9.5-FOOT PARABOLOIDAL MASTER AND CONCENTRATOR

FINAL REPORT

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION LANGLEY RESEARCH CENTER
HAMPTON, VIRGINIA

GPO PRICE
\$ \qquad
CFSTI PRICES) \$ \qquad

Hard copy (HC) \qquad
Microfiche (MF) \qquad 1.25

July 65

9.5-FOOT PARABOLOIDAL MASTER AND CONCENTRATOR

FINAL REPORT

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LANGLEY RESEARCH CENTER
HAMPTON, VIRGINIA
JUNE 30, 1966
DISTRIBUTI ON OF THIS REPORT IS PROVIDED IN THE INTEREST OF I NFORMATI ON EXCHANGE. RESPONSIBILITY FOR THE CONTENTS RESIDES IN THE AUTHOR OR ORGANIZATION THAT PREPARED IT.

G. L. YEO PROGRAM MANAGER

D. LEE

PROJECT ENGINEER

BLANK
PAGE

TABLE OF CONTENTS

Section Page
1 OBJECTIVES AND SUMMARY 1-1
1.1 Objectives 1-1
1.2 Summary 1-2
1.3 Additional Tasks 1-5
2 EPOXY SPINCAST MASTER 2-1
2.1 Mold Structure Preparation 2-1
2.2 New Cover Design 2-2
2.3 Male Backup Structure 2-2
2.4 Facilities and Equipment 2-7
2.5 Spincasting 2-7
2. 6 Thermal Cure of Epoxy Mold 2-13
2.7 Optical Inspection 2-15
2.8 Failure of the Nickel Master 2-28
2.9 Epoxy Test Program 2-32
2.10 Spincasting Number 2 2-36
2.11 Reference 2-39
3 ELECTROFORMED NICKEL MALE MASTER 3-1
3.1 Preparation of Epoxy Mold for Electroforming 3-1
3.2 Separation of Nickel Master from Epoxy Mold 3-2
3.3 Optical Inspection 3-3
4 ELECTROFORMED MIRROR AND INSPECTION 4-1
4.1 Electroformed Nickel Mirror 4-1
4.2 Separation of Mirror from Master 4-3
4.3 Optical Inspection 4-5
4.4 Aluminum Coating 4-7
4.5 Torus Design and Analysis 4-7
5 SUPPLEMENTAL INVESTIGATIONS 5-1
5.1 Kanigen Coating of Nickel Masters 5-1
5. 2 Polishing of Kanigen Coated Nickel Master 5-3
5.3 Thirty-Inch Diameter Mirror Electroforming Run No. 1 5-5
5.4 Electroforming Run No. 2 5-10

APPENDIX

A. Spincast Mold, First Optical Inspection
B. Epoxy Test Program Plan
C. Cleaning of Spincast Mold and Cover
D. Bond of the Primer and Resin to Aluminum Mold
E. Priming Surfaces of Spincast Mold
F. Epoxy Test Samples
G. Spincast Mold, Second Optical Inspection
H. Nickel Master First Optical Inspection
I. Nickel Master Second Optical Inspection
J. Nickel Mirror First Optical Inspcetion
K. Nickel Mirror Second Optical Inspection
L. Coating Specification
M. Nickel Torus Analysis
N. Materials, Special Tooling, and Test Equipment

LIST OF ILLUSTRATIONS

Figure Page
2-1 Spin Cast Mold Backup Structure 2-3
2-2 Epoxy Mold Conforming Cover 2-3
2-3 Male Master Backup Structure 2-5
2-4 Spincast Machine Cross Section 2-8
2-5 Proportional Metering - Mixing Equipment 2-9
2-6 Spincast Mold with Cover Removed 2-11
2-7 Photoinspection of Pour 3 in Area of Line Pattern of 5-Foot Diameter 2-12
2-8 Photoinspection of Pour 3 in Area of Radial Pattern Near Edge of Mold 2-12
2-9 Paraxial Reflection from a Perfect Parabolic Surface 2-17
2-10 Uncollimated Reflections Due to Zonal Errors 2-17
2-11 Subdivision of Mirror Surface Into 576 Equal Areas 2-18
2-12 Location of 576 Optical Inspection Points Relative to Spincast Mold Support Structure 2-18
2-13 General Arrangemer.' of Test Flements. 2-19
2-14 Mounted Telescope Objectives 2-21
2-15 Mounted Eyepiece and Reticle Adapter 2-21
2-16 Slope Error Due to an Error in Focal-Point Location 2-26
2-17 Schematic of Electroforming Cell. 2-31
3-1 Optical Sclematic for Inspection of Mirror Master 3-4
3-2 9.5-Foot Parabolic Master and Concentrator Optical Quality Comparison 3-8
3-3 Force Input 3-9
3-4 Change In Radial Slope Reading with 5400 Pounds Radial Compressive Load Applied to Nickel Master at 170 and 350 -Degree Reference Positions 3-11
3-5 Change In Radial Slope Readings with 200 Pounds Down Pull on Radial Force Input Beam Assembly While 5400 Pounds Radial Compression Load is Applied to Nickel Master, 170 and 350 -Degree Positions 3-12
4-1 Mirror Support Torus 4-9
5-1 Heat Treatment Curve of Kanigen Chemical Nickel Alloy Coating 5-2
5-2 Comet Tails and Line Pattern Produced by First Machine Polish of $30-$ Inch Nickel Master 5-6
5-3 Comet Tails and Line Pattern After Cloth Polish to Clean up Master Following Run No. 1 Mirror. 5-6
5-4 Portion of 30 -Inch Nickel Master with Minimum Line Pattern 5-7
5-5 Typical Portion of Electroformed Nickel Master Delivered on NAS 1-3309 5-7
5-6 Electroformed Nickel Master and Vacuum Chamber 5-8

LIST OF TABLES

2-1 Summary Data Concerning Spincasting Pours for the 9-1/2 Foot
 Langly Mirror . 2-14

3-1 Raw Slope Error Distribution, 10-Foot Diameter Nickel Master 3-6
3-2 Adjust Slope Error Distribution, 10-Foot Diameter Nickel
Master

4-1 Disposition Stress of Nickel Sufamate Solution, in PSI
4-2
4-2 9-1/2 Foot Mirror Thickness 4-6

Abstract

ABSTRAC ${ }^{\prime}$

Producing large high quality parabolic shapes by generally accepted cutting, grinding, hewing, and polishing methods consumes a considerable period of time and is quite expensive. Spincasting epoxy, resins offers the immediate advantage of forming a theorotically perfect parabola which, when combined with the technique of electroforming, will produce excellent master tooling. The objective of this contract was to fabricate a 9.5 foot mirror master which would be of sufficient quality and durability for the reproduction of lightweight, high quality paraboloidal solar concentrators with the design objective of collector absorber efficiency of 75 percent of a $2000^{\circ} \mathrm{K}$ black body cavity.

An epoxy spincasting was produced which had an adjusted slope error of less than 35 are seconds. On this concave surface a $3 / 8$ inch thick nickel master was elect \because oformed which yielded a slope error of approximately 3 minutes.

A 9.5 foot nickel solar concentrator was then electroformed a_{e} ainst the surface of the master. A nickel torus support ring was bonded to a transition cove ring located on the back of the mirror, after which the entire unit was successfully separated from the master.

The report discusses the various steps in the spincasting and electroforining processes as well as investigations into separation of mirror surfaces from masters using vacuum techniques and the improvement of nickel surfaces using Kanigen coatings. These investigations were conducted using a 30 inch nickel master and electroforming an aluminum mirror against the experimental surface.

BLANK
PAGE

SECTION 1
 OBJECTIVES AND SUMMARY

1.1 OBJECTIVES

The basic objective oí conrract NAS $1-4105$ was to fabricate a $9-1 / 2$ foot mirror mester which would be of sufficient quality and durability for the reproduction of lightweight, high quality paraboloidal solar concentrators with the design objective of coliector absorber efficiency of 75% of a $2000^{\circ} \mathrm{K}$ black body cavity. A 45 -degree rim angle master and mirror was fabricated from a 10 -foot epoxy spincasting so that the useable master area would produce mirrors 9-1/2 feet in diameter. The focal length was established at 68.8 inches.

The program was broken into three logical phases which permitted a review of progress and an opportunity for acceptance or rejection before expending additional funds. These phases were:
a. Phase 1

1. Refurbish a Government furnished mold backup structure.
2. Spincast a female mold master.
3. Perform optical inspection of the spincast female mold master.
4. Design and fabricate a male backup structure.
b. Phase ?
5. Electroform a nickel parabaloidai male master.
6. Design and fabricate a concentrator support structure.

c. Phase 3

1. Electroform nickel concentrator.
2. Optically inspeci concentrator.
3. Aluminize concentrator.

Subsequent addi+ions to this contract called for the following:
a. Investigate improvement of nickel master surfaces (Kanigen coating).
b. Investigate master concentrator separation problems.
c. Electroform a 30 -inch diameter aluminum concentrator.
d. Optically inspect the 10 -foot male master.
e. Investigate removal of warpage in the 10 -foot male master.
f. Optically reinspect the male master following the experimental efforts of (e) above.

1.2 SUMMARY

In general, the objectives of the program wire met. Technical problems did arise in the course of the contract, but were largely overcome. These are discussed in detail in the body of the report.

1.2.1 SPINCASTING

Three pours were planned for this phase. On the third pour, a leak developed in the pumping system after abcut one quart of epoxy was released, necessitating a shut down while repairs were effected. When the mold was opened, a minor line of optical distortion, five feet in di^meter, was noted and it was determined that this was the result of the interrupted pour. It was mutually decided between General Electric and NASA-Langley that additional pours would be made in an effort to eliminate this slight imperfection. To reduce the possibility of cracking the epoxy duc to excessive thickness, some of the epoxy from the earlier pours were removed by grinding, then additional pours were made. Visual inspection indicated
the surface to be satisfactory and a thermal cure followed. Optical inspection was then performed providing raw and adjusted slope error information.

A major change was made in the mold cover over that used on JPL Contract No. 950239. 9. The cover was made of fiberglas fitted with large plexiglass viewing ports. It had, as an integral part, a receiving valve mechanism which improved the ease with which the epoxy could be poured and the mold could be sealed while it was spinning. In addition, it was light, rigid, and easily handled. To provide a shape which conformed to the surface of the mold (paraboloid), the cover was made using the spinca: t mold structure as a template. Two additional advantages of this design are: ease of inspection, and most important, a fixed heigh i of the air space above the surface of the casting. This latter item has a significant effect on the surface quality of the epoxy and, thus, was optimized with the use of the conforming cover.

The backup structure for the electroformed nickel male master was fabricated during this period and was essentially the same as that used on the JPL contract (Reference $2-1$). The basic change was the inclusion of a triangular steel structure to increase the strength of the assembly permitting higher loadings of the lift points.

1.2.2 ELECTROFORMED NICKEL MASTER

A major problem presented itself when the first attempt to electroform the nickel master failed after some 5-7 hours in the nickel solution. The failure manifested itself in a separation of the (2 to 5 mils) deposit of nickel from the epoxy mold and its subsequent breaking up under the agitation of the rotating anodes in the bath. In addition to the loss of the nickel skin, the surface of the spincast mold was badly gouged and scratched. Within a week following this failure, the epoxy cracked completely through, rendering it useless for any further consideration as a master. This was independent of the previous failure and was caused by thermal shock (sharp drop in room temperature).

A highly concentrated effort was then mounted to determine the cause of the failure (probable coniamination of the bath by an unstable epoxy) and to evolve corrective action. This took the form of an epoxy formulation analysis and experimentation to eliminate the cause of the instability of the epoxy. Large numbers of samples were made and tested under a variety
of environments including temperature, humidity, chemical exposure and electroforming conditions. Success was achieved and a new spincasting was made using only three pours. Optical inspection revealed an exceilent configuration and the test samples indicated a relatively stable epoxy. The new mold was prepared for electroforming by stopping off exposed areas of the mold support, treating the edge of the epoxy with collodial silver to assure good current flow and then washing, sensitizing, and silvering the epoxy surface. Room and electroforming solution temperatures were brought up to $120^{\circ} \mathrm{F}$. The mold was placed in the bath and electroforming of the master was completed without further incident. Approximately 20 days were required to obtain the $3 / 8$-inch thick nickel master using an average current density of $20 \mathrm{amp} / \mathrm{ft}^{2}$.

The fiberglass backup structure was foamed into place and separation of the master from the epoxy mold was effected by the technique of cold shocking and vibration. Visual inspection of the master indicated a very satisfactory product.

1.2.3 FEMALE CONCENTRATOR

Following acceptance of the master by NASA-Langley, the master was prepared for electroforming the mirror. This was accomplished by cleaning and polishing the master with french cotter, washing, flushing, and drying. It was then sensitized and silver sprayed. A copper cove ring was fitted to the surface at the scribe line and the center crown (grow-in ring) was secured with bakelite disc. The entire unit was then placed in the nickel sulfamate solution. Electroforming of the mirror was performed at 2200 amp or $27.5 \mathrm{amp} / \mathrm{ft}^{2}$ for a period of 38 hours. Following an analysis of the mirror torus design, it was decide \mathcal{d} to fabricate a nickel torus ring similar to that made for the JPL concentrator (Reference 2-1), i. c., a rolled $3-1 / 2$-inch diameter, 125 mil wall, nickel pipe. On this program, however, the unit was stress-relieved before it was epoxy bonded to the cove ring of the master to minimize the possibility of edge distortion. Scparation of the master from the mirror was accomplished by cold shocking with relative ease. Three areas of localized distortion were noted which did not appear to be in the male master. These were pinpointed by the optical inspection. Mirror thickness measurements showed the average to be 0.037 inch or within 7% of design objectives.

The mirror was coated with vapor-deposited aluminum and SiO_{2} and then shipped to Langley Research Center for evaluation. Because of distortions observed in the mirror produced from the master, it was decided that a complete optical inspection of the master should be made to determine how accurately the mirror duplicated the master. While small differences in comparative data were measured, the mirror in fact proved to be a true replica of the master.

An effort was then made to counter, or correct, the distortions in the master through the application of external forces to the master edge and backup structure. No permanent correction was introduced ard only very small, highly localized improvements were made on a temporary basis.

1.3 ADDITIONAL TASKS

Three related tasks were also undertaken on this contract: the investigation of methods of improving nickel surfaces, examination of master/concentrator separation problems and the fabrication of an aluminum mirror from a nickel master. To accomplish this works a 30 -inch "scrap" master which had been Kanigen coated to reduce porosity, was machine and hand-polished, then placed in an aluminum electroform bath where a 30 -inch concentrator was electroformed. Separation was accomplished by vacuum techniques. The overall results were encouraging in that an improvement in surface quality was noted and the vacuum separation technique showed promise.

BLANK PAGE

SECTION 2

EPOXY SPINCAST MASTER

The same mold used for the JPL spincasting was used for this contract. There were no structural changes made although refurbishing was required to prepare the surface for the epoxy.

A complete description of the backup structure is given in Reference $2-1$, pages $5-1$ through 5-6.

Two separate spincastings were made on this contract due to a failure of the first nickel master and subsequent loss of the epoxy mold. This section covers both spincast íabrications and the test program conducted in between.

2.1 MOLD STRUCTURE PREPARATION (Figure 2-1)

All spuncast plastic was removed from the backup spincast structure. This was accomplished by thermally shocking the backup structure with liquid nitrogen followed by chipping and grinding. The mold was sand blasted and cleaned and then painted on the outside with two coats of epoxy base stop-off paint. The first coat of the epoxy base paint was painted on in its clean undyed state. The second coat was colored with a dye to assure uniform coverage. The inner surface of the mold on the spincast area was painted with one coat of undyed epoxy paint. The purpose of the outer coating is purely to act as a stop-off against electrochemical attack while electroforming of the nickel master. The epoxy paint coat on the inner spincast surface acts as a bonding agent so that the spincast resin system will adhere. Formulation of the epoxy paint is as follows:

Resin source No. 571 XK (75\%), 45 parts oy volume.
Pentamide No. 815,35 parts by volume.

The epoxy paint was reduced with toluol to a brush coat consistency. The mold, after thorough curing, was then placed upon the spincast table where it was mated with its cover, checked for leak tightness, then the entire table, mold and cover assembly was statically balanced. The mold-cover-table assembly was then rotated and the total runout of the table adjusted so as not to exceed 0.002 inch.

2.2 NEW COVER DESIGN (Figure 2-2)

The cover used on the JPL contract was discarded in favor of a new design. It was fabricated of reinforced fiberglass polyester and was made using the spincast mold structure as a template.

This cover has, in each quadrant and in the center, a large plexiglass viewing window which allows visual observation of the resin flow patterns as the spincasting is being made. Included as an integral part of the cover is a receiving port and valving mechanism for the acceptance of the epoxy resin. A coating of the same epoxy paint that was applied to the mold was used on ... the cover as a sealant against any scale or foreign material contaminants.

The conforming nature of the cover provided a fixed height of air space above the casting, a condition which has a significant effect on the quality of the epoxy surface. Other advantages of this cover were its lightness, rigidness, and handling ease.

2.3 MALE BACKUP STRUCTURE (Figure 2-3)

It was decided to use a polyester fiberglas egg-crate backup structure very similar in design to that described in Reference 2-1, pages 6-8 through 6-12. The technique of construction and the load bearing metal inserts in the structure were changed, however. The same dimensional configuration was used with the exception that a triangular steel handling fixture was inset directly into the egg-crate structure then glass-bonded and foamed in place. This triangular inset was continuous so that every load point was connected with every othe: load point while picking-up all of the radial ribs of the egg-crate shell.

Figure 2-1. Spincast Mold Back-Up Structure

Figure 2-2. Epoxy Mold Conforming Cover

$2-5$

Figure 2-3. Male Master Back-up Structure

Blank
 PAGE

2.4 FACILITIES AND EQUIPMENT

Details of the equipment used in connection with the spincasting activity are found in the JPL report (Reference 2-1, pages 5-8 through 5-18) (See Figures 2-4 and 2-5).

2.5 SPINCASTING

Spin cast pour Nos. 1 and 2 were executed without complication. Upon the start of pour No. 3 approximately one quart of resin was pumped into the mold when the pumping system or evacuated resin containment system developed a leak. This one quart of resin continued to spin in the mold and flowed from the center of the mold covering an area of approximately 5 feet in diameter. After appropriate corrective actions were taken, Pour No. 3 was again made, this time without any technological breakdown. ? ? lowing uncover ing of the mold, the surface appeared to be acceptable in finish and geometry, with the exception of a minor optical distortion 5 feet in diameter coinciding with the wave front of the one-quart pour. It was estimated that the optical distorlion, if any, caused by this one-quart pour would be approximately $1 / 10$ of 1% of the total mirror area.

After careful evaluation of the risks and costs, it was decided that additional spins would be made to eliminate the circular ring patcern which would otherwise be duplicated in the final mirror surface.

This pattern was caused by the frontal edge of the aborted No. 3 pour. A photographic documentation of the surface characteristics was made* to show the excellent surface quality and to serve as a comparison for any future surfaces being inspected. Figuiee 2-6 shows the spincast mold on the spin table with cover removed. Figure 2-7is a full size portion of the surface photoinspection in the vicinity of the objectionable line pattern. A small amount of

[^0]

A. Pressurized hardener reservoir
B. Mixer reactor
C. Mixer outlet
D. Solvent purge pump
E. Resin metering element
F. Hardener metering element
G. Combination vacuum and pressure resin reservoir with agitator
H. Control box
I. Vacuum pump
orange peel can be detected in the inspection photographs, although the amount is far less than normally observed on spincast epoxy surfaces. A slight radial pattern can be detected in Figure 2-8 near the edge of the mirror, although this is not significant in the performance of the collector.

Pour No. 4 was made with no apparent problems during the pour. Although normal procedures include a "dust coat" pour before any final coat, it was decided to open the cover after pour No. 4 to inspect the surface. This was felt to be a reasonable risk because there had been a number of changes in the formulation and process since the "two-pour rule" was established, and care was used in cleaning the mold prior to spinning. Upon opening, the mold surface was found to be marred by a large number of small specks or pimples, probably several thousand. This type of surface flaw has been characteristically present on any first pour and has lead to the two-pour rule. This rule was, therefore, verified for the present as being a necessary factor in the spinning of paraboloidal reflectors.

To minimize the risk of mold cracking due to excessive thickness, it was decided to remove some of the epoxy from the mold by mechanical grinding and sanding. A large number of holes were drilled in the surface, using a depth gage on a hand drill, to assure a uniform amount of material removal. Material removal was accomplished using a 6 -inch sander with the final surface achieved with a 100 -mesh cloth on a vibrating sander. Approximately 80 square feet of mold surface was ground and sanded having an average approximate thickness of $1 / 4$ inch of epoxy.

Pour Nos. 5, 6 , and 7 were made without difficulty. Three pours were made to ensure good coverage over the remaining epoxy of the spincasting and to increase the probability of achieving a quality surface. Upon opening the mold, a combination of radial and circumferential lines were observed which were clearly the result of vibration in the machinery. It was concluded that the vibration pattern was caused by the increased shear gradient through the epoxy as a result of the reduced thickness of the pour, pr ssibly combined with a noisy bearing in the drive motor. The coat thickness for pours 5,6 and 7 was reduced approximately 50% in order to decrease the total spincasting thickness if an additional pour series

$$
\div 7
$$

Figure 2-7. Photoinspection of Pour 3 in Area of Line Pattern of 5-Foot Diameter

ト

Figure 2-8. Photoinspection of Pour 3 in Area of Radial Pattern Near Edge of Mold
were required. It was concluded that there was a damping effect due to the, thickness oif the resin which attenuated any vibrations of the mechanical system if the shear gradient through the resin was kept below some critical value. A critical examination of the drive system revealed a very slight noise of an intermittant nature in the drive motor. The inner race of one motor bearing assembly was loose on the shaft and had a slightly burnished appearance. It had apparently been slipping on the shaft intermittantly, causing the unusual noise in the motor, and possibly contributing to the vibration pattern by torsional or axial accelerations on the motor shaft. The bearing was replaced, and both the motor and the rest of the spincast equipment were carefully aligned and balanced prior to making another pour.

The last series of pours, Nos. 8 and 9 , were made without difficulty. A visual inspection showed the surface to be satisfactory and the mold was prepared for thermal curing prior to optical inspection.

2.6 THERMAL CURE OF EPOXY MOLD

The spincast epoxy master was thermally cured following the pouring of the ninth coat by removing the mold from the spin table and moving it to a large oven located in the same building. The oven temperature and temperatures at several significant locations on the mold were monitored by thermocouples. The oven temperature was increased from ambient to $120^{\circ} \mathrm{F}$ at a rate of $5^{\circ} \mathrm{F}$ per hour. Temperatures on the various monitor points showed that the heating was uniformly distributed and the mold temperature followed the oven temperature with little thermal lag. The temperature of the mold was held at $120^{\circ} \mathrm{F}$ for 10 hours and was then reduced to ambient at a rate not exceeding $3^{\circ} \mathrm{F}$ per hour.

Samples of the cured epoxy tested in the electroforming cycle did not prove as stable as desired. However, it was thought that by modification of the cleaning and sensitizing steps (reduction in exposure time) satisfactory electroforming could be carried out.

A summary of the spincast pours is shown in Table 2-1. Specific items which were either learned or verified were:
a. The long standing empirical rule that a dust-cover pour must be made prior to spinning the final surface was verified.

TABLE 2-1. SUMMARY DATA CONCERNING SPINCASTING POURS FOR THE 9-1/2 FOOT LANGLEY MIRROR

Pour	Date	Cure Hours	Approximate Days	Completion Date	Remarks
1	$9 / 9 / 64$	145	6	$9 / 15$	Good
2	$9 / 15 / 64$	144	6	$9 / 21$	Good
3	$9 / 21 / 64$	332	14	$10 / 5$	See Note 1
$3 a$	$10 / 5$	164.5	7	$10 / 12$	See Note 2
4	$10 / 27 / 64$	138	6	$11 / 2$	See Note 3
5	$11 / 14 / 64$	97	4	$11 / 18$	$1 / 8$-in. Pour
6	$11 / 18 / 64$	98	8	$11 / 22$	$1 / 8$-in. Puur
7	$11 / 22$	186	5	$11 / 30$	See Note 4
8	$12 / 10 / 64$	120	188	$12 / 15$	$1 / 8$-in. Pour
9	$12 / 15$		$12 / 23$	See Note 5	

NOTES

1. Pour was aborted after approximately one quart of formulation was poured because of large air bubbles which appeared in the resin tube. Formulation did not wet complete surface of mold.
2. Visual inspection showed surface quality to be excellent, except for a circular line of approximately 5 to 6 feet diameter caused by show-through from the aborted No. 3 pour.
3. Decision was made to open the mold after a single pour based on apparent quality of the surface as viewed through inspection parts to determine validity of the empiracal rule that a dust-cover pour is required prior to final pour.
4. Circumferential and radius lines appeared in the surface. These were the result of a combination of motor vibrations and possible shear gradients through the thin (1/8-in. thick) epoxy coatings.
5. Surface quality was acceptable. Mold was removed from the spin table for thermal cure.
b. If necessary to abort a pour prior to pumping a sufficient quantity of epoxy to cover the compiete surface, it is better to dump rather than to continue to spin. This will minimize the thickness of any wave front developed at the edge of the partial pour.
c. Motor bearing ncises, slight unbalance of the spintable, or other minor mechanical disturbances can cause radial or circumferential vibration patterns to show on the surface of the epoxy spincasting.
d. The viscous damping effect of the liquid epoxy can be a significant factor in attenuation of vibration patterns on the surface of the spincasting. Insufficient thickness of pour will cause the mechanical vibrations of the system to show through to the surface.
e. Defective pours can be readily removed from the mold to prevent excessive buildup by mechanical grinding and sanding techniques.

2.7 OPTICAL INSPECTION (See Appendix A)

Optical inspection was performed in the same manner as that described in Reference 2-1. Much of that technique is repeated herein to provide the reader with ready background information rather than referring to Reference 2-1.

This inspection of the surface was made with eight telescopes located for equal area representation and read at every 5-degree interval starting from the " A " position on the mold. The adjusted mean slope error of 576 readings was 42.6 seconds of arc. A phutographic record showed the surface quality to be good and with a minimum of local disturbances.

[^1]
2.7.1 ME'THOD OF INSPECTION

a. Inspection Grid - If a light source is placed at the focal point of a perfect paraboloidal surface which is concave to the incident light, the light reflected from that surface will be collimated as paraxial rays (Figure 2-9). If the reflecting surface deviates from a true paraboloid, or has zonal errors (ripples, hollows, etc.), light will be reflected out of colimation (Figure 2-10). Thus, the magnitude of the surface errors can be obtained by measuring the angles between the optical axis and the reflected rays.

To measure the mirror geometry adequately by a limited number of measurements iaken at discrete points, each measured point should be representative of a reasonably small portion of the mold. It was therefore decided to take error angle readings at 8 radial and 72 circumferential locations. Thus, a total of 576 error readings wou'd be taken which corresponds to one reading for every 18 square inches. The mirror was divided into 576 zones (Figure 2-11) of equal area whose centers lie on 8 radial and 72 circumferential lines as shown in Figure 2-12. Ry reading surface measurements at these 576 points, a unifurm coverage of the mirror surface was obtained which was sufficiently accurate to predict the mirror geometry, yet did not require an excessive quantity of measurements.

The test setup used for the optical inspection of the epoxy mirror master consisted of a light source placed at the focal point and eight teiescopes aligned with their optical axes veritcal. During the optical inspection, the epoxy master was located on the spin-table in the identical position it held during the spincasting process. Since the master had to be rotated during testing, this arrangement guaranteed the axis of rotation to be coincident with the optical axis of the paraboloid, because the spincast had been generated by rotation about this same axis.
b. Preliminary Arrangement - The general arrangement for optical inspection is shown schematically in Figure 2-13. The light source used was a miniature point

Figure 2-9. Paraxial Feflection from a Perfect Parabolic Surface

Figure 2-10. Uncollimated Reflections Due to Zonal Errors

Figure 2-11. Subdivision of Mirror Surface Into 576 Equal Areas

Figure 2-12. Location of 576 Optical Inspection Points Relative to Spincast Mold Support Structure

Figure 2-13. General Arrangement of Test Elements
source operated at 1.5 volts. It consisted of a 0.015 -inch clear-glass bulb containing a tungsten filament which measured approximately 0.005 inch across the coils. The lamp and lamp holder were mounted approximately at the focal point in a device which allowed for movement in any direction.

The objectives of the eight telescopes were simple plane-convex lenses. These lenses had a clear aperture of 25 mm and a focal length of 2019 mm . They were mounted in a wooden 2×4 with the plane of the lenses normal to the spin axis (Figure 2-14). As explained below, no special care was necessary to mount the lenses accurately or parallel.

The eyepieces of the test telescopes were of the Ramsden type and had an effective focal length of 1 inch. A 10 mm crossed reticle with 100 divisions each in the X and Y axes was located at the focal plane of each eyepicce (see insert in Figure 2-15) such that the X axes were along a radial line. The eyepiece and reticles were mounted in simple draw-tube adapters (Figure 2-15) and arranged in a line on another wooden 2 x 4 . Adjustment of the adapters in any direction was made possible by a simple clamping arrangement. The mounted eyepieces were then located at the infinity focus of each of the eight objective lenses.
c. Alignment of Test Telescopes - A vital aspect of the test setup was the alignment of the optical axis of each telescope parallel to the axis of the paraboloid. Since the nroduction of the master surface by rotation ensured a perfectly vertical optical axis, it was only necessary to align the axis of each telescope system vertically. A collimating theodolite was used in aligning the eight inspection telescopes. The theodolite, which was adjusted to project a cross-hair reticle at infinity, was located under one of the telescope objectives by use of a plumb line and was aligned vertically by use of the adjustments on the instrument.

The image of the theodolite reticle was then viewed through the eyepiece of the telescope beinf aligned. When the optical axis of the theodolite is coincident with

Figure 2-14. Mounted Telescope Objectives

Figure 2-15. Mounted Eyepiece and Reticle Adapter
the axis of the test telescope, the intersection of the theodolite cross hairs will be seen at the center of the reticle in the test telescope. The eyepiece adapter was adjusted until the two reticles were superimposed. This alignnent procedure was repeated for each of the eight test telescopes.
d. Location of Focal Point - The final preparatory step was the location of the test lamp filament at the exact focal point of the paraboloid. If the test telescopes are properly aligned and the mirror is a perfect paraboloid and the test lamp is located precisely at the focal point of the mirror, each telescope will produce a sharp image of the lamp filament at the exact center of the telescope reticle. If the test lamp is placed in a position other than at the focal point of the mirror, the filament image will be displaced from the center of the field. The direction and amount of image displacement is an indication of the correction required in lamp position.

If the light source is located on the axis of the parabola beyond the focal point of the mirror, the reflected light will converge and the images in the telescopes will be displaced toward the optical axis of the parabola. If the light source is placed inside the focal point of the mirror, the reflected light will be diverging and the images will be displaced away from the mirror optical axis. When the light source is moved to the right of the optical axis, all eight images move to the left and vice versa. It becomes obvious, therefore, that by simply manipulating the position of the light source until the filament image is centered in each telescope, it is possible to precisely locate the light source at the focal point of the paraboloid. For example, a $1 / 16$-inch shift in lamp position can cause an average change of 50 to 60 seconds in the reflected light beam with a resulting image shift of 5 to 6 divisions on the telescope reticle.

Location for perfect alignment on all telescopes is prevented by local slope errors on the paraboloid. Therefore, the lamp was adjusted until a best-fit condition was achieved; that is, the light source was manipulated until the filament image was
as close to the center of the reticle of all the test telescopes as possible. This procedure located the mean focal distance of the paraboloid to within one-quarter of an inch. A refined method of locating the focal points within the focal plane is discussed in Section 2.7.1f.
e. Slope Error Measurement - Since the displacement errors have a considerably smaller effect on mirror efficiency than the slope errors, it is common practice to assign the entire surface error to slope error. This practice was followed in this report.

With the source located at the mean focal point of the mirror, any deviation of the filament image from the center of field of the eight test telescopes is due to geometric errors of the mirror surface. Thus, the local slope error at any point on the eight arcs under the telescopes can be obtained directly by reading the displacement of the filament image from the center of the telescope reticle.

The first step was to calibrate the telescope reticles. This is a simple trigonometric process, and the calculation used for the epoxy mirror test arrangement is shown below. The calculation was checked by theodolite measurements and found to be satisfactory.

1. Theoretical Calibration

Focal length of telescope objective	2019 mm
Size of reticle scale	10 mm over 100 divisions
Field of view	Angle the sine of which equals $10 / 2019=0.00495$
Angle the sine of which equals 0.00495	0.291 degrees or 17.5 minutes
Calibration in seconds of arc per division	$17.5 \times 60 / 100=10.5$

2. Calibration Check by Theodolite

Immediately following the test telescope alignment as described in Section 2.7.1c, the theod.' ${ }^{\prime}$ ite was depressed from the vertical by a vernier adjustment of the elevation until the image of the tıeodolite reticle was observed to shift 50 divisions on the test telescope reticle. The theodolite reading was 9.25 minutes. It follows then that:

Full scale $=\frac{100}{50} \times 9.25=18.5$ minutes $=1110$ seconds
thus, each division $=\frac{1110}{100}=11.1$ seconds of arc.

Since the slope deviation of the light entering the telescope is twice the slope error on the paraboloidal surface, the actual surface slope error can be read directly on the telescope by considering each division as 5.55 seconds of surface slope error.

The accuracy of the reticle readings on the spincasting master was \pm_{1} division which equals ± 5 seconds of slope in the radial and circumferential directions each. The total slope error of the master is, therefore, measured accurately to within approximately ± 7 seconds.
f. Adjustment of Measured Data for Errors in Lateral Focal Point Location - As described in the preceding sections, all telescope eyepiece and reticle assemblies are accurately aligned vertically by means of a collimating theodolite. The focal point of the paraboloid, however, is obtained by a trial and error best-fit of the reflected image in all the reticles. The accuracy of the slope error measurements depends on the location of the inspection lamp filament of this approximate focal point.

An error in filament location will be read as an apparent slope error of the surface. This is indicated in Figure 2-16 by the dashed lines. If the error in focal point
location is denoted by e, the apparent slope error $d \beta=\Delta / L$ is meas ured. This angle is given by the following expression:

$$
\begin{equation*}
\mathrm{d} \beta=\frac{\Delta}{\mathrm{L}}=\frac{\mathrm{e} \cos ^{2} \alpha}{\mathrm{f}-\mathrm{y}} \tag{2-1}
\end{equation*}
$$

From Figure $2-16, \cos ^{2} \alpha$ can be expressed in terms of f, x and y

$$
\begin{equation*}
\cos ^{2} \alpha=\frac{1}{1+\tan ^{2} \alpha}=\frac{1}{1+\left(\frac{x}{f-y}\right)^{2}} \tag{2-2}
\end{equation*}
$$

Simplifying the denominator, and substituting the value 4 fy for x^{2},

$$
\begin{equation*}
\cos ^{2} \alpha=\frac{(f-y)^{2}}{4 f y+(f-y)^{2}}=\frac{(f-y)^{2}}{(f+y)^{2}} \tag{2-3}
\end{equation*}
$$

Substituting this value of $\cos ^{2} \alpha$ in (2-1) gives

$$
\begin{align*}
& \mathrm{d} \beta=\frac{\Delta}{\mathrm{L}}=\frac{\mathrm{e}(\mathrm{f}-\mathrm{y})}{(\mathrm{f}+\mathrm{y})^{2}}=\frac{\mathrm{e}(1-\mathrm{y} / \mathrm{f})}{\mathrm{f}(1+\mathrm{y} / \mathrm{f})^{2}} \tag{2-4}\\
& \mathrm{~d} \beta=\frac{\Delta}{\mathrm{L}} \cong \frac{\mathrm{e}}{\mathrm{f}} \tag{2-5}
\end{align*}
$$

If the simplified expression(2-5)is used for the apparent slope error $d \beta$ due to an error, e, in the focal point location, this error can be calculated from the inspection data by obtaining the average radial and average circumferential deviations of all the reticle readings. If both of these averages are equal to zero, the bestfit (least-square error) focal point location has been obtained.

If they are not equal to zero, the raw readings can be adjusted by subtracting the average radial deviation from each radial deviation reading and the average circumferential deviation from each circumferential reading. Vector addition of these two adjusted readings at each point yieids the adjusted slope error. This value corresponds to the actual measured slope error if the filament had originally been located at the exact focal point.

Figure 2-16. Slope Error Due to an Error in Focal-Point Location

The maximum error introduced by using the approximate expression Equation (2-5), rather than the more accurate Equation $(2-4)$ for the 9.5 foot diameter master and mirror, is 38% for points along the outer rim. Since this expression is only used for a least-square error djustment, it was deemed sufficiently accurate. The adjusted slope errors shown in this report were obtained by the use of the average radial and circumferertial values of all telescope readings without the use of the y / f correction factor in Equation 2-4.

2.7.2 INSPECTION RESULTS FOR FINAL SPINCAST

Optical inspection of the final spincast surface was made after thermal cure.

Slope errors for the spincast mold surface were calculated by use of a Fortran program using a 7094 computer. The Fortran prograrn and the computed results are included in Appendix A. Although it is known that the light source was not located precisely at the foca? point, the slope errors are calculated using the raw data for comparison purposes. Adjustments were made to make a first approximation of a correction in readings to account for errors in position of the light source.

Calculations for apparent slope error using the raw data were made as follows:

$$
\mathrm{S}=\left[(\mathrm{X}-50)^{2}+(\mathrm{Y}-50)^{2}\right]^{1 / 2} \times 5.55
$$

where: $S=$ slope error in seconds

$$
\mathrm{X}, \mathrm{Y}=\text { telescope readings in divisions }
$$

Calculations for adjusted slope error using a first approximation correction for errors in lamp filament position were made as follows:

$$
\mathrm{S}=\left[(\mathrm{X}-\overline{\mathrm{X}})^{2}+(\mathrm{Y}-\overline{\mathrm{Y}})^{2}\right]^{1 / 2} \times 5.55
$$

where: $\mathrm{S}=$ slope

$$
\begin{aligned}
& \mathrm{X}, \mathrm{Y}=\text { te! } \epsilon \text { ope readings. } \\
& \bar{X}, \bar{Y}=\text { average of all } \mathrm{X} \text { and } \mathrm{Y} \text { readings }
\end{aligned}
$$

Mean values and standard deviations were calculated for each telescope and for all telescopes combined. The median value was also printed out for comparison purposes.

2.8 FAILURE OF THE NICKEL MASTER

This section describes the events leading to and following the failure of the first attempt to electroform the nickel master. This completely unexpected catastrophe was agrivated by the ultimate loss of the epoxy master necessitating an extensive epoxy evaluation program and the subsequent successful spinning of another epoxy master.

The epoxy samples made during the pouring cycles did not demonstrate the desired resistance to silvering and electroforming solutions, and, therefore, additional one-inch diameter samples were taken from the edge of the mold beyond the scribe lines. This latter sampling was considered desirable to ensure that the actual mold surface was tested against the various solutions. Samples tested indicated that some etching of the epoxy surface might occur, causing a slight haze althoug't the effect on the nickel master was not expected to be significant. The decision was made to go ahead with the electroforming of the master recognizing some risk was involved.

The processes and technique used in the electroforming are described herein in sufficient detail to provide an understanding of the sequence of events and the rationale for the test program that followed the failure.

2.8.1 SUMMARY OF EVENTS LFADING TO THE FAILURE

The spincast mold was shipped from GE in Philadelphia, where it was made, to Newark, N.J. where the electroforming was to take place. Provisions were made for protecting the shipment from thermal shock by the use of electric blankets mounted within the insulated crate. Road shock was minimized by mounting the mold and its integral support structure on expanded polyethelene foam cemented to plywood. Lateral and forward motion were prevented with cleats secured around the mold bearing plates.

Upon arrival, the crate was opened and the mold cover lifted; the epoxy surface was visually inspected for damage, signs of deterioration or changes as a result of the shipment. None were found. The cover was replaced and work was started to prepare the mold for the electroforming proces. This basically consisted of masking off all areas of the structure which were not alreal. "stopped off" to prevent attack by the electrolyte. This was accemplished by applying a combination of tape and stopoff to all exposed bare metal. Copper electrodes were attached to the side of the mold structure after removing "stop-off" at those points to provide metal-to-metal contact. The edge of the mold beyond the outer scribe line was rounded off, smoothed and then treated with collodial silver. A layer of aluminum foil was layed over the rounded edge, neld in place with additional collodial silver to assure good current flow and to minimize the chance of "hang-ap" at this point of contact when the male master was separated from the epoxy mold.

The electroforming bath and equipment were thoroughly checked out before the start of the process. The solution was purified, (chelated, carbon treated and dummied), analyzed and stress measured in the laboratory. Finally, large 3×6 feet test plates were electroformed in the bath immediately prior to the introduction of the mold. The nickel deposit on these test plates was acceptable, bright and ductile. Stress level at this point was 4000 to 6000 psi naving come down from better tnan $18,000 \mathrm{psi}$ at the start of the purificatiun process.

Tests run on epoxy samples taken from the final pour and from the edge of the mold outside the scribe line indicated that the epoxy would probably be subject to some ehemical attack if standard cleaning and sensitizing processes were used. By limiting the cleaning and sensitizing steps, the chemical attack was reduced to a degree where the chances of producing an etched nickel master surface were minimized.

The procedure used was to clean with a 5 percent detergent solution for two minutes (versus 30 minutes with stronger cleaners), sensitize for one minute with dilute stannous chloride (versus 15 minutes with strong, acidic solution). The surface accepted a good silver film, the adherence of which was tested and found to be satisfactory.

The epoxy mold was cleaned, sensitized and silver sprayed and then immersed into the electroform bath with the auxiliary anode current on and with the mold cathodic. Conditions appeared normal for approximately 6 hours when sections of the nickel deposit apparently lifted from the mold. Some of these pieces caught in the rotating anodes, scratched the epoxy and caused current shorts. The run was immediately terninated and the mold was witndrawn from the bath shortly thereafter. (See Figure 2-17 for Schematic of Electroforming Cell.)

Inspection showed that the nickel was about 4 mils thick at the time of failure and was exceptionally brittle. The nickel surface appearance, however, was very good compared to masters electroformed on previous programs. The epoxy surface was sligntly etched and the scratches were largely confined to an area out ${ }^{\prime}, . \quad$ nut one nalf radius from the cente \because. Depth of the worst gouging was prehaps $10-15$ mils det y and the width up to $1 / 8$ inch.

Approximately one week later when NASA Langley and GE representatives jointly inspected the mold, a large deep crack was observed on one side of the mold extending for a number of feet across the surface. This crack was not present at previous inspections. This type of mold failure rendered it useless for further application to this program.

The cause of the cracking was attributed to thermal shocking when the outside temperature dropped suddenly, over the week end, with a parallel reduction in the room temperature \because here the mold was placed.

Large sections of epoxy were stripped away from the aluminum substrate after it was deter mined that the epoxy had separated from it. Small quantities of electroform bath fluid were found lying between the mold substrate and epoxy.

2.8.2 EVALUATIO.J OF FAILURES

An early anclysis of the various potential failure modes indicated that the bath had been contaminated by organic materials going into solution from the epoxy.

Figure 2-17. Schomatic of Electroforming Cell

The items which could possibly have initiated the type of failure whish occurred were:
a. The polyester-fiberglass ring around the edge of the spincast epoxy.
b. The polyester-fiberglass cover reacting with the spincast epoxy.
c. The spincast epoxy.
d. The epoxy stopoff applied to the mold structure by GE.

The cause of the cracking and separation of the epoxy from the aluminum mold surface was also investigated. The following possibilities presented themselves:
a. Large shear forces resulting from differential coefficients of expansion for the epoxy and the metal.
b. Improper formulation or processes for applying the epoxy primer to the metal.
c. Chemical attack by the nickel sulfamate bath on the epoxy primer layer.
d. Improper cleaning of the metal substrate prior to application of the epoxy primer.
e. Excessive thickness of the epoxy spincasting.

2.9 EPOV TESTP PF JGRAM

Since the apparent source of contamination of the electroforming solution and the ultimate failure of the master and epoxy mold was attributed to the unstable epoxy, a program designed to provide assurance of the stability of the epoxy which would be used for additional spincastings wa: undertaken. A test prucedure was developed which would provide a means for evaluating each step of the process so that should failure occur it could be pinpointed.

An abridged version of the program plan to conduct these tests is found as Appendix B.

Twelve separate epoxy formulations were hand mixed, cured and tested for chemical resistance and electroform bath contamination. Four of the twelve samples gave excellent results and were considered stable. The best two samples (both cured at $72-73^{\circ}$ F) were immersed in a nickel-sulfamate bath after appropriate cleaning, sensitizing, and silvering. A 5-mil nickel plate was then electroformed against them. The resulting nickel was bright and ductile. It compared favorably to the reference nickel plated in the same bath against a stainless steel sheet. One of the twelve formulations tested was identical to that used for the 9. 5 -foot epoxy mold which failed and this formulation did not pass. (This confirmation was gra ifying in that it highlighted the critical nature of the relationship between the two catalysts used.)

The formulation which gave the best total results was then machine mixed in the equipment located at the spincasting facility to evaluate the effects of machine mixing. Twenty samples were pured and ambient cured, followed by a post cure at $120^{\circ} \mathrm{F}$. These samples did not successfully survive the chemical treatment. Failure began to occur at the end of the one hour cleaning step and further deterioration took place in the sensitizing solution.

An evaluation was then conducted to isolate the cause of failure. A check of the temperature recorder charts used during the ambient cure showed that the actual temperature was 68° and not $72-73^{\circ} \mathrm{F}$ as set. To determine what effect this lower ambient cure temperature had on the epoxies, hand mixed samples were cured at $68^{\circ} \mathrm{F}$ and $75^{\circ} \mathrm{F}$. None of these failed at the lower scale while random results were obtained at the upper limits, as expected.

Two other causes of failure of machine mixed samples were investigated. One was the possibility of incorrect ratios of resins and hardeners. Since the formulation was performed by two fully experienced personnel, each checking the other, and because their logs verified the accuracy of their measurements, this source of error was dismissed. The other failure
mechanism considered was the degassing, pumping, and mixing equipment; to check these out, the following tests were run:
a. Hand mixed samples from the mixing/degassing tanks.
b. Hand mixed samples from the outlet side of the proportional pumps.
c. Machine mixed samples from the nixing head.

These samples were ambient cured for the 48 -hour period required, followed by a post cure of 10 hours at $120^{\circ} \mathrm{F}$. Chemical resistance tests were run against these samples and they failed to pass.

The explanation for these failures was found in "‘. e temperature recorder which showed that the cure chamber failed to maintain the preset $72-73^{\circ} \mathrm{F}$. Further investigation showed that there were two contributing factors, namely the control of the CO_{2} used to cool the environmental chamber failed to operate in a constant mannel and the building air conditioning also failed during the cure period with the net result that temperatures in the chambers reached $80^{\circ} \mathrm{F}$ on occasion. Since the previous tests conclusively showed how critical the upper limit of the ambient cure temperature is to the stability of the epoxy, it was apparent what had caused these failures.

The test program showed that stable epoxies can be repetitively produced providing appropriate attention is given to quality control. It further demonstrated the critical part that ambient cure temperature plays in successfully formulating a resistant surface.

Based on the results of these tests, the following conclusions were drawn:
a. The ultimate stability of the epoxy formulation being used is ambient temperature cure dependent. The upper limit is approximately $75^{\circ} \mathrm{F}$, above which failures occur in a predictable fashion. Samples cured below this temperature were chemically resistent and produced good nickel. The lower limit was not established but it is known to be below $68^{\circ} \mathrm{F}$.
b. Post curing at $120^{\circ} \mathrm{F}$ is most effective with the epoxy exposed to the ambient environment, i.e. the mold or sample cover is removed.
c. Epoxies which are not subject to chemical attack $\left(\mathrm{H}_{2} 0\right.$, cleaning solutions, sensitizing solutions, silvering) will not contaminate nickel sulfamate baths during the electroforming process.
d. The basic formulation is stable if properly mixed and cured and will, therefore, produce good nickel when used as a plating surface.
e. Close temperature control in the immediate vicinity of the spincasting table is essential to the production of a successful epoxy mold. This temperature control must be maintained throughout the period of spincasting, ambient, and post curing.
f. The ratio which exists between the catalysts used is critical. Slight variations will cause either excessive exotherm or incomplete curing. In either case, the result is an unstable epoxy.
g. A high degree of quality control effort throughout the entire fabrication phase is the best assurance of success. This requires material, procedural and equipment inspection, monitoring, and modification as needed at each step of the process. It also dictates a thorough and continuous sampling test program be conducted in parallel with the primary spincasting effort.
h. The successful formulation of stable epoxies which can be used for electroforming precise, high quality surfaces, is a developing art, many of the problems of which have been solved or identified.

2. 10 SPINCASTING NO. 2

Based on the results of the epoxy test program, the decision was made to go ahead with a new spincasting. A number of precautions were taken to ensure that the quality of the epoxy was protected throughout the process. An enclosure was built around the spin table and the entire area was temperature and humidity controlled.

The entire surface of the mold was cleaned down to bare metal using a high speed disc grinder with a coarse grit wheel. All signs of the previous primer were removed. The mold was then flushed, cleaned and treated in accordance with Appendix C. "Cleaning of Spincast Mold \& Cover". A good water hreak test was obtained indicating the surface had been thoroughly prepared and cleaned. Similar treatnent was given the polyester mold cover as well.

Because of the nature of the separation that had occurred between the epoxy and the mold substrate it was decided to make lap shear tests of the bonding or primer epoxy. A number or different primers were considered and two were chosen for testing.
a. Pentamid 815 and Teta
b. Pentamid 815, Cabosil, Toluene and Araldite resin No. 571 Kx .

Five lap skears of each were prepared. The results of this testing are shown in Appendix D. The second formulation noted above gave the best results both in actual strength and in cohesive rather than adhesive failure.

The mold and cover were then sprayed with the selected primer, air and elevated temperature cured in accordance with PIR 4622-103, (Appendix E). Quality Control samples were prepared and bonded in the same manner. During the post cure, the cover was elevated above the surface of the mold to permit the removal of vapor by free circulation of the air in and around the mold. After allowing the temperature to drop to $100^{\circ} \mathrm{F}$, the cover was lowered
and fastened to the mold prior to removal from the oven. Scratch tests of the thickness specimens indicated a complete cure without any of the "cheese-like" characteristics observed on the back of pieces of epoxy taken from the failed mold.

The lap shear samples were prepared with the mold and showed good strength characteristics. The hardness of 'hockey puck" specimens of the primer was checked and found to be 70-75 Shore A instantaneious and 20-22 Shore D instantaneous. Tests made on a piece of the mold which failed showed $85-90$ Shore A and D indication. The primer used for that casting was less flexible than the one applied to the substrate for the second spincasting. The thickness of the primer as measured on 12×12 inch sample panel was shown to be 5 to 15 mils .

The mold structure was successfully aligned to the pre-established holes and pins and leveled with the adjusting screws in each corner of the triangular support structure. The table was spun to observe wind effects within the new enclosure built to provide close temperature control around the mold. The turbulence was materially less than experienced in previous pours since the air was pushed ahead of the table around the octagonal room. The environmental enclosure built around the spintable was designed to maintain temperature control to within $\pm 2{ }^{\mathrm{o}} \mathrm{F}$ with a $72^{\circ} \mathrm{F}$ ambient. Six thermocouple locations were selected to observe room temperature.

Balancing of the table was done at 16 RPM with the use of dial indicators. Maximum deviation of 0.001 inch vertical and 0.003 horizontal were observed. This was well within tolerances previously established. The dial indicators were left on during all spin operations and were read periodically to ensure that deflections did not exceed those establisheci as acceptable. Motor drive current required was also less. The :able RPM counter checked out well and showed excellent speed control was being maintained by the Kinetrol drive unit. The table operated satisfactorily throughout all pour and spii ast periods.

Emphasis was placed on quality control throughout the contract. The primary consideration was given to the use of epoxy samples produced prior to and immediately following the ihree pours. The resins and catalysts were pui in their respective tanks which were then degassed
and pressurized with N_{2} for feeding to the punping equipment. Samples were taken from each pump and weighed to be sure that the proper amount of each would be delivered to the mixing head. Sainples of the resulting mixture (epoxy) were then poured into 10 inches pyrex pie plates and allowed to cure at ambient and elevated temperature.

Sample identification is found in Appendix F. In addition to duplicating the cure conditions of the mold (i.e., $72^{\circ} \mathrm{F}$ ambient cure), it was decided to cure samples both above $\left(77^{\circ} \mathrm{F}\right)$ and below $\left(67^{\circ} \mathrm{F}\right)$ ambients as a further check on the effects of temperature on the quality of the epoxy. In ea ch case, ambient cure was followed with an elevated cure of $120^{\circ} \mathrm{F}$ for a period of approximately 15 hours. Ambient temperatures other than the $72^{\circ} \mathrm{F}$ were obtained in a small environmental chamber located outside the spintable room. Other samples were cured in the room with the mold.

All mixing and pumping equipment was thoroughly flushed and cleaned immediately following c:ich pour as a precautionary measure. Pump calibre on was conducted prior to each sample rim and pour to assure proper proportions going to the mixing head.
l^{\prime} ours 1,2 , and 3 were made by pumping directly from the mixing equipment through mlypropylene tubing into a flow controlled funnel placed in the pour pipe located on the tup of the mold. Prior to each pour, the mold was purged with dry nitrogen for a period of 4 to 5 hours. Each pour took approximately 45 minutes and consumed roughly $12-13$ gallons of epoxy. Samples were taken following each pour, again for decermining the expected quality of the mold. In addition, a pour from batch one and batch twe was made on the small (30 inches) spintable to permit determination of the completion of the "setting" time of the epoxy after which the large table could be stopped. In general, this ambient spin cure was about 4.2 hours in length. No difficulty was encountered in any of these operations.

Observation through the glass ports in the mold cover during the three pours indicated the surface was irregular during pours 1 and 2 . The flow of epoxy from the center to the outer edges was uneven. Some irregular lines were observed near the center following pour No. 2. Pour No. 3, however, flowed very evenly suggesting irregularities in the No. 1 pour surfac? were effectively corrected by pour No. 2 .

Following completion of pour No. 3 and the nurmal ($32-42$ hours) spin cycle, the thermal cure cycle was started. Temperature in the spincast room was raised at a rate of 5% hour from $72^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}$. The cover of the mold was raised about 6 inches to allow free air circulation during the thermal cure. Again, to make sure that the test samples "saw" the same environment as the mold, the plastic and aluminum sheet covers were removed. The total period of elevated or post cure was 19 hours. This is somewhat longer than previous cure periods and was purposely extended to provide additional assurance that all vapors (amines) were driven off prior to lowering the temperature.

Temperatures were lowered from $120^{\circ} \mathrm{F}$ to $85^{\circ} \mathrm{F}$ (with the cover back in place) at a rate of 3^{o} F per hour. Samples were removed from the room and sent out for chemical compatibility tests. Samples which were cured in the same manner as the mold tested satisfactorily. Two of the samples were subjected to electroforming tests. These produced bright ductile nickel indicating a stable epoxy had been produced.

The cover was removed from the mold and visual inspection made. The surface was considered to be excellent in appearance and an optical inspection was begun immediately. The adjusted mean slope error was found to be 34.8 arc seconds. Results of this inspection are found in Appendix G.

2.11 REFERENCE

2-1 Final Report--9.5 Diameter Master and Mirror, GE Document No. 64SD540 dated March 20, 1964

BLANK
 PAGE

SECTION 3 ELECTROFORMED NICKEL MALE MASTER

This section describes the work conducted in fabrication of the nickel male master from the second epoxy spincast mold. It includes the optical inspection and efforis to introduce minor realignment of distortions observed during the optical inspection.

3.1 PREPARATION OF EPOXY MO ${ }^{\text {? }}$. FOR ELECTROFORMING

Critical steps in electroforming nickel on epoxy masters are the preparation of the epoxy surface, the backup structure and dry running of the entire system into the empty tank prior to placing the mold in the nickel sulfamate bath.

It was necessary to mask off all areas of the mold support structure which were not already stopped-off to prevent attack by the electrolyte. This was done by applying a combination of tape and microstop to all exposed bare metal. The edge of the mold beyond the scribed line was treated with collodial silver to assure a good current flow and to minimize the chance of hangup at this point of contact when the male master was separated from the epoxy mold. A center plug of epoxy was removed from the mold to permit flow of nickel sulfamate bath around and "through" the mold. The edge of the hole was rounded off, smoothed and collodial silver applied to assure good current. This sample was also used to permit a test (chemical and nickel plating) of the actual mold epoxy material prior to placing the mold in the bath.

The nickel sulfamate temperature was brought up to $100^{\circ} \mathrm{F}$ while the room temperature was approximately $90^{\circ} \mathrm{F}$. This was done to minimize thermal shock to the mold when luvering it into the bath and to minimize delay time between surface preparation and the start of electroforming.

The cleaning, sensitizing and silveling of the surface followed. The cleaning was accomplished by spraying a solution of $\mathrm{Na}_{2} \mathrm{Co}_{3}, \mathrm{Na}_{2} \mathrm{Po}_{4}$ and a wetting agent directly on the face of the mold. Thi was continued until a water break-free condition was achieved. The surface was then sensitized with a stannous chloride solvition and thien silvered by a chemical reduction of an ammoniacal silver solution. Each of the above steps was acce mplished without difficulty.

The mold was lowered into the bath slowly, allowing the bath temperature and mold to reach equilibrium before submerging it completely. Secondary or auxiliary anodes were used to provide a cathodic condition for the mold. Bath stress levels for the selected plating conditions were 110 C psi at this point. Solution temperature was gradually raised to $120^{\circ} \mathrm{F}$.

During the first 24 hours, a rise in stress level was noted. Based on the stress cell readings current density was reduced while an evaluation of the cause was made. It was found that the filters in the recirculating system had not been properly charged with carbon; consequentli, impurities were building up. Following a carbon charge, the stress ma.kedly decreased and current density was again brought ap to 20 asf. Stress levels did not reach an alarming level at any time and there was no indication of any damage to the mold or the eiectrcicrm.

Deposition proceeded at a average plating rate of approximately one mil per hour. It vas determined that at the end of 19-1/2 days enough time had elapsed to permit the deposition of $3 / 8$ inch of nickel on the epoxy mold. This was the predetermined amount desired to produce a satisfactory mirror master. The current flow from the generator was discontinued and a trickle drain from the backup battery took over. The tank was drainel of sulfamate solution, the electroforming cell was removed and the mold was then flushed down with $120^{\circ} \mathrm{F}$ water.

Inspertion of the back surface of the master showed it to be generally smooth; however, there were a few nickel nodules ranging from $1 / 4$ to 1 inch high. They were localized and were not considered to be of any real significance. It was noted that some iron had deposited on the anode bags and that some peeling of the epoxy paint on the liner of the tank had taken place. This condition explained the presence of the nodules, but because the change did not occur during the early plating time period, the front surfase of the master was considered to be "safe". ('This was shown to be true based on inspection following separation.)

3.2 SEPARATION OF NICKEL MASTER FROM THE EPOXY MOLD

It was decided that separation of the master and mold would be attempted by a mild thermal sh ing rather than the more severe shocking required by the IML mold/mes. To accomplish this, two parallel $1 / 2$-inch copper tubes were epoxy-Londed to the back sici. of
the nickel master. Liquid fittings were attached to the open ends to permit the artachment of hot and cold water and/or liquid nitrogen lines. All nodules which exceed $1 / 4$ inch were removed by cutting wheel. The entire surface oi the nickel back side was coated with a primer coat (Ferroprene) to assure gocd bonding when the bacikup structire was foamed into piace. The structure itself was abraded with a grinding toc: using a heavy grit paper and it, too, was coated with the same primer.

A bonding epoxy used to secure the conforming fiberglass backup structure the nickel male master. It is a closed-cel! urethane employing a fluorinated hydrocarbon as the expanding agent. The foam is generated by mechanically mixing approximately equal quantities of resin and catalyst and then pouring into the area between the nickel master and the backip structure. Curing time is rougly 24 hours.

Hot tap water $\left(150^{\circ} \mathrm{F}\right)$ was directed tr- ${ }^{-\mu g h}$ one of the embedded coils and allowed to circulate all night. Temperature at the coil entrance and a point on the nickel master midway between the coils was monitored by trermocouples. A previous analysis showed that a temperature differential of $50^{\circ} \mathrm{F}$ was perfectly safe. Temperature of the nickel the following morining was only $120^{\circ} \mathrm{F}$. Cold water $\left(50^{\circ} \mathrm{F}\right)$ was then directed through the parallel coil, bu. it failed to bring down the nickel temperature with any noticable degree of rapicity. Obviously, insufficient thermal shocking was teing effected by the coils.

The mold was then inverted with the backup structure on the bottr m, but raised an inch or so from the floor. Liquid nitrogen was directed across the back side of the aluminum epoxy mold and the structure was vibrated with hammers until separition occurred. Visual inspection of the master showed it to be of excelleni quality with only one ar two very minol etch marks.

3.3 OPTICAL INSPECTICN (SEE APPENDIX H)

Since a prime objective of this contract was to provide a high quality master from which additional concenirators might be produced, it was improtant to determine the actual geometry of the surface. Therefore an optical inspection was undertaken to provide this information.

The master was placed on the spin table and leveled. During the leveling operation, a warpage was optically (with transit) observed such that the scribe line over the three support points was high, with an apparent "droop" between supports. Although it was felt that the backup structure was sufficiently rigid to prevent this distortion, one of the supports was replaced with two supports shifted approximately 60 degrees. No change in distortion was observed indicating adequate rigidity of the backup structure. The technique used for the optical inspection of the master is shown schematically in Figure 3-1. A light source and lens assembly were sequentially located to produce a converging beam of light on the nickel master at a point directly beneath the objective lens of telescopes 1 through 8 . The eyepiece of the telescope was adjusted, when necessary, to provide a best-fit image in the field-of-view. This adjustment was made as a convenient "vernier" rather than making small changes in the location of the light source, and was considered acceptable for obtaining relative readings of the optical quality of the master. Readings were made at 5 degrees increments for each of the eight telescopes, and the data was reduced by the 7094 computer program. The program has been improved to utilize a computer recorder to provide direct printout of the

Figure 3-1. Optical Schematic For Inspection of Mirror Master
curve data. Curves were produced for both raw and adjusted data based on all 8 telescepes, the same as was provided for the mircor and spincast master. In addition, adjusted curves were produced based on individual telesccpe readings since a comparison between the 72 readings of any one telescope are the only valid indicators of the quality of the master surface. The formula for converting the telescope readings to slope errors is:

Adjusted slope error $=\sqrt{\left(x_{n}-\bar{x}_{n}\right)^{2}+\left(y_{n}-\bar{y}_{n}\right)^{2}}$
where $\mathrm{n}=$ telescope Nos. 1 through 8

The similarity between the adjusted readings per telescope (above) and the raw and adjusted readings based on all telescopes indicated the alignment of all 8 light sources was such as to provide an average telescope reading near 50 for both the X and Y slope errors.

The average adjusted slope error for each telescope was as follows:

TELESCOPE	AVERAGE SLOPE ERROR
	(Minutes)
1	4.097
2	3.275
3	3.132
4	2.567
5	2.939
6	2.437
7	2.101
8	2.153

The average slope error for all telescopes is 2.838 minutes, slightly better than the raw or adjusted average slope error based on total readings of all 8 telescopes. Table 3-1 is a distribution of raw slope errors based on all readings for telescopes 1 through 8.

TABLE 3-1. RAW SLOPE ERROR DISTRIBUTION, 10-FOOT DIAMETER NICKEL MASTER

Telescope Number	SLOPE ERROR RANGE (MINUTES)								
	0-1	1-2	2-3	3-4	4-5	5-6	6-7	7-8	8-9
1	0	6	13	16	17	7	7	5	1
2	5	9	11	16	21	8	1	1	0
3	2	16	15	15	20	4	0	0	0
4	16	13	11	19	11	2	0	0	0
5	2	6	9	24	25	5	1	0	0
6	12	24	6	11	18	1	0	0	0
7	10	25	14	9	13	1	0	0	0
8	4	12	33	17	6	0	0	0	0
All Telescopes	51	111	112	127	131	28	9	6	1
Σ	51	162	274	401	532	560	569	575	576
\%	8.9	28.2	47.7	70.0	92.5	97.5	99.0	99.9	100

Table 3-2 is a distribution of adjusted slope errors based on all readings for telescopes 1 through 8.

It was expected that the optical inspection of the nickel master would show it to be considerably better than the mirror duplicated from it. Inspection data showed, however, that the master was in fact closer to the mirror than to the epoxy spincasting.

Figure $3-2$ is a curve showing the percentage of the slope readings equal to or better than any given error value for the original epoxy spincasting, the nickel master, and the electroformed mirror replica.

TABLE 3-2. ADJUSTED SLOPE ERROR DISTRIBUTION, 10-FOOT DIAMETER NICKEL MASTER

Telescope Number	SLOPE ERROR RANGE (MINUTES)									
	$0-1$	$1-2$	$2-3$	$3-4$	$4-5$	$5-6$	$6-7$	$7-8$	$8-9$	
1	1	7	7	25	12	7	8	4	1	
2	5	12	13	12	17	11	1	1	0	
3	1	17	19	13	16	6	0	0	0	
4	11	20	11	12	13	5	0	0	0	
5	3	8	7	27	22	5	0	0	0	
6	18	18	6	10	13	7	0	0	0	
7	19	16	15	10	11	1	0	0	0	
8	3	20	33	12	4	0	0	0	0	
All Tele-	61	118	111	121	108	42	9	5	1	
scopes										
Σ	61	179	290	411	519	561	570	575	576	
$\%$	10.6	31.2	50.4	71.5	90.2	97.5	99.2	99.9		

The degradation of the nickel master compared with the epoxy master is related to the ± 0.05-inch warpage which was observed when the master was being aligned on the spin table for optical inspection. There is a fairly good correlation between the measured distortion and the expected distortion due to $\mathrm{a} \pm 0.05$-inch warpage in the paraboloid. As a first approximation, the angle formed by the 0.05 -inch movement at a 60 -inch radius is arc $\tan \frac{0.05}{60}=0.0008 \simeq 0.00003$ arc minutes. The maximum slope error, however, is greater than a linear function of the radius and the deflection. It more nearly follows a cantilever beam, with the slope error increasing at increasing radii. The actual measured maximum slope errors were two-to-three times the three minutes obtained by the simplified approximation.

Figure 3-2. Combined Slope Error - Minutes

3.4 MASTER REALIGNMENT

An attempt was made to reduce the warpage in the nickel master by application of a radial compression force at the high points on opposite sides of the master (see Figure 3-3). Force was applied by tightening the loading bolts on a force input beam assembly. The load at each point was spread over a distance of 24 inches around the periphery of the master by a pair of conforming shoes in order to prevent local rippling of the nickel master. Approximately 5400 pounds of force was applied to the master, causing an average compressive load of 600 psi locally. Measurement was initially made by optical jig transits viewing the outer scribe line on the nickel master, the objective being to adjust the radial force input to the master to obtain a minimum variation in the elevation of the scribe line. A maximum of approximately 5400 pounds of radial compressive force was applied to opposite sides of the master at points where the scribe line was observed to be about 0.05 inch high. Measurements were made at $0,1800,3600,5400$, and again at 0 load; but no characteristic pattern could be detected in the results.

Figure 3-3. Force Input

A recheck of the optical inspection of the nickel master was then made to determine if any permanent changes were evident in the master, and to establish a base reference for observing the change in optical quality where loads are applied to the master. A complete check at 5-degree increments was made for all eight telescopes; the results are shown in Appendix I. In general, the performance appeared to be the same as shown for the first optical inspection of the master.

A load of 5400 pounds was then applied to the master by means of the force input beam assembly at the two high points on the master. The force was generated by applying 600 inch-pounds of torque to s_{4} load input bolt on the force input beam assembly. The force is related to the torque by:

$$
T=F R \frac{\mathrm{P}+\mu \mathrm{C}}{\mathrm{C}-\mu \mathrm{P}}
$$

```
where
\[
\begin{aligned}
& \mathbf{T}=\text { iorque applied } \\
& \mathbf{F}=\text { force in pounds } \\
& \mathrm{R}=\text { mean radius of screw }=4.5 \text { inches } \\
& \mathrm{P}=\text { pitch of screw }=0.125 \text { inch } \\
& \mathrm{C}=\text { Mean circumference of screw }=2.83 \text { inches } \\
& \mu=\text { coefficient of friction }=0.2
\end{aligned}
\]
```

Actual applied force can vary over a fairly wide range, probably $\pm 25 \%$ due to variations in the coefficient of friction.

Curve, Figure 3-4, shows the change in radial slope reading with 5400 pounds of campressive force applied at the 170 and 350 -degree reference positions. Slope changes occurred to a greater extent on the No. 1 telescope which is at the maximum radius. The correction seemed to occur over an angular range of 20 to 25 degrees, which corresponds with the 24 -inch length of the load input shoe. Slope change, which was noticeably smaller on the No. 2 and No. 3 telescopes, was not noticeable at all on the No. 8 telestope.

[^2]The next test was an attempt to develop a bending moment in the master by applying a downward loading at the points of load application with the force input beam assembly. A small (200 -pound) force was applied to each end of the beam with the reaction being taken by the load support jacks. It was thought that some slight corrective action would be observed, although the differential readings on the No. 3 telescope showed no detectable effect. Later calculations showed that the tensile stress in the nickel master is in the order of 10 psi , much too small to cause a corrective action (Figure 3-b).

The best adjusted average slope error reading obtained during the effort to realign the master was 2.893 arc minutes versus the 3.008 arc minutes read prior to this undertaking.

													!	T		T			T:	F-7	\%			Tat:
		-				;				:			\cdots	\%	\%	-	\%	\%	-	+1\%	,	:	\cdots	4
												!	.	\cdots	\cdots	4	O	-	-	\%	\%			
												,		-		-	-	:	\because	\%	+			+
						:				-			\%						+					-
	-				-	-				\because						.		!	,	P				-
										:		:			-	\cdot			\because	+	-	+	+	*
										;				+	:	:		\cdots	E	\%	+	T	-	
										!				+				:-		E	\%	\%		36
F									!						-	1		\#1:	\%	\bigcirc		+	+	\bigcirc
H:												:						-	-	स		A:		- ${ }^{2}$
														!	+			+		:				4
										:				-					\%	1			A	
有						I																		
3																								
																			:	\because				
												:			\cdots	1		;	,	4		1.		
\ldots						,									:	1		1				\cdots		-2.3
				1	E																	,		3
						-634				-												+		\square
				da44	48	10. 2	dad			4 aike					\%				-					
															12									
				W4e		400			Ruby	-	ain	h.		Ape	Q x_{0}			40	-					ㅁ
				P9,															\% ${ }^{\text {a }}$					园
		30				4				120														
					atcor					cot	Cen	Hese												

Fig.re 3-5. Change in Radial Slope Readings With 200 Pounds Down Pull On Radial Force Input Beam Assembly While 5400 Pounds Radial Compression Load is Applied to Nickel Master, 170 and 350-Degree Positions

SECTION 4
 ELECTROFORMED MIRROR AND INSPECTION

4.1 ELECTROFOKMED NICKEL MIRROR

Optical inspection of the nickel master reported in Section 3 did not take place until after the mirror was electroformed and inspected. In practice the master was made ready for electroforming of the mirror immediately after being removed from the bath, rinsed and visually inspected.

The following preparatory work was performed to reac δ the master for electroforming the mirror.
a. Excess bonding foam was trimmed away.
b. The cove ring (copper) used to form the nickei transition between the mirror and the torus ring was cleaned, titted, knife edged and silver lacquer sprayed.
c. Bakelite clamps for securing the cove ring to the master were cut and shaped.
d. All of the silver on the nickel surface was removed by hand polishing with french cotton.
e. The anode baskets on the rotating mechanism were cleaned, inverted, filled with new nickel anodes, bagged and locked into position.
f. A specially designed anode conforming to the cove ring was fabricated and secured to the ends of the baskets.
g. The center or crown grow-in ring was plated with nickel and secured to the center of the master.
h. A rubber shield was cut ond placed on the edge of the cove ring to ensure that the depositing nickel was directed to the critical point between the cove knife edge and the master.
i. A dry run was made in the tank to assure that the rotating anodes were at the right height from the master. Adjustments, as necessary, were made to the mechanism and the master.
j. The master was silver sprayed and the cove ring was clamped in place.
k. The entire asscinbly was then lowered into the nickel sulfamate bath.

Electroplating of the mirror was performed at approximately 2200 amps or $27.5 \mathrm{amps} / \mathrm{ft}^{2}$ for a period of $\mathbf{2 8}$ hours. This combination was designed to yield a mirror thickness of approximately 40 mils. Stress readings were taken throughout the electroforming run in order to maintain as ' Jw a stress level as possible. Control of the stress was maintained by changing the current density, carbon filtration and bath temperature. Table 4-1 shows the actual readings recorded during the dcpositio! : yeriod. The nickel mirror was electoformed at conditions yielding the lowest stress values practical and were in fact lower then any previous electroforming work completed by General Electric on similar configurations.

TABLE 4-1. DEPOSITION STRESS OF NICKEL SUFAMATE SOLUTION, IN PSI

	CURRENT DENSTTY RANGE, ASF			
STRESS RUN	$\underline{6-10}$	$\frac{10-15}{15-20}$	$\underline{20-35}$	
A-11/22, $120^{\circ} \mathrm{F}$	1100 C	2300 C	11300 C	4200 C
$\mathrm{B}-11 / 22,110^{\circ} \mathrm{F}$	2600 T	3800 T	16000 C	200 C
$\mathrm{C}-11 / 23 \mathrm{AM}, 110^{\circ} \mathrm{F}$	1200 C	3300 T	8500 C	1100 C
$\mathrm{D}-11 / 23 \mathrm{AM}, 120^{\circ} \mathrm{F}$	1400 C	750 T	8500 C	450 T
$\mathrm{E}-11 / 23 \mathrm{PM}, 120^{\circ} \mathrm{F}$	1850 C	2350 T	1800 T	2000 T
$\mathrm{~F}-11 / 24,120^{\circ} \mathrm{F}$	2500 C	200 T	5000 C	3500 T

C Denotes compressive stress
T Denotes tensile stress

After shutting off the current, the bath was drained and the mirror/master was flushed thoroughly with fresh tap water.

4.2 SEPARATION OF MIRROR FROM MASTER

Plans were generated for separating the mirror from the master using vacuum techniques. A time period of one week elapsed between the completion of the electroforming and the arrival of the master/mirror combination at the vacuum chamber facilities.

While preparing for vacuum separation, it was noted, that partial separation had already taken place at the area between the cove ring and the nickel master. Tapping on the back of the mirror also indicated that areas of little or no contact between the mirror and master existed.

Vacuum separation plans were therefore abandoned. The nickel torus ring was epoxy bonded to the cove ring and allowed to cure overnight. Steam lines were connected to the built-in copper tubing in the back of the master and a plastic sheet was spread over the top of the back side of the mirror.

Crushed ice was dumped on the sheet while steam was passed through the coils.

To provide for a constant pull upward on the mirror, three spring balance scales were attached to a triangular sling and secured to the hard points of the torus. Lifting action was accomplished by applying a constant pull with a sensitive overhead crane on the sling (120 pounds on each scale).

After approximately one-half hour of cold shocking, separation was completed and the mirror was moved away from the master and placed on a specially constructed wooden frame. Visual inspection of the mirror was made and the distortions noted below were observed. In addition, staining or discoloration was apparent from the outer edge inward for approximately 2 feet. This was attributed to oxidation of the silver and interaction of the silver and sulfamate
atmosphere during the period the master/mirror combination was in the drained bath tank at the electroforming vendors. The stain proved to be easily removable with french cotton polishing. It was also observed that the silver adhesion to the mirror was excellent and none was left on the master.

A brief discussion of the local distortions follows:

4.2.1 TORUS ATTACHMENT

An unexpected difficulty was experienced in the attachment of the torus to the electroformed reflector. Care was taken during the fabrication of the torus to relieve the rolling and welding stresses by annealing. A small amount of trueing up was required after stress relieving to achieve a roundness and flatness within $\pm 1 / 8$ inch. This tolerance was established to provide a maximum thickness of epoxy bond no greater than one-fourth inch. Unfortunately, the alignment of the copper cove ring was not held within tolerance when it was applied to the electroformed nickel master. This out-of-tolerance condition was not taken into consideration during the bonding of the torus to the cove ring, with the result that serious mismatch occurred between the two. Furthermore, excess epoxy remained on the cove ring, stiffening the ring and adding to the distcrtion of the reflector.

4.2.2 LOCAL STICKING OF REFLECTOR TO ELECTROFORMED MASTER

Two points were observed where the electroformed reflector formed a strong electro-chemical bond to the master. These points were not apparent when the separation was initiated, resulting in localized areas of distortion in the immediate areas of the sticking. Performance of the reflector was not affected appreciably by these distortion areas since the percentage of the total surface is small - in the order of 0.1 to 0.2 percent of the total reflector area. These attachment points could have resulted from localized imperfections in the nickel master, although it is believed that they were caused by dirt particles failing on the nickel master after chemical silvering and before placing the master in the electroforming solution. Salts from the electroforming baths in the dirt particles can react with the $\mathrm{H}_{2} \mathrm{O}$ on the surface of master to activate the surface and cause a strong electrochemical bond to the nickel master.

4.2.3 SEMICIRCULAR DISTORTION AREA

A localized area of distortion occured at one edge of the mirror where a large number of small "dimples" were observed. This area was surrounded by an arc of a circle where there was a noticable change in slope.

Mirror thickness measurements were taken using the same ultrasonic technique described in Reference 2-1. The average thickness was 37 mils or within 7 percent of the design of 40 mils (Table 4-2).

4.3 OPTICAL INSPECTION

Optical inspection of the mirror was made using a 75 -watt xenon lamp at the focal point and eight telescopes located at various radii such that each telescope represented an equal area on the mirror surface. The aperature of each telescope was stopped down to less than one-fourth diameter. The focal distance was measured and was found to be $6811 / 16$ inch from the flat front surface of the ring at the center of the mirror. Telescopic readings were taken at 5 degrees increments around the mirror on each of the 8 telescopes, yielding a total of 576 inspection points. There were 37 points where the reading fell outside the field-of-view of the telescopes, although in many cases, some light could be seen indicating that the point was near the field-of-view. (The field-of-view is approximately 7 minutes of slope error). A conservative estimate of the value of these points was made by assuming a telescopic reading of $150-150$ for these points. This gave an assumed slope error of 13 minutes for these points which is believed to be much greater than the actual value. The average adjusted mean slope error was found to be 4.320 arc minutes. (See Appendix J.)

Preliminary analysis of the results showed that there was an area in the region of 110 to 220 degrees where the readings were greater than about two minutes of slope error. One support point was moved approximately 10 inches to force the mirror into a more desirable position (due to its own weight). Readings were then taken at 1.0-degree increments at which time all except three of the 288 readings were within the field-of-view of the telescopes. This data is shown in Appendix K. Data is in are minutes and is presented as produced by the computer recorder and the 7094 computer. The average adjusted mean slope error was read as 3.917 arc minutes.

Table 4-2. \quad 9-1/2 FOOT MIRROR THICKNESS

Ref No.	Radius Inches	Ref Angle	Thickness Inches	Ref No.	Radius Inches	Ref Angle	Thickness Inches
1	50	90	$*$	33	35	210	0.036
2	50	75	$*$	34	35	180	0.036
3	50	60	$*$	35	35	150	0.037
4	50	45	0.039	36	35	120	0.037
5	50	30	0.039	37	20	90	0.036
6	50	15	0.040	38	20	30	0.035
7	50	0	0.039	39	20	330	0.035
8	50	345	0.040	40	20	270	0.035
9	50	330	0.039	41	20	210	0.034
10	50	315	0.039	42	20	150	0.035
11	50	300	0.040	43	8	90	$* *$
12	50	285	0.038	44	8	30	$* *$
13	50	270	$* *$	45	8	330	$* *$
14	50	255	0.038	46	8	270	$* *$
15	50	240	0.037	47	8	210	$* *$
16	50	225	0.037	48	8	150	$* *$
17	50	210	0.039	49	45	330	0.036
18	50	195	0.039	50	40	330	0.037
19	50	180	0.039	51	30	330	0.036
20	50	165	0.037	52	25	330	0.036
21	50	150	0.038	53	16	330	$* *$
22	50	135	0.037	54	12	330	$* *$
23	50	120	$*$	55	8	180	$* *$
24	50	105	$*$	56	12	180	0.033
25	35	90	$*$	57	16	180	0.035
26	35	60	0.038	58	20	180	0.035
27	35	30	0.037	59	25	180	0.036
28	35	0	0.039	60	30	180	0.036
29	35	330	0.036	61	35	180	0.036
30	35	300	0.037	62	40	180	0.036
31	35	270	0.036	63	45	180	0.036
32	35	240	$*$	64	50	180	0.038
No reading							
$* *$ Too rough for measurement on back surface							

4.4 ALUMINUM COATING

It is important to the success of the vapor deposition process that the surface of the concentrator be absolutely clean, free of greases, or other volatile materials. Since a greaselike carrier is used in the french cotton polishing cloth used on the mirror surface, considerable care was exercised to ensure that a thorough cleaning did take place. The cleaning procedure consisted of washing the concentrator first with a cleaning detergent, a hot rinse, followed by washing with an additional detergent and another hot rinse. Two such cleanings were required before a no-water break surface resulted. This was immediately followed by a rinse with distilled water to remove any impurities left by the hot tap water. This rinse was in turn followed by blowing off the excess water with gaseous nitrogen. As soon as the surface was completely dry, it was spray-coated with a strippable lacquer to protect the surface during shipping and storage.

The aluminum and oxide coatings were successfully vacuum-deposited on the surface of the concentrator at Liberty Mirror, a division of Libbey-Owens-Ford Company. The work was performed in accordance with Specification No. 1051 (Appendix L). Tests for reflectivity, adhesion and abrasion resistance were conducted on a flat piece of electroformed nickel which was placed in the open center of the mirror during vapor deposition. This nickel was electroformed at the same time as the mirror and therefore was a true representation of the nickel concentrator surface.

Satisfactory results were obtained in each test. A general haze on the surface of the mirror persisted after application of the coating; however, specular reflectivity of the sample measured 88 percent which was well with contract requirements.

4.5 TORUS DESIGN AND ANALYSES

Since it had been decided that the nominal thickness of the solar concentrator produced under the contract would be 40 mils (versus 72 mils on JPL contract No. 950239 (Ref 2-1)), a detailed structural analysis of the torus supporting the mirror was periformed in order to select the minimum section, consistent with manufacturing limitations, capable of fulfilling the mirror
imposed strength and deflection requirements. The results of this analysis are found in Appendix M. In brief, a 40-mil thick 3-1/2 inch nickel torus could have been used.

Since contract plans and funding did not permit undertaking a new torus design and fabrication effort, the same design used for JPL mirror was chosen for the contract. A description is found in Reference 2-1. Figure 4-1 shows the detail.

BLANK
 PAGE

SECTION 5
 SUPPLEMENTAL INVESTIGATIONS

As noted in Section 1, Summary and Objectives, additional work was undertaken after the start of the contract to investigate a method rf improving the surface of nickel masters and to attempt the separation of an electroformed mirror from a modified master using vacuum techniques.

A 30-inch "scrap" nickel master was "Kanigen" electroless nickel coated to t'iminate the porosity of the surface and was machine and hand polished to return the surface to a specular condition. This modified master was then used for electroforming an aluminum mirror to demonstrate the improvements in the master. Separation was accomplished in a vacuum chamber, not without difficulty, however. Two such mirrors were produced since the quality of the first one was unacceptable. The second unit delivered to NASA Langley Research Center showed a much improved geometry over the previous concentrator fabricated from this master. All hangup due to surface porosity in the master was eliminated, indicating that the Kanigen treatment was successful.

5.1 KANIGEN COATING OF NICKEL MASTER

A 5-mil coating of Kanigen electroless nickel was applied to the 30 -inch nickel master by Grunwald Plating Company, Chicago, Illinois. The coated master was heat treated at, $375-4250 \mathrm{~F}$ in order to increase adhesion of the coating. Hardness of the coating is shown in Figure 5-1. Several factors concerning Kanigen coating for aluminum electroforming were developed during this investigation.
a. Heat treutment of the Kanigen coating should be at $250^{\circ} \mathrm{F}$ rather than $375-425^{\circ} \mathrm{F}$. At $250^{\circ} \mathrm{F}$ the coating remains amorphous or non crystaline, and is less likely to be attacked by caustic solutions.* The $8-10 \%$ phosphorous which is present in

[^3]Heat treatment curve of Kanigen chemical nickel alloy coating

Figure 5-1. Heat Treatment Curve of Kanigen Chemical Nickel Alloy Coating
the super-cooled-liquid st are of coating forms tri-nicisl phosphide ($\mathrm{Ni}_{3} \mathrm{P}$) crystals on heat treatment. (Tests made on a wazh sample from run No. 1 aluminum mirror did not indicate the presence of any phospohorous on the mirror surface although the aluminura electroforming solution is caistic.)
b. Special precautions should be taken during the plating to prevent the formation of surface roughness due to settling of metalis particles on the surface of the master. Shielding, positioning or special tixturing can be used to eliminate this undesirable deposition on the surface of the master. These metallic particles were found to be present on approximately 20% of the surface area near one edge of the master and caused severe wear on the Burgandy pitch lap during polishing of the master. They were ulimately removed by local treatment of the surface with crocus cloth.
c. Any major work on the surface of the nickel master should be done prior to the application of the Kanigen coating to minimize the coating thickness required and to reduce the amount of final polishing of the hard coating.

5.2 POLISHING OF KANIGEN COATED NICKEL MASTER

Initial polishing was undertaken using a mechanical set up. 'The equipment consisted of the following:
a. An enclosure to exclude most of the external dust and dirt particles.
b. A four-foot ciameter horizontal turntable with adjustable drive speed in the order of 5 to 50 rpm .
c. Groups of three polishing laps rigidly mounted to a triangular support structure with $1 / 16$ inch to $1 / 8$ inch crossed vee groves of $3 / 8$ inch to $5 / 8$ inch spacing on the pitch lap surface.
u. A polishing lap mounting surface capable of supporting a number of lap assembiles and movable in a radial direction relative to the horizontal turntable.
e. A polishing lap mounting surface drive assembly to drive the mounting surface in a radial direction rolative to the horizontal turntable. The amplitude of the motion was $1 / 4$ inch, the frequency was in the range of 10 to 20 cps .
f. Hand mixed polishing slurry of Linde "A" and "B" compound was applied before the polishing lap assembly on the surface of the nickel raaster.
g. A six-volt small filament bulb which produced ${ }^{\circ}$ Schlieren type image of surface characteristics on a screen was used for the surface quality inspection.
h. Centering of the master on the table was accomplished without a theodolite since it was determined tinat exact centering was not required.
i. The master was directly clamped down to the turntable since it was determined that the exact alignment of the master with the axis of rotation was not required.

Polishing lap mounting surface drive system was a combination of springs, pulleys, weights etc., which established the approximate amplitude and frequency range.

Observations and conclusions obtained from the machine polishing process are as follows:
a. Continuous rotation of the table in one direction tends to produce "comet tails" from any local surface disturbance on the master.
b. Approximately equal speed of lap movement in a radial and circumferential direction is required to minimize or break up line patterns on the surface.
c. A random motion, or some specific motion pattern would be more desirable in producing good optical quality on the master surface.
d. An oscillating (cw-ccw) motion of the table with a very slow precision to cover the entire surface would be better than continuous rotation in either direction.
e. A large pitch lap with some flexibility in the backing would minimize the pattern effect produced by the several small laps. Individual elements (approximately $1 / 2$ square inch) of the flexible lap would be rigid and would provide good polishing action.

Figures 5-2, 5-3, and 5-4 show Schlieren type photographs of the Kanigen coated and polished nickel master.

Figura 5-5 shows a similar photograph of tne 30 -inch nickel master delivered on contract NAS 1-3309 for comparison purposes. Major dark areas on Figures 5-2, 5-3, and 5-4 are caused by the gramular metalic deposit which was embedded in the Kanigen coating. This deposit, when removed, by emery cloth, caused an uneven rate of metal removal in the local areas on the nickel master. The small circles visible on the smooth areas in Figure 5-2 are the result of slightly concave "dimples" in the (scrap) master, caused by the honeycomb condition which developed during electroforming. The sharpness of these "dimples" has been reduced slightly in Figures 5-3 and 5-4 by cloth polishing. The vertical pattern in Figure 5-3 is silver remaining from the faulty separation of the run No. 1 mirror. Additional lap polishing of the master would have removed this pattern from the master.

5.3 THIRTY-INCH DIAMETER MIRROR ELECTROFORMING RUN NO. 1

Electroforming of the aluminum concentrators was accomplished using the electroforming pilot cell described in Section 5.1.

Mirror No. 1 was electroformed on the Kanigen nickel-coated master which had been machine polished to conditions shown in Figure 5-2(worst area) as a Schlieren type photograph. A four-pound tension was applied at each of three points about one hour before time for insertion into the vacuum chamber. Separation occurred after five minutes of pumping at a pressure greater than the 1000 microns maximum reading on the gauge (Figure 5-6).

Examination of the mirror after separation showed the following:
a. Delamination of the aluminum electroform with a horizontal line pattern extending across the mirror master and the top ring assembly. Line pattern showed alternate nickel and silver/aluminum bands,
b. Corrosion on mirror surface, primarily on one edge of mirror.
c. No distortion or other indication of lock-in to pinholes in the nickel master.
d. Local distortion at two points on the ring assembly indicating lock-in to flaws in the machined surface of the ring.

Figure 5-2. Comet Tails and Line Pattern Produced by First Machine Polish of 30 -Inch Nickel Master

Figure 5-3. Comet Tails and Line Pattern after Cloth Polish to Clean Up Master Following Run No. 1 Mirror

Figure 5-4. Portion of $30-$ Inch Nickel Master with Minimum Line Pattern

Figure 5-5. Typical Portion of Electroformed Nickel Master Delivered on NAS 1-3309
T Tines

(
-

e. Continued fault lines along edge of mirror at intermittant points where the ring assembly did not provide adequate contact with the nickel master.

An investigation into the possible causes for the faults developed the following possibilities:
a. Heat treatment of the Kanigen coating at $375^{\circ}-425^{\circ} \mathrm{F}$ forms tri-nickel phosphide $\left(\mathrm{Ni}_{3} \mathrm{P}\right)$ which is more soluble in caustic solutions than the phosphorous which is "in solution" in the coating that is not heat treated.
b. Kanigen plating solution may have remained in pores of the nickel master to contaminate the aluminum electroforming bath.
c. Failure to maintain the nickel master cathodic while placing it in the tank may have caused the silver layer to be damaged.
d. Slow immersion of the cathode assembly may have weakened the silver layer.
e. An unintentional current interruption within the first ten minutes in the bath may have caused a lamination in the aluminum near the face of the mirror.

Emmision spectrographs of the distilled water rinse and dry components taken from the mirror surface did not detect any phosphorous in the residue. Duplication of the delamination was demonstrated in the laboratory, however, by causing a momentary current interruption during the first ten minutes of aluminum deposition. Placing the laboratory sample in the bath (non cathodic) without a current interruption resulted in a sound aluminum electroformed sample. Thus, it was determined that the surface condition of the 30 inch aluminum mirror was caused by delamination of the aluminum as the result of a momentary current interruption in the first few minutes after electroforming was started. All data to date has shown that similar interruptions after one hour or more do not cause delamination.

A conclusion was reached, based on the line structure of the failure pattern, that rapid immersion of the cathode into the bath without momentary pauses would be less likely to weaken the silver layer. Therefore, arrangements were made to motorize the hoist mechanism to provide a continuous, fast entry into the electroforming baths prior to making the next mirror.

5.4 ELECTROFORMING RUN NO. 2

Mirror No. 2 was electroformed to fulfill contractual requirements of delivery of a 30 -inch aluminum mirror to demonstrate the use of the Kanigen nickel coating to eliminate porosity. or poor surface quality in the nickel master. It was also important to verify the accuracy of the failure analysis following the Run No. 1 separation failure. The master surface was hand cleaned and polished using a 600 mesh silicon carbide and an aluminum abrasive, sizes 1 micron and 0.3 micron.

The primary cause for the separation failure on the No. 1 mirror had been determined to be the momentary current interruption within a few minutes after start of the electroforming cycle. However, the slow, manual insertion of the cathode assembly into the bath was felt to be a possible contributor to the mirror corrosion and, therefore, a motorized drive unit was added to the hoist by the vendor. Three dummy runs of the hoist assembly were made with the nickel master on the cathode assembly in the glove box to verify the newly modified hoist drive operation. In spite of these verification runs, the drive motor failed after the nickel master was lowered approximately one third of the distance into the solution. The drive motor was disconnected and the mirror was lowered the remaining distance into the tank by hand operation of the hoist. The remainder of the electroforming proceeded without difficulty.

Separation was attempted under vacuum conditions, initially with no spring tension and then with four pounds tension at each of three pickup points. Examination of the mirror periphery showed local hangup of the electroformed guide ring to the bolted top ring assembly. This was freed mechanically by gently working the aluminum loose, but sticking
appeared to be occurring at the guide ring joint. The bolted ring assembly was loosened and raised slightly to assist in breaking the edge evenly around the mirror. As sonn as this ring was free the mirror separated from the master due to the spring tension on each of the three lift points. There appeared to be no sticking or lock-in of the mirror to the master, indicating that the Kanigen process was completely effective in this case in correcting the porosity on the electroformed nickel master.

The mirror was washed to remove any traces of plating solution and cleaned with french cotton prior to being delivered to NASA Langley Research Center.

C

APPENDIX A

HAW MLASUNEL SLCPL LKHLR

MACLEAK
 (CEGHEESI ICEGNEESI
C
5
1 C
14 $\begin{array}{ccc}1 & 2 & 1 \\ 21.15 \mathrm{C} & 21.190 & 45.517\end{array}$
4
24.011
24.886
35.531
21.150
27.150
28.300
40.405
11.100
27.750
27.200
28.300
11.100^{6}
22.200
22.20
40.02
12
1
2
1
1
1
2
2
4
2
4
5

8

品
$3 C$
35
40
45
$5 C$
59
ancllar
 (Decrets)
c
5
16
1
32.12%
14.612
$?$
28.17 M
4.484
SCPL ILLLS
$15 . H 11$
\square

| | | |
| ---: | ---: | ---: | ---: |
| 6.174 | | 29.420 |
| 32.928 | 30.835 | |
| 32.12 H | | 32.328 |

oeneral electaic
mISSILE AND SPACE DIVISION PHILADELPHIA

*USE "C'" fOh CLASSII iED AND "U"' fOR UNCLAESIFIED PROGRAM IINFORMATION RECUEST / RELEASE

OPTICAL. INSPECTION FORTRAN IV PROGRAM

INFORMATION EROLFSMED/RELEASED

I. Purpost

This program computes the following results utilizing Azimuth readings from eight telescopes.
A. Standard deviation for each telescope for

X (radial) slope error

Y (circumferential) slope error
X and Y combined readings of all telescopes
B. Raw Measured Slope Errors

Calculated slope errors without any adjustment for light source position error.
C. Adjusted Slope Error

Calculated slope error with adjustments of all telescope readings based on the overall average X or Y deviation.
II. Input

This program raquires 3 types of parameter card input.

	page no.	Patrintion	nrouirements
		- 1 mo.	mastrab for
		-1. mon.	7. mor.
	1 or 8	प	$\square 12$ 200.
		\square mos.	\square mos.
A-6		\square	

II. Input (cont.)

Card 1 Title Information

Columns 1-72 will contain the BCD characters required as "title" for the printout.

Example: OPTICAL INSPECTION OF 9.5 SPIN CAST MASTER

Card 2 Control Card

This program utilizes the Fortran IV namelist facility for this parameter card.

Card Columns
2~7 $\$$ INPUT

Card Columns $\quad 9 \rightarrow 72$

Field $1 \quad N C D=I$,
where I is the number of data cards following, or number of degree positions of input.

Field 2 NDEG $=1$, where I is the delta degrees between slope error readings.

Field $3 \quad$ YMAX $=X_{0}$, where $X_{0}=$

1) The maximum value of raw, adjusted and combined slope errors. This value will be utilized as the maximum Y axis value for plotting scales.
2) If $X_{\text {. }}=0$. this program will compute the maximum value of all slope errors. The computed value will be utilized as the maximum Y axis value for plotting scales.

Field 4 DELTAY = Xo,
where X. =
the delta value of Y to draw grid lines for plotting. If YMAX = O., this field is not necessary. This program will compute the correct delta.

PIR 4A26-038
4/5/66
Page 3
II. Input (cont.)

Field $5 \quad$ IEND $=1 \$$
where $I=1$ if another set of parameter cards or optical inpsection readings are following.
$I=0$ Call Exit after these computations.

Example:
CC2
\$INPUT NCD $=72$, NDEG $=5$, YMAX $=15 .$, DELTAY $=1,$, IEND $=0 \$$

72 data cards are following in steps of 5 degrees. The plots will be scaled from 0. to $15 .$, with 15 lines on the grid. Each separation will have a delta value of $[\overline{1} .!$.

Thic is the only optical inspection test to be run at this time.

Card 3's Data Cards

There will be NCD data cards required following CARD 2. Each card will contain a degree position, increasing in steps of NDEG.

Format of Data Cards
Card Columns

	$5-8$	Azimuth reading in dggrets	(Right justified in columns)
Telescope1	*9-12	X (radial) reading	
	*13-16	Y (circumferential) reading	
Telegcope 2	*17-20	X (radial) reading	
	*21-24	Y (ctecumferential) reading	
Telescope 3	*25-28		
	*29-32	Same as Telescope 1	
Telescope 4	*33-36	Same as Telescope 1	
	*37-40	Same as Telescope 1	
Telescope 5	*41-44	Same as Telezcope 1	
	* 45 -48	Same as Telencope 1	

*NOTE: * denotes that these fields require decimal points.

PIR 4A26=038
4/5/66
Page 4
II. Input (cont.)

Telescope	$* 49-52$	
6	$* 53-56$	Same as Telescope 1
Telescope	$* 57-60$	
7	$* 61-64$	
Telescope	$* 65-68$	
8	$* 69-72$	Same as Telescope 1

See page 8 for examples of Data Input Card.
III. Output

This program generates two types of output
A. Printout

A printout of the results is generated on the system output tape. This printout will also precede the plots on the copy-flo scroll output. An example of the copy flo scroll output is shown in this section.

The following results will be available on this printout.

1. For each telescope

Average X reading and stand..rd deviation Average Y reading and standard deviation Average slope error
2. All Telescopes combined

Average X reading and standard deviation Average Y reading and standard deviation
*NOTE: *denotes that these fields require decimal points.

PIR 4A26-038
4/5/66

Page 5

III. Output (cont.)
A. Printout (cont.)
3. X (radial) vs. Y (circumferential) standard deviation
4. For each Angular Position of each telescope

Adjusted Slope Error
Raw Slope Error
5. For each telescope

Average Adjusted Slope Error
Standard deviation of adjusted slope error Average Raw Slope Error
Standard deviation of raw slope error
6. All telezcopes combined

Average raw slope error
Standard deviation
Median slope error

Average adjusted slope error
Standard deviation
Median slope error
B. Plots

This program will generate a tape which will be utilized by the Stromberg Carlson High Speed Microfilm Recorder (SC 4020). This recorder will generate plots of Combined, ráw and adjusted slope errors versus azimuth positions.

An example of the plots generated is available in this section.
The annotation specifies clearly which results are plotted.

FIR 4A26-038
4/5/66
Page 6

IV. Method

The following results are computed in this program utilizing the following equations.

Average X (radial) per telescope

$$
\bar{X}_{K}=\Sigma \frac{Y n}{N}
$$

$\mathrm{n}=1$ to number of azimuth positions
$K=1$ to 8 telescopes
$\mathrm{N}=$ Total azimuth positions

Average Y (circumferential) per telescope

$$
\bar{Y}_{K}=\Sigma \frac{Y n}{N}=\text { Same as } X \text { radial }
$$

Standard Deviations

X (radial) per telescope

$$
\sqrt{\frac{\left(X_{n}-\bar{X}_{K}\right)^{2}}{N-1}}
$$

Y (circumferential) per telescope

$$
\sqrt{\Sigma \frac{\left(Y_{n}-\bar{Y}_{K}\right)^{2}}{N-1}}
$$

PIR 4A26-038
4/5/66
Page 7
IV. Method (cont.)

Combined Slope Error per azimuth position

$$
\sqrt{\left(X_{N}-\bar{X}_{K}\right)^{2}+\left(Y_{n}-\bar{Y}_{K}\right)^{2}}
$$

Combined Slope Error per telescope

$$
\sqrt{\frac{\left(X_{n}-\bar{X}_{K}\right)^{2}+\left(Y_{n}-\bar{Y}_{K}\right)^{2}}{n}}
$$

$\mathrm{n}=$ number of azimuth positions

Mean and Standard Deviations for X (radial) and Y (circumferential) are computed for all telescopes combined, as well as individual telescopes. The Combined Slope Error is also available for all telescopes.

The average X (radial) and Y (circumferential) are computed for each telescope and all 8 telescopes combined. This mean value is utilized in the following equation:

Adjusted slope error

$$
\operatorname{ASERR}_{n}=\sqrt{\left(X_{n}-\bar{X}\right)^{2}+\left(Y_{n}-\bar{Y}\right)^{2}} \quad n=\begin{aligned}
& 1 \text { to number of azimuth } \\
& \\
& \text { readings }
\end{aligned}
$$

Raw slope ercor is computed using the value 50., or slope error without any adjustment for light source position error.

$$
\operatorname{RSERR}_{\mathrm{n}}=\sqrt{\left(\mathrm{X}_{\mathrm{n}}-50 .\right)^{2}+\left(Y_{n}-50 .\right)^{2}} \quad \mathrm{n}=\underset{\text { readings }}{1} \text { to number of azimuth }
$$

An adjusted and raw slope error is also computed for each telescope, as well as all telescopes combined.

The median slope error for raw and agjusted is computed utilizing the RSERR_{n} and $A S E R R_{n}$ couputations for combined telescopes.

כ

$$
\begin{aligned}
& \text { 号苂若x in in in in in in in }
\end{aligned}
$$

$$
\begin{aligned}
& \text { in in in in in in in in }
\end{aligned}
$$

APPENDIX B
EPOXY TEST PROGRAM PLAN

MIBSILE AND SPACE DIVISION

4419-062

DISTRIBUTION

DATI GANT

 Dati nio. medive frovict ano ran No.Eriance Dim MO.

SNTET
EPOXY TEST PROCEDURES
INFORMATION XTSDEAEE / REEASED

OBJECTIVE

Formulate a stable epoxy which ic not subject to attack by cleaning sensitizing chemicals and which will not contaminate an electroform (nickel sulfumate) bath. The program conducted aust provide coatrole in such a manner as to:
(a) Assure positive identification of samples tested.
(b) Assure complete control of processes as regards formulation, materials and temperature
(c) Assure that the results can be used to make a positive recommendation to the customer concerning continuation or termination of his program.

) GENERAL PROGRAM

The basic approach will consist of hand-mixing resins and hardeners to provide a large number of samples. These samples will vary from eqch other in such characteristics as:

1. Hardfiner to resin ratio
2. Cure temperature
3. Hardener ratios
4. Elimination of wetting agent

The resulting samples will be tested for resistance to chemical attack such as:

Distilled water
Cleaning solution
Sensitizing solution
Silvering solution
Electroforming baths

PIR 非4419-062
Page 2
Selected samples which successfully survive the chemical test will be placed in an electroforming solution and plated with nickel, (5 -mils thick). The nickel will be analyzed for ductility, brightness and hardness.

The formulation which produces the epoxy to give the best nickel and chemical stability will then be mixed by the epoxy mixing equipment located at " D " Street. Samples will be drawn and tested fo: the same properties indicated above.

A report of these activities along with recommendations for future development will be forwarded to the customer.

SCHEDULE

PERSONNEL \& RESPONSIBILITIES

PROCEDURES

The various procedures are detailed in the attachments. They coneist of the following:

1. Hand mixing procedure (Attachment B)
(a) Materials
(b) Ratios
(c) Equipment
(d) Sample identification (not available to RSD)
(e) Ambient cure
(f) Oven cure
(g) Controls
(h) Responsibilities
()

PIR 非4419-062
Page 3
2. Chemical Tests (Attachment C^{\prime}
(a) Tests
(b) Controls
(c) Responsibilities
3. Bath Contamination Tests (Attachment D)
(a) Tests
(b) Controls
(c) Responsibilities
4. Machine Mixing Procedures (Attachment E)
(a) Materials
(b) Ratios
(c) Equipment
(d) Samples
(a) Materials

The materials to be used in making the test epoxies are identified as follows:

* "Resins"
* "Hardeners or Catalysts"
* Others
* GE Proprietary Information

Vendor certification and other control data will be obtained for the "Resins" and Hardeners".
(b) Ratios

The hardener elements will be added on a parts per hundred of resin and the resulting ratios will be varied from stochiometric quantities of PHR up to PHR.

The relationship between the hardeners and the resins will be varied from parts to parts and parts to parts.

The will be removed in one set of samples and the Wetting Agent in another.
(c) Equipeant

The prime mechanical equipment to be used includes the homo-mixer for mixing the formulations and an oven for curing the samples.
(d) Sample Identification

In order to be sure , ${ }^{r}$ the Cormulation used in the various samples, a system for identification has been established. This is shown in Attachment (B_{1}). It is not available to RSD (supporting GE function) so that the results of their testing cannot be influenced by the fore-knowledge of
formulation used. There are four groups of samples to be taken.
Group I - Six samples each of five formulations and at two different ambient temperatures. In a six sample batch, two samples will be held as reference, two will be chemically tested and two will be chemically and bath tested. Accurate logs will be maintained for positive record of sample handling.

Groups II, III and IV will have 3 samples only since their potential for success is less than Group I.

The identification markings will be etched onto the bottom of the pie plates used to collect the sample mixes.
(e) Ambient Cure

Ambient temperatures are important to the successful curing of the formulations. For this reason, two temperature ranges have been established for Group I sample§. These are indicated in Attachment B_{1} Maintenance of these temperatures will be required from time of paur until ambient cure is complete (48 hours). All samples will be covered and sealed with polyethylene sheet during ambient cure.

(f) Oven Cure

Immediately following ambient cure of the samples, they will be subjected to an oven cure of 1200 F for a period of 10 hours. Temperature rise from ambient to 1200 F should not exceed $10 / \mathrm{minute}$ and temperature drop should not exceed this limit. Samples will not be covered during this cure cycle.
(g) Controls

Each step of the hand mixing process shall be done in the presence of two people each serving as a check on the other. Any deviation from the established procedures will be duly recorded in the log book with reasons for the deviation. It is essential that whatever is done in the hand mixing process cã̃ be duplicated in the machine mixing process. The steps outlined herein must be strictly adhered to.
(h) Responsibilities

The prime responsibility for the hand mixing process described above is assigned to R. Fuse. He will be assisted by G. Yeo and D. Lee as required.

-

CHEMICAL TESTS
(a) Tests

The objective of these tests is to determine the chemical resistivity of the various samples submitted. Each sample shall separately be subjected to the following treatment.

1. Distilled Water - 1 hour at $75^{\circ} \mathrm{F}$
2. Cleaning Solution -
\(\left.\begin{array}{l}10 \mathrm{~g} \mathrm{Na} \mathrm{CO}_{3} \mathrm{CO}_{2}

10 \mathrm{~g} \mathrm{NaH}_{2} \mathrm{PO}_{4}

2-3 \mathrm{ml} \mathrm{Triton} \mathrm{X-100}\end{array}\right\}\)| 1 hour |
| :--- |
| 1 inter at $75^{\circ} \mathrm{F}$ |

3. Sensitizing Solution $\left.\begin{array}{l}5 \mathrm{~g} \mathrm{SnCl}_{2} \\ 5 \mathrm{ml} \mathrm{HCL}\end{array}\right\} 1$ liter $\frac{1}{2}$ hour at $75^{\circ} \mathrm{F}$
4. Silvering Solution 1 hour $55^{\circ} \mathrm{F}$
5. Nickel Sulfamate 1 hour 120° F

Evidence of discoloration, etching, pitting, or other surface corrosion will be noted and recorded by sample number. The samples shall be rated as excellent, fair or failed.
(b) Controls

The testing should be done in the presence of two people and a log book or record shall be maintained of all results by sample number. Since it is desired to minimize the amount of testing required both from a cost and time standpoint, the results of the tests should be communicated to D. Lee or G. Yeo as soon as they are available. In general, as soon as an excellent sample is identified, it will be used to run the bath test described further in this plan. Disposition of the balance of the samples will be determined at that time.
(c) Responsibilities

This part of the program will be under the direct control of F. Schmidt assisted by I. Hess. The solutions, time and temperatures set forth by this PIR are those previously used to test epoxies prepared for electroforming. Deviation, if required, will be made at Dr. Schmidt's descretion and will be so noted with reasons in the log book.

Attachment D

BATH CONTAMINATION TESTS

(a) Tests

The objective of these tests is to determine the stability of the epoxy in an electroform bath as regards it's ability to produce good nickel i.e., will not contaminate the bath.

Bart Mfg. Co. will perform the tests under the direction of F. Schmidt. A commercially pure electroform bath in a small (approximately $1^{\prime} \times 1^{\prime} \times 1^{\prime}$) tank will be used for the tests.

The bath will be tested for "purity" by electroforming nickel (approximately 5 mils) against a pre-selected metal plate. This nickel will be examined for hardness, ductility and brightness and assuming it to be good nickel will be used as the reference for further electroformed nickel. An epoxy sample in the pie plate will then be immersed in the bath (following cleaning, sensitizing and silvering) and a 5 mil nickel deposit will be electroformed. This nickel will be compared to the reference. Another sample and pie plate will be immersed (after preparation) in the bath and allowed to "soak" for one hour. The surface will be examined for degradation.

If degraded, another sample will be immersed and nickel electroformed against the surface. This nickel will be compared with the reference sample. Failure of any sample nickel to equal the reference nickel indicates failure of the epoxy.
(b) Controls

Temperature of the bath will be $120^{\circ} \mathrm{F}$ for each test.
Bath stress will be determined before and after each test. Upperlimits will be 3000-4000 psi.

Epoxy samples and pie plates will be brought up to at least 100 F before immersing in the bath.

The samples will be cleaned and sensitized in accordance with pre-set standards and not altered to meet special conditions. Silvering will be done at less than $55^{\circ} \mathrm{F}$.

Strict accountability for the samples tested will be maintained and recorded.
(c) Responsibility

The overall responsibility for this test effort lies with F. Schmidt.

MACHINE MIXING PROCEDURE

(a) Materials

The same materials listed in Attachment B will be used. They will be shipped from VFSTC to " D " Street for this part of the program.
(b) Ratios

The ratio of hardener to resin will be that ratio which best satisfied the tests run on the hand mixed epoxies. In any event, only one epoxy mix will be made in the machine and in quantities large enough to provide at least 20 pie plate samples and one complete spin casting. This is estimated to be approximately 22 gallons.
(c) Equipment

The Mitchell Metering and Mixing Machine located at " D " Street is the prime equipment to be used for the final epoxy mix. The available vacuum pressure 55 gallon capacity tanks will be used for storage of the resins and initial mixing. A 20 gallon capacity tank will be used for the catalyst storage and mkxing.

Operation of the equipment will be handled by R. Dalzell and R. Fuse.
(d) Samples

The samples drawn from this mix will be to one formulation only. A minimum of 20 pie plate samples will be drawn and all will be ambient and elevated temperature cured.exactly as indicated in Attachment B. All but two samples will be sent to RSD (Schmidt) where two or three will be chemically tested (Attachment C). Assuming the samples successfully passed this test, additional samples will be tested for electroforming stability per Attachment D. The controls which apply to all preceding attachments also apply here.

Responsibility for each of the above steps is spelled out in the appropriate attachment.

C

APPENDIX C

CLEANING OF SPINCAST MOLD AND COVER

JENERAL (\%LECTRIC
missile and space division PHILADELPHIA
OGRAM INFORMATION REQUEST / RELEASE
PIR 4622-104

DATE SENT	DATE INFO, REQUIRED	PROJECT AND RER. NO.	
$8 / 26 / 65$			

SUBECT

Cleaning of Spincast Mold and Cover.
INFORMATION REQUESTED / RELEASED
A. Introduction: The Lollowing confirms our discussions and agreements on
$8 / 24 / 65$ as to a satisfaciory method for cleaning Lhe spincast
surfaces prior to priming and after the romoval of all residucs
(apoxy and Riv) Erom the previous run. The final operation in
that procedure should be disk sanding or eandblasting.

B. Cleaning Procudurs yold:

1. Applicable area - area to which apincasteing epoory or giv aealer is to be apilied.

2. Procedipre.
a. Flood area with water and observe water film formation. This is to be used as a guide to the amount of contamination of the surtace.
b. Prepare sufficient solution of clepo $86 \rho^{\circ}$ in warm water $100-120^{\circ} \mathrm{F}$ at a concentration of $\frac{1}{2}$ - 1 井 per gallon.
c. Continuously mop all applicable surfaces with solution "b" for a minimum of 30 minutes. Close drain in mold and use at least 25 galions of solution.
d. Drain solution and flush rinse surfaces with warm water.
e. Cloee drain and fill mold with water - allow watar to remain in mold for 1 to 2 hours.
3. Deain mold and rinse (Elush) with water. Observe water film formation, if surface not too contaminated proceed with next atep.
g. Rreapre afficient quantity of solution composed as follows:

1 gallon turco W.O.\#1
3 gallons warm water $\left(100-120^{\circ} \mathrm{F}\right)$
Mop and rirub surface with this solution for 30 minutes.
h. Flueh rinse surfaces thoroughly.

1. Close drain inole on mold and fill mold to brim. Mop surface throughout soak. Soak for 30 minutes minimum.
2. Empty mold, fluth and mop surfaces to remove smut during removal ol water.
k. flush surface and observe water film formation. If water breaks occur, re-operate paragraph 8 thru 1.

> G. Yeo
> E. B. Spine11i

PAOE MO	
1	0
CONT. ON	
	$-2-$

1. Dry mold 1-2 hours at room temperature or preferably 30 minutes at $150^{\circ} \mathrm{F}$. Mold should be covered during this perioc to prevent air-born contamination from settling on surface and in such a manner ventilation is sufficient for drying.
C. Cleaning of Polyester Cover: (Inside surf.ice)
2. Wipe oily deposit off using Toluene or Genesolv; or with Clepo 868 solution used in $B-2-b$. The filst method is preferred.
3. Disk sand all polyester surfaces.
4. Renove sanding dust with clean compressed nitrogen or clean cheesecloth (bleached and unsterched).
5. Mask all window areas with paper - do not touch surface with ungloved hands.
6. Keep surface protected from air-born contamination.

APPENDIX D

BOND OF THE PRIMER AND RESIN TO ALUMINUM MOLD

BLANK Page

 PROGRAM INFCIRMATION REQUEST / RELEASE

DATI SENT	DATE ANO, AEQULEP	MOJECT ANO NER NO.	matmace dim ma.
Sept. 7, 1905			

SUNEXT
bonding of the primer and resin to the aluminum mold

INFORMATION REQUESTED / RELEASED

SUMMARY \& CONCLUSIONS
In order to check the method of priming the aluminum spincast mold to assure good acherence of the spincast resin several tests have been made. Before the mold was primed several aluminum treatments and primers were tested. This work indicated that tine same traatment and primer as used before should be used. It is reported in Table 1 . During priming of the mold, samples of the materials treated in the same fashion as the mold were made up for shear strength tests. The resulfs are shown in Table II. Tn each case although there wan considerable scatter in the data, the results indfcatee, that a sound bond between the μ rimer and mold (the point of failure in the previous casting) should be present. If the primer surface is kept clean, a good bond between it and the resin mold should result without any further treatment.

RESUTS

J. TESTS OF SURPACE TREATMENTS AND PRIMERS

Two aluminum surface treatments and two resins were tested as primer coats. The surface treatments were: 1 . wash with 86 P alkaline cleaning agent, followed by etching with proprietary etching compound; 2. etch with Hughson Chemical Co.EXB paste etching compoond. The primers tested were: 1. Ciba, XK571, cured with General Mills, Pentamid and 2. She 11815 cured with TETA (trieghylene tetramine). The results are shown in Table I.
B. LAP SHEAR TESTS OF MOLD PRDMER

The mold was treated with 86P and TURCO W. 0.1 then the XK571 primer was applied. At the same time, aluminum lap shear samples were made in the same fashion as controle. The results of the tests of these lap shears are given in Table II.

These teats on the control samples indicate that a good bond was accomplished.
 Chemical Materials Development

D. Lee/G. Yeo	- 2 -		4494-006
	TABLE I		
	LAP SHEAR $\begin{aligned} & 90 \mathrm{hr} \\ & \text { Air Cure } \end{aligned}$	$\begin{aligned} & \text { LTS PSI (Avg.) } \\ & 80 \mathrm{hr} \\ & \text { Air Cure } \& \\ & 10 \mathrm{hr} 120^{\circ} \mathrm{F} \\ & \hline \end{aligned}$	
1. XK571 \& Pentamide 86P - 180S	1100	1300	mostly cohesive
$\text { 2. } 815 \text { /TETA }$	$\begin{aligned} & 700- \\ & 1100 \end{aligned}$	$\begin{aligned} & 700- \\ & 1100 \end{aligned}$	adhesive
$\text { 3. } 815 / \text { TETA }$	500	600	adhesive

D. Lee/G. Yeo

- 3 -

4494-006

TABLE II

LAP SHEAR TESTS OF PRIMER APPLIED TO MOLD

APPENDIX E

PRIMING SURFACE OF SPINCAST MOLI,

PIR 4622-103

Instructions for Priming Surfaces of Spincast Mold.

NFORMATION RENESTED / RELEASED

1. Applicable Areas:
A. Aluminum surfaces of mold to which spincasting epoxy will be poured.
B. Polyester surface of mold cover which will be subjected to fumes from curing spincast epoxy.
2. Cleanliness Requirements:
A. Surface shall be free of oils, silicones, dust and material foreign to the system. Surface shall support a water film without droplet formation for a minimum of 1 minute. The surface must be dry at time of primer application.
B. Surface shall have been cleaned per cleaning insisuction. (PIR-4622-104).
C. If more than 12 hours have elapsed since cleaning or surface has remained unprotected from contamination settling cut of the air for more than 4 hours, the surface shall be re-tested for cleanliness as follows:
3. Fiood surface whith water and observe for water droplet formation.
4. If surface supports water film, flush surface with isoproply alcohol (reagent grade 95-99\%) and dry.
5. If surface does not support water film, re-close surface with Turco W. O. \#1 cleaning step of the cleaning instruction until a satisfactory surface has been obtained and dry surface.
6. Quality Control Tests:
A. Prepare five (5) 1" lapshear specimens with each batch of primer material.
7. Lapshear specimens should be cleaned, sanded, cleaned and pass a water break test.
8. Coat both mating surfaces of lapshear specimens.
9. Air cure lapshear specimens for 1 hour before mating.
10. Mate specimens with $1 / 2^{\prime \prime}$ overlap.
11. Oven cure specimens concurrently with mold.
12. Determine shear strength of bond.

NON MO.			
	1	OP	
COMT. OH	2	E-3	

B. Prepare Hockey Pack sample of each primer batch with material that does not contain toluene and cure for 1 hour at $150^{\circ} \mathrm{F}$. Determine Shore D hardness.
C. Apply primer to a $12^{\prime \prime} \times 12^{\prime \prime}$ clean panel in the sama manner as used on mold and cover surfaces. Measure dry film thickness of sample panel.

4. Primer Preparation Inetructions:

A. Primar formulation:

Araldite \#571kx-75\%
100 grams
Pentamide $\$ 815$
Cabosil
Toluene
49.0 grams

1,0 grem
As Required-grame
(Approx. $100-150$ grams)
B. Primer mixing:

1. Weigh out the desired amount of 57 KXX and add the required amount of cabosil.
2. Disparse the caboail thoroughly.
3. Add the required amount of Pentamide $\# 815$ and thoroughly mix.
4. Add the required amount of Toluene to reduce to $25-35$ seconds zahn \#2' viscosity.
5. Homongenize solution for $\mathbf{2 - 5}$ minutes on Homomixer.
6. Primar Application:
A. Place prepared primer in pressure pot of spray gun and adjust fluid pressure to approximately 8 pei. Adjust atomizing air to $35-50 \# / \mathrm{in}^{2}$ and adjust gun control to obtain a satisfactory spray pattern.
B. Apply . 005 - . 015 inch of primer to dry film. Apply primer with overlaping wet passes and crose spray surface to obtain a uniform thickness.
7. Primer Cure:
A. Air dry surface for 1 to 2 hours, followed by an Oven Cure for 16-20 hours at $150 \pm 10^{\circ} \mathrm{F}$.

7. Einighing:

A. Protect primed surfaces from air born contamination, greases and oils, dust and do not touch aurface with ungloved hands.
E-4

APPENDIX F

EPOXY TEST SAMPLES

$$
\mathrm{F}-1 / 2
$$

BLANK
 PAGE

1

Na.
4413-104
D. E. Lee, Engineer Rm. M2614
G. L. Yeo, Yrog. Mgr.

Rm. U2450, Ext. 5112

$\begin{aligned} & \text { DATE geNi } \\ & 9 / 10 / 65 \end{aligned}$	DATE INFO. REQUITED	Pronct andima no.	Haflelich dir Mo.

SONECT
EPOXY TEST SAMPLES, LANGEEY 9는 FOOT MIRROR
INFORMATIONXEEDTAJ X/ RELEASED
Test samples will be prepared before and during each of the three pours to verify ability of the epoxy to withstand chemical attack of the cleaning silvering and electroforming solution. Both the resin and the catalyst tanks will be drained and cleaned after each pour to insure that fresh material is used on all pours. Samples will be identified by test series, ambient cure temperature range and sample number. A summary of the samples as currently planned is as follows:

Test Sample
Quantity Pour Test Ambient
Description of Designation Date Date Cure Temp. Sample

G. L. Yeo

September 10, 1965
Page 2

Samples H \& L series are being made to provide additional data on how critical is the ambient cure temperature.

All samples will be cured at $120^{\circ} \mathrm{F}$ for a minimum of 10 hours after an anbient temperature cure for 72 hours. Dr. Schmidt will require 2 samples of each series for chemical compatibility tests, one sample of each will be available for the customer (if customer desires it), and one of each will be held as a record at the Spincast Laboratory. Additiunal samples are being made for the final pour to permit sufficient tests for electroforming. Dr. Schmidt has requested 25 samples and an additional 10 samples will be held in reserve in the laboratory.

SAMPLE TEST RESULTS

Batch \#1 (AM 1-4 \& AL 1-4)

Samples were bagged and sealed in polyethylene during entire cure process. The surfaces, without chemical exposure, appeared to be slightly alligatored although localized certainpositions. Determined that this was caused by the breakage of air bubbles prior to setting of the epoxy. The samples were attacked ty the cleaning and sensitizing solutions showing etching and pitting. This attack was more pronounced on the AM samples than the AL.

Following a discussion of these results, it was decided to make up additional samples of this material when conducting Pour \#1. It was felt that inadequate mixing of the resin and catalyst was a likely explanation. (Since Pours \#1 and \#2 would not "see" the electroform bath, no real risk was involved in going ahead with these pours.)

The additional samples were:

MHH - Hand mixed from the mix head
MH - Same as AM 1-4
THMi - Hand-mixed from resin \& catalyst tank
PHM - Hand mixed from pumps

All samples were significantly better than the AMl-4 series but no correlation between samples was observed.

Pour \#1 (BM 1-4 \& BH 1-4)

Two changes in the preparation of these samples were made over the " A " series of samples. Surface quality is affected by the shape and distance of the cover abo:e the epoxy. Tr simulate the anold cover, therefore, each poured sample was covered with aluminum foil stretched flat across the op of the plate. Also, the B series and all subsequent test samples were poured through the tubing and the mold pouring iunnel. It is to be noted that improvement
in all subsequent surfaces as regards to surface physical guality was evident.

Chemical test results showed that the BH sample was probably acceptable for electroforming despite some minor attack by the cleaning solution. The BM sample has less resistance but poseibly could undergo successful plating.

Batch \#2 (CM 1-4 \& CL 1-4)

CL tested very good and was literally free from any chemical attack indica'ing a stable sample. CM, on the other hand, did have some small pitting in cleaning ard sensitizing solutions. It rated with BM described above.

Pour \#2 (DM 1-4 \& DH 1-4)

Both of these samples were attacked by the cleaning and sensitizing solutions and were not considered acceptable for electroforming.

Batch \#3 (EM 1-4 \& EL 1-4)

Because of the concern for what might be inadequate mixing within the mixing head, a line mixing device was fabricated and installed in the pumping system just after the shear head mixer. Basically, it consisted of a series of random punched discs separated by 1 inch rings and all placed in a 2 -inch pipe. This was capped at both ends and the inlet attached to the outlet of the mixing head with the outlet going directly to the pour funnel.

The results of the chemical tests on these samples indicated f. fairly good epoxy. In addition, a sample was sent to Bart Mfg. Co. for electroforming nickel. The result was clear, bright ductile metal. However, the surface treatment (cleaning, sensitizing and silvering) procedure was not done over as long a period as our test at GE. While this reduced the assurance of a really good enoxy somewhat, it was not considered to be a deterrent to pouring the final coat.

One further change was marle for these samples. The atmosphere within the large (9-1,2 foot) mold was nitrogen purged before each pour. All of the previous samplee were sealed and cured in an air atmosphere. Therefore, to more approximately duplicate the conditions "seen" by the mold epoxy surface, each of the Pour \#3 samples wera purged with N_{2} prior to covering and sealing with aluminum foil and the polyethylene bags were also filied with N_{2} hefore sealing.

The results of the listing of samples from this pous were comparable to that found in Batch No. 3 (EMI-4 and EL 1-4). Degradation of the surface did not begin to show until after a half hour exposure to the sensitizing soulution. Since this step could be ancomplished in much less time than that, it was reasonable to conclude that the epoxy was relatively stable and would give good results.

APPENDIX G

SPINCAST MOLD
SECOND OPTICAL INSPECTION

OPTICAL INSPECTION OF 9.5 FOOT 2ND EPOXY MASTER *ALL STO. DEVIATIONS \# BY . Og25 AFCMIN/DIVISION

telescofe	average X READING	standart deviat!on	AVERAGE Y READINC	stantard deviation	averace slope ERRCR
1	50.07	0.364	56.19	0.251	0.375
2	57.83	0.287	53.19	0.268	0.355
3	53.47	0.199	53.50	r. 257	0.295
4	56.25	0.184	40.58	0.213	0.248
5	54.54	0.150	48.94	0.187	0.206
6	47.13	0.206	54.46	0.284	0.285
7	45.36	0.190	49.92	0.212	0.229
8	53.06	0.182	47.60	0.260	0.288

TELESCOFES 2-8

averace x feading	51.71
standard deviation	0.228
averace y feading	50.53
standard deviation	0.2
x vs \mathbf{r}	
Standakd deviation	0.33

Spincast Mold No. 2 Optical Inspection

ancllan POSITICN	TELESCOPE	TELESCOPE	TELESCOPE	TELESCOPE	TELESCOPE	TELESCppe	TELESCOPE	TELESCOPE
(otcrees)	1	2	3	4	5	6	1	-
-	0.911	0.873	0.827	0.853	0.277	1.234	0.298	0.093
5	1.083	1.185	0.704	0.853	0.185	0.704	0.462	0.131
10	1.208	1.185	0.746	0.667	0.000	0.746	0.585	0.277
,	1.324	1.183	0.832	0.539	0.131	0.827	0. 746	0.131
20	1.217	2.034	0.925	0.523	0.293	1.034	0.853	0.093
25	0.740	0.414	0.462	0.796	0.293	0.654	0.462	0.093
30	0.853	0.523	0.472	0.918	0.093	0.654	0.555	0.388
35	1.079	0.654	0.472	0.838	0.000	0.654	0.432	0.093
40	1.034	0.654	0.462	0.838	0.093	1.055	0.930	0.000
45	0.621	0.498	0.472	0.796	0.093	0.983	0.746	0.185
50	0.648	0.207	0.370	0.911	0093	0.853	0.555	0.293
55	0.875	0.523	0.370	0.943	0.277	0.952	0.832	0.293
60	0.983	0.722	0.555	0.878	0.277	0.785	0.832	0.093
65	0.746	0.916	0.555	0.878	0.185	0.853	0.912	0.131
70	0.746	0.621	0.654	0.873	0.370	0.873	0.563	0.093
75	0.555	0.207	0.093	1.203	0.131	0.592	0.621	0.293
80	0.370	0.277	0.093	1.170	0.381	0.472	0.621	0.472
85	0.277	0.462	0.185	1.324	0.277	0.414	0.555	0.462
90	0.000	0.462	0.277	1.375	0.462	0.293	0.472	0.654
95	0.462	0.462	$0.38{ }^{-1}$	1.540	0.673	0.093	0.498	0.827
100	0.293	0.966	0.498	1.446	0.667	0.131	0.472	0.796
105	0.293	1.203	0.462	1.1	0.472	0.093	0.414	0.462
110	0.370	1.298	0.648		0.462	0.293	0.185	0,648
115	0.414	0.943	0.585	***	0.462	0.462	0.093	0.592
120	0.657	0.648	0.370	2.506	0.414	0.185	0.370	0.873
125	0.539	0.925	0.472	1.334	0.462	0.000	0.498	0.983
130	0.462	0.930	0.498	2.218	0.334	0.207	0.392	0.785
235	0.462	0.943	0.498	1.079	0.293	0.462	0.370	0. 796
140	0.796	0.921	0.523	0.983	0.093	0.563	0.277	0.722
245	0.796	0.563	0.414	1.244	0.131	0.293	0.131	0.654
150	0.555	0.745	0.498	1.079	0.207	0.381	0.462	0.785
255	0.498	0.832	0.498	1.129	0.131	0.392	0.472	0.667
160	0.462	0.763	0.462	1.079	0.132	0.472	0.462	0.498
265	0.722	0.621	0.539	1.114	0.131	0.539	0.370	0.654
270	0.592	0.555	0.381	1.079	0.277	0.207	0.462	0.592
175	0.462	0.648	0.370	1.285	0.277	0.207	0.293	0.592
180	0.472	0.654	0.414	1.159	0.277	0.462	0.472	0.539
185	0.370	0.673	0.414	1.159	0.285	0.414	0462	0.462
190	0.592	0.472	0.293	1.185	0.293	0.392	0.185	0.381
195	0.592	0.555	0.370	1.285	0.381	0.262	0.334	0.592
200	0.462	0.563	0.472	1.259	0.293	0.334	0.414	0.654
205	0.277	0.654	0.472	1.241	0.277	0.293	0.462	0.472
210	0.277	0.740	0.462	1.206	0.207	0.539	0.462	0.370
215	0.563	0.555	0.472	1.258	0.334	0.293	0.185	0.462
220	0.185	1.022	0.462	1.463	0.392	0.293	0.334	0.585
225	0.523	1.203	0.555	1.334	0.392	0.370	0.462	0.392
230	0.667	1.217	0.827	1.114	0.185	0.472	0.472	0.185
235	0.654	1.206	0.746	1.177	0.277	0.648	0.414	0.262
240	0.785	0.827	0.654	1.244	0.277	0.370	0.382	0.207
245	0.740	1.034	0.654	1.001	0.293	0.293	0.293	0.472
250	0.746	1.118	0.722	0.952	0.131	0.472	0.370	0.381
255	0.838	1.129	0.592	1.034	0.000	0.472	0.370	0.293
280	0.853	0.853	0.621	0.983	0.000	0.621	0.462	0.47
265	0.704	0.585	0.323	0.983	0.000	0.498	0.370	0.883
270	0. ret	0.838	0.472	1.079	0.000	0.722	0.462	0.462
275	0.983	0.746	0.498	1.079	0.093	0.654	0.370	0.370
280	0.592	0.925	0.992	1.058	0.000	0. 746	0.462	0.388
283	0.523	0. 796	0.827	1.001	0.000	0.592	0.388	0.370
290	0.722	0.053	0.282	0.983	0.000	0.681	0.277	0.46

.

295	0.555	1.034	0.462	1.001	0.093	0.654	0.381	0.523
300	0.654	1.083	0.592	0.925	0.093	0.667	0.563	0.382
305	0.472	0.996	0.592	0.925	0.131	0.621	0.472	0.370
310	1.047	0.796	0.592	1.185	0.093	0.585	0.472	0.277
315	0.912	0.821	0.462	2.047	0.000	0.621	0.555	0.388
320	0.832	0.952	0.667	0.925	0.000	0.704	0.673	0.370
325	0.838	0.983	0.746	0.853	0.000	0.704	0.673	0.462
330	0.648	0.925	0.704	0.853	0.000	0.673	0.654	0.207
335	0.853	0.667	0. 796	1.055	0.131	0.563	0.334	0.414
340	0.654	1.258	0.592	0.196	0.093	0.704	0.462	0.381
345	0.996	1.494	0.667	0.796	0.207	0.952	0.704	0.472
350	1.022	1.572	0.704	0.722	0.093	0.790	0.654	0.539
355	1.022	1.129	0.796	0.722	0.185	0.673	0.621	0.293
MEAN	0.673	0.826	0.533	1.059	0.207	0.547	0.482	0.426
STO.DEV.	0.262	0.288	0.169	0.223	0.161	0.252	0.178	0.218

TELESCOPES $1-8$ (ALL READINES)	
MEAN SLOPE ERROR	0.594
STD. DEVIATION	0.329
MEDIAN SLOPE ERROR	0.553

anculan POSITION	TELESCOPE	TELESCOPE	TELESCOPE	telescope	telescore	TELESCOPE	TELESCOFE	TELEECOFE
(0ecrees)	2	2	3	4	5	6	\uparrow	8
0	0.810	0.753	0.721	0.778	0.277	1.327	0.430	0.214
5	1.102	1.031	0.609	0.803	0.208	0.739	0.623	0.258
10	1.259	1.031	0.692	0.642	0.166	0.797	0.726	0.129
15	1.355	1.050	0.798	0.527	0.254	0.869	0.867	0.076
20	1.202	0.926	0.889	0.474	0.338	1.072	1.008	0.164
25	0.707	0.320	0.441	0.762	0.438	0.745	0.623	0.083
30	0.930	0.383	0.482	0.908	0.256	0.745	0.715	0.426
35	1.195	0.512	0.482	0.886	0.166	0.745	0.992	0.083
40	1.159	0.512	0.540	0.886	0.256	1.257	1.084	0.168
45	0.667	0.413	0.482	0.762	0.256	1.079	0.899	0.284
50	0.617	0.150	0.356	0.908	0.256	0.951	0.715	0.335
55	0.928	0.383	0.356	0.976	0.439	1.073	0.992	0.335
60	1.079	0.572	0.529	0.891	0.439	0.874	0.992	0.083
65	0.633	0.772	0.529	0.891	0.347	0.951	1.041	0.078
70	0.692	0.518	0.600	0.847	0.531	0.928	0.715	0.083
75	0.529	0.049	0.083	1.200	0.289	0698	0.785	0.335
80	0.356	0.129	0.083	1.180	0.490	0.622	0.785	0.517
65	0.287	0.308	0.057	1.314	0.365	0.545	0.715	0.437
90	0.166	0.308	0.129	1.380	0.537	0.438	0.637	0. 702
95	0.308	0.308	0.255	1.505	0.699	0.256	0.618	0.819
100	0.126	0.834	0.385	1.432	0.642	0.078	0.571	0.762
105	0.338	1.045	0.308	1.382	0.517	0.164	0.543	0.537
110	0.356	1.137	$0.49 ?$	1.382	0.390	0.236	0.347	0.492
115	0.320	0.778	0.419	1.298	0.390	0.441	0.256	0.519
120	0.509	0.492	0.218	1.444	0.422	0.208	0.450	0.047
125	0.429	0.768	0.307	1.298	0.437	0.156	0.618	0.950
130	0.441	0.768	0.332	2.112	0.329	0.285	0.546	0.724
135	0.441	0.788	0.332	1.053	0.286	0.441	0.532	0.709
140	0.670	0.746	0.383	0.930	0.083	0.563	0.439	0.678
145	0.670	0.399	0.251	2.186	0.158	0.338	0.289	0.597
150	0.529	0.583	0.332	1.053	0.146	0.406	0.622	0.724
155	0.536	0.676	0.332	1.092	0.158	0.492	0.637	0.578
160	0.441	0.597	0.310	1.053	0.158	0.482	0.623	0.385
165	0.589	0.457	0.429	1.057	0.158	0.600	0.531	D. 597
170	0.463	0.400	0.216	1.053	0.365	0.346	0.622	0.519
175	0.441	0.492	0.218	1.260	0.365	0.346	0.459	0.519
180	0.482	0.491	0.251	1.139	0.365	0.505	0.637	0.447
185	0.356	0.507	0.251	1.139	0.284	0.469	0.623	0.390
190	0.441	0.307	0.126	1.136	0.335	0.491	0.347	0.428
195	0.463	0.400	0.218	1.260	0.426	0.369	0.498	0.555
200	0.442	0.399	0.307	1.139	0.335	0.456	0.579	0.597
205	0.277	0.491	0.307	1.227	0.365	0.438	0.623	0.336
210	0.277	0.584	0.308	2.175	0.245	0.600	0.623	0.218
215	0.399	0.400	0.307	2.216	0.329	0.338	0.347	0.437
220	0.208	0.872	0.308	1.423	0.349	0.338	0.496	0.608
225	0.617	1.045	0.400	2.298	0.349	0.356	0.623	0.349
2:0	0.730	1.053	0.663	2.057	0.057	0.482	0.622	0.057
235	0.600	1.046	0.584	1.111	0.129	0.617	0.545	0.237
240	0.641	0.663	0.512	2.169	0.129	0.358	0.548	0.245
245	0.707	0.870	0.512	0.968	0.186	0.338	0.459	0.517
250	0.734	0.953	0.589	0.934	0.150	0.482	0.531	0.428
235	0.821	0.971	0.463	1.028	0.166	0.482	0.532	0.338
200	0.782	0.702	0.518	0.930	0.166	0.667	0.623	$0.51{ }^{1}$
285	0.809	0.419	0.383	0.930	0.166	0.538	0.531	0.037
270	0.800	0.675	0.307	1.053	0.168	0.800	0.683	0.380
275	1.079	0.583	0.332	1.053	0.083	0.745	0.538	0.218
200	0.670	0.870	0.463	1.080	0.168	0.797	0.575	0.218
285	0.383	0.639	0.121	0.905	0.166	0.670	0.530	0.218
290	0.588	0.607	0.137	0.930	0.268	0.830	0.436	0.390

295	0.529	0.869	0.310	0.966	0.083	0.745	0.535	0.471
300	0.600	0.916	0.483	0.885	0.083	0.730	0.715	0.255
305	0.417	0.830	0.441	0.885	0.158	0.887	0.622	0.218
310	0.902	0.639	0.441	1.101	0.214	0.610	0.622	0.129
315	0.810	0.663	0.310	0.982	0.166	0.667	0.715	0.255
320	0.798	0.790	0.547	0.885	0.166	0.739	0.817	0.218
325	0.821	0.833	0.633	0.803	0.166	0.739	0.817	0.310
330	0.617	0.750	0.609	0.803	0.166	0.689	0. 145	0.049
335	0.718	0.509	0.670	0.970	0.078	0.563	0.456	0.317
340	0.647	1.092	0.463	0.762	0.164	0.739	0.623	0.255
345	1.022	1.328	0.547	0.762	0.150	0.992	0.837	0.307
350	0.999	1.409	0.609	0.678	0.164	0.816	0.745	0.429
355	0.969	0.971	D.ero	0.649	0.208	-. 689	0.667	0.236
mean	0.642	0.674	0.417	1.027	0.266	0.607	0.631	0.379
STD.DEV.	0.278	0.282	0.178	0.223	0.140	0.254	0.175	0.215

telescopes i-e (all readincs)
MEAN SLOPE ERROR 0.580 STD. DEVIATION
0.580
$0.6 \% 9$ MEDIAN SLOFE ERROR 0.534

- ADJUSTED LORE ERNON

--- E MAN SLOPE ERRCR

- - - RAM alopt EnRO

1

- ADJUSTEO SLOPE ERNO

resteret me.

- - - 5 RAN sopt Ennof

(

APPFNDIX H NICKEL MASTER
 FIRST OPTICAL INSPECTION

©PTICAL INSPECTION - MICKEL MASTE FOR 9.5 FT. LANELEY MIGNOM

TELESCOFES 1-0 standard deviation 2.20

AVERACE Y READINS 47.65 STANOARD DEVIATION 2.330

x ve y

STANDARD DEVIATION 3.210

295	1.ces	1.ces	2.586	1.203	1.380	0.878	1.368	3.589
300	3.367	1.ces	1.144	0.722	1.206	0.388	0.484	4.074
305	3.270	1.445	1.845	0.585	2.320	0.185	1.234	3.812
$8 \pm$	3.108	1.925	2.249	0.832	2.860	0.763	1.087	2.546
315	2.072	2.565	2.167	0.9es	3.084	0.790	1.290	2.850
380	2.187	3.824	2.570	0.876	2.498	0.334	1.298	2.030
385	4.405	3.236	3.098	1.77	3.882	0.853	0.945	2.925
350	4.207	3.729	3.804	2.118	4.264	1.002	1.078	2.css
385	4.025	3.863	3.684	2.371	4.689	1.388	1.1%	2.953
340	4.26	4.684	4.244	2.313	4.717	1.757	1.244	3.545
345	4.057	4.684	4.502	2.907	3.803	1.144	0.654	4.137
350	4.319	4.717	4.167	2.565	5.053	2.616	1.570	4.478
358	4.264	5.315	4.600	4.057	5.301	2.489	1.492	3.534
nean	4.228	3.529	3.156	2.572	3.672	2.465	2.343	2.697
STD.DEV.	2.649	2.534	1.312	1.440	1.288	1.528	2.344	0.933

TRESCOFES 1-8 (ALL READINES)
MEAN SLCOPE ERRCR 3.DEE
STD. Deviation 1.512
MEDIAN SLOFE ERROR 3.103

Mosition	Tilescore	tenescofe	mesecore	Telsecofe	telescope	TLEESCOPE	mesecore	Tresed
Cocress)	1	E	3	4	5	c	7	-
0	5.057	5.879	4.708	4.253	5.653	2.584	0.500	2.448
5	3.036	5.530	4.685	4.150	5.982	3.457	D.cen	2.008
20	3.937	5.902	4.727	3.607	5.335	3.209	2.514	4.117
85	3.910	5.545	4.512	4.588	5.651	3.733	1.985	4.582
80	4.103	5.018	4.715	4.471	5.018	3.457	1.985	3.103
25	4.413	4.674	4.240	4.455	4.87	3.980	2.300	1.417
30	3.664	4.766	4.48	3.933	4.679	4.493	2.366	1.473
35	4.132	4.523	4.406	4.181	4.210	4.159	3.227	2.531
40	4.132	4.288	4.025	3.304	4.234	3.830	2.889	2.208
45	4.787	4.460	3.933	3.596	4.481	4.556	2.317	1.517
50	5.250	4.673	4.381	4.241	4.108	4.982	2.645	0.952
53	6.093	7.450	5.210	5.072	4.705	4.879	3.248	0.868
60	5.770	5.058	5.231	4.336	3.625	4.87	3.410	2.274
65	6.210	4.970	3.810	3.935	3.748	4.635	3.280	1.675
70	6.591	5.012	4.262	4.141	4.004	4.747	3.420	2.049
75	6.867	5.648	4.684	4.357	3.662	4.962	4.140	1.962
80	7.103	5.105	4.724	4.747	3.005	5.209	4.799	1.712
85	7.939	4.980	4.518	5.187	3.889	5.298	4.476	2.618
90	7.967	5.292	5.263	5.237	3.412	5.182	4.457	2.87
98	9.686	6.124	5.720	5.349	3.056	5.056	4.944	1.207
100	7.421	5.594	5.802	4.018	3.323	5.046	4.091	0.687
105	6.045	4.643	5.248	5.150	3.812	5.515	5.459	2.643
120	6.741	4.417	4.532	4.207	3.615	5.135	4.532	3.182
115	5.400	3.585	4.519	3.577	3.861	4.685	4.396	2.504
120	4.599	3.294	3.889	3.406	3.488	4.384	4.563	2.755
125	3.964	3.114	3.492	2.733	3.207	4.769	4.580	2.728
130	3.500	3.490	2.822	3.249	3.113	4.306	4.048	2.842
135	3.024	2.217	3.000	2.587	2.965	3.289	3.592	2.9et
140	1.670	2.233	2.807	2.621	3.461	3.473	3.672	3.08
145	2.612	2.859	2.910	2.404	3.696	3.005	3.762	3.093
150	3.041	1.678	2.711	2.131	4.049	3.181	2.765	2.798
155	4.381	2.292	2.330	2.505	3.328	2.633	2.745	2.495
160	3.483	2.542	2.521	3.114	4.143	1.984	2.935	2.404
165	3.529	2.527	2.395	2.624	4.150	2.232	3.668	2.621
170	3.399	3.165	1.580	1.913	4.123	1.470	3.311	2.965
175	3.633	4.175	2.214	0.854	3.445	0.603	2.696	3.130
100	6.048	4.942	1.581	0.575	3.629	0.899	2.013	2.473
185	7.050	3.092	1.698	0.498	4.109	0.853	2.576	2.202
180	6.728	2.400	2.159	0.435	4.091	1.180	2.007	2.091
193	5.944	0.702	3.243	0.753	3.633	0.706	2.875	1.910
200	4.333	1.039	3.905	1.643	2.526	0.338	2.140	2.008
208	3.548	0.916	2.584	1.259	3.374	0.127	2.764	2.955
210	4.383	2.162	2.072	0.640	4.200	0.380	1.825	2.760
215	4.536	2.307	2.691	0.684	4.329	D. 101	2.127	1.784
20	1.634	1.493	0.977	1.412	3.760	1.582	1.022	8.35
225	2.507	2.752	2.675	1.207	3.118	1.652	0.767	1.80
230	0.853	2.940	1.817	2.850	4.098	1.607	0.065	1.357
235	1.860	3.479	2.657	3.276	4.354	1.712	1.003	1.241
200	2.851	3.973	2.356	3.092	3.884	1.935	0.650	2.473
245	3.456	3.870	2.997	1.034	1.935	1.08	0.073	2.483
250	2.824	3.559	2.046	2.239	2.270	1.746	0.629	1.974
25s	3.67	2.78	1.432	1.692	2.402	1.941	0.57	3.78
200	3.833	2.824	2.145	2.588	1.035	2.419	0.035	4.097
265	3.133	2.197	2.205	8.097	1.613	1.743	0.787	1.634
270	3.320	1.404	1.77	2.477	0.218	1.653	2.785	8.800
275	3.283	2.002	2.436	2.039	0.778	2.924	0.050	. 434
200	1.861	1.088	2.048	1.462	1.484	1.553	0.945	2.243
208	2.338	0.256	2.048	1.185	1.351	1.404	2.339	8.000
280	1.580	0.258	2.608	1.203	1.758	0.000	1.350	8.520

295	1.87	1.233	2.60	2.084	1.197	1.290	1.538	3.248
300	3.355	1.108	1.207	1.054	0.735	0.914	0.738	3.537
305	3.04	0.981	2.563	0.633	1.822	0.537	1.877	3.380
310	2.76	2.383	2.700	0.ass	2.333	0.60	0.96	1.840
338	2.548	1.968	1.600	0.753	2.520	0.213	1.247	Aces
3e0	1.984	3.256	2.142	0.687	1.974	0.358	1.247	8.300
3es	4.103	2.658	2.544	1.303	3.042	0.298	0.780	2.ess
330	3.746	3.257	3.110	1.539	3.640	0.573	0.515	8.270
335	4.240	3.250	3.180	1.793	4.109	0.879	0.594	2.557
340	3.006	4.183	3.e8s	1.738	4.246	2.248	$0.78{ }^{0}$	3.105
345	3.400	4.123	3.930	1.337	3.364	0.758	0.160	3.700
390	3.756	4.246	3.648	2.228	4.669	2.450	2.447	4.233
335	3.803	4.993	4.155	3.662	4.960	2.356	1.282	3.380
MEAN	4.188	3.362	3.136	2.594	3.458	2.504	2.306	2.435
sto.cev.	1.715	1.644	2.333	2.470	1.205	1.702	1.405	0.782
Telescares 2-8 ull readincs)								
MEAN SLCPE ERRCN 3.00\%*								
sto. deviation		3.306						
MEDIAN SLCEE ERROR		2.952						

 TELESCOM WO.

ArPENDXI

NICKEL MASTER
SECOND OPTICAL INSPECTION

צヨlSVh 7ヨyoin 100」 ट／t 6 NOIdOヨdSNI 7VOI！dO anz

UNIT PO: TAPE SHRIAL NO. NOOO1, FIIE NO. OU2, WEEL NO. 001
HECOZDS PRIM:SSEEO ONJOL, PEHMANENT HTT RECORUS DOONO: NUISE RECOKNS IGNUHED UONUO

meay	-. 281	3.657	S,372	2.024	3.283	2.900	1.993	a, cus
Sth. nev.	1.942	1.210	1.300	1.3011	0.986	1.004	U,900	11.140

TELESCCPI:S 1.y (ALL HEADIVGS)
MEAY SLOPE EANUK S.OI4
STO. IEVIATrUN
MEOLAN SLOPE GRNJH
2.921

ADJUSTED SLOPE ERROR

CALL APIOTV

CALE - INEV

CALL APLOTV

CALL - INEV
Call aplotv

CALL - INEV
call aplitiv
CALL - IVEV
call abloty
call - Ivev
CALE AFLDTV

BLANK
PAGE

15.
elept inmen-ntmutes

15.
30.

vilaceet m.

0

APPENDIX J
 NICKEL MIRROR
 FIRST OPTICAL INSPECTION

BLANK
 PAGE

y0yylh
$\underset{8}{8}$

 のはだがの日がN | V |
| :--- |
| V |
| IA |
| 4 |
| 5 |
| 3 |
| 3 |
| 2 |
| 2 |
| 2 |
| 3 |
| 3 |
| 4 |

交的岎
そこの品
운우
苃

 응웅
응쑬
亩
－＊

pelescope
$\cdots N \infty \operatorname{con}$

$\begin{aligned} & \text { ANGULAR } \\ & \text { OnSIIOA } \end{aligned}$	TFLFSCOPE	PtLESCOPE	TELHSCOPE	PELESCOPE	Pflescope	fFIESCDPE	PELESCORE	TELESCOPL
（ DEGAtFS）	1	2	3	${ }_{4}^{4} 10$	2.540	$\begin{array}{r} 6 \\ +114 \end{array}$	2,800	$\begin{gathered} 8 \\ 4,391 \end{gathered}$
0	3.904	4.762	1.668	1．639	2.540	1．114	2，000	4.397
5	6.205	5.003	1，942	0.535	2.167	1．205	2，175	2,663
10	6.222	2，590	2，097	1.608	2.310	1.905	2，407	2.430
15	4．625	0.952	2，048	2.035	1．945	0.925	2，313	1．177
20	4.779	0,832	2，167	1.298	1，512	0.442	1，206	3，422
25	4.717	1.706	2.843	1.938	0.277	1.125	3，491	2.981
3 n	3.774	0.983	2，268	3．516	1.079	0.746	3，863	c． 109
35	4.981	0.498	2.268	2.869	1.288	0.000	3，083	1．445
41	6.030	0,792	1，993	1.993	1.850	1.492	3.520	C，054
45	0.844	5：342	2，616	2，592	2.020	1.412	3.522	4， 314
bn	b，923	2，697	2，516	2.035	2.313	1.079	4.810	2，925
45	4．312	1，572	1．144	1．088	2，054	1.324	4.850	3，532
On	2．405	3.569	6.205	1.403	1，575	1.324	4.517	5.142
65	2.890	3.472	0.746	1，796	1.036	1.572	3.118	2.485
70	1.960	4，556	0.000	5.721	1，492	1.767	4.016	4．：57
75	2，358	2，868	0,763	5.627	2，421	2.407	4.593	2．029
80	1.079	3.952	2．183	3.944	3，797	3.058	4.601	＜，00》
85	1.375	4，774	2.087	0.161	3，222	3.150	4.109	3.190
90	3.746	3.109	6． 222	5．394	3.715	3.515	2．819	3.278
45	9.250	7.903	5.001	3．6．35	3.422	3.483	4.840	2.891
100	9.296	5.108	4.137	3，864	3.729	3.952	4.840	4.054
105	9.296	6，876	5．171	5.171	4.042	4.702	3.203	1．850
110	9.4 .33	4.273	5.553	0.415	4.308	3.979	2，364	＜．233
115	9.057	13.081	6.622	7.075	4.717	4.625	2.813	4．313
120	6.425	13.081	0.291	7.045	5.413	0.938	2.087	S，724
125	6.423	13．081	5.273	0.425	5.415	7.224	2，047	0.838
$13 n$	4.633	13.081	4.555	6．423	5.003	1.048	3.345	13．081
135	3.542	13.081	5.003	6.425	5.646	6.670	4.117	13，081
140	3.612	13．0nl	7.830	6.573	5.887	9.157	3.627	13．081
145	3.733	13．081	0.019	5.213	6，870	0.235	5.627	13.081
150	5.394	13．08．	3.040	5.421	7.459	1.458	4.445	13．081
155	4.204	15．081	3.103	6.222	0.670	1.045	3.101	13．081
10 n	4.762	13．081	4，223	0.878	0.205	7.045	15．081	13．081
165	1.951	13，091	3，729	5.795	6.734	0.622	13.081	15.081
$17 n$	0.000	13，091	3．4．27	1．803	6.475	6.738	1．836	13，061
173	1.308	15，0月1	2.838	4.535	0.517	6.989	13．041	15.061
180	5.129	13．081	3.294	4.535	6.022	3.721	1．445	0.012
184	3.231	7，045	4.137	4.981	2，5月8	5.413	2.121	3.088
190	2.949	13.081	4．854	5.108	4．711	6.205	2.857	3.551
195	2.872	6．291	4.916	5.795	5.569	3.273	3.146	3.121
？ 0 \％	3.994	13．081	7.903	4.319	3，389	0.222	4．125	1.698
205	7.628	8．273	4.902	2.944	7.957	3.301	4.981	1．951
？ 10	1，62\％	15.081	6.012	5，850	0.670	5.053	2.850	13.081
715	1J．JH1	13．081	3.729	4.981	3．721	0.207	5.588	1，849
22n	7.529	15.081	13.081	7.628	4，464	4.455	0.829	9．131
2.5	7．53	0.491	5.646	5.239	4．364	5.091	6.070	15.081
$23 n$	3.437	1S．081	4.004	4.916	2.989	2.869	6.012	0.105
234	1.836	1.873	4.174	1．912	2.136	2.513	2.989	1.244
340	3.860	2，079	3．129	4.652	2.960	2.694	2.491	0.960
245	3．237	0.952	2.412	4.829	2.694	2，878	3.851	2.444
350	2.320	0.442	1.907	5.095	2．0n0	2.650	4.503	8.540
255	2.054	1.706	1.931	4.048	1．615	2.199	4.054	8.010
P6n	2.415	1．185	1.144	2.749	0.462	1.034	2.824	1.847
265	4.633	4.131	1.185	3.571	1．234	1.203	3.700	1．143
37 n	1.951	3， 353	0.925	3.241	1．817	1.203	1．350	3．14y
275	2.405	3.335	1．2ns	3.15	0.565	1.4 AJ	4.404	3.270
280	0.530	2.813	1.034	2.813	1.110	2.409	4.395	3.012
285	0.472	2，068	2.313	2.031	1．258	1．771	3.192	9．190
290	3.270	3.294	2.253	2．842	2.028	2．353	2.857	3.335
295	5.046	\＄，569	2.813	3.193	2.167	2.364	2，428	2.091
30 r	4.430	0.038	2.750	3.58 c	2，313	1.873	2.151	1.280
105	3.927	5.5 A8	3.104	2.047	2，224	2．405	1.334	9．145
310	2.063	4．9a1	1.137	1.308	1.636	1.615	2.320	3.411
315	2.813	1．839	3．741	1.236	2.020	1.050	1.308	2.155
327	3.294	9．413	4，388	1．654	2.193	1.217	1.700	6．699
325	3.549	9，705	3.388	2.313	2.428	1．675	1.300	1.871
33 n	3.542	5.705	7.045	4.400	3.270	2：501	0.539	3.814
335	2.130	0.030	7.458	5.304	2.200	0.334	2.097	3． 530
34%	$2.4 n 3$	3.108	3.795	4.910	1.942	0.763	2．145	＜．4．4y
345	2.313	3．729	4．3ne	4.715	1.940	1.300	2.491	1.160
3sn	2.313	4.048	3.054	3．549	2.035	0.20%	2.122	1．500
359	0.996	3．171	5.441	3．179	2，121	0.462	2．2b1	6．220

UNIP 20，YAPE SFRIAL NO，UNOOL．FILENO，OO2，REFL MO． 001
DEPOUUS WHOCFSSEE OUOO2，DEHMANENT RYY पECORDS OOOOO，NOISE HECONDS IGNORED OOONO

MEAN	4.275	6.409	3.141	4.057	3，364	3.205	\＄．442	4．639
STE．nev．	2.556	4．4Y1	2．135	1.167	1．971	2.395	2．363	4.462

ANOUYA日 pAsifion	PrLEscopf	TEL SCOME	TELESCOPE	PELESCOPE	TELETEOPE	Pesescope	TELESCOR	TELEscoff
（DEGAEES）	4	2	10	0.48		1.710	${ }_{3,980}$	0.08
\％	4．172	41103	1．163	0.048	1，944	\％．710	3，510	
5	6．594	4.674	2，118	0.692	1．758	1.074	3.503	3.364
10	6．804	2.124	2，459	2，303	1．600	2.290	5.133	3.092
15	5，352	1，034	2，752	2，743	1.222	0.208	3.040	1，750
20	5，477	1，133	2，785	2，027	8.028	0.200	1， 4.10	3，0n9
23	5，4．38	1，386	2，555	2.428	1.906	2.301	4.100	3.187
3 n	4，4n4	0.783	2.990	4.244	1，794	0.3 es	4，535	4．313
15	5，676	0.341	2．090	1．397	1.994	0.784	4．391	1．060
40	6.798	1．299	2.078	2.678	2，310	$2.28{ }^{\circ}$	4.245	2.060
45	$\pm .440$	1．441	3.150	2.680	4，719	2.053	4.152	1，110
30	0.445	2，364	2，749	2.125	2，909	1，359	5．476	1.528 4.055
53	5.014	1，426	2， 353	1．112	2，600	1．334	5.543	． 1.053
0	2.415	4.216	b， 879	2．20\％	2.104	1．334	5.228	3.50
45	2.532	4.006	0.342	2，507	2，175	1．697	4，440	3，574
$7{ }^{6}$	1．316	\＄12月4	0.724	9.000	1．932	1.946	1．150	2.960
75	8．945	3.595	1，4．44	4.903	2.046	2.450	3.100	1.390
un	0.676	4，620	2.784	4，509	4.299	1.062	9．225	4，744
65	1.730	5，363	1.401	0.701	3，694	3.153	4．129	3.437
On	4．44，	3，4R9	0.704	5，718	3，910	3.592	3.501	J，914
95	9.240	0.152	2.410	3.649	3，089	3.305	5.169	2，038
100	9.215	2．187	4．477	4.030	4.100	4.720	3.169	2.644
103	9.213	0.020	3，312	3.312	4．440	4.41%	\＄．458	1．173
110	9.219	1，934	5，530	6．411	4.514	3.510	2.176	1．075
115	9.436	12，000	0.470	6．930	4.510	4.195	2.149	1．9R6
129	6．7ns	12．0no	0.070	6．794	5.112	0.494	2，014	1.003
129	0.744	12．0n0	9.092	0.050	5.112	0.635	2.014	${ }^{1}$.
130	4.909	12.060	4.274	0.050	4.004	7.074	4.440	14．tid
135	4.070	12．070	4，604	－．05\％	3.270	6.055	1.590	1e．0n＊
14%	4.040	12．006	3.405	0.100	5，347	1．079	S．515	14.006
14%	4.279	12．0n＊	3.710	4.428	0.378	1.050	3，215	12．00＊
isn	3.171	12，07\％	4，504	4.491	0.315	0.815	4．313	12．005
154	4.743	12.000	4．574	\＄．710	6．055	－．366	2．426	14．600
IAN	－．135	12.080	3，94！	0.178	5.545	0.360	12．008	14．0n＊
105	1．jns	12.000	3．003	2.144	0.020	\＄．904	12.500	14．0n＊
170	11.118	12．000	2.104	3.098	5.744	0.210	1.450	le，tict
175	1.440	12．0nt	2，160	3． 0.16	5.300	0.285	\＄2，400	12，009
18\％	\＄．177	12，016	2，744	3，6．10	5，y84	\＄．024	1．03：	3．2日S
105	5.506	0.400	3，904	4，331	4.954	4.752	2.412	4．361
190	3.301	12．000	4.259	4.758	4．242	3.504	2.621	4.324
193	3．1）${ }^{\text {a }}$	3.015	4.5 Cl	5.180	5.141	4.747	3.847	3.025
pnn	－．2ヶn	14.600	7，714	3．084	4，902	3．742	4.457	1.870
7 ns	7，473	1，119	4.596	1．310	7.402	3.072	5.529	1．494
715	1．47s	12．070	3，004	0.155	0.330	4.444	4．155	1d．60e
314	12.076	12．006	3，144	4，797	3.670	5.144	3.840	1． 188
720	7.134	12．00\％	12．0nc	7.523	4，634	4.493	1．835	4．8n）
235	1.073	－，999	0.121	\＄．71\％	4．672	0.201	1.130	14．0nt
23 n	1．67e	18，0nt	4.184	3.508	3.361	2.973	－ 302	4.200
334	2.400	8，208	3，260	4.644	2.483	－ 72	1，301	－41s
240	4.471	2.450	4，392	3．342	3.159	2．014	1.201	1．34．
245	3．405	0.317	1.006	\＄，590	3.011	3.454	4．31\％	4．110
250	2．944	0.200	2．074	3.423	2.510	3.569	4.084	\＄．071
355	2.000	1．212	2.024	3.104	2.324	2.910	4．724	3.145
3An	\％．710	0.010	1，445	3.510	1．123	2.721	1．4．68	4．014
3nt	－．01\％	3.370	1．193	4.204	1．95＊	1.404	4.427	－10y
370	1.224	4．4．3	1．645	3.915	2，3．13	1.030	3.040	5.94%
776	2．2n7	2．07\％	1，494	9.475	1．2ns	2．157	3．185	3．64．
7nn	1．1；${ }^{\text {d }}$	21100	1，121	9．31\％	1，134	8．0\％）	9.621	4．21\％
203	1．191	1.490	2．00\％	2.021	1．764	4．279	4.045	3.659
गVn	1．400	＜．8A）	2.535	3.412	2．197	2．403	3.445	s．vis
294	0.002	\＄．070	\％．149	3.026	2，746	2.114	3.120	3．350
30%	4．94；	3.478	2.359	3．4＊2	2.764	2.325	2．413	1．78e
304	$4.4 n 2$	4.917	2，590	2.014	2.501	4．75＊	1．451	5.190
31%	3.944	4.298	9.44%	0.978	2.201	8.942	2．08J	3． 248
119	\cdots Ant	4.124	3.017	0.942	2．318	6．315	1．415	4．200
189	1．07\％	4.171	9.09%	1．545	3.444	1．47\％	2.826	3．3v1
！	3．74？	3.144	－917	1．938	3.120	1.805	1.415	－ 71
43 n	9，713	3．144	0．30\％	3，093	3.100	1.212	1．414	4.91%
134	1．304	2．4．4．	B．A15	3.075	2.641	0.413	d．412	3．171
149	3．143	4．341	3.146	4.415	2.019	0.46	2．144	c．3sy
445	3.040	1．01\％	3.090	4.234	1．490	c．00\％	5.118	1．414
19A	9.040	9．430	＜．314	2.442	1，104	6.55%	1．430	1．91
150	1．133	4．942	7．724	2.439	1．4．4！	1．123	2，470	4．2\％＊
Mtid	4．A10	－． 8.15	1．747	4．11）	3，403	3.4%	4．4．4	e．0vs
くザ．＂ど．	8．4n＊	4．131	1．415	1.010	1.055	2．010	2．．38	1．131
	－＊＊	4．98						
Stin．\｜ula	，	3.18						
menlan bi	－${ }^{\text {c／w }}$	－Anu						

catb bivt
rat APbapr
rat6：IN－

ratb biaty

C\＆しいいい

CALL いでも

ε

suste sopt Enino

- ADJUATE \& CRE ERNO

C

APPENDIX K

NICKEL MIRROR
SECOND OPTICAL INSPECTION

OPTICAL INSPECTION OF 9.5 FOOT ELECTROFORMED MIRRCR
*ALL STO. DEVIATIONS \# ET .OR25 ARCMIN/DIVISIOM

TELESCOPE	avtrace x READINC	STANDARO DEvIATION	AVERACE Y READINS	STANDARO DEVIATION	AVERAGE SLOFE ERRCR
1	33.67	3.460	31.75	3.878	4.867
2	03.50	3.534	49.61	3.619	4.808
3	58.92	2.542	48.94	3.209	3.718
4	46.94	2.347	35.00	2.922	3.402
5	51.20	2.898	40.64	2.691	3.634
6	56.94	2.604	39.22	2.666	3.396
7	25.01	2.090	42.61	2.764	3.051
*	60.91	3.464	38.50	2.920	3.944

TELESCOPES 1-8
AVERACE \times READINE 52.30 STANDARD DEVIATION 2.870

AVERACE Y REAOINO 42.41
STANDARD DEVIATION 3.081
x Vs Y
STANOARD DEVIATION 4.217

amblean MOBIfIOM	TELEscore	TELESCOPE	TELESCOPE	TELESCONE	TELECOPE	TLEECORE	relescore	TLEESCOP
cremers)	1	2	3	4	5	6	\%	
0	4.987	4.897	2.237	2.248	1.203	2.000	=.88t	8.717
10	7.485	8. 598	8.zes	2.258	1.208	0.77	3.892	8.903
20	4. 789	2.352	3.158	2.865	8.237	2.731	2.895	2.208
80	4.040	2.237	3.109	4.08	2.532	1.264	4.604	1.714
40	6.848	2.248	2.368	2.742	3.387	3.488	4.860	3.328
80	5.382	0.738	1.658	0.895	2.948	2.450	5.677	4.018
∞	1.557	2.098	1.423	2.834	2.928	2.003	5.904	4.514
0	2.480	5.008	2.237	3.624	2.504	2.784	5.750	3.258
\cdots	2.972	3.240	3.25s	5.792	4.580	3.087	6.246	3.238
20	6.268	6.478	6.633	5.264	3.890	3.68	4.601	3.978
100	13.508	4.417	4.647	4.327	5.224	3.463	6.137	1.717
180	13.508	6.849	6.058	6.461	5.484	3.258	4.cas	0.734
280	T.4.43	0.300	6.439	6.237	5.005	5.312	3.665	2.070
130	$4.86{ }^{\text {c }}$	7.46e	4.469	5.030	4.853	4.948	5.904	7.981
140	5.100	5.944	4.008	6.ame	5.458	7.136	0.004	0.335
190	0.212	3.244	5.313	5.774	5.934	6.154	6.400	7.sep
100	7.982	0.656	5.313	6.774	6.670	7.158	3.937	7.274
170	4.608	13.508	3.685	3.458	S.980	6.158	3.937	7.340
100	0.000	7.738	2.403	4.547	5.098	5.094	3.130	6. 280
190	2.542	7.730	5.378	2.717	3.738	5.427	1.385	7.85
200	0.587	7.385	5.247	3.500	4.584	5.207	1.000	6.800
210	3.ess	7.roe	4.981	2.472	5.57	4.880	3.197	7.647
220	4.507	7.853	e. 808	3.964	3.070	4.839	4.246	7.958
230	0.002	c re4	3.939	2.298	2. 507	4.008	4.000	1.850
290	2.934	3.758	1.885	1.570	4.153	3.008	0.891	8.280
250	0.4e9	4.723	1.620	1.825	2.500	2.065	2.423	2.350
20	1.363	4.649	2.910	1.000	2.893	2.594	2.478	2.283
20	4.543	0.010	3.516	2.689	3.309	2.76	2.856	3.038
200	5.336	5.498	4.413	4.367	2.447	2.093	4.087	4.014
290	4.447	1.005	2.546	2.727	3.008	1.764	2.100	3.ear
300	4.203	3.088	0.383	1.608	2.217	2.727	2.373	2.502
310	4.000	$\mathbf{2 . 0 0 7}$	2.083	2.275	2.820	2.578	2.238	1.638
380	3.040	3.210	2.579	0.000	3.212	1.423	1.004	2.005
330	3.200	3.988	5.583	2.475	3.300	0.ees	2.178	8.597
340	3.700	3.589	4.168	3.087	1.983	8.241	2.450	0.283
380	2.990	3.442	2.157	3.0e0	2.605	1.765	3.756	1.819
HEAN	4.559	5.877	3.704	3. 359	3.618	3.875	3.766	3.0e4
sto.dev.	3.084	2.780	1.743	1.758	1.460	1.78	2.738	2.47

RAN MEASURED slome track

anellan mosition (Decters)	TELESCORE	TELESCOPE	TELESCOPE	TELESCOPE	TELESCOPE	TELESCOF	TELESCORE	TELESCONE
0	4.285	4.204	1.38	1.184	1.463	1.675	3.283	8.40%
10	6.875	2.800	2.626	1.952	1.288	0.462	3.285	3.25
80	4.003	0.687	2.358	1.843	2.188	1.034	1.807	2.616
30	3.007	1.868	2.733	3.741	2.031	0.592	4.623	2.824
40	6.569	0.704	8.12?	2.499	2.925	2.989	4.670	3.146
50	5.479	2.334	2.850	1.285	2.782	2.220	5.599	3.955
6	2.068	2.772	1.180	2.423	2.775	2.887	5.735	4.536
70	2.903	5.413	2.728	3.701	2.412	2.750	5.794	3.353
00	1.285	5.098	3.092	5.850	4.717	3.294	6.894	3.542
90	5.795	5.793	7.000	5.587	4.003	3.990	4.84	4.319
100	13.002	4.934	5.158	4.718	5.495	3.952	6.484	2.809
180	13.002	7.343	6.62	7.045	5.900	3.746	4.958	0.000
180	7.878	0.884	7.094	6.938	6.239	6.012	-.278	2.816
130	5.233	7.957	5.155	5.756	5.551	5.679	6.425	0.273
140	5.569	6.458	4.756	7.585	6.171	7.840	0.640	0.900
150	8.726	0.836	6.019	6.475	6.622	6.829	7.138	8.503
100	0. 503	9.180	6.019	7.472	7.323	7.799	4.698	7.049
270	5.893	13.081	4.303	4.137	6.541	6.892	4.648	7.878
180	0.262	7.917	3.108	5.103	5.413	5.507	2.827	6.775
190	2.136	7.987	6.030	2.777	3.792	3.627	2.77	7.656
200	0.392	7.414	4.884	3.814	4.629	5.210	0.370	0.953
220	2.983	7.224	4.005	1.796	5.413	4.004	2.453	7.472
280	3.821	7.384	7.400	3.482	2.618	3.958	3.534	7.585
230	0.472	2.777	3.572	1.572	2.235	3.863	3.357	2.258
240	2.224	3.729	2.180	1.034	3.733	3.281	0.382	2.127
250	0.925	4.684	1.055	1.665	2.157	1.587	1.745	2.838
260	1.295	4.758	2.499	0.462	2.570	2.167	1.796	0.9es
270	4.008	7.777	2.850	1.958	2.631	2.208	2.405	0.358
280	4.889	4.934	3.705	3.684	2.138	1.388	3.407	3.308
890	3.972	1.258	1.078	2.285	2.428	1.248	1.735	2.953
300	4.874	3.278	0.472	1.905	1.945	1.324	1.507	1.058
310	3.729	2.609	2.055	0.583	2.24	2.144	1.084	2.239
380	3.337	3.482	2.708	0.370	2.968	2.180	1.485	2.235
330	3.809	4.413	5.880	3.145	3.422	0.093	2.517	8.098
340	3.515	3.682	4.550	3.669	8.445	0.763	2.8.0	0.930
350	2.908	3.626	1.997	2.113	1.238	2.185	3.454	0.585
MEAN	4.422	5.172	3.671	3.368	3.582	3.297	3.025	3.936
STO.DEV.	3.044	2.822	1.972	2.107	1.787	2.193	2.038	2.824

0

=-- maw scopt Enimen

- - - RAM aleve timen

TtLEsert mb.

- asjuste how Ennew

C

c

APPENDIX L COATING SPECIFICATIONS

Front Surface Aluminum Mirror No. 749

Spectrophotometric curve shown in the visible region is measured at normal incidence.

*When the coated element is used at angles other thon normal, curve peaks will shift toward shorter wave longths (down seale). This vasiation is dependent on degree of angularity from normal incidence.

SPECIFICATION No. 1051

Reflectivity

The mirror shall have not less than 85% total reflectivity for light in the visible region as measured with a Weston photronic cell with a Viscor filter and a tungsten lamp supplying light at an angle of incidence of 22.5°.

Adherence

No visible part of the mirror coating shall be removed by the cellulose tape test described here:
Test: The tacky surface of cellulose tape shall be carefully placed in contact with a portion of the mirror surface and firmly rubbed against that surface. It shall then be quickly removed with a snap action which exerts the greatest possible stripping action on the mirror film.

Hardness

No evidence of film removal or film abrasion shall be visible to the eye when the following test is applied:
Test: A pad of clean dry cheese cloth (previously laun. ... dered) $3 / 8$ inch in diameter, $1 / 2$ inch thick, bearing with a force of one pound on the coating shall be rubbed across the coated element in any direction 25 times.

Note: During the above test, care should be exercised io prevent contaminating abrasives contacting the coated surface causing slight slecks.

Corrosion Resistance

There shall be no noticeable deterioration of the finished mirror when given the salt atmosphere test described here:

Test: The mirror shall be placed in a thermostatically controlled cabinet with a salt atmosphere for 24 continuous hours at a temperature of $95^{\circ} \mathbf{F}$. The salt atmosphere shall be obtained by allowing a stream of air to bubble through a salt solution containing $11 / 2$ pounds of sodium chloride per cubic toot of water.

Effect of Temperature

The coating shall function satisfactorily and shall not be damaged by exposure to an ambient temperature of minus $60^{\circ} \mathrm{F}$. and plus $500^{\circ} \mathrm{F}$.

C

APPENDIX M

TORUS ANALYSIS

Preliminary analysis indicated that the torus was critical in torsional rotation under applied normal loading. Since the torsional load is directly influenced by the weight of the torus, a section yielding the lowest polar moment of inertia/weight ratio was desired. A 3.58 in . OD, 0.040 in . wall torus has been selected. The D / t ratio of 90 approaches a maximum for wall stability.

To further keep rotational deflection to a minimum, it is desirable to torsionally restrain the torus at the three reaction points. The hard point inserts have been redesigned to accomplish this.

The analysis presented here has been performed via the General Electric Company MASS Digital computer program. The program has as its basis the Matrix Force Method of Analysis, and is capable of analyzing structures composed of straight or curved members with varying end restraints, under the influence of the complete spectrum of applied steady state inertial and thermal loading.

One-g loading conditions, in the plane and normal to the plane of the torus, have been investigated. This allows for superpositioning with appropriate load factors to obtain worst case conditions. The following assumptions are made:

1. The restraint effects of the mirror ire neglected.
2. The reaction points offer full torsional restraint.
3. Torus distortions produce like rigid body distortions in the mirror.
4. In-plane mirror loads are introduced into the torus by a $" V Q / r^{\prime}$ distribution.

The external load and initial deflection values for each joint are programmed here. Designation of the deflection: equal to zero indicates a fixed reaction point. For example, at joint 6, which is a reaction point, the deflections in the $1,2,4,5$ and 6 directions are given as zerc to specify the restraint given by the reaction point in these directions.

MEMBER INFORMATION

The section properties and member geometry are given here. The distributed load direction rotation is as shown.

The applied one-g loads were derived from a membrane stress analysis of the mirror. At the tangent point, the mirror load in in. -lbs. per inch of circumference is 1.004. The applied load calculations are:

$$
\begin{aligned}
\mathrm{W}_{1} & =0.927 \mathrm{lb} / \mathrm{in} . \\
\mathrm{W}_{5} & =0.386(1.12)+0.927(1.95) \\
& =2.240 \mathrm{in}-\mathrm{lb} / \mathrm{in} . \\
\mathrm{W}_{6} & =0.143+0.007+0.386 \\
& =0.536 \mathrm{lb} / \mathrm{in} .
\end{aligned}
$$

Given next on the output sheets are the member loads and deflections at each joint. Member loads and joint deflections (given following the member data) are oriented in respect to the basic coordinate system. Normalized deflection and loads are given in respect to the member, and directions are as shown.

The stress output is self-explanatory.

The summation of forces given at the end of the runs show a balance of forces at each joint and the reactions.

CASE II - IN-PLANE LOADING

The distribution loads are as shown:

$$
\begin{aligned}
& q=\frac{V}{\pi \epsilon} \sin \theta \quad \omega_{t}=\text { unit } \omega_{r} \text { of torus } \\
& \omega_{1}=\omega_{t} \cos \theta \\
& \hat{\varkappa}_{2}=q r \omega_{r} \sin \theta
\end{aligned}
$$

Substantiation of Structural Integrity

The torus is checked against the following criteria

Yield Loads - 1.15 Limit Loads
Yield stress of annealed Nickel - 8500 psi
(Ref. Metals Handbook 8th Edition-A. S. M.)

Load Factors

1. Transportation - Loads are to be attenuated by resilient packaging and special handling procedures.
2. Handling, hoist, etc. - 3.0 applied along any ccordinate axis.
3. Operation -
a. 2.0 g's (suddenly applied load) in any direction
b. Deflection Criteria

Distortion of true parabolic surface not to exceed one minute of arc.
c. Thermal Environment

A maximum ΔT of 20° is assumed between the mirror surface and the torus. Gradients through the sections are negligible (not critical for tourus design).

Condition (2) Hoist. (With the use of spreader bars)

$$
\begin{array}{ll}
\begin{array}{l}
\text { At Reaction Pts. } \\
\text { (Joints 6, 16) }
\end{array} & \text { Max. Axial Stress }=3.0(1.15)(120)=4.4 \mathrm{psi} \\
& \text { Max. Bending Stress }=3.0(1.15)(1767.2)=6970 \mathrm{psi} \\
& \text { Torsional Stress }=3.0(1.15)(227.5)=785 \mathrm{psi}
\end{array}
$$

Maxdmum Stress $=\frac{\mathrm{fc}}{2}+\sqrt{\frac{\mathrm{fc}}{2}^{2}+\mathrm{f}_{\mathrm{s}}^{2}}=7467 \mathrm{psi}$

$$
\text { M.S. }=\frac{8500}{7467} \quad-1=+0.14
$$

Condition (3) Operation.

Maximum Torsional Deflection $\mathbf{= 0 . 0 0 0 2 9 4 1}$ Radians at Joint 11

$$
\begin{aligned}
& \text { Change in parabolic slope } \\
& =(0.0002941) \frac{360}{2} \quad(60)=1.001 \mathrm{~min} .
\end{aligned}
$$

Margin of Safety $=\frac{\text { Allowable Deflection }}{\text { Actual Deflection }}-1=\frac{1.00}{1.001}-1=\underline{0}$

In consideration of the conservative analytical approach by neglecting the restraint of the mirror, this margin is adeguate.

A review of the analys; shows that the plane loading is not significant to the torus designs. The maximum bending stress is $452 \mathrm{psi} / \mathrm{g}$ and occurs at Joint 6. The in plane load capability is

$$
\frac{8500}{452(1.15)}=16.3 \mathrm{~g}^{\prime \mathrm{s}}
$$

MECHANIEALLANALYSIS
J.CHRISTOPHER EXT 3045 CHAREE 44P73C U2612 VF. DROP DATE $3 / 17 / 65$ $91 / 2$ FT. TORUS-TRANSVERSE LOADING

 M-9

FREQUENCY

)

:
1

0
RADIUS OF CURVATURE $=58.125$ $\begin{array}{ll}\text { COOROINATES } & \text { OF } \\ \text { COOROINATES } & \text { OF } \\ \text { CODR }\end{array}$ COORDINATES OF REFEREVCE restraint codes
YOUNGS MODULUS $=3.3000408$
Shear modulus $=0.1150 .08$
Thermal CoEfficient = o
cross sectiomal area $=0.4450$ MORENT OF INERTIA $1=0.6970$ MOMENT OS: INERTIA $2=0.6970$ notarios of axis =
0
$\begin{array}{cccc}\text { IJCLUCEN ANGLE } & =12.020 \\ 13 & 1 & 34.165 & -47.024 \\ 14 & 1 & 23.642 & 0 \\ \text { JOIVI } & 1 & & 03.100\end{array}$
ICKSIUNAL CONSTANT $=1.3940$

- *E*******
- $0 \quad i 13 i, i, i$

s

$=$
\sim

$$
\text { WEIGCT DEASIIY }=0.3720
$$

INESUUEの ASJLE $=12.050$
rorsilual ionstavt

$\begin{aligned} & -53.150 \\ & i-56.355\end{aligned}:$
JOINT
MISMIRUICI IUAOS
WEISHT UF MFMBEn

$$
\text { e • } n \cdot 0 \cdot n \cdot r 1
$$

RadiUS of Curvature $=53.125$

$$
\begin{array}{rll}
14 & 23.642 \\
15 & 1 & 12.385 \\
\text { JoIV1 } & &
\end{array}
$$

$$
\text { SHEAR ECNSTA:T } 1
$$

Shear cunstadt 2 temperatuxe ikso 1 temperature urdo 2 temperature averaue WEICHT UE:SITV =

- ON
14
COORDIHATES OF JOINT
CORRDIAATES OF JCINT
CORRDIMAES OF HEFER jiNIOR SJons INIVEISJy

YOUNGS MEDULUS $\quad=0.3000+n 9$

 SHEAR mODULIS $=0.1150+08$thermal coesticient $=0$ CROSS SEC:TIONAI, AREA $=0.4450$
WOMENT OF INERTIA $1=0.6970$ MONENT OF IMERTIA $?=0.6970$
0 3.32.?
 ROTATICN DF AXIS $=$

8

summatidin de flrces
dikectiun 5

$\dot{j} \dot{0} \dot{j} \dot{j} \dot{j} \dot{j} \dot{0} \dot{j} \dot{j} \dot{i} \dot{j}$

$\dot{j} \dot{0} \dot{j} \dot{j} \dot{j} \dot{j} \dot{j} \dot{j} \dot{j} \dot{j} \dot{j} \quad \dot{j}$ HECK
OIRECTIJN 6
C．
 －NOIIJヨ＊10

$=26.165$
69／18／\＆ 3150
$=3 \times n+30415$

＝3yniכnxis 10 1H9IJM TVIDI
TOTAL WEIGHT
143654 TINE 17265
$10+5219^{\circ} Z$
$90-5120^{\circ}$ $20+\varepsilon 8$ ヶの・て $50-8882^{\circ} \mathrm{Z}$
$\rightarrow 0-1058 \cdot 1-$ n
0
i
\vdots
0
0
i
i $\rightarrow 0-1058^{\circ}{ }^{1}-$
 $\cdot \mathrm{C}$
$\cdot 0$
$\cdot 0$
\cdot
$\cdot \mathrm{C}$
$\cdot 0$
\cdot
$\cdot \mathrm{C}$
$\cdot 0$
$\cdot 0$ － 0 － 0 ง． \circ ${ }^{-} \mathrm{C}$ -0 $50-248 \varepsilon \cdot 2-$
$50-2 \varepsilon \varepsilon \overbrace{}^{\circ} \varepsilon$
$\rightarrow 0-685 \sigma^{\circ} 1$
$\rightarrow 0-22 \rightarrow 5^{\circ} \varepsilon$
$90-19 \varepsilon 5 \cdot 6-$ －4．7684－06 50－ห6\＆2•1－ $-2.1027-05$

dikection 3 $-6.35,47+131$

$$
\begin{aligned}
& 90-02 Z 2 \cdot s \\
& 50-2961 \cdot 5- \\
& 50-248 \varepsilon \cdot z- \\
& 50-2 \varepsilon \varepsilon \% \cdot \varepsilon
\end{aligned}
$$ OIRECTIOA 2 2．8613－06 1．＇5073－06 －5．2452－06 0

i
\vdots
\vdots
\vdots
\vdots
\vdots 7．6522＋01 $90-5629 \cdot 2$
$90-2901 \cdot 8$ 8．1062－05 $2.2650-05$
$-3.6955-05$
$-2.9325-05$ $-1.4335-05$
$2.2650-05$
$-3.6955-05$ $-1.9312-05$
$-1.4335-05$ $-2.2173-05$
$5.2452-06$ －4．2915－C6 DIRECTION 1
$-4.3116+00$ $-4.3116+00$ －9．6560－06 3．8594－C6 4．1723－c6

$$
\begin{array}{r}
8.1062-0.06 \\
-2.6226-06 \\
-6.4373-06 \\
-3.23 c 6-05
\end{array}
$$

$$
1.2589-04
$$

$$
10+1 E t I \cdot z
$$

$$
90-6650 \cdot 6
$$ 90－449を．5

$$
\begin{aligned}
& -3.23 c 6-05 \\
& -6.1989-36
\end{aligned}
$$

$$
\begin{array}{r}
-1.4305-05 \\
9.0599-06
\end{array}
$$ － 10ヶ2186．1－ $-1.9812+C 1$

APPENDIX N

MATERIALS, SPECIAL TOOLING

AND

TEST EQUIPMENT

Item Description	Source
9-1/2 Foot Concentrator Shipping Fixture \& Torus Ring	Cryochem. Engineering \& Fabrication Co., Boyertown, Pa.
Epoxy Resins	MMM Company Newark Chemical Co. Newark, New Jersey
	Ciba Corporation Fair Lawn, New Jersey
Epoxy Catalyst	Union Carbide \& Carbon Co. Moorestown, New Jersey
Epoxy Dye	Mathison Chemical Co. East Rutherford, New Jersey
Epoxy Wecting Agent	General Electric Co. Waterford, New York
Epoxy Filler	Tamms Industries Philadelphia, Pa.
NOPCO Foam H-110-for bonding nickel master \& backup structure	NOPCO Chemical Co. North Arlington, New Jersey
Fairoprene Cement 4678 for Sealing backup structure surface	E. I. Dupont Denemours Wilmington, Del.
Strippable lacquer for protection of mirror and master	MMM Company Bristols Pa.
French Polishing Cotton	International GE Company Paris, France
Lithium Aluminum Hydride for Al. Mirror Electroform	Metal Hydrides Inc. Beverly, Mass.
Anhydrous Ether for Al. Mirror Electroform	Scientific Glass Co.
Epoxy Bondmaster for Torus to Mirror Bonding	Adhesive Products Div. Pittsburgh Plate Glass Bloomfield, New Jersey

Pentamide \#815	Ciba Products Summit, New Jersey
Araldite \#571	Ciba Corporation Philadelphia, Pa.
Cabosil	Cabat Corporation Boston, Mass.

SPECIAL TOOLING OR EQUIPMENT

Spincasting Table, Drive \& Speed Control Mechanism

Standby Equipment
Overhead Workway
Metering \& Mixing Equipment
Aluminum Torus Ring (30")

Schmidt Stress Cell
Osram 75 Watt Point Light Source

76X2091 MM Convex Lens

Ramsdem Eyepiece
Eyepiece Adapter
Cross Hair Reticle 10 MM 100 divisions

Described in Reference 2-1

Described in Reference 2-1
Described in Reference 2-1
Described in Reference 2-1
Chalmers \& Kubeck Philadelphia, Pa.

GE Proprietary Development
Peck Laboratories
Berkeley, Calif.
Edmond Scientific Co. Barrington, New Jersey

11

11

11

SUBCONTRACTOR

Nickel Master and Nickel Mirror
Slectroforming Vendor

Mirror Coating Vendor

Kanigen Electroless Coating for $30^{\prime \prime} \mathrm{Ni}$ master

Bart Manufacturing Co. Newark, New Jersey

Liberty Mirror Division Brackenridge, Pa.

Greenwald Plating Co.
Chicago, II.

[^0]: *Lee, D. E., Methods for Inspecting Large Parabolic Reflectors, GE-TIS R62SD1 70, 1961

[^1]: *Arbitrarily selected as one bearing foot of the mold as mounted on the spintable.

[^2]: Figure 3-4. Change in Radial Slope Readings With 5400 Pounds Radial Compressive Load Applied to Nickel Master at 170 and 350-Degree Reference Positions

[^3]: *Private Communication, Mr. Kerfman, General American Transportation Corporation to D. E. Lee, 14 April, 1965.

