent design speed and pressure ratio.

Figure 9. - Variation of turbine exit flow angle with radius ratio at equivalent design speed and pressure ratio.

The results of a radial survey of exit flow angle taken at equivalent design speed and pressure ratio are presented in figure 9 for the four configurations investigated. It may be noted that, as the stator throat area was reduced, the exit flow angle changed from predominately overturning (as denoted by negative angles) to underturning over the entire passage height. This trend in exit flow angle with configuration is to be expected since the rotor exit relative velocity decreases with decreasing stator throat area.

The variation of exit flow angle and exit total and static pressure with radius ratio indicated that there was a nonuniform work distribution from hub to outer wall for all four configurations, with minimum work occurring along the outer wall. This may be due to blade unloading which results from tip leakage and from centrifugation of low
momentum fluid to this region.

Figure 10. - Variation of turbine loss with radius ratio at equivalent design speed and pressure ratio.

Local values of total efficiency were calculated on the basis of the change in tangential momentum through the rotor and the radial distribution of total pressure at the rotor exit. These results are plotted in figure 10 in terms of turbine loss ($1.0-\eta_{\text {tot }}$) as a function of radius ratio. The figure shows that the largest radial variation in loss or efficiency is obtained with the 75- and 100-percent configurations. However, the magnitudes of the losses for these two configurations are substantially lower than those for the other two configurations. The curves show low losses along the hub region and comparatively high losses in the region near the outer wall for all configurations.
Calculations were made from experimental results to determine the radius ratio at which the weight flow was divided into equal parts. A radius ratio of approximately 0.77 was calculated for all configurations. This coincides with the design mean stream line, as shown in figure 10. At the mean stream line the calculated local loss is approximately equal to the experimental value as obtained from overall performance for each configuration.

SUMMARY OF RESULTS

An experimental investigation was made to determine the specific speed effect on performance for a 4.59-inch-tip-diameter radial-inflow turbine at equivalent design speed over a range of pressure ratios. Results are presented for operation at a nominally constant Reynolds number of 277000 at equivalent design speed and pressure ratio. The effect of turbine size on performance was eliminated by use of the same rotor for each configuration. The range of specific speed values investigated at equivalent design speed and pressure ratio was obtained by changing volume flow through the use of stators having throat areas nominally $50,75,100$, and 125 percent of design. From this investigation the following results were obtained:

1. Comparison of actual equivalent weight flow with an equivalent weight flow, which is directly proportional to stator throat area, showed that there was a deficiency in
weight flow for the 125 -percent configuration and a surplus of weight flow for the 50 - and 75 -percent configurations at equivalent design speed and pressure ratio. This difference in weight flows was attributed to the corresponding changes in rotor reaction which result from the use of the same rotor for each configuration.
2. Maximum total and static efficiencies were obtained in the specific speed range of about 80 to 90 . In this range, peak total and static efficiencies of 0.91 and 0.87 were obtained with the 75 -percent configuration at a specific speed of 86 . The lowest peak value of efficiency was obtained with the 125 -percent configuration. For this case, the total efficiency was 0.85 at a specific speed of approximately 108. The corresponding static efficiency was 0.77 at a specific speed of 111 .
3. An analysis of stator and rotor losses over the range of specific speeds investigated at equivalent design speed and pressure ratio showed the following:
(a) Turbine losses were at a minimum for the specific speed range of about 80 to 90 .
(b) Stator viscous losses were the predominant factor in the decrease in total efficiency as the specific speed was decreased from a value of 86.
(c) Rotor incidence and viscous losses were the predominant factors in the decrease in total efficiency as specific speed was increased from 90.
4. Stator-exit static-pressure measurements obtained at equivalent-design speed and pressure ratio indicated that the highest rotor reaction was obtained for the 125 -percent configuration. Rotor reaction decreased with decreasing stator throat area.
5. Radial surveys of rotor exit total pressure and flow angle at equivalent design speed and pressure ratio indicated that minimum losses occurred near the hub region and the losses increased substantially near the outer wall. These increased losses may have resulted from tip leakage effects with blade unloading and from centrifugation of lowmomentum fluid toward the outer wall. Comparison of losses between configurations showed that minimum losses were obtained from hub to outer wall for the 75 -percent configuration.

Lewis Research Center,
National Aeronautics and Space Administration, Cleveland, Ohio, August 26, 1966, 120-27-03-13-22.

REFERENCES

1. Wood, Homer J.: Current Technology of Radial-Inflow Turbines For Compressible Fluids. J. Eng. Power, vol. 85, no. 1, Jan. 1963, pp. 72-83.
2. Wasserbauer, Charles A.; Kofskey, Milton G.; and Nusbaum, William J.: Cold Performance Evaluation of a 4.59-Inch Radial-Inflow Turbine Designed for a BraytonCycle Space Power System. NASA TN D-3260, 1966.

m_{i}	mass of $i^{\text {th }}$ perturbating body, sun mass units
m_{Υ}	mass of reference body plus m, sun mass units
N_{M}	Mach number
P	atmospheric pressure, newtons/m ${ }^{2}$
\vec{P}	$\vec{V}^{2} \times \vec{A}$ (appendix B)
P_{W}	power, w
p	semilatus rectum, m
q	dynamic pressure, $\frac{1}{2} \rho\left(V^{\prime}\right)^{2}$, newtons/m $/ \mathrm{m}^{2}$
R_{r}	radius of reference body, m
r	radius from origin to object, m
r_{i}	radius from origin to $i^{\text {th }}$ perturbating body, m
S	aerodynamic reference area, m^{2}
T	temperature, ${ }^{\circ} \mathrm{K}$
t	time, sec
U	gravitational potential
$\mathrm{U}_{\mathrm{x}}, \mathrm{U}_{\mathrm{y}}, \mathrm{U}_{\mathrm{z}}$	x, y, z accelerations due to gravity, $m / \sec ^{2}$
V	absolute velocity, m/sec
V^{\prime}	relative velocity, $\mathrm{m} / \mathrm{sec}$
v	true anomaly, radians
X	forces acting on object other than gravity, thrust, lift, drag, and perturbations due to perturbating bodies
x, y, z	components of r, m
α	angle between thrust and velocity vectors (sketch (a)), deg
β	angle of rotation of thrust out of orbit plane (sketch (a)), deg
η	power efficiency factor
μ	$k^{2} \mathrm{~m}_{\mathrm{r}}$
ρ	atmospheric density, $\mathrm{kg} / \mathrm{m}^{3}$

 argument of pericenter, radians
 \& equatorial longitude of ascending node, radians
Subscript:
o initial value

VECTOR RESOLUIIION

Relative Velocity

The relative velocity is defined as the velocity of the object with respect to the origin body. If the origin body is assumed to rotate about the z-axis, this velocity is given by

$$
\begin{equation*}
\vec{V}^{\prime}=\vec{V}-\vec{\omega} \times \vec{r} \tag{BI}
\end{equation*}
$$

In x, y, z component form,

$$
\begin{gather*}
V_{x}^{\prime}=V_{x}+\omega y \tag{B2a}\\
V_{y}^{1}=V_{y}-\omega x \tag{B2b}\\
V_{z}^{1}=V_{z} \tag{B2c}
\end{gather*}
$$

In the following sections, the atmosphere of the origin body is assumed to rotate as a solid body at the rate $\vec{\omega}$.

Thrust Resolution Along x, y, z Axes
$\underset{\vec{W}}{T h e}$ thrust direction is specified with respect to the relative velocity vector \vec{V}^{\prime} by the angles α and β, as shown in sketch (a) (p. 4). For resolution of thrust vector into x, y, z components, it is convenient to define vectors \vec{A} and \vec{P} normal to and within the $\vec{r}, \vec{V}^{\prime}$ plane, respectively, such that \vec{V}, \vec{A}, and P form an orthogonal set. This,

$$
\begin{gather*}
\vec{A} \equiv \vec{r} \times \vec{V}^{\prime}=\text { relative angular momentum per unit mass } \tag{B3}\\
\qquad \vec{P} \equiv \vec{V}^{\prime} \times \vec{A} \tag{B4}
\end{gather*}
$$

The thrust vector can then be resolved in the $\vec{V}^{\prime}, \vec{A}, \vec{P}$ set as:

$$
\begin{gather*}
\vec{F} \cdot \vec{V}^{\prime}=F V^{1} \cos \alpha \tag{B5a}\\
\vec{F} \cdot \vec{A}=F A \sin \alpha \sin \beta \tag{B5b}\\
\vec{F} \cdot \vec{P}=F P \sin \alpha \cos \beta \tag{B5c}
\end{gather*}
$$

Solving for \vec{F} yields

$$
\begin{equation*}
\vec{F}=\frac{F}{P^{2}}\left(V^{\prime} \cos \alpha \vec{A} \times \vec{P}+A \sin \alpha \sin \beta \vec{P} \times \vec{V}^{1}+P \sin \alpha \cos \beta \vec{P}\right) \tag{B6}
\end{equation*}
$$

or, in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ component form,

$$
\begin{equation*}
F_{X}=\frac{F}{P^{2}}\left[V^{:} \cos \alpha\left(A_{y} P_{z}-A_{z} P_{y}\right)+A \sin \alpha \sin \beta\left(P_{y} \nabla_{z}^{1}-P_{z} V_{y}^{s}\right)+P \sin \alpha \cos \beta P_{x}\right] \tag{B7a}
\end{equation*}
$$

$$
\begin{equation*}
F_{y}=\frac{F}{P^{2}}\left[V^{\prime} \cos \alpha\left(A_{z} P_{x}-A_{x} P_{z}\right)+A \sin \alpha \sin \beta\left(P_{z} V_{x}^{\prime}-P_{x} V_{z}^{\prime}\right)+P \sin \alpha \cos \beta P_{y}\right] \tag{B7b}
\end{equation*}
$$

$$
\begin{equation*}
F_{z}=\frac{F}{P^{2}}\left[V^{1} \cos \alpha\left(A_{x} P_{y}-A_{y} P_{x}\right)+A \sin \alpha \sin \beta\left(P_{x} V_{y}^{1}-P_{y} V_{x}^{1}\right)+P \sin \alpha \cos \beta P_{z}\right] \tag{B7c}
\end{equation*}
$$

Aerodynamic Lift and Drag Resolution Along x,y,z Axes

The drag vector \vec{D} is alined with the relative velocity vector \vec{V}^{\prime} and is therefore given in x, y, z components as

$$
\begin{equation*}
\vec{D}=-D \frac{V_{X}^{\prime}}{V^{3}}-D \frac{V_{y}^{\prime}}{V^{1}}-D \frac{V_{z}^{\prime}}{V^{1}} \tag{B8}
\end{equation*}
$$

The lift vector $\vec{\rightrightarrows}$, may be resolved into components along the previously defined orthogonal set \vec{V}^{1}, \vec{A}, and \vec{P} by the following relations:

$$
\begin{gather*}
\vec{I} \cdot \vec{V}^{I}=0 \tag{B9a}\\
\vec{I} \cdot \vec{A}=I A \sin \beta \tag{B9b}\\
\vec{I} \cdot \vec{P}=I P \cos \beta \tag{B9c}
\end{gather*}
$$

Solving for \vec{L} yields

$$
\begin{equation*}
\vec{I}=\frac{L}{P^{2}}\left(A \sin \beta \vec{P} \times \vec{V}^{s}+P \cos \beta \vec{P}\right) \tag{B10}
\end{equation*}
$$

or, in x, y, z component form,

$$
\begin{align*}
& I_{x}=\frac{L}{P^{2}}\left[A \sin \beta\left(P_{y} V_{z}^{\prime}-P_{z} V_{y}^{\prime}\right)+P \cos \beta P_{x}\right] \tag{Blla}\\
& I_{y}=\frac{L}{P^{2}}\left[A \sin \beta\left(P_{z} V_{x}^{\prime}-P_{x} V_{z}^{\prime}\right)+P \cos \beta P_{y}\right] \tag{Blıb}\\
& I_{z}=\frac{L}{P^{2}}\left[A \sin \beta\left(P_{x} V_{y}^{\prime}-P_{y} V_{x}^{\prime}\right)+P \cos \beta P_{z}\right] \tag{Bllc}
\end{align*}
$$

APPENDIX C

TRANSFORMATION EQUATIONS FROM ORBIT EUEMENIS

TO RECTANGULAR COORDINATES

From spherical trigonometry used in reference to the celestial sphere shown in sketch (c), the following relations may be derived for the position coordinates:

$$
\begin{gather*}
x=r(\cos \Omega \cos u-\sin \Omega \sin u \cos i) \tag{Cla}\\
y=r(\sin \Omega \cos u+\cos \Omega \sin u \cos i) \tag{Clb}\\
z=r(\sin u \sin i) \tag{Cle}
\end{gather*}
$$

where

$$
\begin{gather*}
r=\frac{p}{1+e \cos v} \tag{C2a}\\
u=\omega+v \tag{c2b}
\end{gather*}
$$

and v can be obtained from

$$
\begin{equation*}
\cos \mathrm{V}=\frac{\cos \mathrm{E}-\mathrm{e}}{1-\mathrm{e} \cos \mathrm{E}} \tag{C2c}
\end{equation*}
$$

and.

$$
\begin{equation*}
M=E-e \sin E \tag{C2d}
\end{equation*}
$$

The velocity components may be obtained by differentiating the position equations using the two-body relations $\dot{u}=\dot{v}=\frac{\sqrt{\mu p}}{r^{2}}$ and $\dot{r}=\sqrt{\frac{\mu}{p}}$ e $\sin v$:

$$
\begin{gather*}
\dot{x}=-\sqrt{\frac{\mu}{p}}(N \cos i \sin \Omega+Q \cos \Omega) \tag{C3a}\\
\dot{y}=\sqrt{\frac{\mu}{p}}(N \cos i \cos \Omega-Q \sin \Omega) \tag{c3b}\\
\dot{z}=\sqrt{\frac{\mu}{p}}(N \sin i) \tag{c3c}
\end{gather*}
$$

where

$$
\begin{align*}
& \mathbb{N}=e \cos \omega+\cos u \tag{C4a}\\
& Q=e \sin \omega+\sin u \tag{c4b}
\end{align*}
$$

APPENDIX D

RUNGE-KUITTA AND LOW-ORDER INTIEGRATION

SCHEMES WIIH ERROR CONIROL
The Runge-Kutta formula used is of fourth-order accuracy in step size h. It is of the form

$$
\begin{equation*}
x]_{1}^{2} \equiv x_{2}-x_{1}=\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) \tag{DI}
\end{equation*}
$$

where

$$
\begin{aligned}
& X=a \text { dependent variable } \\
& x]_{1}^{2}=\text { increment in the dependent variable } \\
& h_{2}=\text { increment in the independent variable } t \\
& k_{1}=h_{2} \dot{x}_{2}\left(t_{1}, x_{1}\right) \\
& k_{2}=h_{2} \dot{X}_{2}\left(t_{1}+\frac{h_{2}}{2}, x_{1}+\frac{k_{1}}{2}\right) \\
& \mathrm{k}_{3}=\mathrm{h}_{2} \dot{\mathrm{x}}_{2}\left(\mathrm{t}_{1}+\frac{\mathrm{h}_{2}}{2}, \mathrm{x}_{I}+\frac{\mathrm{k}_{2}}{2}\right) \\
& k_{4}=h_{2} \dot{X}_{2}\left(t_{1}+h_{2}, X_{1}+k_{3}\right)
\end{aligned}
$$

A lower-order formula may be found by utilizing the three derivatives at $t=t_{0}$, t_{1}, and t_{2}. If $h_{1}=t_{1}$ - t_{0} and $h_{2}=t_{2}-t_{1}$, the following Lagrangian interpolation formula gives the derivative at any time $t_{0} \leq t \leq t_{2}$:

$$
\begin{equation*}
\dot{x} \equiv \dot{x}_{0} \frac{\left(t-t_{1}\right)\left(t-t_{2}\right)}{h_{1}\left(h_{1}+h_{2}\right)}-\dot{x}_{1} \frac{\left(t-t_{0}\right)\left(t-t_{2}\right)}{h_{1} h_{2}}+\dot{x}_{2} \frac{\left(t-t_{0}\right)\left(t-t_{1}\right)}{h_{2}\left(h_{1}+h_{2}\right)} \tag{D2}
\end{equation*}
$$

Integration of this equation from t_{1} to t_{2} yields

$$
\begin{equation*}
\left.X^{\prime}\right]_{1}^{2}=\frac{1}{6}\left[\left(\frac{h_{2}}{h_{1}}\right)^{2}\left(\frac{-h_{2}}{1+\frac{h_{2}}{h_{1}}}\right) \dot{x}_{0}+\frac{h_{2}}{h_{1}}\left(h_{2}+3 h_{1}\right) \dot{x}_{1}+\left(2 h_{2}+\frac{h_{2}}{1+\frac{h_{2}}{h_{1}}}\right) \dot{x}_{2}\right] \tag{D3}
\end{equation*}
$$

The difference in the increments over the interval h_{2} between the Runge-Kutta scheme and the low-order scheme may be divided by a nominal value of the dependent variable \bar{X} to obtain the relative error 82 . Thus,

$$
\begin{equation*}
\delta_{2}=\left|\frac{\left.\left.X^{1}\right]_{1}^{2}-X\right]_{1}^{2}}{\bar{X}}\right| \tag{D4}
\end{equation*}
$$

The error is expected to vary as approximately the fifth power of h, which
leads to

$$
\begin{equation*}
\delta=A h^{5} \tag{D5a}
\end{equation*}
$$

(where A is a suitable coefficient) or in the logarithmic form

$$
\begin{equation*}
\log \delta=A^{1}+5 \log h \tag{D5b}
\end{equation*}
$$

where

$$
\begin{equation*}
A^{\prime}=\log A \tag{D6a}
\end{equation*}
$$

Let it be assumed that A^{1} will vary linearly with t, the variable of integration. Then A^{s} at a time corresponding to t_{3} can be found from A^{\prime} at two previous points t_{1} and t_{2} as

$$
\begin{equation*}
A_{3}^{1}=A_{2}^{\prime}+\frac{A_{2}^{1}-A_{1}^{1}}{t_{2}-t_{1}}\left(t_{3}-t_{2}\right) \tag{D6b}
\end{equation*}
$$

and if $h_{3}=\left(t_{3}-t_{2}\right)$ and $h_{2}=\left(t_{2}-t_{1}\right)$,

$$
\begin{equation*}
A_{3}^{\prime}=A_{2}^{1}+\left(A_{2}^{\prime}-A_{1}^{\prime}\right) \frac{h_{3}}{h_{2}} \tag{D6c}
\end{equation*}
$$

and on this basis δ_{3} would be predicted to be

$$
\begin{equation*}
\log \delta_{3}=A_{3}^{3}+5 \log h_{3} \tag{D7}
\end{equation*}
$$

It is desired that δ_{3} should approximate $\bar{\delta}$, the reference error; therefore,

$$
\begin{equation*}
\log h_{3}=\frac{1}{5}\left(\log \bar{\delta}-A_{\frac{1}{3}}\right) \tag{D8}
\end{equation*}
$$

Each dependent variable has an associated relative error and would lead to computation of a different step size for each variable; however, the maximum relative error of all variables may be selected for δ. Obviously, inaccurate predictions of step size can occur when the maximum relative error shifts from one variable to another or when any sudden change occurs. When a step size produces
an excessively large error ($\delta>\delta_{\text {limit }}$), a reduced step size must be used. It may be obtained from the reference error $\bar{\delta}$ as

$$
\begin{equation*}
h_{3}=\exp \left[\frac{1}{5}\left(\log \delta-A_{2}^{1}\right)\right] \tag{D9}
\end{equation*}
$$

Starting the integration. - The Runge-Kutta scheme is simple to start, since integration from X_{n} to X_{n+1} requires no knowledge of X less than X_{n}. Since the error control coefficient A has no value at $t=0$, a prediction of the second step size is difficult. To overcome this difficulty, two equal size first steps may be made before checking the error. The A for the first step may be arbitrarily set equal to the A for the second step so that h_{3} may be predicted. The low-order integration scheme equation in this case becomes, with $h_{2}=h_{1}$,

$$
\begin{equation*}
\left.X^{1}\right]_{1}^{2}=\frac{h_{I}}{3}\left(\dot{x}_{0}+4 \dot{x}_{1}+\dot{x}_{2}\right) \tag{D10}
\end{equation*}
$$

Failures. - Should two consecutive predictions of the same step fail to produce an error δ less than Slimity a return to the starting procedure will be made with a third prediction on step size, which is no larger than one-half of the second estimate. The step-size control described here will operate stably with nearly constant error per step only for a well-behaved function. For most problems it will repeat a step occasionally to reduce a large error, and on sharp corners it will restart. This action is not regarded as objectionable. The objective is to attain a desired level of accuracy with a minimum total number of steps.

GLOSSARY OF VARIABLES

VARIABLE	$\begin{aligned} & \text { COMMON } \\ & \text { LOCATION } \end{aligned}$	OEFINITION
A (700)	C(11)	ARRAY CONTAINING THE INITIAL DATA AND THE PROGRAM CONTROL VARIABLES
A1	B(10)	ERROR CONTROL PARAMETER DEFINED BY EQ. (DGA) AT T(l)
A2	B(21)	ERROR CONTROL PARAMETER DEFINED BY EQ. (DGA) AT T(2)
ACOEE 1	B(12)	INTERPOLATION POLYNOMIAL COEFFICIENT FOR VARIABLE STEP SIZE, EQ. (D3)
ACOEF2	B(13)	Interpolation polynomial coefficient for variable STEP SIZE, EQ. (D3)
ACOEF3	B(14)	INTERPOLATION POLYNOMIAL COEFFICIENT FOR VARIABLE STEP SIZE, EQ. (D3)
AEXIT1 (10)	A(103)	ENGINE EXIT AREAS FOR AT MOST 10 STAGES, M**2
AEXIT	B(3)	AEXITI(NSTAGE)
AK (3)	A(51)	RUNGE KUTTA COEFFICIENTS, SET IN STDATA
ALPHA	A(49)	ANGLE BETWEEN VELOCITY AND THRUST VECTORS;SEE SKETCH (A)
ALJ	A (4)	VEHICLE ALTITUDE ABOVE EARTH, M
AM	B (90)	total vehicle angular momentum per unit mass, menzi SEC
AMASS (30)	A(347)	PERMANENT LIST OF bODY MASSES IN ORDER OF PNAME LIST, SET IN StData, masses from elips data begin at amass (21), SUN MASS UNITS
AMC (3)	B(87)	X, Y, Z COMPONENTS DF ANGULAR MOMENTUM PER UNIT MASS, **2)/SEC
AMSQRD	B(91)	SQUARE OF TOTAL ANGULAR MOMENTUM PER UNIT MASS,M**4/ SEC**2
AREA1 (10)	A(113)	AERDDYNAMIC REFERENCE AREAS FOR AT MOST 10 STAGES, M**2
AREA	B (6)	AREAl (NSTAGE)
ASYMPT	A(7)	SEE TAble II
ATMN	A (21)	SEE TAble II
AU	A(29)	ASTRONOMICAL UNIT,M
AW (4)	A(55)	RUNGE KUTTA COEFFICIENTS, SET IN STDATA
AZI	A(35)	INITIAL AZIMUTH ANGLE,USED WHEN IMODE $=4$, SEE SKETCH (B), DEGREES

B (800)	C(1111)	ARRAY CONTAINING INTERNAL PARAMETERS NOT UNDER USER CONTROL
BETA	A150)	angle between velocity-thrust plane and orbit plane, SEE SKETCH(A)
BMASS (8)	B(137)	body masses selected from amass list in sequence corRESPONDING TO BNAME LIST
BNAME (8)	B(122)	ORDERED LIST DF BCD BODY NAMES
BODYCD (10)	A(143)	ORIGINAL UNORDERED LIST OF BCD BODY NAMES READ IN AT INPUT
BODYL (10)	B(153)	AUXILIARY ORDERED LIST OF BCD BODY NAMES
CD	A(165)	TOTAL DRAG COEFFICIENT
CDI	A(163)	INDUCED DRAG COEFFICIENT
CHAMP	B(25)	SMALLEST CRITICAL RADIUS (RBCRIT(J)) WITHIN WHICH OBJECT LIES
CINCL	B(55)	COSINE OF INCLINATION
CIRCUM	B(82)	Circumferential component of total perturbative acCELERATION,M/SEC=*2
CL	A(164)	LIFT COEFFICIENT
Clear	C(3)	SEE TABLE II
COEFN (192)	A(407)	STORAGE ARRAY FOR COEFFICIENTS USED TO COMPUTE ALPHA, CL,CDI,CD OR OTHER PARAMETERS
COMPA (3)	B163)	COMPONENTS OF TOTAL PERTURBATIVE ACCELERATION ALONG X , Y,Z AXES.
CONSU	A(31)	See table II
CONSTU	Al32)	SEE TABLE II
COSALF	B(48)	COSINE OF ALPHA
Cosbet	B(49)	COSINE OF BETA
costru	B(53)	COSINE OF TRU
Cos V	8(57)	cosine of the argument of latitude
D (1100)	C(2111)	ARRAY WHERE SAVED DATA IS STORED FOR LATER USE. ARRAYS A,XPRIM,AND XPRIMB MAY BE SAVED.
delmax	A(19)	SEE TABLE II
DEL	A(43)	OUTPUT CONTROL PARAMETER USED IN STEP
DELT1 (10)	A(133)	INITIAL STEP SIZES FOR AT MOST 10 StAGES, SEC
DELT	B(1)	DELTI(NSTAGE)
DNS ITY	B(29)	ATMOSPHERIC DENSITY,KG/M**3
DONE	B(39)	CONTROL PARAMETER FROM STEP WHICH INFORMS NBODY TO STOP INTEGRATING

DRAG (3)	B(69)	X, Y, z COMPONENTS OF THE DRAG ACCELERATION,M/SEC**2
DTOFFJ	A (23)	JULIAN DATE OF TAKEOFF
E2	B(18)	LARGEST OF THE RELATIVE ERRORS BETWEEN R-K AND LOWORDER INTEGRATION METHODS,EQ. (D4)
EFMRS 171	B(130)	LIST OF BCD BODY NAMES WHOSE POSITIONS ARE TO BE DETERMINED FROM TAPE DATA
elev	A(36)	INITIAL ELEVATION ANGLE,USED WHEN IMODE=4, SKETCHIB), DEGREES
ELIPS (12,10)	A(167)	ELLIPSE DATA FOR PERTURBATING BODIES,READ FROM CARDS, 12 PIECES OF DATA PER BODY
EMONE	B(28)	ECCENTRICITY-1
END	A(5)	SEE Table II
EPAR	B(26)	SQUARE ROOT OF (ECCENTRICITY SQUARED -1)
EREF	A(13)	SEE TAble II
ERLIMT	A(14)	SEe table if
ERLOG	B(17)	NATURAL LOGARITHM OF EREF
ETOL	A(30)	SEE table II
EXITA	B(392)	AEXIT(NSTAGE)/100, NEWTONS/MB
EXMODE	B(27)	ECCENTRICITY CALCULATED WHEN IMODE=3
file	B(22)	SEE TAble 11
FLOW 1 (10)	A 83)	RATE OF PROPELLENT FLOW, KG/SEC
FLOW	B(5)	FLOW1(NSTAGE)
FORCE (3)	B(66)	X, Y, Z COMPONENTS OF THRUST ACCELERATION, M/SEC**2
GASFAC	A(46)	defined in subroutine aero, set in stdata
GEOH	B(32)	GEOPOTENTIAL, M
GK2M	B(36)	GRAVITATIONAL CONSTANT, MU, OF THE SYSTEM, M**3/SEC**2
GKM	B(37)	SQUARE ROOT OF GK2M
H2	B(15)	VALUE OF DELT FOR PREVIOUS STEP
I800Y (8)	8(177)	DEFINED IN SUBROUTINE ORDER
ICC (10)	A(153)	SEE TABLE II
IDENT (10)	A(123)	INPUT IDENTIFICATION NUMBERS ASSOCIATED WITH EACH STAGE
IMODE	A(1)	SEE TABLE II
IND (3)	A(60)	SET OF INDICES, SET IN STDATA
INDERR	B(51)	NUMBER OF SETS OF ERROR DATA, SET IN ERRORZ FOR USE IN NBODY

Inlook	A(599)	INPUT IDENTIFICATION NUMBER FOR INPUT AFTER FINDING C (LOOKX) $=$ XLOOK
KSUB	B(19)	Index of runge-kutta subintervals
EAT	A(33)	INITIAL GEOCENTRIC LATITUDE, USED WHEN IMODE=4,SKETCH (B), DEGREES
LONG	A(34)	INITIAL LONGITUDE RELATIVE TO GREENWICH, USED WHEN IMODE=4, SKETCH(B), DEGREES
LOOKX	A(8)	SEE TABLE 11
LOOKSW	A(9)	See table II
ESTAGE	A(38)	TOTAL NUMBER OF STAGES INTEGRATED BEFORE RETURNING TO THE MAIN PROGRAM
MBODYS	B(42)	NUMBER OF PERTURBATING BODIES (NBODYS-1)
MODOUT	A(20)	SEE TABLE II
NBODYS	B(41)	TOTAL Number of bodies, excluding the vehicle
NCASES	A(600)	SAVED VALUE OF NCASE
NCASE	C(1)	CASE NUMBER, RAISED ONCE EACH TIME CONTROL PASSES THROUGH THE MAIN PROGRAM
NEFMRS (8)	B(185)	DEFINED IN SUBROUTINE ORDER
NEQ	A(2)	NUMBER OF EQUATIONS TO BE INTEGRATED, SET TO 8 IN STDATA
NSAVE	C(4)	SEE TABLE II
NSTAGE	A(3)	THE INDEX INDICATING THE PARTICULAR STAGE CURRENTLY BEING INTEGRATED
NSTART	B(24)	INTERNAL CONTROL IN NBODY AND EQUATE
OBLATJ	A(26)	OBLATENESS COEFFICIENT OF SECOND HARMUNIC
OBLATD	A(27)	OBLATENESS COEFFICIENT OF FOURTH HARMONIC
OBLATH	A(28)	OBLATENESS COEFFICIENT OF THIRD HARMONIC
OBLATN	A(40)	SEE TABLE II
Oblat 13.1	B(75)	X, Y, Z COMPONENTS OF OBLATENESS ACCELERATION, M/SEC**2
OLDDEL	B(9)	VALUE OF DELT FOR PREVIOUS GOOD Step
ORBELS (6)	B(116)	array of output variables, either rectangular or orbit ELEMENTS
OUTPOT	B(399)	CAUSES ABSENCE OF DUTPUT WHEN NONZERO
P (3)	B(84)	DEFINED IN EQ. (B4)

PAR (3)	B(60)	DEFINED BY EQUATIONS IN SUBROUTINE THRUST
PMAGN	B(50)	DEFINED IN EQUATION FORM BY SUBROUTINE THRUST
PNAME (30)	A(287)	PERMANENT LIST OF BODY NAMES MADE FROM PNAA LIST IN SUBROUTINE ORDER, ELIPS NAMES BEGIN AT PNAME(21)
PRESS	B(33)	ATMOSPHERIC PRESSURE, MB
PSI	B(30)	PATH ANGLE, ANGLE BETWEEN PATH AND LOCAL HORIZONTAL, DEGREES
PSIR	B (398)	relative path angle, taken relative to a rotating ORIGIN BODY, DEG
PUSH	A (166)	THRUST FORCE, NEWTONS
PUSHO	B(391)	VACUUM THRUST FORCE, NEWTONS
0	B(59)	DYNAMIC PRESSURE, NEWTONS/M**2
QMAX	B(44)	MAXIMUM VALUE OF Q DEVELOPED DURING A SINGLE TRAJECTORY (SET TO ZERO WHEN CONTROL PASSES THROUGH SUBROUTINE EXTRA)
ex (3)	B(78)	X, Y, Z COMPONENTS OF PERTURBATIVE ACCELERATION DUE TO PERTURBATING BODIES, M/SEC**2
R (8)	B(102)	DISTANCES OF ALL BODIES FROM OBJECT, IN ORDER DF BNAME LIST, M
RADIAL	B(81)	RADIAL COMPONENT OF TOTAL PERTURBATIVE ACCELERATION, POSITIVE OUTWARD, M/SEC**2
RAMC (5)	B (393)	RELATIVE ANGULAR MOMENTUM PER UNIT MASS COMPONENTS, TOTAL RELATIVE ANGULAR MOMENTUM PER UNIT MASS, AND ITS SQUARE, M**2/SEC
RATM	A(22)	RADIUS OF ATMOSPHERE,M
RATMOS	B(23)	SET EQUAL TO RATM WHEN ATMN EQUALS THE REFERENCE BODY NAME, BNAME (1)
RATIO	B(58)	RATIO OF ADJACENT Step Sizes, delt
RB (3,8)	B(193)	X, Y, z COMPONENTS OF DISTANCE FROM ALL BODIES TO THE OBJECT,M
RBCRIT (8)	B(145)	LIST OF SPHERE-OF-INFLUENCE RADII OF ALL BODIES IN BNAME LIST, M
RCRIT (30)	A(377)	PERMANENT LIST OF SPHERE-OF-INFLUENCE RADII CORRESPONDING TO PNAME LIST OF BODY NAMES. RADII FROM ELIPS DATA BEGIN AT RCRITI2I), M
RE	A(25)	RADIUS OF EARTH EQUATOR, M
RECALL	C(5)	SEE TAbLE II
REFER (30)	A(317)	LIST OF REFERENCE BODIES CORRESPONDING TO PNAME LIST, REFERENCE BODIES FROM ELIPS DATA BEGIN AT REFER(21)
RESQRD	B(7)	SQUARE OF RE
RETURN	B(400)	CAUSES CONTRDL NOT TO RETURN TO MAIN PROG. IF NONZERO

REVS	A(48)	REVOLUTION COUNTER, USED ONLY FOR OUTPUT
Revolv	B(21)	ROTATION RATE OF REFERENCE BODY WHEN ATMN=BNAME(1), RAD/SEC
RMASS1 (10)	A(73)	INITIAL MASSES FOR AT MOST 10 Stages,kg
rotate	A (39)	ROTATION RATE OF A REFERENCE BODY, RAD/SEC
RSQRD	B(45)	RADIUS SQUARED OF OBJECT TO ORIGIN, M**2
SIGNAL	B(31)	SEE TAbLE II
SIMP1 (10)	A(93)	SPECIFIC IMPULSES FOR AT MOST 10 Stages, SEC
SIMP	B(2)	SIMPI(NSTAGE)
SINALF	B(46)	SINE OF ALPHA
SINBET	B(47)	SINE OF BETA
SINTRU	B(52)	SINE DF TRU
SINCL	B(54)	SINE OF INCLINATION
SINV	B(56)	SINE OF THE ARGUMENT OF LATITUDE
SPACES	B(16)	NUMBER OF EQUAL TIME UNITS UNTIL NEXT OUTPUT
SPD	A(44)	SECONDS PER DAY, SET IN STDATA, SECJDAY
SQRDK 1	A(47)	GRAVITATIONAL CONSTANT OF THE SUN, AU**3/DAY**2
SQRDK	B(35)	GRAVITATIONAL CONSTANT OF THE SUN, M**3/SEC**2
STEPMX	A(16)	SEE TABLE II
STEPS	A(17)	SEE TABLE II
STEPGO	A(41)	COUNT OF SUCCESSFUL INTEGRATION STEPS
STEPNO	A (42)	COUNT OF UNSUCCESSFUL INTEGRATION STEPS IThOSE WHICH DO NOT PASS ERROR CONTROL TEST)
SHLODK	A(10)	SEE TABLE II
TABL ${ }^{\text {I }}$	B(20)	time measured relative to the julian date of takeoff, DAYS
TABLE (200)	C(1911)	ARRAY OF INPUT PARAMETERS AND THEIR COMMON STORE LOCATIONS
TAPE 3	C(2)	SEE TABLE II
TB (10)	A(63)	FLIGHT TIMES fOR AT MOST 10 StAGES, SEC

TDATA (6, 3, 7)	B(265)	COEFFICIENTS FROM EPHEMERIDES TAPE TO BE USED IN DETERMINING POSITIONS AND POSSIbLY VELOCITIES OF PERtURBATING bODIES, ONE SET FOR EACH OF 7 bOdies
TDEL (7)	B(170)	one-half of time spacing between tho adjacent entries OF LIKE BODY NAME ON EPHEMERIDES TAPE, READ FROM tape for each body
tFile	A(6)	SEE Table il
TIM (7)	B(163)	TIME FOR SET DF EPHEMERIS DATA, READ FROM EPHEMERIDES TAPE, ONE FOR EACH BODY
IKICK	A(15)	INITIAL STEP SIZE OF A TRAJECTORY TO BE COMPUTED IN CLOSED-FORM, FOR USE WHEN IMODE=4, WHICH FACILITATES STARTING OF SOME TYPES OF TRAJECTORIES
TM	B (34)	ATMOSPHERIC TEMPERATURE TIMES THE RATIO OF MOLECULAR TO ACTUAL MOLECULAR WEIGHT, DEGREES KELVIN
TMAX	B(4)	SEE TAble II
TMIN	A(18)	SEE Table II
TOFFT	A(24)	FRACTIONAL PART OF JULIAN DATE OF TAKEOFF: DAYS
TRSFER	B(8)	See table II
TRU	B(40)	TRUE ANOMALY, RAD
TTEST	A(54)	See table II
tJOL	A (45)	TIME TOLERANCE WITHIN WHICH PROBLEM TIME MINUS TMAX MUST LIE TO END STAGE
u	A(59)	ECCENTRIC ANOMALY, RAD
v	B(95)	VELOCITY OF OBJECT RELATIVE TO THE ORIGIN, M/SEC
VATM (3)	$8(97)$	X, Y, Z Components of the relative velocity, vo,m/SEC
VEFM (3,8)	B(241)	X, Y, Z COMPDNENTS OF OBJECT VELOCITY RELATIVE TO ALL BODIES, M/SEC
VEL	A(37)	INITIAL RELATIVE VELOCITY, USEO WHEN IMODE=4, SKETCH (B). M/SEC
VMACH	B(38)	MACH NUMBER OF OBJECT
ve	B(100)	VELOCITY OF OBJECT RELATIVE TO ATMOSPHERE, M/SEC
VQSQRD	B(101)	SQUARE OF VQ, $M * * 2 / S E C * * 2$
VSQRD	B(96)	SQUARE OF V, $M * * 2 / S E C * 2$
$v x$	B(92)	X COMPONENT OF VELOCITY, M/SEC
VY	B(93)	Y COMPONENT OF VELOCITY, M/SEC
VZ	B(94)	2 COMPONENT OF VELOCITY, M/SEC
$\times 11001$	B(401)	WORKING SET OF INTEGRATION VARIABLES
XDOT (100)	B(501)	TIME DERIVATIVES OF THE SET X

XIFT (3)	B(72)	X, Y, Z COMPONENTS OF LIFT ACCELERATION, M/SEC**2
XINC (100)	B(601)	INCREMENTS OF THE INTEGRATION VARIABLES PER STEP
XLOOK	A(12)	SEE TABLE II
$\mathrm{XP}(3,8)$	B(217)	X,Y,Z COMPONENTS OF PERTURBATING BODY POSITIONS RELATIVE TO ORIGIN
XPRIM (100,2)	C(711)	TWD 100-ELEMENT SETS, THE FIRST SET CONTAINS VALUES OF THE INTEGRATION VARIABLES AT THE PREVIOUS GOOD STEP, THE SECOND SET IS UNDER THE INTEGRATION PROCESS, SEE TAbLE V
XPRIMB (100,2)	C(911)	LEAST SIGNIFICANT HALF OF DOUBLE PRECISION INTEGRATION VARIABLES XPRIM
XTOL	A(11)	TOLERANCE ON THE DISCIMINATION C(LOOKXI-XLOOK TO BE SATISFIED
XWHOLE (6)	B (110)	RECTANGULAR COORDINATES AND VELOCITIES, SET ASIDE FOR USE IN ORIGIN TRANSLATIONS
ZN	B(43)	MEAN ANGULAR MOTION OF OBJECT, RAD/SEC
ZORMAL	B(83)	Z COMPONENT OF TOTAL PERTURBATIVE ACCELERATION, M/SEC**2

APPENDIX F

LEWIS RESEARCH CENTER EPHEMERIS

General Description

The ephemeris data initially available on magnetic tape were from the Themis code prepared by the Livermore Laboratory, evidently from U.S. Naval Observatory data. Later, an ephemeris was obtained from the Jet Propulsion Laboratory assembled as a joint project of the Jet Propulsion Laboratory and the Space Technology Laboratory. These data are given relative to the mean vernal equinox and equator of 1950.0 and are tabulated with ephemeris time as the argument.

An ephemeris was desired for certain uses in connection with the IBM 7090 computer that would be shorter than the original ephemeris tapes mentioned and would be as accurate as possible consistent with the length. A short investigation of the various possibilities led to adoption of fitted equations. In particular, fifth-order polynomials were simultaneously fitted to the position and velocities of a body at three points. This procedure provides continuity of position and velocity from one fit to the next, because the exterior points are common to adjacent fits. Polynomials were selected rather than another type of function, because they are easy to evaluate. Three separate polynomials are used for the x, y, and z coordinates, respectively.

Procedure Used to Fit Data

The process of computing the fitting equations is as follows:
(1) A group of 50 sets of the components of planetary position was read into the machine memory for a single planet together with differences as they existed on the original magnetic tape. The differences were verified by computation (in double precision because some data required it); and any errors were investigated, corrected, and verified. Published ephemeris data were adequate to correct all errors found.
(2) The components of velocity $\mathrm{V}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}$, and v_{z} were computed and stored in the memory for each of the 50 positions by means of a numerical differentiation formula using ninth differences; namely,
$\dot{X}=\left(T_{1}-T_{-1}\right)\left[\frac{\Delta I_{-1}+\Delta I_{+1}}{2}-\frac{\Delta I I I_{-1}+\Delta I I I_{+1}}{12}+\frac{\Delta V_{-1}+\Delta V_{+1}}{60}\right.$

$$
\begin{equation*}
\left.-\frac{\Delta V I I_{-1}+\Delta V I I_{+1}}{280}+\frac{\Delta I X_{-1}+\Delta I X_{+1}}{1260}\right] \tag{FI}
\end{equation*}
$$

(See ref. ll, pp. 42 and 99 for notation.) Double-precision arithmetic was used for differences, but velocities were tabulated with single precision.
(3) Coefficients C, D, E, and F in the fifth-order polynomial
$X=X_{O}+\dot{X}_{0}\left(T-T_{O}\right)+C\left(T-T_{0}\right)^{2}+D\left(T-T_{O}\right)^{3}+E\left(T-T_{0}\right)^{4}+F\left(T-T_{0}\right)^{5}$
and its derivative

$$
\begin{equation*}
\dot{X}=\dot{X}_{O}+2 C\left(T-T_{O}\right)+3 D\left(T-T_{0}\right)^{2}+4 E\left(T-T_{0}\right)^{3}+5 T\left(T-T_{O}\right)^{4} \tag{F3}
\end{equation*}
$$

were found to fit a first point (which was far enough from the beginning point to have all differences computed) and two equally spaced points for each component of position and velocity. (The initial spacing is not important, as will be seen later.) Spacing is defined as the number of original data points fitted by one equation. Single-precision arithmetic was used.
(4) The coefficients C, D, E, and F in step (3) were then used in equations (F2) and (F3) to calculate components of all positions and velocities given in the original data and lying within the interval fitted. These values were checked with the original data. Radius R and velocity V were computed at the times tabulated in the original data. If any component of the position differed from the original data by more than $\mathrm{R} \times \mathrm{IO}^{-7}$ or if any velocity differed from the original by more than $\mathrm{V} \times \mathrm{I}^{-6}$, the fit was considered unsatisfactory.
(5) If the fit was considered unsatisfactory, this fact was recorded, and the spacing was reduced by two data points. Steps 2 to 4 were then repeated. If the fit was considered satisfactory, this fact was recorded, and the spacing was increased by two spaces. Steps 2 to 4 were repeated. The largest satisfactory fit was identified when a certain spacing was satisfactory and the next larger fit was not satisfactory.
(6) The coefficients that corresponded to the largest satisfactory fit were recorded on tape in binary mode as follows:

Word number	Data	Mode	Definitions and/or units
1	Planet name	BCD	Six characters (first six)
2	Juilan date	Floating point	Date of midpoint of fit, Julian date
3	Delta T		Number of days on each side of midpoint
4	F_{x}		$\mathrm{a}_{\text {AU/ }} \mathrm{day}^{5}$
5	$\mathrm{Exx}_{\mathrm{x}}$		$\mathrm{a}_{\mathrm{AU}} / \mathrm{day}^{4}$
6	D_{x}		a AU/day 3
7	c_{x}		${ }^{\text {a }}$ AU/ day^{2}
8	*		a AU/day
9	x		a AU
10	F_{y}		${ }^{\text {a }}$ AU/ day 5
11	E_{y}		$\mathrm{a}_{\text {AU/ }} \mathrm{day}^{4}$
12	D_{y}		$\mathrm{a}_{\text {AU/ }} \mathrm{day}^{3}$
13	C_{y}		$\mathrm{a}_{\text {AU }} / \mathrm{day}^{2}$
1.4	$\dot{\mathrm{y}}$		a AU/day
15	y		${ }^{\text {a }}$ AU
16	F_{z}		$a_{\text {AU/ }}{ }^{\text {day }} 5$
17	$\mathrm{E}_{\mathrm{z}}^{2}$		a $\mathrm{AU} / \mathrm{day}^{4}$
18	$\mathrm{D}_{\mathrm{z}}^{2}$		a AU/day 3
19	C_{2}		a $A U /$ day ${ }^{\text {a }}$
20	2 z	1	$\begin{aligned} & a_{\mathrm{AUU}} / \mathrm{day} \end{aligned}$

[^1](7) As soon as a set of coefficients was selected for an interval, additional data were read from the source ephemeris tape and used to replace the - points already fitted (except the last point). These data were processed as described in steps 1 and 2 so that the next 50 points were ready to be fitted. Steps 3 to 6 were then used to find the next set of coefficients, and steps 1 to 6 were repeated until all data for all planets were fitted.

Data Treated

The preceding process was applied to all data available at the time. For the Moon, the technique usually led to the use of every point in the fitted interval (i.e., only three points were fitted). Thus, a check of accuracy was not available. The error in the attempt to fit the next greater interval (five points) was not excessive, however, and it is judged that the accuracy obtained from these fits is about equal to that held on the other bodies.

Merged Ephemeris Tape

Once all the positions and velocities of all the bodies then available were fitted, the coefficients were merged in order of the starting date of each fit. The resulting tape was written in binary mode with 12 sets of fits per record.

The detail of this record is as follows:

Set 1
lst word: FORTRAN compatible
2nd word: file number, fixed point in decrement
3rd word: planet name, code in BCD, first six characters
4th word: Julian date, floating point
etc., according to list in paragraph 6
21 words
z
$\left\{\begin{array}{l}\text { 24th word: planet name, code in BCD, first six characters } \\ 25 \text { th word: Julian date, floating point } \\ - \\ \text { - } \\ 44 \text { th word: } \\ z\end{array}\right.$
Successive sets follow one another with a total of 12 sets.

One record contains 254 words, the first is for FORIRAN compatibility, the second is a file number used for identification in the system. It is a fixed point 2. The third is the beginning of the first set of data, and 12 sets follow each with 21 words. The last word is the 254 th word (counting the FORTRAN compatible word)
followed by an end-of-record gap. The remaining records are compiled in the same manner with an end-of-file recorded as a terminating mark.

Because of the merging operation, all bodies are given in one list in a random order according to the starting date of the interval. The starting date is the Julian day (word 2) minus the half interval (word 3) (see procedure, paragraph 6). The entire ephemeris occupies about one-seventh reel of tape. A summary of data is given in table VII.

APPENDIX G

INPUTT-DATA REQUIREMEIVTS

The procedure needed to run actual problems with the aid of this routine is described herein. It is intended to permit the user with a specific problem in mind to make a complete list of data required and to select desirable operating alternatives from those available. The details of this procedure are contained in the following instructions:
(1) Provision has been made for two types of ephemeris data to specify the locations of celestial bodies that perturb the vehicle. They are ellipse data and ephemeris-tape data. If the problem does not involve perturbing bodies (except a reference body) or if elliptic data are used for all the perturbing bodies, skip to instruction 5 .
(2) If the perturbing-body data are to be taken from an ephemeris tape, list the names of the ephemerides and Julian dates to be covered along with the following auxiliary information:

$$
\begin{aligned}
& \text { Ist card: } \$ \mathrm{DATA}=300 \text {, \$TABLE, } 2=\operatorname{TAPE} 3,17=\text { ELIST, } 29=\text { TBEGIN, } \\
& 30=\text { TEND/ } \\
& \text { Other cards: TAPE } 3=0 \\
& \text { TBEGIN }=\text { ephemeris beginning Julian date } \\
& \text { TFRD }=\text { ephemeris ending Julian date } \\
& \text { ELIST = (names of perturbing bodies in "ALF" format, see } \\
& \text { example in text) }
\end{aligned}
$$

The ephemerides of all planets except Earth bear the name of the planet. The ephemeris giving the distance from Earth to the Sun is called "sun," as is astronomical practice.
(3) If successive files on the ephemeris tape are to be made, punch the corresponding sets as follows:

$$
\$ D A T A=300, \operatorname{TAPE} 3=0, \operatorname{TBEGIN}=, \operatorname{TEND}=, \operatorname{ELIST}=
$$

As many similar sets as are needed may be appended.
(4) If ellipse data are to be loaded from cards, they are prepared later under instruction 11 .
(5) On the first execution after loading the routine, the common area is cleared whether an ephemeris tape is constructed or not. It is now necessary to load a table of variable names. Once loaded, this table will not be cleared again (except if the control variable TAPE 3 is set equal to zero). These names are for use on the input cards. If a different name is desirable for any
variable, it may be changed in the table and where it appears on the input card (ref. 7). The cards are:
$\$ \mathrm{DATA}=1,4 \% \mathrm{MALE}, \quad 33=\mathrm{DTOFFJ}, \quad 34=\mathrm{TOFFT}, \quad 711=T I M E, \quad 716=\mathrm{X}, \quad 717=\mathrm{Y}, \quad 718=\mathrm{Z}$, $713=\mathrm{VX}, 714=\mathrm{VY}, 715=\mathrm{VZ}, 11 .=\mathrm{IMODE}, 713=\mathrm{E}, 714=O \mathrm{MEGA}, 715=\mathrm{NODES}$, $716=I N C L, \quad 717=\mathrm{MA}, \quad 718=\mathrm{P}, 43=\mathrm{LAT}, 44=\mathrm{LONG}, 45=\mathrm{AZI}, 46=\mathrm{ELEV}, 14=A L T$, $47=\mathrm{VEL}, \quad 16=\mathrm{TFILE}, \quad 28=\mathrm{TMIN}, \quad 153=\mathrm{BODYCD}, 177=\mathrm{ELIPS}, \quad 30 .=\mathrm{MODOUT}$, $27=S T E P S, 29=$ DELMAX, $26=S T E P M X, 23=E R E F, 24=E R I M T, 4 .=$ NSAVE, $5=$ RECALI, $3=$ CLEAR, $18 .=L 00 K X, 22=X L 00 K, 19 .=L 00 K S W, 20=S W L O O K$, 609. $=1 N L O O K, 15=E N D, 31=A T M N, \quad 32=$ RATM, $49=$ ROTATE, $417=$ COEFN, 163. $=$ ICC, $60=\mathrm{BETA}, 50=0 \mathrm{BLATN}, 73=T B, 93=F L O W, 103=S I M P, 123=A R E A$, $143=$ DEIT, $83=$ RMASS, $113=A E X I T, \quad 133 .=I D E N T, 48 .=L S T A G E, 25=T K I C K /$
(6) The initial position and velocity of the vehicle may be given in any one of the three coordinate systems. If the initial data are given in orbit elements, skip to instruction (8). If the initial data are given in rectangular coordinates, skip to instruction (7). If the initial data are given in Earthcentered spherical coordinates, the following variables should be punched:

LAT = latitude, deg, positive north of equator
LONG = longitude, relative to Greenwich, deg
ALT = altitude above sea level, m
AZI = azimuth angle, east from north, deg
ELEV = elevation angle, horizontal to path, deg
VET = initial relative velocity, $\mathrm{m} / \mathrm{sec}$
TKICK = size of initial vertical, nondrag step to facilitate starting, sec

If the Earth is assumed to be rotating but aerodynamic forces are not to be considered, set ROTATE = Earth rotation rate, $7.29211585 \times 10^{-5}$ radian $/ \mathrm{sec}$

If integration in rectangular coordinates is desired set IMODE $=4$ or else if integration in orbit elements is desired set IMODE $=-4$

Skip to instruction (9).
(7) If the initial data are in rectangular coordinates, set the following variables:
$X=x$-component of position in x, y, z coordinate system, m $Y=y$-component of position in x, y, z coordinate system, m
$Z=z$-component of position in x, y, z coordinate system, m $V X=x$-component of velocity in x, y, z coordinate system, $m / s e c$ VY $=\mathrm{y}$-component of velocity in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinate system, $\mathrm{m} / \mathrm{sec}$ $\mathrm{VZ}=\mathrm{z}$-component of velocity in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinate system, $\mathrm{m} / \mathrm{sec}$

If integration in rectangular coordinates is desired set IMODE $=2$ or else, if integration in orbit elements is desired set TMODE $=-2$

Skip to instruction (9).
(8) If the initial data are in orbit elements, set the following variables:
$\mathrm{E}=$ eccentricity
OMEGA = argument of pericenter, radians
NODES = longitude of ascending node (to mean vernal equinox of 1950.0), radians

INCL $=$ orbit inclination to mean equator of 1950.0, radians
$M A=$ mean anomaly, radians
$P=$ semilatus rectum, m
If integration in orbit elements is desired set
IMODE $=1$
or else, if integration in rectangular coordinates is desired set IMODE $=-1$
(9) To specify takeoff time, set the following variables:

DTOFFJ = Julian day number
TOFFT = fraction of day
TIME $=$ time from previously set Julian date, sec
Takeoff occurs at the instant (ephemeris time) corresponding to the sum of the last three quantities. If a specific date or time is not required, these variables may be skipped. In that case, the SUBROUITNE STDATA sets DIOFFJ to 2440000.
(10) To specify the origin and any perturbing bodies, list them as BODYCD $=$ (list of body names in "AIF" format, see text example). The first body in the list is taken to be the reference body. The distances between the bodies in
this list must be computable from either ellipse data (instruction (ll)) or ephemeris-tape data (instruction (2)). There may be no more than eight names in the list. Also, if the ephemeris tape is being used, the correct file must be found on it. For this purpose, set TFITE = desired ephemeris-tape file. The ephemeris files were numbered in sequence when written in instruction (2). If THTIE is not given, it will be set equal to 1.0 by the SUBROUTINE STPATA.
(11) For each body whose path is represented by an ellipse, a l2-element set of data must be loaded. A 12-element set consists of:

1. Body name in "AIF" format (maximum of six characters)
2. Reference body name in "ALF" format (maximum of six characters)
3. Mass of body, sun mass units
4. Radius of sphere of influence, m
5. Semilatus rectum, AU
6. Eccentricity
7. Argument of pericenter, radians
8. Longitude of ascending node (to mean vernal equinox of 1950.0), radians
9. Orbit inclination (to mean equator of 1950.0), radians
10. Julian day at perihelion
11. Fraction of day at perihelion
12. Period, mean solar days

It is convenient to punch a l2-element set in sequence and to separate the elements by commas on as many cards as are required. Several sets may then be loaded consecutively. The order of the sets is immaterial. Ellipse data, if present, take precedence over ephemeris-tape data. The sets are loaded consecutively, in any order, as follows:

ELIPS $=$ set 1 , set 2 , set $3, \ldots$. ., set $n ; n \leq 10$ (see example in appendix I)
(12) If oblateness effects of the Earth are to be included, set

OBLAITN $=($ ALP5 $)$ EARTH
(13) Provision has been made to fly multistage vehicles with up to 10 stages. At least one stage must be loaded. There are eight parameters for each stage with provision for input-controlled modifications of other variables. The 10 values of each parameter are stored in an array corresponding to the

10 stages. Input cards are as follows:
$\eta B=$ burning time for lst stage, 2nd stage, etc., sec
FLOW = propellant flow rate for lst stage, 2nd stage, etc., kg/sec
SIMP = vacuum specific impulse of lst stage, 2nd stage, etc., sec AREA $=$ aerodynamic reference area of lst stage, $2 n d$ stage, etc., m^{2} $\mathrm{AEXIT}=$ engine exit area for lst stage, $2 n d$ stage, etc., m^{2}

RMASS $=$ initial mass or jettison mass for lst stage, 2nd stage, etc., kg

DETT = initial integration step size for lst stage, 2nd stage, etc., sec

IDENT = input identification number lst stage, 2nd stage, etc.
IB must be loaded for as many stages as are to be flown. Others may be omitted if zero is appropriate. If $\operatorname{RMASS}(i)$ is not positive, the $i^{\text {th }}$ stage begins with the final mass of the previous stage reduced by the fixed amount RMASS(i). In the case of DFIT, zero will result in use of $I T / 100$. IDENT of a nonzero value will cause any data cards of that identification number to be read in after the stage is set up and before integration begins. This permits the user to make almost any change desired. The order of data cards is discussed in instruction (24).
(14) The thrust orientation must be specified by setting $B E I A=$ angle β, deg (see sketch (a) (p. 4)) COEFN (I) = angle-of-attack schedule, $\alpha=\alpha(t)$ (see instruction (16)) ICC $=$ fixed-point integer (see instruction (16))

For the special case of tangential thrust, none of the last three variables need be set.
(15) If aerodynamic forces are present, set in addition to AREA in instruction (13):

AITMI = name of body that has atmosphere, in "ALF" format, (Earth)
RATM $=$ radius above which atmospheric forces are not to be considered, m

ROTATE $=$ atmospheric-rotation rate, radians $/ \mathrm{sec}\left(7.29211585 \times 10^{-5}\right.$ for Earth)

BETA $=$ angle β, deg (see sketch (a))

COEFN (I) $=$ angle-of-attack schedule, $\alpha=\alpha(t), C_{I} / \sin \alpha, C_{D, 0}$, and $C_{D, i} / C_{L}^{2}$ curves (see instruction (16))
ICC $=$ fixed-point integers (see instruction (16))
(16) If neither thrust nor aerodynamic forces are present, skip to instruction (18). The relations $\alpha(t), C_{I} / \sin \alpha, C_{D, 0}$ and $C_{D, i} / C_{L}^{2}$ are assumed to be quadratic functions that involve coefficients, which are located in the COFFTN(J) array. The arrangement of these coefficients is best explained by an example. Suppose the function $\alpha(t)$ is as follows:

$$
\alpha=\left\{\begin{array}{cc}
a_{11}+a_{12} t+a_{13} t^{2} & \left(t_{1} \leq t \leq t_{2}\right) \\
a_{21}+a_{22} t+a_{23} t^{2} & \left(t_{2} \leq t \leq t_{3}\right) \\
a_{31}+a_{32} t+a_{33} t^{2} & \left(t_{3} \leq t \leq t_{4}\right) \\
\cdot & \cdot \\
\text { etc. } & \text { etc. }
\end{array}\right.
$$

The coefficients $a_{i, j}$ should then be loaded into the $\operatorname{COFFN}(J)$ array as:

$$
\operatorname{COFFN}(J)=t_{1}, a_{11}, a_{12}, a_{13}, t_{2}, a_{21}, a_{22}, a_{23}, t_{3}, a_{31}, a_{32}, a_{33}, t_{4}, \ldots, t_{n}
$$

Furthermore, additional sets of coefficients for the other functions may simply be added to the COEFN(J) array, which results in a string of sets of coefficients, and can be represented, for example, as:

$$
\begin{aligned}
\operatorname{COFFFN}(J) & =\alpha \text { coefficients, } C_{I} / \sin \alpha \text { coefficients, } C_{D}, 0 \text { coefficients, etc. } \\
& =t_{1}, a_{11}, a_{12}, \ldots, t_{n}, N_{M, 1}, b_{11}, b_{12}, \ldots, N_{M, k}, \text { etc. }
\end{aligned}
$$

The starting point in the $\operatorname{COEFN}(J)$ array of each function must also be loaded to identify the correct region of coefficients. To this end, the following array must also be loaded:

$$
\begin{aligned}
& \operatorname{ICC}(I)=\text { fixed-point value of } J \text { where } \alpha \text { coefficients begin } \\
& \operatorname{ICC}(2)=\text { fixed-point value of } J \text { where } C_{I} / \text { sin } \alpha \text { coefficients begin } \\
& \operatorname{ICC}(3)=\text { fixed-point value of } J \text { where } C_{D, i} / C_{L}^{2} \text { coefficients begin } \\
& \operatorname{ICC}(4)=\text { fixed-point value of } J \text { where } C_{D, 0} \text { coefficients begin }
\end{aligned}
$$

For this purpose, all values in the COEFN(J) array are called coefficients (i.e., the $t^{\prime} s$ and the $M_{M}{ }^{3} s$ are coefficients). The sequence of the sets is arbitrary, since changing the sequence requires only a change in the ICC(I) array. (See appendix I for Example II, the lunar orbiting probe.)
(17) The size of the integration steps is determined primarily by the error control variables. These are loaded as:

ERFF $=$ error reference value; $\bar{\delta}$ in appendix D
ERITMT = maximum value of δ that is acceptable on any particular step

EREF is always treated as a positive number; however, if it is loaded with a minus sign, this will cause error information to be printed at the completion of the problem. If no error control data is loaded, SUBROUTINE STDATA will set $E R E F=1 \times 10^{-6}, ~ E R L I M P=3 \times 10^{-6}$.
(18) The output control offers a choice on the frequency of output data as follows:

> If $\operatorname{MODOUT}=1$, output will occur every $n^{\text {th }}$ step ($n=$ STEPS) until $t=T M I N$, and then MODOUT is set equal to 2 by the program
> If $M O D O U T=2$, output occurs at equal time intervals of DEJMAX until $t=T M A X$
> If $\operatorname{MODOUT}=3$, output occurs at equal time intervals of DELMAX until $t=T M I N$, then MODOUT is set equal to 4 by the program
> If $\operatorname{MODOUP}=4$, output occurs every $n^{\text {th }}$ step ($n=$ STFPS) until $t=$ TMMAX
> SIEPMX = maximum step Iimit before problem is completed
> DETMAX $=$ time interval between outputs
> STEPS = number of steps between outputs
> TMIN $=$ time when MODOUT changes

Note that output control may, at times, strongly influence the integration step size especially if MODOUT is 2 or 3 and DELMAX is small. SIDATA will put MODOUT $=4$ and $S T E P S=1$.

Note that TMAX = time at start of a stage, plus the stage time, TB(NSTAGE), and is computed internally.
(19) Provision has been made to interrupt the integration procedure when an arbitrary value of an arbitrary parameter is attained. By interrupt it is meant that an output will occur at this point, input is permissible, and a decision is made whether to continue the stage, terminate the stage, or terminate the flight. Skip to instruction (20) if this facility is not desired. To cause an interrupt, set

$$
\begin{aligned}
& \text { IOOKX }=\text { COMMON C location of arbitrary parameter } \\
& \text { XLOOK }=\text { value of C(LOOKX) where an interrupt is desired }
\end{aligned}
$$

INLOOK = input identification number for interrupt
END $=$ a negative number if flight should be terminated, zero if stage should continue, or a positive number if stage should be terminated

If the interrupt is not desired the first time $C(L O O K X)=X L O O K$, set
LOOKSW $=$ COMMON C Iocation of a second arbitrary parameter
SWLOOK = value of C(LOOKSW), which must be equaled or exceeded before an interrupt may occur (interrupt occurs if $C(L O O K X)=X I O O K$ and C(LOOKSW) \geq SWLOOK)

Trpically, time may be the second arbitrary parameter; thus, STDATA sets
LOOKSW $=711$, the COMMON location of time. INLOOK of a nonzero value will cause any data cards of that identification number to be read-in prior to the interrogation of END. The order of the cards is discussed in instruction (24).
(20) Provision has been made to save a block of initial conditions and program control parameters prior to the integration of the nth stage. This allows the flight to be flown again from the nth stage onward with prescribed alterations. Skip to instruction (21) if this facility is not desired. To save the program control variable array, A, and the integration variable array, XPRIM + XPRIMB, just prior to integration of the nth stage, set

NSAVE $=$ the number of the $n^{\text {th }}$ stage
The saved data, stored in the D array, will be returned to the A and XPRIM + XPRIMB arrays after the flight is completed if

RECALI = any nonzero number
It is intended that changes in the succeeding flight will be made at the main input station ($\xi D A T A=1$). NSAVE and RECALL are not contained in the array A and are therefore unaffected by the save-recall sequence. The correct sequence of these controls is not always simple and an understanding of the main program and input stationing is quite desirable.
(21) If the standard set of data contained in the SUBROUTINE STDATA is not desired, set

CLEAR = any nonzero number
It is intended that this control shall be set nonzero by the $\$ D A T A=99$ input station at the beginning of the main program. It is not affected by the saverecall sequencing explained in instruction (20).
(22) If the number of stages to be flown is not equal to the number of consecutive nonzero flight times, TB, set

ISTAGE $=$ number of last stage to be flown
(23) When a transfer of origin occurs, provision has been made to read input into the program. This is done with the aid of $\$ D A T A=101$, followed by the data statements desired.
(24) The sequencing of the input cards is not always simple and no rigid rules may be written down. Inspection of the program may be necessary to answer some questions. However, in general, the first input cards belong to the $\$ D A T A=300$ group if an ephemerides tape is required. This group is followed by the $\$ D A T A=1$ group, which consists of the main input for a single flight. Following this are the in-flight input cards, if any, which may be any combination of $\$ D A T A=101, \$ D A T A=I N L O O K$, or $\$ D A T A=I D E N T$ (NSTAGE) groups. The order of these groups of cards matches the order of the time sequence of events in the flight itself. For multiple flights, sets of the above groups may be added in tandem. It is usually desirable in this case, however, to read all the $\$ D A T A=300$ sets at the same time (as in instruction (3)) to avoid excessive tape handling.
(25) Following is an input check list that may be helpful at execution time:

INPUT CHECK IIST ${ }^{\text {a }}$

aThe following standard data are loaded by SUBROUTINE STDATA:
DTOFF' $=2440000.0$
$\begin{aligned} & \operatorname{IMODE}=1 \\ & \operatorname{BODYCD}(1)\end{aligned}=($ ALF5 $) \mathrm{EARTH}$
$\begin{aligned} & \operatorname{IMODE}=1 \\ & \operatorname{BODYCD}(1)\end{aligned}=($ ALF5 $) \mathrm{EARTH}$
MODOUT $=4$
STEPS $=1.0$
STEPMX $=100.0$
EREF $=1 \times 10^{-6}$
ERLIMT $=3 \times 10^{-6}$
$\operatorname{RMASS}(1)=1.0$
STEPMX $=100.0$
LOOKSW $=711$
$\mathrm{b}_{\text {At }}$ input 300 , setting TAPE $3=0$ is necessary to make an ephemeris tape.

```
@no
THIS MAIN PROGRAM IS THE SUPERSTRUCTURE ABOVE ALL SUBPROGRAMS. SUBROUTINE TAPE CLEARS COMMON 1 THRU 4000 AND MAY CUNSTRUCT AN
EPHEMERIS TAPE, ALSO. IT ALWAYS SETS TAPE3 = O. SUQROUTINE STDATA
LOADES A STANDARD SET OF DATA. IF RECALL DOES NOT EQUAL LERO, A
PREVIOUSLY SAVED SET OF DATAIFRDM STAGEJ IS MOVED TO THE INITIAL
DAIA LOCAIION. THE MAIN INPUI STATION IS STATEMENT BIINPUTII
WHERE THE VEHICLE DAIA FOR ALL STAGES MAY BE LOADED. SUBRDUIINE ORDER IS Called to order the list of booifs, determine the gravitational comstant ORIGIN ROTAIIDN RATE, ATMOSPHERIC RADIUS, RELUCATE ELLIPTIC EPHEMERIS DATA AND POSITION THE EPHEMERIS TAPE.
COMMON C
DIMENSION A(600), B(700), C(4000),
1 TB(10). U(1100)
\begin{tabular}{|c|c|c|c|}
\hline EQUIVALENCE & & & \\
\hline 11A , \({ }^{\text {a }}\) & (11)], ¢B , C & (1111)], (CLEAR , 6 & 311, \\
\hline 210 , C & (2111)], (LStage, A & 38) , (NCASE , \(C\) & 1). \\
\hline 3 (NCASES.A & 6001), (NSTAGE,A & 3)), (RECALL, \(C\) & 5)], \\
\hline  & 63) , (TAPE3, C & 2)1.(TABLE , 6 & (1911) \\
\hline
\end{tabular}
1 Call INPUT (99,C,TABLE)
IF (TAPE 3) \(3,2,3\)
2 CALL TAPE
WRITE OUTPUT + +1
2 FORMAT 12 HILASE NUMEER NCASE
FORMATIRH)
call stoata
4 CALL STDATA
5 IF (RECALL) \(6,8,6\)
6 DO \(7 \mathrm{~J}=1,1100\)
7 A(J) = D(J)
WRITE OUTPUI TAPE 6,16,NSTAGE, NCASES
FGRMATI33H RECALLED INITIAL DATA FROM STAGEI2,8H DF CASEI4,1M.J
8 CALL INPUI ( \(1, C, T A B L E)\)
IF (SENSE SWITCH 6) 13,14
5 WRITE OUTPUI TAPE 6, 15
15 FORMAT(19HOEXIT VIA SENSE SW6) CALL EXIT
IF [LSTAGE] 11,9,11
Do lo lstage=i,io
[F (TB\{LSTAGE+1) \(10,11,10\)
- CONTINUE
LSTAGE \(=10\)
11 CALL ORDER
1 CALL Stage
GO TO 1
END
SUBRDUTINE AERD
SUBROUTINE AERO COMPUTES THE LIFT AND DRAG ACCELERATIONS. AS IN SUBROUTSUBROUTINE AERO COMPUTES THE LIFT AND DRAG ACCELERATIONS: AS IN SUBROUT
INE THRUST, THESE VECTORS ARE REFERENCED TO THE RELATIVE WIND VELOCITY. INE THRUST, THESE VECTORS ARE REFERENCED TO THE RELATIVE WIND VELGCITY,
COEFFICIENTS OF LIFT, INDUCED DRAG, AND DRAG AT ZERD ANGLE OF ATTACK ARE COEFFICIENTS OF LIFT, INDUCED DRAG, AND DRAG AT ZERO ANGLE OF ATIACK AR
ASSUMED TO OE FUNCTIONS UF MACH NUMBER AND ANGLE OF ATTACK. JABLES OF ASSUMED TO BE FUNCTIDNS UF MACH NUMBER AND ANGLE OF ATTACK. IABLES OF CDI/CL"*2, CL/SINIALPHA), AND CDO ARE ASSUMED AS FIITED QUADRATIC ELUAT-
IONS IN THE COEFN ARRAY. GASFAC IS THE SQRTFISPECIFIC HEAT RATIO E STAND IONS IN THE COEFN ARRAY. GASFAC IS THE SQRTF(SPECIFIC HEAI RATIO * SIAND20.064881 (METERS / SEC**2/KELVIN DEGREEI**L/2.
COMMON C
DIMENSION A( 800\(), B(700), C(4000)\),
IVATM(3), P(3), XIFT(3), DRAG(3), PAR(3), X(100)

\(Q=0.5 * D N S I T Y * V Q S Q R D\)
QVAL \(=\) Q*AREA/XI2
VMACH=SORIF(VUSQRD/TM)/GASFAC
COMPUTE THE \(X, Y, Z\) COMPONENTS OF LIFT. IF (ALPHA) \(2,1,2\)
\(1 \mathrm{CL}=0.0\)
60 TO 4
\(2 \mathrm{CL}=\) QUAD \((\mathrm{YMACH}, 2) *\) SINALF
\(A A=Q V A L * C L / P M A G N\)
\(A B=\) SINBET/VO
DO \(3 \mathrm{~K}=1,3\)
3 XIFT(K) = AA*(AB\#PAR(K)+COSBET*P(K)
C
COMPUTE THE \(X, Y, z\) COMPONENTS OF DRAG.
\(4 \mathrm{CD}=\mathrm{CDI}+\) UUAD \((V M A C H, 4)\)
\(A C=-C D * Q V A L / V Q\)
DO \(5 K=1,3\)
\(5 \operatorname{DRAG}(K)=A C=\operatorname{VATM}(K)\)
6 REIURN
END
```

THE FORTRAN II LIBRARY ATANF（ + OR－Z＝TANITHETA）I USES A SINGLE ARGUMENT WITH ITS SIGN JU GIVE THETA IN THE FIRST（＋Z）OR FOURTH （－Z）QUADRANT．
the arctan functian may be used if＋or－ 2 IS UERIVED frdm a FRACTION SO THAT ARCTAN $(Y, X)=$ TAN－1 $(f+$ OR－Y＝SIN（THETA）$) /(+$ OR－X $=$ COS（thetaj）］．THUS IHE ARCTAN (Y, X) GIVES THETA IN ITS PROPER QUADRANT FROM－ 180 DEGREES TO＋180 QEGREES．

IF（X）2，1，2
ARCTAN $=\operatorname{SIGNF}(1.57079632, Y)$
GO TO 4
ARCTAN＝ATANF (Y / X)
IF（X）3，1，4
ARCTAN＝ARCTAN＋SIGNF（3．14159265，Y）
4 RETURN
END

```
SUBROUTINE CONVTI \((V, A M C)\)
THIS ROUTINE COMPUTES -- (1) ANGULAR MOMENTUM, AMC(4) (V,AMC)
    (2) ANGULAR MOMENTUM SQUARED, AMC(5)
    (4) X,Y,Z COMPONENTS OF ANG. MOM., AMC(J)
    (4) VELOCITY, V(4)
    (5) VELOCITY SQUARED, V(5)
    COMMON C
    DIMENSION A(600), B(700), C(4000),
    1 AMC(3), V(5), RB(3), IND(3)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline EQUI & NC & & & & & & & \\
\hline 114 & ，C & 1 & 11］），（B & ，C & （1111）．15ND & －A & 1 & 603）， \\
\hline 2 IRB & ，B & 1 & 1931） & & & & & \\
\hline
\end{tabular}
    CO 1 J = = 1,3
    J2=IND(J1)
    J3=IND(J2)
    1 AMC(J3)=RO(J1)*V(J2)-RB(J2)*V(J1)
    AMC(5)=AMC(1)**2+AMC(2)**2+AMC(3)**2
    AMC(4)=SQRTF{AMC(5))
    V(5) =V(1) = 2+V(2)**2+V(3)**2
    V(4)=SQRTF(V(5))
    RETURN
    END
```


SUBROUTINE CONVT2

THIS ROUTINE CONVERTS RECTANGULAR COORDINATES INTO DRBIT ELEMENTS． RECTANGULAR COORDINATES－POSITIDN COMPONENTS，X ，AND VELOCITY COMPONENTS，VX． THE ORBIT ELEMENTS ARE IN THE ORBELS ARRAY－
（1）ECCENTRICITY（4）INCLINATION
（2）ARGUMENT OF PERICENTER（5）MEAN ANOMALY
（3）LONGITUUE OF ASCENDING NODE（6）SEMILATUS RECTUM
COMMON C
DIMENSION A（600），B（700），C（4000），
1 AMC（3），QRBELS（6），RB（3）

1 （A	，C	1	11）${ }^{\text {a }}$（ $A M$	， B	（ 90）），（AMSQRD，${ }^{\text {（ }}$	1	91才，
21 AMC	，B	1	87）${ }^{\text {，（ }}$（	，C	（1111）］，（COSTRU，B	1	53］），
3 （EPAR	，B	1	261），（GK2M	， 8	36）），（ORBELS，B	1	1161），
41 R	，B	，	102）），（RB	， 8	1931），（SINTRU，B	1	521），
SITRU	，B	1	401），（V	， 8	95））（VSQRD ， B	，	9611，
GIVX	＊ 8	1	92）1．（VY	， 8	93）），（VZ ，B	1	941）

ORBELS $(6)=A M S Q R D / G K 2 M$
$R=S Q R T F(R H(L) * * 2+R B(2) * * 2+R B(3) * * 2)$
TRU＝ARCTAN（AM／GK2M＊（RB（1）＊VX＋RB（2）＊VY＋RB（3）＊VZ），ORBELS（6）－R）
IF（AMC（1））$\angle, 1,2$
$1 \operatorname{ORBELS}(3)=0$ ．
GO TO 3
ORBELS（3）＝ARCTAN（AMC（1），－AMC（2））
3 ORBELS（4）＝ARCTAN（SQRTF（AMC（1）＊＊2＊AMC（2）＊＊2），AMC（3））
SNODE $=S$ INF（URBELS（3））
CNDDE $=$ COSF（ORBELS（3））
$A A=R B\{1) * C N U D E+R B(2)=S N O D E$
$A B=R B(3) * S I N F(O R B E L S(4))+\operatorname{COSF}($ ORBELS（4））＊（RB（2）＊CNODE－RB（1）＊SNODE）
ORBELS（2）＝ARCTAN（AB，AA）－TRU
OREELS（1）＝SURTF（ABSF（1．＋URBELS（6）＊（VSQRD／GK2M－2．／R）））
EPONE＝SQRTF（1．＋ORBELS（1））
E2M1＝1．－ORBELS（1）＊：2
EPAR $=$ SQRTF（ABSF（E2M1））
SINTRU＝SINF（TRU）
COSIRUXCOSF（TRU）
EPAS＝SQRTFIABSF（1．－ORBELS（1）1）－SINTRU／（1．＋COSTRU）
ETHETA＝ORBELS（1）＊SINTRU／（1．＊ORBELS（1）＊COSTRU）＊EPAR
4 IF（E2M1）5，6，6
5 ORBELS（5）＝LUGF（（EPQNE＋EPAS）／（EPONE－EPAS））－ETHETA
GO TO 7
6 ORBELS（5）＝2．＊ARCTAN（EPAS，EPONE）－ETHETA
RETUR

SUBROUTINE ERRORZ
C THIS SUBROUTINE COMPUTES THE RELATIVE ERRORS BETWEEN THE R-K AND LOW-GRGER THIS SUBROUTINE COMPUTES TRE RELATIVE ERRORS BETHEEN THE R-K AND LOW-ORGER
INTEGRATION SLHEMES. IT ALSO COMPUTES THE ERROR COEFFICIENT, A, ANO SAVES THE ERROR DATA WHEN EREF HAS A - SIGN. THE BRANCH ON IMODE OETERMINES THE ERROR DATA WHEN EREF HAS A - SIGN. THE BRAN
HHICH SET DF NORMALIZING FACTORS ARE TO BE USED.

COMMON C
C
DIMENSION A(600), B(700), C $\{4000)^{\prime}$

EQUIV	ENCE						
114	-C	(11)), (AL	* B	1	10) 1, (A2 - B	1	11) ${ }^{\text {a }}$
218	, C	(1111)), (0ELT	, B	1	1)) (E2 \% 8	(181),
3 (EREF	, A	(13)), (IMODE	+ A	1	1) 1 (INDERR; ${ }^{\text {a }}$	1	51)1.
$41 R$, B	(102) $)$ (STEPGO	, 4	1	41) , (STEPNO,A	I	4231.
SIV	, B	(95)): (XINC	. 8	t	601) $)$ (XPRIM . C	1	711)

$E 2=0$.
RELERR(2) $=X I N C(2) / X P R I M(2)$
IF (IMDOE-1) 2,1,2
COMPUTE THE NORMALIZED INTEGRATION ERRORS FDR THE ORBIT ELEMENTS.
1 RELERR(3)=X1NC(3)/(XPRIM(3)+1.)/10.
RELERR(8$)=X I N C(8) / X P R I M(B) / 10$. DO $10 \mathrm{~J}=\mathrm{L}$. 4
10 RELERR $(J+3)=\operatorname{XINC}(J+3) / 62.831853$
GO TO 3
C
C
COMPUTE THE NORMALIZED INTEGRATION ERRORS IN RECTANGULAR VARIABLES.
$2 \mathrm{VI}=V+100$.
RELERR($J+2)=$ XINC $(J+2) / V_{1}$
RELERR $(J+5)=X \operatorname{INC}(J+5) / R$
SELECT MAXIMUM ERROR, COMPUTE ERROR COEFFICIENT, POSSIBLY SAVE ERRDR DATA.
3 DO 5 J=2,8
[F (ABSF(RELERR(J))-E2) $5,5,4$
[F (ABSF(RELERR(J))
$4=J$
$E 2=A B S F(R E L E R R(J))$
5 E2 = ABS
5 CONTINUE
$E 2=E 2+2 E-8$
$A 1=A 2$
$A 2=$ LOGF (E2)-5.-LOGFIABSF(DELT)
IF (EREF) 6,7,7
6 WRITE TAPE 4, STEPGO, STEPND, XPRIM(1), DELT, A2, E2, (RELERR(J), J=2, 8), K INDERR = INOERR + I
7 RETURN
END

SUBRDUTINE EQUATE

EQUIVALENCE				
LIA , C	(1i) ${ }^{\text {(}}$ (AMSQRD, B	(711,
218 , C	(1111)), (BNAME , B	1	122)1, (CINCL ${ }^{\text {(}}$	551),
$31 C I R C U M, B$	82) 1 , (COMPA + 8	1	63) . (CUNSTU.A	32)1,
4 CCOSTRU, B	53)],(CosV , 8	(57)1.(DRAG , B	691),
5(EMUNE , ${ }^{\text {S }}$	28)),(EPAR , 8	1	26) I, (ETUL A	301),
GIEXMCDE, ${ }^{\text {S }}$	27)),(FLOW , B	(5) , (FORCE , B	661),
7(GK2M - ${ }^{\text {G }}$	361),16KM - ${ }^{\text {(}}$ ((37)), (IMUUE A	1)],
8(KSUB - ${ }^{\text {B }}$	19)), (MBODYS, B	'	42)), (NEFMRS, ${ }^{\text {a }}$	(85) ${ }^{\text {(1). }}$
GINSTART:B EQUIVALENCE	24) 1 , (OBLATN, A	(40)), (08LAT, B	751)
1 lPRESS , B	33)), (PUSHO , B	(391)), (Qx , 8	781),
2 (RADIAL, B	81)), (RATMUS, B	1	23)),(RB , ${ }^{\text {a }}$	193)1,
31 R , B	(102)), (RSQRD, B	1	45)), (SINCL , 8	541),
4 (SINTRU, 8	52)), (SINV , B	1	56) 1 , (SPO , A	44)1,
5(TABLT * 8	20)), (TUFFT, A	1	24)), (TRSFER, B	81).
gitrest , A	54)), (U A	1	591).1V , B	9511,
7IVSURD , B	(96)),(Vx , B	1	921).1800 - ${ }^{\text {(}}$	50111.
$81 \times I F T$, 8	721), (XPRIM , C	1	711) ${ }^{\text {(XPRIME,C }}$	9111),
$91 \times$, 8	(40111, 120 MaL , B	1	83), (IN , ${ }^{\text {a }}$	431)

TABLTEX(1)/SPU+TOFFY
IMOUE $=$ IMODE
1 GU TO $(2,16,16)$, IMOUE
STATEMENTS 2 TO 16 FINO THE RECTANGULAR POSITION ANU VELOCITY FROM URBIT ELEMENTS ANU TRUE ANUMALY. THE TRUE ANGMALY IS foUnd frum iterative SOLUTIDN UF KEPLERS ELUATIDN.
$2 \mathrm{EL}=\mathrm{x}(3) \mathrm{HE}$
E2ML $=1 .-E 2$.
$E P A R=5 Q R T F(A B S F(E 2 M 1))$
VCIRCL $=$ GKM/ \triangle ORTF $(X(8))$
COMPUTE SINE AND CDSINE OF TRUE ANOMALY.
PART A. E=1
3 IF (EMONE) $10,4,5$
SOSTRU $=1$.
GO TO 14
PART \&-E IS GREATER THAN
5 DO $7 \mathrm{~J}=1,100$
ELOS $X(7)-U+X(3) * S$ INHF(U)
ECOSU $=x(3) * \operatorname{CDSHF}(u)$
DELU $=D E L M /(1.0-E C U S U)$
IF ABSF(DEL
IF (DASLM)-CDNSTU) 9,9,7
ASYMPT =
ASYMPT 1.0
IF (MBCOYS) 8,23,8
GO TO 23

- COSU $=$ Coshf(u)
DEMl $=1-x(3) \cdot \operatorname{COS} U$
COSTRU $=(\operatorname{CUSU}-x(3)) / 0 E M 1$
SINTRU $=-E P A R * S I N H F(U) / D E M I$
GO 1014
10 DO 12 J=1 I
DELM $=x(7)-(1+x(3)=S$ INF (U)
ECOSU $=x(3) \cdot \operatorname{CosF}(U)$
DELU $=\operatorname{DELM} /(1.0-E \cos U+0.01 * E \cos U * * 3)$
$U=U+D E L U$
11 IF (ABSF(UELM)-CONSTU) 13.13.12
12 CONTINUE
WRITE OUTPUT TAPE 6,55,U,DELU
CALL EXIT
$13 \cos U=\operatorname{cosF}(u)$
$\cos 1=1 .-x(3)=\cos U$
SINTRU = EPAR SINF(U)/DEM1
SINTRU = EPARESINF(U)/DEMI
14 PDVR $=1 .+x(3) * \operatorname{COSTKU}$
COMPUTE POSITION AND VELOCITY FROM ORBIT ELEMENTS ANU TRUE ANUMALY. ALSO, CLEAR THE PERTURBAIING ACCELERATIUNS.
15 SOMEGA $=\operatorname{SINF}(x(4))$
CDMEGA $=\operatorname{CODF}(X(4))$
SNODE $=\operatorname{SINF}(x(5))$
CNOUE $=\operatorname{COSF}(x(5))$
SINCL $=$ SINF $(\times 16))$
CINCL $=\operatorname{COSH}(\times 16)$)
SINV = SINTRU CUMEGA + COSTRU* SOMEGA
COSV $=$ COSTRU*COMEGA-SINTRU*SOMEGA
$A R=C O S V * C N U U E-S I N V * S N U D E * C I N C L$
BI = SINV*CNOUE + CUSV*SNODE*CINCL
$C 1=C D S V * S N U D E+S I N V * C N O D E=C I N C L$
D1 = SINV*SNUUE-COSVFCNODE FCINCL
E1 $=X(3) \cdot$ SUMEGA +5 INV
$F 1=X(3)-\operatorname{CUMEGA}+\operatorname{COSV}$
$A S=E I * C N O U E+F L$ SNODE*CINCL
B2=FI*CNOUE * CINCL-EI SNOUE
$R=X(8) / P D V R$
$R S O R D=R * K$
RSQRD $=R * K$
SINVY=SINV* INCL
$R B(1)=K * A R$
$R B(2)=R=C L$
$R B(3)=K * S I N V V$
$V \times(1)=-V C I R L L * A S$
$V \times(3)=V C 1 R C L * F I *$ SINCL
GO TO 18

16 DO $17 \mathrm{~K}=1,3$
$V X(K)=x(K+2)$
$17 R B(K)=X(K+5)$
$R S Q R D=R B(1)$ *RB(1) $+R B(2)=R B(2)+R B(3) * R B(3)$
$R=S Q R T F(R S Q R D)$
18 VSQRD=VX(1)*VX(1)+vx(2)=vx(2)+VX(3)=vx(3)
$V=$ SQRTF(VSQRD)
DO $19 \mathrm{I}=1,15$

TEST FOR PRESENCE OF PERTURBING BODIES.
IF (MBDDYS) $20,21,20$
20 CALL EPHMRS
21 IF (XABSFIIMDDE)-1) 26,22,26
TEST FOR CHANGE FROM ORBIT ELEMENTS TO TEMPORARY RECTANGULAR COORDINATES IF E IS IOD NEAR TO UNITY.
22 IF (ETOL-ABSF(EMONE)) 26,23,23
23 IF (IMODEI $54,24,24$
24 IMODE =-3
IF (NSTART) $25,54,25$
25 TIEST = X 27
c
TEST FOR OBLATENESS PERTURBATION COMPUTAIION.
26 IF \{OBLATN-BNAME $30,29,30$
29 CALL DBLATE
$30 \times \operatorname{DOT}(2)=-F L D H$
IF (R-RATMOS) 31,31,32
1 CALL ICAO
GO TO 33
33 IF (PUSHO) 37,36,37
36 ASSIGN 40 TO NDONE
GO TO 38
37 CALL THRUST
ASSIGN 41 TU NOONE
TEST FOR EXISTENCE OF ATMOSPHERE. FIND AERODYNAMIC FDRCES.
38 IF IPRESS, $39,42,39$
39 GO TO NDONE, $(40,41)$
40 CALL THRUS
$\stackrel{c}{c}$
SUM COMPONENTS OF THE PERTURBING ACCELERATION.
42 DO $43 \mathrm{~J}=1,3$
43 COMPA(J) $=-Q X(J)+O B L A T(J)+F O R C E(J)+X I F T(J)+O R A G(J)$
44 GO TO $(47,45,45)$, IMODE
C
C
$45 \begin{aligned} & \text { COMPUTE DERIVATIV } \\ & \text { AA }=\text { GK2M/R/RSQRD }\end{aligned}$ $0046 K=1,3$
$\operatorname{xDOT}(k+5)=x(k+2)$
$46 \operatorname{XDOT}(K+2)=\operatorname{COMPA}(K)-A A=X(K+5)$
GO TO 54
C
C
COMPUTE THE DERIVATIVES DF THE DRBIT ELEMENTS. (AFTER RESOLVING
PERTURBATING ACCELERATION INTO CIRCUMFERENTIAL, RADIAL, NURMAL CUMPUNENTS)
47 CIRCUM $=$ COMPA 3$) *$ COSV•SINCL-COMPA\{11*B1-COMPA(2)*DI
RADIAL = COMPA(1)*AR+COMPA(2)*C1+COMPA(3)*SINVY
2ORMAL = COMPA(1)*SNODE*SINCL-COMPA(2)*CNODE*SINCL+COMPA(3)*CINCL
$Z N=V C I R C L E E M I=E P A R / X(B)$
RDVPP1 $=1 . /$ PRVVR +1.
RDVA $=$ E2M1/PDVR
XOOT(B) $=2 . * R / V C I R C L=C I R C U M$
IF (X(3)) 48,48,49
$48 \mathrm{CSQRD}=$ CIRCUM*CIRCUM
RASQRD = RAUIAL RADIAL
DEM1 $=(4 . *$ (SQRD + RASQRD $) * V C I R C L$
C
C
TEST FOR IN-PLANE PERTURBATION.
IF (DEM1) 57,56,57
$56 \operatorname{XDOT}(3)=0$.
$\operatorname{XDOT}(4)=0$.
$\operatorname{XDOT}(7)=0$.
GO TO 50
57 VOV2R=VCIRCL/R/2.
XDOT(3) $=$ SQRTF(4.*CSQRD+RASQRD)/VCIRCL
$\operatorname{XDOT}(4)=\operatorname{VUV} 2 R+(2 . * C S Q R D+R A S Q R D) / D E M I=R A D I A L$
XDOT(7) $=2 N-V D V 2 R+(6 * * C S Q R D+R A S Q R D) / D E M 1 * R A D I A L$
GO TO 50
49 XDOT (3) $=(S I N T R U=R A D I A L+(P D V R-R D V A) / X(3)=C I R C U M) / V C I R C L$
XDOT(4) $=(S I N T R U / X(3) * R D V P P 1 * C I R C U M-C O S T R U * R A D I A L / X(3)) / V C I R C L$
$X D O T(7)=2 N+E P A R / V C I R C L=(\{C O S T R U / X(3)-2 . / P D V R) * R A D I A L-(S I N T R U / X(3)=$
(ROUPPI*CIRCUM))
50 IFISINCL) 51,52,51
51 XDOT(5) = SINV/SINCL*ZORMAL/VCIRCL/POVR
GO TO 53
$52 \times$ XDOT 53 = 50 CUSV•ZORMAL/PDVR/VCIRCL
54 RETURN
54 RETURN 55 FORMAT 41 HOKEPLERS EQUATION CONVERGENCE FAILURE, U=G15.8.7H DELU=
1G15.8)
END

SUBROUTINE EPHMRS IS CALLED TO COMPUTE THE POSITIONS OF THE PERTURBING bodies relative to the vehicle and, from these, their perturbing acceleratIONS UPON THE VEHICLE. OCCASIONALLY THIS ROUTINE IS CALLED FOR THE PURPUSE of translating the origin in which case (trsfer=l) the relative velocities ARE ALSO CALCULATEO. IF A BODYS POSITION IS TO BE COMPUTED FROM AN ELLIPIIC APPROXIMATION SUBROUTINE ELIPSE IS CALLED. OTHERWISE, THE POSITION WILL BE CALCULATED IN EPHMRS FRDM THE PRECISION TAPE EPHEMERIS. THE DO 19 LOAP ENCOMPASSES ALMOST THE ENTIRE EPHMRS SUBRDUTINE ANO iN EFFECT, ELIPSE TOO.

COMMON C
DIMENSION A(600), B(700), C(4000),
CX(3), I B ODY(8), EFMRS(7), XP(3,8), RB(3,8), R (8), TIM(7),
NEFMRS(8), TDAYA($6,3,7)$, TDEL $(7), 8$ MASS(8$),$ VEFM(3, 8$),$ DATA(21)
3 , TDAT(18,7)

PART 2. SET INDEXS, FIND POSITION IF ELLIPSE IS USED (NEFMRS $=20$ OR UP).
DO $19 \mathrm{JB}=1$, MBODYS
$\mathrm{JBI}=\mathrm{JB+1}$
$1 B=$ IBODY(JB1
$1 B=$ (NEFMRS(1BF)
0) 2,2,1

IF (TRSFER) $12,12,17$
PART 3. TAPE EPHEMERIS IS TO BE USED. FIND DIFFERENCE (DT) BETWEEN CURRENT PROHLEM TIME (DTOFFJ+TABLTI AND MIDPOINT IME TTIM) OF CURRENTLY STORED TAPE DATA. THEN SEE IF CURRENT DATA IS OKAY. TDEL = TIME INTERVAL ON EITHER SIDE DF TIM FOR WHICH CURRENT DATA IS GOOD.
$2 \mathrm{DT}=\mathrm{TABL} \mathrm{I}-(\operatorname{TIM}(\mathrm{JB})-$ DTDFFJ)
IF (ABSF(DT)-TDEL(JB)) $10,10,3$
PART 4A. CURRENT DATA NOT OKAY. READ IN NEXT DATA SET. IF DT IS - , BACK UP THE TAPE 2 RECORDS BEFORE READING.
3 IF (DT) 4,5,5
BACKSPACE
5 REAU Tape 3; (DATA1I), $I=1,21$)
PART 4B. IF THIS DATA IS FOR A BODY IN THE BNAME LIST, STOKE IT.
(IF NIT STOKED, WE MIGHT HAVE rO RETURN FOR IT.) IF ELLIPSE DATA IS provioed for the body found, by-pass the tape data and read in next set. DO $7 \mathrm{~J}=1$, MBODYS
IF (IDATAII)+EFMRS(J))*(-(DATAll)*EFMRS(J)l)) 7,6,7
6 IF (NEFMRS(J)-20) 8,8,3
7 CONTINUE
GO TO 3
PART 4C. move the data into place and then go back and see if it is okay.
8 TIN(J) $=$ DATA(2)
TDEL(3) = DAIA13)
DO 9 JJ=1,18
TDAT(JJ, J) $=$ DATA(JJ+3)
9 GONTINUE
GO TO 2

PART 5. CURRENT DATA IS OKAY. GET POSITION FROM THE POLONDMIAL
$P=A+B X+C X * * 2+D X * * 3+E X * * 4+F X * * 5$.
$0 \mathrm{DO}_{\mathrm{XP}} 11 \mathrm{~K}, \mathrm{~K}=1,3$
$\mathrm{XD} 1)^{2}=$
$X P(K, J B 1)=$ TOAIA $1, K, J B)$

$X P(K, J B 1)=X P(K, J B 1)=D T+T D A T A(K T, K, J B)$
11 CONTINUE
IF (TRSFER) $12,12,15$
C
C
PART 6. COMPUTE DISTANCE FROM REFERENCE AND FROM ROCKET.
$1200 \quad 13 \mathrm{~K}=1,3$
$X P(K, J B 1)=X P(K, I B)+X P(K, J B I)=S I G N F(A U, F I B)$
c
c
c
PART 7. COMPUTE PERTURBING ACCELERATIONS (QX). 4194304=2**22 IS REMOVED
TO PREVENT OVERFLOH. $2048=24=11$ AND $8589934592=2.433$ RESTORE THE SCALE.
PRSQRD $=($ RB(1,JBI)**2 + RB(2,JB1)**2 + RB(3, JB1) **21/4194304.
RRELL $=$ SQRIF(PRSQRD)
$\operatorname{RRSQRD}=\mathrm{IXP}(1, J B 1) * * 2+X P(2, J B 1) * * 2+X P(3, J B 1) * 2) / 4194304$.
RCUBE $=$ RSQRD SORTFIR SQROI
PRCUBE = PRSQRD *RRELL
PRCUBE $=$ PRSLR
R(JB1) $=$ RRELL 2048 .
DO $14 K=1,3$
14 QX(K)=SQROK - BMASS(JB1) * (\{XP(K,JB1)/RCUBE) + RB(K,JBI)/PRCUBE)/ $18589934592 .+$ QX(K)
GO TO 19
C PART 日. COMPUTE VELOCITY FROM $V=B+2 C X+30 X=2+4 E X *=3+5 F X=* 4$ AND FROM REFERENCE BOOY VELOCITY (VEFM(IB)).
15 DO $16 \mathrm{~K}=1,3$
$\operatorname{VEFM}(K, J B L)=0$.
DO $16 \mathrm{KT}=1,5$

17 DO $18 \mathrm{~K}=1,3$
GD TO 12
19 CONTINUE
RETURN
END

SUBROUTINE EXTRA
THIS ROUTINE IS EXECUTED BETWEEN FLIGHTS AND MAY THEREFORE BE EXPANDED TD DO ADDITIONAL COMPUTATION BETWEEN SUCCESSIVE FLIGHTS.

COMMON C
c

SIGNAL $=0$.
GMAX $=0$.
RETURN
END

THIS ROUTINE IS EXECUTED BETWEEN STAGES AND MAY TMEREFORE BE EXPANOED TO dO CALCULATIONS BETHEEN SUCCESSIVE STAGES DF A FLIGHT.

RETUR
END

SUBRDUTINE ELIPSE (JBI)
THIS SUBROUTINE IS CALLED FROM EPHMRS TO COMPUTE THE POSITION OF A BODY USING APPRDXIMATE ELLIPTIC DATA. THE VELOCITY IS ALSD COMPUIED IF THE ORIGIN IS BEING TRANSLATED ITRSFER=1.0I. THE ELLIPSE DATA IS READ FROM INPUT CARDS AND ORGANIZED IN SUBRDUTINE ORDER. TPD IS TIME SINCE PERIHELION PASSAGE, $Z M$ IS MEAN ANOMALY, U IS ECCENTRIC ANOMALY.

TDATA ARRAY - (K) SEMILATUS RECTUM (K+7) PERIOO

(K)	SEMILATUS RECTUM	$(K+7)$
$(K+1)$	ECCENTRICITY	$(K+8)$
$(K+2)$	OMEGA IN OMEGA	
	$(K+9)$	SIN NODE

$(K+2)$ OMEGA $\quad(K+8)$ SIN OMEGA
$(K+3)$ NODE $\quad(K+10)$ SIN INCL
$\begin{array}{ll}(K+4) \text { INCLINATION } & (K+11) \text { COS OMEGA } \\ (K+5) \text { JD OF PERIHELION } & (K+12) \text { COS NODE }\end{array}$
$\begin{array}{lll}(K+5) & \text { JD OF PERIHELION } & (K+12) \\ (K+6) & \text { CRACTIONAL PART OF }(K+5) & (K+13) \\ \text { COS INCLINATION }\end{array}$
COMMON C
DIMENSIDN A(600), B(700), C 140001 ,
l XP(3,8), $\operatorname{VEFM}(3,8)$, TUATA(121)

1 (A - C	1	11)], (8	, C	(1111)), COONSU $^{\text {a }}$, A	1	311),
2'DTDFFJ.A	!	23)), (TABLT	, 8	(20)), (tDATA	, B	,	2651).
3 (TRSFER, B	l	8) 1, (VEFM	, B	(241)), (xP	, B	1	2171)

C
$K=18 \times(\mathrm{JBl}-2)+1$
TPD $=($ OTOFFJ-TDATA(K+5) $)+(T A B L T-T D A T A(K+6))$
$2 N=6.28318533 / T 0 A T A(K+7)$
$Z M=Z N * M D O F(T P D, T D A T A(K+7))$
GEI IHE SINE(SINIRU) AND THE COSINE (COSTRU) OF THE TRUE ANOMALY
BY ITERATING KEPLERS EQUATION. THEN COMPUTE $X, Y, 2$ (XP).
$\mathrm{U}=\mathrm{ZM}+\operatorname{TDATA}(K+1) * S I N F(2 H)+5 * \operatorname{TDATA}(K+1) * * 2 * S I N F(2 . * Z M)$
DO $1 \mathrm{~J}=1,10$
DELM $=2 M-U+$ TDATA(K+1) $\operatorname{CSINF}(U)$
DELU $=$ DELM $/(1 .-$ TDATA(K+1)*COSF(U))
$U=U+D E L U$
IF (ABSF(DELM)-CONSU) 2,2,1
1 CONTINUE
2 COSU = COSF(U)
$\begin{aligned} & \text { COSU }=\text { COSF } \\ & \text { DENOM }\end{aligned}=1 .-$ TDATA $(K+1) * C O S U$
DENOM $=1-$ TOATA $(K+1) * C O S U$
COSTRU $=($ COSU-TDATA $(K+1)) / D E N O M$
COSTRU $=(C O S U-T O A T A(K+1)) / D E N O M$
$R=T D A T A(K) /(1 .+T D A T A(K+1) * C O S T R U)$
R = TDATAIK
SINTRU $=$ SQRTF $(1 .-\operatorname{TDATA}(K+1) *=2) * S I N F(U) / D E N D M$
SINV = SINTRU-TDATA(K+11)+COSTRU*TDATA(K+8)
SINV $=$ SOSV $=$ COSTKU TDATA $(K+11)-S I N T R U=T D A T A(K+8)$
$X P(1, J B 1)=R=\{C O S V=T D A T A(K+12)-S I N V+T D A T A(K+9)=T O A T A(K+13))$
$\mathrm{XP}\{1, J B 1\}=R=\{\operatorname{COSV}=\operatorname{TDATA}(K+12)-S \operatorname{INV}+\operatorname{TDATA}(K+9)=\operatorname{TDATA}(K+13))$
$\mathrm{XP}(2, J B 1)=R=(\operatorname{COSV} \operatorname{TOATA}(K+9)+S \operatorname{INV}=\operatorname{TDATA}(K+12)=\operatorname{TDATA}(K+13)\}$
$X P(2, J B 1)=R=(\operatorname{COSV}=\operatorname{IOATA}(K+9)$
$X P(3, J B 1)=R=S I N V=\operatorname{TOATA}(K+10)$
$X P(3, J B 1)=R \in S I N V$
IF (TRSFER) $3,4,3$
COMPUTE THE VELOCITIES FOR THE TRSFER OF ORIGIN.
3 EX $=$ TDATA $(K+1)$ TDATA $(K+8)+$ SINY
$\mathrm{FX}=$ TDATA $(K+1)=T D A T A(K+11)+\operatorname{COSV}$
CFACT = $2 N=T D A T A(K) /(S Q R T F((1--T D A T A(K+1)=-2) * * 3))$
$A X=E X=T D A T A(K+12)+F X$ TDATA $(K+9)$-TDATA $(K+13)$
$B X=F X=T D A T A(K+12)=T D A T A(K+13)-E X=T D A T A(K+9)$
$\operatorname{VEFM}(1, J B 1)=-A X=C F A C T$
VEFM(2,JB1) $=B X+C F A C T$
VEFM(3,JB1) = FX*CFACT*TDATA(K+10)
4 REIURN
END

```
            REM THIS RUUTINE WILL ADD IN DOUBLE PRECISION A QUANTIIY C TO THE DOUBLE
            REM THIS RUUTINE WILL ADD IN DOUBLE PRECISION A QUANTITY C TO THE DOUBLE
            REM PRECISION VARIABLE A+B WHERE
            REM THE LEAST
    Q1
EXADD
    COMMON
    COMMON
TEMP2 COMMON
            COMMON
            BCI 1,EXADD
            SXD 
            SXD E-4,2
            CLA" 1,4
            FAD
            FAO
            STQ
            STO QIO
            CLA Q1 
            FAD TEMP2
            STQ QI
            FSB
            STO
            CLA 
            STO* M2,
                SUBROUTINE ICAO
C SUBROUTINE ICAO DETERMINES THE ATMOSPHERIC TEMPERATURE, PRESSURE, AND
    DENSIIY AS A FUNCTION OF ALTITUDE ABOVE THE EARTH IN ACCORDANCE WITH
    THE 1962 U.S. STANDARD ATMOSPHERE (ICAO TO 20 KM.). A SHORT FAP
    PROGRAM FOLLOWS ICAO WHICH PROVIDES A MEANS OF LOADING DATA INTO MACHINE.
    IT mUST BE LOADED DIRECTLY AFTER ICAO. IF THE leNGTH DF ICAO IS ChaNGED,
    THE DATA MUST BE RELOCATED.
            R IS DISTANCE TO CENTER OF EARTH IN METERS.
            ALT IS VEHICLE ALTITUDE ABOVE EARTH IN METERS
        TABLE H IS METERS OF ALTITUDE FROM THE EARTHS SURFALE AND IS
            IHE ARGUMENT OF ATMOSPHERE PROPERTY TABLE.
            alm IS the mean slope dF the table h vS. tm curve at table h.
            TMR IS IM AT TABLE H.
            REF P IS THE PRESSURE IN mILLIBARS AT TABLE H.
            TM IS THE TEMPERATURE TIMES STD. MOLECULAR WEIGHT / ACIUAL
            IM IS THE TEMPERAIEIGETIMESGSTD* MOLECUL
            PRESS IS PRESSURE IN MILLIBARS.
            DNSIIY IS DENSITY IN KILOGRAMS PER CUBIC METER
            HEIGHT IS EITHER GEGPOTENTIAL ALTITUOE OR GEOMETRIC ALTITUDE IN MEIERS.
            COMMON C
C DIMENSION A(600), B(700), C(4000),
        1 TABLEH(23), TMR(23), REFP(23), ALM(23), RB(3)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Equivalence} \\
\hline \(114, C\) & 1 & 11) ( ALT & , A & 1 & 4) , (8 & , C & (1111) , \\
\hline 2 ODNSITY, B & 1 & 291), & & & \multicolumn{2}{|r|}{IOBLATN, A} & \((401)\), \\
\hline 3(PRESS * \({ }^{\text {a }}\) & 1 & 33)1, (R & , B & 1 & 1021), (RB & , 8 & ( 1931), \\
\hline 4 IRE , A & 1 & 25) , (TABLT & , B & 1 & 201), (TM & , 8 & ( 34) \({ }^{\text {, }}\) \\
\hline 5IRESQRD; \({ }^{\text {S }}\) & 1 & 7) & & & & & \\
\hline EQUIVALENCE & TAE & LEH(24), TMR) & T & & 7), ALM). ( & EH & REFP) \\
\hline
\end{tabular}
            IF (OBLATN) 102,101,102
    101 ALT = R - RE
            GO TO 103
    102 ALT = R-6356783.28/SQRTF(.99330657834.006693421685(RB(3)/R)**2)
    103 IF (ALT-90000.) 105,104,104
    104 HEIGHT = ALT
        GO TO 10E
    105 HEIGHT = ALT/(1.0+ALT/8356766.)
    106 K=K
            FIND THE HEIGHT IN A TABLE OF BASE DATA. DATA ARE
            ARRANGED IN DECENDING ALT WITH 2I REGIONS. ABOVE THAT, PRESSURE AND
            DENSITY ARE SET = O. TEMPERATURE IS SET TO 3000.
            IF (K-22) 2,6,6
            2 IF (HEIGHT-TABLEH(K+1)) 5,3,3
            3K=K+1
            GO TO 1
            K=K-1
    5 IF (K) 7,7,6
    6 HINC = HEIGHT - TABLEH(K)
            IF (H INC) 4,8,8
    7K=1
    8 1F (ALM(K)) 9,100,9
C
```

```
c
    CONTRDL COMES HERE FOR NON
        IF (ALT-9000O.) 107,107,10B
    107 PRESS = REFP(K)*(IMR(K)/TM)=* (.0341631947/ALM(K))
        GO TO 10
    108 IF (K-KC) 109,110,109
    109 KC = K
        C1 = RE+TABLEH{K}
        C2 = TMR(K)/ALM(K)
        C3 = 1./(C1-C2)
        C4 = -.0341631947*RESQRD=C3/ALM(K)
    110 PRESS = REFP(K)*EXPFIC4*(C3*LOGF(Cl*(HINC/C2+1.)/(RE+HEIGHT))-
    1 HINC/C1/(RE+HEIGHT)I)
    10 DNSITY = PRESS/TM/2.87053072
C
    CONTROL COMES HERE FOR ISOTHERMAL LAYERS
    100 IF (K-22) 11,12,12
    11 TM = TMR(K)
        PRESS = REFP(K)*EXPF(-.0341631947*HINC/IMR(K))
        GO TO 10
C
    CONTRDL COMES HERE FOR EXTREME ALJITUDES
    12 PRESS =0.0
        TM = 3000
    1 3 \text { RETURN}
        END
            REM THIS IS THE FAP PROGRAM WHICH LOADS ICAO DATA INTO MACHINE.
        REM THE 256 IN ORG 256 WAS FOUND BY SUBTRACTING 22 FROM THE DEC LOCATION
        REM THUS, 隹-22=256, LISCARD IHE FIRST TWIS WASARY GARDS AFTER ASSEMBLY
        EM THUS, LTB-Z2=RS. DISCARD THE FIRS TWU BINARY CARDS AFTER ASSE
        REM AND PLACE REMAINING CARDS IMMEDIATELY BEHIND ICAO HINARY DEGK.
        REM
        REM Al IS REF PI23
        REM AZ IS ALM(23)
        REM A3 IS TMR(23)
        REM
        ORG }25
        DEC 0.,1.1418E-9,3.4502E-9,1.0957E-8,4.0304E-8,1.8838E-7
        DEC 6.9604E-7,1.6852E-6,2.7926E-6,3.6943E-6,5.0617E-6,2.5217E-5
        DEC 7.3544E-5,3.0075E-4,1,6438E-3,.010377,.182099,.590005
        DEC 1.10905,8.68014,54.7487,226.320,1013.25
        DEC 0.,0.,.0011,.0017,.0026,.0033,.004,.005,.007,.01,.015,.02,.01
        DEC .005,.003,0.,-.004,-.002,0.,.0028,.001,0.,-.0065
        DEC 0., 2700.65,2590.65,2420.65,2160.65,1830.65,1550.65,1350.65
        DEC 1210.65,1110.65,960.65,360.65,260.65,210.65,180.65,180.65
        DEC 252.65,270.65,270.65,228.65,216.65,216.65,288.15
        DEC LE30,7ES,6ES,SES,4ES,3ES,2-3ES,1,9E5,1.7ES,1.6ES,1.SES,L.2ES
        DEC L.1E5,1E5,.9E5,79000.,61000.,52000.,47000.,32000.,20000.
        DEC 11000.,0.
        END
    NBODY COMPUTES THE IRAJECTORY IN EITHER ORBIT ELEMENTS DR RECTANGULAR
        COORDINAIES USING THE RUNGE-KUTTA TECHNIQUE. A LOWER ORDER INTEGRATIDN
        IECHNIQUE IS ALSO PERFORMED TO FACILITAIE AUTOMATIC STEP SILE CUNIRQL.
        THE X,XPRIM, XDOT,XINC,ETC. ARRAYS ARE AS FOLLOWS.
        x
        1 TIME
\begin{tabular}{ll} 
TIME & TIME \\
MASS & MASS \\
ECCENTRICITY & \(X\)-VELOCITY \\
ARGUMENT OF PERICENTER & \(Y\)-VELOCITY \\
ARGUMENT OF ASC. NODE & \(Z-V E L O C I T Y\) \\
INCLINATION & \(X\) \\
MEAN ANOMALY & \(Y\) \\
SEMILATUS RECTUM & \(Z\)
\end{tabular}
        MDDE VARIABLES
        l ORBIT ELEMENTS
        RECTANGULAR
        RECTANGULAR TEMPORARY
        EARTH SPHERICAL--CHANGE TO RECTANGULAR
        ORBIT ELEMENTS--CHANGE TO RECTANGULAR
        RECTANGULAR--CHANGE TO ORBIT ELEMENTS
        ORBIT ELEMENTS--CHANGE IO TEMPORARY RECTANGULAR
        EARTH SPHERICAL -- CHANGE TO ORBIT ELEMENTS
        COMMON C
QIMENSIDN A(600), B(700), C(4000)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 & XPRIM & (100,2), & XPRIMB & (100,2). & XODTPM & (100,2), \\
\hline 2 & X & (100), & XINC & (100). & OLDINC & (100). \\
\hline 3 & xDOT & (100), & RB & (3). & XK & (100), \\
\hline 4 & AMC & (3). & AK & (3). & AW & (4) \\
\hline 5 & xwhole & (6). & \(v \times\) & (3), & BEX & (14) \\
\hline
\end{tabular}
```

1(A) C	1 lil), (Al ${ }^{\text {(}}$	101), (A2 , B	111).
2 (ACOEFL, ${ }^{\text {B }}$	(12)), (ACOEF2,B	13)), (ACOEF3, ${ }^{\text {a }}$	141),
$314 K$, A	51)), (AMC , 8	87))(${ }^{\text {(AMSQRD, }}$	91),
4(AM , B	901), (ASYMPT, A	7)), (AW , A	551),
518 , C	(1111)), (CONSTU, A	32)) (DELT :	13).
GIDONE , B	(391), (E2 , B	18)).(EMONE , 8	281),
71ERLIMT, A	(14)!,IETOL A	(30)), (EXMDDE, 8	2711,
81GK2M - ${ }^{\text {S }}$	36)), (H2 , 8	15)., (IMOUE, A	1)],
9IINOERR,B EQUIVALENCE	(5illitkSUB -B	191), (MBODYS, 8	4211
IINEQ , A	2) $)$ (NSTART, B	24) 1, (0LOOEL, 8	91),
$210 \mathrm{AAX}, 8$	44)), (RATIO, B		193) ${ }^{\text {P }}$
3 (REVS A	48) $)$ (R , B	(102)), (STEPMX, A	1611,
$415 T E P G O, A$	41)1, (STEPNO,A	(42)), (TRSFER, 8	81),
SITRU , B	(40)), (TTEST , A	54)), (VSORD, ${ }^{\text {a }}$	96)1,
GIVX P	92) $)$ (XDOT B	501)). (XINC , ${ }^{\text {a }}$	60111 ,
71XPRIM, C	7111), (XPRIMB,C	911) $)$, (XWHOLE, B	1101),
8ix , $\mathrm{B}^{\text {a }}$	(401)), (ERLOG , ${ }^{\text {(}}$	17)),(EREF , A	131),
910), 10	399))	

```
C PART 1. SEI UP THE STARTING SEQUENGE FOR ERROR CONTROL AND DELAY CHECKING
THE ERROR UNTIL THO STEPS ARE COMPLETED. THE ASSIGNED GO TOS NSTART AND
IBEGIN CONTROL STARTING.
NEQ \(=\) NEQ
\(O O 2\) J \(2, N E W\)
\(X P R I M(J, 2)=X P R I M(J, 1)\)
    XPRIMB \((J, 2)=X P R I M B(J, 1)\)
    X(J) \(=\) XPRIMIJ, 1
    NSTART \(=0\)
    TRSFER \(=0\).
    \(H 2=\) DELT
        DELT = DELT/2.
    220 CALL EQUATE
    IF (DUTPOT) 222,221,222
    221 CALL OUTPUT
    XWHOLE (J) =VX(J
    3 XWHOLE \((J+3)=\) RB(J)
    CHANGE INTEGRATION VARIABLES IF IMODE IS -.
        F IIMODE: 4,5,5
            4 CALL TESTTR
            GO TO 1
            5 CALL TESTTR
        IF (TRSFER) 1,205.1
    205 ASSIGN 21 TU NSTART
        STATEMENTS 7 TO 9 INITIALIZE NREVI AND NREV2 FOR USE IN PART 7A.
        IF (RB(2)) 7,6,8
            6 IFCUI2) 7, 37
            ASSIGN 35 TO NREV
        A
            GO TO 9
            - ASEIGN 33 TU NREVI
        ASSIGN 37 TO NREVZ
            9 DO \(10 \mathrm{~J}=1\), NEQ
        XDOTPM(J,i) \(=\operatorname{XDOT}(J)\)
        XINC(J) \(=0\) 。
    10 CONTINUE
    1 KSUB = 1
        ASSIGN 16 TO N
\(C\)
\(C\)
    12 DO
        12 DO \(13 \mathrm{~J}=1\), NE
        DELT
        XINC(J) \(=\mathrm{XINC}(\mathrm{J})+\) AW(KSUB)*XK(J)
        3 X(J) = XPR[M(J,2) + AK(KSUB)*XK(J)
    4 CALL EQUATE
    15 GO TO \(\mathrm{N},(16,17,18,20)\)
C
C
C
    PART 3. SUBINTERVALS 2, 3, AND 4, TO STATEMENT 19 FINISH A
    RUNGE-KUTTA STEP AND INCREMENT XPRIM(J,Z) IN DOUBLE PRECISION.
    6 KSUB \(=2\)
        ASSIGN 17 TO N
        GO TO 12
    17 KSUB \(=3\)
        ASSIGN 18 TO N
        GO TO 12
    18 DO \(19 \mathrm{~J}=1\), NEO
    \(\operatorname{XINC}(J)=X I N C(J)+A W(4) * X D O T(J) \cdot D E L T\)
    180 CALL EXADD(XPRIM(J,2), XPRIMB(J,2), XINC(J))
        X(J) \(x\) XPRIM(J,2)
    9 CONTINUE
    PART 4. BEGIN A NEW RUNGA-KUTTA STEP. THIS ALSO GIVES OERIVATIVES
    FOR THE LOWER ORDER INTEGRATION CHECK.
        ASSIGN 20 TO N
        GO TO 14
    20 GO TO NSTART, \(27,23,21)\)
    PART 5. STARTING PHASE PROGRAM.
    PART SA. THIS SECTION COMPLETES THE FIRST STEP OF STARTING PHASE.
    21 ASSIGN 23 TU NSTART
    OD \(22 J=1\), NEQ
    OLDINC(J)=XINC(J)
    XINC(J)=0.
    \(\operatorname{xDOTPM}(J, 2)=\operatorname{xDOT}(J)\)
    22 CONTINUE
    GO TO 11
```

c

```
C PART 5B. MAX ERROR TEST--STARTING ONLY--CHECK THE MAX ERROR AND
    EITHER ENTEK RUNNING MODE OR REPEAT START WITH SMALLER STEP.
    23 DD 24 J=2,NEQ
    24 XINC(J)={XINC(J)+OLDINC(J))=3.-(XOOTPM(J,1) +XDOTPM(J,2)*4.
    1+XDOT(J))=DELT
    240 CALL ERRDR2
    25 IFIEZ-ERLIMT) 26,26,56
    26 ASSIGN 27 TO NSTARI
        ASSIGN II TO IBEGIN
        A1 =A2
        O10 31
のニロாのா
    PART 6. RUNNING PHASE PROGRAM.
    PART GA. CHECK THE INTEGRATION BY INTEGRATING OVER THE LAST
    RUNGE KUTTA STEP BUT USE DOTS FOR LAST THO INTERVALS, OLDDEL
    AND DELT RESPECTIVELY. STATEMENT 28 IS THE LOHER INTEGRATIDN
    MINUS RUNGE-KUTTA INCREMENTS. ERRORZ COMPUTES THE MAXIMUM RELATIVE
    ERROR AND STATEMENT 29 TESTS THIS ERROR AGAINST THE LIMIT VALUE.
    27 RATIO = DELT/OLDDEL
    HFACT=DELT/(1.+RATIO)
    ACOEFI=-RATIO*RATID*HFACT
    ACOEF2=RATIO*(DELT+3.*OLDDEL)
        ACOEF3=DELT+DELT+HFACT
        OD 2B J=2,NEQ
    XINC(J) = ACOEF1*XDOTPM(J,1)+ACDEF2*XDOIPM(J,2)-6.*XINC(J
    1+ACDEF3*XDOI(J)
    80 CALL ERRORZ
    29 IF (E2-ERLIMT) 30,30,57
C
    PART 7A. LAST POINT OKAY. COUNT THE REVOLUTIONS PAST THE X-AXIS.
    A STEP GREAIER THAN 1/2 REV. MAY FAIL TO ADO IN.
    30 H2 = DELT
    31 OMAX = MAXLF(Q,QMAX)
        IF(RB(2)) 3<,34,34
    32 GO TO NREVI. (37,33)
    33 ASSIGN 37 TO NREVI
        ASSIGN 35 TU NREVZ
        G0 10 37
    34 GO TO NREV2, (37,35)
    35 ASSIGN 33 TO NREVI
        ASSIGN 37 TO NREV2
    36 REVS = REVS + 1.
    37 IF (XABSF(IMDOE)-1) 42,38,42
C
    PART 7B. IN ORBIT ELEMENTS. ADJUST ARGUMENT OF PERICENTER AND MEAN ANOMALY
    IO + OR - PI TO MAINTAIN ACCURACY IN SIN-COS ROUTINES.
    38 IF IEMONEI 39,42,42
    39 DO 41 J=4,7,3
        ADJ2=1NTF(XPR1M(J,2)/6.28318532+SIGNF(.5,XPR[M(J,2))
        IF {ADJ2} 40,41,40
    40 ADJ3 = -ADJL*6.28125
    400 CALL EXAOD(XPRIM(J,2), XPRIMB(J,2),ADJ3)
    ADU3=-ADJ2*.0019353072
    401 CALL EXADD(XPRIM(J,2), XPRIMB(J,2),ADJ3)
C
    PART 7C. ADVANCE IHE REMAINING PARAMETERS, FIND NEW STEP SIZE,
    AND TEST FOR AN DRIGIN TRANSLATION.
    42 DO 43 K=1,3
        XWHOLE(K)=VX(K)
    43 XWHOLE(K+3)=RB{K
        DO 44 J=1,NEO
        XODTPM(J,1)= XOOTPM(J,21
        XDOTPM(J,2)= XDOT(J)
        XPRIM(J,1) = XPRIM{J,2
        XPRIMB(J,1)= XPRIMB(J,2)
        XINC(J) = 0.
    4 4 \text { CONTINUE}
        OLDDEL = DELT
    CALL STEP
        IF (DONE) 67,450,67
    IF (NSTART) 451,1,451
    451 IF (MBODYS) 46,47.46
    CALL TESTTR
    IF (TRSFER) 1,47,1
    47 IF (XABSF(IMODE)-3) 11,48,11
    PART 70. IF IN TEMPGRARY RECTANGULAR COORDINATES, TEST FOR RETURN
    TO ORBIT ELEMENTS. FIRST, E IS FOUND. IF TIME HAS NOT AOVANGED
    SUFFICIENTLY, INTEGRATION CONTINUES IN RECTANGULAR VARIABLES ISTATE. 48).
    STATEMENT 49 DETERMINES IF KEPLERS EQUATION CAUSED IMDDE = 3. IF NOT,
    AN E CLDSE TO I CHECK IS MADE IN STATEMENT 5O. IF IT DID, RECTANGULAR
    VARIABLES WILL BE USED IF THE LIMIT IS TOO SMALL (STATEMENT 52), OR
    IF E IS 5 OR GREATER (STATEMENT 53) OR IF THE PATH LIES CLOSE TO AN
    ASYMPTOTE (STATEMENT 55).
    48
    EXMODE=SQRTF(1, AMSQRD/GK2M* (VSQRD/GK2M-2./R)
    EXMODE=SQRTFIL.
    IF ((XPPRIM(1)-TTEST)*DELT) 11,11,49
    49 IF (ASYMPT) 51,50,51
    50 IF (EFOL-ABSF(EMONE)) SS,11,11
    51 IF(EMONE) 55,55,52
    53 IFICNNMODE-5,1 54,1,53,5
    53 IF (EXMODE-5.) 54,11,11
    CALL CONVIZ
    IF (ABSF(TRU)-2.2/SORTF(EXMODE)) 55,55,11
    55 ASYMPT = 0.0
    IMODE=-2
    555 CALL TESTTR
c
```

PART 8. COMES HERE WHEN ERROR TEST FAILED--BOTH STARTING AND RUN.
IF TWO CONSECUTIVE
56 ASSIGN I TO IBEGIN
56 ASSIGN 1 TO IB
57 DO $58 \mathrm{~J}=1$,NEQ
XPRIM(J,2) $=\mathrm{XPRIM}(\mathrm{J}, 1)$
$\operatorname{XPRIMB}(J, 2)=X P R I M B(J, 1)$
XPRIMB(J,2) $=$ XPRIMB
$\operatorname{XDOT}(J)=X D O I P M(J, 2)$
$\operatorname{XDOT}(J)=\operatorname{xDO}$
$\operatorname{XINC}(J)=0$.
STEPNO=5TEPNO+1.
$\mathrm{H} 2=\mathrm{DELT}$
DELT $=$ SIGNF (EXPF ($(E R L O G-A 2) / 5$.$) , DELT)$
A2 =A1
59 IF (FAIL-STEPGD) $60,61,60$
60 FAIL = STEPGO
GO TO IBEGIN, (11,1)
61 ASSIGN I TO IBEGIN
+ STEPGO - STEPMX) 62,62,45
C
C
C 67
PART 10. PRINT OUT THE ERROR INFO. IF EREF HAS A - SIGN. THEN RETURN.
67 IF (EREF) 68,72,72
68 WRITE OUTPUT TAPE 6,70
REWIND 4
OO $69 \mathrm{I}=1$, INDERR
READ TAPE 4, BEX
69 WRITE DUTPUY TAPE 6,71,BEX
REWIND 4
INOERR $=0$
70 FORMAT(7H1 STEP, $6 \mathrm{X}, 4 \mathrm{HTIME}, 6 \mathrm{X}, 4 \mathrm{HDELT}, 7 \mathrm{X}, 2 \mathrm{HAL}, 8 \mathrm{X}, 2 \mathrm{HE} 2,7 \mathrm{X}, 4 \mathrm{HMASS}, 6 \mathrm{~K}$,
$14 \mathrm{HE}, V \mathrm{X}, 4 \mathrm{X}, 8 \mathrm{HIMEGA}, V Y, 2 \mathrm{X}, 8 \mathrm{HNUOES}, V \mathrm{~V}, 3 \mathrm{X}, 6 \mathrm{HINCL}, \mathrm{X}, 5 \mathrm{X}, 4 \mathrm{HMA}, Y, 6 \mathrm{X}, 3 \mathrm{HP}, \mathrm{Z}$,
24x,1HK//1
1 FORMAT(F5.,1H+F3.,1P11G10.2,12)
2 RETURN
END
C THIS ROUTINE TAKES THE BODY LIST READ FROM CUBROUTINE ORDER AND SORTS THEM IN
THIS RDUTINE TAKES THE BODY LIST READ FROM CARDS AND SORTS THE
ORDER SO THAT THE DISTANCE FROM THE REFERENCE TO EACH BODY IS
ORDER SO THAT THE DISTANCE FROM THE REFERENCE TO
DEPENDENT UPON ALREADY COMPUTED DISTANCES ONLY.
ELLIPSE DATA ARE READ INTO A BLOCK OF 120 STORES RESERVEU FOR
TEN ELLIPSES. ONE ELLIPSE IS READ INTO A 12 STORE BLOCK.
TEN ELLIPSES. ONE ELLIPSE IS READ INTO A I2 STORE BLDCK.
THE SINES AND COSINES OF THE 3 ANGLES ARE COMPUTED AND STIRED
in the toata array along with the rest of the ellipse data.
a block is arranged as follows.
(1) = NAME OF BODY IN BCD, ONLY 6 CHARACTERS.
$(2)=$ NAME UF REFERENCE BODY IN BCD, SAME RESTRICTION.
$3)=$ MASS UF THE BODY IN SUN MASS UNITS.
4) = RADUIS INSIDE DF WHICH COORDINATES WILL BE TRANSLATED TO JHIS BODY.
5) $=$ SEMILATUS RECTUM IN ASTRONOMICAL UNITS.
6) $=$ ECCENTRICIIY OF THE ORBIT.
8) $=$ LONG ITUDE OF ASCENDING NODE.
$(7)=$ ARGUMENT OF PERIHELION.
$(9)=$ INCLINATION DF THE ORBIT.
$(10)=$ PERIGEE PASSAGE JULIAN DAY
$(11)=$ PERIGEE PASSAGE FRACTION OF DAY.
(12) $=$ PERIOD DF THE ELLIPSE IN MEAN SOLAR DAYS.
AMASS = MASS OF EACH BODY, SUN MASSES. DRDER OF PNAHE.
BMASS = SELECTED FROM AMASS. CORRESPONDS TO BNAME LIST.
BNAME = THE ORDERED LIST OF BCD BODY NAMES. CAN BE USED IN OUTPUT.COMMON.
BNAME = THE ORDERED LIST OF BCD BODY NAMES. CAN
BODYCD $=$ THE ORIGINAL BCD NAMES READ FRIM CARDS.
BCOY L $=$ THE LIST OF BCO BODY NAMES WITH THE REFERENCE BODY AT TUP.
$\begin{aligned} \text { BCOY L }= & \text { THE LIST OF BCD BOOY NAMES WITH THE REFERENC } \\ & \text { INITIALLY EQUAL TO BODY CARD LIST (BOOYCD). }\end{aligned}$
IBODY = ARRAY OF SUBSCRIPTS. WHEN A DISTANCE IS FOUND FROM EPHEMERIS, IT
MAY BE ADDED (OR SUBTRACTED) FROM THE BODY POSITIUN GIVEN BY
MAY BE ADDED IOR SUBTRACTED) FROM THE BODY POSITIUN GIVEN BY
KZERO = COUNJ OF ZERO REFERENCES. THERE MUST BE ONE AND ONLY ONE ZERO.
FROM LOCATION IN BNAME LIST. NOT IN COMMON.
MANE = ARRAY OF SUBSCRIPTS. INVERSE OF NAME. GIVES NEW LOCATION OF
ARRAY OF SUBSCRIPTS. INVERSE OF NAME. GIVES
NBODYS = COUNTED INTERNALY. TOTAL NUMBER OF BODYS.
MBODYS = COMPUTED INTERNALY. TOTAL NUMBER OF EPHEMERIDES (NBODYS-1).
MBODYS $=$ COMPUTED INTERNALY. TOTAL NUMBER OF EPHEMERIDES (NBODYS-I).
NAME $=$ ARRAY OF SUBSCRIPTS. GIVES DLD LOCATION OF NAMES IN BODYL
NAME $=$ ARRAY OF SUBSCRIPTS. GIVES DLD LOCATION OF NAMES IN BODYL
NEFMRS $=$ ARRAY OF SUBSCRIPTS. GIVES LOCATION OF BODY IN PNAME LIST
ARRAY OF SUBSCRIPTS. GIVES LOCATION OF BODY IN
IN TERMS OF THE EFMRS IIST. STOREO IN COMMON.
NREFER = ARRAY OF SUBSCRIPTS. LOCATES THE REFERENCE BODY IN GODYL.
ORUER OF THE ARRAY CORRESPONDS TO BODYL. NDT IN CGMMON.
NNREFR = ARRAY OF SUBSCRIPTS. LIKE NREFER BUT REFERS AND CORRESPUNDS TO
BNAME LIST. NOT IN COMMON.
PNAME = A PERMANENT LIST OF BCD BDDY NAMES. 1 WORD EACH 16 CHARACTERS
A PERMANENT LIST DF BCD BODY NAMES. 1 WORD EACH 16 CHARACTERS
MAXI. USED TO IDENTIFY MASS, REFERENCE NAMES, ETC. THE LIST IS
MAXI. USED TO IDENTIFY MASS, REFERENCE NAMES, ETC. THE LIST I
A MAXIMUM IF 30 NAMES. PRECISION
REFER $=A$ PERMANENT LIST DF BCD BODYS THAT ARE THE REFERENCES OF
A PERMANENT LIST OF BCD BODYS
DISIANCES GIVE
TO PNAME LIST.
COMMON C
DIMENSIDN A(600), 8(700), (14000),

1	AMASS	(30),	BMAS 5	(8),	BNAME	(8),
2	BODYL	(8),	EFMRS	(7),	I BODY	(8),
3	MANE	(8),	NAME	(8),	NEFMRS	(8),
3	NEFMRT	(8).	NNREFR	(8),	BODYCD	(8),
4	NREFER	(8),	PNAME	(30).	RBCRIT	(7),
5	RCRIT	(30),	REFER	(30).	TDATA	$(18,7)$,
6	TDEL	(7),	TIM	(7).	ELIPS	(120),
7	NDUD	(9),	XPRIM	(200)		


```
    C PART 5. TRACES OUT ..BODY TO REFERENCE.. RELATIONSHIP
    31 OD 34 KN = 1,NBODY
    DO 34 K = 1,NBODYS
    32 IF (NNREFR(K) - NAME(KN)) 34,33,34
    33 NAHE{KK)=KK
    34 CONTINUE
C
PART 6. INVERTS NAME TO MANE,STORES BNAME, EMASS, RBCRIT, AND A
                                    TEMPDRARY NEFMRS.
        00 35 K = 1,NBODYS
        N = NAME(K)
        MANE(N)=K
        NEF = NEFMRT(N)
        BNAME(K) = PNAME(NEF)
        BMASS(K) = AMASS(NEF)
        RBCRIT(K) = RCRIT(NEF)
        NEFMRS(K) = NEF
    35 CONTINUE
C
        PART 7. FINDS NNREFR REFERENCE FOR BNAME LIST, ALSO TEMP. IBODY
        DO 36 K = 1. NBODYS
        N= NAME(K)
        NRF = NREFER(N)
        NNREFR(K) = MANE(NRF)
    36 IBODY(K) = MANE(NRF)
C
        DORT B - FIN
    37 IF(NNREFR(K)) 24,40,38
    38 N = NNREFR(K
        IBODY(N) = -K
    39 CONTINUE
        IBOOY LIST IS COMPLETE.
        PART 9 * WRITES OUT EPHEMERIS LIST TO BE USED IN STORING DATA AND
    40 KK = 1
    DO 43 K=1,NBOUYS
    4 IF(NNREFR(K)) 42,43,42
    4 2 ~ E F M R S ( K K ) ~ = ~ 8 N A M E ( K )
        NEFMRS(KK) = NEFMRS(K)
        KK = KK +1
    4 3 \text { CONTINUE}
        NEFMRS(NBODYS) = 0
C PART 10. SAVES ELLIPSE DATA
            FILE = 0.
            IF (MBODYS) 430,480,43
    00 00 48 K=1,MbODYS
    44 1F(NEFMRS(K)-20) 47,47,45
    45 00 46 J=5,12
    L=(NEFMRS(K) - 21)* 12 +J
    46 TOATA{J-4,K) = ELIPS(L)
        DO 50 J=7,9
        = (NEFMRS(K)-21)*12+J
        IOATA(J+2,K) = SINF(ELIPS(L))
    50 TOATA(J+5,K)= COSF(ELIPS(LI)
        GO 10 48
            PART 10A. LDADS A FALSE (VERY EARLY) TAPE TIME TO FORCE TAPE
    T READING BY THE EPHMRS ROUTINE. FILE = O UNLESS TAPE IS USED.
        TDEL(K)=0
        IM(K) =2400000.5
        CONTINUE
C
PART 11. COMPUTE GRAVITATIONAL CONSTANTS. 1.9866 E+30 = KILOGRAMS/SUN MASS
    MON RATE AND ATMOSPHERE RADIUS
    IF ORIGIN BODY HAS AN ATMOSPHERE, SET ROTATION RATE AND ATMOSPHERE RADIUS
    POSITIDN THE EPHEMERIDES TAPE AT THE BEGINNING OF THE CORRECI EPHEMERIS
    gY MATCHING THE EPHEMERIS NUMBER READ FROM TAPE (FILE) WITH THE DESIRED
    EPHEMERIS NUMBER (IFILE).
    480 RESQRD = RE**2
        SQRDK = SQRUK1*AU**3/SPD**2
        GKZM = SQROK=(BMASS(1) + XPRIM(2)/1.9866 E30)
        GKM = SQRTF(GK2M)
        REVOLV = O.
        IF (ATMN-BNAME(1)) 51,49,51
    4 9 ~ R E V O L V ~ = ~ R D T A T E ~
        RATMDS = RATM
        RATMOS = RATM
    52 CALL BSFILEI3)
    3 READ TAPE 3, FILE
        IF (FILE-TFILE) 54,56,55
    54 CALL SKFILE(3)
        GO TO 53
    55 BACKSPACE 3
        GACKSPACE 3
        GO TO 52
C
    PART 12. WRITES THE BNAME LIST ON TAPE 6.
    56 IF (OUTPON) 58,59,58
    56 IF (OUTPOTP 58,59,58
    57 FORMAT (19HOREFERENCE BOOY IS AG;5X,23H PERTURBING BODIES ARE
        7(2x,A6))
    58 RETURN
    END
```


SUBRDUTINE DBLATE

C THIS SUBROUTINE COMPUTES THE OBLAJENESS ACCELERATIONS (OBLAT) DUE TO AN THIS SUBROUTINE COMPUTES THE OBLATENESS ACCELERATIONS IOBLATI DUE IO AN
AXIALLY SYMMETRIC EARTH. THE 2ND, 3RD, AND 4 TH SPHERICAL HARMONIC COEFF. AXIALLY SYMMETRIC EARTH. THE 2ND, 3RD, AND
ARE OBLATJ, OBLATH, AND DBLATD RESPECTIVELY.

COMMON C
c
DIMENSION A(600): B(700):C(4000): 1 RB(3), DoLAT(3)
c
c

$A A=R B(3) / R$
$A B=A A * A A$
If ($A B S F(A A)-1 . E-6) 1,1,2$
$\begin{array}{rl}1 & A A \\ A B & =0 \text {. }\end{array}$
$A C=R E S Q R D / R S Q R D$
$A O=G K 2 M / R S Q R O / R * A C$ $A E=$ OBLATJ.AD $A F=D B L A T H=A D=R E / R$ $A G=D B L A T D * A O * A C$ $A H=A E *(5 . A B-1)+.A F=(7 . A B-3) * A A+.A G *(6 . A B-9 . A B *=2-0.4285714286)$ OBLAT(1) $=A H$ सR (1) OBLAT(2) =AHERB(2) DBLAY(3) $=(A H-2 . A E+A G *(4 . A B-1.714285714)) * R B(3)-A F *(3 . A B-0.6)=R$
3 RETURN
END

```
ENTS AND RECTANGULAR COORDINATES ARE OUTPUTTED. IF THE OGJECT IS NOT WITH
    THIS IS THE RQUIINE WHICH FORMS THE BASIC DATA OUTPUT BOTH ORBIT ELEM
    IN AN ATMOSPHERE (PRESS=0, DNE LINE OF DATA IS DELETED. LIKEWISE
    ONLY THOSE PERTURBING BODIES PRESENT HAVE THEIR DISTANCES DUTPUTTED.
    CDMMON C
c.
\begin{tabular}{|c|c|c|c|c|}
\hline & NSION & Al600), & ). \(\mathrm{C}(4000)\), & \\
\hline 1 & R & (8), & ORBELS (6), & VATM (3), \\
\hline 2 & BNAME & (8), & RB(3,8), & DIRCOS(3,8), \\
\hline 3 & XPRIM & (200). & RAMC (5) & \\
\hline
\end{tabular}
6
```



```
c
DAYJ=(DTOFFJ-2.4E6) + TABLT
ALPHAL = ALPHAE57.29577951
REV = REVS +ARCTAN(-RB(2),-RB(1))/6.28318532+.5
16 CALL CONVTA(VX,AMC)
IMODE =IMODE
GO TO \((2,1,1)\), IMODE
1 CODE = GHRECTAN
18 CALL CONVT 2
GO 104
\(2003 \mathrm{~K}=1,6\)
ORBELSIK) \(=\) XPRIM(K+2) =5HORBIT
ARCTANIS
NTRU,COSTRU)
4 PSI = ATANF((RB(1)=VX+RE(2)=VY+RB(3)*VZ)/AM)57.2957795
IF (OUTPOT) 19,6,19
WRITE OUTPUT TAPE 6, IL,STEPGO, STEPND, ORBELS(I), ORBELS(2l, V,RII),B INAME (1), CODE, IMODE, XPRIM\{1), ORBELS(6), TRU, VX,RB(1), XPRIM(2), DAYJ,D 2RBELS(S), ORBELS(3), VY,RB(2), REV,ALPHAI,PSI, ORBELSi4),V2,RB\{3),H2
C
IF WITHIN AN ATMOSPHERE COMPUTE DRAG, LIFT, G, ETC., AND PRINT EXTRA LINE. 19 IF (PRESS) 5,7,5
\(5 \times I F T=Q * A R E A=C L\)
ORAG = O=AREA*CD
\(G=(P U S H-O R A G=C O S A L F+X I F T=S I N A L F) / X P R I M 12) / 9.80665\)
17 CALL CONVTI(VATM, RAMC)
PSIR \(=\) ATANF ( \((\) RH \((1)\) *VATM(1) +RB(2) *VATM(2) +RB(3)*VATM(3)//RAMC(4))* 157.2957795
IF (OUTPOT) 7,14.7
14 WRITE OUTPUT TAPE \(6,12, A L T, P S I R, D R A G, V Q, G, P U S H\)
```

C

DO $9 \mathrm{~J}=2$, NBUDY
DO $9 K=1,3$

- DIRCOS(K,J) $=-R B(K, J) / R(J)$

IF (OUTPOT) $10,15,10$
15 WRITE OUTPUI TAPE 6,13
1 (BNAME (J),R(J), OIRCOS(i, J), DIRCOS(2, J), DIRCOS (3, J), J=2,NBODYS)
10 RETURN
11 FORMATIGHOSIEP=F6., $2 \mathrm{H}+F 4 ., 3 \mathrm{X}$, $13 \mathrm{HECCENTRICITY=1PG15.8,7H} \mathrm{QMEGA} \mathrm{=G15}$ $1,8,4 \mathrm{H} \quad V=G 15.8,3 \mathrm{H} R=G 15.8,7 \mathrm{H}$ REFER=AG, $1 X, A 6,12 / 6 \mathrm{H}$ TIME=1PG14.7, 14 $2 H$ SEMILATUS R. $=G 15.8,7 H$ TRU $A=G 15.8 .4 H \quad V K=G 15.8,3 H \quad X=G 15.8,7 H$ RMAS $35=G 15.8 / 9 H$ JDAY $=240 P F 10.4,15 H \quad$ MEAN $A N O M A L Y=1 P G 15.8,7 H$ NODE $=G 15$. $48,4 \mathrm{H} \quad \mathrm{Y}=\mathrm{G} 15.8,3 \mathrm{H} \quad \mathrm{Y}=\mathrm{G} 15.8,7 \mathrm{H}$ REVS. $=\mathrm{G} 15.8 / 6 \mathrm{H} \quad$ ALFA=G14.7,14H PATH A 5NGLE=G15.8,7H INCL=G15.8.4H $V Z=G 15.8,3 H \quad Z=G 15.8,7 H \quad D E L T=G 15.8)$
12 FORMAT 6 H ALT. $=1 \mathrm{PG} 14.7,14 \mathrm{H}$ R PATH ANGLE $=\mathrm{G} 15.8,7 \mathrm{H}$ DRAG=G15.8,4H VR I=G15.8.3H G=G15.8.7H PUSH=G15.8)
13 FORMAT(2(1X,A6,3H R=1PG14.7,OP3F10.6.11X)) END

FUNCTION QUAD $(X, I C)$
THIS ROUTINE COMPUTES ANY VARIABLE, QUAO, AS A QUADRATIC FUNCTION OF X QUAD $=A+B X+C X X$. THERE MAY BE SEVERAL SETS OF COEFFIENTS, EACH SEY BELQNGING TU A PARTICULAR REGION OF X. THE COEFN ARRAY IS ARRANGED AS -
$\times 1, A 1, B 1, C 1, \times 2, A 2, B 2, C 2, X 3, A 3, B 3, C 3, X 4, \ldots \ldots \ldots \ldots \ldots .$.
HHERE Al,BI,C1 ARE THE COEFFIENTS TO BE USED FOR X BETWEEN XI AND XZ,ETC. ANO X 1 IS LESS THAN X2, X 2 IS LESS THAN X3, X 3 IS LESS THAN X4, ETC. IC IDENTIFIES WHICH DEPENDENT VARIABLE, QUAD, IS BEING SOUGHT. ICC(IC) DEFINE THE STARTING LOCATIONS IN THE COEFN ARRAY FOR VARIABLES X.

COMMON C
1 COEFN(290), ICC(5)

```
        EQUIVALENCE , (11)),(B O C (1111)),(COEFN,A (407)),
    2(ICC ,A (153))
```

 \(\mathrm{I}=\mathrm{ICC}(\mathrm{IC})\)
 1 IF (X-COEFN(I)) \(2,3,3\)
 \(2 \mathrm{I}=\mathrm{I}=4\)
 \(\operatorname{IF}(X-\operatorname{COEFN}(i+4)) 5,5,4\)
 \(41=I+4\)
 GO TO 3
 5 QUAD \(=\operatorname{COEFN}(I+1)+X *(\operatorname{COEFN}(I+2)+X * \operatorname{COEFN}(1+3))\)
 \(1 C C(I C)=1\)
 RETURN
 END
 SUBROUTINE STAGE
THIS ROUTINE IS CALLED TO PREPARE DATA FOR USE IN NBODY. STAGE DAJA IS TAKEN FROM PERMINENT STORES AND LOADED INTO WORKING STORES. STAGE DATA MAY BE SET ASIDE FOR LATER USE (IF DN NSAVE-NSTAGEI. WHEN IMODE IS 4 , CONVERSION FROM EARTH-SPHERICAL TO RECTANGULAR OR ORBIT ELEMENTS TAKES Place in tudes.

COMMON C
DIMENSION A(600), B(700), C(4000),
1 XPRIM(200), XPRIMB(200), TB(10), FLOW1(10), AEX1T1(10), SIMP1(10), 2AREA1(10), DELT1(10), IDENT(10), TABLE(200), RMASS1(10), D(600)

equivalence								
1 (A M C	1	11) , (AEXIT	, B		3)), (AEXIT			1031),
2IAREAL, A	1	113)), (AREA	, 8	1	6)), (8	, C		[1]),
3 (DELT), A	1	133)), (DELT	, B	1	1)), (0	, C		(11)1,
4 IDEL A	1	43)), (DELMAX	, A	1	191), (DONE	, B	$($	391),
StEREF , A	1	131), IERLOG	, B	1	17)), (EXITA	, B	1	39211,
GIFLOW, B	1	5)], (FLOW1	, A	1	83)), (IDENT	, A	1	123)1,
7IIMODE, A	1	1)], (LSTAGE	, A	1	38)), (MOUOUT		1	201),
8(NCASE, C	(1)], (NCASES		1	600)), (NSAVE	, C	1	4)1,
ginstage, A	1	3)),1PUSHO	, B	1	391)), (RMASSI		1	73)
EQUIVALENCE								
1/SIMP1, A	1	93)), (SIMP	, 8	1	2)), (TB	, A	1	6311,
2 (TABLE - C		1911)), (TKICK	, A	1	15)), (TMAX	, 8	1	4)1,
31TTOL, A	1	45)), (XPRIMB	, C		911) $)$ (XPRIM	, C	1	7111).
4 [RETURN, ${ }^{\text {B }}$		4001), (QUTPOT			3991)			

 PART O. SAVE INITIAL DATA IF DESIREO. LOAD STAGE DATA INTI WORKING
 STORAGE, ALLOW AUDITIONAL STAGE INPUT.
 IF (OEL) 100,99,100
 99 OEL = DELMAX-TKICK
 100 IF (NSAVE-NSTAGE) 103,101,103
 101 NCASES = NCASE
 DO 102 J=1,1100
 D(J) =A(J)
 IF (OUTPOT) 103,97,103
 WRITE OUTPUT TAPE 6,98,NSTAGE,NCASE
 98 FORMATI29H SAVED INITIAL DATA FOR STAGEI2,8H OF CASEI4,1H.I
 103 NSTAGE I NSIAGE
 THAX = XPRIM(1)+TB(NSTAGE)
 MPRIMBI2) =0
 XFRIM(2)
 117 XPRIM(2) = XPRIM(2)+RMASSI(NSTAGE)
 TO 119
 2)= RMASSI(NSTAGE)
 119 FLOW = FLOW1(NSTAGE)
 IMPT SIMINSTAGE)
 AREA = AREAL(NSIAGE)
 DELT = DELTI(NSTAGE)
 ID = IDENT(NSIAGE)
 CALL [NPUT (ID,C,TABLE]
 ERLOG = LDGF(ABSF(EREF))
 TTOL = 5E-8*ABSF(TMAX)+1E-8
 PUSHO = SIMP.FLOW*9.80665
 EXITA = AEXIT*100.
 MDDOUT = MOUDUT
 IF (DELT) 105,104,105
 DELT = TB(NSTAGE)/100.
 DELTI(NSTAGE) = DELT
 105 GO TO (109,106,106,109), MODOUT
 106 IF (DEL-DELMAX) 108,108,107
 107 DEL = MODF(UEL,OELMAX
 108 1F (DEL) 114,109,114
 114 DELT = MINIF(DELT,DEL
 109 IF (XABSF(IMODE)-4) 1,110,1
 110 CALL TUOES
 MMODE = XSIGNF(2,IMODE)
 2 CALL NBODY
 C
PART 9. COMES HERE FOR END OF SUB TRAJECTURY.
IF (DONE) 113,111,111
1 DONE = O.
IF (NSTAGE-LSTAGE) 112,115,115
112 NSTAGE = NSTAGE+1
GO TO 100
113 DONE FOO.
IF (RETURN) 103,116,100
116 RETURN
END
SUBROUTINE STEP
S SUBROUTINE STEP TESTS FUR THE END OF THE PROBLEM, COMPUTES STEP SIZE, AND
SUBRQUIINE STEP TESTS FUR THE END OF THE PROBLEM, COMPUTES STEP SIZE, AND
CONTROLS OUANIITY OF OUTPUT DATA. END OF PROBLEM OCCURS IF TIME = TMAX, (TGOP
PINGGON A DLPENUENT VARIABLE. THE TEST FOR SIOPPING AT XLDOK IS NOT MADE
PING ON ANTL CILUUKSW) IS GREAIER THAN SWLODK. CONTRGL UN QUANTITY UF OUTPUT IS
MODOUT=1 UUTPUT EVERY NTH STEP(N=STEPS) UNTIL TIME = TMIN, THEN
GO TO MODE 2.
2 OUTPUT AT INTERVALS OF DELMAX UNTIL TIME = TMAX. THLN
GO TO MODE 4
4 OUTPUT EVERY NTH STEP UNTIL TIME = TMAX.
COMMON C
C DIMENSION A(600), B(700), C(4000),
1 XPRIM(200), DELTI (10)

PART 1. TEST FOR END DF THE PROBLEM {MAXIMUM PROBLEM IIME OR MAXImUM
STEPGO = NTEPER OF STEPSI.
STEPGO = STEPGD + 1.
OUT = OUTPOT
IF (ABSF(TMAX-XPRIM(1))-TTOL) 1,1,3
1 DONE = 1.0
2 CALK OUTPOT
1F (OUTPOT) 26,1111,26
111 WRITE OUTPUI TAPE 6,2,NSTAGE
2 FDRMATIGHOSIAGEI2,IIH COMPLETED.//1
GO TO 26
GO TO 26 (STEPGO+STEPNO-STEPMX) 7,4,4
3 IF ISTEPGO+
WRITE OUTPUT TAPE %,5,STEPMX
FDRMAT (22HOSTEPGO+SIEPNO=STEPMX=F6.)
CALL EXIT
C

```
```

C PART 2. COMPUTE STEP SIZE (UELTI AND CONTROL OUTPUT.
N=1
A3 = (A2-A1)*RATIO+AL
AA = (ERLOG-A3)/5
IF ((ABSF(AA)-88.028)=ABSF(SW!TCH)) 8,8,60
8 OELT = SIGNF(EXPF(AA),DELT)
IF (DELT/H2-3.) 10,10,9
DELT = 3.*HL
10 MODOUT = MOUOU
GO TO (11,1),13,21),MODOUT
1 IF(DELT*(XPRIM(1) + 3.*DELT-TMIN)) 21,12,12
12 MODOUT = 2
DEL = TMIN - XPRIM(1)
GO TO 16
13 IF(DELT (XPRIM(1) - TMIN)) 15,15,14
14 MODOUT = 4
MODOUT =
DEL = DEL-H2
16 SPACES = INIF(|DEL/DELT)+SIGNF(.9,(DEL/DELT)))
17 IF(SPACES) 20, 18,20
18 CALL OUTPUI
N=2
DEL = DELMAX
IF (ABSF(DEL) - ABSF(DELT)) 19,16,16
19 DELJ = SIGNF(DEL,DELT)
GO TO 18
20 DELT = OEL/SPACES
G0 TO }2
21 IF (MODF(SIEPGO,STEPS)\ 23,22,23
2 2 CALL OUTPUT
N=2
C
PARI. 3. SEARCH FOR C(LOOKX) = XLDOK UNLESS LOOKX=0.
23 IF(LOOK X) 27,42,27
27 LOOK x = LOUK
LOOK SW = LOOK SW
OUTPOT = 1.
GO TO (44,43),N
4 4 CALL OUTPUT
45 IF(SWITCH) 32,28,33
28 IFISW LOOK - C(LOOK SW)) 29,29,42
29 XTOL1 = XTOL*ABSF(XLOOK)
IF (XIOL1) 11,30,31
30 XTOL1 = XTOL
SWITCH = -1
GO TO 4
32 SWITCH = 1
ASSIGN 43 TU MODE
OVER = O
F=0.
T=0.
33 SLOPE = (C(LOOKX)-OLDX)/H2
GO TO MODE, (43,35)
3 IF(SLOPE (C(LOOK X) - X LOOK)) 350,41,41
50 ASSIGN 35 IG MODE
35 IF(ABSF(C(LGOK X)- X LOOK) - XTOLI) 36,36,37
60 T=1.
36 1F (OUT) 63,46,63
6 OUTPOT = O.
CALL OUTPUT
63 1F (T) 61,47,61
| IF (OUT) 62,51,6
SI WRITE OUIPUT TAPE 6,64, LOOKX,C(LOOKXI,H2,LODKX,SLOPE
F4 FORMAT (3HOC (}54,4H)=1PG15.8,31H CONVERGENCE TROUBLE. DELT =
GG15.8,14H SLOPE DF C{I4,13H} VS. TIME = G15.8%%)
1G15.8,14H
GO TO 62
47 IF (OUT) 62,50,62
50 WRITE OUTPUI IAPE 6,48,LOOK X, C(LODK X)
48 FORMAT(3HOC(14,2H)=1PG15.8//)
\$2 LOOKX = 0
TOLL = 0
SIGNAL = 1.
SWITCH = O.
DONE = END
NSTART = 0
DELT = DELTIINSTAGE
CALL INPUT(INLOOK,C,TABLE)
IF (DONE) 110,42,110
110 IF (DUT) 26,111,26
\ SIGN = CHECKF(OLOX,XLOOK,C(LOOK X))
IF(SIGN) 40,40,38
OVER = 1.
GO TO 400
IF (OVER) 400,401,400
XGUESS = C(LOOKX)+SLOPE*OELT
IF (CHECKF(C(LOOKX), XLOOK,XGUESS)) 402,41,41
F=F+1.
IF (F-7.) 400,400,403
403 SLOPE = SLOPE/F
400 IF (SLOPE) 404,60,404
404 DELI = SIGNF(ABSF(XLOOK-C(LOOKX))/SLDPE,SIGN*H2)
4 OLDX = C(LOOK X)
42 IF (ABSF{TMAX-XPRIMIIJ)-ABSF(DELT)) 25,26,26
25 DELT = TMAX-XPRIMII
GO TO (26,24,24,26),MODOUT
4 DEL = DEL-DELT
26 DUTPOT = OUT
RETURN
END

```

\section*{SUBROUTINE STDATA}

c
```

OAD THE REMAINING STANOARD DATA
AK(1)=0.5
AK(2)=0.5
AMASS(1)=0 1,0
MASS{1)=1.0
MASS(2) = 1.0/6120000.0
MASS(3) = 1.0/408645.0
MASS(4) = 1.0/332951.3
MASS(5) = 1.0/3088000.0
AMASS(6) = 1.0/1047.39
AMASS(7) = 1.0/3500.0
MMASS(8) = 1.0/22869.0
MMASS(9) = 1.0/118889.0
AMASS(10)=1.0/400000.0
AMASS(11) =AMASS(4)/81.335
AMASS(12)=AMASS(4)+ AMASS(11)
AU = 1.49599 Ell
AW(1)=1.16.
AW(2)=AW(1)+AW(1)
AW(4)=AW(1)
AW(3)=1.-(AW(2)+(AW(1))+AW(4)))
BODYCD = PNAME(4)
COEFN(1) = -1E2O
COEFN(189) = 1E20
ONSTU = 1.0 E-6
CONSU = 1E-6
TOL = 0.01
DTOFFJ = 244.E4
EREF=1E-6
RLIMT = 3E-6
ASFAC = 20.064881
CC(1) =185
[CC(2) =185
CC(3) = 185
CC(4) = 185
MODE = 1
IND(1)=2
IND(2)=3
ND(3)=1
DOKSW=711
MODOUT = 4
NEQ=8
NSTAGE =
OBLATJ = 1.62345 E-3
OBLATH=-5.75 E-6
OBLATD = 7.875 E-6
MBLATD =7.875 E-6
RCRIT(1) =1.0 E+20
RCRIT(2)}=1.0\textrm{E}+
RCRIJ(3)}=6.14\textrm{E}+
RCRIT(4) = 9.25 E+8
RCRIT(5) = 5.78 E+8
RCRIT(6) = 4.81 E+10
RCRIT(7) = 5.46 E+10
RCRIT(8)}=5.17EE+1
RCRIT(9) =8.61 E+10
RCRIT(10) =3.81 E+1
RCRITIIII =1.60 E+8
SPD = 86400.
SQRDK1 = 2.9591220B3 E-4
TEPMX= 100.0
TEPS = 1.
FOLE =1.0
TOF(1) = 1.0
XPRIM(2) = RMASS111)
XTOL = 5E-8
TITE OUTPUT TAPE 6,3
3 FORMAT (15HOSTANDARD DATA.)
RETURN
END

```

\section*{SUBROUTINE TESTTR}

SUBRDUTINE TESITR MAY BE CALLED FOR ONE OF THO REASONS, IL TO TEST FOR AND POSSIBLY TRANSLATE THE ORIGIN (HHEN IMODE IS + I OR (2) TO CHANGE THE VARIABLES OF INTEGRATION (WHEN IMODE IS -). A TRANSLATION OF THE URIGIN OCCURS WHEN THE OBJECT MOVES INTO A SPHERE OF INFLUENCE WHICH IS SMALLER than any others it may also be in. hhen this happens, the name of the new ORIGIN IS MOVED TO THE BEGINNING DF THE BNAME LIST AND GRDER IS CALLED IO REORDER THE BNAME LIST.

COMMON C
DIMENSION A(600), B(700). C(4000)
1 XPRIM( 100,2\(), \operatorname{XPRIMB}(100,2), X W H O L E(6), \operatorname{VEFM}(3,8), \operatorname{VX}(3)\),
\begin{tabular}{|c|c|c|c|c|}
\hline equivalence & & & & \\
\hline 1 (A , C & (11) 1 (AMC - \({ }^{\text {(1) }}\) & \(t\) & 87) ), (ASYMPT, A & 7) \({ }^{\text {1 }}\) \\
\hline 2 (B - C & (1111)), (BMASS - \({ }^{\text {( }}\) & 1 &  & ( 122) \\
\hline 3(CHAMP , B & 25)),(DELT, B & 1 & 1)).(GK2M , B & 36)) \\
\hline 41 MMODE , A & 1) \({ }^{\text {, ( }}\) NBODYS, B & 1 & 41) ), (ORBELS, 8 & 1161), \\
\hline 5(R8CRIT, B & 145)), (RB , B & 1 & 193)),(REVS , A & 48) \({ }^{\text {\% }}\) \\
\hline 61 R , B &  & 1 & 35)), (TABLE , C & (1911)], \\
\hline 7ITMAX , B & 4) ), (TRSFER, B & 1 & 8)), (TRU -B & ( 40)), \\
\hline BIITEST ,A & ( 54)), (VEFM © \({ }^{\text {( }}\) & 1 & 241) ), (vx B & ( 921), \\
\hline 91 XPRIM , C & ( 711) \({ }^{\text {( }}\) (XPRIMB, C & 1 & 911) \({ }^{\text {(1) }}\) (XWHOLE, B & (110) \\
\hline EQUIVALENCE & & & & \\
\hline 1 IOUTPOT, B & ( 3991) & & & \\
\hline
\end{tabular}

IMODE \(=\) IMOUE
IF (IMODE) 12,12,1
IF IMODE IS +, TEST FOR TRANSLATION OF THE ORIGIN.
1 CHAMP \(=1 . E+30\)
00 \(4, J B=1\), NJODYS
IF (R(JB)-RUCRIT(JB)) 2,4,4
2 IF (CHAMP-R
CHAMP = RECRIT(JB)
NCHAMP \(=\)
4 CONTINUE
IF (NCHAMP-1) 26.26.5
5 TRSFER \(=1.0\)
8 BTEMP = BNAME(1)
BNAME(1) = ONAME(NCHAMP)
BNAME (NCHAMP) = BTEMP
TTEST \(=0\).
REVS \(=0\).
IF (OUTPOT) \(6,9,6\)
9 WRITE DUTPUT TAPE 6, 10, BNAME (NCHAMP), BNAME (1)
10 FORMAT \((28 H O Q R I G I N\) IS TRANSLATING FRGM AG,4H TO AG)
6 CALL EPHMRS
\(0011 K=1,3\)
VX(K)
RBRIM(K+2, \(=\) RBI \()=V X(K)\)
XPRIM(K+2,1) \(=V X(K)\)
XPRIM(K+5, 1\()=R B(K)\)
\(\begin{aligned} \operatorname{XPRIMB}(K+2,1) & =0 . \\ \text { XPRIMB }(K+5,1) & =0 .\end{aligned}\)
XPRRIMB \((K+5,1)=\)
XWHOLE \((K)=V X(K)\)
11 XWHDLE \((K+3)=\) RB(K)
GO IO 20
C
C
IF IMODE IS -, CHANGE THE VARIABLES DF INTEGRATION.
12 DO \(13 \mathrm{~K}=1,3\)
XPRIM(K+2,1)=XWHOLE(K)
XPRIH \((K+5,1)=\) XWHOLE \((K+3)\)
\(X P R I M B(K+2,1)=0\).
XPRIMB (K+5, 1) \(=0\).
\(\begin{aligned} V X(K) & =X W H O L E(K) \\ R B(K) & =X W H U L E(K+3\end{aligned}\)
13 RB(K) \(=\) XWHULE(K 3 )
CODE \(=5\) HORUIT
1 MODE \(=1\)
GOTO 18
15 IMODE \(=3\)
GO TO 17
MODE
17 CDDE \(=6\) GRECTAN
18 NCHAMP \(=1\)
IF (OUTPOT) \(20,7,20\)
7 WRITE QUTPUT TAPE 6,19, CODE
19 FQRMAT ( 33 HOINTEGRATION MODE IS CHANGING TO AG)
20 GO TO (21,26,26), IMODE
21 CALL CONVTIIVX,AMCI
GK2M \(=\) SQRDK \(+\{B M A S S(N C H A M P)+X P R I M(2,1) / 1.9866 E+30)\)
30 CALL CONVT?
IF ORIGIN TRANSLATION CAUSES PATH TO LIE NEAR AN ASYMPTOTE, CHANGE INTEGRATION VARIABLES TO RECTANGULAR IF THEY ARE ORBIT ELEMENTS.
IF (ORBELS(1)-1-1 24,24,22
22 IF (ABSF(TRU)-2.3/SQRTFIORBELS(11)) 24,24,23
23 ASYMPT \(=1.0\)
GO TO 15
24 OO \(25 \mathrm{~J}=1,6\)
25 XPRIM( \(J+2,1)=\) ORBELS(J)
26 IF (TRSFER) 27,28,27
27 CALL INPUT (101,C,TABLEJ
29 CALL ORDER
28 REIURN
END

THIS ROUTINE COMPUTES \(X, Y, 2\) THRUST ACCELERATIONS. THE THRUST VECTOR IS THIS ROUTINE COMPUTES X, Y, 2 THRUST ACGELERATIONS. THE THRUST VECTOR IS
ASSUMED COINCIDENT WITH THE LONGITUNDINAL AXIS OF THE VEHICLE, WHICH IS ASSUMED COINCIDENT WITH THE LONGITUNDINAL AXIS OF THE VEHICLE, WHICH IS
ORIENTED TO THE RELATIVE WIND VELOCITY BY THE ANGLE OF ATTACK (ALPHA) AND ORIENIED TO THE RELATIVE WIND VELOCITY BY THE ANGLE OF ATIACK (ALPMA AND
IHE ROLL ANGLE IBETAI. ALPHA IS ASSUMED TO BE A QUADRATIC FUNCTION UF TIME IHE ROLL ANGLE IBETAI. ALPHA IS ASSUMED
WHEREAS BETA IS THE EARTHS ROTATIUN RATE IN RADIANS/SEC (7.29211585E-5) AND THE REVOLV IS THE EARTHS ROTATIUN RATE IN RADIANS/SEC 17.292115
FACTOR \(8589934592 .=2 * * 33\) IS REMOVED TO PREVENT DVERFLOW.

COMMON C
DIMENSION A(600), B(700), C(4000),
1 FORCE(3), PAR(3), VATM(3), P(3), IND(3), RAMC(5),RB(3), X(100)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{EQUI VALENCE} \\
\hline 1(A , C & 1 & 11)), (AEXIJ & , B & ! & 3)), (ALPHA & , A & 1 & 4911, \\
\hline \(218 \quad 1 \mathrm{C}\) & & 1111), (BETA & , A & 1 & 50) , (CLSALF & , \(B\) & 1 & 4811. \\
\hline 3 (COSBET, 8 & 1 & 49) I, (EXITA & , 8 & ( & 392)), (FLOW & , B & 1 & 51), \\
\hline 4/FORCE B & 1 & 66) 1/ (1ND & , A & ! & 60) ), (PAR & , B & 1 & 601), \\
\hline 51PMAGN, \({ }^{\text {S }}\) & 1 & 50)):(PRESS & , 8 & 1 & 33)), (P & , B & I & 841), \\
\hline 61PUSHO, B & 1 & 3911). (PUSH & - A & 1 & 166)), (RAMC & , 8 & 1 & 3931), \\
\hline 71RATMOS, B & 1 & 23) ), (R8 & , 8 & 1 & 193)), (REVOLV & , 8 & 1 & 211, \\
\hline 8 (R P & 1 & 2021). (RSQRD & , B & 1 & 45)), (SIMP & , B & & 21), \\
\hline 9 ISINALF, 8 & 1 & \multicolumn{2}{|l|}{461), (SINBET, \(B\)} & 1 & 47)I. (VATM & , 8 & 1 & 9711 \\
\hline EQUIVALENCE & & & & & & & & \\
\hline livo , B & 1 & \multicolumn{2}{|l|}{100)), (VQSQRD, \({ }^{\text {a }}\)} & 1 & 101) ), (Vx & , B & 1 & 921), \\
\hline 2IVY P & 1 & 931), (V2 & , 8 & 1 & 94) 1, (X & , B & & 40111 \\
\hline
\end{tabular}

SINBET \(=\) SINF(BETA/57.2957795)
COSBET \(=\) COSF(BETA/57.2957795)
VATM (1) \(=V X+\) REVOLVFRB(2)
\(\operatorname{VATM}(2)=V Y-R E V O L V * R B(1)\)
\(\operatorname{VATM}(3)=V 2\)
3 CALL CONVTI(VATM,RAMC)
4 ALPHA \(=\) QUAD (X11), 1)/57.2957795
SINALF \(=S I N F(A L P H A)\)
\(C O S A L F=C O S F(A L P H A)\)
001 J1=1,3
\(\mathrm{J} 2=1 \mathrm{NO}(\mathrm{Jl})\)
\(j 3=I N D(J 2)\)
P(Jl) \(=(\) VAIM (J2)*RAMC(J3)-VATM(J3)*RAMC(J21)/8589934592.
PMAGN \(=\operatorname{SQRTF}(P(1) * P(1)+P(2) * P(2)+P(3) * P(3))\)
PUSH = PUSHO-EXITA-PRESS
PUSHA \(=\) PUSHOEXITAEPRES
R4 \(=\) SINBET/VQ
R4 \(=\) SINBET/VQ
RS
DO \(2 \mathrm{JI=1}\),
\(J 2=1\) ND
J3 = ND
PAR(J1) \(=P(J 2)=\) VATM(J3)-P(J3) \(-V A T M(J 2)\)
2 FDRCE(Jl) = TUPMAG*(SINALF*(COSBET*P(Jl)+R4*PAR(J1))-R5*(P(J2)*
1 RETURN RAMC(J3)-P(J3) RAMC(J21))
END

\section*{SUBROUTINE TUDES}

IHIS ROUTINE COMPUTES THE RECTANGULAR POSITION AND VELOCITY COMPONENTS WITH RESPECT TO THE EARTH MEAN EQUINOX AND EQUAIOR OF 1950.0 FROM THE LATITUDE, LUNGITUDE, AZIMUTH, ELEVATION, ALIITUOE, TOTAL VELUCITY, AND IIME. ALSO, WHEN TKICK DOES NOT EQUAL ZERD, A NON-DRAG VERIICAL STEP OF SIZE TKICK IS MADE IN CLOSED FORM (STATEMENTS 2 TO 4). THE INTEGRATION WILL THEN BEGIN AT TIME EQUAL TO TIME+TKICK WITH THE ORIENTATION SPECIFIED BY THE ABOVE FOUR ANGLES AND THE COMPUTED VALUES OF ALTITUDE AND VELOCITY. FOR THE CLOSED FORM APPROXIMATION, A CONSTANT FLOW RATE (FLOW), VACUUM SPECIFIC IMPULSE ISIMP) AND ENGINE EXIT AREA (AEXIT) ARE ASSUMED KNOWN. the atmospheric pressure is taken to be the sea level value.

COMMON C
DIMENSION A(600), B(700), C(4000),
1 SINA(4), COSA(4), ANGLEB(4), XPRIM(200)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1(A), C & 1 & 11) , (AEXIT & , B & I & 3) ), (ALT & - \(A\) & 1 & 4)1, \\
\hline \(2(A Z), A\) & 1 & 351), 18 & , C & & 111) , (DTOFFJ & , \(A\) & 1 & 23)1, \\
\hline 3 (ELEV A & 1 & 36) ), (FLOW & -B & 1 & 5)], (GK2M & , B & 1 & 36)1, \\
\hline 4 (LAT A 4 & , & 33) 1 , (LONG & , A & 1 & 34) , (OBLATJ & & 1 & 261), \\
\hline 5 COBLATN:A & 1 & 40) ), (RE & , A & 1 & 25)], (RESQRD & , B & 1 & 7)1, \\
\hline GIROTATE,A & 1 & 39) ), (SIMP & , B & 1 & 2)), (SPD & , A & 1 & 44)1, \\
\hline 7ISTEPGO, \({ }^{\text {a }}\) & 1 & 41) ). (STEPNO & , A & 1 & 42) ) (TKICK & , A & 1 & 151), \\
\hline 8ITOFFT, A & 1 & 24)), (VEL & , A & , & 371), (XPRIM & , C & 1 & 711), \\
\hline 9IOUTPOT. B & & 3991) & & & & & & \\
\hline Equivalence & IGLA & (t,LAT), 1 QLON & ,, L & & & & & \\
\hline
\end{tabular}
```

 ALTI = O.
 OELI =0.
 DEL = 0.
 ASSIGN I TO NGO
 DAYS = DIOFFJ - 2433282.5
 GREEN = MOUF(100.0755426+.9856473460AYS+2.9015E-13DAYS**2
 +7.29211585E-5*(TOFFT*SPU+XPRIM(1))*57.2957795,360.)
 SINA(1) = SINF(QLAT/57.2957795)
 IF (OBLATN) 102,101,102
 101 RADIUS = RE + ALT
GO TO 8
LO2 RADIUS=6356783.28/SQRTF(.9933065783+.006693421685*SINA(1)**2)+ALT
GO TO B
IXPRIM(6)= COSA(2)*COSA(1)*RADIUS
XPRIM(7)= SINA(2)*COSA(1)*RADIUS
XPRIM(8) = SINA(1)*RAOIUS
RMASSO = XPRIM(2)
XPRIM(2) = XPRIM(Z)-FLOW*TKICK
XPRIM(2) \# XPRIM(2)-
11 WRITE DUTPUT TAPE 6,3,STEPGO,STEPNO,LAT,LONG,AZI, ELEV,ALT,XPRIMI
11),VEL,RMASSO, (XPRIM(J),J=6;8)
11),VEL,RMASSO, (XPRIM(J);J=6,8)
FORMATIGHOSTEP=F5., 2H +F4.,4X,6H LAT.=1PGL5.8,7H LONG. =G15.8,6H AL
1I. =G15.8,7H ELEV.=G15.8,6H ALT. =G15.8/6H TIME=G15.8,6H VLL.=G15.8,
67H RMASS=G15.8,4X,2HX=G15.8,5X,2HY=G15.8,4X,2HZ=G15.8)
12 IF (TKICK) <,50,2
BI = LOGF(RMASSOIXPRKICK
BI = LOGF(RMASSO/XPRIM(2))
SIMPSL = SIMP-AEXIT/FLOW*10332.275
VELI = VEL+SIMPSL*9.80665*B1-G*TKICK
ALT1 = TKICK*(VEL-G*TKICK/2.+9.80665*SIMPSL*(L.-BI*XPRIM(2)/
4 RADIUS = RAUIUSSMM(2)|l)
RADIUS = RANIUS + ALTI
GREEN = GREEN + 7.29211585E-5*TK1CK*57.2957795
ASSIGN 5 TO NGO
GO TO 8
5 XPRIM(6)= COSA(2)*COSA(1)*RADIUS
XPRIM(7) = SINA(2)*COSA(1)*RADIUS
XPRIM(8)= SINA(1)*RADIUS
50 [F (DBLATN) 6,7,6
6 DEL1 = ATANF(IC2-1.)/(C3-1.)*SINA(1)/COSA(1))*57.2957795-QLAT
7 DEL2 = RADIUS/G*SINA(1)*COSA(1)*ROTATE*ROTATE*57.29577951
DEL = DEL1 + DEL2
ASSIGN 10 TO NGD
8 ANGLEB(1) = QLAT + DEL
ANGLEB(2) = QLONG + GREEN
ANGLEB(3)=AZI
ANGLEB(4) = ELEV
DO 9 I=1,4
SINA(I)=SINF(ANGLEB(I)/57.2957795)
9 COSA(I) = COSF(ANGLEB(1)/57.2957795)
C1 = 5**RESURD/RADIUS/RADIUS*DBLATJ
C2 = Cl*(SINA{1)*SINA(1)-.66)
C3 = C1\&(SINA(1):SINA(1)-.2)
G = GK2M/RAUIUS/RADIUS
GO TO NGO, (1,5,10)
10 cosi= COSA(1)*SINA(4)-COSA(4)*COSA(3)*SINA(1)
COS1 = COSA(1)*SINA(4)
XPRIM(3)=VELI*(COSI*COSA(2)-COS2*SINA(2))-XPRIM(7)*ROIATE
XPRIM(3)=VELI*(COSI*COSA(2)-COS2*SINA(2))-XPRIMM(7)*ROIATE
MPRIM(4)= VELI*(COSI*SINA(2)+CDS2*COSA(2))+XPRIM(6)*ROTAT
RETURN
END
SUBROUTINE TAPE
SUBROUTINE TAPE USES THE MASTER MERGED EPHEMERIDES TAPE (TAPE 9 AT LEWIS)
TO COMPILE A WORKING EPHEMERIS TAPE (TAPE 3 AT LEWIS) WHICH CONTAINS ONLY
THAT DAIA NEEDED AT EXECUTION TIME. THIS MINIMIZES TAPE MANOLING DURING
EXECUIION. 2 EPHEMERIS FILES ARE ON TAPE 9, FIRST FILE HAS DATA ANO IS
IDENTIFIED SY THE SECOND WORD OF EACH }254\mathrm{ WORD RECORD IFIRST WORD IS THE
DUMMY FORIRAN COMPATIBLE WORD, SECOND HORD=2I. THE SECOND FILE IS ONLY 2
WOROS LONG, FIRST WORD IS FORTRAN COMPATIBIE, SECOND WDRD=3I.
MASTER FILE 1 -- PLANETS IEXCEPT MERCURY AND'EARTHI, SUN, MOUN, AND
EARTH-MODN BARYCENTER FROM SEPT.25, 1960 TO ABGUT 2000.
EACH EPHEMERIS COMPILED REQUIRES A SET OF INPUT 300 DATA. THE FIRSI PIECL
OF DATA WRIJTEN ON A FILE IS THE FILE IDENTIFICATION NUMBER, FILE. EACH
FILE IS NUMBEREU CONSECUIIVELY SIARTING WITH FILE=1. SINCE MUUN DATA IS IN
TERMS OF EAKTH RADII, THE CONVERSION OF MOON DATA TO A.U. IS MADE BEFORE
WRITING ON TAPE 3. THE COMMON USED IN SUBROUTINE TAPE IS LOCAL AND ALE
BUT TAPE3 IS CLEARED BY A FINAL CLEARING LOOP.
FUNCTION COMPARF(A,B) IS EQUIVALENT TO (A-B) BUT WILL NOT OVERFLOW.
NORMAL INPUT - ELIST, TBEGIN, TEND, TAPE3
ELIST- THE BCD LIST OF EPHEMERIS DATA NAMES TO BE PLACED UN
TAPE 3. THE NAMES ARE READ FROM CARDS, AND IS USED TO
MAKE THE tMAKE LIST. ELIST IS NOT CHANGED IN STORAGE UNIIL
THE FINAL CLEAR FOR THIS SUBRDUTINE.
TMAKE- THE LIST OF EPHEMERIS NAMES WITH DUPLICATES DROPPED AND
ZERO SPACES CLOSED IN. AS THE EPHEMERIOES ARE FINISHED THE
NAMES ARE ERRASED FROM THIS LIST.
TMADE- LIKE TMAKE BUT IS HELD FOR DUTPUT.
TBEGIN- THE BEGINNING DATE EXPRESSED AS A JULIAN DAY.
TBEGIN- THE BEGINNING DATE EXPRESSEO AS A JUL
TEND- ENDING DATE EXPRESSED AS A JULIAN DAY.
IS USED TO OECIDE WHICH OATA ARE TO BE ENTERED DOUBLE. THE
IS USED TO OECIDE WHICH OATA ARE TO BE ENTERED DOUBLE. THE
DOUOLE ENTRIES PERMIT FASTER OPERATION IF REVERSAL OF
INTEGRATION IS REQUIRED FOR ANY REASON.
EDATE- JULIAN ENDING DATE FOR THE MASTER EPHEMERIS.
EDATE- JULIAN ENDING DATE F
COMMON C
c

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{OIMENSION} \\
\hline 1 & C & (700), & tmake & (12), & LIST & (30), \\
\hline 2 & EDATE & (12). & INTVAL & (30). & KTAG & (121, \\
\hline 3 & ELIST & (11). & TMADE & (12), & INTVA & (2). \\
\hline 4 & PNAME & (30), & TDATUM & (252), & DATUMT & (21, 12) \\
\hline
\end{tabular}

\section*{EQUIVALENCE \\ REHIND 3 \\ DO \(1 \quad K=1,4000\) \\ \(1 C(K)=0.0\)}

11 TAPE3,Cl 2) , (ERTOAU,CI 31), ( KTAG,C( 41\(),(\) FILE,C( 16)), \(2(\) ELIST,C( 17)), (TBEGIN,C( 29)), ( TEND,C( 30)), ( PNAME,C( 31)),


        THE FOLLOWING NH StATEMENTS LOAO THE BODY NAMES INTD THE MACHINE
        NOTE. THE EARTH IS NOT IN THIS LIST INO EPHEMERIS FOR EARTH.I
        PNAME (1) \(=3\) HSUN
        PNAME(2) = 6HMERCUR
        NAME(3) \(=\) 5HVENUS
        NAME 4 ) \(=4\) HMARS
        PNAME(5) \(=6\) HJUPITE
        NAME (6) \(=\) GHSATURN
        PNAME (7) \(=\) GHURANUS
        PNAME (8) \(=6\) HNEPTUN
        PNAME(9) \(=5\) HPLUTU
        PNAME \(\{10\}=4\) HMODN
        PNAME(11)= 6HEARTHM
        PART 2. SET UP JULIAN DATES ENDING EACH EPHEMERIS.
        EDATE (1) \(=2451872.5\)
EDATE (3)
        11/24/00
        10/31/00
        EDATE(4) \(=2451848\).
        EDATE \((5)=2473520.5\)
        EDATE \((6)=2473520.5\)
        EDATE(7) \(=2473520.5\)
        EDATE \((8)=2473520.5\)
        EDATE \((8)=2473520.5\)
EDATE 9\()=2473520.5\)
        EDATE \((9)=2473520.5\)
EDATE \((10)=2440916.5\)
        EDATE 10\()=2440916.5\)
EDATE \(111=2451848.5\)
        INTVA \(=30000\)
        NTVA \(=3000\)
        NJVAL (1) \(=8\)
        INTVAL(2) \(=5\)
        NIVAL(3) \(=15\)
        NNTVAL \((5)=340\)
        NTVAL \((6)=825\)
        NTVAL \((7)=121\)
        NTVAL \((8)=1172\)
        NTVAL \(191=1101\)
        NIVAL \(101=2\)
        NTVAL \(=2\)
        FILE \(=1\)
        FILE \(=1\)
        RTOAU \(=4.28546512 \mathrm{E}-5\)
    \(2 \begin{aligned} & 2 \mathrm{MDON}= \\ & L I=1\end{aligned}\)
\(c\)
    8 CALL INPUT \((300, C, L I S T)\)
        IF (TAPE3) 63,3,83
    3 IF (FILE-1,) 20,10,20
    10 CALL SKFILE \((9,2)\)
        part 3. tape is to be made so move ephemeris list to tmake ano
        to tMade ifor outputi, Cancel any zero or duplicate names.
    20 KOUNT \(=1\)
        DO \(6 \mathrm{~K}=1,1\)
        TMAKE(K) \(=0\).
        \(\begin{aligned} \operatorname{TMADE}(K) & =0 .\end{aligned}\)
    4 DO \(5 \mathrm{~J}=1\), KOUNT
        IF (COMPARF(ELISTIK), TMAKE(J-1)J) 5,6,5
    5 CONTINUE
        TMAKE(KOUNT) = ELIST(K)
        MADE (KOUNT) = ELIST(K)
        KOUNT \(=\) KOUNT +1
    6 CONTINUE
        KOUNT \(=\) KOUNT -
C
C
    PART 4. FIND INPUT ERRORS.
        7 IF(TBEGIN-2437202.5) 66,9,9
        \(9 \mathrm{KM}=2\)
    11 ERROR = 0
        WRITE TAPE 3,FILE
        DO \(21 \mathrm{~J}=1\), KOUNT
        KTAG(J) \(=0\)
    12 DO \(13 \mathrm{~K}=1,20\)
        IF (COMPARF(PNAME(K),TMAKE(J))) \(13,16,13\)
    13 CONTINUE
C
C PART 5. PRINTS OUT THE MISSPELLED NAMES AND OTHER ERRORS.
    14 PRINT 15, TMAKE(J), TBEGIN, TEND
        WRITE DUTPUT TAPE 6, 15, TMAKE(J), TBEGIN, TENO, (PNAME(K),
        1 EDATE \((K), K=1,20)\)
    15 FDRMATI 23H TROUBLE ON TAPE 3 MAKE / \(2 X, A G, 10 H\) T BEGIN=F10. 1 , BH
    1 I \(E N D=F 10.1 / / 2(2 X, A 6, F 20.1))\)
        ERROR \(=1\).
        ERROR \(\begin{aligned} & \text { G } \\ & \text { GO TO } 21\end{aligned}\)

C PART 4B. CHECKS DATES AND STORES INOEX FOR MOON SO THAT EARTH RADII CAN BE CONVERTED TO A.U.
16 IF (10-K) 18,17,18
17 MOON = J
18 KTAG(J) \(=K\)
19 IF (EDATE(K)-TEND) \(14,21,21\)
21 continue
ASSIGN 36 TO NSI
IF (ERROR) \(22,22,68\)
\(C\)
\(C\)
\(C\)
\(C\)
\(C\)
22 KHAMP = FREQUENT DATA
2 KD 23 J=1,KOUNT
DO \(23 \mathrm{~J}=\mathrm{KI}\), KOU
KHAMP = XMINOF(KHAMP, INTVAL(K))
23 CONTINUE
KHAMP \(=\) KHAMP -10
DD 24 J=1,KOUNT
\(K=\) KTAG(J)
C
PART 7. lUCATE file 2 ON TAPE 9.
25 READ TAPE 9, KFILE
26 IF (KM-KFILE) \(27,31,29\)
27 IF (KFILE - 3) 28,28,29
28 BACKSPACE 9
BACKSPACE 9
CALL BSFILE(9)
GO TO 25
GY PASS A FILE.
29 CALL SKFILE(9)
GD 1025
PART 8. THII IS CORRECT FILE ON TAPE 9, READ DATA. THERE CAN BE UP TO 12 SEIS DF DATA PER RECORD. A SET DF DAYA IS 21 WORDS.
31 BACKSPACE 9
32 READ TAPE 9, KTAPE, (TDATUM(1), \(I=1,252\) )
GO TO NS \(1,(36,46)\)
C PART 9. IS IHIS A SATISFACTURY STARTING POINT, GUESTION MARK。
THE IST SET OF DATA FDR EACH PLANET MUST PRE DAIE TBEGIN.
THE \(15 T\) SET OF DATA FOR EACH
PART 9 IS EXECUTED ONLY ONCE.
36 PART 42 J=LI,KOUNT
IF (COMPARF(TUATUM(K), TMAKE(J)): 37,39,37
37 CONTINUE
38 LI = J
BACKSPACE 9
GO 1032
39 IF (TDATUM \((K+1)\)-TDATUM (K+2)-TBEGIN) \(40,40,38\)
40 DO \(41 \mathrm{KJ=1,21}\)
41 DATUMT \((K J, J)=\operatorname{TOATUM}(K 1)\)
42 CONTINUE
IF (MODN) 43,45,43
43 DO \(44 \mathrm{KJ}=4,21\)
44 DATUMT (KJ,MUON) = DATUMT(KJ,MOON) EERTOAU
45 ASSIGN 46 TO NSI
Part 10. put ahay needed data. test name, time df begin and enu. do not WRITE TAPE 3 UNTIL IBEGIN PREDATES THE END OF THE FITIED
INTERVAL. 50 REPEATS OLD DATA, 57 WRITES NEW DATA. THE NAMES ARE ERASEO FROM TMAKE AS SOON AS THE DATA POST DATES IEND. WHEN ALL NAMES ARE GONE, RETURN YO INPUT 300 TO SEE IF ANOTHER
EPHEMERIS IS TO BE CONSTRUCTED.
46 DO \(65 \mathrm{k}=1,232,21\)
OO \(47 \mathrm{~J}=1\), KUUNT
IF (COMPARF(TDATUM(K),TMAKE(J))) 47,48,47
47 CONTINUE
SWT = TBEGIN-IDATUM(K+1)-TDAIUM(K+2)
IF (SWI) 49,49,52
49 IF(KTAG(J)) \(50,52,50\)
50 WRITE IAPE 3,(DATUMT(KJ, J), \(K J=1,21)\)
\(5200 \quad 53 \quad K J=1,21\)
\(K 1=K+K J\),
53 DATUMT(K」,J) \(=\) TDATUM(KI-1)
IF (J-MOON) 56,54,56
54 DO \(55 \mathrm{KJ}=4,21\)
55 DATUMT(KJ,J) = DATUMT(KJ,J) EERTOAU
56 IF (SWT) 57,57,58
57 WRITE TAPE 3, (DATUMT(KJ,J),KJ=1,21)
58 IF(TEND-DATUMT(2,J)-DATUMT \(3, J)\) 59,59,65
59 TMAKE(J) \(=0\).
DO \(60 \mathrm{KK}=1\), KOUNT
IF (TMAKEIKK): 65,60,65
60 CONT INUE
WRITE OUTPUT TAPE 6, SI, FILE,TBEGIN, TEND, KOUNT, (TMADE(KK), \(1 \mathrm{KK}=1\), KOUNT
61 FORMAT 128 HOEPHEMERIS COMPLETED, FILEEF3., 6 H , FROM FIO.1,3H TO
1 F10.1, 4 H FOR I2, 18 H BDDIES AS FOLLOWS/ \(12(2 \mathrm{X}, \mathrm{A} 6)\) )
FILE = FILE + 1 .
END FILE
63 WRITE TAPE 3, FILE
REWIND 3
TAPE \(3=\)
DO \(64 \quad J=3\),4000
\(C(J)=0\).
RETURN
C
```

 65 CONIINUE
 GO TO }3
 66 PRINT 67, TBEGIN
 WRITE QUTPUT TAPE 6,67,TBEGIN
 67 FORMAT (33H TBEGIN PREDATES 2437202.5.IT IS F1O.1)
 8 CONTINUE
 CONTINUE
 REND
 REM BSFILEEI,J) BACKSPACES TAPE I UNTIL IT IS POSITIONED JUST
 REM BEHIND THE J TH EOF MARK.
 REM
 BSFILE
 PZE
 PLE
 BCD IBSFILE
 BSFILE
SXO
SXD *-4,4
TSX S(RES),4
TSX
TSX S(IOS),4
CLA* S(RDS)
STA BSF
ANA AOT000
STA BTTI
LXD BSFILE-2,4
CAL 2,4
ANA =0777777700000
ERA =0007400000000
TNZ ONEARG
CLA" 2,4
PDX ,1
PDX -1
AKC \#+1,4
BTTI BTTA \$:
BSF
BSFA **
XEC= \$(RDS)
XEC \$ \$ SSR)
AXC
XEC: ++1.4
GTT2 BITA **
TRA CHECK
TIX BSF,1,I
BACK
XEC \$(RDS)
AXC % * \$,4
AXC %+1,4
XEC* S(TRC)
NOP
AXC *+1,4
XEC* S(TEF)
NOP STEF)
LXD BSFILE-4,1
LXD BSFILE-3,2
TRA 3,4
TXL BACK,1,1
LXD BSFILE-2,4
CLA ERR+1
STO O
CLA* 1,4
ERR TSX 8,4
TXI BACK,0,14
TXI BACK,0,14
INEARG CIA BSFILE-2
ADD =01000000
ADD =01000000
STO BSFILE-2
LXD CHECK,
407000 OCT 7000
ENO

```




\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{11}{*}{lucce} & Sxo & 1.2 & save san count & 03540 \\
\hline & 510 & Q & Save unused characters. & 03550 \\
\hline & aud & IAG & ATtACH S SIGN IF PRESENT. & 03560 \\
\hline & STO & WORD & Save the character at word. & 03570 \\
\hline & LDO & SIGN & Sign of mg negative if new card. & 03580 \\
\hline & Stz & SIUN & CLEAR SIGN. & 03590 \\
\hline & STL & JAG & clear tag of any s & 03600 \\
\hline & LXD & TEMP-17,4 & & 036.0 \\
\hline & LXD & IEMP-10,2 & & 03620 \\
\hline & TRA & 1,4 & REIURN & 03630 \\
\hline & REM & PRINT OUT THE \$\$ & CARDS. & 03640 \\
\hline \multirow[t]{17}{*}{PRINT} & STQ & 4 & & 03650 \\
\hline & XEC* & S(TES) & CHECK FOR QUIET BUFFERS. & 03660 \\
\hline & XEC & READ. & FETCH NEXT GARD. & 03670 \\
\hline & LDG & 0 & & 03680 \\
\hline & LGL & 6 & SPACE CONTROL SAFE IN ACC & 03690 \\
\hline & LOQ & blank & & 03700 \\
\hline & AKT & 4.4 & FILL END DF OUTPUT & 03710 \\
\hline & STO & OUTBUF+19,4 & buffer with blanks. & 03720 \\
\hline & Tix & - \(-1,4,1\) & & 03730 \\
\hline & LGR & 6 & SPACE CONTROL BACK TO MG. & 03740 \\
\hline & STo & outbuf & Store space control. & 03750 \\
\hline & AXT & 14.4 & & 03760 \\
\hline & L0Q & RELORD \(+2,4\) & & 03770 \\
\hline & 510 & OUTBUF+15,4 & & 03780 \\
\hline & TIX & \#-2,4,2 & & 03790 \\
\hline & ISX & PRINX,4 & & 03800 \\
\hline & IRA & \(\bullet+3\) & & 03810 \\
\hline \multirow[t]{9}{*}{LOCCG} & XEC & READ. & ALMOST ALWAYS A NOP. & 03820 \\
\hline & XEC* & S(IES) & WAIT FOR QUIET READ BUFFER. & 03830 \\
\hline & 5 T \% & Tag & Clear the \$\$ Characters. & 03840 \\
\hline & \(4 \times 1\) & 14,2 & FETCH CARD. & 03850 \\
\hline & LDQ & INBUF+14,2 & 14 WORDS & 03860 \\
\hline & STQ & RECORD +2.2 & & 03870 \\
\hline & TIX & - \(-2,2,1\) & & 03880 \\
\hline & CLA & TSXRO & OPEN READ. GATE & 03890 \\
\hline & Sto & READ. & & 03900 \\
\hline \multirow[t]{11}{*}{Loccs} & AXT & 84,2 & CARD COL 1 IS 84 & 03910 \\
\hline & Ces & =0 & SET MINUS ZERO IN SIGN & 03920 \\
\hline & STO & SIGN & & 03930 \\
\hline & LGL & 12 & save column 79 and bo & \\
\hline & LDQ & blank & BLANK DUT COLUMA 81 TO 84 & \\
\hline & LGR & 12 & may have look ahead & \\
\hline & Sto & RELORD +1 & & \\
\hline & LDQ & RECORD-12 & & 03940 \\
\hline & TRA & locca & & 03950 \\
\hline & REM & & & 03960 \\
\hline & REM & COMES HER & ON END Of file flag & 03970 \\
\hline \multirow[t]{2}{*}{Locck} & LXD & TESTJK,4 & & 03980 \\
\hline & TXH & RIN,4,0 & was data loaded. yes rin & 03990 \\
\hline \multirow[t]{11}{*}{SGNOUT} & XEC. & S(TES) & WAIT FOR QUIET DUTPUT BUFFER & 04000 \\
\hline & AXT & 6,4 & & 04010 \\
\hline & L00 & OUT+6,4 & & 04020 \\
\hline & 510 & DUTBUF+6,4 & & 04030 \\
\hline & Ifx & *-2,4,1 & & 04040 \\
\hline & AXT & 13,4 & & 04050 \\
\hline & LDQ & BLANK & & 04060 \\
\hline & Sto & OUTBUF+19,4 & & 04070 \\
\hline & Tix & - -1.4 .1 & & 04080 \\
\hline & tsx & PRINX,4 & & 04090 \\
\hline & XEC* & S(TES) & WAIT FOR QUIET BUFFER. & 04100 \\
\hline \multirow[t]{2}{*}{lucout} & CALL & SExIT & THIS WAY OUT FOR KEEPS & 04110 \\
\hline & REM & & & 04120 \\
\hline \multirow[t]{7}{*}{uut} & BCI & G.LENO OF FIL & e input tape job complete & 04130 \\
\hline & REM & & & 04150 \\
\hline & REM & end df the sap subr & broutine chrctr. & 04160 \\
\hline & EJEC & & & 04170 \\
\hline & REM & this is subroutin & E Clear. It InItializes & 04180 \\
\hline & REM & necessary paramet & ERS FOR SUBROUTINE Store. & 04190 \\
\hline & REM & & & 04200 \\
\hline \multirow[t]{17}{*}{clear} & & & SET J to o. & 04210 \\
\hline & Stz & VAR & Clear varill. & 04220 \\
\hline & SXD & MShifi,o & RESET MSHIFT. & 04230 \\
\hline & TRA & 1,4 & return to calling program & 04240 \\
\hline & REM & & Return to calling prograk & 04250 \\
\hline & REM & END dF the sap su & broutine clear. & 04260 \\
\hline & REM & & & 04270 \\
\hline & REM & & & 04280 \\
\hline & REM & THIS IS FUNCTIUN & Compar. It examines the current & \\
\hline & REM & CHARACTER AND TES & TS IT AGAINST THE CHARACTERS & 04300 \\
\hline & REM & FOUND IN THE ARGU & MENT. ALPHABETIC AND NUMERIC & 04310 \\
\hline & REM & SPLITS ARE MADE I & F THE CHARACTER IS NOT FOUND & 04320 \\
\hline & REM & IN THE ARGUMENT. & these tesis are counted and & 04330 \\
\hline & REM & THE NUMBER LEFT IN & I INDEX 2 CORRESPDNOS TO THE & 04340 \\
\hline & REM & SUCCESSFUL TEST. & IF ND TESt is successful & 04350 \\
\hline & REM & THEN INDEX 2 CORR & ESPONDS TO the total tests ti. & 04360 \\
\hline & REM & & & 04370 \\
\hline \multirow[t]{2}{*}{COMPAR} & LDQ & 1,4 & USE FIRST ARGUMENT IN CALLING & 04380 \\
\hline & AKT & 1,2 & & 04390 \\
\hline \multirow[t]{6}{*}{LOCDA} & PKD & 0,0 & & 04400 \\
\hline & LGL & 6 & PULL IN ISI TEST Character. & 04410 \\
\hline & T2E & 10 CDD & DONE IF ZERD. & 04420 \\
\hline & CAS & WORD & CHECK TEST WORD AGAINST CARD & 04430 \\
\hline & TXI & LOLDA,2,1 & CHARACTER. & 04440 \\
\hline & TRA & LOLDC & gqual. & 04450 \\
\hline Locds & TXI & LOLDA,2,1 & NOT EQUAL. GET NEXT TESt & 04460 \\
\hline LOCDC & Cla & WOKD & CHARACTER.
PROGRAM RETURN. & 04470
04480 \\
\hline
\end{tabular}







\begin{abstract}
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."
\end{abstract}

\section*{NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS}

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in connection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities but not necessarily reporting the results of individual NASA-programmed scientific efforts. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION```


[^0]:    For sale by the Clearinghouse for Federal Scientificand Technical Information
    Springfield, Virginia 22151 - Price $\$ 1.00$

[^1]:    a Except for Moon data, which are in Earth radii and days.

