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Message from the General Chairs

The 16th Monterey Workshop was held at the Microsoft Headquarters during
March 31 – April 2, 2010 in Redmond, Washington.

A decade into the new millennium, the field of software engineering faces more
challenges than ever to evolve with the increasing demands placed on software,
as technology expands and becomes even more integrated into every facet of our
lives. This pervasiveness increases not only the range of challenges that software
applications must face but also the adaptability, flexibility, and robustness they
need in order to reliably function in the chaotic jungle of the real world.

Accordingly, the 16th Monterey Workshop investigated an intriguing direc-
tion for potential innovation: mechanisms by which organisms cope with harsh,
unfavorable, and variable conditions in the natural world. Distillation and for-
malization of common strategies of complex systems that persevere and function
in severely stressful or unexpected situations can aid in the design of systems
that must be able to weather similarly chaotic environments.

While these observed strategies provide a potential source of inspiration,
unlike nature, software engineers are not limited to trial and error. We can
formulate mathematical models and design principles to provide systematic av-
enues for realizing, analyzing, and improving software reliability. Specialization
to meet the particular needs of software development and clever design based
on insights gained from natural strategies may eventually surpass the robust-
ness of biological systems. Multiple approaches are explored here, ranging from
decentralization-based redundancy and improved verification of flexible systems
with many configurations to self-adaptive, self-management, and self-correction
capabilities.

You will find interest and inspiration in the work of this gathering of brilliant
minds at Microsoft Headquarters. Touring Microsoft Research was a fantastic
opportunity. The presentations on various frontier topics are extremely interest-
ing. The papers in this volume represent the most important directions at the
workshop, refined in response to workshop discussions and referee comments.

In particular, we note several presentations dealing with the notion of adap-
tation in software systems. It is amazing how this notion could be specialized and
refined in various application domains such as autonomous space systems, re-
configuration of modular robots, adaptation to application design, managements
of unpredictable changes in specifications, and certification of reconfiguration.
This subtopic was covered in many different ways during the workshop, without
prior coordination of the invitees. This outcome is not surprising if we consider
that ubiquitous systems are rising, with increasing rates of new requirements,
new operating environments, subsystem failures, and hostile activity.

In some contexts adaptation is a necessity, for a variety of reasons. For exam-
ple, autonomic robots in some space missions have to be self-adaptive because
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there is no way to get an answer from earth, due to a 40-minute delay. In the
context of reconfigurable modular robots, runtime adaptation is needed because
there is no way to pre-compute the potential moves, due to a combinatorial
explosion of possible starting states. Variability in modeling languages requires
adaptability because the application-specific extensions needed are discovered
only when we know the application. Lightweight formal methods supporting re-
configuration in response to varying system loads are needed to derive a system
change that will not violate any system constraints, to ensure success of the
proposed adaptation before attempting any system modifications. In these and
many other cases, details of the required adaptation depend on information that
is not available at the time the system is designed.

We very much enjoyed sharing of the advancement of science and technology
in the field of software engineering with the research community, following the
culture and tradition of the Monterey Workshop, and would like to thank our
fantastic Program Committee Chairs Radu Calinescu from Oxford and Ethan
Jackson from Microsoft for assembling a fascinating workshop program.

On behalf of the Monterey Workshop Steering Committee, we would like
to thank NSF, ONR, AFOSR, ARO, DARPA, and all of our European research
sponsors for their support for the Monterey Workshops over the years, and ARO
and Microsoft in particular for making this 16th Monterey Workshop possible.
Many of the Monterey Workshop topics have subsequently blossomed into major
research initiatives and widespread applications with great benefit to all. Here
are the topics of Monterey Workshops from the past two decades:

0th: Research Review on Formal Methods in Software Engineering: Concurrent
and Real-time Systems, Monterey, California, 1991

1st: Computer-Aided Prototyping: CAPSTAG, Monterey, California, 1992
2nd: Software Slicing, Merging and Integration, Monterey, California, 1993
3rd: Software Evolution, Monterey, California, 1994
4th: Specification-Based Software Architectures, Monterey, California, 1995
5th: Requirements Targeting Software and Systems Engineering, Bernried, Ger-

many, 1997
6th: Engineering Automation for Computer-Based Systems, Monterey, Califor-

nia, 1998
7th: Modeling Software and System Structure in a Fast-Moving, Scenario, Santa

Margherita Ligure, Italy, 2000
8th: Engineering Automation for Software-Intensive System Integration, Mon-

terey, California, 2001
9th: Radical Innovations of Software and Systems Engineering in the Future,

Venice, Italy, 2002
10th: Software Engineering for Embedded Systems: From Requirements to Im-

plementation, Chicago, Illinois, 2003
11th: Software Engineering Tools: Compatibility and Integration, Vienna, Aus-

tria, 2004
12th: Realization of Reliable Systems on Top of Unreliable Networked Platforms,

Irvine, California, 2005
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13th: Composition of Embedded Systems: Scientific and Industrial Issues, Paris,
France, 2006

14th: Innovations for Requirement Analysis: From Stakeholders’ Needs to For-
mal Designs, Monterey, California, 2007

15th: Foundations of Computer Software, Future Trends and Techniques for De-
velopment, Budapest, Hungary, 2008

16th: Modeling, Development and Verification of Adaptive Systems, Redmond,
Washington, 2010

March 2011 Luqi
Fabrice Kordon



Message from the Program Chairs

The 16th Monterey Workshop was held at Microsoft Research in Redmond, WA,
at an exciting turning point in consumer technology. Cloud computing was be-
coming mainstream facilitated by a combination of advances in virtualization
technology and concerns about the costs and environmental impact of maintain-
ing an in-house IT infrastructure. For the first time, sales of smart phones were
predicted to overtake sales of laptops. These two trends have since synergized to
provide powerful mobile computing on an unprecedented scale.

Similar technological advances have led to a continual increase in the adoption
of IT-based solutions in industrial safety-critical and business-critical applica-
tions in recent years. We anticipate that cyber-physical systems — systems that
integrate computing and physical processes — will become increasingly common
over the next decade.

This evolution focuses our attention on a number of key research challenges.
How can we ensure information privacy and security? Can data-centers, clouds,
and other large-scale distributed systems be made reliable enough to truly de-
pend on them? Can we certify that software performs its intended functions, and
can it adapt to withstand unanticipated component failures? During the work-
shop we listened to presentations by experienced researchers in the modeling,
development and verification of adaptive computer systems, and we discussed
these challenges from many angles. This proceedings volume gives both an out-
line of these discussions and an extension of the works presented at the workshop.

We would to thank the participants for their insightful perspectives and lively
discussion, which made this volume possible.

We would also like to thank Jim Larus of the Extreme Computing Group
(XCG) for his overview of Microsoft’s research in cloud computing. Similarly,
we thank Desney Tan for presenting his group’s research on next-generation
user input devices, giving us a glimpse of what might come after the touch
screen. Finally, we are grateful to Fabrice and Luqi for organizing the Monterey
Workshop series.

March 2011 Radu Calinescu
Ethan Jackson
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Software Verification of Autonomic Systems  
Developed with ASSL 

Emil Vassev1 and Mike Hinchey2 

Lero—the Irish Software Engineering Research Centre 
1,2 University of Limerick, Limerick, Ireland 

{Emil.Vassev,Mike.Hinchey}@lero.ie 

Abstract. We discuss our experiences in building tools for software verification 
of autonomic systems developed with the Autonomic System Specification 
Language (ASSL). ASSL is a software framework that aims to assist developers 
of autonomic systems by providing a powerful combination of both notation 
and tools. One of the major objectives of the framework is to assure the correct-
ness of the autonomic systems via inclusion of tools targeting consistency 
checking, model checking, and automatic test case generation. In this paper, we 
review our recent work on these tools.  

Keywords: software verification, formal methods, ASSL, autonomic computing. 

1   Introduction 

The Autonomic System Specification Language (ASSL) [1, 2] is a formal method 
dedicated to the development of autonomic systems (ASs) [3]. Conceptually, ASSL 
assists developers with formal specification, validation, and code generation of such 
systems. Due to the synthesis approach of automatic code generation, ASSL guaran-
tees consistency between a specification and the corresponding implementation.  
As part of the framework validation, ASSL has been successfully used to specify 
autonomic features and generate AS models for a variety of computer systems includ-
ing prototypes of two NASA projects—the Autonomous Nano-Technology Swarm 
(ANTS) concept mission [4] and the Voyager mission [5]. Our experience with ASSL 
has demonstrated that although the framework is very efficient, errors can be easily 
introduced while specifying large systems. The first release of ASSL provides built-in 
consistency checking and functional testing as the only means of software verifica-
tion. This helps developers easily discover syntax and consistency errors, but barely 
handles logical errors. To increase the framework’s software-verification capabilities, 
we have been investigating model checking [6] as the most effective approach to 
software verification for our purposes.  In addition, in order to detect errors intro-
duced not only in ASSL specifications, but also with supplementary coding, the  
automatic verification support provided by the ASSL tools is to be augmented by 
appropriate automatic generation of test cases. Both model checking and automatic 
test case generation are subjects of new research projects at Lero–the Irish Software 
Engineering Research Center. In this paper, we briefly present existing and new soft-
ware-verification approaches for ASSL.  
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The rest of this paper is organized as follows: In Section 2, we briefly present the 
ASSL formal specification model. In Section 3, we present the basic consistency 
checking mechanism.  Sections 4 and 5 present our approach to model checking and 
automatic test case generation with ASSL. Finally, Section 6 provides brief conclud-
ing remarks and a summary of future research goals. 

2   ASSL 

ASSL [1, 2] is based on a specification model exposed over hierarchically organized 
formalization tiers (see Table 1). This specification model provides both infrastructure 
elements and mechanisms needed by an AS (autonomic system). Each tier of the 
ASSL specification model is intended to describe different aspects of the AS in ques-
tion, such as service-level objectives, policies, interaction protocols, events, actions, 
autonomic elements, etc. This helps to specify an AS at different levels of abstraction 
(imposed by the ASSL tiers) where the AS in question is composed of special auto-
nomic elements (AEs) interacting over interaction protocols (IPs).  

Table 1. ASSL multi-tier specification model 

AS 

AS Service-level Objectives 

AS Self-management Policies 
AS Architecture 
AS Actions 
AS Events 
AS Metrics 

ASIP 
AS Messages 
AS Channels 
AS Functions 

AE 

AE Service-level Objectives 

AE Self-management Policies 
AE Friends 

AEIP 

AE Messages 

AE Channels 

AE Functions 

AE Managed Elements 

AE Recovery Protocols 
AE Behavior Models 
AE Outcomes 
AE Actions 
AE Events 
AE Metrics 

 
As shown in Table 1, the ASSL specification model decomposes an AS in two  

directions: 1) into levels of functional abstraction; and 2) into functionally related 
sub-tiers. The first decomposition presents the system at three different tiers [1, 2]:  
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1) a general and global AS perspective – we define the general system rules 
(providing autonomic behavior), architecture, and global actions, events, and metrics 
applied in these rules; 

2) an interaction protocol (IP) perspective – we define the means of communi-
cation between AEs within an AS; 

3) a unit-level perspective – we define interacting sets of individual computing 
elements (AEs) with their own autonomic behavior rules, actions, events, metrics, etc.  

The second decomposition presents the major tiers AS, ASIP and as composed of 
functionally related sub-tiers, where new AS properties emerge at each sub-tier. The 
AS Tier specifies an AS in terms of service-level objectives (AS SLOs), self-
management policies, architecture topology, actions, events, and metrics (see Table 
1). The AS SLOs are a high-level form of behavioral specification that helps develop-
ers establish system objectives such as performance. The self-management policies 
are driven by events and trigger the execution of actions driving an AS in critical 
situations. The metrics constitute a set of parameters and observables controllable by 
an AS. With the ASIP Tier, the ASSL framework helps developers specify an  
AS-level interaction protocol as a public communication interface expressed with 
special communication channels, communication functions, and communication mes-
sages. At the AE Tier, the ASSL formal model exposes specification constructs for 
the specification of the system’s AEs. Note that AEs are considered to be analogous 
to software agents able to manage their own behavior and their relationships with 
other AEs. An AE may also specify a private AE interaction protocol (AEIP) shared 
with special AE considered as “friends” (AE Friends tier).   

It is important to mention that the ASSL tiers are intended to specify different as-
pects of the AS in question, but it is not necessary to employ all of them in order to 
develop an AS. Conceptually, it is sufficient to specify self-management policies 
only, because those provide self-management behavior at the level of AS (the AS tier) 
and at the level of AE (AE tier). These policies are specified within the AS/AE Self-
management Policies sub-tier (the ASSL construct is AS[AE]SELF_MANAGEMENT) with 
special ASSL constructs termed fluents and mappings [1, 2]. A fluent is a state where 
an AS enters with fluent-activating events and exits with fluent-terminating events. A 
mapping connects fluents with particular actions to be undertaken. Usually, an ASSL 
specification is built around one or more self-management policies, which make that 
specification AS-driven. Self-management policies are driven by events and actions 
determined deterministically. The following ASSL code presents a sample specifica-
tion of a self-healing policy. 

 
ASSELF_MANAGEMENT {  
 SELF_HEALING {  
  FLUENT inLosingSpacecraft {  
   INITIATED_BY { EVENTS.spaceCraftLost } 
   TERMINATED_BY { EVENTS.earthNotified } }  
  MAPPING { 
   CONDITIONS { inLosingSpacecraft  } 
   DO_ACTIONS { ACTIONS.notifyEarth } } 
 } 
} // ASSELF_MANAGEMENT 
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As shown, fluents are expressed with fluent-activating and fluent-terminating 
events. In order to express mappings, conditions and actions are considered, where the 
former determine the latter in a deterministic manner.  

Once a specification is complete, it can be validated with the ASSL built-in  
verification mechanisms (e.g., consistency checking) and a functional application 
skeleton can be generated automatically. The application skeletons generated with the 
ASSL framework are fully-operational multithreaded event-driven applications with 
embedded messaging. 

3   Consistency Checking with ASSL 

In general, we can group the ASSL tiers into groups of declarative (or imperative) 
and operational tiers [1, 2]. Whereas the former simply describe definitions in the AS 
under consideration, the latter not only describe definitions but also focus on the op-
erational behavior of that AS.  The ASSL framework evaluates an AS specification 
formally to construct a special declarative specification tree needed to perform both 
consistency checking and code generation. The declarative specification tree is 
created by the framework when parsing an AS specification and contains the hierar-
chical tier structure of that specification. Each specified tier/sub-tier is presented as a 
tier instance. Consistency checking (see Fig. 1) is a framework mechanism for verify-
ing specifications by performing exhaustive traversing of the declarative specification 
tree.  In general, the framework performs two kinds of consistency-checking: 1) light 
– checks for type consistency, ambiguous definitions, etc.; and 2) heavy – checks 
whether the specification model conforms to special correctness properties. 

 

 

Fig. 1. Consistency Checking with ASSL 

The correctness properties are ASSL semantic definitions [1, 2] defined per tier.  
Although, they are expressed in First-Order Linear Temporal Logic (FOLTL)1 [6], 
currently ASSL does not incorporate a FOLTL engine, and thus, the consistency 
checking mechanism implements the correctness properties as Java statements. Here, 
the FOLTL operators (forall) and (exists) work over sets of ASSL tier instances. It 
is important to mention that the consistency checking mechanism generates consis-
tency errors and consistency warnings. Warnings are specific situations where the 

                                                           
1 In general, FOLTL can be seen as a quantified version of linear temporal logic. FOLTL is 

obtained by taking propositional linear temporal logic and adding a first order language to it. 
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specification does not contradict the correctness properties, but rather introduces un-
certainty as to how the code generator will handle it. 

As mentioned above, a variety of predefined correctness properties are subject of 
consistency checking. One of those correctness properties is the so-called autonomici-
ty rule [1, 2]. According to that rule, every autonomic system specified with ASSL 
must have specified at least one self-management policy. Fig. 2 shows an error re-
ported by the ASSL’s consistency checker, because the processed ASSL specification 
violates the autonomicity rule (the entire ASSELF_MANAGEMENT sub-tier comprising the 
self-management policies is commented). 

 

 

Fig. 2. Checking for “Autonomicity” with the Consistency Checker 

4   Built-in Model-Checking Mechanism for ASSL  

In general, model checking advocates formal verification whereby software programs 
are automatically checked for specific flaws by considering correctness properties 
expressed in temporal logic [6].  In this endeavor, three model-checking mechanisms 
for ASSL have been considered: 1) a built-in model checker [7]; 2) a mechanism for 
mapping ASSL specifications to formal notation with provided tool support for model 
checking [8]; and 3) a post-implementation model checker based on the Java Path-
Finder [9] tool developed at NASA Ames. Whereas the first two model-checking 
methods check ASSL specifications, the third one is to verify the generated Java code. 
Note that despite careful specification and the existence of ASSL-level model check-
ing, it is theoretically possible to generate ASs that contain fatal errors (e.g., dead-
locks). This is mainly due to the state-explosion problem, which we discuss in Section 
4.2. Moreover, with the post-implementation model checker we may verify not only 
the newly-generated code but also all consecutively updated versions of the same. 
Thus, the ASSL model-checking mechanisms are intended to verify both the ASSL 
specifications and the corresponding AS implementations. 

In this paper, we report our experience in developing the built-in model checker 
[7]. In this approach, an ASSL specification is translated into a state-transition graph, 
over which model checking is performed to verify whether an ASSL specification 
satisfies correctness properties. Here, the model-checking problem is: given the AS A 
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and its ASSL specification a, determine in the AS’s state graph g (called ASG) 
whether the behavior of A, expressed with the correctness properties p, meets the 
specification a. An ASG formally stems from the concept of Kripke Structure [6]. 
The latter is basically a graph having the reachable states of an ASSL-specified sys-
tem as nodes and the state transitions of the system as edges. In addition, to allow for 
formal verification, each system state must be labeled with properties (called atomic 
propositions AP) that hold in that state and each state transition must be associated 
with one or more state transition operations Op. The notion of state in ASSL is re-
lated to the ASSL specification constructs called ASSL tier instances [1, 2] (specified 
tiers and sub-tiers). The ASSL operational semantics [1, 2] considers a state-transition 
model where tier instances can be in different tier states, e.g., instances of the SLO 
(Service-Level Objectives) tier can be evaluated as satisfied or not satisfied. Here, an 
ASSL-developed AS transits from one state to another when a particular tier instance 
evolves from a tier state to another tier state. Here, transition operations Op cause tier 
instances to evolve. 

4.1   Building the Autonomic System Graph 

In order to build the ASSL model checker, we had to do some preliminary theoretical 
work to prepare the program structures holding an ASG. Here, we had to define: 

1) the reference state model for ASSL-specified ASs, which appeared to be a 
product machine that consists of high-level tier states composed of multilevel nested 
tier states, and the global system state is a product of all nested states (we had to iden-
tify an initial state and all the possible tier states S);  

2) a set of all atomic propositions AP, which denote the properties of individual 
states S, and present the S-AP relationship as tuples of the form (Sn, AP1, …. APn ); 

3) all possible transition relations R as tuples of the form (S1, Op, S2).  

Next, we had to implement structures holding the S-AP and R tuples. Note that those 
are recorded in two flat files (one per tuple type) and are loaded into the implemented 
program structures at the time of ASSL loading. This helps the model-checker tool 
cope with future extensions to ASSL. To implement the tuple structures, we used a 
distinct token class per tuple type (S-AP and R) and used vectors of tuple tokens. In 
addition, a generic algorithm is implemented to traverse those vectors and return a 
sub-vector of tuple tokens refined by state, by operation, or by atomic proposition. 
Thus, at runtime, the model-checking tool can obtain all the atomic propositions and 
related transition operations for a particular state. Here,  

• tier states S are recorded with tier instance name and state name;  
Example: tier { SLO } name { performance } state { unsatisfied } 

• transition operations Op are recorded with their ASSL predefined names [1];  
• atomic propositions AP are recorded with “if” and “then” sections and op-

tional “temporal” operators (a temporal logic operator).  

Example: if { event prompted } then { tempOperator { eventually } fluent initiated }. 

In the next step, we had to develop a mechanism constructing the ASG from an ASSL 
specification. Here, the ASG is constructed by the ASSL framework by using a  
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special declarative specification tree created by the framework when parsing an AS 
specification [1, 2]. The declarative specification tree contains the hierarchical tier 
structure of the actual specification. Thus, enriched with the tier states S, it can be 
used to derive the composite multilevel structure of the ASG by taking into considera-
tion that all the tier instances run concurrently as state machines. Thus, the tier states 
S are derived from the declarative specification tree and enriched with the appropriate 
atomic propositions AP. The latter are retrieved per state.  

In addition, the so-called operational evaluation [1, 2] performed on the ASSL 
specification is used to derive all the transition relations R (S1, Op, S2) needed to 
connect the states S and thus, to construct the ASG. Here, an ASG is composed of 
nodes that can be presented formally as a tuple (s, R, AP) where: s is the tier state;  
R is a set of transition relations connecting the state s to other states via system  
operations; AP is a set of atomic propositions held in s. Similar to the declarative 
specification tree, the generated ASG is hierarchical, i.e., composed of multilevel 
composite tier states. Note that the generated ASG is stored in a flat file, which helps 
us trace the graph. Fig. 3 depicts the transformation of the declarative specification 
tree into an ASG, where the latter is presented at the highest possible level of abstrac-
tion comprising a single composite state “AS Active”, which is a product machine 
consisting of product states. 

 
Fig. 3. Transformation of the Declarative Specification Tree into an ASG 

4.2   Building the Model-Checking Engine 

Next, we had to implement the model checking engine that should work over the 
following algorithm: given that Ф is a correctness property expressed in a temporal 
logic formula, determine whether the “AS Active” tier state (see Fig. 3) satisfies Ф, 
which implies that all possible compositions of nested tier states satisfy Ф.  

Thus, the model-checking engine traverses all the possible paths in an ASG to 
check whether special correctness properties Ф (expressed in a temporal logic) are 
satisfied. In case such a property is not satisfied, the ASSL framework produces a 
counterexample. The latter is an execution path of the ASG for which the desired 
correctness property is not true.  

At the time of writing, the model-checking engine is still under development. We 
are currently examining two possible solutions: 1) developing our own engine; or 2) 
integrating an already existing engine that can process the generated ASG file. En-
gines of current interest are SPIN [10] and GEAR [11]. In all approaches though, we 
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need to consider the so-called state-explosion problem. In general, the size of an ASG 
is at least exponential in the number of ASSL tier instances running concurrently in 
the system (recall that an ASG is a product machine). We are currently working on 
two possible solutions to that problem—abstraction and prioritized tiers. The first 
solution is to use composite tier states to abstract their nested tier states. Thus, given 
an original state graph G (derived from an ASSL specification) an abstraction is ob-
tained by suppressing low-level tier states yielding a simpler and likely smaller state 
graph Ga. This reduces the total amount of states to be considered but is likely to 
introduce a sort of conservative view of the system where the abstraction ensures only 
that correctness of Ga implies correctness of G. The other possible solution is to pri-
oritize ASSL tiers by giving their tier states a special probability weight pw. This can 
be used as a state-reduction factor to derive probability graphs Gpw with a specific 
level of probability weight, e.g., pw > 0,5. However, this approach is likely to intro-
duce probability to the model-checking results, which correlates with the probability 
level of the graph Gpw. 

4.3   Checking Liveness Properties 

This section demonstrates how the ASSL built-in model-checking mechanism can 
perform formal verification to check liveness properties of an AS specified and  
generated with ASSL. Our example is the ASSL specification model for the NASA 
Voyager Mission [5]. In this case study, we specified the Voyager II spacecraft and 
the antennas on Earth as AEs (autonomic elements) that follow their encoded auto-
nomic behavior to process space pictures, and communicate those via predefined 
ASSL messages. In this section, we use a sample from this specification to demon-
strate how a liveness property such as ”a picture taken by the Voyager spacecraft will 
eventually result in sending a message to antennas on Earth” can be checked with the 
ASSL model-checking mechanism. Note that the ASSL specification model for the 
NASA Voyager Mission is relatively large (over 1000 lines of specification code). 
Thus, we do not present the entire specification but a specification sample. For more 
details on that specification, please refer to [5].  

 

 

Fig. 4. The IMAGE_PROCESSING policy 

Fig. 4 presents a partial ASSL specification of the IMAGE_PROCESSING self-
management policy of the Voyager AE. Here the pictureTaken event will be prompted 
when a picture has been taken. This event initiates the inProcessingPicturePixels fluent. The 
same fluent is mapped to a processPicture action, which will be executed once the fluent 
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gets initiated. As it is specified, the processPicture action prompts the execution of the 
sendBeginSessionMsgs communication function (see Fig. 4), which puts a special message 
x on a special communication channel [5] (message x is sent over that channel). Note 
that the specification of both the pictureTaken event and the sendBeginSessionMsgs function  
is not presented here. As we have already mentioned in Section 4.1, the ASSL model-
checking mechanism builds the ASG (autonomic system graph) from the ASSL  
specification. Here both the declarative specification tree and the ASSL operational 
semantics [1, 2] are used to derive tier states S  and transition relations R, and to 
associate those tier states via the ASSL transition operations Op. Next the labeling 
function L(s) (integrated in the model-checking mechanism) labels each tier state s 
with appropriate atomic propositions AP. 

Fig. 5 presents a partial ASSL ASG of the sub-tiers of the Voyager AE. These sub-
tiers are derived from the declarative specification tree constructed for the Voyager 
AE. Note that this ASG is a result of our analytical approach and for reasons of clarity 
it is simplified, i.e., not all the possible tier states are presented here. 

 

 

Fig. 5. State machines of the Voyager AE sub-tiers 

As shown, each sub-tier instance forms a distinct state machine (basic machine) 
within the AE state machine and the AE state machine is a Cartesian product of the 
state machines of its sub-tiers. It is important to mention that by taking the Cartesian 
product of a set of basic sub-tier machines, we form a product machine consisting of 
product states. The latter are tuples of concurrent basic sub-tier states. Moreover, in 
the AE product machine, the ASSL state-transition operations Op are considered 
product transitions that move from one product state to another. Note that the states in 
the state machine of the whole AS product machine can be obtained by the Cartesian 
product of all the AE product machines. Thus, by considering the sub-tier state ma-
chines we construct the Voyager AE product machine (see Fig. 6). Note that this is 
again a simplified model where not all the possible product states are shown.  

Fig. 6 presents the AE product states as large circles embedding the sub-tier states 
(depicted as smaller circles). Here we use the following aliases: e states for Event state 
machine; f states for Fluent state machine; a states for Action state machine;  
y states for Communication Function state machine; x states for Message state machine. 
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Fig. 6. Voyager AE product machine 

Moreover, white circles present ”idle” state and gray circles present the corresponding 
”active” state of the sub-tier state machine under consideration (such as: prompted for 
events, initiated for fluents, etc.; see  Fig. 5). 

Therefore, the formal presentation (S; Op; R; S0; AP; L) (see Section 4.1) of the 
Voyager AE ASG is: 

• S = {S1; S2; S3; S4; S5; S6; S7} 
• Op = {Event; FluentIn; EventOver; ActionMap; Function; MsgSent} 
• R = {(S1;S2;Event); (S2;S3;FluentIn); (S3;S4;EventOver); 

(S4;S5;ActionMap); (S5;S6;Function); (S6;S7;MsgSent)} 
• S0 = S1 (initial state) 
• AP = { event pictureTaken occurs, event pictureTaken terminates, action 

processPicture starts, fluent inProcessingPicturePixels initiates, func-
tion sendBeginSessionMsgs starts, sends message x } 

• L(S): 
o L(S1) = { event pictureTaken occurs };  
o L(S2) = { fluent inProcessingPicturePixels initiates };  
o L(S3) = { event pictureTaken terminates };  
o L(S4) = { action processPicture starts }; 
o L(S5) = { function sendBeginSessionMsgs starts };  
o L(S6) = { sends message x }; 

Moreover, we consider the following correctness properties applicable to our case: 

• If an event occurs eventually a fluent initiates. 
• If an event occurs next eventually it terminates. 
• If a fluent initiates next actions start. 
• If an action starts eventually a function starts. 
• If a function starts eventually it sends a message. 

The ASSL model-checking mechanism uses the correctness property formulae to 
check if these are held over product states considering the atomic propositions AP 
true for every state. Thus, the ASSL framework is able to trace the state path shown in 
Fig. 6 and to validate the liveness property stated above. Note that in this example, we 
intentionally presented a limited set of atomic propositions AP and correctness prop-
erties. The former are derivable, that is, deduced from the operational evaluation of 
the ASSL specification. Moreover, the Voyager AE product machine presents only 
product states relevant to our case study. 
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5   Automatic Test Case Generation with ASSL  

To allow post-implementation software verification with the ASSL framework, we 
are currently developing a novel test-generator tool based on change-impact analysis 
that will help the ASSL framework automatically generate test suites for self-
managing policies.  Conceptually, the test generator tool accepts as input an ASSL 
specification (see Section 2) comprising sets of policies  that need to be tested and 
generates a set of test cases  as tuples   ,  ,  comprising an execution path 

 and test attributes . The latter is a tuple comprising needed inputs  and optional 
replacement ASSL constructs . The replacement ASSL constructs are automatically 
or semi-automatically specified and generated as supplementary software stubs to 
ensure the execution of .  

Table 2 presents a privateMessageInsecure replacement event that is intended to  
replace the original privateMessageInsecure event. As shown, the replacement event 
guarantees that this event will occur in the system because: 1) it does not have a 
GUARDS clause that prevents the event from firing if special conditions are not met; 
and 2) its activation (see the ACTIVATION clause in Table 2) is time-ensured; i.e., it 
does not depend on external factors. 

Table 2. Original and replacement ASSL events 

 

5.1   Test Generation Methodology 

5.1.1   Policy Execution Paths 
Formally, from a policy execution perspective, an ASSL-specified self-management 
policy  may be presented as a tuple: 
  ,  
 
where F presents the fluents driving the policy in question and A presents the actions 
that eventually will be undertaken while the policy is active. Here, for each fluent f F we have: 
  , ,  
 
where  and  are the sets of fluent-activating and fluent-terminating events re-
spectively and   is the set of actions to be executed by . Further, an event: 
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    is a tuple  ,  
 
where grd is the GUARDS clause and act is the ACTIVATION clause of the event . 
Finally, an action  is a tuple: 
  , , ,  
 
where  and  are the action’s GUARDS and ENSURES clauses (state post-
conditions that must be met after the action execution [1, 2]) respectively, and Etr and Eer are sets of events triggered by the action  in case of normal and erroneous action 
execution. 

The execution of a policy π is activation and termination of the policy’s fluents. 
Thus, to trace the policy execution, we must consider the execution paths of all the 
policy’s fluents . The execution path of a fluent is a sequence of the form: 

 , ,  
 
The number of execution paths of a fluent with  activation events ,  termination 
events , and  actions  is a product: 
     
 
where the function  gives the variations in the execution of . This function takes 
into account the action’s formal attributes: , , , and , together with 
their internal dependencies and ASSL formal semantics [1, 2] as following: 

•  and  are mutually exclusive, i.e., both cannot co-exist in same execu-
tion path; 

• if  is not met (denoted as !  ), then  is mandatory; 
• if  is not met (denoted as ! ), then the action  is not executed (de-

noted as ! ). 

Note that to simplify the problem, in this formal model we consider events as acti-
vated or not activated, thus helping us generalize over the event’s clauses GUARDS 
and ACTIVATION. To illustrate the formal model, we present a simple example of a 
fluent 
  , ,  
 
where n 1, m 1, k 2, and: 
 1  1  1; 2  1 1; 1; 1; 1  2 2; 2; 2; 2  
 



 Software Verification of Autonomic Systems Developed with ASSL 13 

Here, the possible execution paths of the fluent f are: 
 1  1, 1 1, 1, 1 , 2 2, 2, 2 , 1 ; 2  1, 1 1, 1, 1 , ! 2 ! 2 , 1 ; 3  1, 1 1, 1, 1 , 2 2, ! 2, 2 , 1 ; 4  1, 1 1, 1, 1 , 2 2, 2, 2 , 1 ; 5  1, ! 1 ! 1 , 2 2, 2, 2 , 1 ; 6  1, ! 1 ! 1 , 2 ! 2 , 1 ; 7  1, ! 1 ! 1 , 2 2, ! 2, 2 , 1 ; 8  1, ! 1 ! 1 , 2 2, 2, 2 , 1 ; 9  1, 1 1, ! 1, 1 , 2 2, 2, 2 , 1 ; 10  1, 1 1, ! 1, 1 , ! 2 ! 2 , 1 ; 11  1, 1 1, ! 1, 1 , 2 2, ! 2, 2 , 1 ; 12  1, 1 1, ! 1, 1 , 2 2, 2, 2 , 1 ; 13  1, 1 1, 1, 1 , 2 2, 2, 2 , 1 ; 14  1, 1 1, 1, 1 , ! 2 ! 2 , 1 ; 15  1, 1 1, 1, 1 , 2 2, ! 2, 2 , 1 ; 16  1, 1 1, 1, 1 , 2 2, 2, 2 , 1 ; 
5.1.2   ASSL Test Generator 
With the ASSL Test Generator we are aiming at a novel tool based on change-impact 
analysis that helps the ASSL framework automatically generate high-quality test 
suites for self-management policies. 

 

 

Fig. 7. Operational view of the ASSL Test Generator 

As shown in Fig. 7, the test generator tool consists of four major components: poli-
cy extractor, change-impact analyzer, test suit generator, and test suit reducer. The 
key notion of the tool is to synthesize two or more execution paths of the same policy 
in such a way that test coverage targets (e.g., certain policies, rules, or conditions) are 
covered by the synthesized execution paths. The change-impact analysis component 
can then determine for each execution path the needed test attributes  such as inputs 
 and optional replacement constructs  in the form of ASSL events, ASSL actions, 

and ACTIVATION, GUARDS, and ENSURES clauses, needed to be employed by an ex-
ecution path in order to ensure the same.  

Based on the determined test attributes and execution paths, the tool generates tests 
. Often the number of generated tests is large (recall that the number of fluent execu-

tion paths is a product of the number of events and actions employed by a fluent) and 
it is not feasible for developers to manually inspect their responses. To mitigate this 
issue, the final step of the test generator tool reduces the number of generated tests by 
selecting tests based on policy structural coverage. 
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5.1.3   Change-Impact Analysis 
The goal of change-impact analysis is to determine what should be changed in the 
events and actions employed by a particular fluent execution path  in order to 
ensure the same. In general, ASSL facilitates change-impact analysis because ASSL 
specifications allow: 

1) extraction of information from the model to see where a change must occur 
in order to force one or more execution paths; 

2) calculation of the change impact on the other parts of the model for any  
proposed change. 

Here, of major importance the evaluation of how the execution of a fluent will be 
affected by a change in a particular event (GUARDS or ACTIVATION clause) or action 
(GUARDS or ENSURES clause). Note that at the time of writing, we are working on the 
change-impact analysis heuristic algorithm. Our initial results have demonstrated that 
this algorithm should involve the following logical steps. 

A. Evaluate what the conditions that must be met to have a specific fluent  
execution path ensured are: 
a. Evaluate the events employed by a specific fluent: 

1) For each event analyze the pre-conditions that must be met (GUARDS 
clause) and the activation conditions (ACTIVATION clause); 

2) Evaluate if a particular event drives (activates or terminates) mul-
tiple fluents. 

b.  Evaluate the actions employed by a specific fluent: 
1) For each action analyze the pre- and post-conditions that must be 

met (GUARDS and ENSURES clause) and the events that are triggered 
by the action (TRIGGERS and ONERR_TRIGGERS clauses); 

2) Evaluate if the action itself executes other ASSL actions, or other 
executable constructs that may have impact on events such as ASSL 
interaction functions and ASSL managed element functions (both 
are sub-tiers in the ASSL specification model [1, 2]). 

c. Generate a test case that meets the fluent execution path’s conditions. 
Replacement constructs must be generated when the original ones can-
not ensure the path execution. For example, if an event cannot be trig-
gered due to conditions that must be met new replacement event may be 
generated that simulates the old one. 

B. Evaluate what the impact of having two or more fluent executing simulta-
neously is and what the conditions that must be met for that are. Generate 
test cases. 

C. Evaluate the policies involved in the tested execution path for the presence of 
chained fluents (the termination of a fluent activates another one, and so on). 
Find the conditions that must be met for that. Generate test cases. 

In addition, it is important to evaluate the impact of modifying an existing construct 
and that of replacing the same construct with a completely new one. Another aspect 
that must be addressed by the change-impact analysis is the tradeoffs stemming from 
disabling GUARDS and ENSURES clauses. Note that such clauses act as special beha-
vior constraints and are usually specified to ensure that certain conditions are met 
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before processing (or terminating) actions or events. Therefore, by disabling (remov-
ing) those constraints (see Table 2), we may ensure certain execution paths, but the 
impact of such a change needs to be also analyzed in the context of tradeoffs coming 
with the unconstrained behavior. 

6   Conclusion and Future Work 

We have presented software verification mechanisms for ASs (autonomic systems) 
developed with the ASSL framework.  The family of software-verification framework 
tools includes: consistency checker, model checker, and test case generator. Current-
ly, the ASSL consistency checker is the only fully implemented tool. It automatically 
checks ASSL specifications for consistency errors and some design flaws.  The latter 
are verified against special consistency rules implemented as semantic definitions.  

We have also presented our experiences to-date in developing the model checker 
and test case generator tools for ASSL. To implement the model checker, we devel-
oped program structures and algorithms that help an ASSL specification be trans-
formed into a state-transition graph composed of special tier states with associated 
atomic propositions and transition relations connecting those states. We are currently 
developing a model-checking engine that works on the state transition graph. In addi-
tion, possible solutions to the so-called state-explosion problem are considered.  

The test case generator tool aims at automatic generation of test suites for self-
management policies. A test case is generated with a policy-execution path and test 
attributes that come in the form of inputs and special replacement ASSL constructs 
ensuring the execution of a tested policy. The test attributes are determined by 
change-impact analysis of the effect of a change in particular events or particular 
actions employed by an execution path. It is our understanding that such a testing 
mechanism is going to have a great impact on the development of prototype models 
for current and future space-exploration missions. Properly tested prototypes, even-
tually, will lead to the construction of more reliable spacecraft systems. Note that 
traditional methods, such as analyzing each requirement and developing test cases to 
verify the correctness of ASSL-implemented ASs, are not effective, because they 
require complete understanding of the overall complex system’s self-management 
behavior. 

Our plans for future work are mainly concerned with further development of the 
model checker and test-case generator tools for ASSL. Further, we plan to generate 
test cases for a number of self-managing policies developed for ANTS to determine 
the effectiveness of this approach as a test-covering and test-generation strategy. 
Moreover, it is our intention to build an animation tool for ASSL that will help to 
visualize counterexamples and trace erroneous execution paths. 
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Abstract. A systematic way of defining variants of a modeling language
is useful for adapting the language to domain or project specific needs.
Variants can be obtained by adapting the syntax or semantics of the
language. In this paper, we take a formal approach to define modeling
language variability and show how this helps to reason about language
variants, models, and their semantics formally. We introduce the notion
of semantic language refinement meaning that one semantics variant is
implied by another. Leaving open all variation points that a modeling
language offers yields the notion of the inner semantics of that language.
Properties of the modeling language which do not depend on the selection
of specific variants are called invariant language properties with respect
to a variation point. These properties consequently follow from the inner
semantics of a model or language.

1 Introduction

It has often been stressed that software is one of the most important drivers for
innovation in many branches of industry. Developers are faced with the challenge
to produce high quality, increasingly complex solutions in a short period of time.

Model-based software development is regarded as one instrument to cope with
the challenges. Standard modeling languages like UML [OMG09] or domain spe-
cific languages (DLSs) are employed to increase the level of abstraction and
automation while at the same time lowering the complexity. Especially in the
context of robust, reliable systems development, the modeling languages used
have to be defined precisely to allow for rigorous analysis of models and correct
code generation.

The precise definition of a modeling language involves syntax and seman-
tics [HR04]. Formal semantics is advantageous because it helps to avoid mis-
understandings between people and may enable interoperability between tools.
But even if a formal modeling language exists, a new class of systems like highly
robust and reliable systems or a specific application domain may require adap-
tation of the language. A language may be changed to incorporate new lan-
guage constructs, to disallow others for methodological or safety reasons, or to
be semantically adjusted to a specific platform. This variability of a modeling
language is subject of the paper.

We provide a formal account on language variability based on our classifica-
tion in [CGR09]. On the one hand, the formalization brings light into how a
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language can be adapted to specific requirements. On the other hand, it serves
as a basis to define language variants formally. This allows us to reason about
language (especially semantic) variants. The theoretical work is also equipped
with tool support. Complete language definitions including all aspects of syntax
and semantics and their variants are handled using the tools MontiCore [KRV08]
and Isabelle/HOL [NPW02]. MontiCore is a framework for the development of
modular (domain-specific) modeling languages while Isabelle/HOL is a theorem
prover with higher-order logic and suitable to encode various language aspects.

The paper is structured as follows. The basic constituents (syntax, semantics)
of a modeling language that may be subject to variability are introduced in
Section 2. In Section 3, a formal characterization of language variants and a
method to define variants is presented. As an example application, we outline
how semantic variants can be compared formally in Section 4. In this section,
we also introduce the concepts of semantic language refinement, inner semantics,
and invariant language properties. Section 5 sketches the available tool support.
In Section 6, we discuss related work. Section 7 concludes the paper.

2 Language Constituents

A precise definition of a modeling language consists of the following elements,
see also [HR04, CGR09].

Concrete Syntax. The concrete syntax is the representation of the model with
which a user interacts. This may be a graphical or textual notation or a mixture
of both. We denote the set of all models of a modeling language in concrete
syntax by CS.

Abstract Syntax. The abstract syntax represents the structural essence of a lan-
guage [Wil97]. For a textual syntax this may be given as abstract syntax trees
generated by a parser. In case of graphical models, metamodels (e.g., defined in
MOF [OMG06a]) are typically used. The set of all models of a modeling language
in abstract syntax is denoted by AS.

Additionally, a set of well-formedness rules or context conditions is defined to
rule out certain models based on syntactic criteria. A typical example is that, in
an automaton language, sources and targets of transitions have to exist so there
are no dangling start or end points. But also the question of whether a model,
e.g., a class diagram containing OCL constraints, is well-typed is addressed on
the syntactical level. We assume a predicate

wellformed : AS → bool

to decide if a model is well-formed. The set of all well-formed models ASwf of a
language hence is

ASwf = {m ∈ AS|wellformedm}
We may also define additional constraints that rule out models for methodolog-
ical or safety reasons, potentially restricting the expressiveness of the language.
A more detailed explanation will be given in the next section.
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A model in concrete syntax is associated with (or mapped to) a model in
abstract syntax. Since typically not all models from CS are well-formed, parsing
is a partial mapping from concrete to abstract syntax:

p : CS ⇀ ASwf

Reduced Abstract Syntax. It is often advisable to reduce the number of language
constructs for a simplification of semantic considerations. This is possible for
each language construct that can be expressed by others (such as ∀ by ¬∃¬ in
predicate logic). This reduces set ASwf to a subset ASred ⊆ ASwf with a syn-
tactic transformation t to convert models into the reduced abstract syntax, i.e.,

t : ASwf → ASred with ASwf ⊇ ASred

Semantic Domain. By mapping models to elements of a semantic domain S,
the models obtain their meanings. The semantic domain is required to be well-
known and understood and it should be based on a well-defined mathematical
theory.

Our approach to semantics uses the system model [BCGR09a, BCGR09b]
which characterizes the structure, behavior, and interaction of objects in object-
based systems. Thus, our focus is on semantics of object-based modeling
languages. However, the variability mechanisms still apply if another semantic
domain is used. The system model definitions are built on simple mathematical
concepts like sets, relations, and functions. It is important to note that one el-
ement in the system model represents a single, complete object-based system.
This means that the meaning of a model is directly represented as properties
of possible implementations. The system model is underspecified to allow, for
example, freedom of implementation when mapping a model to executable code.

For later reference, we introduce but a few system model concepts. Generally,
elements of object-based systems are introduced as elements of underspecified
universes leaving open the exact structure or number of elements. There is, for
each system s ∈ SystemModel, a set of class names (or just classes, for short)
UCLASSs. In the following, we leave out the index s but a specific system is
assumed implicitly if not stated otherwise. A class C1 may be in a subset relation
to a class C2 which is denoted as (C1, C2) ∈ sub ⊆ UCLASS×UCLASS. There
is also a set of operation names (method signatures) UOPN. With function
classOf : UOPN → UCLASS the defining class for an operation is obtained.
Function nameOf determines the name of the operation, function params yields
the set of all possible parameter assignments and function resType gives the
return type of an operation. Types are elements of a universe UTYPE and there
is a carrier set of values from universe UVAL associated with each type: CAR :
UTYPE → ℘(UVAL). ℘(X) denotes the set of all subsets of X (power set).

Semantic Mapping. The semantic mapping sem finally relates models of the
reduced abstract syntax to elements of the semantic domain. Characteristic of
our loose approach is a set-valued or predicative semantic mapping of the form

sem : ASred → ℘(S)
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Fig. 1. From syntax to semantics for a Statechart model

The semantics of a model m is therefore the set sem(m) of elements in the
domain S. If the system model is used for S, then the model’s meaning is the
set of all possible realizations.

Using the system model as a single semantic domain and the set-valued
semantic mapping enable a straightforward treatment of composition and re-
finement of possibly incomplete and underspecified models of various modeling
languages [Rum96]. For example, the integrated semantics of models m1, . . . , mn

from possibly different languages is given as

sem1(m1) ∩ . . . ∩ semn(mn)

In the same way, a model m′ is a refinement of model m, exactly if

sem(m′) ⊆ sem(m)

The whole chain from syntax to semantics is illustrated in Fig. 1. The example
shows a hierarchical automaton (Statechart) in concrete syntax. Its abstract
syntax is transformed into a conceptually reduced abstract syntax. For example,
the automaton is flattened and the concept of hierarchy can be eliminated in the
abstract syntax. Note that the (abstract) syntax of the resulting automaton will
be more verbose compared to the original version. With the help of the semantic
mapping, the automaton is mapped into the system model. Its semantics is
given as a set of systems in the system model. These systems have to obey the
properties introduced by the model. Hence, in the semantic mapping, we have to
define ways to associate Statechart states with concepts in the system model (like
classes, attributes, etc.). Additionally, we need means to encode the enabledness
of transitions and their effect when actually executed.
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3 Language Variants

A modeling language should be defined precisely but should not be completely
fixed. Sustaining a certain degree of flexibility regarding a language’s syntax or
semantics allows for adapting it to project or domain specific needs, or to en-
able modeling of new classes of systems. This idea has also been incorporated in
the definition of UML where the informal semantics is equipped with semantic
variation points subject to specific interpretation. At present, the UML stan-
dard itself regards semantic variation points as “less precisely defined dimen-
sions” [OMG09]. We take a formal approach to define the possible variability
in a language definition thereby substantiating our classification in [CGR09].
Afterwards, we present an intuitive way to document language variants.

3.1 Classification of Language Variability

In the previous section, we defined the constituents of a modeling language and
their relations. A model in concrete syntax is translated into its abstract repre-
sentation which then is (optionally) transformed into a conceptually simplified
version. Based on this, the semantic mapping associates sets of elements of the
semantic domain with the model. To summarize, we have the sequence

CS p
⇀ ASwf t→ ASred sem→ ℘(S)

In this section, we discuss means to define variants of a modeling language by
adapting one or more elements of the above sequence.

Presentation Variability. A modeling language may offer presentation options, a
term also coined in the UML standard. Presentation options allow for represent-
ing models differently in concrete syntax without changing a model’s abstract
syntax. Formally, a language contains presentation options, if

∃m1, m2 ∈ CS : m1 	= m2 ∧ p(m1) = p(m2)

Fig. 2. Presentation option: Modifier representation in a class diagram



22 H. Grönniger and B. Rumpe

As shown in Fig. 2, for example, we have different ways to represent a public
class modifier in UML: We can use the keyword public but equivalently the
symbol +. The resulting abstract syntax, however, stays the same. Variants of
presentation options result in changes of CS and p, say CSv and pv, by intro-
ducing, eliminating or changing existing ones. Models contained in both variants
still have the same abstract syntax:

∀m ∈ CSv ∩ CS : pv(m) = p(m)

Additionally, every model can be expressed without choosing the presentation
option variant:

∀m1 ∈ dom(pv) : ∃m2 ∈ dom(p) : pv(m1) = p(m2)

Another form of presentation variability is what we call abbreviations or
extended constructs : The syntax may contain certain constructs that help to
enhance readability and comfort but which can be eliminated by some syntac-
tic transformation t without loosing expressiveness of the language. All models
which do not use extended constructs remain identical under t, i.e.,

∀m ∈ ASred : t(m) = m

The models that actually get transformed are contained in ASwf\ASred.
Variability in abbreviations means adapting ASwf and t, to ASwf

v and tv say.
Consider, for example, a reduced abstract syntax for Statecharts ASred which
contains flat automata only (see Fig. 1). Hierarchy can be added to or removed
from Statecharts without changing expressiveness [Rum04], but we obtain a
larger set of expressible models when adding hierarchy, i.e., ASwf

v ⊇ ASred.
Models that do not contain an extended construct variant (e.g., hierarchy) are
transformed equally under tv:

∀m ∈ dom(tv) ∩ dom(t) : tv(m) = t(m)

And we can still represent each model without the abbreviation:

∀m1 ∈ dom(tv) : ∃m2 ∈ dom(t) : tv(m1) = t(m2)

As abbreviations do not show up in the reduced abstract syntax, semantics of
these constructs is defined in two steps, the first one being the transformation
to ASred for which semantics is defined via the semantic mapping sem. Sum-
marizing, variants of presentation options have an effect on the concrete syntax.
Variants of abbreviations have an effect on the full abstract syntax. Both do not
change the reduced abstract syntax and are called presentation variability.

Syntactic Variability. We now consider language variants that also have an im-
pact on the reduced abstract syntax ASred. The syntax of a language may allow
the use of stereotypes. A set of defined stereotypes (e.g., as part of a profile in case
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of UML) is a syntactic variant of the language. We assume a function variant
allowedStereotypesv that checks if only the chosen stereotypes are used, i.e.,

ASred
v = {m ∈ ASred| allowedStereotypesv(m)}

An example for this kind of variability are priorities of transitions in a Statechart.
A stereotype <<prio:outer>> attached to a hierarchical Statechart model would
override the default priority rule that the innermost enabled transition is taken
if there are multiple transitions with the same trigger enabled in the same step,
see also [Rum04].

Another form of syntactic variability is given by so called language parameters,
also termed language embedding in [KRV08]. Consider again, for example, the
language of Statecharts in which transitions may be guarded by a precondition.
The language in which this condition is expressed is not specified. A natural can-
diate language would be OCL [OMG06b] but we may allow any other constraint
language or a variant thereof that is suitable for the intended application. Hence,
a syntax can be equipped with parameters ASred(p1, . . . , pn). Variants can then
be specified by assigning concrete languages to the parameters p1, . . . , pn.

As a last form of syntactic variability, we consider general language con-
straints. A language is further constrained to disallow certain models syntacti-
cally. It may be the case that this results in a less expressive language. Formally,
a variant ASred

v is given by models which fulfill further constraints stated, for
example, in the predicate constrv:

ASred
v = {m ∈ ASred| constrv(m)}

The expressiveness of the language is preserved if

∀m1 ∈ ASred
v : ∃m2 ∈ ASred : sem(m1) = sem(m2)

It is, for example, the goal of modeling or programming guidelines [Mat07, MIS]
to restrict the use of certain (e.g., unsafe) language constructs while preserving
the expressiveness. Restricting the expressiveness might be useful in situations in
which a target platform may not be powerful enough to implement the models.

Semantic Variability. While UML only uses the term semantic variation point,
we further subdivide semantic variability into semantic mapping variability and
semantic domain variability. A helpful analogy might be to see the variability
of the semantic mapping similar to configuration options of a code generator
while variability of the semantic domain has its analogy with properties of an
underlying run-time system or target platform.

By selecting variants for the semantic domain S, we obtain an adapted domain
Sv in which elements have certain additional properties, for example, encoded
in a predicate propv:

Sv = {s ∈ S| propv(s)}
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Regarding semantic domain variability, the system model already contains ex-
plicit variability in form of extensions through optional definitions. It provides,
for instance, different notions of type-safe method overriding or optional con-
straints to allow single inheritance only.

As an example for semantic domain variability, we show two variants for type-
safe overriding of operations in a subclass. The first variant contains the well-
known formalization of co-variant extension of parameters and contra-variant
restriction of return values for operations in the subclass [Mey97]. In the system
model, this can be expressed by a subset relation on the sets of all possible
parameters and all possible return values, respectively:

∀op1 ∈ UOPN, c ∈ UCLASS : c sub classOf(op1) =⇒
∃op2 ∈ UOPN : classOf(op2) = c ∧
nameOf(op1) = nameOf(op2) ∧
params(op1) ⊆ params(op2) ∧
CAR(resType(op1)) ⊇ CAR(resType(op2))

The second variant is stricter as it does not allow a modification of the operation’s
signature in terms of possible values for parameters and the return type:

∀op1 ∈ UOPN, c ∈ UCLASS : c sub classOf(op1) =⇒
∃op2 ∈ UOPN : classOf(op2) = c ∧
nameOf(op1) = nameOf(op2) ∧
params(op1) = params(op2) ∧
CAR(resType(op1)) = CAR(resType(op2))

Variants of a semantic mapping arise as alternative definitions of (parts of)
the semantic mapping, for example

semv1, semv2 : ASred → ℘(S)

Considering a Statecharts semantics again, a mapping variant could be the
different choices of representing Statecharts states (syntax) as, for example, a
simple enumeration in a class or using the state pattern [GHJV95].

Note that semantic variability is transparent to the modeler. But it may be
necessary to allow the modeler to select one or the other interpretation of a con-
struct. We propose to model these interpretation choices as syntactic variability
by providing corresponding stereotypes. A modeler can then select the semantics
of certain constructs by using appropriate stereotypes. With this approach, we
transfer semantic variation points to syntactic ones.

3.2 Documentation of Language Variability

We propose to model variation points and variants in a language by feature dia-
grams [CE00]. Fig. 3 contains a feature diagram representing a generic structure
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Fig. 3. Template to document variability of a language L

to model variants of a language L. We do not show concrete variants which de-
pend on a specific language and which would be inserted under the corresponding
nodes.

A supplement description of the variability can be given to explain their raison
d’être and to point to formal definitions of the variants or other documentation.
Since our main focus currently is on UML-like modeling languages, we refrained
from expressing the variability in UML itself. This would certainly be possible
but might be more confusing since UML models would be used also on the
language definition level.

In Fig. 4 we present an excerpt of the feature diagram of a Statechart language
containing the variants discussed previously in this paper. The choice of a feature

Fig. 4. Feature diagram
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is always optional but there may be exclusive alternatives. It is, for example,
not reasonable to choose both mappings for the decision of which transitions
are enabled. Likewise we can only use one specific interpretation of Statechart
states. There is an inclusion constraint for priority-based selection of transitions
since priorities refer to syntactical as well as semantic variants at the same time
(encode the priorities as stereotypes and select a semantic mapping that can
handle them).

4 Comparison of Semantic Variants

Using our formal notion of language variants, it is possible to compare language
variants formally and derive properties of the (relationship between) variants.
Consider two semantic variants of the same language, e.g.,

semv1 : ASred → ℘(Sv1)
semv2 : ASred → ℘(Sv2)

An interesting property is if variant v2 is a semantic language refinement of
the semantic variant v1. Note that we discuss language refinement here and do
not talk about refinement of models or the modeled system.

We define that language variant v2 is a semantic language refinement of vari-
ant v1 exactly if for all models the sets generated by the respective semantic
mapping are in a subset relation, i.e.,

∀m ∈ ASred : semv1(m) ⊇ semv2(m)

This implies that all properties φ of a model m which hold in variant v1 are
preserved in variant v2:

∀s ∈ semv1(m) : φ(s) =⇒ ∀s ∈ semv2(m) : φ(s)

Semantic language refinement is an important property if we consider for exam-
ple tool integration. Assume that one tool for formal analysis uses (and correctly
implements) language variant v2. Another tool for code generation correctly im-
plements variant v1. If we show that variant v2 is a language refinement of
v1 then we can be sure that analysis results obtained by the analysis tool are
preserved in the second tool for code generation.

Let semv1 be the Statechart semantics where the realization of states (either
as an enumeration in a class or using the state pattern) is left open. Obviously,
a semantic variant in which one of the alternatives is selected is always a subset
of semv1 for any model. A property φ which holds for semv1 hence also holds
under semv2. Since we did not select a specific variant in semv1, we say that φ is
an invariant property with respect to the variation point on the interpretation
of Statechart states. The property may be globally invariant (valid for all mod-
els) or locally invariant (for at least a single model). Not choosing any specific
variant for any semantic variation point yields the notion of inner semantics
of a modeling language. Properties shown for the inner semantics are intrinsic
language properties and are agnostic to variant selection.
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5 Tool Support

We have developed tool support in order to a) specify a machine-readable, check-
able semantics that can directly be used for verification purposes, and b) to better
control and quality check the different artifacts by using standard tools, e.g., ver-
sion control. Fig. 5 gives an overview of the approach when defining the semantics
of a language with tool support. First, the (domain specific) modeling language
concepts are specified using a MontiCore grammar. MontiCore [KRV08] is a
framework for the textual definition of languages based on an extended context-
free grammar format. This format enables a modular development of the syntax
of a language by providing modularity concepts like language inheritance and
language parameters/embedding. MontiCore has an integrated, consistent defi-
nition of concrete and abstract syntax which also provides meta-modeling con-
cepts like associations and inheritance [KRV07]. Framework functionality helps
developers also to define well-formedness rules and, for example, the implemen-
tation of generators. To provide the semantics developer with maximum flexibil-
ity but also with some machine-checking (i.e., type checking) of the semantics
and the potential for real verification applications, we use the theorem prover
Isabelle/HOL for

– the formalization of the system model as a hierarchy of theories, including
its semantic domain variants. This step has to be done once. All following
language definitions which should be based on the system model can re-use
this effort.

– the representation of the abstract syntax of the language as a deep embed-
ding, including its syntactic variants. The translation of a MontiCore gram-
mar to Isabelle/HOL abstract syntax data types is automated. Only manual
configuration of variants is needed. We decided to follow a deep embedding
approach (explicit representation of the abstract syntax in Isabelle/HOL)
because this allows us also to reason about syntactical entities and the se-
mantic mapping. With a shallow embedding (encoding properties of systems
of the system model directly for a given model) this would not be possible.

– the semantic mapping which maps the generated abstract syntax to pred-
icates over systems of the formalized system model, including its semantic
mapping variants.

– specification of context conditions that may be helpful when doing verifica-
tion on well-formed models, including variants in context conditions.

Details of the approach can also be found in [GRR09] and [Grö10]. We give a
small example in which we prove in Isabelle/HOL that the stronger variant for
type-safe operations refines the weaker variant. For this, we first need the en-
coding of the two predicates in Isabelle/HOL. The first one is given in Fig. 6.
The figure shows an excerpt of an Isabelle/HOL theory which defines the pred-
icate valid-TypeSafeOps as a function for systems in the system model (l. 1).
In general, each definition in Isabelle/HOL is parameterized with the system
model. As with the index s used earlier this means that the predicate is valid or
not for a given system sm. For example, UCLASS sm (l. 4) is the specific universe
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Fig. 5. Overview of approach to define a modeling language including its variants

TypeSafeOps

1 fun valid-TypeSafeOps :: "SystemModel ⇒ bool"
2 where
3 "valid-TypeSafeOps sm = (
4 ∀ op1 ∈ UOPN sm . ∀ C ∈ UCLASS sm .
5 (sub sm C (classOf sm op1)) −→
6 (∃ op2 ∈ UOPN sm .
7 classOf sm op2 = C ∧
8 nameOf op1 = nameOf op2 ∧
9 params sm op1 ⊆ params sm op2 ∧

10 CAR sm (resType sm op2) ⊆ CAR sm (resType sm op1)
11 )
12 )"

Fig. 6. Part of a theory of the system model in Isabelle/HOL encoding the predicate
of type-safe overriding of operations

of class names of the system sm. Similarly, other universes and functions are
parameterized with the concrete system sm. Apart from slight notational differ-
ences, the predicate is a direct translation of the predicate given in Sect. 3.1.
The predicate for the stronger variant is similar, only the subset relation is re-
placed by equality. We do not give the whole definition but the predicate is called
valid-TypeSafeOpsStrict.

To prove the refinement from TypeSafeOps to TypeSafeOpsStrict we have
to show that the set of systems with the second property is a subset of the set
of systems with the first property. The actual proof is now given in Fig. 7. In
Isabelle/HOL, this is a lemma which is given the name TypeSafeOpsImplStrict
(l. 1). Applying the predicate definitions (ll. 4,5) the proof can be finished auto-
matically by Isabelle (l. 6).
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RefinedTypeSafeOps

1 lemma TypeSafeOpsImplStrict :
2 "{sm | sm . valid-TypeSafeOpsStrict sm}
3 ⊆ {sm | sm . valid-TypeSafeOps sm}"
4 apply (unfold valid-TypeSafeOps.simps)
5 apply (unfold valid-TypeSafeOpsStrict.simps)
6 by best

Fig. 7. Part of a theory containing the proof that the strict variant refines the weaker
variant

Fig. 8. Documentation of refinement relationship between variants in the feature
diagram

Having shown that a variant refines another, we propose to update the fea-
ture diagram accordingly. Fig. 8 contains an excerpt of the feature diagram of
the system model containing the information that TypeSafeOpsStrict is a se-
mantic domain refinement of variant TypeSafeOps. As before, we assume that
additional information, documentation may be attached to the feature diagram.
This could be a link to the actual Isabelle/HOL proof that establishes the refine-
ment relation. Other examples using the tool-supported approach can be found
in [Grö10] and [GRR09].

6 Related Work

Presentation and semantic variants are also covered informally in the UML stan-
dard [OMG09]. We state precisely what kinds of variability may be found in a
modeling language and document variants using feature diagrams.

Feature diagrams are also used in [Völ08] to define a family of architecture de-
scription languages. Formal semantics is not addressed. In the area of semantics,
semantic variability is covered to some extent.

Template semantics [NAD03] as well as templatable metamodels [CMTG07]
can be used to describe semantics with variation points. None of the mentioned
work discusses the possibility to compare language variants. [TA06] examines
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different variants of formal Statecharts semantics but does not address formal
relationships between the variants.

Informal comparisons of Statecharts variants can, for example, be found
in [Bee94, CD07].

Tool support to define modeling languages, including their formal semantics,
is for example described in [CSAJ05]. This work presents semantic anchoring
which means to transform the abstract syntax of a language into the abstract
syntax of a language with known, formal semantics, for example Abstract State
Machines (ASMs). [KM08] contains an Alloy-based approach that also allows
to handle complete language definitions - from syntax, well-formedness of mod-
els to operational semantics. Mainly focusing on operational semantics these
approaches have problems with underspecification and are not capable of inte-
grating multiple languages into one common semantic domain easily.

7 Conclusion

We have formally described the constituents of a modeling language and how
they can be varied to obtain modeling language variants. As an example appli-
cation of precise modeling language variants, we have introduced the notion of
semantic language refinement. Given two semantics variants of a language this
notion defines if it is safe to use the one instead of the other variant. Addition-
ally, we introduced the concept of inner semantics of a language, meaning to
leave open all available variation points, and the notion of invariant properties
with respect to a variation point. We have furthermore sketched the available
tool support for complete language definitions with variability and how it can
be applied to verify relationships between semantic variants.

Future work is concerned with investigating other relationships between lan-
guage variants. Additionally, this work needs to be applied to, for example,
the UML, or to various domain specific languages and needs to be explored in
practice.
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[BCGR09a] Broy, M., Cengarle, M.V., Grönniger, H., Rumpe, B.: Considerations and
Rationale for a UML System Model. In: Lano, K. (ed.) UML 2 Semantics
and Applications. John Wiley & Sons, Chichester (2009)
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[GRR09] Grönniger, H., Ringert, J.O., Rumpe, B.: System Model-Based Definition
of Modeling Language Semantics. In: Lee, D., Lopes, A., Poetzsch-Heffter,
A. (eds.) FMOODS 2009. LNCS, vol. 5522, pp. 152–166. Springer, Hei-
delberg (2009)

[HR04] Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of
“Semantics“? IEEE Computer 37(10), 64–72 (2004)

[KM08] Kelsen, P., Ma, Q.: A Lightweight Approach for Defining the Formal
Semantics of a Modeling Language. In: Busch, C., Ober, I., Bruel, J.-M.,
Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 690–704.
Springer, Heidelberg (2008)

[KRV07] Krahn, H., Rumpe, B., Völkel, S.: Integrated Definition of Abstract and
Concrete Syntax for Textual Languages. In: Engels, G., Opdyke, B.,
Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 286–
300. Springer, Heidelberg (2007)

[KRV08] Krahn, H., Rumpe, B., Völkel, S.: MontiCore: Modular Development of
Textual Domain Specific Languages. In: Objects, Components, Models
and Patterns, TOOLS EUROPE 2008 (Proceedings). Lecture Notes in
Business Information Processing, vol. 11, pp. 297–315. Springer, Heidel-
berg (2008)

[Mat07] MathWorks Automotive Advisory Board (MAAB). Control Alogrithm
Modeling Guidlines Using Matlab, Simulink, and Stateflow – Version 2.1
(July 2007),
http://www.mathworks.com/automotive/standards/maab.html

[Mey97] Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-
Hall, Englewood Cliffs (1997)

[MIS] MISRA C Website, http://www.misra-c2.com/
[NAD03] Niu, J., Atlee, J.M., Day, N.A.: Template Semantics for Model-Based

Notations. IEEE Trans. Software Eng. 29(10), 866–882 (2003)
[NPW02] Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL – A Proof As-

sistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg
(2002)

http://www.mathworks.com/automotive/standards/maab.html
http://www.misra-c2.com/
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Abstract. Design space exploration (DSE) refers to the activity of ex-
ploring design alternatives prior to implementation. The power to oper-
ate on the space of potential design candidates renders DSE useful for
many engineering tasks, including rapid prototyping, optimization, and
system integration. The main challenge in DSE arises from the sheer size
of the design space that must be explored. Typically, a large system has
millions, if not billions, of possibilities, and so enumerating every point
in the design space is prohibitive. In this paper, we present a method
for systematically exploring the design space in a cost-effective manner.
The key idea is that many of the design candidates may be considered
equivalent as far as the user is concerned, and so only a small subset
of the space needs to be explored. Our approach takes the user-defined
notion of equivalence, and generates symmetry breaking predicates to en-
sure that the underlying exploration engine does not sample multiple
equivalent design candidates. We describe how the method is integrated
into our DSE framework, FORMULA, which uses an SMT solver to solve
a set of global design constraints and search for valid design instances.

1 Introduction

Design space exploration (DSE) refers to the activity of discovering and evaluat-
ing design alternatives during system development. It has many uses including:

• Rapid prototyping: DSE is used to generate a set of prototypes prior to
implementation. Simulating and profiling of these prototypes can increase
understanding of the impact of design decisions while taking complex system
dynamics into account.

• Optimization: When metrics are available for comparing one design to an-
other, DSE can be used to perform optimization, eliminating inferior designs
and collecting a set of final candidates that are further studied.

• System integration: System integration requires the assembly and config-
uration of multiple components into a working whole. DSE can be used to
find legal assemblies and configurations that satisfy a set of global design
constraints.
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DSE must be performed carefully because of the sheer number of design alterna-
tives to be explored. A large complex system may admit millions, if not billions
of design alternatives; in some cases, the design space may be infinite. A manual,
ad-hoc approach to DSE is tedious, error-prone, and does not scale. An effective
DSE framework must consist of the following ingredients:

• Representation: A suitable representation of the design space is essential.
The representation should be formal, so that it can be subject to automated
analysis and exploration techniques. A complex system may have a large
number of design constraints that must be satisfied by every valid design so-
lution. These constrains may involve arithmetic operations, Booleans expres-
sions, and data type constraints over infinite domains. The representation
should be expressive enough to capture these types of complex constraints.

• Analysis: A DSE framework must be equipped with machine-assisted tech-
niques for discovering potential candidates, and checking them against the
design constraints to ensure that they are actually valid design solutions.
The framework must also be able to tackle the challenge of solving a large
number of complex constraints at reasonable computational costs.

• Exploration method: Even after an optimization procedure rules out all
inferior designs, the user may end up with the task of exploring a large
number of design candidates. Enumerating them one-by-one in an ad-hoc
fashion is not desirable. As far as the user is concerned, some of the solutions
may be considered equivalent, and the user may be interested in examining
only the ones that are distinctive from each other. The framework must
provide a method for navigating to interesting solutions.

In previous papers [15,16], we proposed our DSE framework, called FORMULA,
and discussed its representation of the design space and the underlying analysis
engine, which is based on the Z3 SMT solver [10]. In this paper, we describe
the method in FORMULA for sampling a set of interesting design solutions. We
say a solution is interesting if it is considered distinct from any other solution
that has already been explored, under the user-defined notion of equivalence.
Formally, two solutions are considered equivalent if their mathematical repre-
sentations are isomorphic to each other. We show how we allow the user to
define an equivalence relation that groups all isomorphic solutions into a single
equivalence class. Our approach applies symmetry breaking predicates [8] to en-
sure that FORMULA returns exactly one solution from each equivalence class,
thereby avoiding uninteresting designs from being presented to the user.

This paper is structured in the following way. We will begin by presenting
a motivating example (Section 2). We will present background information on
FORMULA—its representation of the design space and the SMT-based analy-
sis engine for solving design constraints (Section 3). We will outline a method
for exploring the design space in a way that guarantees only distinct design
candidates to be found (Section 4). Then, we will discuss an experiment demon-
strating the effectiveness of our approach (Section 5). Finally, we will conclude
with discussions of related work (Section 6) and future directions (Section 7).
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2 Motivating Example

We begin with an example that is simple but challenging for existing DSE meth-
ods. This example is borrowed from platform mapping problems found in auto-
motive embedded systems [19,26]. Given a set of software tasks and devices, the
goal is to map each task onto a device in such a way that a certain set of design
constraints are satisfied.

We formally describe the problem as follows. Let T be a set of named tasks.
A conflict graph C = (T, EC) is a labeled undirected graph over tasks. An
edge (t1, t2) ∈ EC indicates that tasks t1 and t2 are in conflict and should not be
executed on the same device. Let D be a set of named devices. Then, a distributed
network N = (D, EN , cap) is a triple where (D, EN ) is a labeled directed graph.
For each edge (d1, d2) ∈ EN , there is a directed communication channel from d1

to d2. The notation in(d) indicates the set of incoming communication channels
of device d, and out(d) its outgoing channels. Every channel has a strictly positive
capacity as assigned by the function cap : EN → Z+. Finally, tasks are bound to
devices by the function bind : T → D. The structures C, N , and bind provide a
representation for instances of the design space—i.e. possible configurations of
tasks, devices, and mappings between them.

Every valid design of the system must satisfy the following design constraints:

1. A pair of conflicting tasks cannot be mapped onto the same device: ∀t1, t2 ∈
EC · bind(t1) 	= bind(t2).

2. A single device can provide at maximum two ingoing and/or outgoing chan-
nels: ∀d ∈ D · |in(d)| ≤ 2 ∧ |out(d)| ≤ 2.

3. Each device with both input and output channels must have balanced
capacities:
∀d ∈ D · in(d) 	= ∅ ∧ out(d) 	= ∅ ⇒ ∑

i∈in(d) cap(i) =
∑

o∈out(d) cap(o).

Constraint (1) is equivalent to a graph coloring problem, and requires reasoning
about the global topology of the system. Constraint (2) is a forbidden sub-
graph problem. Constraint (3) requires arithmetic reasoning and is guarded by
a Boolean constraint.

Let us assume the engineer has chosen a set of tasks and identified conflicts
appropriately. Then, the possible design alternatives arise from variations in
network topologies, capacities, and task bindings. Figure 1 shows one possible
configuration of the system. Note that this instance satisfies all of the design
constraints. If, for example, the capacity of the channel from device B were to
be altered from 1 to 2, then the modified instance would fail to satisfy constraint
(3), and no longer qualify as a legal design candidate.

From the perspective of the engineer, the “best” design might be one that
utilizes the communication channels most efficiently. However, this utilization
depends on the code executed by the tasks, the scheduling strategy of the un-
derlying operating system, the communication protocols implementing channels,
and a number of other factors. An optimization problem cannot be formulated
easily at this high-level, and so rapid prototyping combined with simulation is
the approach that is often taken to evaluate design alternatives [19].
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Fig. 1. A design instance of the platform mapping problem, representing one possible
configuration of the system. Circles represent tasks, and squares represent devices.
Every edge between a pair of devices is labeled with the channel capacity. This instance
contains ten tasks, with conflicts indicated by gray lines. A dotted line from a task to
a device indicates that the task has been mapped to the device.

The requirement on the DSE engine is to enumerate design alternatives that
satisfy global constraints. However, this example is challenging for several rea-
sons. First, instantiating a single solution requires solving non-trivial constraints,
such as arithmetic and relational constraints. Second, the number of design alter-
natives is, in principle, infinite, because no bounds where placed on the channel
capacities, the number of devices, or the domain of their labellings; certainly, the
entire space cannot be explicitly enumerated. Third, labels on the devices are
also a design parameter, and thus, each solution in the design space will have
a large (possibly infinite) number of counterparts that differ only by labeling of
devices. These countparts may be of no interest to the user, and so the explo-
ration method must be able to eliminate these equivalent solutions. As we shall
show, this last criterion is particularly challenging to achieve.

3 Background on FORMULA

FORMULA is our modeling framework for formally specifying domain-specific
languages [17]. From the DSL perspective, the representation and constraints of
a design space form a domain-specific abstraction; DSLs are ideal for capturing
such abstractions. Additionally, the DSL metaphor allows complex design spaces
to be built from smaller ones using DSL composition operators. In this section we
introduce just enough of FORMULA to encode our motivating example; please
see [16] for a more detailed discussion.
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1. domain Functionality
2. {
3. Task ::= (id: Basic).
4. [Closed]
5. Conflict ::= (t1: Task, t2: Task).

6. }
7. model ThreeTasks of Functionality
8. {
9. Task(1)
10. Task(2)
11. Task(3)
12. Conflict(Task(1), Task(2))
13. Conflict(Task(2), Task(3))

14. }

Fig. 2. Examples of a domain and a model specified in FORMULA. The Functionality
domain encodes the abstraction related to tasks and conflicts. The model contains three
tasks with two conflicts among the tasks.

3.1 Representation

A domain block encapsulates the data types and constraints of a DSL, as shown
in Figure 2. A data type is either the name of a sort (a set of constants, e.g.
String), a record constructor, or an arbitrary union of other data types. Line
3 declares a constructor called Task, which takes an id argument of type Basic
(which corresponds to the set of all constants). Line 5 declares a constructor
for denoting conflicts between tasks, which requires two arguments of type Task.
FORMULA data types are algebraic: Two data instances are the same if and only
if they were built from the same sequence of constructors and constants. This
formalism captures inductive data types with type constraints. A model is a set
of record instances built using the constructors of a domain that satisfy domain
constraints (lines 7-14). The declaration model ThreeTasks of Functionality is a
claim that the model satisfies constraints; the claim is verified by FORMULA.

Some domain constraints are quite common; e.g. conflict edges form a relation
over tasks: EC ⊆ T × T . FORMULA provides built-in support for common
constraints via annotations on data type declarations. The [Closed] annotation
applied to the Conflict constructor is an example. Let �C� be the set of all well-
typed records that can be constructed by C. If M is a set of records, then
M(C) = M ∩ �C� is the set of C-records in M . For example M(Task) and
M(Conflict) is the set of all tasks/conflicts respectively. The closed annotation
requires every model M to satisfy {(t1, t2) | Conflict(t1, t2) ∈ M(Conflict)} ⊆
M(Task)× M(Task).

In general, a rich constraint language is needed to specify domain constraints.
Many modeling tools use the object constraint language (OCL) for this purpose.
However, the intricacies of OCL complicate automated analysis of arbitrary OCL
constraints [21]. For this reason, we choose constraint logic programming (CLP)
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1. domain Distribution
2. {
3. Device ::= (id: Basic).
4. [PartialFunction(src, dst -> cap)]
5. Channel ::= (src: Device, dst: Device, cap: PosInteger).

6.
7. bigFanIn :=d is Device, count(Channel( , d, )) > 2.
8. bigFanOut :=d is Device, count(Channel(d, , )) > 2.
9. clog :=d is Device,
10. sum(Channel( , d, ), 2) != sum(Channel(d, , ), 2).
11. conforms :=!(bigFanIn | bigFanOut | clog).
12. }

Fig. 3. A domain representing the distribution of devices through channels

for the core constraint language of FORMULA. CLP is well studied, has an
unambiguous execution semantics, and can be converted into first-order logic. In
fact, FORMULA converts all built-in constraint annotations into logic programs.

Figure 3 shows an abstraction for the distributed network of devices through
channels, which requires more complex constraints to specify. A Channel is a
partial function from a pair of Devices to a positive integer. Line 7 defines a query
for checking whether an input model M has a Device with too many incoming
Channels. For each binding of the variable d to a Device, the count operator
counts the number of distinct Channels terminating on d (the underscores are
“don’t care” variables). If there is any binding of d with more than two incoming
Channels, then the Boolean variable bigFanIn evaluates to true. The bigFanOut
query (line 8) performs the same check for outgoing Channels. The clog query
checks if the communication network is unbalanced by summing the capacities
on incoming/outgoing Channels. The second argument of the sum operator is the
zero-indexed field within the record that is summed.

Every FORMULA domain has a query called conforms. By definition, an in-
put model satisfies domain constraints only if conforms evaluates to true. The
design space associated with a domain is the set of models satisfying its conforms
query. In the example from Figure 2, the conforms query has not been explicitly
defined by the user; in this case, FORMULA will implicitly define the query as
a conjunction of compiler generated constraints (e.g. [Closed]). In Figure 3, the
Distribution domain explicitly requires that none of bigFanIn, bigFanOut, and clog
should evaluate to true. The entire conforms query for Distribution also contains
compiler generated constraints due to the annotation [PartialFunction].

The DSL approach supports modular and compositional specification of ab-
stractions. The Architecture domain (Figure 4) is an extension of the product of
the Functionality and Distribution domains. These composition operations allow
the Architecture domain to use the data structures of Functionality and Distri-
bution while provably ensuring that all constraints are enforced the same way
[16]. Architecture also adds a new data structure Binding and requires that Bind-
ings must respect task conflicts (lines 18-19). Again, the complete conforms of
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13. domain Architecture extends Functionality, Distribution
14. {
15. [Function]
16. Binding ::= (t: Task, d: Device).

17.
18. conflict :=Binding(t1, d), Binding(t2, d), Conflict(t1, t2).
19. conforms :=!conflict.

20. }

Fig. 4. A domain as a composition of Functionality and Distribution

Architecture contains constraints imported from the other domains. In summary,
the models conforming to Architecture are exactly those legal systems described
in Section 2. The DSL approach allows the user to encode the interesting de-
grees of design freedom via formal and composable abstractions. Specifically,
FORMULA utilizes algebraic data types and CLP to accomplish this.

3.2 Solving for Instances

In order to find non-trivial solutions to design spaces, FORMULA specifications
are translated into the SMT solver Z3. Let D.q be a query q defined in domain
D, then the translation procedure must produce a first-order formula ϕ[X ] with
the following property: Finite models (sets of records) satisfying D.q are in cor-
respondence with satisfying instances of ϕ[X ], where X denotes the vector of
variables appearing in ϕ. A satisfying instance is a mapping of variables to values
{x1 �→ v1, . . . , xn �→ vn}; a reverse translation converts satisfying instances into
FORMULA models.

SMT solvers represent a significant step in automated theorem proving by
soundly combining decision procedures for different theories while using efficient
SAT-based backtracking techniques to drive the search process. For example,
the clog query (lines 9-10, Figure 3) imparts the following fragment into ϕ:

testDevice(d) ∧ testChannel(in1) ∧ testChannel(in2)∧
selChannel,1(in1) = d ∧ selChannel,1(in2) = d ∧ in1 	= in2∧
x = 2Int(selChannel,2(in1)) + 2Int(selChannel,2(in2)) . . .

(1)

This fragment sums the incoming channel capacities for a device d with two
distinct incoming channels. SAT techniques provide a strategy for satisfying
sub-formulas, and specific decision procedures actually solve the sub-formulas.
In this example, two decision procedures are required: (1) term algebras (TA) for
inductive data types and (2) linear arithmetic for summing channels. The first
line of the formula uses TA to test that the variables d, in1, and in2 have the
appropriate record structure. The second line extracts the second components of
the channels in1 and in2 using TA selectors ; the equalities here invoke unification
and the occurs check. The third line extracts the channel capacities, coerces
them to integers using the function 2Int, and calculates their sum via the linear
arithmetic decision procedure.
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This example illustrates the power of SMT, but also shows that the translation
process from a high level specification to SMT is non-trivial, since most SMT
solvers support only the existential fragment of first-order logic. In our approach,
universal quantifiers are eliminated by symbolically executing a specification over
a set of symbolic inputs and emitting all interesting branches of the logic program
as a quantifier free formula. The symbolic execution loop is implemented outside
of the theorem prover, and it takes as input a finite set of records with variables
where constants would otherwise be. For example, symbolic execution on the
following set:

S =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Task(x1), T ask(x2), T ask(x3),
Device(x4), Device(x5),

Conflict(x6, x7),
Channel(x8, x9, x10),

Binding(x11, x12), Binding(x13, x14), Binding(x15, x16)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2)

produces a formula ϕ capturing all the possible ways that zero to three Tasks,
zero to two Devices, etc... can satisfy design constraints. When the DSE proce-
dure does not know cardinality bounds for all record types, then it repeatedly
attempts larger and larger symbolic sets as input to the symbolic execution en-
gine. Even though each symbolic input set has a finite number of records, the
resulting SMT formula may still have an infinite number of solutions, because
variables occurring in ϕ range over infinite domains. We refer to the original
finite set used to produce ϕ via symbolic execution as the generator set of ϕ.

4 Design Space Exploration Method

After symbolic execution, elements of the design space can be enumerated by
repeatedly querying the SMT solver. This procedure is not sufficient for rapidly
exploring diverse solutions, because the solver does not know which solutions
are considered similar. Also, solving strategies are optimized to find any next
solution, and not necessarily solutions that are highly distinct. In this section,
we describe a technique for grouping related solutions based on isomorphisms
over algebraic data types.

4.1 Projection-Based Equivalence Partitioning

Let Σ be the set of constants that might appear in the field of some record. Let
C be the set of all constructors of a domain D. A term homomorphism φ is a
function over constants lifted onto records. If c(r1, . . . , rn) is a record built by
applying constructor c to records r1, . . . , rn, then φ(c(r1, . . . , rn)) returns a new
record that is equal to c(φ(r1), . . . , φ(rn)). Term homomorphisms preserve the
structure of records, but change the constants appearing in their fields. If M is
a model (i.e. a set of records), then φ(M) is a model formed by applying φ to
each record in M . Homomorphisms induce a preorder on models: M ′ � M if
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∃φ · φ(M) = M ′. Two models M, M ′ are isomorphic if M ′ � M and M � M ′;
this can be written as M ∼ M ′.

Isomorphic models are equivalent up to relabeling of the constant values ap-
pearing in their records. Our approach groups all isomorphic solutions into a
single equivalence class, and finds only one representative per equivalence class.
We take this one step further, allowing isomorphisms to be considered on some
subsets of data types, thereby further decreasing the number of distinct equiva-
lence classes. We call Π ⊆ C a projection on the records of domain D. If M is a
model, then Π(M) discards records not in Π :

Π(M) = {r | r = c(r1, . . . , rn) ∧ r ∈ M ∧ c ∈ Π} (3)

Given a projection Π , then M ′ �Π M if ∃φ · φ(Π(M)) = Π(M ′). Again, two
models are in the same equivalence class if and only if M �Π M ′ and M ′ �Π M .

FORMULA provides the user with an interface for specifying a projection.
Returning to the motivating example, suppose the user wants to see only those
solutions with distinct channel topologies. In the case, the user may specify
Π = {Channel}, and every solution returned by FORMULA will have a distinct
communication topology.

This approach must be integrated with the solver, so it knows to return non-
isomorphic solutions. Communicating isomorphism-based equivalence classes to
solvers can be accomplished using symmetry breaking predicates [8].

4.2 Exploration Algorithms

Encoding equivalence classes into the SMT solver using symmetry breaking pred-
icates can ensure that every new solution is non-isomorphic to previous ones.
However, this alone does not diversify the exploration throughout the design
space; in other words, FORMULA may consecutively return non-isomorphic
but structurally similar solutions within a small portion of the space. Ideally,
we want the solver to “jump around” various parts of the design space, sam-
pling a wide variety of non-isomorphic solutions. In this section, we describe an
algorithm that explores the design space for a particular generator set G, and
show how we employ randomization to incrementally construct a diverse set of
non-isomorphic solutions.

Na̋ıve Exploration Algorithm. We begin by describing a simple candidate
algorithm Explore (Figure 5) to build intuition. The algorithm accepts as inputs
the generator set G, the formula ϕ generated from G, which encodes the design
constraints, and a user-specified projection Π . The algorithm randomly samples
an equivalences class in the design space, and then checks if that equivalence
class contains a model satisfying ϕ. A sample s is a symbolic set of records
under the projection Π . For example, given the generator set from Equation 2
in Section 3.2, and Π = {Binding}, one possible sample is:

{Binding(x1, x2), Binding(x3, x2), Binding(x4, x5)}. (4)
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Explore(G, ϕ, Π)

1: solutions := {}
2: sampled := {}
3: while True do
4: s := SampleClass(G,Π)
5: for all p in sampled do
6: if TestIsomorphism(s,p) then
7: goto Line 3
8: end if
9: end for

10: sampled := sampled∪ {s}
11: soln := FindModel(s ∧ distinct(s) ∧ ϕ)
12: if soln �= NULL then
13: solutions := solutions ∪ {soln}
14: end if
15: if CheckExhaustive(sampled) then
16: return solutions
17: end if
18: end while

Fig. 5. Na̋ıve exploration algorithm

Note that the first two Binding terms contain the same variable for the second
argument to the constructor (x2). This sample represents the set of all design
instances in which two of the tasks are mapped to the same device. Figure 6
provides a graphical illustration of the sample.

The basic algorithm consists of a single while loop. In each iteration, an equiv-
alence class s in the design space is sampled based on the projection (line 4),
and is discarded if it is isomorphic to any of the samples that Explore has visited
(lines 5-9). This check avoids isomorphic solutions from being collected.

If the sample passes this check, then the SMT solver attempts to construct a
solution to the new sample that satisfies all of the design constraints (line 11).
In this procedure, all the variables appearing in the sample are constrained to be
distinct (distinct(s)), ensuring that the solver does not return a homomorphic
image of s. If the solver succeeds in finding a satisfying instance, it stores the
instance into the set solutions. If not, it goes back to the beginning of the loop
and attempts another sample.

The exploration loop terminates when Explore has visited all equivalence
classes in the design space (line 15)1. The termination condition is based on
a property of the random sampling procedure (SampleClass): The probability
that all classes are visited can be made arbitrarily close to 1 with a finite number
of iterations.

How well does this algorithm work? Our goal is to collect a set of non-
isomorphic solutions at a reasonable amount of computational cost. For this

1 The exhaustive list of equivalence classes can be computed using a variant of Polya’s
enumeration theorem [28].
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Fig. 6. A graphical representation of a sample for the platform mapping problem. Cir-
cles present tasks, and boxes represent devices. This particular sample represents the
equivalence class of design solutions where two of the tasks are mapped to the same
device.

purpose, we define the cost as the number of times that the algorithm invokes
the SMT solver. Then, the success rate of the algorithm is the ratio of the number
of non-isomorphic solutions to the number of calls to the SMT solver. A solving
run that fails to find a satisfying instance is wasteful. But whether or not the
SMT solver succeeds depends on the equivalence class that is picked by the sam-
pling procedure. If the design space is loosely constrained, and a large number
of equivalence classes contain models that satisfy constraints, then this simple
algorithm should perform well. However, this assumption is often not true; the
design space may be highly constrained, and random sampling may frequently
pick samples that do not contain a satisfying instance. In practice, the algorithm
performs poorly for a complex system that contains a large number of design
constraints. This leads to a need for an algorithm that is able to avoid those
parts of the design space that contain only invalid design instances.

Improved Algorithm. In Figure 7, we present an alternative algorithm Ex-
ploreII, which avoids the observed problem with the na̋ıve algorithm. Two key
ideas distinguish the new algorithm. First, we allow the solver to check a possibly
exponential number of equivalence classes per invocation. This is accomplished
by removing distinctness constraints on variables in a random sample; the solver
is now free to equate variables in the sample when searching for a satisfying in-
stance. Secondly, ExploreII incrementally learns the regions of the design space
that contain only invalid designs and then avoids examining these designs.

The outline of the new algorithm is as follows. It keeps track of two sets
of samples, valid and blocked, whose purposes will be explained in the follow-
ing paragraphs. Like the previous algorithm, ExploreII consists of a single while
loop, which begins by sampling a symbolic set s in the design space (line 5). How-
ever, unlike the previous algorithm, the variables in this sample are no longer
constrained to be distinct; some of them may be equated if the solver decides to
assign the same constant to them. As a result of the relaxation, s is no longer
constrained to represent a single equivalence class, but can also represent homo-
morphic images of s spanning many equivalence classes. Consider Figure 8. The
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ExploreII(G, ϕ, Π)

1: solutions := {}
2: valid := {}
3: blocked := {}
4: while True do
5: s := SampleClass(G,Π)
6: for all p in blocked do
7: if TestHomomorphism(p,s) then
8: goto Line 4
9: end if

10: end for
11: C := {}
12: for all q in valid do
13: C := C ∪ ComputeHomorphism(s, q)
14: end for
15: soln := FindModel(s ∧ ¬C ∧ ϕ)
16: if soln �= NULL then
17: valid := valid ∪ {Simplify(s, soln)}
18: solutions := solutions ∪ {soln}
19: else
20: if CheckMostGeneral(s) then
21: return solutions
22: end if
23: blocked := blocked ∪ {s}
24: end if
25: end while

Fig. 7. Improved exploration algorithm

sample on the left hand side represents the equivalence class of design instances
where two of the three tasks are mapped to the same device. By equating x1 and
x3, we obtain a homomorphic image of the original sample; this image represents
the equivalence class where each instance maps each task to exactly one device.

If a sample does not contain any instance that satisfies the given design con-
straints, then every homomorphic image of the sample will also be unsatisfiable.
Thus, a new sample that is a homomorphic image of any element in blocked is
deemed invalid or redundant, and immediately discarded to save the solver from
doing wasteful work (lines 6-10).

Since a sample may admit solutions in multiple equivalence classes, ExploreII
must prevent the solver from returning a solution that it has already found.
The procedure ComputeHomomorphism(s, q) computes a homomorphism (if it
exists) from s to q in the form of (dis)equalities over the variables in s and q. At
the end of the loop on lines 12-14, C contains the set of all homomorphisms from
s to the elements in valid. The negation of the disjunction of the constraints in
C (represented by ¬C), prevents the solver from equating variables in s in a way
that would map s into one of the equivalence classes in valid. In other words,
¬C is the symmetry breaking predicate that guarantees that the solver does not
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Fig. 8. Equality between x1 and x3 maps the sample on the left to its homomorphic
image on the right. The resulting sample represents the set of instances in which each
of the two tasks is mapped to exactly one device.

search the part of the design space that it has already visited. If a solution exists,
Simplify(s, soln) derives a set of equalities between variables in s from soln, and
uses them to reduce s into a canonical representation of the equivalence class
that contains soln (line 17).

When no solution exists, ExploreII attempts to learn the characteristics of
the failed sample. The unsatisfiability of s ∧ ¬C implies that any homomorphic
images of s besides those in C cannot satisfy the design constraints. Hence,
ExploreII can safely reject any subsequent sample that is a homomorphic image
of s, because every such image will either be unsatisfiable, or isomorphic to
an element in valid. This knowledge can cause an exponentially large region of
the design space to be avoided, but still allows random sampling over the good
regions of the space.

The termination condition of ExploreII follows readily from the incremental
aspect of the learning approach. We consider a sample to be most general when
it is equal to the generating set G. The most general sample can be homomor-
phically mapped into any of the equivalence classes in the design space. If this
sample becomes unsatisfiable, then this implies no more solutions are left to be
discovered in the design space. Hence, the algorithm can be terminated when
the most general sample is added to the blocked list (lines 20-21).

Since each sample represents a larger number of equivalence classes than it
did in the na̋ıive algorithm, the solver has more opportunities to find a satis-
fying design instance. Combined with the learning of failed samples, ExploreII
attempts to overcome the difficulty of finding a satisfying instance in a highly
constrained design space.

5 Evaluation

5.1 Experimental Setup

In this section, we evaluate the ability of the two algorithms to rapidly return
solutions that are spread across the design space. We do not focus on the runtime
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performance of the SMT solver, since this has been well-studied [10]. In order
to visualize the entire design space, we use a small generator set to produce a
particular ϕ. In addition, the channel capacities have been moved outside of the
Channel constructor in order to further reduce the number of equivalence classes.
Let us assume that the generator set has the following set of distinct terms:

|Task| = 3 |Device| = 3 |Conflict| = 1
|Channel| = 2 |Binding| = 3 (5)

The projection used is Π = {Binding, Channel}, and thus there are a total of
10 variables (one variable per each constructor argument in each distinct term)
that determine membership in a particular equivalence class. The theoretical
maximum number of equivalence classes is the number of partitions of ten vari-
ables, i.e. 115,975. However, due to symmetries in the sets of records, the actual
number of equivalence classes for this example is 11,233.

We ran the two exploration algorithms, Explore and ExploreII, and observed
the outcome of each invocation to the SMT solver. For every experimental run,
we bounded the maximum number of the invocations to 100. Figure 9 shows plots
for the experimental runs. Each one of the six plots is a graphical representation
of the design space. Parts that are colored in red represent portions of the design
space that were explored by FORMULA but did not admit a satisfying instance;
ones in green are samples from which the solver was able to find a satisfying
instance. The plots (a)–(c) represent the design space for the platform mapping
example from Section 2. The plots (d)–(f) represent a relaxed design space where
a number of design constraints from the platform mapping problem have been
removed ; since this design space is less constrained, these plots exhibit a larger
number of green samples than the plots (a)–(c). The plots (a) and (d) show
results after the na̋ıve algorithm was run.

The plots (b), (c), (e), and (f) were produced with the improved algorithm,
but with a varying amount of randomness in the sampling procedure. When
ExploreII is performed without randomization in sampling, the task of searching
the design space for a solution is handed off entirely to the SMT solver. As a
result, in each invocation, the solver is guaranteed to return a solution, if any
exists. On the other hand, with randomization, there is a probability that the
picked sample emits no solutions at all. Therefore, in some invocations, the solver
may fail to return a solution. This is a trade-off for achieving diversity in the
exploration; randomization may lead to unsuccesful invocations of the solver,
but can help avoid clustering of the solutions that tends to appear when no
randomization is used. We describe this trade-off in more detail in Section 5.3.

Let us first introduce background notations that are necessary to explain
these plots. Let [M ] = {M ′|M ∼ M ′} be the equivalence class represented
by model M , and let Λ = {[M1], [M2], . . . , [Mn]} be the set of all equivalence
classes, where the ith class is represented by Mi. Then equivalence classes are
partially ordered according to [M1] ≤ [M2] ⇔ M1 �Π M2 (i.e. every member
of the smaller equivalence class, [M1], is a homomorphic image of some member
of the larger class, [M2]). We plot the design space by dividing it into regions
R1, . . . , Rn such that: (1) For every [M ] ∈ Ri and [M ′] ∈ Rj it holds that



An Approach for Effective Design Space Exploration 47

[M ] � [M ′] and [M ′] � [M ], for i 	= j. (2) Within a region Ri, there exists a
greatest equivalence class [M ]�: ∀[M ′] ∈ Ri, [M ′] ≤ [M ]�. These regions occur
naturally due to models with zero occurrences of some record types, and can be
identified uniquely by their greatest class. In our experiment the regions are:

R0 = ∅,
R1 = {Channel(x1, x2), Channel(x3, x4)},

R3 = {Binding(y1, y2), Binding(y3, y4), Binding(y5, y6)},
R4 = R1 ∪ R3

(6)

These regions are labeled in the figures using the short hand ∅, {f0}, {f1}, and
{f0, f1}. The numbers at the top of each plot give the number of equivalence
classes within regions.

Every equivalence class within a region is assigned a cell at some position along
the y-axis. This position respects the ≤ order on equivalence classes. Since the
number of classes per region grows rapidly, we shrink the cell size and split the
y-axis into a number of columns per region. This setup means the plots exhibit
two important properties: (1) The number and internal complexity of record
instances increases from left to right and bottom to top. (2) Record instances
that are homomorphically similar are physically nearby, except when a column
is broken and wrapped into the next column.

5.2 Randomization

Our exploration algorithm should behave well over various types of design spaces,
and there are two important factors to take into account. First, under ideal
circumstances, equivalence classes should be sampled uniformly across the design
space. Second, sampling must be able to adapt to design spaces that are highly
constrained and therefore, contain only a few valid solutions. These goals may
be contradictory, in which case a reasonable balanced should be achievable.

The first goal is costly to achieve because it requires a canonical representation
for all non-isomorphic homomorphic images of the symbolic set used to generate
ϕ. This representation cannot be explicitly constructed, as it grows too quickly in
size. Instead, an effective random sampling procedure must generate equivalence
classes cheaply, but without introducing too much bias in the sampling process.
Though the full statistical analysis of this problem is outside the scope of the
paper, we describe the intuition behind our solution.

Given a set of variables X , it is easy to generate a random partition of the
variables. The structure of the partitions of X closely follows the integer parti-
tions of |X |. An integer partition of n is a collection of integers that sum to n.
Generating the integer partitions of |X | in lexicographic order is also straightfor-
ward. Each integer partition serves as a template for building a random partition
of X . For example, if there are three variables X = {x, y, z}, then the partition
[2, 1] means pick two distinct variables to equate, and then pick one variable
(which is equated to itself). The number of possible partitions of X that fit a
template grows exponentially with respect to the template’s lexicographic order
in the integer partitions of |X | and then decreases exponentially.
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We capture this behavior by fitting a normal distribution over the integer
partitions of |X |. A random sample is constructed by first picking an integer
partition as a template, and then randomly equating variables according to this
template. The partitions are applied to the generator set to get a represen-
tative for an equivalence class. In our experiments, this approach removed an
exponentially strong bias towards larger and more complex equivalence classes.
The plots (a) and (d) in Figure 9 show the na̋ıve random sampling algorithm
with this correction applied. Our data suggests that this is a cost effective ap-
proach to sample design spaces with varying forms of symmetry in their generator
sets.

5.3 Highly Constrained Design Spaces

Another difficulty arises when the design space is highly constrained. The plot (c)
in Figure 9 shows all the solutions for the platform mapping under the generator
set described in equation (5). In this case, there are only 41 non-isomorphic
solutions out of 11,233, and these solutions are also highly clustered. By virtue of
the solution set, no degree of random sampling can avoid the inherent clustering
found here.

In order to address these cases, we add tuning probability pgen to the Sample-
Class method. The method selects the generating set G with probability pgen

as the sample to search or a random sample with probability 1 − pgen (using
the technique described in Section 5.2). Recall, from the discussion of ExploreII,
that the generating set is the most general sample, and so when the solver is
invoked on this sample, a either a new solution is returned or the sampling
process terminates. The plot (c) was generated by setting pgen = 1, thereby
enumerating a new solution with every invocation of the solver. The plot (a)
was generated by running the na̋ıve random algorithm on the same problem.
Though the distribution of points is fairly random, none of these points hit
a satisfiable equivalence class. Finally, the plot (b) was generated by setting
pgen = 0.5. Here we see the algorithm alternating between randomized and
solver-driven exploration patterns. Our initial results suggest that 0.5 provides a
reasonable default trade-off between finding diverse solutions and quickly finding
some solutions.

However, pgen = 1 is not a reasonable solution to DSE. We relaxed the con-
straints on the motivating example by removing conflict constraints and the
relational/functional constraints on Channel and Binding. Under this relaxation
there are 4298 equivalence classes with solutions, and these classes are more
evenly distributed about the space. The plot (f) shows sampling the relaxed
space with pgen = 1. In this case, the solutions are highly clustered due to the
solver’s backtracking strategy. The plot (d) uses na̋ıve random sampling and is
even able to find some solutions. Finally, the plot (e) uses pgen = 0.5 and finds
a solution for almost every sample but does not exhibit the clustering behavior
that is observed in the plot (f).
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6 Related Work

6.1 DSE Frameworks

DESERT [26] is a framework that is closely related to FORMULA, with a goal
of exploring design alternatives at the architectural level. Unlike FORMULA,
design alternatives must be expressed as hierarchy of AND-OR choices with
Boolean constraints describing interaction of design choices. DESERT encodes
the design space and constraints symbolically, using BDDs [5]. However, the
exploration in this framework is largely manual; the user specifies a constraint
that should be true and DESERT prunes the design space accordingly. The
user can also export points in the space to a modeling tool called the Generic
Modeling Environment (GME).

CoBaSa [22] is a tool for automating the assembly of commercial off-the-shelf
(COTS) components. It compiles system requirements and constraints among
components into a pseudo-Boolean satisfiability (PBSAT) problem, which is
tackled by a constraint solver. However, they focus on generating a solution
that satisfies a large number of constraints, and do not focus on the exploration
of the design space.

The technique developed by Hu et al. [14] collapses a multi-dimensional design
space into a 3-dimensional space, after which the user selects portions of the
space to explore with Cartesian co-ordinates. Their approach is similar to ours
in that we both incorporate the user’s feedback into the exploration. Their goal
is not to enumerate distinct designs, but to find ones that are optimal with a
particular fitness metric.

Kakita et al. [18] developed an algebraic approach for DSE of dataflow sys-
tems. In this approach, each point in the design space is defined as a dataflow
graph. Graph rewrite rules are applied to an initial graph iteratively to generate
a set of alternative designs that preserve the scheduling constraints of the original
design. The authors tackle the problem of the exponential growth in the design
space by representing regularity in structures with compact recurrence relations.
This approach has been implemented in the METROPOLIS framework [1].

There have been a great number of works that focus on the goal of finding a
set of globally optimal solutions, many of which are surveyed in [13]. We believe
that our exploratory approach is complementary to theirs. In an early phase of
the design, where the overall architecture of the system has not been clearly
defined, coming up with optimization functions is difficult. Hence, it is desirable
for the designer to sample and experiment with a diverse set of alternatives. In
addition, even if objective functions can be defined, there may be a large number
of optimal solutions, which would then be examined and evaluated per-basis.

6.2 Exploration Techniques

Tabu search [12] is a technique in combinatorial optimization that uses a memory
structure to keep track of solutions that it has already visited in the search space.
Our approach is similar to Tabu search in that it also store points that it has
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explored. In embedded system design, several groups [4,11,32] have evaluated
Tabu search with respect to its effectiveness in finding globally optimal solutions.
As far as we are aware of, Tabu search has not been used to exhaustively explore
the design space.

Planning in AI solves the problem of finding a path between a pair of source
and destination points on a search space. There is a wealth of literature on al-
gorithms and heuristics to prune parts of the space that need not be explored.
Some of these techniques, such as simulated annealing [31] and rapidly-exploring
random trees [20], use random sampling to increase diversity during the explo-
ration. Our random sampling approach was inspired by them.

Partitioning a large search space into equivalence classes has been employed
in other areas of software engineering. In testing, the space of the test input
can be partitioned based on a certain notion of equivalence, and only a single
test case from each class needs to be executed [25]. In model checking [6], state
abstraction can be used to group related states together, thereby reducing the
size of the space that the model checker needs to visit. As far as we are aware
of, our work is the first one to apply the partitioning method to explore distinct
solutions in a design space.

In software product lines, researchers have studied techniques to explore and
analyze the space of product configurations based on feature models [2,3]. These
works focus on managing variability in features, whereas constraints in FOR-
MULA describe non-functional, architectural properties such as scheduling and
security requirements. Constraint solvers use symmetry breaking predicates to
avoid searching through solutions that are isomorphic to each other [8]. These
predicates operate on low-level representations such as Boolean propositions,
and do not take into account high-level domain knowledge.

6.3 DSL Specification Languages

A number of tools exist for specifying DSLs, with various degrees of automated
analysis. We have already mentioned the work of DESERT [26]. Additionally,
the Atlas Model Management Architecture (AMMA) [29] uses the OMG’s meta-
object facility (MOF) [27] as the DSL specification language. Abstract state
machines (ASMs) are used to define the behavioral semantics of DSLs. These
tools are built on top of the Eclipse Modeling Framework (EMF).

The KerMeta [24] framework provides a MOF compliant specification lan-
guage. At the time of writing, KerMeta provides static type analysis and run-
time checking of pre/post conditions. Additional formal methods are provided by
exporting to other tools. The KerMeta language is inspired by the programming
language Eiffel and is object-oriented in nature. It provides its own imperative
language for specifying DSL behavioral semantics. The AToM3 [9] framework is
integrated with the Maude theorem prover [7]. AToM3 focuses on behavioral and
transformational DSL semantics. It uses the term rewriting formalism of Maude
to evaluate LTL queries on models.
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7 Discussion and Conclusion

In conclusion, we have presented an approach for exploring the design space of
complex systems in our framework, FORMULA. Our framework combines results
from domain-specific languages, symbolic execution, and automated theorem
proving in order to quickly move from a specification of a design space to a
set of distinctive solutions. Our exploration algorithms go further than finding
non-isomorphic solutions; they attempt to quickly visit a diverse set of solutions
across the design space. We have presented initial data to show the efficacy of
our approach.

In the improved exploration algorithm (ExploreII ), the predicate ¬C can be
considered to be a complete symmetry breaking predicate [8]—complete because
it guarantees that the solver will not find any instance that is isomorphic to
the ones that have already been discovered. But computing a full symmetry
breaking predicate is generally expensive. In our case, the computation of a
homomorphism from a sample to the ones in valid can be costly; no polynomial
algorithms are known for this problem. An alternative approach is to use a partial
symmetry breaking predicate, which provides a weaker guarantee but is much
cheaper to compute [8,23,30]. We are currently investigating a way to integrate
this partial approach into our framework.

We are also interested in studying other mechanisms to differentiate solutions
in design spaces. In case studies for embedded systems, we encountered scenarios
where a partial order over records would also be useful mechanism to distinguish
solutions. This also raises interesting theoretical and practical questions on how
to combine various differentiation mechanisms, and how to fairly sample and
efficiently encode more general equivalence classes into an SMT solver.

The opportunities to combine DSE with rapid prototyping and optimization
appear promising. The DSL approach in general, and FORMULA in particu-
lar, allow behavioral semantics to be assigned to DSLs. Thus, it is possible to
automatically simulate and profile designs as they are sampled. Either the user
or a utility function could rank solutions, and then these results could be used
to further prune the design space. In this instance, pruning would mean adding
more constraints to the SMT formula ϕ to refine the design space.
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Abstract. This paper presents an approach for incrementally adjusting
the timing behavior of legacy real-time software according to explicit tim-
ing specifications expressed in the Timing Definition Language (TDL).
The main goals of such a migration are ensuring predictability of the
timing behavior, and enabling adaptivity of the system. The latter is
particularly important for embedded control systems which adapt their
computational load in accordance to parameters of the physical environ-
ment in which they operate.

Our approach entails a minimal instrumentation of the original code
combined with an automatically generated runtime system, which en-
sures that the executions of designated periodic computations in the
legacy software satisfy the logical execution time specifications of the
TDL model. The presented approach has been applied to a complex
legacy controller system in the automotive domain.

1 Introduction

Various approaches have been recently proposed to design and implement adap-
tive embedded systems. For real-time embedded software, it has been argued
e.g. in [1] that so-called semantics-preserving execution environments stemming
from Giotto [2] and from synchronous programming [3] can prove to be a key
ingredient for adaptivity. These approaches are intended to be used in modern
methodologies for embedded system design such as Model-Driven Engineering
(MDE) [4] and Platform-Based Design [5], which advocate a top-down approach
for application development. The development process starts from high level
models, which are incrementally refined to software models and then to imple-
mentations on execution platforms.

While the benefits of these approaches are well-understood, their full adoption
in the established embedded industry is rather slow. One of the main factors
responsible for this is the large base of legacy applications, which have been
traditionally developed at the programming language level, are usually highly
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optimized and thoroughly tested. MDE is thus employed only partially, typi-
cally for developing new functionality up to the software model, which is then
manually merged with the existing legacy code.

Several timing specification languages and tools such as the Hierarchical Tim-
ing Language (HTL) [6] and the Timing Definition Language (TDL) [7] follow
the Giotto model, providing semantics-preserving execution environments based
on the Logical Execution Time (LET) abstraction. They serve the general argu-
ment that execution time of software should be captured in high-level models [8].
HTL was employed to described adaptive real-time systems in [1]. While LET-
based programming disciplines assume the classical MDE top-down approach,
they are particularly amenable to a bottom-up application to legacy software,
due to the separation of concerns provided by the LET paradigm, where tim-
ing is separated from functionality. This facilitates the enforcement of timing
requirements on legacy software in a systematic and minimally interventive way.
It also addresses intellectual property concerns, requiring no information about
what the legacy code does. However, availability of the legacy source code and
platform configuration information is assumed.

In this paper we describe how to apply TDL modeling to typical legacy con-
troller systems. We propose an instrumentation-based approach, with minimal
intervention in the legacy code and platform configuration. To achieve this, we
had to reconcile the top-down approach of TDL with the constraints imposed
by the legacy system. Two main aspects required trade-offs in this respect: (1)
Event-triggered computations, which in TDL are assumed to have lower prior-
ities than time-triggered tasks, while the legacy application has higher priority
events, and (2) the TDL runtime system, which originally implements a virtual
machine called E-Machine and compiles the timing specification into code for
this E-Machine, called E-code, which has proved to be quite large for complex
legacy applications. Issue (1) was addressed by a careful scheduling analysis, con-
sidering information about minimum inter-arrival times of high-priority events.
Problem (2) was resolved by employing an application-specific runtime system,
called TDL-Machine, which was code-generated from the TDL model and from
application-specific information.

The approach described in this paper was applied to a complex industrial
legacy application in an incremental manner. The desired timing behavior was
tested by software-in-the-loop and hardware-in-the-loop simulations.

2 Background

This section briefly presents the Timing Definition Language (TDL), as well as
common characteristics of legacy software that challenge some of the assump-
tions made in LET-based programming disciplines such as TDL.

2.1 The Timing Definition Language (TDL)

TDL allows the LET-based specification of timing properties of hard real-time
applications. The LET of a computational unit, or task, represents a fixed logical
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Fig. 1. The Logical Execution Time (LET)

duration between the time instant when the task becomes ready for execution
and the instant when the execution finishes. A task’s LET is specified at the
model level, independently of the task’s functionality. When deploying the model
on a platform, the LET specification is satisfied if the total physical execution
time of the task is within the LET interval for every task invocation, and an
appropriate runtime system ensures that task inputs are read at the beginning
of the LET interval (the release time) and task outputs are made available at the
end of the LET interval (the termination time). This is illustrated in Figure 1.
Between release and termination points, the output values are those calculated
in the previous execution. Default or specified initial values are used in the first
execution of a task.

Tasks can receive information from the environment via sensors and act on
the environment via actuators. A task has input ports, output ports, and state
ports. State ports keep state information between different executions of the
same task.

TDL is mainly used for specification of periodic task executions under the
LET model. Timing specifications are declared in TDL by means of the mode
construct. A mode represents a set of concurrent activities: task invocations,
actuator updates, and mode switches, which are periodically executed. A mode
activity has a specified execution rate and may be carried out conditionally. The
LET of a task is expressed as the mode period divided by the frequency of the
task invocation. The schedule of activities within a mode period is determined
statically and it is carried out at runtime by a dedicated component called the
TDL-Machine. This performs the following operations at every time step of the
schedule:

– Update output ports of tasks whose LET end at the current time step. At
time 0, the ports are initialized rather than updated.

– Update actuators.
– Test for mode switches. If a mode switch is enabled, switch to the target

mode.
– Update input ports of the tasks whose LET start at the current time step.
– Trigger the execution of the tasks whose LET start at the current time step.
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1 module Sender {
2 sensor int s1 uses getS1;
3 actuator int a1 uses setA1;
4 public task inc {
5 input int i;
6 output int o := 10;
7 uses incImpl(i,o);
8 }
9 start mode main [period=5ms] {

10 task [freq=1] inc(s1); //LET = 5ms (=period/freq)
11 actuator [freq=1] a1 := inc.o;
12 mode [freq=1] if exitMain(s1) then freeze;
13 }
14 mode freeze [period=1000ms] {}
15 }

Listing 1.1. A TDL example

TDL allows also declarations of sporadic activities related to executions of
event-triggered tasks. Such tasks are declared asynchronous in TDL, meaning
that no timing constraints are specified for them. TDL can be used to express
only data dependencies related to asynchronous tasks.

TDL provides a top level structuring unit called a module, which groups
sensors, actuators, tasks, and modes that belong together. The module concept
serves multiple purposes: (1) a module provides a name space and an export/im-
port mechanism and thereby supports decomposition of large systems, (2) mod-
ules allow the parallel composition of real-time applications, (3) modules serve
as units of loading, that is, a runtime system may support dynamic loading and
unloading of modules, and (4) modules are the natural choice as unit of distri-
bution because dataflow within a module (cohesion) will most probably be much
larger than dataflow across module boundaries (adhesion).

An example of a TDL program is shown in Listing 1.1 and a graphical repre-
sentation of this program is shown in Figure 2. In the example, module Sender
contains a sensor variable s1 and an actuator variable a1. The value of s1 is
updated by executing the (platform specific) driver getS1 and the value of a1 is
sent to the physical actuator by using the platform-specific driver setA1. Every
module has exactly one start mode, indicated by preceding the mode declaration
with the keyword start. The declaration of the output port of task inc specifies
an initial value of 10. The task is invoked in mode main of the Sender module,
where its input port is connected to the sensor s1. In the same mode, actuator
a1 is updated with the value of the task’s output port. The timing behavior of
the mode activities is specified by means of individual frequencies within their
common mode period. For example, with a frequency of 1, task inc is defined to
have a LET of 5 ms. A more detailed description of TDL features can be found
in [9].
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Fig. 2. Representation of the TDL example from Listing 1.1

A TDL application consists of a set of time-triggered tasks and a runtime
system called TDL-Machine, which performs all mode operations according to
the TDL specifications. A platform specific implementation of the TDL-Machine
can be generated from the specifications [10].

2.2 Aspects of Legacy Controller Systems

It is common for an embedded controller software system to contain both time-
triggered and event-triggered computations. Some event-triggered tasks may re-
quire fast reaction times, and thus may have higher priorities than time-triggered
tasks.

Legacy operating systems require tasks to be split into execution units, also
called tasks. We refer to such a task as a platform task. Typically the number of
tasks is restricted. For example, OSEK/VDX [11] or AUTOSAR OS [12] suggest
a maximum of 8 to 16 tasks. Complex systems often comprise more tasks thus
a common design practice is to group the time-triggered computations into a
small number of time-triggered platform tasks, which are triggered by a high
priority task (also called sequencer or dispatcher task [13]) that is itself triggered
from a periodic interrupt that defines the base period in the system. That high
priority task dispatches the time-triggered platform tasks at multiples of the
base period, using system services for task activation. In addition, each time-
triggered task may internally perform computations at multiples of the task’s
period.

Another common characteristic of legacy embedded code is heavy usage of
shared memory communication (global variables) between various components
in the system. Moreover, communication with the physical environment is done
by memory-mapped I/O devices. Thus, reading from a sensor means access-
ing a (read-only) global variable, while actuating means writing into a global
variable.
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3 Modeling Timing Behavior of Legacy Controllers with
TDL

The main goal of imposing a LET-based execution and data-transfer semantics
on an existing application is to eliminate unpredictable behaviors due to varia-
tions in execution times. An important refactoring requirement in this respect is
minimal modification of the legacy system, including the application code and
its configuration on the platform. Thus, code changes are done only by adding
the TDL-Machine as a separate component and by inserting calls to the TDL-
Machine functions at well defined, top-level places in the original application.
No line of the legacy code is modified. Also, all the parameters of the legacy
configuration remain unchanged (same platform tasks, periods, and priorities).
Additional resources of the operating system may be necessary to trigger execu-
tions of TDL tasks, as described in the sequel. Moreover, an additional platform
task may be required for the TDL-Machine.

Modeling the timing behavior of legacy software with TDL must reconcile
the assumptions made on the implementation of TDL tasks and the ability of
the runtime system to control executions with the characteristics of the legacy
applications mentioned in Section 2.2. TDL requires that inputs and outputs
of TDL tasks be passed to the implementation functions by means of function
arguments, while the legacy code uses mostly global variables. Platform tasks are
activated according to the legacy configuration, which must remain unchanged,
so the TDL runtime system does not have full control over triggering of TDL
tasks. Nevertheless, one has to make sure that the TDL semantics is preserved.

Complex legacy applications contain periodic computations with periods that
differ by several orders of magnitude. For example, a computation may have a
period of 5 milliseconds, while another one may have a period of 3 seconds. Since
each periodic computation is mapped to a TDL task, the number of operations
of the TDL-Machine in a hyperperiod of the system (the least common multiple
of all the periods) may be quite large. This makes the usage of the E-Machine
approach originally proposed in Giotto [2] and later used in [14] and [15] im-
practical due to memory constraints, since the E-code defines all operations in
a hyperperiod. Thus, we chose to generate directly from the TDL specification
a TDL-Machine specific to the particular legacy system, rather than generating
E-code and using a generic implementation of an E-Machine.

3.1 Mapping the Legacy Architecture to TDL Constructs

A TDL task can be mapped to any function of the legacy code, which is referred
to as the implementation function of the task. Since TDL tasks are assumed
to be independent, a TDL task cannot be mapped to a function that is called
from the implementation function of another TDL task. Thus, different TDL
tasks may have only data dependencies, not execution control dependencies.
This assumption works for common legacy systems where multiple controllers are
run on the same execution platform by having different control functions called
from the same legacy platform task function. This is also naturally applicable
to implementations of model-based designs employing data-flow models.
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In general, TDL tasks are included in platform tasks, in the sense that a
platform task may contain implementation functions of more than one TDL
task, while a TDL task cannot be mapped to more than one platform task. If
a TDL task is mapped to a platform task, the platform task function is the
implementation function of the TDL task. A TDL task can be:

– Synchronous, also called time-triggered, if it corresponds to a periodic com-
putation and it has a LET specification. The period of a synchronous TDL
task is the same as the period of execution of the implementation function
of the TDL task, which is a multiple of the period of execution of the plat-
form task that contains the implementation function. The LET intervals
are established together with application engineers, such that the system is
schedulable.

– Asynchronous, also called event-triggered, if it corresponds to an event-
triggered computation, in which case it has no LET. The task implemen-
tation function of an asynchronous TDL task always corresponds to a plat-
form task function. In this case, TDL specifies only the data dependencies
between an asynchronous task and the other TDL tasks.

An input (output) port of a TDL task T corresponds to a legacy global variable
that is read (written) during the execution of the task implementation func-
tion and that is written (read) in another part of the legacy application that is
independent of the particular TDL task T.

We consider the typical case of memory-mapped I/O devices, where sensors
and actuator values are stored in memory locations (global variables mapped
to hardware registers). Thus, sensing is performed by first writing in an output
variable (which, for example, can be mapped to a command register of an A/D
converter) and then reading from an input variable (which, for example, can
be mapped to the data register of the A/D converter). Consequently, the TDL
model contains no dedicated sensor/actuator variables.

Since we deal here with the migration of monolithic legacy controllers, we
define one TDL module per application. A TDL module may contain several
modes. We consider here the case where all TDL tasks are present in each mode,
such that modes only define different timing behaviors of the tasks.

3.2 Implementation of the TDL Operational Semantics

TDL operations are carried out at runtime by a dedicated component called the
TDL-Machine, which deals with activation of synchronous TDL tasks, data trans-
fer, and mode switches. The architecture of the TDL-Machine and its interaction
with the legacy application are schematically illustrated in Figure 3. The TDL-
Machine has a time-triggered component and an event-triggered component.

The time-triggered component is executed in a periodic platform task with the
highest priority and smallest period (the base period). Such a task is common in
legacy applications, its main role being to dispatch executions of lower-priority
periodic tasks with periods that are multiples of the base period. If the task
is not defined in the legacy application, or if the TDL-Machine needs a smaller
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Fig. 3. The TDL-Machine architecture

1 void Tx_Implementation() {
2 ... // local variables
3 On_Tx_start_execution(); // execution start callback
4 ... // legacy code
5 On_Tx_end_execution(); // execution end callback
6 }

Listing 1.2. LET-based operational semantics

base period (e.g., for a finer granularity of LET endpoints), then an additional
platform task needs to be introduced. The time-triggered component performs
all the operations that are necessary at LET endpoints. The operations that
interfere with the execution of legacy code are synchronous task invocations and
data transfers. We describe how to deal with these situations in the sections
below. Mode switches are implemented by simply changing the LETs for the
task set. These LET intervals for each mode are stored in a table.

The event-triggered component defines one start function and one end func-
tion for each TDL task. These functions are called whenever an execution of the
task implementation (legacy) function begins, respectively ends. Thus, calls to
these functions are inserted at the beginning and end of the corresponding legacy
functions. Their role is to perform buffering and synchronization operations, as
detailed further in this section.

Listing 1.2 sketches the implementation of a LET-based task.

3.3 Activation of Synchronous TDL Tasks

In every execution period, a time-triggered TDL task must be activated at the
start of its LET interval. The execution period is a multiple of the period of
the platform task that contains the TDL task implementation function. For
example, consider a platform task with a period of 5ms, with task function
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1 void Platform_Task() {
2 taskCounter = taskCounter + 1;
3 legacy_func_5ms(); // executed every 5ms
4 if (taskCounter & 0x01) {
5 legacy_func_10ms(); // executed every 10ms
6 }
7 }

Listing 1.3. Platform task

Time(ms)legacy_func_5ms legacy_func_10mslegacy_func_5ms

Time(ms)legacy_func_5ms legacy_func_10mslegacy_func_5ms

  5                                                                                     10

  5                                     7                                               10                                   12                                         14.5

a)

b)

Fig. 4. Execution example: original (a) and with LETs (b)

given in Listing 1.3. One can define two TDL tasks, corresponding to the two
periodically executed functions: a TDL task T5 with a period of 5ms and imple-
mentation function legacy func 5ms, and a TDL task T10 with a period of
10ms and implementation function legacy func 10ms (note that the period
of T10 is twice the period of the platform task containing T10’s implementation
function). This will be used as a running example for the current subsection.

If the start of the LET interval coincides with the start of the period for
a TDL task, then no special activation action is taken by the TDL-Machine
for that task, since every platform task is activated by the platform anyway.
However, the structure of the legacy code may require that the LET begins at
a fixed offset after the start of the TDL task’s period. TDL has been extended
to deal with such cases, as described next with the help of our example.

The LET of T5 starts at the beginning of every 5ms period; assume it has
a value of 2ms. In order to preserve the order of execution of the two legacy
functions at the 10ms time points, the LET of T10 must succeed the LET of T5
in each 10ms period. In other words, the LET of T10 must have an offset of at
least 2ms in the 10 ms period. Figure 4(b) shows an example of task executions
where T10 has an offset of 2ms and a LET of 2.5ms.

TDL has been extended to allow the definition of a LET offset - a time in-
terval between the beginning of the period and the beginning of the LET. This
feature is offered in TDL as a slot selection: the mode period p is divided into
f slots and the LET of any individual task invocation is defined more explicitly
as an interval that starts and ends at integer multiples of p/f . Thus, a task’s LET
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1 start mode main [period=10ms] {
2 //T5: period=5ms, offset=0, LET=2ms
3 task [freq=10, slots=1-2,5-6] T5();
4

5 //T10: period=10ms, offset=2ms, LET=2.5ms
6 task [freq=20, slots=5-9] T10();
7 }

Listing 1.4. TDL mode for Figure 4(b)

corresponds to a slot group. The slots are numbered from 1 to f . TDL offers
a compact syntax for specifying a task’s slot groups within a mode period, as
follows. A repeating pattern of slot groups is specified by using the character
”*” after the pattern. A slot group can be optional, which means that the cor-
responding task execution may be skipped at runtime, if this helps in finding a
feasible schedule. Some examples are:

slots=1* : all slots are mandatory and LET=p/f; this is the default.
slots=∼1|2* : LET=p/f, the first slot is optional and the remaining slots

are mandatory.
slots=1-3* : mandatory slot groups with LET=3*p/f each.

The TDL code corresponding to the example in Figure 4(b) is given in
Listing 1.4.

In order to enable the TDL-Machine to trigger executions of offset TDL
tasks, additional synchronization points are introduced. The implementation
of this synchronization is operating system-specific. For example, in the case
of an OSEK operating system, a WaitEvent system call is used in the entry
instrumentation function. At runtime, a corresponding SetEvent system call is
performed by the TDL-Machine at the LET start. This ensures that the legacy
function does not start executing before the LET start. No change is made to the
platform-triggered activation of platform tasks (which include the asynchronous
TDL tasks).

To enforce the specification given in Listing 1.4 for task T10, the task’s execu-
tion start callback On T 10ms start execution is defined to make a blocking
call on an operating system resource. The time-triggered component of the TDL-
Machine releases the resource at the LET start of T10. This process is described
in Listing 1.5, where the resource is an OSEK event.

3.4 Data Transfer Operations

The implementation of LET-based data transfer for a synchronous TDL task
must deal with the fact that data communication between the legacy implemen-
tation function of the TDL task and the rest of the system is done by shared
memory. Since inputs and outputs are provided via global variables, their values
need to be buffered in TDL-specific variables as described below. The following
behavior must be ensured:
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1 // called at the beginning of legacy_func_10ms
2 void On_T_10ms_start_execution() {
3 WaitEvent(EV_T10_LET_START);
4 }
5 // time-triggered LET scheduler function
6 void LETSchedulerStep(double time) {
7 ...
8 if (time == LET_START_T10ms){
9 SetEvent(Platform_Task, EV_T10_LET_START);

10 }
11 ...
12 }

Listing 1.5. Implementation of the TDL program in Listing 1.4 for task T10

(A) When the LET begins, the value of each original input variable is stored
in an additional internal task input variable. This is necessary because
the value of an original input variable may change between the starting of
the LET and the moment when the physical execution of the TDL task
implementation function starts.

(B) During execution, the task implementation function uses the values of the
internal input variables instead of the actual values of the original variables.

(C) During execution, the values of legacy output variables are stored in addi-
tional internal output

(D) When LET ends, the original global output variables (the legacy variables)
are updated with the values of the TDL-internal output variables.

Operations A and D are executed by the time-triggered part of the TDL-Machine.
To achieve a minimal instrumentation of the legacy code, we chose to implement
B and C in the execution callbacks, as explained below.

Communication Between Synchronous TDL Tasks Only. Consider two
periodic time-triggered legacy functions tt func write and tt func read,
where some execution of tt func write updates a global variable gvar, and

Time
Time-triggered
legacy code

LET start               execution start                               preemption                     execution end              LET end

A

LET-related
TDL-Machine
operations

physical execution
TDL-Machine
operations

physical execution
TDL-Machine

operations

LET-related
TDL-Machine

operationsB C D

Fig. 5. Data transfer operations for LET-based tasks
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1 module Example {
2 public task T_WRITE {
3 output int gvar := 0;
4 uses T_WRITE_Implementation(gvar);
5 }
6 public task T_READ {
7 input int gvar;
8 uses T_READ_Implementation(gvar);
9 }

10 start mode main [period=5ms] {
11 task [freq=1] T_WRITE(); //LET = 5ms, offset = 0

ms
12 task [freq=5, slots=2-4]
13 T_READ(T_WRITE.o); //LET = 3ms, offset = 1

ms
14 }
15 }

Listing 1.6. TDL module with 2 tasks

1 void TDLMachineStep(time) {
2 if (time == LET_START_T_READ) { // A
3 T_READ_in_gvar = T_WRITE_o_gvar;
4 }
5 if (time == LET_END_T_WRITE) { // D
6 T_WRITE_o_gvar = T_WRITE_tp_o_gvar;
7 }
8 }

Listing 1.7. TDL-Machine step

1 void On_T_WRITE_start_execution() { // B
2 T_WRITE_tp_gvar = gvar;
3 }
4 void On_T_WRITE_end_execution() { // C
5 T_WRITE_tp_o_gvar = gvar;
6 gvar = T_WRITE_tp_gvar;
7 }
8 void On_T_READ_start_execution() { // B
9 T_READ_tp_gvar = gvar;

10 gvar = T_READ_in_gvar;
11 }
12 void On_T_READ_end_execution() { // C
13 gvar = T_READ_tp_gvar;
14 }

Listing 1.8. Operations at physical endpoints
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1 module Example {
2 public task T_RW {
3 input int gvar_r;
4 output int gvar_w := 0;
5 uses T_RW_Implementation(gvar_r, gvar_w);
6 }
7 public task E_WRITE {
8 output int gvar_r :=0;
9 uses E_WRITE_Implementation(gvar_r);

10 }
11 public task E_READ {
12 input int gvar_r;
13 input int gvar_w;
14 uses E_READ_Implementation(gvar_r, gvar_w);
15 }
16 start mode main [period=5ms] {
17 task [freq=1] T_RW(E_WRITE.gvar_r);
18 }
19 asynchronous {
20 E_WRITE();
21 E_READ(E_WRITE.gvar_r, T_RW.gvar_w);
22 }
23 }

Listing 1.9. TDL program

some execution of tt func read reads from the same variable. Assume now
that tt func write is mapped to a TDL task T WRITE and tt func read
is mapped to another TDL task T READ. A sample module with these two TDL
tasks is described in Listing 1.6.

To ensure LET-based data transfer between the functions tt func write
and tt func read, the TDL-Machine is generated so that it has an inter-
nal output variable for T WRITE called T WRITE tp o gvar, a task output
port variable called T WRITE o gvar, and an input port variable for T READ,
called T READ in gvar. The TDL-Machine also uses additional buffer variables
T WRITE tp gvar and T READ tp gvar. The following data transfer callbacks
are defined in the TDL-Machine:

– On T WRITE start execution and On T WRITE end execution,
– On T READ start execution and On T READ end execution.

Figure 5 shows a sample execution trace which highlights when data transfer op-
erations of the TDL-Machine are executed. The operations at LET endpoints A
and D are described in Listing 1.7 and operations at physical execution endpoints
B and C are described in Listing 1.8.

Communication Between Synchronous and Asynchronous TDL Tasks.
Consider three legacy functions tt read write, ev write and ev read, with
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1 void TDLMachineStep(time) {
2 if (time == LET_START_T_RW) { // A
3 T_RW_in_gvar_r = E_WRITE_o_gvar_r;
4 }
5 if (time == LET_END_T_RW) { // D
6 T_RW_o_gvar_w = T_RW_tp_o_gvar_w;
7 }
8 }

Listing 1.10. Operations at LET endpoints

1 void On_E_WRITE_start_execution() { // W
2 E_WRITE_tp_gvar_r = gvar_r;
3 }
4 void On_E_WRITE_end_execution() { // X
5 E_WRITE_o_gvar_r = gvar_r;
6 gvar_r = E_WRITE_tp_gvar_r;
7 }
8 void On_E_READ_start_execution() { // Y
9 E_READ_tp_gvar_r = gvar_r;

10 E_READ_tp_gvar_w = gvar_w;
11 gvar_r = E_WRITE_o_gvar_r;
12 gvar_w = T_RW_o_gvar_w;
13 }
14 void On_E_READ_end_execution() { // Z
15 gvar_w = E_READ_tp_gvar_w;
16 gvar_r = E_READ_tp_gvar_r;
17 }
18 void On_T_RW_start_execution() { // B
19 T_RW_tp_gvar_r = gvar_r;
20 T_RW_tp_gvar_w = gvar_w;
21 gvar_r = E_WRITE_o_gvar_r;
22 }
23 void On_T_RW_end_execution() { // C
24 T_RW_tp_o_gvar_w = gvar_w;
25 gvar_r = T_RW_tp_gvar_r;
26 gvar_w = T_RW_tp_gvar_w;
27 }

Listing 1.11. Operations at physical execution endpoints
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the corresponding synchronous TDL task T RW, and the two asynchronous TDL
tasks E WRITE, and E READ, respectively. Assume that tt read write reads
variable gvar r and writes into variable gvar w, ev write writes in variable
gvar r, and ev read reads from both variables. An execution example is shown
in Figure 6, and the corresponding TDL-Machine operations are summarized in
Listings 1.9, 1.10 and 1.11.

For this example, one can check that the LET requirements for data transfer
regarding synchronous TDL tasks are satisfied. In particular, the value of gvar r
read in the execution of tt read write is the one updated by a previous
execution of ev write, which is not shown in the figure (the one preceding
the depicted execution). This is the value of the output port of E WRITE at the
beginning of T RW’s LET. However, ev read uses the latest value of gvar r,
updated during the depicted execution of ev write. Thus, TDL modeling may
introduce controlled delays in the communication involving synchronous TDL
tasks, but it never delays communication between asynchronous tasks.

Timeev_write

LET start        TDL task execution start                   preemption      TDL task execution end         LET end

A B C D

tt_read_write ev_read

W X Y

Fig. 6. Mixed time and event-triggered execution example

4 Industrial Application

The approach presented in this paper has been applied to an industrial engine
control software, which comprises millions of lines of code and runs on top of an
operating system with fixed priority scheduling. From the three periodic plat-
form tasks, we identified 12 TDL tasks with periods between 1 millisecond and
2 seconds. The TDL tasks communicate via approximately 300 global variables.
The application also has multiple event-triggered tasks, with the highest pri-
ority being given to the crank angle event. The TDL modeling procedure was
optimized in order to decrease the additional memory required by TDL buffers,
based on the following observations:

– If data transfer through a global variable cannot be affected by preemption,
then no buffering is needed for that variable. For example, if all the readers
and writers of a variable are part of the same platform task then the variable
requires no buffering. Another example in this respect is a variable written
only by an event-triggered task with lower priority than all the TDL reader
tasks.
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– Buffering can be reduced by directly substituting in the code original vari-
ables with TDL internal variables. For example, if a variable is written only
by one TDL task, the variable can be substituted in the task’s code with the
corresponding TDL output buffer variable, eliminating the need to buffer the
original variable during the physical execution of the task. This buffering is il-
lustrated in Listing 1.8, where in our example the occurrences of gvar in the
task’s code are replaced by T WRITE tp o gvar, and T WRITE tp gvar is
eliminated. A similar reduction can be made for the cases where only one
TDL task reads from an input variable.

4.1 Determining the Logical Execution Time

The two main design parameters related to the LET are the offset,i.e., the start
of the LET in a task period, and the size of the LET. The LET must be at least
as large as the worst case reaction time (WCRT) of the task, in order to ensure
that the task is schedulable, i.e., every execution of the task ends before the end
of the corresponding LET interval. Note that the maximum execution time of
task T in the time interval [t1, t2] is the maximum number of executions of T (in
that interval) multiplied by the worst case execution time of T , (WCET (T )):⌈

t2 − t1
πT

⌉
∗ WCET (T ),

where πT denotes the invocation period of T . If T is event-triggered, then it is
considered periodic with period equal to the minimum inter-arrival time of the
triggering event in the current operating mode.

Let the set T of all tasks Ti ∈ T be ordered according to their priorities,
where i = 1 means highest priority. The worst case reaction time of task Ti is
given by the smallest fixed point of the following recursive equation [16, 17]:

R(Ti)(k+1) = WCET (Ti) +
(i−1)∑
j=1

⌈
R(Ti)(k)

πTj

⌉
∗ WCET (Tj)

with R(Ti)0 = WCET (Ti). If no fixed point exists, the task is not schedulable.
The WCRT analysis can be employed to find LETs in the common case of

legacy applications where platform tasks are scheduled with fixed priority pre-
emptive scheduling. For tasks with the same priority, we distinguish between the
following cases:

– Two TDL tasks belong to the same time-triggered platform task. In this
case, their LETs are non-overlapping by design (see Section 3.3). Thus, the
WCRT analysis can be applied to each of them independently of the other.

– Two TDL tasks belong to different platform tasks, and both platform tasks
are time-triggered. In the usual case of the rate-monotonic priority assign-
ment, the two platform tasks must have the same execution period. A well-
designed legacy implementation ensures that the tasks are triggered at a
fixed offset (i.e., not at the same time). Then the LET design is done as in
the previous case.
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– A TDL task belongs to a time-triggered platform task that has the same
priority as other event-triggered platform tasks. Then the initial condition
of the above recursion must include the sum of the WCETs of the event-
triggered tasks.

The LET size is a trade-off between opposite requirements. For example, robust-
ness requires larger LETs, while control performance requires smaller LETs, to
minimize the additional reaction time incurred due to the LET execution seman-
tics. The trade-off is inherently dynamic, since the relative importance of one
requirement or another depends on the operating conditions at a given time.

For the engine control application, we have chosen to specify multiple modes
of timing behavior, spanning the entire range of engine speeds, as follows:

– At high engine speeds, when the computational load is severe and fast re-
sponse times are crucial, the LET of a TDL task is equal to the worst case
reaction time of the task.

– At low engine speeds, the LET of a task can be larger by up to 20%. This
leaves room for adding and testing new functions without affecting the timing
behavior of the application.

Several TDL modes have been defined between the highest and the lowest engine
speeds. Each mode has the same tasks, the only difference between modes being
in the tasks’ LETs. The modes have been established based on WCRT profiles
of the TDL task functions, which represent the minimum LET for each engine
speed. TDL mode switches are triggered by the engine speed variable, which is
an input to the TDL:Machine. Figure 7 shows an example of a WCRT profile
which defines five possible timing modes. Note that the LET of task T cannot
exceed the task’s period π(T ). Thus, at engine speeds higher than e2 the task is
deemed unschedulable.

engine speed

tim
e 

in
te
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al

(T)

0
0

 WCRT(T)

e1 e2

Fig. 7. Worst case reaction time of task T as function of the engine speed
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Original control application

Control application modeled with TDL

Error +

-

Fig. 8. SIL setup for comparing TDL-based application with original application
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Fig. 9. Signal comparison

The offset of a TDL task T was determined according to the ”place” of the
TDL task in the owner platform task. In principle, the LET start of a TDL task
is the same as the LET end of the preceding TDL task in the same platform
task. A TDL task which is always executed first in its platform task has an offset
equal to zero. For example, in listing 1.3 and Figure 4 the task with period 5ms
has offset zero (it is always executed first), while the offset of the 10ms task
(always executed second) equals the LET of the first task.

The WCETs have been estimated by using the a3 tool [18]. This tool relies
on an accurate model of the processor, which was not available at the time of
testing. Therefore, a ”vanilla” version of the processor was used and consequently
the estimates were quite conservative.
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4.2 Testing Results

The application modeled with TDL has been tested in a software-in-the-loop
(SIL) simulator [19, 20], as well as in a hardware-in-the-loop testbed(HIL). The
SIL testing compared signals from the original and TDL-based applications when
both were running in parallel, in closed-loop with an engine model, as schemat-
ically shown in Figure 8. A sample of the testing results is provided in Figure
9, where one can observe that the behavior of the TDL-modeled system is close
to the original one, modulo some small delays introduced by the LET behavior.
The delays resulted from using the worst-case scenario for setting the LET of
the task and from overestimation of WCET of tasks. They could be reduced by
using more accurate execution time estimations.

The HIL testing was performed in a testbed where the original and TDL-based
applications were executed on the same Electronic Control Unit interconnected
with a real-time computer running a model of the engine. Signals were sampled
with a period of 50 microseconds and then compared. In one of the test cases, the
robustness of the system was tested by making a non-functional modification in
the code and comparing the outputs. In the original software, the change led to a
difference in the outputs, while no difference was exhibited in the TDL-modeled
version.

T execution state
E execution state
v2 value
v1 value

T execution state
E execution state
v2 value
v1 value

f()

f()

Fig. 10. Changing the place of a function call leads to different values of the output v2
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T execution state
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v1 value

T execution state
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v2 value

v1 value

f()

f()

Fig. 11. The output value of v2 is unaffected in the TDL-based system

Usually, a task function contains a sequence of calls to multiple process func-
tions that need to be executed when the task is triggered. Many such process
functions are independent and conceptually the order in which they are called
does not matter. We have chosen a periodic task T and moved a process function
f from the beginning of the task T to the end. The function f updates a global
variable v2 with the value of another global variable v1. The latter is updated
by an event-triggered task E, which has higher priority than T . The variables v1

and v2 are regarded as an input, respectively an output of T . Case A in Figure
10 illustrates an execution of T in the original application, where f is called at
the beginning of T ’s execution. Then, the value of v2 is set to the value of v1.
Thereafter, E preempts the execution of T and updates v1. Case B shows an
execution of T in the modified application, where f is executed at the end of
T ’s execution. Here, the variable v2 is updated after E’s preemptive execution,
and consequently the output of T is different. Notice that no difference occurs
when E does not preempt. This is an example where different ways of serializing
executions of concurrent components lead to different behaviors in the system,
due to preemption from event-triggered tasks. The TDL-modeled system is ro-
bust with respect to such changes, as demonstrated by the corresponding cases
in Figure 11. In this case, the TDL task T was the only writer of v2, hence in
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the TDL version the occurrence of v2 in the code of f was replaced by a TDL
buffer output variable buffer v2. Notice that this is updated with the value of
v1 when f is executed and then v2 is updated with the value of buffer v2 at the
end of the LET. One can see that the output of T does not change from case A
to case B.

5 Conclusions

This paper presents an approach to enable adaptivity of legacy real-time embed-
ded software based on introducing a semantics-preserving execution environment
conforming to the LET discipline of the Timing Definition Language.

Modeling the timing behavior of legacy applications with TDL represents
also an instance of bridging the gap between the general benefits advocated by
Model-Based-Design approaches (such as predictability, separation of concerns,
portability), and the efficiency-oriented design of legacy applications. It is a
meet-in-the-middle process, with the top-down direction assumed by TDL and
the bottom up direction required by the legacy application.

The method for applying TDL timing specifications to legacy control software
focuses on achieving the required timing behavior with minimal intervention in
the original application. The paper presents the structure of the runtime system
and instrumentation, which are automatically generated from the timing speci-
fication and from information about the legacy source code and platform. This
approach has been successfully applied to a complex legacy controller system in
the automotive domain. Detailed description of other important aspects such as
dealing with schedulability and the actual code generation algorithm are omitted
due to lack of space.

The refactored legacy system is schedulable if it can be executed such that
the TDL timing specifications are satisfied, i.e., every physical execution of a
synchronous TDL task takes place in the associated LET interval. Achieving
schedulability is especially difficult when asynchronous tasks have higher prior-
ities than synchronous TDL tasks.

It is worth noting that the described TDL modeling can be applied incremen-
tally on a legacy application, starting with a single synchronous TDL task and
stepwise adding more synchronous tasks. At each step, the system can be tested
for schedulability, as well as for timing and functional properties. This makes the
approach feasible in practice and recommends it as the core of a structured pro-
cess for incremental migration of large legacy software towards more predictable
and adaptive systems.
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Abstract. Self-caring systems are systems capable of monitoring and
managing their own health and, indirectly, their useful lifetime. Unlike
self-healing systems which are reactive to faults and failures, self-caring
systems are aware of their health and hence can potentially circumvent
and adapt to impending faults, or recover from them quicker and more
effectively. Towards a methodology to model and incorporate health man-
agement logic and control mechanisms into an Information Technology
(IT) system whose health needs to be managed, we propose the following:
1. the use of Petri nets as a discrete event system (DES) graphical model
that can also be used for analysis, simulation and execution control, 2.
the use of Remaining-Useful-Life (RUL) management and prognosis as a
novel way of looking at health management in IT systems 3. the use of a
control theoretic framework for RUL management. As a simple illustra-
tion of the concept, a controller was built for useful life management in
the application execution stage (containing a potential memory exhaus-
tion fault) of an IT system.

Keywords: autonomic computing, self-caring, health management,
Petri net, self-healing, modeling, discrete event systems.

1 Introduction

A growingly common practice in IT design, is that of re-using or combining ex-
isting systems to quickly and effectively build larger and more complex systems.
The component systems can be software, hardware, data, services, or combina-
tions thereof. They could be passive (e.g. a software module) or active (e.g. a
running service), static (e.g. a software library) or dynamic (e.g. an evolving
service), and they could be owned by different entities. Of particular interest
to this paper are systems built out of active dynamic subsystems controlled by
different entities. These systems are becoming common with the emergence of
Web services, hosting services, and cloud-provided infrastructure, platforms, and
applications that can be combined and composed for different purposes.

The field of autonomic computing has emerged to deal with increased IT
system complexity by achieving goals such as self-configuration, self-healing, self-
optimization and self-protection. The desirable ability of an IT system to manage
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its own health has some overlap with the self-healing property in autonomic
computing. However, the self-healing property refers to the ability of a system
to recover from events that cause system failure or operational malfunctions [1],
whereas health management refers to the system’s ability to detect, isolate and
identify behaviors leading to faults (as part of diagnosis) and predict impending
failures (as part of prognosis) so that corrective action can be taken before the
faults occur or progress to a system failure.

The prerequisite to achieve any self-* property is self-knowledge. This is where
the field of modeling comes in, by providing a system with a representation of
itself. This field, with its vast and rich literature, allows for various types of
models such as functional models, reliability models, performance models, cost
models and security models, each to capture the behavior that is of interest in
the system under study [2]. In the area of modeling of compute infrastructures,
extensive research results exist for the modeling of web servers, web applications,
multiprocessors, as well as these components put together (termed as multi-tier
architectures) [3] [4] [5] [6] [7] [8].

In the context of self-caring systems, the models of interest require the identi-
fication of health indicators, the mechanisms available to control these indicators
and their dependencies on time, environment and operational parameters. An
additional challenge is the representation and modeling of interactions among
components that capture how a component’s health impacts the health of other
components and the whole system. The focus of this work is not on the modeling
the internals of individual subsystems. Instead the goal is to capture a subsys-
tem’s susceptibility to faults as a black box that performs an activity, and the
interactions between subsystems in a typical usage environment. Our approach
views any IT system of systems as a discrete-event system whose logic and in-
teractions are captured by Petri nets, a graph-based mathematical formalism
that has been successfully applied in, among others, the areas of communication
protocols, manufacturing systems [9], and multiprocessor systems.

Health management refers to the taking of appropriate actions based on cur-
rent system health and estimated future system state with the goal of keeping the
system operational. Health management requires six capabilities - monitoring,
diagnosis, prognosis, planning, remaining-useful-life management and remedia-
tion [37] [10]. The important benefit of health management is that by detecting
an incipient fault before it progresses into an error or failure, this unhealthy
condition can be treated by a range of recovery actions while possibly avoiding
interruption of service. When compared with self-healing and fault-tolerant de-
signs, these actions are typically cheaper to perform, result in shorter system
downtimes and thus improve system availability and performance. As illustrated
by Figure 1, by detecting the fault (or its precursors) in a component before it
affects the subsystem or system that it is a part of, we can replace the component
with a non-faulty one or even repair the faulty component. The cost of replacing
a component or eliminating the causes of its failure is more affordable than the
cost of replacing a subsystem or system and recovering from its failure. Prognos-
tic Health Management (PHM) technologies have been successfully deployed in
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Fig. 1. Recovery actions corresponding to different steps of the progression from fault
precursors to component faults to subsystem faults to system failure. Larger circles
represent larger recovery costs.

other contexts including mechanical, structural and electronic systems [10] [11]
[12] [13] [14] [16] [17]. Where applicable, concepts and techniques used in these
implementations can be leveraged for IT infrastructures.

This paper is organized as follows. The concept of health management as it
applies to IT systems is presented in Section 2. Section 3 motivates the need for
modeling and brings out the suitability and benefits of the chosen model, intro-
ducing various aspects of Petri nets that are used in the proposed framework.
The health management modeling methodology is presented in Section 4. Sec-
tion 5 outlines related work in the field, and Section 6 discusses future directions
of our work and concludes.

2 Health Management

Health management consists of six main actions: monitoring, diagnosis, prog-
nosis, planning and remaining-useful-life (RUL) management, and remediation.
Figure 2 is a high-level view of the health management architecture envisioned
by our work. The subsections below provide an overview of system operation and
the constituents of this architecture. The focus of our contribution is on RUL
management and hence this sub section is described in detail with an example
scenario.

2.1 Health Indicators

A health indicator is defined as a system attribute that is indicative of possi-
bly degrading health. Tracking of health indicators can be used to detect fault
precursors.

The choice of health indicators depends on the types of faults to be antici-
pated and the subsystems that make up a system. In this paper, we focus on
a large and important class of faults, namely faults caused by exhaustion of re-
sources. In this context, a resource is broadly defined to mean any type of entity
or attribute that is consumed by the system and is typically available in finite
supply. Resources can correspond to physical hardware, software or middleware
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Fig. 2. Health Management Architecture

objects or attributes. The availability of minimum required amounts of resources
is essential for the proper operation of IT subsystems. Typical hardware sub-
systems include computational subsystems (compute nodes), storage subsystem
(I/O servers, RAID arrays) and networking subsystem (switches, NIC cards).
Software includes the application software and system software that execute on
the hardware resources. Middleware includes services such as resource managers,
job schedulers, job queues and application servers that enable services to inter-
operate, enabling the IT deployment to provide intended services to its users.
The health of any these subsystems is reflected by their ability to perform their
operations in the present as well as till an intended point of time in the future.
Resource exhaustion can have many different causes. These include improperly
implemented functionality in software such as not releasing all dynamically al-
located memory, not ensuring termination of all created child processes, not
releasing numbered resources such as socket descriptors, file descriptors, etc.
Resource exhaustion can also result from software aging, unanticipated work-
loads or malicious code invocations. Furthermore hardware faults can also affect
the availability of resources. A database of software vulnerabilities collected and
organized by the US Department of Homeland Security [18] shows that an im-
portant class of system failures is those that result from resource-exhaustion
faults. Numerous production software systems have recorded occurrences of this
class of failures such as operating systems, DNS servers, web servers, etc.

For example, a failure can occur in a compute node when an application can-
not allocate more memory (memory is exhausted due to memory leaks), create
new threads (the process limit for number of threads has been exceeded), open
new files (the process limit for number of file descriptors has been exceeded) or
add content to an existing file (the process limit for maximum size of the file
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has been exceeded). In a denial-of-service type of attack, resource exhaustion
occurs typically because too many packets were received; too many sessions were
initiated or too much ‘malicious’ workload was received; which in turn prevents
legitimate packets, session or workload from being processed.

For the purposes of health management, we classify system operation into
two regions: a normal region in which no resource is near exhaustion and a
stressed region in which at least one type of resource is being used beyond
a predetermined limit but prior to exhaustion. The difference between the safe
limit and the hard limit is the remaining useful resource gap; if resources are used
at a known rate (or based on a known pattern), one can determine the remaining
useful life from the resource gap. The two operating regions can be statically or
dynamically determined. A static region can be determined by parameters set
as environment variables, virtual machine (VM) parameters, etc. This can be
controlled by the designer of the system of systems. For example, the designer
can request a VM with some resources (CPU, memory, storage) whose values
determine the hard limits. Then the designer can determine safe limits beyond
which RUL management is needed. Another example is at the operating system
level, where for each process, hard limits can be set through operating system
hooks for each of a process’ resources such as number of threads, number of
file descriptors or maximum size of the process’ stack or data segment. Other
hardware resources such as storage servers or switches have hard limits to their
data access rates as well as capacities.

An important benefit of the demarcation between normal and stressed regions
of operation is that the frequency and overhead of monitoring can be controlled
based on current operating region of the systems of interest. The experience of
an administrator or application expert can be leveraged to estimate safe limits.
This may not always be possible in which case a learning method must be put in
place (offline or online). A dynamic demarcation between the normal and stressed
region can be determined by detecting behaviors which are deemed anomalous.
This is a larger problem that is beyond the scope of this paper and left for future
work. Using this perspective, the static approach corresponds to the case where
anomalous behavior corresponds to resource usage exceeding a safe limit.

Figure 3 attempts to demarcate the difference in system states as considered
by health management and failure management. In the normal functional state,
the system is working within its typical/nominal operating region. The system
is in a stressed mode of operation in the stressed functional state. For exam-
ple, in the case of resource-exhaustion faults, the system moves to this state
if the consumption of any resource exceeds the safe limit. This could happen
because of an anticipated fault (such as a growing memory leak). The third
state is a degraded functional state in which the system is still functioning but
at reduced performance. RUL extension techniques can be used to prolong a
system’s operation in either the stressed or degraded functional states, thereby
delaying a possible move into the fault-present state. The lifetime gained using
RUL extension techniques can then be effectively used to evaluate various health
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Fig. 3. Diagram depicting system health states, actions and events that determine
state transitions

recovery techniques (planning) and initiate an appropriate fault handling tech-
nique (remediation). This fault avoidance action will move the system back to
its normal functional state. RUL extension techniques could be applied at the
subsystem level but interactions between multiple subsystems could cause sys-
tem performance degradation. This is indicated by the stress accommodation
transition between the stressed and degraded functional states.

When in the fault-present state, fault-healing techniques (such as fault-tolerance
and self-healing) can be utilized to bring the system back to the normal functional
state. If such recovery is not possible, then the system may progress to system fail-
ure. The goal of health management is thus to keep the system functioning in the
three functional states described above.

2.2 Monitoring

Monitoring refers to the collection of relevant data about operating conditions of
different subsystems that constitute the system under study. Health monitoring
mechanisms depend on the choice of health indicators and the type of systems
to be monitored. In mechanical and electronic components this is performed
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using sensors (temperature, pressure, vibration). In software components this
is in the form of log files and software probes that could measure application
performance, resource consumption, environmental constructs or internal state
of the application. In systems of considerable size, the raw data collected is mas-
sive and needs to first be reduced by filtering. Feature selection, the process of
choosing those data items that are possible indicators of health, needs to be
done, either automatically or using the experience of human designers. Feature
extraction is then executed in a computationally efficient manner. The extracted
features produced by these data preprocessing steps serve as the input for the
following diagnostic and prognostic steps. Consumption of resources by a subsys-
tem can often be tracked by readily available sensors, e.g. via operating system
level commands.

2.3 Diagnosis

In the above context, health monitoring takes one of two forms - direct detection
of resource usage beyond safe limits, and indirect detection via monitoring of
performance deterioration attributable to overuse or unavailability of a certain
type of resource. In the case of a web server, an example of an indirect measure
is the response time. An unusual response time (either too high or too low) may
indicate a possible health decline. For a database server, query-processing time
is a similar indicator. Diagnosis is the process of using extracted features to
detect fault precursors, fault conditions and fault locations, and to characterize
the nature and extent of the fault incipiency. In some cases (including resource
exhaustion) the causal relationship between a health indicator and a potential
fault is either known or easy to establish. In other cases diagnostic relationships
may have to be learned either offline or online from data that includes values
of health indicators and fault occurrences. Fault clustering, classification and
decision-making can be performed on this data using statistical and machine
learning techniques.

2.4 Prognosis

Prognosis is the process of predicting the time-evolution of a fault or the remain-
ing useful life of a predicted-to-fail component, after an incipient fault has been
detected. Prognostic approaches can be data-driven, probability-based or model-
based. With the recent development of control-theoretic approaches to modeling
and controlling computing systems, model-based techniques can be employed
for prognosis in IT systems. Useful life predictions from the prognostics step
are then used to initiate preventive maintenance or schedule future maintenance
activities.

In the case of impending resource exhaustion failures, a model of resource
consumption as a function of time and/or activity (process invocation, user re-
quests, etc) is required. The model can be learned from observed operation in
the normal region or in the stressed region or both.
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2.5 Planning

Based on the results of the prognostic and diagnostic modules, the HM system
needs to initiate appropriate health remediation actions. In the case when an
incipient fault is discovered, it may be possible to slow down or reverse fault
progression by mitigating or eliminating its causes. If the fault cannot be de-
layed or avoided, recovery of the component, subsystem or system, might have
to be initiated. The choice of the remediation action will depend on the useful
life available, cost of remedial actions and duration of downtime that can be
tolerated by the IT subsystem being managed. When it is found that the esti-
mated RUL available may not be sufficient for invoking planning algorithms or
the remediation operation, then RUL management techniques are employed to
attempt to gain valuable useful life.

2.6 Remaining Useful Life Management

Remaining Useful Life (RUL) is defined as an estimate of the time after which
a component will fail with high probability. The factors that affect the RUL
include workload stresses and operating conditions. The latter includes interac-
tions with other subsystems or components, wear and tear of components due
to age, environmental changes, etc. RUL management refers to the process by
which the useful life of a system is controlled using some of the factors that affect
it, thereby allowing for the extended life to be used effectively. The RUL of a
system is determined by the RUL of each of its subsystems. In the case when
fault progression in each of these components is independent of progression of
faults in other components, then system RUL can be estimated as the shortest
RUL of all the components. When fault progression is not independent, explicit
models need to be constructed to capture these correlations. Figure 4 shows how
system RUL is extended by prolonging useful life of one of its components.

Applying Classical Control Theory - This section will detail an approach to
RUL management through the application of the principles of feedback control

Fig. 4. Prolonging system RUL by extending the RUL of subsystem labelled COMP 1
to match that of subsystem labelled COMP 2
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TARGET SYSTEM

SYSTEM 
OUTPUTS

CONTROL 
INPUTS

DISTURBANCE NOISE

Fig. 5. Overview of target system - In control systems, the target system is viewed to
have a finite set of control inputs that can modify system behavior, disturbance and
noise inputs that can have affect system behavior and a set of systems outputs that
are indicative of system operation

theory. The system of interest, shown in Figure 5, is referred to as the target
system. It consists of a number of subsystems or components that are essential
for its operation. The measured output of the target system will be the rate at
which RUL decreases for its different subsystems. As in previous sections, our
scope is restricted to resource-exhaustion failures. The control input consists of
those factors of the target system that can be controlled in order to affect the
subsystem RUL rates. The disturbances consists of those factors that will affect
RUL rates but cannot be controlled and need to be compensated for by the
system controller. The noise inputs correspond to measurement noise that gets
added to the measured system output. Figure 6 shows the feedback control loop
of the target system. The goal of the feedback controller is to control the rate
at which component RUL decreases with the ultimate goal of controlling and
prolonging system RUL. It is important to note that for any target system it is
a challenging task to estimate component RUL and system RUL. As a first step
towards solving this challenging problem, we focus our attention on the rate at
which RUL decreases in the case of resource-exhaustion faults.

Example Scenario - Let us take the example of a server in a virtualized
environment, which is a common subsystem in many IT systems. Since we are
interested in resource exhaustion failures, the HM module will check whether
resource consumption is within the normal operating region. When the operation
enters a stressed region, the HM feedback controller will be invoked to keep the

Fig. 6. Feedback control loop of target system. Reference input is the desired rate of
RUL change and measured output is the measured rate of RUL change.
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resource depletion in check. We created a synthetic test bed to create a proof of
concept implementation of a feedback controller.

The target subsystem of interest in our experiment consists of a virtual server
running an application. We consider a CPU-intensive workload that is similar
to a workload running on a compute node in an HPC environment or a cloud
infrastructure. In this experiment we chose to study memory exhaustion failures
and so a memory leak was introduced in to the application code. The output
of the target system is the rate at which memory is depleted, which indirectly
provides a measure of the RUL. The control input is the workload that is to be
processed by the application code. This target system is modeled as a first-order
linear system.

System Identification - System identification is the process of determining the
relationship between the control input and measured output of the target system.
The application was executed for different workload values and the memory leak
rate was measured for each. Linear regression was used to find values of the
model parameters. Figure 7 shows the relationship between actual values and
predicted values of the memory leak rate using the model. The deviation of the
points from the line captures the difference between the model and observed
empirical values.

Controller Design - For the determined model parameters, the closed loop
transfer function of the target system is determined. In order to design an integral
controller, the range of possible controller gain (K) values are determined such

Fig. 7. Graph comparing predicted values ypred(k) of output (using model) with
measured output values y(k) (offset from mean) during the experiment. ypred(k) =
a.y(k−1)+b.u(k−1), where y(k) = ymeasured(k)−ymean(k) and u(k) = umeasured(k)−
umean(k) and a, b are model parameters. The line is shown as a guide to indicate those
points where actual and predicted values match exactly (a perfect model). Asterisks
represent data points obtained from experiment.
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Fig. 8. Graph showing measured output from target system for different controller
gains and reference input signal to closed loop system

that the stability condition (pole magnitude is less than one) of the system is al-
ways satisfied. Since model parameters only approximate system characteristics,
empirical studies need to be performed to determine good controller gain values.
Experiments were conducted for different controller gain values. The graph in
Figure 8 shows the measured output and reference input for K values of 0.13,
0.20 and 0.25. The overshoot and settling times are determined by the dominant
pole in the closed loop system. The best controller gain is chosen based on the
needs of the system.

In these experiments, we consider one measured output from the target sys-
tem, namely memory leak rate and one control input, namely workload. Future
work will extend this Single-Input Single-Output (SISO) target system model
to a Multiple-Input Multiple-Output (MIMO) model in which the measured
outputs will include different subsystem RUL rates.

2.7 Remediation

Remediation refers to the actions that are invoked for fault masking, mitigation,
prevention or recovery. In the case of a possible resource exhaustion fault, the
useful life of a system operating in the stressed region can be extended either by
adding more resources to the system or by decreasing the workload experienced
by it. For example when we have a group of web servers processing client requests
the number of servers can be expanded seamlessly to reduce overloading of any
specific stressed server. The throughput of the system as a whole is maintained
(at the cost of additional resources). In the case of virtualized environments,
a stressed server’s resources can be transparently increased when the server
continues to remain online.

Given the above principles of health management, our approach to systemat-
ically incorporate health management in to IT systems consists of using a mod-
eling framework to capture the IT system of interest and then use this model as
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a system manager to control and operate the system in such a way as to keep its
health managed. The following section details the proposed modeling framework
and methodology.

3 Modeling Framework

3.1 Requirements of a Suitable Model

In a typical IT system, process invocation and completion events, management
events and failure events all occur in an asynchronous and concurrent manner.
Thus, in general, an IT system is not amenable to description through discrete
or continuous variables modeled by difference or differential equations - it is best
viewed as a Discrete Event Dynamic System (DES) [19]. State changes are initi-
ated by the occurrence of the mentioned events in distributed components that
are linked through a network. So in addition to asynchrony and concurrency,
the model should capture functional dependencies and sequential ordering be-
tween interacting components. The model should also provide a way to represent
quantitative parameters that define these interactions so that analysis of per-
formance, reliability and QoS measures can be performed. A Petri net is one
candidate model that meets these requirements.

3.2 Petri Net Basics

A Petri net is a bipartite graph where the two types of nodes are places and
transitions. A Petri net is defined by the quintuple (P, T, I, O, M0) where P
= {p1, p2, ..., pn} is a finite non-empty set of places, T = {t1, t2, ..., tm} is a
finite nonempty set of transitions. I is the set of input arcs connecting places to
transitions and O is the set of output arcs connecting transitions to places. A
marking is defined as a mapping of tokens to places in the net. M0 is the initial
marking. In the graphical notation for Petri nets, places are represented as circles,
transitions as rectangles or simply lines and tokens as dots inside places.

Petri net execution consists of the ‘firing’ of transitions. A transition may fire
when it is enabled. A transition is considered enabled when the number of tokens
in each of its input places is larger than or equal to the number (or cardinality
or weight) of arcs connecting that input place to the transition. The firing of
the transition results in the production of tokens in all the output places of the
transition, the number of which depends on the cardinality of the output arcs.

Fig. 9. Simple Petri net before and after firing
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Figure 9 shows a simple Petri net with two places and one transition, both before
and after firing. The various benefits of Petri Nets as well as the properties of
interest to our application are outlined in the Appendix.

3.3 Petri Net Extensions of Interest

Numerous extensions to the basic Petri net model have been developed over the
years to apply them for different purposes and types of systems. The following
are the extensions that we found useful for representing autonomic properties
and health management in IT systems:

Colored Petri Nets (CPN) - Tokens are associated with values belonging to
different types (also called colors). This allows for more compact representation
of complex nets [20].

Stochastic Petri Nets (SPN) - Random firing delays are associated with tran-
sitions whose firing is atomic [21]. Random delays are exponentially distributed.

Stochastic Reward Nets (SRN) - A reward rate is associated with each marking
to enable evaluation of the reliability of complex systems [22].

3.4 Hierarchy Modeling

IT health management needs to take into consideration numerous subsystems,
their structural connections and functional interdependencies and the processes
that use different types of resources. One of the most intuitive ways to handle

Fig. 10. Hierarchical Petri Net Model At the resource selection level, each place such
as Resource 1 - OK or Resource 3 - OK can be expanded in to its own Petri net model
(shown in boxes titled RESOURCE 1 - OK and RESOURCE 3 - OK)
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this complexity is through hierarchy in modeling and Petri nets provide a well-
established paradigm to represent hierarchy.

A Petri net place is made to represent a subsystem. This means a token
entering that place would subsequently enter a lower level Petri net that is
embedded in that place. Let us consider the case of a business environment. A
job represents a task that needs to be performed. At the highest level, a resource
needs to be selected that is capable of performing this task. Each resource is
represented by two places, one in the available condition (represented as OK
in the figure) and the other in the failed condition (represented as Not OK).
Each resource place consists of a Petri net that models the functioning of that
resource. Figure 10 shows the described scenario.

4 Health Management Modeling Methodology

We introduce a modeling methodology to transform knowledge about how a sys-
tem operates into a Petri net model and incorporate heath management tech-
niques into it. Our initial focus is on systems that consist of the execution of
a sequence of activities, each with its own set of resource requirements. In this
context we define a resource to be any of a hardware, software or middleware
entity that is consumed and is available in finite supply.

4.1 Step I - Modeling System Structure and Dependencies

In this step, the system is modeled as a sequence of activities or stages. Each
stage or activity is associated with an n-dimensional hypercube of resources
that is required to perform this activity. This step thus captures both ordering
of activities as well as the dependencies between resources and activities. It is
assumed that resource exhaustion failures do not occur and the system is not
yet being controlled or managed.

The system model consists of places that are of two types: activity places
and resource places. Existence of a token in an activity place indicates that the
activity is being performed on an object within that place. This object could
represent a job or client request. The existence of a token in a resource place
indicates that a unit of that resource is available for consumption. Since we are
considering an n-dimensional resource space each resource type corresponds to a
specific colored token. Transitions represent events such as the start and end of
an activity. The firing of a transition indicates the occurrence of this event. The
pre-resource place of a transition corresponds to the conditions that are required
for an event to take place or the transition to fire. The output arcs connecting
a transition to a resource place indicates the return of a resource instance back
to the pool of available resources.

For modeling purposes we use a generalized stochastic Petri Net (GSPN)
model which is an extension to SPN. GSPNs allow two types of transitions,
one whose firing delay is zero and the other whose firing delay is exponentially
distributed. This provides flexibility in capturing different transition firing times.
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Fig. 11. Partial Petri net model showing activity dependencies on other activities and
resource availability. Transition Begin Act.n fires after a token is available in Act.n-1
and Res.n. (indicating that a task that has undergone activity n-1 can move on to
activity n, only after activity n-1 is complete and when resource n is available).

Figure 11 shows the model of a part of a system that consists of three activity
places {Act n-1, Act n, Act n+1} and two resource places {Res. n-1, Res. n}. In
this figure, each resource place is one-dimensional (in general, by using colored
Petri nets, multiple resource dimensions can be captured by a single place). A
transition between two activities represents both the end of the previous activity
as well as the beginning of the next activity. Activity ‘n’ can begin only if a
token exists in activity place Act. n-1 and in the resource place Res. n. After
activity Act. n completes, a token (corresponding to one unit of resource Res.
n) is returned to the pool. The bound on a resource place will correspond to the
maximum number of available resources.

4.2 Step II - Modeling Useful Life Management

In Step II, each stage is augmented with a health management controller. In
essence, these controllers detect fault precursors that may indicate resource ex-
haustion vulnerabilities and use this to make prognostic decisions on the health
of the system being controlled. Control parameters appropriate for each system
are then modulated in order to prolong useful life.

The model in the Figure 12 shows a specific activity augmented with four
places. The normal condition place P_Normal is active if all resources needed by
this system are above pre-determined safe limits. The stressed condition place
P_Stressed is active if any of the resources needed by this system are below pre-
determined safe limits. The controller place P_Throttle indicates the condition
when the controller is throttling the arrival of tokens to be processed by the
place Act. n. The place P_Enable is the place that determines whether firing of
transition Begin Execute is enabled or not. As can be seen from the model, the
place P_Throttle is active only in the stressed operating region.

This step also aims at capturing the implications of controlling the useful life
of one activity as it reflects on other stages in the system. This impact on other
stages will be determined by the nature of dependencies between activities.
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Fig. 12. Partial Petri net model showing places and transitions added in step II aug-
mentation conveying when and how transfer of tasks to activity n are controlled
based on system operational condition. Under normal operating condition (token in
P_Normal), transition Begin Act. n is always enabled under the condition that tokens
exist in Act. n-1 and Res. n. Under stressed operating condition (token in P_Stressed)
the prognosis controller, throttles rate of tasks moving from Act. n-1 to Act. n (indi-
cated by presence or absence of token in P_Throttle).

Let us look at an example scenario to describe such an interaction. The model
in Figure 13 shows two stages in a queue-based load balancer controlled system.
The first stage shows client requests in the queued state Act. Queue and the
second stage Act. Execute represents these requests executing on a server. Asso-
ciated with each stage is the set of n resources that are needed for the activity.
Res. Execute would consist of CPU, memory and storage while Res. Queue
would consist of parameters such as storage, queue length, etc. The second stage
is augmented with a HM controller. The monitoring component of the HM con-
troller will monitor the rate at which resources are being depleted on the server.
When the server enters the stressed region, a prognostic decision is taken and
the controller will throttle the rate at which client requests are being provided
to the server in order to control the rate of resource depletion. In the Petri net
model, this is captured by controlling the firing rate of the transition Begin Ex-
ecute. This will control the rate of resource consumption of the server and in
turn prolong the remaining useful life of this sub system.

An important effect of this controller action is that the number of client
requests in the queued stage may build up. In the Petri net model this is reflected
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Fig. 13. Partial Petri net model of queued and execution stages of a queue-based
system showing interaction between stages. Throttling the firing of transition Begin
Execute results in potential accumulation of tokens in place Act. Queue and increased
usage of resources in Res. Queue.

by an increase in the number of tokens in the Act. Queue place (A natural
consequence of decreased firing rate of transition Begin Execute) as well as an
increase in the resource parameter ‘queue length’ in resource Res. Queue. The
local HM controller of the activity Act. Queue will take appropriate action when
and if this queue length crosses a safe limit. Thus we can see that controlling the
rate of consumption of one resource affects the consumption of another resource
in a different stage. Coordination between local controllers is needed to ensure
smooth operation of the system of systems. We would like to emphasize that the
goal of the health management controller is to prolong useful life; and this alone
may not prevent the component from failing. So recovery needs to be initiated
in the stage under control or in other parts of the system in anticipation of what
might happen in the future.

4.3 Step III - Modeling Health Recovery

In step III, the goal is to enable the initiation of health recovery measures.
When the system is operating in the stressed region, diagnostic and prognostic
results might indicate a need for a health recovery. In this case, possible health
recovery actions are evaluated by taking in to the consideration the costs and
time overhead involved with the execution of each action as well as the nature
of service interruptions that can be tolerated by those activities that utilize
the resources involved. The useful life gained by the techniques employed in
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Fig. 14. Partial Petri net model showing places and transitions added in step III aug-
mentation conveying when and how remedial actions are invoked. Increased resources
are made available in Res.n in the case of remediation for potential resource exhaustion
faults.

the previous step, can be effectively utilized to perform this evaluation, initiate
and execute these recovery actions. The goal of these health recovery techniques
is to eliminate or mitigate the effects of the observed fault precursors. These
techniques can be placed in the broad categories of masking, mitigation, repair,
reconfiguration and replacement.

In the previously considered example, a sequence of client requests is being
processed by a server. A resource exhaustion failure could occur because of two
conditions: 1. too few resources and 2. heavy consumption. The former case could
occur because the compute node did not have the appropriate set of resources
for its expected load. The latter case could have occurred because of various
reasons - load that was unanticipated at design time, malicious usage with the
intention of causing a resource exhaustion failure, resource leaks with the system
finally running out of resources or a hardware fault affecting resource availability.
Health recovery actions to deal with this condition can belong to one of two
different classes. Firstly, a failure can be averted or delayed by the addition
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of resources to the current server. For example, if the server is running out of
disk space, a new storage location could be remotely mounted. In a virtualized
environment, the server could be live-migrated to another physical host with
more resources of the required type - be it memory, CPU or network bandwidth.
Secondly a failure can also be averted by rejuvenation of the server. This is a
proven technique that can handle software ageing-related resource-exhaustion
failures [23] [24]. The Petri Net model in Figure 14 augments the model from
the previous step with 3 new places. The place P_Evaluate indicates the cost-
benefit analysis performed to compare feasible health-recovery actions. One of
the actions Act. Rejuv or Act. Add is then executed based on the results of the
evaluation (other potential actions are not shown for simplicity). Since we are
dealing with resource-exhaustion failures, the effect of the execution of either
health recovery technique is an increased amount of resources available to the
Act. n and is captured by the addition of resource tokens to place Res. n by
places Act. Rejuv or Act. Add.

4.4 Step IV - Health Management Policies

In this step, policies that determine when and how a remedial action needs to be
performed are identified. For example, in the case of resource exhaustion faults,
policies determine the resource threshold levels below which RUL management
is invoked or when remediation is invoked. These levels can be identified based
on the knowledge of a system expert. These policies can also be derived based on
simulation and analytical studies of a production system. Since Petri net models
allow for both simulation and analysis, these can be used to determine aver-
age resource consumption estimates for typical workloads. Significant deviations
from these expected resource consumption values can then be used as potential
indicators of anomalous conditions.

The above four steps are used to systematically model a given IT system
and then augment it with health management capabilities. The final model will
then serve as the basis to build the global system manager. The functionality
associated with each Petri net place is converted to code that is then input to a
generic Petri net execution engine.

Proof-Of-Concept Implementation. The modeling methodology described
in this section and RUL management technique described in Section 2 have been
applied to a batch-based job submission system in a virtualized environment. A
Petri net model was designed and implemented to capture properties of interest
and to serve as a global system manager of the job submission system. We show
that our RUL extension technique effectively prevents job failures due to memory
resource-exhaustion while incurring low overhead. The reader is referred to [15]
for details of this implementation.

5 Related Work

Our goals are mostly similar to the work in [16] [25] [26], in which the authors
propose the use of pattern recognition, multivariate state estimation and Markov
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chain based modeling techniques for prognostics in different components (eg.
main memory module, power supply) of a compute server. Though our goals are
similar, the contribution of our work is a systematic framework and methodology
for health management at the system of systems level. At the subsystem level,
we use a control theoretic formulation for useful life management.

Model Driven Approach to Autonomic Systems - In [27] [28] Dobson
has shown the need and requirements of models to capture self-* properties in
autonomic systems. Our work has been influenced by Sven Graupner’s IT man-
agement controller [29] that uses High Level Petri Nets to model IT tasks. Our
work differs in that the scope of our work includes health management of sys-
tem level models, rather than error recovery in individual IT components. Petri
nets have also been used by Salfner et al [30] to determine service availability
improvement achieved through the use of redundant servers. Dai et al. [31] have
proposed a model-driven approach to autonomic computing. But this proposal
has no specifics and has not been applied to a real world autonomic solution.
Bellur’s work [32] briefly outlines the use of Hierarchical Queuing Petri nets
(HQPN) with the ultimate goal of modeling autonomic computing properties.
This project’s most recent status was the modeling of a Tomcat server using
HQPN. The field of workflows has used Petri nets extensively by extending the
basic Petri net model into Workflow nets [2] [33]. Domain specific modeling lan-
guages have been used in to model autonomic systems. Dubey et al. [35] have
used timed automaton models to verify timing behavior of autonomic systems.
Architecture models have been used for capturing autonomic properties in IT
systems in [36].

Failure, Monitoring, Detection and Prediction Studies - Though the
following list of works mostly deal with failures rather than health (which is
our focus), techniques from these fields can be leveraged in health management.
Salfner et. al [37] have provided a comprehensive survey of online failure predic-
tion in computing systems, principles of which form a part of prognosis. Tiresias
[38] is a black box approach to failure prediction in distributed systems using
performance metrics. OVIS [39] [40] is a tool for statistical modeling and anal-
ysis of monitored data in computational clusters, with the goal of determining
advance indicators of failures. In [41], Ren et al. use semi-Markov processes to
predict resource failures in fine-grained cycle sharing systems. In [42], Laguna
et al. have developed an error detection system for multi-tier applications using
a Hidden Markov Model (HMM) based algorithm that is capable of handling
the high volume of messages in a distributed system (thereby providing efficient
monitoring). Schroeder et al. [43] have studied failures in large-scale systems
with conclusions on failure rate, repair time and time between failure distribu-
tions. Bayesian estimation and Markov decision theory has been used by Joshi et
al. in [44] to choose optimal recovery actions in a distributed system. Large-scale
studies of failures in HPC and petascale systems in [45] [46] [47] [48] motivate
the importance of health management in these infrastructures.
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Resource Exhaustion Studies - These works characterize resource exhaus-
tion faults, while our goal is to use this category of faults as an example for
our proposed health management solution. In [7] semi-Markov reward models
are used to estimate resource exhaustion rates as a function of workload. In [49]
Antunes et al. have proposed a technique to predict resource exhaustion vulner-
abilities in both synthetic as well real-world DNS servers using resource usage
modeling and a fault injection framework.

Control Theoretic Approaches - The application of feedback control theory
to computing systems has been introduced in [50]. The control of memory and
CPU utilization in web servers has been studied in [51] [52].

6 Future Work and Conclusions

The goal of our work has been to bring out the potential in the application of
health management principles to IT systems of systems. Towards this goal we
have proposed the use of a modeling framework and methodology to incorporate
health management in an IT system. We also propose the use of control theory
to manage useful life extension of subsystems in the case of a possible resource
exhaustion fault. As a simple illustration of the concept, a controller was built for
useful life management in the application execution stage (containing a potential
memory exhaustion fault) of an IT system. The gained useful time can then be
effectively utilized to evaluate and initiate health remediation actions. As part
of our ongoing work, in order to show the applicability, benefits and ease of
use of our methodology in a real-world IT system, we have created a prototype
global manager for a batch-based job submission HPC system on a virtualized
platform. The simple proportional integral controller discussed in this work is
being developed in to auto-tuning and self-tuning versions to allow for online
parameter estimation and controller design.
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Appendix

Benefits of Petri Nets

Petri nets are a mathematical as well as graphical tool for modeling DES. A
general introduction to Petri net modeling can be found in [53]. The advantages
of using Petri nets include:

1) System validation - Various system properties can be determined to validate
the correctness of the system.

2) System monitoring - When interfaced with a production system, Petri nets
allow for real time and visual monitoring of the system status.

3) System simulation - A generic Petri-net execution engine can be used for
simulating different classes of Petri nets. This is also called a token game because
a simulation involves changing the state of the system by moving tokens between
places.

4) System performance evaluation - The base Petri net model can be aug-
mented with time to enable measurement of the various performance metrics of
systems.

5) System composition - In the case of a large system, it would be necessary
for different experts to model various parts of the system. Petri nets possess
the composition property such that under certain predefined conditions, it is
guaranteed that system properties are maintained when independent models are
combined together to a single one [20] [22].

6) System control - Petri nets provide the ability to generate a supervisory
controller directly from the system model.

Petri Net Properties of Interest

The following is a listing of certain Petri net properties and how they apply to
the modeling of an IT system.

1) Reachability: In a Petri net C, a marking μ’ is reachable from marking
μ, if there exists a sequence of transition firings that can transform the state
from μ to μ’. The reachability set R(C, μ) is the set of all reachable markings
from marking μ. In a system model certain markings can represent the system
operating in a faulty mode. In such a situation, it is useful to know if the system
can reach (or be steered to reach) a non-faulty marking.

2) Boundedness: A place pi of a Petri net with an initial marking μ is k-
bounded if for all μ′ ∈ R(C, μ), μ′(pi) <= k. A Petri net is bounded if all its
places are bounded. If k=1, then the Petri net is said to be safe. In a system
model, boundedness can represent the capacity of a resource. If access to a data
center is through a job queue, then the bound on the place representing the queue
can be used to ensure that the queue neither overflows nor is underutilized.

3) Liveness: A Petri net is live with respect to a marking m0, if for any marking
in its reachability set R(m0), it is possible to ultimately fire any transition in
the net. Liveness guarantees the absence of deadlocks [11]. In a system model
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this would mean that a system could continue to operate without getting stuck
in a deadlock situation arising due to resource dependencies.

4) Reversibility: A Petri net is reversible iff for each reachable marking m ∈
R(m0), the initial marking m0 belongs to the reachability set of m. i.e. m0 ∈
R(m). A system that possesses this property will be able reinitialize itself if a
failure occurs at any stage.

Other properties of Petri nets can be analyzed by using a reachability tree
or by matrix equation techniques. All the Petri net models in this work were
constructed using the PIPE tool [54].
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Abstract. Modular and self-reconfigurable robots are a powerful way to design
versatile systems that can adapt themselves to different physical environment
conditions. Self-reconfiguration is not an easy task since there are numerous
possibilities of module organization. Moreover, some module organizations are
equivalent one to another.

In this paper, we apply symbolic representation techniques from model check-
ing to provide an optimized representation of all configurations for a modular
robot. The proposed approach captures symmetries of the system and avoids stor-
ing all the equivalences generated by permuting modules, for a given configura-
tion. From this representation, we can generate a compact symbolic configuration
space and use it to efficiently compute the moves required for self-reconfiguration
(i.e. going from one configuration to another). A prototype implementation is
used to provide some benchmarks showing promising results.

Keywords: Modular robotics, Self-reconfiguration, Symbolic configuration
space, Symmetries, CKBot.

1 Introduction

Context. Modular robotics is an active research field where robots are assembled using
numerous identical or different types of small modules. This is a powerful way to design
versatile systems that can adapt themselves to different physical environment conditions
or according to the purpose of their mission [9]. Moreover, self-reconfiguration allows
to adjust the robot to a given task on the fly. Modular robots are thus perceived as
a means to reach a balanced compromise between realization cost and multitasking
capabilities. They are particularly well-suited to exploration (e.g. spatial) and search
and rescue missions in hostile environments. Finally, they are robust and cheaper to
produce.

Problem. If auto-reconfiguration is a way to change the shape of a robot made of mod-
ules, it is also a way to create complex movements by means of successive configuration
changes. The robot follows a path of configurations that allows it to move, to grab and
drop objects, etc.

R. Calinescu and E. Jackson (Eds.): Monterey Workshops 2010, LNCS 6662, pp. 103–121, 2011.
© Springer-Verlag Berlin Heidelberg 2011
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This is a key feature whose implementation faces numerous issues [12]:

– memory limitation, computation power and energy consumption,
– limited degrees of freedom, sometimes more constrained because some types of

modules are more constrained than the others,
– coordinated communication between modules and inter-module communication

schemes,
– structural symmetries in modules, generating equivalent modules configurations.

The last issue raises a problem for the computation of the configuration space for a
robot composed of N modules. The size of the configuration space increases exponen-
tially with N (where Ni, i ∈ [1..T ] when the robot is composed of T types of modules).
Both the generation of the full configuration space and the identification of a given
configuration in it are known problems [8].

Contribution. The objective of this paper is to tackle the combinatorial explosion
problem in the configuration space of modular robots. Our solution also helps to identify
a given configuration among the ones that are equivalent. Self-reconfigurable modular
robots are usually classified in two categories.

First, lattice-based self-reconfigurable robots can physically organize themselves in
2D or 3D grid structures. They are rigidly interconnected but are able to connect/dis-
connect and move relative to one another in a 2D or 3D space. In this kind of configu-
ration, modules can only connect to their adjacent neighbors. Connection is assumed to
be performed without alignment, because modules are assumed to be always aligned.
This may not be true in practice for large configurations. The ATRON [3] is a typical
example of a 3D lattice-based self-reconfigurable robot.

Second, chain-based robots can assemble in serial chains fashion (linear loops con-
nections/disconnections) aligning themselves for connecting. They can form flexible
configurations and are efficient for locomotion, since they can bend themselves in arbi-
trary angles to move. For instance, a snake-shaped robot can move like a snake because
its modules bend in coordination to perform this kind of movement. The PolyBot [13]
is a typical example of a chain-based robot.

This study focuses on CKBot [10]: a hybrid robot whose modules allow both chain and
lattice reconfiguration capabilities [12].

The CKBot has two types of module: the UBar and the L7. Our study focuses on the
UBar, whose picture you can find online at [10]. We only consider robots made of one
type of module but this work can easily be extended to the case where several types of
modules are involved.

Symmetries are a serious issue in the original explicit approaches to generate the
CKBot configurations, when the number of modules grows. For instance, the methods
presented in [8] take a lot of time for disambiguation because of the symmetries be-
tween numerous similar configurations. Our purpose is to propose a new approach for
modeling the system, using symbolic representation techniques where symmetries are
handled efficiently .

Our contribution lies in the following points. First, we propose an efficient sym-
bolic representation of the modular robot configurations. It represents, by means of a
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single matrix, both connections and orientations of modules. It is a significant improve-
ment of the proposal made in [8] where two matrices are involved.

Then, we optimize the symbolic representation, where similar connection schemes
of some inter-dependent connectors are only represented once in a symbolic way. From
this symbolic representation, explicit configurations may be generated. Similarly to
model checking, we produce the configuration space of the system as an oriented graph
where nodes represent a set of equivalent configurations and arcs represent an action
of any module in the system. This reduced graph replaces the traditional plain graph
approach.

Therefore, we can exploit this configuration space to compute the moves that lead
from a configuration c to any configuration c′ ∈C, the set of target equivalent configu-
rations. This is a classical path search in an oriented graph.

Content. Section 2 presents the CKBot UBar module and the two-matrix based rep-
resentation technique of the robot configuration originally presented in [8]. We also
describe the core principles of the symmetry techniques applied in this paper. Then,
sections 3 proposes an alternative to the robot description of [8] and section 4 explains
how we turn this new explicit representation into a symbolic one. Section 5 deals with
the reconfiguration computation issue, where the transition system of the robot suc-
cessive configurations is built and used to find paths between configurations. Finally,
section 6 presents performance evaluation provided by a prototype implementation be-
fore a conclusion in section 7.

2 Problem Statement and Related Works

Controlling the configuration of modular and self-reconfigurable robots is computa-
tionally complex. This complexity depends on how the system is organized, both at
the hardware and software levels. We consider the CKBot, where both a global bus
and neighbor-to-neighbor communication schemes enable the system to determine its
configuration.

In the CKBot, connections between modules are represented by graphs, translated
into adjacency matrices and ports adjacency matrices. Modules interconnect via con-
nectors and are identified by values from 1 to N, where N is the number of modules1.
Adjacency matrices are N ×N matrices in which 1s denote interconnections between
modules and 0s the absence of connection. In port adjacency matrices (which also are
N×N matrices), non-zero numbers identify the IDs of the ports through which modules
interconnect. Fig. 3 shows a CKBot assembly and its adjacency matrices.

We first present the CKbot module, then an explicit way to encode its configuration
and the symmetry-based methods used in model checking to tackle combinatorial ex-
plosion. Section 3 applies this technique to efficiently encode the configuration space.

1 Here, we only consider a system with one type of module. For a system with T types of
module, we can consider the identities being 1, ..,N1,N1 +1, ..,N2, ..,NT−1, ..,NT where Ni is
associated to the ith type of module, i ∈ [1,T ].
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2.1 Presentation of the CKBot

Fig. 1(a) presents a picture of a CKBot UBar module2 and Fig. 1(b) shows its cor-
responding 2D schema representation. The CKBot UBar module has 7 ports (pair of
infrared transmitters/receivers) and 20-pin headers on each of its 4 faces. Ports, repre-
sented by a square, are used for inter-module communication. 20-pin headers, repre-
sented by a rectangle, are used for electrical connection and communication on a CAN
(Controller Area Network) bus. In the latter part of this paper, we may simply refer
to couples 〈port, 20-pin header〉 as connectors (e.g. the Bottom face holds only one
connector).

(a) A CKBot UBar module

Bottom

7

Right
4

3

Left
6

5

Top
2

1

(b) Its corresponding 2D structure

Fig. 1. Overview of the CKbot

Fig. 2. A 5-module T shape robot and its corresponding adjacency matrices

Top and Right faces share the same disposition for their connectors, whereas the one
of Left is reversed (port 5). Thus, a module can attach to another in different ways.
According to [12], each module can be uniquely connected to another module in 10
ways (3 rotations for each of the 3 top faces and 1 orientation for the bottom). The only
impossible connection is when two same faces are in front of one another in reverse
positions. Fig. 2 presents an example of modular robot built from four CKBot modules3.

2 This picture is extracted from [8].
3 This picture is extracted from [1].
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2.2 Explicit Encoding of CKBot Configurations (from [8])

The technique used to describe the robot configuration is based on two N ×N matrices,
N being the number of modules4. The first matrix is a simple adjacency matrix, where
1-entries denote a connection between two modules and 0-entries no connection. The
second matrix is a port adjacency matrix, where non-zero entries denote the type of
connection from a module to another (referencing the port number). Fig. 3 shows a
5-module T shape and its corresponding adjacency matrices on the right.

2 31

4

5

Adjacency matrix⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
1 0 1 1 0
0 1 0 0 0
0 1 0 0 1
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 4 0 0 0
6 0 4 7 0
0 6 0 0 0
0 1 0 0 7
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

Port adjacency matrix

Fig. 3. A 5-module T shape robot and its corresponding adjacency matrices

This representation is suitable for configuration recognition on small configurations.
However, it does not scale well. In particular, when reconfiguration is the problem under
consideration, searching the configuration space for N modules which can move in
parallel, quickly leads to combinatorial explosion of the configuration space for large
values of N.

In [8], the author deals with automatic configuration recognition based on three
principles:

– graph-based isomorphism identification: this method suffers from the exponential
size of the automorphism group in the number of modules (worst case), as the size
of the library of predefined configurations grows;

– port adjacency matrix spectral decomposition: it is very fast for small numbers of
modules but suffers from numerical issues when numerous modules are involved.
Explicit disambiguation due to symmetries in the configurations can be very long;

– heuristic-based linked list (called 3DLL) representation of the physical proper-
ties of configurations: it exploits the ports adjacency matrix of the modules. This
method appears to be the most scalable, but suffers from the need to run exhaus-
tively through every configuration in the library.

In order to tackle the combinatorial explosion in the configuration space, we propose
to get inspiration from formal analysis methods [11] where this problem is common.
Different and complementary techniques are used to reduce the size of the state space:
decomposition, bounding, partial order, symmetry detection and the use of very efficient
data structures (Decision Diagrams).

4 In the remainder of this paper, N will always denote the number of modules that compose the
complete robot.
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It appears that the configurations of the CKBot can be organized into consistent
sets of similar configurations where they only vary by module permutations. Hence, a
more compact representation for the model can be designed to remove redundant and
explicit information which can be inferred otherwise. In this setting, symmetry-based
techniques are suitable to build their representation.

2.3 Compact Representation of Large State Spaces

This section presents through an example the principles of the symmetry-based tech-
niques underlying compact representation of large state spaces in model checking.
Formal definitions of the underlying theory can be found in [4].

Symmetry-based methods, exploit the presence of similarly behaving components to
aggregate states (or, in our case, configurations) and state transitions (or, in our case,
configurations changes) into equivalence classes. Hence, they generate a more abstract
and compact state space: the quotient graph.

To present the quotient graph in the general framework, let us consider the classical
example of a client/server system, with two identical clients C1 and C2 and a server S.
Clients build a message m ∈ {m1,m2}, send it to S with their identity, and wait for an
acknowledgment message. S processes incoming messages and then sends the acknowl-
edgment to the client having issued the request.

We consider two local states for a client: (1) the message construction state and,
(2) the receiving state. For the server, we consider: (1) the receiving state and (2) the
sending of the acknowledgment. We also consider the network state R: R(〈C1,m1〉)
means that message m1 of client C1 is passing through the network R. Thus, the global
state of our system will be the synthesis of all local states.

The behavior of the system can then be represented by a reachability graph, where
nodes are global states, and arcs represent changes between states. Figure 4 represents
the beginning of the reachability graph of our toy example (the whole graph contains
24 states).

C1(1);C2(1);S(1) 

C1(2);C2(1) 
S(1) 

R(<C1,m1>) 

C1(1);C2(2) 
S(1) 

R(<C2,m1>) 

C1(1);C2(2) 
S(1) 

R(<C2,m2>) 

C1(2);C2(1) 
S(1) 

R(<C1,m2>) 

C1(2);C2(2) 
S(1) 

R(<C1,m1> 
  +<C2,m1>) 

C1(2);C2(1) 
S(2,C1) 

C1(1);C2(2) 
S(2,C2) 

C1(2);C2(2) 
S(1) 

R(<C1,m1> 
  +<C2,m2>) 

C1(2);C2(2) 
S(1) 

R(<C1,m2> 
  +<C2,m1>) 

C1(2);C2(2) 
S(1) 

R(<C1,m2> 
  +<C2,m2>) 

s1 s2 s3 s4 

s6 
s7 s8 s9 

s5 

s10 

Fig. 4. First 11 states (among 24) of the reachability graph of the client/server example
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s’1={s1 ,s2 ,s3 ,s4 } 

s’2={s9 ,s6} s’3={s5 ,s10} s’4={s7 ,s8} 

s’0={s0 } 

Fig. 5. First 5 states (among 10) of the quotient graph of the client/server example, w.r.t equiva-
lence relation R

As shown in Fig. 4 the state space grows quickly with the number of clients and
the type of messages. Exploitation of symmetries in the system helps to tackle this
combinatorial explosion. We observe that C1 and C2 behave identically, hence they are
symmetrical. Similarly, messages values are not distinguished by the server (i.e. they
are processed identically), introducing another symmetry.

Let us formally identify these symmetries by an equivalence relation R = {C =
{C1,C2},M = {m1,m2}}, where C and M are equivalent classes. R can then be used to
build a quotient graph that preserves reachability and some temporal logic properties of
the original reachability graph.

According to R, states of the reachability graph are partitioned in five equivalence
classes: s′0 = {s0}, s′1 = {s1,s2,s3,s4}, s′2 = {s6,s7}, s′3 = {s5,s10} and s′4 = {s7,s8}.
The quotient graph corresponding to the 11 states of the reachability graph presented in
Fig. 4 is represented in Fig. 5. Let us note that, in this case, its size neither depends on
the number of clients nor the number of values for messages.

In the next section, we apply this technique to build all the configurations of a robot
made with CKBot modules. To do so, there are three issues to deal with:

– identifying symmetries in the configurations in terms of permutations,
– elaborating an efficient symbolic representation for the equivalent classes generated

by these permutations,
– building the symbolic transition relation.

3 Representing CKBot States

The first technique to fight against combinatorial explosion in the configuration space
is to design a compact and efficient representation to model the robot. An important
requirement for this compact representation is that it must preserve all the important
information that cannot be computed from existing ones.

3.1 Matrix Representation

Our new model is also stored in a matrix, where 7 columns encode the ports connec-
tivity of a module5 and an 8th column encodes its angle. Figure 6 shows the definition

5 Numerotation of ports (e.g. top1, top2, etc.) refers to the 2D flat representation of a CKBot
module as presented in Fig. 1(b).
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Top
p1, p2

Right
p3, p4

Left
p5, p6

Bottom
p7

[
top1 top2 right1 right2 left1 left2 bottom angle
p1 p2 p3 p4 p5 p6 p7 α

]

Fig. 6. Ports-connectivity matrix of an UBar module

Right

Left

Bottom

0° 180° Right

Left

Fig. 7. Angles representation for a UBar module

of this representation. The configuration of a module is thus encoded in a vector of
size Number of Ports + Degrees of Freedom. The size of a configuration involving N
modules is then N×(Number of Ports + Degrees of Freedom). A CKBot module has 1
degree of freedom, hence a single column is sufficient to encode it.

In the ports-connectivity matrix, non-zero entries denote a connection of the corre-
sponding port (column) to a module whose identity is the value of the entry. As for the
explicit representation (section 2.2), identities of modules range from 1 to N, so that no
ambiguity is raised between an absence of connection and a module identity.

The angle scale ranges from 0 to 180° with a graduation in D° increments. To deter-
mine the physical position of a module from its representation as described in Fig. 6,
angle is set to zero when the face Bottom is positioned such that ports 4, 6 and 7 are
aligned. It is illustrated in Fig. 7, with Bottom oriented to the right. Angle 180 is deter-
mined when the module has made a rotation such that Bottom is oriented to the left.

Example. Let us determine the ports-connectivity matrix for the 5-module T shape
example shown in Fig 3. The matrix encoding this configuration is shown in Fig. 8.
It has the fixed 8 columns for the UBar and 5 lines for the number of modules. We
can expect this type of representation to be much more compact than the adjacency
matrices, where the number of modules will be in most cases greater than the sum of
the numbers of ports and degrees of freedom.

2 31

4

5

=> module1
=> module2
=> module3
=> module4
=> module5

⎡
⎢⎢⎢⎢⎢⎢⎣

p1 p2 p3 p4 p5 p6 p7 α
0 0 0 2 0 0 0 90
0 0 0 3 0 1 4 90
0 0 0 0 0 2 0 90
2 0 0 0 0 0 5 90
4 0 0 0 0 0 0 90

⎤
⎥⎥⎥⎥⎥⎥⎦
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Fig. 8. Ports-connectivity matrix of the 5-module T shape of Fig. 3
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3.2 Matrix Encoding

An alphabet can be set up to encode all possible configurations of a module. Since a
port can be connected or not, we need two values per port (for 7 ports). Thus, a 7-bit
alphabet can encode this.

We set up an alphabet to encode all possibles configurations for a module. A port
being either connected or not and since we have seven ports, we elaborate a compact
alphabet to encode connectivity. Therefore, each letter in the alphabet is a concatenation
of two parts:

– a first part contains 7 bits describing the connectivity of the described module,
encoded as: p1×27 + p2×26 + p3×25 + p4×24 + p3×22 + p2×21 + p1×20.
Therefore, each configuration is represented in a unique way;

– a second part specifies the angle of the described module. There are x configurations
per connectivity, where x is deduced from D (x = 3 when D = 90°, x = 4 when
D = 45°, etc).

p1 p2 p3 letter p1 p2 p3 letter
0 0 0 X0,α 1 0 0 X4,α
0 0 1 X1,α 1 0 1 X5,α
0 1 0 X2,α 1 1 0 X6,α
0 1 1 X3,α 1 1 1 X7,α

Fig. 9. Alphabet encoding the connectivity of a 3-port module. α represents the angle

Example. Let us consider a simple case with a module having only three ports. Figure 9
illustrates this encoding. There are 23× ( 180

D +1) values in the alphabet. There is a total
order since ∀i ∈ [0,23], Xi,α ≤ Xi,β iff α ≤ β. For the CKBot, we thus use the following
formula to compute the number of letters in the alphabet:

27 × (
180
D

+1) (1)

4 Symbolic Representation of the CKBot Configuration Space

This section applies the symmetry technique described in section 2.3 to the representa-
tion presented in section 3. First, we identify equivalent configurations obtained from
module rotation, then we discuss isomorphic configurations obtained by module permu-
tation. We show how the two matrices can be combined and finally present a canonical
way to express equivalence classes considering these two types of symmetries. This
leads to the notion of symbolic configuration space.

4.1 Identification of Structural Symmetries

Module Rotation. In the UBar CKBot module, there exists a symmetry between faces
Right and Left. When this module is rotated with 180° in the orientation Right-Left
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(or in the reverse way), we obtain a mirror configuration. Ports 4 and 6 are symmetric,
as well as ports 3 and 5. Therefore, a connection on p4 (or p3) with angle α is symmetric
to a connection on p6 (or p5) with angle (180−α) mod 180.

1

23

⎡
⎣0 0 0 0 0 0 2 90
1 0 0 0 0 3 0 90
0 0 0 2 0 0 0 90

⎤
⎦

1

23

⎡
⎣0 0 0 0 0 0 2 90
1 0 0 3 0 0 0 90
0 0 0 0 0 2 0 90

⎤
⎦

Fig. 10. Symmetry between two L-shape configurations

Figure 10 shows an example of symmetry in a 3-UBar CKBot configuration. On the
left, the initial configuration. On the right, the symmetric one. We can observe that all
modules have rotated. This corresponds to column permutation in the ports-connectivity
matrices that are aside these configurations.

Module Permutation. Two configurations are considered isomorphic when they form
the same functional shape but where modules are permuted. Figure 11 shows an ex-
ample of two T-shape isomorphic configurations with their ports-connectivity matrices.
Modules have the same connectivity in the two configurations but modules 1, 2 and 3 are
not in the same position. This corresponds to line permutation in the ports-connectivity
matrix together with a value change to refer to the new modules id (the corresponding
lines are emphasized in the two matrices). On the first configuration, module 1 is on top
left and is represented by the first line of the left matrix. On the second configuration,
the top left module is 2 and is described by the second line in the right matrix. These
two lines are identical in structure (third column is non-zero) but refer to different lines
due to different neighbors.

2 41

3

3 42

1

⎡
⎢⎢⎣
0 0 2 0 0 0 0 90
0 0 4 0 1 0 3 90
2 0 0 0 0 0 0 90
0 0 0 0 2 0 0 90

⎤
⎥⎥⎦

⎡
⎢⎢⎣
3 0 0 0 0 0 0 90
0 0 3 0 0 0 0 90
0 0 4 0 2 0 1 90
0 0 0 0 3 0 0 90

⎤
⎥⎥⎦

Fig. 11. Two T-shape isomorphic configurations
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Fig. 12. Two H-shape isomorphic configurations
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Module Rotation and Permutation. There is an issue to detect isomorphic configu-
rations when they are also symmetric due to module rotation as shown in Fig. 12.

Therefore, our symbolic encoding of our ports-connectivity matrix must
integrate both types of equivalences together and distinguish all equivalence classes
unambiguously.

4.2 Symbolic Encoding and Canonization

Encoding. To encode the ports-connectivity matrix, we replace each line by its
corresponding letter in the alphabet. Figure 13 shows, for module 1 to 5, (i.e. top to
bottom) the encoding of a 5-UBar CKBot cross configuration (left) into an explicit
ports-connectivity matrix (center) and then its corresponding symbolic representation
(right). As mentioned in section 3.2, the number of letters in our alphabet is computed
from formula (1).

4

1

32

5

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0 0 3 90
0 0 0 3 0 0 0 90
1 0 0 4 0 2 5 90
0 0 0 0 0 3 0 90
3 0 0 0 0 0 0 90

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0 0 X75,90 90
0 0 0 X75,90 0 0 0 90

X1,90 0 0 X2,90 0 X8,90 X64,90 90
0 0 0 0 0 X75,90 0 90

X75,90 0 0 0 0 0 0 90

⎤
⎥⎥⎥⎥⎦

Fig. 13. Encoding of a 5-module cross shape configuration

In this figure, module 1 is connected to module 3 via port 7. So module 3 configura-
tion is the value of the entry at line 1, column 7. Module 3 is connected to module 1 via
port 1, so module 1 configuration is the value of the entry at line 3, column 1.

Canonization. To compute the configuration space as a fixed point, we must compare
symbolic states to detect if a new state has been already computed or not. However, the
symbolic representation is not unique since it depends on the module order. We there-
fore need to canonize this symbolic representation for comparison purposes. Moreover,
all representations of a given class of equivalent configurations must be computed from
this canonical representation thanks to columns and lines permutations.

Since the alphabet we defined to encode the port-connectivity matrix is ordered, we
can arrange the matrix by sorting lines as if there was a bit-encoding of integer values
where 0 means 0 and non-zero values mean 1. We use the quick sort algorithm whose
average complexity is in n ∗Log(n).

Figure 14 shows the canonization of the symbolic matrix obtained in the example
illustrated by Fig. 13. This operation only changes the order of lines. Then, any arrange-
ment of modules can be considered by numbering lines with different module identities.

As an illustration, we can deduce from the canonical matrix, the cross configuration
shown in Fig. 13 by labeling lines with module identities in the following order: 1, 4,
2, 5, 3. Similarly, all equivalent configurations due to module permutations can be re-
constituted by setting new modules identities affected to lines (e.g. configuration where
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⎡
⎢⎢⎢⎢⎣

0 0 0 0 0 0 X75,90 90
0 0 0 X75,90 0 0 0 90

X1,90 0 0 X2,90 0 X8,90 X64,90 90
0 0 0 0 0 X75,90 0 90

X75,90 0 0 0 0 0 0 90

⎤
⎥⎥⎥⎥⎦

Computed symbolic matrix ⎡
⎢⎢⎢⎢⎣

0 0 0 0 0 0 X75,90 90
0 0 0 0 0 X75,90 0 90
0 0 0 X75,90 0 0 0 90

X75,90 0 0 0 0 0 0 90
X1,90 0 0 X2,90 0 X8,90 X64,90 90

⎤
⎥⎥⎥⎥⎦

Canonized symbolic matrix

Fig. 14. Canonization of the ports-connectivity symbolic matrix shown in Fig. 13

lines in the canonical matrix are 5, 4, 3, 2, 1 correspond to another configuration of the
equivalence class).

Symbolic Configuration Space. The symbolic encoding of the configuration space
allows us to compute the symbolic configuration space. Each node of this reduced graph
is a symbolic configuration. The symbolic configuration space is thus much smaller than
the configuration space: the node ratio is exponential since each equivalence class grows
with the number of modules (and only one symbolic configuration is required to store
all the configurations that belong to this class).

In the next section, we focus on the way to compute the symbolic configuration
space, as well as on the way to use it for defining the moves a robot made from CKBots
must perform to change its configuration.

5 Reconfiguration

Reconfiguration of a modular robot is a key feature since it is used for both movement
and adaptation. It faces both scalability and computation time issues, especially when
reconfiguration is to be performed on the fly. It is thus necessary to define an efficient
transition system and operations. To do so, we take advantage of the symbolic repre-
sentation elaborated in section 4.

5.1 Transition Relation Between Symbolic Configurations

A transition occurs when the robot changes from one symbolic configuration to an-
other. More specifically, a transition occurs when a module changes its configuration in
terms of connectivity and/or rotation. Several modules can perform a transition during
a reconfiguration of the robot. We distinguish two types of transitions:

– Functional Transitions: they lead to rotations on the different modules degrees of
freedom. They enable motion and do not alter the modules connectivity.

– Structural Transitions: they involve changes in modules connectivity and consist
of a connection/disconnection of ports.

Functional Reconfiguration. Functional reconfiguration does not alter the connectiv-
ity. It enables motion and involves the rotation of modules. In this setting, the functional
successors of a module configuration are such that only the angle varies.

If D is the increment used on the angle scale such that 0 ≤ D ≤ 180, let a module
i which has a configuration Xi,α. The possible successors of the current state for i are
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1 2

4 3

Fig. 15. Impossible rotation from 90 to 180 degrees for the bottom-left module

configurations Xi,γ where γ = ((α+n×D) mod 180), n ∈ N (n being the number of D
steps of the angle change).

All rotations cannot be performed in a functional reconfiguration. In particular, when
all modules are interconnected as in Fig. 15, a rotation from 90 to 180 degrees cannot
take place. Since all modules are connected, module 4 must first disconnect from mod-
ule 1 before performing a rotation. Therefore, a set of structural transitions may be
necessary before a functional reconfiguration can actually happen.

Structural Reconfiguration. We consider in this paper that a functional reconfigu-
ration only involves functional transitions, while a structural reconfiguration involves
both kinds of transitions.

Since our study focuses on the CKBot, which is a hybrid robot (lattice or chain
configurations), three assumptions must be made on the considered transitions:

Assumption 1: The successor of a symbolic configuration is reached through at most
an atomic action for each module: connection/disconnection6 or rotation.

Assumption 2: When a module is connected through one face only, it cannot discon-
nect, to avoid breaking the lattice or chain shape of the robot. This restriction is
sometimes considered in similar work like [3].

Assumption 3: We consider that only one action is performed at a time for the N mod-
ules involved in the symbolic configuration7.

Building Successors of a Symbolic Configuration. To illustrate structural reconfigu-
ration, let us consider again the simplified 3-port modules whose alphabet is presented
in Fig. 9. Configuration [010] (letter X2,α) has the following set of successors: {[010 γ]
(letter X2,γ), [011 α] (letter X3,α), [110 α] (letter X6,α)}.

5.2 Generating and Exploiting the Symbolic Configuration Space

Computation of the symbolic configuration space is similar to the generation of the
state space in model checking. It corresponds to a fixed point on the exploration of
all possibles moves. As for tools like greatSPN [7] that manage symmetries, each new
symbolic state must be discovered by performing a symbolic evolution (e.g., symbolic
firing in model checking) of the system as described in [2].

6 A module may connect or disconnect at most one face per reconfiguration.
7 Similarly to model checking, we set an execution semantics at a low granularity: a single

operation in the whole system. Interleaving between these single actions in the system ensures
that we are compatible with a semantics where there are several parallel moves as for Petri
Nets [6].
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Input: Initial, the initial configuration of the robot (encoded in a symbolic way)
Output: returns a symbolic configuration Space
SymbCon f Space1 = /0;
SymbCon f Space2 = Initial;
while SymbCon f Space1 	= SymbCon f Space2 do

SymbCon f Space1 = SymbCon f Space2;
foreach configuration c ∈ SymbCon f Space2 do

foreach configuration s = Successor(c) do
s′ = Canonize(s);
if s′ 	∈ SymbCon f Space2 then

SymbCon f Space2 ← SymbCon f Space2 ∪ s′;
end
Add Link between c and s′;

end
end

end
return Con f Space1;

Algorithm 1. Generation of the symbolic configuration space

Algorithm 1 describes the computation of the symbolic configuration space. Suc-
cessors of c are computed by applying possible connections/disconnections and angle
rotation of each module of c.

Since the symbolic configuration space is an oriented graph, searching a move that
leads from a concrete configuration c to any (the closest) concrete configuration c′ ∈C,
the class of the target form the robot must reach is very easy. It corresponds to a shortest
path search in an oriented graph like the Dijkstra algorithm [5] (in this case, all arcs in
the symbolic configuration space are valued by 1).

•••

0 Conf. 
Matrix

•••s1 s2

1 Conf. 
Matrix

•••s1 s2

1 Conf. 
Matrix

•••s1

2 Conf. 
Matrix

•••s1 s2

c0 c2 c3c1

to successors to successors

configurations main list

Fig. 16. Data structure to store the symbolic configuration space

So far, the data structure elaborated in the prototype is described in Fig. 16, which
shows how 4 configurations c0,c1,c2,c3. . . (out of more) are represented. Configura-
tions main list represent the head pointer to this list of configurations. In this example,
c0 points to the initial configuration, which is shown in grey. Its distance to the initial
configuration is 0 and it has two successors c1 and c2, which S1 and S2 of c0 point to.
The distance of c1 and c2 to the initial configuration is 1. We also show one successor
of c2 (c3) whose distance to the initial configuration is 2.
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Such data structure is suitable to search paths from one configuration to another one
in the symbolic configuration space. Memory required to store the symbolic configura-
tion space can be computed with formula (2) for the CKBot (7 ports and one degree of
freedom):

all configurations all successors main list

Memory(bytes) =
︷ ︸︸ ︷
[(Sint ×N ×8)+1]︸ ︷︷ ︸×NBscon f +

︷ ︸︸ ︷
Spt ×NBarcs +

︷ ︸︸ ︷
Spt ×NBscon f +1

one symbolic
configuration

(2)

where N is the number of modules in the configuration, Sint is the number of bytes
to store an integer, Spt the number of bytes to store a pointer, NBscon f the number of
symbolic configurations in the state space and NBarcs the number of arcs.

6 Performance Evaluation

To assess our modeling approach, we implemented a prototype to evaluate its benefits.
The idea is to get an estimation of the gain provided by our symbolic representation. To
do so, we consider two experiments:

– the construction of the symbolic configuration space to evaluate if it can be com-
puted off-line and then embedded into a reasonable amount of memory,

– the on-the-fly computation of a path between a concrete current configuration of
the system and the "closest"8 concrete configuration in a class of configurations the
system must reach.

For the experiments, we selected three types of initial configurations. First, the line con-
figuration corresponds to a line of N modules. Second, the square configuration corre-
sponds to a square of N modules. Finally, the crawler configuration is the repetition of
a 4-CKBot pattern shown on the left side of Fig. 17.
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6
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Fig. 17. Crawler configuration for 4 and 8 modules

All experiments to compute the symbolic configuration space were run on a 2.80GHz
Intel Hyperthreaded Xeon computer with 14Gbytes of memory. As we show later, this
does not mean that such a configuration is required to exploit the produced symbolic
configuration space.

8 The one that can be reached with the smallest number of transitions.
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6.1 Experiment 1: Generating the Symbolic Configuration Space

For the first experiment, we computed the full symbolic configuration space from the
three selected initial configurations with several values of N. For rotation, we consider
D =90° (thus, three positions for the angle and an alphabet with 27 × ( 180

90 + 1) = 384
letters according to formula (1)).

Table 1 summarizes the data collected in the first experiment. Columns, from left
to right show: the value of N, the number of concrete configurations, the size of the
symbolic configuration space (nodes/arcs), the ratio between the number of symbolic
configurations and the number of concrete ones, the memory required by the program
to compute the symbolic configuration space, the time required to compute the sym-
bolic configuration space, and the estimated memory required to store the computed
configuration space (evaluated with formula (2)).

Table 1. Evaluating performances of computation and storage of the configuration space

N
Number of Symbolic Representation
Concrete Size of Symbolic Ratio Memory for Time for Memory to Store

Configurations Config. Space Computation (MB) Computation (s) Symbolic Conf. Space (MB)

Line configuration
4 3888 81/202 2×4! 3.44 0.42 0.019
6 ∼ 1.049×105 729/1822 2×6! 12.48 9.39 0.159
8 ∼ 5.297×107 6561/16442 2×8! 116.88 155 1.408
10 ∼ 4.285×1011 59049/147622 2×10! 1272 2496 12.619

Square configuration
4∗ 4032 84/925 2×4! 4.45 0.56 0.064
8∗ ∼ 2.91×108 36093/388209 2×8! 789 736.69 25.901

Crawler configuration
4 3888 81/202 2×4! 3.55 0.46 0.019
8∗ ∼ 1.01×1010 124652/311360 2×8! 2306 2286 26.616

As expected, the symbolic configuration space offers great gains compared to the
concrete one. The largest symbolic configuration space for 8 modules can be stored
in a few mega bytes that is now easy to embed in small devices. This could not be
the case with a concrete representation of the configuration space that quickly contains
billions of elements. Moreover, symbolic ports-connectivity matrices are not stored as
sparse ones and we use 64-bits integer to encode the alphabet and 64 bits to encode a
pointer (Sint = Spt = 8 bytes in formula (2)). Consequently, less memory could easily
be consumed by using sparse matrices and/or less bits to encode a letter in the alphabet.

For square and crawler configurations, our fixed-point algorithm also computes con-
figurations that must be discarded because they lead to deadlocks or absurd situations
(e.g. modules that are located in the same tridimensional position). When such states are
detected, we note the corresponding line with a ∗ in Table 1. Such cases are usually rare
compared to the size of the symbolic state space: for example, 360 configurations are
discarded for the square with 4 modules, 88560 for the square with 8 modules and only
1 for the Crawler with 8 modules. This only affects the computation time and not our
most important evaluation criterion in this experiment: the amount of memory required
to store the symbolic configuration space.

We also note that we could not compute the configuration space for more than 8
modules in most cases. This is an implementation problem that should be considered in
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further work (intensive recursions and allocations lead to intensive memory consump-
tion). Execution time is also quite long when N grows but, since the configuration space
is computed off-line, there is no time constraint on this step of the process. This should
be corrected later with a more refined version of our first prototype.

6.2 Experiment 2: Computing Paths in the Symbolic Configuration Space

For the second experiment, we computed the full configuration space from the three
selected initial configurations with several values of N. Then, we performed several
searches between a randomly selected departure concrete space and a randomly selected
target symbolic state. We also considered D =90° for rotations.

Table 2 summarizes the data collected in this second experiment. Columns, from left
to right show: the value of N, the size of the symbolic configuration state, the minimum,
average and maximum time (in ms) required to compute a path, the minimum, average
and maximum length of computed paths.

Table 2. Performances of configuration search

N Size of Symbolic Search Time (ms) Path length
Config. Space Min Avg Max Min Avg Max

Line configuration
4 81 0.018 0.0915 0.199 1 11.75 31
8 6 561 1.195 1.515 1.717 375 1 649 2 925

Square configuration
4 84 0.021 1.107 1.697 0 17 88
8 36 093 0.506 1.212 404.87 19 781 2 604

Crawler configuration
4 81 0.039 0.118 0.187 3 12 20
8 124 652 0.037 1.810 3.561 2 517 1 456

Once again, time performances are quite good and show that computation could
be performed on the fly by a software that drives the robot since it never takes more
than half a second (averages remains around a few milliseconds). The average size of
computed paths remain reasonable, compared to the size of the configuration space
(e.g. 781 transitions for a 1011 states configuration space in the case of the Square with
8 modules).

These data are extracted from a prototype that was not optimized and performances
can clearly be enhanced.

7 Conclusion

Configuration recognition and dynamic auto-reconfiguration of modular and self-recon-
figurable robots face numerous challenges, ranging from hardware to software and con-
trol issues. The one we focused on in this paper is related to the configuration space
combinatorial explosion when the number of modules grows.

We present in this paper a symbolic encoding technique, inspired from the ones de-
veloped for model checking that also suffers from combinatorial explosion. We use this
technique to represent configurations of the CKBot, an hybrid modular and
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self-reconfigurable robot. The symbolic representation of configurations exploits struc-
tural symmetries in the modules that allow to gather in one class several equivalent
configurations.

These new techniques are far more efficient compact representation of the robot
configuration space than the initial encoding presented in [8]. Modules rotation, per-
mutation or a combination of both can be quickly recognized and disambiguated. Our
technique can be easily adapted to robots presenting a hardware topology similar to the
CKBot one. We call this new representation the symbolic configuration space.

A second contribution is the computation of reconfiguration. Since the symbolic
configuration space can be stored in a small amount of memory, reconfiguration cor-
responds to the computation of a path between two nodes in the configuration space.
This can be achieved by classical graph-based algorithms such as the one of Dijkstra.

Experiments made on a first prototype show promising results. The expected ex-
ponential gain between the symbolic configuration space of a system and its related
configuration space is observed for several types of initial configurations. Thus, all con-
figurations can be stored in a few MegaBytes that could not be the case otherwise (more
memory can technically be embedded in small devices like the robot modules we con-
sider). Computation of the symbolic state space can be long but this operation is typi-
cally performed off-line. Thus, no performances are really needed.

Experiment also showed that (still with our first prototype) a path between two con-
figurations (e.g. reconfiguration of the robot) could be computed in a average time of
a fewmilliseconds. This enables the use of our technique on the fly during the robot
mission. When the robot is performing a move, the next one can be computed.

Since our experiment was done in a quickly implemented prototype, numerous opti-
mizations can be applied that should increase performances.

Future work will consider some application to a real mission with a CKBot-based
robots (possibly with several types of modules) to assess usability with several config-
urations when the robot is driven by an external computer or with embedded code.
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J’aimais, et j’aime encore, les mathématiques pour
elles-mêmes comme n’admettant pas l’hypocrisie
et le vague, mes deux bêtes d’aversion1 .

H. B. Stendhal, La Vie d’Henri Brulard

Abstract. Heuristics, simulation, artificial intelligence techniques and
combinations thereof have all been employed in the attempt to make com-
puter systems adaptive, context-aware, reconfigurable and self-managing.
This paper complements such efforts by exploring the possibility to
achieve runtime adaptiveness using mathematically-based techniques
from the area of formal methods. It is argued that formal methods @ run-
time represents a feasible approach, and promising preliminary results are
summarised to support this viewpoint. The survey of existing approaches
to employing formal methods at runtime is accompanied by a discussion
of their challenges and of the future research required to overcome them.

1 Introduction

The use of rigorous logic in the design and analysis of computer programs was
first proposed in the late 1960s [1,2]. Several decades and a Turing Award [3]
later, the set of mathematically-based techniques collectively known as formal
methods comprises effective tools for the formal specification [4,5], development
[6] and verification [7] of computer systems. Already widely adopted in hardware
design and verification [8], formal methods have more recently been applied to
the development of software systems [9], where they are increasingly used to
improve the quality of software alongside traditional approaches such as test-
ing and simulation. Contributors to the latter advance include major software
companies, who are not only using formal methods internally, but also integrat-
ing formal techniques into their software development platforms, and actively
contributing to formal methods research. These developments have established
formal methods as an effective aid in producing high-integrity systems—a key
challenge for today’s developers of complex computer systems.
1 “I used to love mathematics for its own sake, and I still do, because it allows for no

hypocrisy and no vagueness, my two bêtes noires.”

R. Calinescu and E. Jackson (Eds.): Monterey Workshops 2010, LNCS 6662, pp. 122–135, 2011.
c© Springer-Verlag Berlin Heidelberg 2011
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This paper explores the possibility to use formal methods in addressing an-
other grand challenge of computer systems, namely runtime adaptation. Com-
puter systems are increasingly employed—and expected to cope with limited
or no human intervention—in applications characterised by continual change to
system state, workload and objectives. In response to this challenge, the research
community has come up with the idea of adding self-adaptation capabilities to
computer systems. The impressive body of work carried out in newly emerged
research fields such as autonomic, context-aware and ubiquitous computing has
so far led to the development of adaptive systems based on a combination of
heuristics, simulation and artificial intelligence techniques. While experimental
results suggest that such solutions are often effective, they alone cannot provide
the high levels of predictability and dependability that adaptive, autonomic com-
puter systems are typically expected to attain [10,11]. One of the most promissing
approaches to achieving these necessary characteristics is to use mathematically
based techniques in the runtime adaptation process, i.e., to employ formal meth-
ods @ runtime (FM@R).

This paper advocates that FM@R have the potential to contribute to the
development of adaptive computer systems that offer high levels of predictability
and dependability in several ways. Some of these are explored in the following
sections, starting with the authors’ work in Sections 2–4. Section 2 presents the
use of quantitative verification to comply with non-functional requirements in
adaptive computer systems. Section 3 describes how lightweight formal methods
can be used to synthesise the reconfiguration operations that adaptive computer
systems must undertake in order to achieve their objectives in the presence of
changes in system state, workload and environment. Section 4 explains the use of
model checking to verify adaptation rules in computer systems. The concluding
section summarises the potential of FM@R, and suggests possible avenues for
overcoming some of their current limitations.

2 Quantitative Verification @ Runtime

2.1 Description

Quantitative verification is a mathematically-based technique for establishing
the correctness, performance and reliability of systems that exhibit stochastic
behaviour [12]. Given a precise mathematical model of a real-world system, and
formal specifications of quantitative properties of this system, an exhaustive
analysis of these properties is performed. Example properties include the proba-
bility that a fault occurs within a specified time period, and the expected power
consumption of a computer system under a given workload.

While quantitative verification is traditionally used for the off-line analysis
of system models such as Markov chains and Markov decision processes, recent
research has successfully employed an on-line version of the technique to sup-
port self-optimisation in adaptive computer systems [13,14,15]. This approach
involves using a quantitative system model parameterised by the different sce-
narios that the system can operate in and by the different configurations that
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Fig. 1. Using quantitative verification in adaptive computer systems

can be selected for it (Figure 1). The system is monitored continuously to iden-
tify the scenario it operates in, and this monitoring information is used to fix
the scenario-based model parameters. A quantitative verification experiment is
then carried out at runtime, to assess which feasible configuration satisfies the
system objectives best for these parameter values. Finally, this configuration is
adopted automatically, thus ensuring that the system continues to achieve its
objectives as it transitions from one operating scenario to another.

The approach is applicable to systems that fulfil two requirements:

1. The system behaviour that is of relevance for the planned adaptation can be
modelled as a Markovian chain. Several examples of applications that satisfy
this requirement are described later in this section.

2. The system objectives can be expressed as combinations of formal quantita-
tive properties, i.e., properties specified in probabilistic computational tree
logic (PCTL) [16] and continuous stochastic logic (CSL) [17] for discrete-
and continuous-time Markovian models, respectively [12]. As illustrated in
the remainder of the section, this ensures that non-functional properties de-
scribing reliability, performance and cost/reward system characteristics are
supported by the approach.

2.2 Practical Realisation

The probabilistic model checker PRISM [18] and the general-purpose autonomic
computing framework GPAC [13] were used to implement the FM@R approach
from Figure 1 in a range of application domains:

– Dynamic power management [14]. The approach was used to ensure that a
Fujitsu disk drive subjected to variable workload achieved predictable re-
sponse time in an energy-efficient way. The disk drive was modelled as a
continuous-time Markov chain, and the system objectives were specified as
a combination of reward-extended [12] CSL properties.
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– Adaptive allocation of data-centre resources [19]. Runtime quantitative
verification was used to support the adaptive allocation of servers to variable-
workload clusters in the presence of data-centre component failures and
repairs. A continuous-time Markov chain was used to describe the system be-
haviour, and the required cluster reliability properties were expressed as CSL
formulas. Provably optimal server allocations guaranteed to comply with
the required reliability thresholds were achieved irrespective of the cluster
workload.

– Dynamic QoS management in service-based systems [15]. The web services
used to carry out operations within service-based systems were chosen
optimally from sets of functionally equivalent services characterised by dif-
ferent failure rates, response times and costs. A combination of discrete-
and continuous-time Markov models and of PCTL and CSL properties were
used to analyse the reliability- and performance-related system properties,
respectively.

In all these applications, the computation overheads associated with carrying
out the quantitative analysis experiments at runtime were acceptable for realistic
system sizes. For the dynamic power management of a Fujitsu disk drive, the
analysis took up to a few hundreds of milliseconds. This represents, for instance,
a fraction of the 1.6 seconds required for the disk to transition physically from the
idle state into the sleep state. The CPU overhead was in the range 1.5%-2.5%,
which was deemed acceptable for this application [14].

In the case study involving the adaptive allocation of data-centre servers,
the runtime quantitative verification took between 10–30 seconds for systems
comprising up to tens of servers [19]. This response time was acceptable because
it represented a small delay compared to the time required to provision a server
allocated to a new cluster.

Finally, using the approach for dynamic web service selection in service-based
systems was feasible for workflows comprising up to eight web service invoca-
tions. Note that many of the workflows in use by the scientific community today
do not exceed this size. For instance, the study carried out in [15] found that
over 70% of the bioinformatics workflows from the widely used myExperiment
workflow repository2 comprise between one and eight web service invocations.

2.3 Challenges

Reducing the overheads associated with runtime quantitative verification and
scaling the approach beyond small to medium system sizes represents a ma-
jor challenge. The options explored in the effort to address this challenge in-
clude a combination of software engineering techniques and novel quantitative
verification algorithms [14,15]. The former category of solutions includes the
pre-execution and/or caching of quantitative analysis experiments, and the ex-
ecution of the PRISM experiments for different requirements in parallel, e.g.,
on a multicore-processor server or on multiple machines. The latter category
2 http://www.myexperiment.org
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includes efforts for the design of iterative algorithms that derive the results of
an experiment from those of the previous ones.

Another challenge is related to the expert knowledge that is required to build
the models employed in the runtime quantitative analysis. Building a quanti-
tative model at the right level of abstraction represents a non-trivial task that
requires a good understanding of both formal modelling techniques and the
behaviour of the target system. The applications described in the previous sec-
tion were implemented by research teams with significant experience in formal
methods, who invested significant time in understanding the behaviour of the
computer systems involved in these applications. It is expected that an increase
in the teaching of formal methods by undergraduate and graduate Computer
Science programmes will enable future engineers of adaptive computer systems
to apply this FM@R approach with less need for expert support.

One last challenge that is worth mentioning here is the potential need for
a continual update of the model used by the approach. Systems that require
the ability to adapt are often affected by internal changes that modify their be-
haviour in ways that may not or cannot be captured by a static model. While
preliminary work to learn the parameter values for parameterised system mod-
els (cf. Figure 1) has been successful [20,15,21], there are multiple applications
in which systems undergo unpredictable changes that require structural model
changes (e.g., to reflect components leaving or joining the system dynamically).
Devising monitoring techniques and learning algorithms capable of dealing with
this scenario represents a major challenge.

3 Lightweight Formal Methods @ Runtime

3.1 Description

Lightweight formal methods represent techniques for the (often partial) speci-
fication of computer system requirements using mathematical notation drawn
from set theory and first-order logic [22]. Their benefits include expressing sys-
tem requirements concisely and unambiguously, and the ability to automatically
derive artifacts guaranteed to satisfy these requirements. These artifacts can be
fully-fledged software components or models of the system that the specification
describes. The derivation process is termed refinement in the former case [23]
and model finding in the latter case [24].

An FM@R approach that employs model finding was proposed in [25] and fur-
ther developed in [26]. In this approach (Figure 2), a formal specification is ob-
tained through combining formal descriptions of the characteristics, operations,
constraints, goals and state of a computer system. Model-finding techniques are
then employed to synthesise a model of the system that satisfies this specifica-
tion. The synthesised model corresponds to a system configuration that fulfils
the system goals given its current state, and is used to derive a configuration
procedure capable of reaching this target configuration without violating any
system constraints.
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The approach is applicable in system adaptation scenarios that:

1. require the synthesis of configuration change procedures (or workflows) ca-
pable of achieving given goal conditions;

2. involve the integration of information about the system components and
constraints provided by multiple domain experts.

In such scenarios, extensive discussions among the domain experts are usually
required to define a configuration change procedure that can achieve the sys-
tem goal without violating any of its critical conditions. As these discussions
are known to be time consuming and prone to errors [25], using the FM@R ap-
proach described in this section has the advantage of deriving a provably safe
configuration procedure automatically. Furthermore, organising the information
provided by different domain experts into a repository of formally and declar-
atively specified system constraints and objectives can encourage their reuse
across applications from the same domain.

3.2 Practical Realisation

The variant of the approach presented in [25,26] uses the formal specification
framework Alloy [24]. The Alloy declarative specification language is used to
define the formal specification in Figure 2, and the model synthesis is carried out
using the model finder Alloy Analyzer.3 The Alloy formal specification comprises
two parts:

1. A static part is used for the constant elements of the system. This part
consists of Alloy sig(nature) and fact constructs defining the system char-
acteristics, operations and constraints.

3 http://alloy.mit.edu/alloy4/
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Fig. 3. The variation of the number of 3-SAT clauses and the computational time with
the system size in lightweight formal methods @ runtime

2. A second part of the specification is derived at runtime. This variable part
consists of Alloy sig/pred(icate) and fact constructs that encode the sys-
tem goals and state, respectively.

The model that the Alloy Analyzer tool synthesises when supplied with this
specification is a sequence of value assignments to variables from the operation
definitions in the specification. As a result, the model maps directly on to a
sequence of configuration parameter changes satisfying all given fact declara-
tions. This represents a sequence of feasible state transitions that starts with
the current state of the system, terminates with a state that satisfies the system
goals, and does not enter any state that violates system constraints.

The approach and its application in a case study involving virtual-machine
consolidation within a cluster of physical servers are presented in detail in [26].
The experimental results in Figure 3 illustrate the computational time required
to synthesise a configuration change procedure in this case study. This graph
shows the relation between the size of the system (i.e., the number of system
components) and both (a) the number of SAT clauses to which the system
specification was reduced by Alloy Analyzer; and (b) the time spent to derive
the result by the SAT solver employed by the tool. These experimental results
show acceptable overheads for systems comprising up to 30-40 software and/or
hardware components.
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3.3 Challenges

Unsurprisingly, the main challenge of using lightweight formal methods at run-
time is the limited scalability of the approach. Although systems with up to 40
components are not uncommon in real-world applications, extending the appli-
cability of the approach to larger systems is key to its adoption.

Opportunities for taking advantage of this approach in larger computer sys-
tems do exist. One such opportunity is to improve the performance of the SAT
solvers at the core of the model synthesis process. A second opportunity is to
devise algorithms that translate formal specifications into sets of SAT clauses
comprising significantly fewer elements than the sets produced by the algorithms
currently in use within Alloy.

Some of the challenges described in Section 2.3 are also valid for the FM@R
approach described here. They include the expertise required to derive an ap-
proapriate system specification, and the need to keep this specification in step
with potential changes in the system characteristics and operations. The poten-
tial solutions for these challenges are those already presented in Section 2.3.

4 Model Checking @ Runtime

4.1 Description

Model checking represents a formal technique for verifying whether a system
satisfies its requirements [7]. The technique involves building a mathematically-
based model of the system behaviour (e.g., a Kripke structure [7] or a process
algebra model [27]), and checking that system properties specified formally hold
within this model. For each refuted property, the technique yields a counterex-
ample consisting of an execution path for which the property does not hold. The
result is based on an exhaustive analysis of the state space of the considered
model—a characteristic that sets model checking apart from complementary
techniques such as testing and simulation.

Model checking @ runtime has the potential to play two key roles in adaptive
computer systems. First, model checking techniques could be used to guide the
adaptation process by means of an approach similar to the one described in con-
text of quantitative verification in the previous section. Second, model checking
can be used to address a major concern of adaptive computer systems, namely
the correctness of the objectives specified by the administrators and users of
these systems. These two applications of model checking @ runtime are detailed
below.

Goal policies are often used to specify constraints, invariants or final-state
conditions that an autonomic computer system is required to achieve by ap-
propriately reconfiguring itself [13]. These policies comprise Boolean expressions
similar to the formally specified requirements that model checking can verify
given an appropriate model of the system behaviour. As self-adaptation requires
choosing among a set of possible configuration, model checking @ runtime has
the potential to confirm which of these configurations achieves the system goals.
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Similar to the FM@R solution described in Section 2.3, this would require the
verification of the formally specified system goals against a parameterised family
of system models. The feasibility of the approach—in terms of response time,
overhead, scalability and expressiveness—is still to be determined.

The detection and resolution of conflicts in the objectives that developers, ad-
ministrators and users specify for adaptive computer systems represents another
area in which model checking @ runtime could provide effective solutions. Un-
like the configuration procedure synthesis presented in Section 3, this approach
is suitable for identifying the conflicts between atomic “if–then”-type rules and
objectives to be achieved by an adaptive computer system. This application of
model checking @ runtime is described in more detail next.

4.2 Practical Realisation

The model checking @ runtime approach in [28,26] uses the model checker SPIN
[29] to detect conflicts in the constraint and final-state goals of an adaptive
computer system. Note that the model checking is performed at run time each
time when the Kripke structure that describes the system behaviour changes to
reflect the variable context that the system operates in. The counterexamples
generated by the model checker for each identified conflict can be used to identify
reachable system states that do not comply with its goals, and thus represent a
starting point for resolving these conflicts as indicated in Figure 4.

Using the off-the-shelf model checker SPIN (i.e., a tool not intended for run-
time use) and without effort to minimise the size of the model state space through
techniques such as model abstraction [30], the approach was shown to be appli-
cable to real-world adaptive systems comprising under ten components [28]. The
experimental results from a case study involving the detection of policy conflicts
in a utility resource management system [26] are shown in Figure 5.
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Fig. 5. Runtime detection of policy conflicts using model checking—CPU and memory
overheads

4.3 Challenges

As for the other FM@R approaches described in the paper, the main challenge
with model checking @ runtime is scalability. Work to address this challenge is
still in its very early stages. The only promising result that the authors are aware
of is the technique presented in [31], which aims at reducing the number of pos-
sible system configurations based on the system context or circumstances. The
integration of this technique within the general FM@R approach from Figure 4
has the potential to reduce the size of the analysed Kripke structure significantly,
and thus to render the approach applicable to larger adaptive systems.

5 Other FM@R-Related Approaches

Over the past decade, two research communities have carried out work that is
relevant to the runtime use of formal methods.

The Runtime Verification research community4 has been running annual work-
shops to explore techniques for the monitoring and formal analysis of program
executions since 2001. The techniques developed by this community are con-
cerned with verifying the correctness of formally-specified properties against in-
dividual execution traces or programs or runs [32]. This represents a powerful
approach to detecting violations of correctness properties after they happen and
4 http://runtime-verification.org

http://runtime-verification.org
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their associated runs are recorded. As the goal is to analyse a single run at a
time, these techniques scale well. However, unlike the model checking @ runtime
approach presented in Section 4, runtime verification cannot guarantee the lack
of constraint violations or help prevent their occurrence.

More recently, the Models@Run.Time community was formed to bring to-
gether researchers working on projects that involve the use of various types of
models at runtime. A wide range of results including new techniques and ap-
plications have been presented at the “Models@run.time” workshops organised
annually since 2005.5 These results include the use of evolutionary computation
techniques to synthesise models for evolving the configuration of systems that
need to meet changing requirements [33].

A summary of the key techniques and approaches developed by the Mod-
els@Run.Time research community is available from [34]. In addition to pre-
senting a general overview of using models in runtime environments [35], [34]
describes an approach that uses an architectural model to automate configura-
tion change in dynamically adaptive systems [31].

6 Conclusion

The computer systems of the future will increasingly face two conflicting chal-
lenges. On the one hand, they will need to adapt continually to change. On the
other hand, they will be required to provide high integrity, availability and pre-
dictability. So far, the two challenges have been addressed largely in isolation, by
different research communities. Adaptive computer systems have typically been
produced through the application of heuristics, simulation and artificial intelli-
gence techniques. In contrast, high integrity and predictability has been achieved
through the application of formal methods—often to systems that operate in
fixed scenarios, such as hardware components or communication protocols.

This paper advocates the integration of the two research areas. It is envisaged
that the use of formal methods @ runtime (FM@R) has the potential to con-
tribute to the solution of the dual challenge faced by future computer systems.
The early FM@R research summarised in the paper suggests several ways of
exploiting formal methods in the context of adaptive computer systems. Using
off-the-shelf tools, these FM@R techniques were shown to be applicable to small
or, in some cases, to medium-sized systems. In this respect, FM@R are in a po-
sition similar to that of model checking in the early to mid 1980s: the benefits
of the approach are clear, but it is hard to confidently predict whether it can
scale to large systems. Some of the avenues to explore in the search for a positive
answer to this unknown have been suggested in the paper—more effective trans-
lators of formal specifications into SAT clauses (Section 3), iterative verification
techniques (Section 2) and algorithms for reducing the state space of formal
models (Section 4). Other potential FM@R research directions include taking
advantage of assume-guarantee [36] and hierarchical [37] verification techniques
in the runtime analysis of adaptive computer system models.
5 http://www.comp.lancs.ac.uk/~bencomo/WorkshopMRT.html

http://www.comp.lancs.ac.uk/~bencomo/WorkshopMRT.html
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Pursuing these directions will require significant research effort, and achieving
their objectives will take more than isolated breakthroughs. What justifies this
undertaking is the promise of dependable and predictable adaptation—a major
stepping stone in the human quest for non-biological systems capable of learning,
adaptation, reasoning and planning.
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Abstract. Verification of complex systems specification often encoun-
ters the so-called state space explosion problem, which prevents exhaus-
tive model-checking in many practical cases. Many techniques have been
developed to counter this problem by reducing the state space, either by
retaining a smaller number of relevant states, or by using a smart rep-
resentation. Among the latter, modular state spaces [CP00, LP04] have
turned out to be an efficient analysis technique in many cases [Pet05].
When the system uses a priority mechanism (e.g. timed systems [LP07]),
there is increased coupling between the modules — preemption between
modules can occur, thus disabling local events. This paper shows that
the approach is still applicable even when considering dynamic priorities,
i.e. priorities depending both on the transition and the current marking.

Keywords: Modular state spaces, prioritised Petri Nets.

1 Introduction

State space exploration is a convenient technique for the analysis of concurrent
and distributed systems. Its chief disadvantage is the so-called state space ex-
plosion problem where the size of the state space can grow exponentially in the
size of the system.

One way to alleviate the state space explosion problem is to use modular anal-
ysis, which takes advantage of the modular structure of a system specification.
The internal activity of the modules is explored independently rather than in
an interleaved fashion. Modular state space exploration has yielded significant
efficiency gains in the analysis of systems where the modules exhibit strong co-
hesion and weak coupling [LP04, Pet05]. The benefits arise because the internal
activity of individual modules can be explored independently without consider-
ing the many possible interleavings of this internal activity. Interaction between
modules is only considered at synchronisation (or fused) transitions.

If the system has some form of priority, e.g. time, then the internal activity of
the modules is no longer independent. An earlier internal event in one module
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will precede a later internal event in another. In this way, a high priority module
may preempt all activity of a low priority module, even without interaction.
If the priority scheme is dense, e.g. real number priorities, then the priorities
may eliminate many possible interleavings of activity and modular state space
exploration will yield few benefits. However, if the priority scheme is coarse
grained, then modular state space exploration may still be of value. This is the
situation that we explore in this paper.

We consider Modular Petri Nets which incorporate a dynamic priority scheme
similar to that of Bause’s work [Bau97]. The scheme is termed dynamic because
the priority of a transition depends on the current marking, not just on the
firing mode. Bause considered the constraints on the priority scheme so that the
prioritised net would preserve liveness and home properties of the non-prioritised
net, despite having a reduced state space. By contrast, we are interested in the
possible benefits of modular state spaces for prioritised nets.

We choose a priority scheme where the greater priority value implies a higher
priority. Equally well, we could choose a priority scheme where lower priority
values indicate a higher priority. For example, if the priority value was given by
an enabling time, earlier timed events would preempt later ones.

The paper is organised as follows. After introducing the basic definitions and
notations in section 2, we adapt, in section 3, the modular state space explo-
ration technique from [CP00, LP04] to modular nets with dynamic priorities.
Associated algorithms are given in section 4, together with the formal results on
which they depend. Section 5 presents experimental results, showing the bene-
fits of the approach. Finally, section 6 summarises the contributions and gives
perspectives for future work.

2 Basic Definitions

This section introduces the basic concepts and notations used in the paper. A
parallel is drawn between the definitions of Petri nets and prioritised Petri nets,
and then between their modular extensions.

2.1 Petri Nets

We first recall the basic definitions and notations for Petri nets:

Definition 1 (Petri nets)
A Petri net is a tuple PN = (P, T, W, M0), where:

– P is a finite set of places.
– T is a finite set of transitions such that T ∩ P = ∅.
– W is the arc weight function mapping from (P × T ) ∪ (T × P ) into N.
– M0 is the initial marking, namely a function mapping from P into N.

The elements defining the Petri net behaviour can now be expressed:
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Definition 2 (Markings, enabling rule)

– A marking is a function M mapping from P into N. The set of all markings
is denoted by M.

– A transition t ∈ T is enabled in a marking M , denoted by M [t〉, iff ∀p ∈ P :
W (p, t) ≤ M(p).

– When a transition t ∈ T is enabled in a marking M1, it may occur, changing
the marking M1 to another marking M2, denoted by M1[t〉M2 and defined
by: ∀p ∈ P : M2(p) = (M1(p) − W (p, t)) + W (t, p). The set of markings
reachable from a marking M is: [M〉 = {M ′ | ∃σ ∈ T ∗ : M [σ〉M ′} where T ∗

is the transitive closure of T .

2.2 Prioritised Petri Nets

We extend the above definitions to prioritised Petri nets, where the priority of
transitions is dynamic, i.e. it depends on the current marking [Bau97].

Definition 3 (Prioritised Petri net)
A Prioritised Petri net is a tuple PPN = (P, T, W, M0, ρ), where:

– (P, T, W, M0) is a Petri net.
– ρ is the priority function mapping a marking and a transition into R+.

The behaviour of a prioritised Petri net is now detailed, markings being those of
the associated Petri net. Note that the firing rule is the same as for non-proritised
Petri nets, the priority scheme influencing only the enabling condition.

Definition 4 (Prioritised enabling rule)

– A transition t ∈ T is priority enabled in marking M , denoted by M [t〉ρ, iff:
• it is enabled, i.e. M [t〉, and
• no transition of higher priority is enabled, i.e. ∀t′ : M [t′〉 ⇒ ρ(M, t) ≥

ρ(M, t′).
– The definition of the priority function ρ is extended to sets and sequences of

transitions (and even markings M):
• ∀X ⊆ T : ρ(M, X) = max{ρ(M, t) | t ∈ X ∧ M [t〉}
• ∀σ ∈ T ∗ : ρ(M, σ) = min{ρ(M ′, t′) | M ′[t′〉ρ occurs in M [σ〉ρ}.

In the definition of ρ(M, X), the set X will often be the set T of all transitions,
in which case the T could be omitted and we could view this as a priority of
the marking, i.e. ρ(M). The definition of ρ(M, X) means that we can write the
condition under which transition t is priority enabled in marking M as M [t〉ρ,
or in the expanded form M [t〉 ∧ ρ(M, t) = ρ(M, T ). We prefer the latter form if
the range of transitions is ambiguous.

If the priority function is constantly zero over all markings and all transi-
tions, then the behaviour of a Prioritised Petri Net is isomorphic to that of the
underlying Petri Net. With this in mind, the subsequent presentation only in-
cludes definitions of prioritised constructs — the non-prioritised versions can be
deduced by setting the priority function to a constant zero value.
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Note that we choose to define priority as a positive real-valued function over
markings and transitions — the higher the value, the greater the priority. We
could equally define priority in terms of a rank function which maps markings
and transitions to positive real values, but where the smaller value has the higher
priority. This would be appropriate, for example, if the rank were an indication
of earliest firing time. Note that the dependence of the priority function on the
markings (as well as the transitions) means that the priority is dynamic.

2.3 State Spaces of (Prioritised) Petri Nets

The state space (also named occurrence graph) of a Petri net is represented as
a graph which contains a node for each reachable marking and an arc for each
possible transition occurrence. Since state spaces are defined similarly for Petri
nets without and with priorities, only the latter definition is given. The sole
difference is whether there are priorities or not for the firing rule.

Definition 5 (State space of a prioritised Petri net)
Let PPN = (P, T, W, M0, ρ), be a prioritised Petri net. The Prioritised State
Space of PPN is the directed graph PSS = (V, A), where:

1. V = [M0〉ρ is the set of vertices.
2. A = {(M1, t, M2) ∈ V × T × V |M1[t〉ρM2} is the set of arcs.

Example: The Petri net in figure 1(a) is equivalent to the modular Petri net of
figure 4. Its (full) state space is shown in figure 1(b). Note that the initial state
is shown as A1B1C1, thus indicating that place A1 is marked with a token in
module A, place B1 is marked with a token in module B, and place C1 is marked
with a token in module C. In this initial state, only transition F1 is enabled, its
occurrence leading to state A2B2C1.

A1

F1

A2

A3

C1

F3

tA

B1

C2

F2

Module A Module B Module C

B2

tB

(a) Petri net equivalent to the mod-
ular Petri net of figure 4.

A1B1C1

A2B2C1A2B2C1

A3B3C2

F1

F2

tB

F3

A2B3C2 A3B2C1

tA

F2tA

tB

(b) The full state space.

Fig. 1. The Petri net and state space of the system in figure 4
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A B CnoS(1) noGU(1) tick(1)

SU(2) GU(1)

U

Fig. 2. Simplified Petri net for device message generation

Example: The Petri net in figure 2 is a simplified version of the one considered
in more detail in figure 51. It captures part of the message-handling of a device,
such as those used on a factory floor in the Fieldbus protocol [MSF+99]. The
device cycles through states A, B and C. Place U holds one token for each
urgent message that is waiting to be sent. At each cycle, the device can send
an urgent message (if one is available) by firing transition SU, or it can choose
not to send a message by firing transition noS. Similarly, in each cycle, it can
generate an urgent message (by firing transition GU ), or choose not to generate
such a message by firing transition noGU.

The state space for this system is shown in figure 3. Here, the states are
annotated with the places which hold a token, and place U is flagged with the
number of tokens in the place. If the net is not prioritised, then the number of
urgent messages can grow without limit, as indicated by the incomplete state
space. If the transitions are prioritised (with the priorities shown in parentheses),
then transition SU has higher priority than noSU, and the greyed-out part of
the state space will be omitted.

This partial example only illustrates the value of a static priority scheme.
The value of a dynamic priority scheme is shown in the extended example of
figure 5.

A B

C

CU AU BU CU2 AU2 BU2
noS GU

noGUtick

tick

SU

tickGU GUnoS

SU

noS

noGU noGU

Fig. 3. State space for simplified Petri net for device message generation

1 The state space for the modular prioritised Petri net of figures 5 and 6 is too large
to be represented here.
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2.4 Modular Petri Nets

Modular Petri nets are defined in a similar manner to Petri nets. Unlike the
definitions of [CP00] we only consider communication through transitions.

Definition 6 (Modular Petri Net)
A modular Petri net is a pair MN = (S,TF ), satisfying:

1. S is a finite set of modules such that:
– Each module, s ∈ S, is a Petri net:

s = (Ps, Ts, Ws, M0s).
– The sets of nodes corresponding to different modules are pair-wise dis-

joint: ∀s1, s2 ∈ S : [s1 	= s2 ⇒ (Ps1 ∪ Ts1) ∩ (Ps2 ∪ Ts2) = ∅].
– P =

⋃
s∈S

Ps and T =
⋃
s∈S

Ts are the sets of all places and all transitions

of all modules, and W =
⋃
s∈S

Ws is the composite weight function defined

on all arcs.
2. TF ⊆ 2T \ {∅} is a finite set of non-empty transition fusion sets.

In the following, TF also denotes ∪tf ∈TF tf .
We now introduce transition groups for the actions of the Modular Petri Net,
both simple and composite.

Definition 7 (Transition group). A transition group tg ⊆ T consists of ei-
ther a single non-fused transition t ∈ T \ TF or all members of a transition
fusion set tf ∈ TF . The set of transition groups is denoted by TG . The transi-
tion groups which consist only of transitions in a set T ′ ⊆ T is denoted TG|T ′ .

A transition can be a member of several transition groups as it can be synchro-
nised with different transitions (a sub-action of several more complex actions).
Hence, a transition group corresponds to a synchronised action. Note that all
transition groups have at least one element.

Next, we extend the arc weight function W to transition groups:

∀p ∈ P , ∀tg ∈ TG : W (p, tg) =
∑
t∈tg

W (p, t), W (tg , p) =
∑
t∈tg

W (t, p).

Markings of modular Petri nets are defined as markings of Petri nets, over the
set P of all places. The restriction of a marking M to a module s is denoted
by Ms.

The enabling and occurrence rules of a modular Petri net can now be
expressed.

Definition 8 (Modular Petri net firing rule)

– A transition group tg is enabled in a marking M , denoted by M [tg〉, iff
∀p ∈ P : W (p, tg) ≤ M(p).

– When a transition group tg is enabled in a marking M1, it may occur, chang-
ing the marking M1 to another marking M2, defined by ∀p ∈ P : M2(p) =
(M1(p) − W (p, tg)) + W (tg, p).
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A1

A2

B1

B2

B3

C1

C2

F1

F3

F2F1

tB

F3

F2

Module A Module B Module C

A3

tA

Fig. 4. Modular PT-net with modules A, B and C

Example: Figure 4 depicts a modular Petri net consisting of three modules A,
B and C. Modules A and B both contain transitions labelled F1 and F3, while
modules B and C both contain transition F2. These matched transitions are
assumed to form three transition fusion sets.

2.5 Prioritised Modular Petri Nets

Similar to modular Petri nets, prioritised modular Petri nets can now be defined:

Definition 9 (Prioritised Modular Petri Net)
A Prioritised Modular Petri net is a tuple PMN = (S,TF , ρ), where:

– (S,TF ) is a Modular Petri net.
– ρ is the priority function mapping a marking and a transition into R+.

Transition groups are defined as for non-prioritised Petri nets. They also have
an associated priority function:

Definition 10 (Priority of transition groups). The priority function ρ is
extended to transition groups by defining it to be the minimum priority of its
elements, i.e. ρ(M, tg) = mint∈tg ρ(M, t).

Note that the definition of the priority of a transition group is somewhat ar-
bitrary. A simpler approach would have been to insist that all elements of a
transition group have the same priority. This would mean that the priority allo-
cations in one module would need to take account of the priority allocations in
all other modules with which this one might synchronise. This seems excessively
onerous in practical applications, especially since the priorities must agree for
all reachable markings. The decision to define the priority of a transition group
as the minimum over the elements has been guided by timed systems — if one
transition in a group is enabled earlier than the others, then it must wait till the
others are also enabled.
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The arc weight function W is extended to transition groups, and markings
are defined as for modular Petri nets. The firing rule in prioritised modular Petri
nets takes into account the priority of transition groups.

Definition 11 (Priority enabling of transition groups). A transition group
tg ∈ TG is priority enabled in a marking M , denoted by M [tg〉ρ iff:

– it is enabled, i.e. M [tg〉, and
– no transition group of higher priority is enabled, i.e. ∀tg ′ ∈ TG : M [tg ′〉 ⇒

ρ(M, tg) ≥ ρ(M, tg ′).

Example: Figure 5 depicts a module of a prioritised modular Petri net. It cap-
tures the message-handling of a device, such as those used on a factory floor in
the Fieldbus protocol [MSF+99]. Messages are generated by the device — ur-
gent messages (indicated by U ) need to be processed in a timely manner, while
normal messages (indicated by N ) can wait, but not too long. The device cycles
through states A, B, C and D. Place U holds one token for each urgent message
that is waiting to be sent, with a maximum of 2 (to limit the size of the state
space). The capacity can be imposed by a capacity constraint, or by the use of a
complementary place. If place N is non-empty, then there is a normal message
to be sent, and the number of tokens indicates how long it has been delayed —
it is incremented each time transition tick is fired. (This is shown as a double-
ended, dashed arc between transition tick and place N. The precise notation is
not shown to avoid clutter and because it will depend on the specific kind of
Petri net.) Again we impose an arbitrary capacity of 2 on this place.

Transition noS is local and indicates that no message is to be sent, while
transitions SU and SN are fused to others in the environment (as indicated by
the bold outlines) and denote that an urgent or a normal message is sent to
some controller module. Transition noGU indicates that no urgent message is

A B C DnoS noGU noGN tick

SU

SN

GU GN

U

N

Fig. 5. Module of a prioritised PT-net for the message-handling of a device
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Idle

HandleUrgent HandleNormal

Fig. 6. Module of a controller to receive messages from the devices

generated in this cycle, while transition GU indicates that an urgent message
is generated. Similarly, transitions noGN and GN relate to the generation of
normal messages. (Note that the diagram is again simplified to avoid clutter.)

We attach a priority of 1 to all local transitions. The priority of transition
SU is set to the number of pending urgent messages plus 1, while the priority
of transition SN is set to the number of ticks that the normal message has been
waiting. Thus, if an urgent message is waiting and no normal messages, then
transition SU has priority over noS. However, if the controller is not ready to
receive the urgent message, then transition noS will fire. Similarly, if there is no
urgent message but there is a pending normal message, then that message will
be sent (by firing transition SN ) if it has been waiting for more than 1 cycle,
or it may be sent if it has been waiting only 1 cycle. Again, a normal message
which has been waiting at least 2 cycles, may compete for processing with an
urgent message which has only just been generated.

Figure 6 depicts a trivial controller for accepting the messages from a device.
It has one transition to handle each of the urgent and normal messages, and we
may assume that these transitions have the same priority.

3 Modular State Spaces

In the definition of modular state spaces, we denote the set of states reachable
from M by occurrences of local (non-fused) transitions only, in all the individual
modules, by [[M〉.

The notation with a subscript s means the restriction to module s, e.g. [M〉s
is the set of all nodes reachable from global marking M by occurrences of transi-
tions in module s only (excluding fused transitions). We will also use lower case
m to refer to the local marking of a module.

We use M1[[σ〉〉M2 to denote that M2 is reachable from M1 by a sequence
σ ∈ (T \ TF )

∗
TF of internal transitions, followed by a fused transition, i.e.

σ = σ′tf and M1[[σ′〉M ′
1[tf 〉.

The definition of a modular state space consists of two parts: the state spaces
of the individual modules and the synchronisation graph. We can now present
the definition of modular state spaces for prioritised modular Petri nets. The
definition of a modular state space for modular Petri nets given in [CP00] uses
strongly connected components for optimisation and efficiency purposes. How-
ever, the computational benefits of using local strongly connected components
are negated by the need for local activity to abide by the global priority func-
tion. Hence, strongly connected components are not used in prioritised modular
state spaces. Therefore, we will avoid cluttering the paper with the definition of
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modular state spaces (see [CP00, LP04]), and will directly formulate the priori-
tised version.

In order to be able to focus on the local context of an individual module,
we need to have a localised priority function which is consistent with the global
priority function.

Definition 12 (Consistency and locality of priority functions)
Let PMN = (S,TF , ρ) be a prioritised modular Petri net.

– The priority function ρ is consistent iff ∀s ∈ S : ∀t ∈ Ts : ∀M, M ′ : Ms =
M ′

s ⇒ ρ(M, t) = ρ(M ′, t).
– Given a consistent priority function ρ, we define local priority functions ρs as

the projection onto the local marking, i.e. ∀t ∈ Ts, M : ρs(Ms, t) = ρ(M, t).

Thus, with a consistent priority function, the priority of a local transition is
determined solely by the local marking. If this were not the case, the modularity
of the system would be seriously flawed, and the local state space could not be
explored without reference to the global state of the system. If it were desired
for a local transition to have a priority depending on some global state, then
that transition ought to be synchronised with another transition having access
to that state.

We can now define the modular state space for prioritised modular Petri nets.

Definition 13 (Prioritised modular state space). Let PMN = (S,TF , ρ)
be a Prioritised Modular Petri net with the initial marking M0. The prioritised
modular state space of PMN is a pair PMSS = ((PSS s)s∈S ,PSG), where:

1. PSS s = (Vs, As) is the prioritised local state space of module s:
(a) Vs =

⋃
v∈(VPSG)s

[v〉ρs
s .

(b) As = {(M1, t, M2) ∈ Vs × (T \ TF )s × Vs |M1[t〉ρsM2}.
2. PSG = (VPSG , APSG) is the prioritised synchronisation graph of PMN :

(a) VPSG = [[M0〉〉ρ ∪ {M0}.
(b) APSG = {(M1, (M ′

1, tf ), M2) ∈ VSG × ([M0〉ρ × TF ) × VSG |
M ′

1 ∈ [[M1〉ρ ∧ M ′
1[tf 〉ρM2}.

Explanation:

(1) The definition of the state space graphs of the modules is a generalisation of
the usual definition of state spaces.

(1a) The set of nodes of the state space graph of a module contains all states
locally reachable from any node of the synchronisation graph.

(1b) Likewise, the arcs of the state space graph of a module correspond to all
priority enabled internal transitions of the module.
(2) Each node of the synchronisation graph is a representative for all the nodes
reachable from M by occurrences of local transitions only, i.e. [[M〉ρ. The syn-
chronisation graph contains the information on the nodes reachable by occur-
rences of fused transitions.



146 C. Lakos and L. Petrucci

(2a) The nodes of the synchronisation graph represent all markings reachable
from another marking by a sequence of internal transitions followed by a fused
transition. The initial node is also represented.

(2b) The arcs of the synchronisation graph represent all occurrences of fused
transitions.

The state space graphs of the modules only contain local information, i.e. the
markings of the module and the arcs corresponding to local transitions but not
the arcs corresponding to fused transitions. All the information concerning these
is stored in the synchronisation graph.

It is important to note that the above definition, in contrast to [CP00], intro-
duces a disconnect between the local state spaces and the synchronisation graph.
It is not immediately apparent how the computation of the local state spaces in
Def. 13 part 1, and specifically of [v〉ρs

s , is used to compute the synchronisation
graph in Def. 13 part 2, and specifically [[M1〉ρ. This is a significant algorithmic
issue which is addressed Section 4.

Example: The modular state space for the modular PT-net of figure 4 is shown
in figure 72. Note that there is a local state space for each module, as well as a
synchronisation graph which captures the occurrence of fused transitions.

A1B1C1

A2B2C1

A2B3C2A2B3C2

A1B1C1,F1

A2B2C1,F2

A3B3C2,F3

Sync. GraphModule A Module B Module C

A1 B1

B2 tB

C1

C2

B3

A2

A3

tA

B2

Fig. 7. The modular state space of the system in figure 4

In [Pet05], several experiments were conducted, showing that the size of the
modular state space is significantly reduced (compared to the size of the flat
state space) when the modules exhibit strong cohesion and weak coupling.

The efficiency gains achievable from modular state spaces arise from the ability to
explore local state spaces (of modules) independently, and then combine them
via the synchronisation graph to form a composite state space. If desired, a
2 The example being a modular Petri net without priorities, the definition of modu-

lar state spaces (with strongly connected components) from [CP00] should be used.
However, since in that particular case, strongly connected components always con-
tain a single node, the modular state space is also obtained using Def. 13 without
considering priorities.
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full unfolded state space can be generated from the modular state space (as
in Def. 14), though it is computationally more efficient to analyse the system
without enumerating all possible interleavings.

Definition 14 (Unfolded state space). Given a prioritised modular Petri
net PMN = (S,TF , ρ) and its modular state space PMSS = ((PSS s)s∈S ,PSG),
then the unfolded state space of PMSS is SS = (V, A) where:

1. V =
⋃

v∈VPSG

[[v〉ρ.

2. A =
⋃

(v,(m,tf ),v′)∈APSG

{(m, tf , v′)} ∪
⋃

m∈V,s∈S,(ms,t,m′
s)∈As,ρ(m,t)=ρ(m,TG)

{(m, t, (m + m′∗
s ) − m∗

s)},

where m∗
s(p) = ms(p) for p ∈ Ps and m∗

s(p) = 0 for p ∈ P \ Ps.

The above definition is similar to that of [CP00], except for the addition of
priorities. Specifically, part 1 considers states reachable from v by transitions
respecting the global priority function, and part 2 considers individual transitions
satisfying the same constraint, captured as ρ(m, t) = ρ(m,TG).

The theorem which states the equivalence of the above unfolded state space
and the state space of the equivalent non-modular Petri net carries over with
only minor changes since both state spaces reflect the priority scheme.

4 Algorithms

In general, modular state spaces can alleviate the state space explosion provided
it is possible to construct the modular state space and determine properties
based on this state space without needing to explore the possible interleavings of
activity between multiple modules, i.e. without having to generate the unfolded
state space of Def. 14.

With prioritised modular nets, this is less straightforward because the priority
function imposes a global constraint on the behaviour of individual modules. The
use of prioritised modular state spaces to determine system properties is the
subject of further work. Here, we consider the construction of these prioritised
modular state spaces.

The definitions of section 3 are consistent with the definitions of [CP00] but
they hide a key computational issue — it is assumed that the computation of
[[M1〉ρ in Def. 13 part 2 is supported by the computation of the local state
spaces in part 1. (A similar comment applies to the computation of [[v〉ρ in
Def. 14 part 1.) In other words, the computation of local state spaces is as-
sumed to help determine the global markings reachable from a synchronisation
node by the firing of non-fused transitions alone. In the case of non-prioritised
modular nets, this is straightforward — localised transition sequences from a
synchronisation node can be interleaved in any order. With prioritised modu-
lar nets, the interleaving is constrained by the priority function. Accordingly, we
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need to know whether the local state space, computed with the localised priority
function ρs, contains all the information necessary to compute the interleaved
sequences, and then we need to know how to compute such priority-respecting
interleaved sequences in an efficient manner. These two questions are addressed
in Lemma 1 and Proposition 1, respectively.

Lemma 1. Given a prioritised modular Petri net PMN = (S,TF , ρ) with a
consistent priority function ρ, M [[σ〉ρM ′ implies Ms[σs〉ρs

s M ′
s for all s ∈ S,

where σs is the restriction of σ to the internal transitions of module s.

Proof. If one ignores the priorities, then it clearly follows that M [[σ〉M ′ implies
Ms[σs〉sM ′

s forall s ∈ S. In other words, we can split the composite sequence into
subsequences for each module. Now, if the priorities are taken into account, then
the only way that the result would not hold is that one of the local sequences
includes a transition which is not (locally) of maximum priority. But, if it is of
maximum priority in the global sequence, then it must be of maximum priority
in the local sequence (without fused transitions), in view of the fact that ρ is
consistent. ��
A consequence of the lemma is that any priority-respecting transition sequence
formed from non-fused transitions has its counterpart in local priority-respecting
transition sequences of the individual modules. In other words, the local state
spaces of Def. 13 part 1 contain all the information necessary to compute [[M1〉ρ
in Def. 13 part 2, and sometimes even more information.

It is important to note that the above lemma means that transitions in local
state spaces are provisional, in the sense that they will not necessarily appear
in the unfolded state space. This is because their enabling in the unfolded state
space depends on the priorities of transitions in other modules. On the other
hand, transitions in the synchronisation graph do carry over into the unfolded
state space, because these already consider global conditions.

Example: The (abbreviated) state space of Fig. 8 captures both the local state
space for the Device module of Fig. 5 and the unfolded state space for the system
consisting of the Device and Controller modules of Figs. 5 and 6. The states are
encoded as a letter (to indicate which of the places A to D is marked), followed
by the number of tokens in place U (which is the number of pending urgent
messages), followed by the number of tokens in place N (which is the number of
ticks that a normal message, if any, has been waiting). For example, state C12
means that place C is marked, there is one urgent message pending, and there
is a normal message that has been waiting for at least 2 ticks. Note that dashed
arcs indicate that the state is dealt with elsewhere (to avoid many crossing arcs).

For the local state space of the Device module, the synchronised transitions
SU and SN of Fig. 8 would not be included — they would only appear in the
synchronisation graph. Further, based solely on local information, we cannot be
sure whether the transitions shown with dotted arcs will be preempted or not.
Thus, in state A01, the sending of the normal message competes at the same
priority as the transition not to send a message. On the other hand, in state A02,
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A0- B0- C0- D0- A0-
noS noGU noGN tick

C1- D1- A1-

GU
noGN tick

D00 A01GN
tick

D10 A11GN
tick

A01 B01 C01 D01 A02
noGU noGN tick

C11 D11 A12GU noGN tick

A02 B02
noS

B0-

SN

A1- B1- C1-
noS noGU

C02 D02 A02
noGU noGN tick

C12 D12 A12GU noGN tick

B0-

SN

C2- D2- A2-GU noGN tick

D20 A21GN
tick

B0-

SU

A11 B11
noS

C21 D21 A22GU noGN tick

B01

SU

C11 D11
noGU noGN

A12 B12
noS

C22 D22 A22GU noGN tick

B02

SU

C12 D12
noGU noGN

B1-

SN

B1-

SN

noS

A2- B2- C2-
noS noGU

B1-SU

A21 B21
noS

B11SU

C21 D21
noGU noGN

A22 B22
noS

B12

SU

C22 D22
noGU noGN

B2-

SN

B2-

SN

D20GN

Fig. 8. Local state space of a prioritised PT-net
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transition SN is of higher priority, but its enabling depends on the enabling of
the fusion partners, and hence the alternative noS needs to be included as well.

The fusion of the Controller net with the Device net leads to the same net
structure except for the addition of the place Idle. Hence the unfolded state space
of the composite system is as shown in Fig. 8, except that the dotted arcs (with
italic annotations) are omitted because global knowledge of the priorities allows
us to deduce that these transitions are preempted by others of higher priority.

Lemma 1 showed that the local state spaces of Def. 13 part 1 capture all the
behaviour required to compute [[M〉ρ of part 2. We now identify a property that
allows it to be computed in an efficient manner.

We first introduce some auxiliary terminology:

Definition 15. Given a prioritised modular Petri net PMN = (S,TF , ρ), and
given a local execution sequence m[σ〉ρs

s m′ in module s, m′ is a synchronisa-
tion point if m′ priority enables the local component of a fused transition, i.e.
∃f ∈ Ts ∩ TF : m′[f〉ρs

s . Intermediate synchronisation points are (potential)
synchronisation points in σ prior to m′. A realised synchronisation point is one
that is matched by appropriate synchronisation partners.

t f

m'

Fig. 9. A synchronisation point

The above definition may be clarified by the example of Fig. 9. Having arrived
at local marking m′ (which is part of a global marking M ′), we may find both
a local transition t and a transition f , part of a fused transition tf , enabled.
If ρs(m′, f) < ρs(m′, t), then f cannot be priority enabled whatever the situ-
ation with the synchronisation partners. (Recall Def. 10 where the priority of
a transition group is the minimum of the priorities of the constituent transi-
tions.) Alternatively, if ρs(m′, f) ≥ ρs(m′, t), then f is priority enabled locally
but tf may not be priority enabled globally. This may be because the synchro-
nisation partners do not enable their component of the fused transition at the
same time, or because the priority of the transition group is decreased so that
ρ(M ′, tf ) < ρs(m′, t).

Proposition 1. Given a prioritised modular Petri net PMN = (S,TF , ρ), and
given local execution sequences σ1, σ2, ... such that M1[σ1〉ρ1

1 M ′
1, M2[σ2〉ρ2

2 M ′
2,

... then there is a composite execution sequence σ with M [σ〉ρM ′ if ∃s ∈ S :
ρs(Ms, σs) = min{ρ1(M1, σ1), ρ2(M2, σ2), ...} ≥ ρ(M ′,TG |T\Ts

), provided no
preempting intermediate synchronisation points of σ1, σ2, ... are realised in σ.
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Proof. The local sequences can be combined using a simple merge algorithm
— at each step, the transition at the head of the local sequence with highest
priority is removed and added to the composite sequence. The choice is only
non-deterministic when multiple local sequences have, as head, transitions with
the same maximum priority. In this case, choose any one not in module s. Note
that the non-deterministic choice only affects the order of interleaving and not
the final reached marking.

Recall from Def. 3 that the priority of a sequence is the minimum priority
of its constituent transitions. So, if the marking M ′ has priority less than or
equal to the priority of all the local sequences, then the transitions of every
local sequence will be added to the composite sequence before any transition
enabled in marking M ′. If this is not the case, we can still allow a module to
have a sequence with minimum priority less than ρ(M ′,TG), provided that that
sequence enables the relevant transitions in marking M ′, i.e. those with priority
ρ(M ′,TG). ��
Corollary 1. In determining whether a fused transition is enabled, we only need
to know the priority of the sequences leading to the synchronisation point and
not the sequences themselves.

We are normally interested in merging local sequences only when it comes time
to consider whether a fused transition is enabled. The above proposition and
corollary mean that we need only consider the priority of the local sequences
leading from one synchronisation point to the next, together with the priorities
of the associated sequences.

Further, if we have a priority scheme where the priorities are non-increasing,
then the priority of a sequence is given by the priority of the last element of the
sequence.

The above formal results provide the foundation for the following algorithms
to compute the modular state space. These algorithms are refined versions of
those presented in [LP07] for Modular Timed Petri Nets.

Algorithm 1 computes the synchronisation graph, while algorithm 2 computes
the local state space for module i. Both follow the common pattern of maintain-
ing a set of as-yet unexplored markings, called Waiting. Each iteration of the
main loop explores the transitions enabled in these markings, adds new arcs to
the relevant state space with the function Arc.Add(...), and adds new nodes
to the state space and to Waiting with the function Node.Add(...).

In algorithm 2 the local markings are stored together with their preceding
synchronisation point — the notation M ′

i [〉pM ′′
i represents local marking M ′′

i

which is reached from a preceding synchronisation point M ′
i with a local transi-

tion sequence of priority p. For consistency, a zero length sequence has priority
∞. Lines 8–11 consider the local components of fused transitions — if they are
(locally) enabled, then they are added to the eventual result trysynchi and the
marking is identified as a synchronisation point. Lines 12–20 then consider inter-
nal transitions. The first alternative deals with the situation where the transition
enabling is not dependent on the realisation of a synchronisation point, while
in the second alternative, the enabling is dependent on such a realisation, and
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Algorithm 1. Prioritised synchronisation graph.
set Waiting ← ∅;1
Node.Add(M0,∞);2
repeat3

forall (M, p) ∈ Waiting do4
Waiting ← Waiting \{(M, p)};5
∀i : trysynchi ←Explore(Si, Mi);6
forall tf ∈ TF do7

forall M ′ s.t.8
∃i : (tf ∩ Ti 	= ∅ ∧9

∀j : (σj = Mj [〉qj1Mj1[〉qj2 ...[〉qjn Mjnj ⊆ trysynchj ∧10
((tf ∩ Tj 	= ∅ ∧Mjnj = M ′

j ∧M ′
j [tf 〉 ∧11

ρj(σj) ≥ ρi(σi) ∧ ρ(M ′, tf ) ≥ ρj(M
′
j , Tj \ TF )) ∨12

(tf ∩ Tj = ∅ ∧M ′
j ∈ [Mj,nj 〉j ∧ ρj(M

′
j) ≤ ρi(σi) ≤ ρj(σj))) ∧13

ρi(σi) ≥ ρ(M ′,TG |T\Ti
) ∧14

no preempting intermediate synch points are realised))15
do16

if M ′[tf 〉M ′′ ∧ ρ(M ′, tf ) = ρ(M ′,TF ) then17
Node.Add(M ′′, min(p, ρ(M ′, tf )));18

Arc.Add(M [(M ′, tf )〉ρ(M′,tf )M ′′);19

endif20

endfall21

endfall22

endfall23

until stable ;24

hence the new marking is paired with this synchronisation point. The result of
a call to Explore(Si, Mi) is a set of candidate synchronisations which record
the preceding synchronisation point and the priority of the transition sequence
leading from one to the other.

In algorithm 1, the central loop (in lines 8–22) tries to match up the candidate
synchronisations so that they satisfy the condition of proposition 1. It considers
a subset of the elements returned by each call to Explore(Si, Mi), treating
them as a composite sequence from local marking Mi to local marking M ′

i with
all intermediate synchronisation points identified. In detail:

– Line 9 identifies one of the synchronisation participants — as we shall see
below, it is the one with minimum priority sequence.

– Line 10 considers the sequences of local transitions for all modules. In an
abuse of terminology, a set of abstract edges from the module is concatenated
together to form a sequence, which we then refer to as σj which technically
should be the sequence of transitions (without the intermediate markings).

– Lines 11–12 consider modules participating in the synchronisation — the
end of the returned sequence enables tf locally, the priority of the sequence
is greater than that from module i, and at the end of the sequence, no local
transition will (necessarily) preempt the firing of tf .
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– Line 13 considers modules not participating in the synchronisation — they
reach an end point which can lead locally to a marking compatible with the
synchronisation, i.e. where the module will wait for the synchronisation.

– Line 14 requires that the minimum priority of module i is greater than
the other priorities at the synchronisation point, i.e. so that module i can
catch up.

– Line 15 requires that no intermediate synchronisation points are realised,
the intermediate synchronisation points being the markings identified in the
sequences at line 10. We can determine whether any of these intermediate
synchronisation points are realised by applying the same logic as above.

Algorithm 2. Prioritised local state space — Explore(Si, Mi).
set Waitingi ← ∅;1
set trysynchi ← ∅;2
Node.Add(Mi[〉∞Mi);3
repeat4

forall (M ′
i [〉pM ′′

i ) ∈ Waitingi do5
Waitingi ← Waitingi \ {(M ′

i [〉pM ′′
i )};6

synchpt ← false;7
forall tf ∈ TF ∩ Ti, M ′′

i [tf 〉, ρi(M
′′
i , tf ) ≥ ρi(M

′′
i , Ti \ TF) do8

trysynchi ← trysynchi ∪ {(M ′
i [〉pM ′′

i , tf )};9
synchpt ← true;10

endfall11
forall ti ∈ Ti \ TF , M ′′

i [ti〉M ′′′
i , ρi(M

′′
i , ti) = ρi(M

′′
i , Ti \ TF ) do12

if ¬synchpt ∨ρi(M
′′
i , ti) = ρi(M

′′
i , Ti) then13

Node.Add(M ′
i [〉min(p,ρi(ti))M ′′′

i );14

Arc.Add(M ′′
i [ti〉ρi(ti)M ′′′

i );15

else16
Node.Add(M ′′

i [〉ρi(ti)M ′′′
i );17

Arc.Add(M ′′
i [ti〉ρi(ti)M ′′′

i );18

endif19

endfall20

endfall21

until stable ;22
return trysynchi23

5 Results

The Maria tool [Mäk02] was extended with dynamic priorities along the lines of
the algorithms in Section 4. Here, we consider some of the results produced with
this prototype implementation. The results were produced on a Mac Pro with two
2.66 GHz dual-core Intel Xeon processors and 2 GB memory. Note that this is not
a complete implementation but it is sufficient to provide a proof of concept.
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Table 1. State space results for device message handling

Modular state space Unfolded state space
Devices Nodes Arcs Sec KB Nodes Arcs Sec KB

1 7 42 0.009 2.8 39 58 0.005 3.7
2 39 48 0.061 11.4 1441 3482 0.074 100.2
3 343 6,174 0.565 101.9 51,304 156,609 3.643 4,205.5
4 2,401 57,624 5.412 912.6 178,2011 6,264,028 196.140 164,439.5
5 16,807 504,210 51.856 7,902.5 — — > 3320 > 2,570,457.13

A simple example of message-handling for devices, such as those used on the
factory floor in the Fieldbus protocol [MSF+99], was introduced in Section 2.
The state space sizes and machine resource requirements are shown in Table 1.

On the left are the results for the modular state space for between 1 and 5
devices. The number of nodes and arcs are the figures for the synchronisation
graph, while the time and space requirements (in seconds and kilobytes) are for
the construction of the entire modular state space. The size of the state space
for each module is 39 nodes and 48 arcs. This is similar to the flat state space
for 1 device. Note, however, that the local state space does not include the fused
transitions, while the flat state space will record their occurrence.

On the right of the table are the results for a flattened system, i.e. the unfolded
state space. Note that memory was exhausted for 5 devices.

It might be argued that if the devices were identical, then symmetry reduction
would probably give similar, if not better, results. However, if the devices were
not identical, then the modular state space exploration would still be effective.

6 Conclusions

The modular state space technique [CP00] proves to give good results in practical
cases [LP04, Pet05] to alleviate the state space explosion problem. This technique
is designed to handle nets where modules communicate through transition fusion,
i.e. synchronise. The technique is particularly efficient when the system modules
exhibit strong cohesion and weak coupling.

In practice many systems use some kind of priority mechanism, either im-
plicit or explicit. This is the case when there are timing constraints or when
some events should be executed before others, once they are enabled (e.g. in
scheduling problems). The priority used may either be static, i.e. it is fixed for a
given transition and will never change during the life of the system, or dynamic,
meaning that it does not depend solely on the transition involved, but also on
the current marking.

In this paper, we have first introduced modular Petri nets with dynamic pri-
orities and then adapted the modular state space technique to these nets. This
involved defining the priority for synchronisation transitions in a way which is
consistent with both practical and theoretical concerns. The resulting modular
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state space with priorities contains more states than necessary since part of the
preemption due to priorities cannot be known a priori. Some preliminary re-
sults have been generated from a partial implementation. These results provide
a proof of concept for the proposals. A fully-fledged implementation is required
to produce more extensive comparative results.

One could consider other alternatives for the priority of synchronisation tran-
sitions. Motivated by a consideration of timed systems, we set the priority of syn-
chronisation transitions to be the minimum of the priorities of the constituent
transitions. Instead, it could be set to the maximum. In this case, the preemption
rules would change — if the local component of a synchronisation transition had
priority greater than that of a local transition, then preemption would always
occur. On the other hand, if the local component of a synchronisation transition
had lesser priority than that of a local transition, then preemption may still
occur. This change would not affect the propositions, but would require changes
to the logic of the presented algorithms.

Further work is required on both theoretical and practical issues. We should
study the use of prioritised modular state spaces to prove system properties.
In order to verify some properties, it will be necessary to locally unfold part of
the state space, so as to get rid of the spurious states, while other properties
will be directly verified on the modular structure. Then, we intend to apply
the technique to a large case study. An appropriate example is the avionics
mission system from [PKBQ03], which includes both timing constraints and
explicit priorities of tasks to be scheduled on CPUs within a certain time frame.
Another example with both timing constraints and priorities is the Fieldbus
protocol [MSF+99], which provided the motivating example of message handling
in Section 2.
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Abstract. The problem frame approach allows to precisely pin the soft-
ware development problems before starting to work on them, thus avoid-
ing to solve the wrong problems. Furthermore, the problem frames allow
to develop tailored methods and schematic solutions to handle the tasks
required to solve the corresponding problems. In this paper we adopt
this approach to study the problem of developing a large class of soft-
ware systems able to translate in different ways some inputs in outputs
(e.g., hybrid mail or big brothers filtering digital communications for sus-
picious words). Our interest in this kind of systems has been prompted
by a cooperation with a big company producing systems of this kind and
by their search of techniques and approaches to handle predictable and
unpredictable changes. We want to investigate how and if the problem
frame based approach will help to master the aspects relative to pre-
dictable and unpredictable changes in the context, in the domain and in
the requirements. We thus present the Multi-Translation Frame.

1 Introduction

Evolvability, i.e., the ability to evolve software over time to meet the changing
needs of its stakeholders, is one of the principal challenges currently facing soft-
ware engineering1. Software architecture decay over the years, aged programming
languages, software written by other developers, all contribute to create what is
typically an evolution nightmare. In the literature, this challenge has been faced
in several ways. Among the several proposals, the more accredited is building
from scratch the system using specific and rigorous techniques/methodologies
for evolvability [4,6,17]. While we share with these authors the same forward en-
gineering vision, we propose a frame-driven development approach [15] to cope
with evolvability problems.

Our interest in evolvability has been prompted by a cooperation with a local
big company producing various kinds of complex systems. One of them, is the
hybrid mail system XYZ2. XYZ is used by the postal organizations that offer
1 Third International IEEE Workshop on Software Evolvability at IEEE International

Conference on Software Maintenance (ICSM) Paris, France 1 October 2007
http://homepages.feis.herts.ac.uk/~comqcln/EN/

software evolvability07.html
2 For privacy reason, we cannot report here the name of the system.

R. Calinescu and E. Jackson (Eds.): Monterey Workshops 2010, LNCS 6662, pp. 157–175, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://homepages.feis.herts.ac.uk/~comqcln/EN/
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their customers — mainly big companies such as banks — specific services to
produce big amounts of electronic/physical mail (e.g., invoices and bank state-
ments) starting from electronic data files. Therefore, the main activities of a
hybrid mail system are: receiving customer data in several formats (e.g., XML
and PDF), processing them to produce the required mails and printing them
(close to their final destinations). Afterwards, the produced physical mails are
supplied to a logistics service for the delivery.

The main problem of this company is handling in reasonable time predictable
and unpredictable changes in XYZ. Predictable changes can be forecasted by
looking at the current domains and at the requirements of the system, instead
unpredictable changes cannot be imagined (e.g., a new law changing the business
rules of XYZ is promulgated).

In this paper we propose the motto “developing for change” to characterize a
software development method able to cope with the changes that may be required
in the future by the stakeholders. In some sense we try to enlarge the scope of
the old motto “design for change” [20,19] trying to cover also the other phases
and activities of the software development. Moreover, we investigate how and
if a frame-driven approach, a cornerstone of our principle, will help to master
the aspects relative to predictable and unpredictable changes. Following the
indications of Jackson, who claims that a clear understanding of requirements
(the problem) is crucial to building useful systems, and that to evolve successfully,
their design must reflect problem structure, we have created a specific problem
frame called Multi-Translation Frame (shortly MTF). The MTF offers the first
help for structuring, abstracting and documenting and thus follows, during the
development of a system, the “developing for changes” principle. Moreover, to
better explain our proposal, we have used, as running example, a simple toy case
called Toy-HMS. Toy-HMS is a toy example of a hybrid mail system and, at the
same time, an instantiation of the MTF.

The paper is organized as follows. Sect. 2 describes both the MTF and its
instantiation Toy-HMS, also showing the use of the frame to qualify the types of
the possible changes. Sect. 3 illustrates our approach “developing for change”,
based on the MTF, by sketching the Domain Modeling, the Requirement Spec-
ification and the Design development phase for the Toy-HMS and then showing
how to cope with possible changes. Finally, Sect. 4 presents some related works
and concludes the paper.

2 Proposal of a Specific Problem Frame

M. Jackson “Problem Frames” [15] are a good tool to tackle with a first struc-
turing of software development problems. For each problem frame, a diagram is
settled, showing the involved domains, the requirements, the design, and their in-
terfaces. Five basic problem frames, plus some variants, have been originally pro-
vided by M. Jackson in [15]. Other problem frames have been recently proposed
together with some extensions to the original notation for the frame [10,11].
Problem frames are also presented with the idea that, once the appropriate
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problem frame is identified, then the associated development method should be
given “for free”, as shown in [10,11] where development methods based on the
UML are provided for the various frames.

In problem frames presented by M. Jackson, there is a distinction between
existing domains and the system to be built as a new part in that world. This
implies that the various entities considered in the existing domains are not mod-
ified (or removed) when the new system is introduced.

Following Jackson’s notation, different types of domains are used to represent
the frames. As shown below, a machine domain (the software to be built) is
denoted by a box with a double stripe, a designed domain (data structures or
subsystems that may be freely designed and specified) by a box with a single
stripe, and a given domain (a problem domain whose properties are given) by a
box with no stripe. To help to grasp this classification consider these examples:
the commands sent to the system controlling a dam can be changed up to some
extent, e.g., by using different ways to name them or add shortcuts for special
cases or combinations of commands and they were designed by someone, this is
a case of designed domain. The dam is a given domain since in the dam control
frame it is assumed that the dam is not going to be modified.

Designed DomainMachine Domain Given Domain

Letters in the lower right corner reflect a coarse classification of domains, or-
thogonal with the previous one: - lexical (data), biddable (people or systems,
with no predictable internal causality), or causal (predictable causality, control-
ling and controlled by some phenomena).

Biddable DomainLexical Domain Causal Domain

X B C

A solid line connecting two domains is an interface of shared phenomena. Be-
low, phenomena ph1 is controlled by domain D1 and is shared between domains
D1 and D2.

D1 D2
D1!ph1(args)

Requirements are denoted by a dashed oval. Dashed lines connect a domain
and a requirement (constraining if with an arrow).
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D1 D2
ph1(args)

Requirements
ph2(args)

A frame diagram is a graph the nodes of which are domains, and its arcs are
interfaces of shared phenomena. A problem frame is a particular frame including
at least a machine and a requirement.

It is possible to connect several domains with an hyper-arc to denote a com-
plex interaction built out of various basic phenomena, that we name composite
phenomena [11]; in the picture below CPH is a composite phenomenon cor-
responding to a complex interaction among three domains, and involving the
shared phenomena ph1, ph2 and ph3 (where D1 is responsible to initiate the
interaction by means of the shared phenomena ph1).

D1

D2

!ph1(...)

CPH

?ph2(...)

D3
?ph3(...)

2.1 MTF: A Problem Frame for Multi-translation

For the multi-translation we propose a specific problem frame called MTF. The
MTF offers the first help for structuring, abstracting and documenting and thus
follows the principle of “developing for changes”. Precisely, it provides: the
separation between the translation rules and the dispatch rules, their explicit
description and the possibility to find the commonalities among the produc-
ers/consumers/input/output data.

Fig. 1 presents the MTF using the M. Jackson notation [15] together with the
extensions of one of the authors for the composite phenomena [11].

The input and the output data are given lexical domains, whereas the pro-
ducers and the consumers are given biddable domains, but here for simplicity
we omit to mark them with the letters in the lower right corners.

In the MTF there are various kinds of input data (domains ID1, . . . , IDh)
generated by producers of various kinds (domains Prod1, . . . , Prods) and of
output data (domains OD1, . . . , ODk) that will be sent to consumers of different
kinds (domains Cons1, . . . , Consr)3. For simplicity we represent only a generic
representative of these series of domains in Fig. 1.

The Multi-Translator is the machine (i.e., the system to be built, denoted by a
box with a double stripe on the left); it receives some input data from some pro-
ducers (complex interaction INPUT, whereas send(idx) is a shared phenomenon
3 In the most general form of MTF, some input and some output data are given but

the remaining ones are designed; for simplicity here we assume that all of them are
given, but this distinction may be relevant for the coping with the changes, in such
cases a richer version of the MTF should be developed.
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Fig. 1. Multi-Translation Frame (MTF)

having an argument typed by IDn and Prodi has the responsibility to initiate
the sharing) and gives out some output data to some consumers (complex in-
teraction OUTPUT). In this frame the requirements are split in two parts: the
TranslationRules that define the relationships between input data with their pro-
ducers and the resulting sets of output data, whereas the DispatchRules determine
to which consumer send the output data. In the picture a dashed line means that
a domain is referred in the requirement (thus the TranslationRules refers also to
the producers and to the input data, and since the current situation of existing
producers may affect the choice of the consumers to whom send an output data,
the DispatchRules refer to the Consumers), whereas a dashed line with arrow head
means that the requirement may affect a domain (thus an output data may be
affected by the TranslationRules and a consumers by the DispatchRules).

We assume that the number and the kinds of the producers and of the con-
sumers may vary dynamically while the system is running (for example some new
one may appear and some may disappear, but their types are already known);
thus the context of the system may change and so the machine must be a context
aware system, able to cope with the changes in the context.

A Hybrid Mail System (HMS) can be viewed as an instantiation of the MTF.
As we have already said, HMSs are postal systems used to compose and print
mails close to their final destinations4. These systems are called Hybrid Mail
systems because transform mails/data given in “electronic” form to “physi-
cal/papery” mails. As particular case of MTF an HMS: (i) requires data (ID)
to create mails, (ii) produces the mails ready to print (OD), (iii) executes some
procedures to compose/create mails (Translation Rules), (iv) executes some pro-
cedures to dispatch mails to the correct printing center (Dispatch Rules). The
input data are provided by the clients of the HMS (Producers) and mails are
sent to different printing centers (Consumers).

4 Here we do not consider the hardware of these systems (e.g., machines used to print
mails).
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2.2 Toy-HMS: A Toy-Case Instantiation of MTF

Toy-HMS is a toy case of hybrid mail system and an instantiation of the MTF.
Toy-HMS is a HMS used by only one company, i.e., there is a unique producer,
that sends periodically mails to its customers. Toy-HMS has three printing cen-
ters : North-PC, Center-PC and South-PC (located in Milan, Rome and Naples),
for the Northern, Central and Southern Italy respectively. Each printing center
is used to print the mails sent to addresses of its geographic competence. All
printing centers can print B/W, whereas North-PC and South-PC can print also
in colour.

When a clerk of the company has to send mails to customers, (s)he submits
the data in electronic mode to the Toy-HMS. The set of all required data is
called batch. From a batch, Toy-HMS produces a set of mails ready to print and
organizes the mails in groups (called print batch) to be sent in electronic mode to
the three printing centers following some routing rules. All the mails of a batch
follow a schema called template that defines the common structure of the mails.

Toy-HMS is suitable for handling advertising letters, notices etc, i.e., mails
which differ from each other only for the address and the name of the customer.

In Fig. 2 we present the instantiation of the MTF for the case of the Toy-HMS.

Fig. 2. Multi-Translation Frame (MTF) instantiated for the Toy-HMS case

In this case we have a unique producer (the Clerk) and three consumers (North-
PC, Center-PC and South-PC), three types of input data (LatexBatch5, TextBatch
and HtmlBatch) and a unique type of output data (PrintBatch).

Any batch is composed of the print type required (B/W or colour), the list
of the addresses of the receivers, and the template. A template represents the
model for each mail of the batch, and consists of a file in the proper format (either
Latex or HTML or Text), where there are some place-holders corresponding to
the parts of a correct address.
5 http://www.latex-project.org/
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A print batch consists of a PDF file containing the generated mails, the indi-
cation of whether it requires colour printing, and a ZIP Code (all the mails in a
print batch are sent to addresses with that code).

The requirements of the Toy-HMS are given by the MailProduction and the
MailDistribution.

The MailProduction requires to control and correct up to some extent the
address list, to divide the address list in sub address lists one for each ZIP
Code, then to compose the mails using the template and the addresses in the
various sub-lists (the templates are assumed to be always well formed), and
finally to pack them in various print batches consisting of mails sent to the same
ZIP Code.

The MailDistribution requires to send the B/W print batches to the nearest
printing center since all the three of them can print B/W, and to send the
colour print batches to the nearest printing center chosen between North-PC and
South-PC (those that can print in colour).

To determine which is the closest printing center a function distance between
the print batch ZIP Code and the printing center ZIP Code is used. This function
is defined taking into account a large set of factors, including the availability of
routes, railways, motorways and these factors have been already considered when
the ZIP Codes were defined in Italy.

To validate Toy-HMS, we have implemented a SOA-based Java prototype.
Moreover, we have compared the architecture of the prototype with the actual
architecture of the hybrid mail system XYZ [18].

2.3 Relating the Variety of Changes to MTF

The MTF also offers the possibility to describe and classify the possible changes of
the Multi-Translator system that its developer may have to cope with. We classify
the changes in three broad categories: changes in context, proactive standard
changes and unpredictable changes.

Changes in context: The number and the features of the producers and of the
consumers connected to the system may change while the system is running (new
producers/consumers may be added, however their type belongs to an existing
list; existing producers/consumers may be eliminated; some producer/consumer
may change its features, but the modification is relative to an existing list of fea-
tures, whose possible forms are already known). These are the possible changes
that affect the context of the system Multi-Translator (context intended as the
entities interacting with the system itself).

Example of changes of this kind in the case of Toy-HMS are: a printing center
breaks down and it is not available till it will be repaired, a new B/W printing
center with the same characteristics of the existing ones is built in another Italian
city (for example Palermo or Venice), and the printing center in Rome becomes
able to print also in colour.
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Proactive standard changes: These are changes that can be forecasted by looking
at the domains and at the requirements of the MTF. We name these changes
“proactive” since the developers should be proactive and propose them to the
client as a way to increase their business, and “standard” since they are specific
of the MTF. Here we illustrate two typical sample categories.

– New kinds of “derived” functionalities are required for the Multi-Translator. A
derived functionality is a new one that just requires to collect or to elaborate
information already computed for the existing functionalities, or just to log
the performing of some activities. These changes modify the requirements
enriching them in a conservative way. Some examples of changes of this kind
in the case of Toy-HMS are the request to: – produce a report associated with
each batch listing information on the sent paper mails, – collect data on the
number and types of the processed batch for the accounting department, –
record the number of wrong address files.

– The Multi-Translator system should perform simplified variants of its func-
tionalities; for example a client provides pre-elaborated input data that do
not require to perform the initial elaborations, or a producer requires to re-
ceive some intermediate data skipping some of the final elaborations. This
kind of changes should lead to a nice simplification of the requirements and
the update of the system should be very easy, but in practice they may result
in hard work in case of wrong architectural choices.

Example of changes of this kind in the case of Toy-HMS are the request to:
– skip the control and the correction of the address files since the addresses
are surely correct, – send to the printing center a print batch in the form
of a Latex or HTML source file or as a text file, instead of a PDF file (the
PDF file generation will be performed by the printing center), – receive as
input data some print batches so that only the dispatching activities will be
performed.

Unpredictable changes: The unpredictable changes are those that cannot be
imagined by examining the current domains and requirements of the frame. For
example, completely new kind of producers or consumers or completely new
kinds of input and output data may appear, or new laws or rules that disrupt
the current requirements may become in effect.

Example of changes of this kind in the case of Toy-HMS are: – the appearing on
the market of new printers (e.g., printers using paper of different weighs); – the
emergence in the market of the private email services that completely change
the rules for determining the most convenient printing center (e.g., someone
following a policy where everything goes first to Rome); – the appearing of a
new document format (e.g., docx).

Obviously, in this case a socio-economic analysis may help to get a rough idea
on which changes of this kind are more likely in the future (e.g., in the case
of Echelon the char set used for the English language is not going to change
very soon, whereas a change of the kinds of communication devices to monitor
is highly probable).
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3 Developing for Change

In this section we outline the approach “developing for change” that we have
mentioned in the introduction; an approach characterizing a software develop-
ment method able to cope with the changes that may be required in the future
by the stakeholders. With respect to the old motto “design for change” [20,19],
we try to cover also the other phases and activities of the software development.
Obviously this is the exact contrary of other current approaches (e.g., extreme
programming [5]), where not even the design for changes is recommended, and
obviously a cultural/technological/business analysis has to be performed initially
to see whether the system to be developed will be a long lived one and whether
it will ever have to cope with changes (e.g., chess games have not changed too
much in the last centuries, whereas taxing mechanisms change continuously).

In this section we show how we can use the MTF to develop its instantiations
in a way that makes easier and more efficient tackling the need for changes
that may arise during and after the development. The general guidelines that
we propose are cast within a development method based on the rigorous well-
founded usage of the UML as notation for expressing all the required artifacts,
see, e.g., [1,2,3].

3.1 Key Principles in Developing for Change

To make our treatment more understandable and convincing, we recall in this
subsection some key principles for good design, that are preliminary to cope with
changes. We will refer frequently to those principles in the following sections and
thus we label them for an easy reading without repetitions. Most of them are
classical, but in our approach they will be used not only at design level, but
everywhere.

KeyP1. Structure and document everything, not just the code. It is not suffi-
cient to document the code or the detailed architecture of some modules, but
all the aspects of the system should be documented, e.g., also the produc-
ers and the consumers, and the rationale behind the dispatch rules should
be properly documented; and obviously everything should be structured to
allow the human reader to grasp it.

KeyP2. Provide high-level presentation/documentation. It not sufficient to at-
tach a lot of comments to the code or to some architectural very detailed
schema or to complex XML definitions of data structures; rather, all the
key concepts of the system should be presented in a brief and compact way
avoiding too many technical details. For example, a large part of the docu-
mentation should be understandable by the business expert (e.g., the core
of the dispatch rules should not be hidden in a small stored procedure in
a database written in a proprietary language, even if well commented; in-
stead it should be presented by a set of conditional rules written using well
structured natural language referring to business entities).

KeyP3. Explicit (abstract) typing, i.e., give a precise abstract type to each en-
tity used in the system. Consider the following example, a fundamental data
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structure, as an input data, should be explicitly defined by giving the oper-
ations for acting on it, and then by saying how it will be realized using the
chosen technical means. For example it cannot happen that a fundamental
data structure is implicitly realized by some XML files and some records in
two different databases without no way to see which modules are using it and
how; it becomes abstract typing when put together with the next principle.

KeyP4. Encapsulation, i.e., give a precise type/interface to each part of the
system and of the software, as data structures, modules, components, func-
tionalities and external subsystems (e.g., the support offered by an external
subsystem should be presented by means of a function/procedure with a
precise type and well defined meaning; any external device should have a
high-level interface to be accessed, it is not sufficient to say that to pass an
input to some external systems one has to put a file starting with some lines
written using some cryptic codes in some specific point of the file system).

KeyP5. Separate commonalities from particular aspects in any part of the sys-
tem not only in the data types, and this requires also to organize the data
types and the other parts in explicit specialization/refinement structures
(e.g., the various kinds of output devices may be very conveniently presented
as a specialization hierarchy having an abstract device at the top; a group
of requirements may be nicely organized in a hierarchy making explicit the
common parts and the variants).

KeyP6. Use generative techniques, namely try to use high-level presentation of
data structures and function that can be automatically transformed into the
corresponding code (e.g., provide conditional rules that may be automati-
cally transformed into code, instead of writing directly such code; provide a
BPMN diagram [9] to be transformed into BPEL codes instead of writing
directly some Java code to orchestrate some Web services).

3.2 Guidelines for a MTF-Based Development

We assume to have instantiated the MTF having determined who are the produc-
ers, the consumers, the input and the output data and which are the translation
and the dispatch rules.

We note from the beginning that the use of the frame leads to apply KeyP1 :
indeed it obliges to provide a first documentation clarifying the four parts of
the frame and a first initial structuring (e.g., the organization in terms of the
domains parts of the frames and the separation of the translation requirements
from those concerning the dispatching).

Domain Modelling. The domains in the MTF are the input/output data and
the producers/consumers.

It will be highly probable that the various input and output data, the pro-
ducers and the consumers share some commonalities; thus, following KeyP5 ,
we look for specialization relationships among domains, possibly by introducing
“abstract domains”, where domain has to be intended in the sense of Jackson
[15], and to try to encapsulate them (KeyP4).
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In our approach (see, e.g., [1,2,3]) the domains are modelled by means of
UML classes. Thus the domain model in the case of the MTF is a UML class
diagram with a class for each kind of producer, consumer, input and output data
present in the frame. The classes corresponding to the input/output data, which
are lexical domains using Jackson’s terminology, are static whereas those corre-
sponding to the producers/consumers (biddable domains) are active classes with
an associated behaviour, which may be modelled by a state machine. The pro-
ducers/consumers must have an operation corresponding to the send/pass a data
(shared phenomena with the Multi-Translator). It is important to fully model the
data classes whereas it may happen that the model of the producers/consumers
may be quite underspecified.

The fact that the various domains should be modelled by UML classes is in
agreement with KeyP2 , KeyP3 and KeyP4 . In Fig. 3 we show the Domain Model
for the Toy-HMS case. In this diagram the class Clerk represents the producer
type and the class PrintCenter the consumer type. The input data is represented
by the class Batch specialized in LatexBatch, TextBatch and HtmlBatch. The
output data is represented by the class PrintBatch. The other classes in the
diagram (e.g., TextFile) are used for typing the attributes.

Fig. 3. Toy-HMS case: the domain model

Requirement Specification. In agreement with KeyP1 , the requirements in
the case of the MTF are already split in two parts: the TranslationRules and the
DispatchRules, where the TranslationRules should associate a producer and an
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input data with a set of output data, and the DispatchRules should associate an
output data with a consumer.

Technically the TranslationRules should define a family of partial functions,
called translation functions,

transk : IDi × Prodx −→ Set(ODj) k = 1, . . . , p
where transk(id, p) = ods means that the translation of id sent by p will result
in ods, whereas transk(id, p) undefined means that in that case the translation
failed6.

The TranslationRules will be modelled by an abstract UML class, with the same
name, having a static operation for each translation function. Obviously such
functions should share some common aspects, otherwise the system would be
just an aggregation of single-translation subsystems performing) and we should
make explicit such commonalities; technically the translation functions should
be expressed by composing/combining a set of functions corresponding to basic
translation blocks (we call them translation blocks).

The decomposition of the translation functions in translation blocks is a form
of structuring (KeyP1 , while providing a precise type to the translation functions
and the translation blocks is an application of KeyP3).

In the UML model the translation blocks will be modelled by other static
operations of the same class TranslationRules. The effort of decomposing the
translation functions and of extracting the translation blocks and the classes/
types needed to type their parameters and their results will be the application
of the principle of decomposing and structuring (KeyP1) and of high level doc-
umentation (KeyP2); indeed all these operations should have meaningful names
and should be properly documented.

The operations corresponding to the translation operations and to the trans-
lating blocks will be defined using the means offered by the UML, such as OCL
constraints, methods, and activity diagrams. For example, an operation may be
modelled textually in the UML giving its (purely functional) body, or visually
by means of an activity diagram, with matching input and output parameters
where the basic activity are some translating blocks.

The DispatchRules should define a family of partial functions
dispatchh : ODh × Set(Consumer) −→ Consumer h = 1, . . . , r

where Consumer is an abstract class having as specializations all the consumer
classes, and dispatchh(od, cons) = con means that the dispatch of od when all
the consumers cons are available, will result in sending it to con (obviously
con ∈ cons), whereas dispatchh(od, cons) undefined means that in that case the
dispatch failed7.

The DispatchRules will be modelled by an abstract UML class, with name
DispatchRules, having a static operation dispatchh for each dispatch function.
Again these operations should be decomposed using some basic dispatch opera-
tions making explicit any existing commonalities among them.

6 For the moment we do not consider the error messages.
7 Again, for the moment we do not consider the error messages.
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Every operation needed for modelling the TranslationRules and the
DispatchRules may be defined at a varying degree of abstraction and thus the
requirements may be as much abstract as needed. The rules may be quite com-
plex and may be written in a way that will help cope with the future change
requests.

Another application of KeyP5 is to avoid duplications in the definition of
TranslationRules and the DispatchRules, that is to avoid that the same function
fragment be written several times (same as the hint for avoiding duplicated
code). Using the UML this means to introduce auxiliary operations and classes
to represent the duplicate fragment. There is no need to say that the same
suggestions apply even more stringently if the translation definitions are utterly
complex.

If no commonalities or just a little amount of them are found among the
definitions of the various translations and dispatching functions, then we should
consider if the problem is about the development of a unique product or just a
collection of very loose related different products. For example in the Echelon
case the part concerning the search of hot words in text should be common to
filtering email, chats, social network walls and SMS, whereas the capability of
extracting text from PDF and JPEG files will be again used in various of the
filtering functions, which are the translation functions in this case. On the other
side a product offering a bunch of file compressing operations based on totally
unrelated techniques should not be a case of the MTF.

In Fig. 4 we present the requirements for the Toy-HMS case using the UML. To
make the diagram more compact we have omitted the classes already described
in the Domain Model in Fig. 3, and the definition of the various functions can
be found in Appendix A.

Design. The design phase requires to produce the machine, in Jackson’s sense,
of the problem frame schema, that is the Multi-Translator. The software archi-
tecture of the Multi-Translator will be represented using the UML, where each
component will be modelled by a class.

It is possible to provide various architectural schema and to compare them
w.r.t. the support for changes (for example using SAAM, a strategy presented
in [12,16]). Moreover depending on further information concerning the non-
functional aspects, such as the dimension of the input and output data, the
frequency of the arrival of data to translate and whether there are real time
constraints on when to return the translated data, further architectures may be
proposed. However, there are a few general constraints on the possible architec-
ture to be able to cope with the changes, that we summarize below and visually
present in Fig. 5.

We use the same notation of the Jackson’s frame to present the hints on
the architecture of the Multi-Translator, and we depict the machine domain icon
with dashed lines to suggest that it is not a complete architectural definition.
For simplicity in the picture we depict only some representatives of the various
domains (input and output data, producers and consumers). The Executor is a
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Fig. 4. Toy-HMS case: the requirements (classes of the domain are not repeated)

machine (denoted using the Jackson’s notation by the double stripe on the left),
the other domains denoted with two lines on the left are designed domains.

The lexical designed domain Consumers (composed of: name, printType, lo-
cation) is a representation of the current situation of the consumers (which are
the current available ones and their relevant features), which should be recorded
in a persistent way inside the Multi-Translator, and there should be the means to
keep it updated. Thus we have an Operator, a biddable given domain that will
take care of updating the consumers, (s)he will know when new consumers will
start/stop to operate or will change their characteristics and (s)he will interact
with the Multi-Translator to update this information. Providing the domain Con-
sumers is an application of KeyP3 : we must give an explicit type structure for
representing the consumers. To define this data structure we should look at the
requirements to discover what is relevant of the consumers for the dispatching
(for Toy-HMS just the type and the location of the printing center).
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Fig. 5. Multi-Translation Frame: assumption on the design

Then, there will be some parts corresponding to the translating blocks, the
translating functions and the dispatching functions appearing in the require-
ments. They are given domains and may be lexical or causal, indeed they may
be sub-machines able to perform such functionalities or descriptions of such func-
tions that another component will be able to execute. Thus we do not fix the
kind of domain corresponding to them.

According to KeyP6 (generative techniques), the translation blocks, the trans-
lations functions (and the dispatch rules and their basic sub-functions) are the
ingredients that the executor uses to put together the translations to apply to
the input data (for example, they may be: – code written in some domain spe-
cific languages, – compiled procedure written in some programming language, –
software components or services). Thus the Multi-Translator has not some parts
that are able to perform the various translations, but it includes an engine (the
Executor) able to execute in a very general sense the definition of the various
functions, in some sense it will generate the translation functions starting from
the various ingredients.

3.3 Coping with Changes in the Multi-Translation Frame

Now we consider, as examples, some of the most probable changes in the MTF
and see how the proposed method will help to cope with them.

Changes in context. The considered changes in the context are the appear-
ing and disappearing of producers/consumers and changes in their features. The
presence of the Consumers domain, and of the Operator that takes care to up-
date it, allows the Multi-Translator to cope with the modifications in its context.
Thus is quite easy to cope with this changes, and the proposed solution is a
classical one.

Proactive standard changes. Simplified versions of a translation. The sim-
plification may require to drop some of the transformations and/or to receive
as input data what was before an intermediate data or to dispatch what was
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before an intermediate data. The transformation just requires to introduce as
new input and output data the previous intermediate data; it is needed to check
that they are suitable for the associated consumers or that they may be sent by
the producer.

Unpredictable changes. Appearing of a new type of input data (without mod-
ifications in the output data and in the dispatch rules). It is highly probable that
the new kind of input data will be modelled by a subdomain of the existing ones
or that it will be modelled by reusing parts of the existing ones (i.e., already
existing UML classes), and so it will be easy to give its model. Then we have to
define the corresponding translation functions (one for each possible producer of
this kind of input data) reusing the existing translation blocks; it may happen
that we have to introduce new translation blocks and/or classes to type their
arguments and results. Thus, the modification of the Multi-Translator will just
amount to possibly add some new translating blocks and a new values to the
translation rules, whereas the Executor is not changed.

Other changes of the same type (e.g., new consumers or new kind of con-
sumers, new dispatch rules) can be handled in the same way.

Disappearing of a type of input data. The input data is eliminated by the
domain, and we have to check whether there was some producers producing it
and investigating whether they have to be deleted as well. At the requirement
level the corresponding translation function will be eliminated, then it has to
be checked whether there are some translation blocks used only by itself, in this
case also they are to be eliminated together with the relative types. Finally,
we have to check if the eliminated translation function was the unique one to
produce some kind of output data, that have in turn to be eliminated, and as last
steps we need to investigate if there are some consumers that were receiving only
such output data, that have to be deleted in turn. Doing this chain of deletions
we have to do several checks helping to detect possible inconsistencies in the
proposed change. At the Multi-Translator level, it is sufficient to eliminate the
useless translation blocks and translation functions, and this is not a difficult
operation, since all of them are items of the proper kind.

4 Related Work and Conclusions

To the best of our knowledge, this is the first work that proposes a frame-
driven development approach able to cope with evolvability problems in a specific
domain.

Among the software development methodologies specific for evolvability we
can cite, e.g., [4,6,17]. Bastani in [4] presents a new analytical framework, called
“Abstraction-oriented Frames” and a method specifically designed to support
the requirements analysis and design of open evolvable software systems. To
meet flexibility in changing requirements, architecture and design at any phase,
the requirements framework presented in that paper consists of dynamics that
facilitate subsystem modifications at any level of abstraction or any part of the
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system. Another framework able to cope with evolvability problems is presented
in [17] by HP. That framework, named ORBlite, provides a substrate that al-
lows systems to be composed of components that can evolve independently over
time. ORBlite has been successfully used by HP to build several evolvable real
systems. Instead, authors in [6] propose and explain “Goal sketching”: a sim-
ple technique used for requirements engineering purposes. This technique starts
with the creation of a goal graph which expresses the high level motivations
behind the intention to develop the software. Then, a series of developments are
planned using the goal graph as a guide (similarly to use Scrum sprints [21]).
Authors claim that Goal sketching can be successfully used to develop evolvable
systems. Finally, Schmidt [21] presents arguments in favour of implementing
evolvable software systems using the SOA paradigm [13]. Indeed, SOA provides
an extraordinary mechanism for supporting the evolution and rapid response to
change in business rules.

Even if several proposals have been advanced by researchers in this direc-
tion, Brcina et al. [7] claim that existing software methodologies do not provide
sufficient support for managing the evolvability. For this reason, they present a
meta-model based and goal oriented process for controlling and optimizing the
evolvability of a given software system. Breivold [8] in his PhD thesis introduces
a method for analyzing software evolvability at the architecture level. More pre-
cisely, he identifies some sub-characteristics (e.g., Testability) that are of primary
importance for an evolvable software system, and outlines a software evolvabil-
ity model that provides a basis for analyzing and evaluating the evolvability of
a given system. Instead Shiri et al. [22] present a novel approach to estimate
the effort of potential modification and retesting associated with a modification
request, without the need of analyzing or understanding the system source code.
The approach is based on Use Case Maps and concept analysis [14].

In this paper we have presented a problem frame based approach to study the
problem of developing a large class of software systems able to translate in differ-
ent ways some inputs in some outputs (e.g., hybrid mail or big brothers filtering
digital communications for suspicious words). In particular we have shown the
use of problem frames in the case of the Multi-Translator with a simple instan-
tiation, the Toy-HMS. Also, we have shown that the problem frame approach
helps to produce systems that are able to handle predictable and unpredictable
changes according to the new coined motto “developing for changes”.

Even if our method may seem too simple for realistic big systems, we believe
that is usable and effective. For this reason, we want to apply it in future to
obtain a new evolvable version of XYZ (the real huge system of interest of the
company that has prompted our investigations). In future works, the capability
to cope with predictable and unpredictable changes of the new HMS will be em-
pirically analyzed and compared with the actual one using a “what if approach”,
i.e., looking at how easy/hard will be to cope with a given list of real change re-
quests following the Software Architecture Analysis Method (SAAM) proposed
in [12,16].
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A The Translations and Dispatches Blocks for Toy-HMS

Function Signature Description and Example

addressControl AddressList −→ boolean checks whether the addresses are correct
with respect of the format ForInd and
each address is separated from each
other by a end-of-line.

ForInd format:
addressee;street;ZIPCode;city;province

addressCorrection AddressList −→ AddressList examine the input address list correcting
various mistakes.
For example, in the two addresses below
there are two mistakes; the first presents
an incoherence between the city and the
province; the second presents a
misspelling in the city name:

Mario Rossi;Via Verdi, 23;00100;Roma;MI
Mario Bianchi;Via Verdi, 23;00100;Romw;RM

The two addresses are corrected in:

Mario Rossi;Via Verdi, 23;00100;Roma;RM
Mario Bianchi;Via Verdi, 23;00100;Roma;RM

addressSplitting AddressList −→ groups the addresses that present the same
Sequence(AddressList) ZIP Code in separated AddressList, one

for each ZIP Code.
latexComposition AddressList × LatexTemplate creates a PDF file containing the mails

−→ PrintBatch created joining the Latex template with
the data within the address list (notice
that however the print type attribute of
the produced print batch is not defined)

htmlComposition AddressList × HtmlTemplate creates a PDF file containing the mails
−→ PrintBatch created joining the HTML template with

the data within the address list (notice
that however the print type attribute of
the produced print batch is not defined)

textComposition AddressList × TextTemplate creates a PDF file containing the mails
−→ PrintBatch created joining the Text template with

the data within the address list (notice
that however the print type attribute of
the produced print batch is not defined)

distribution PrintBatch × Set(PrintCenter) PrintCsOk = { PC ∈ PrintCs
−→ PrintCenter | PC.printType = PB.printType }

return PCselect s.t. PCselect ∈
PrintCsOk and
distance(PC.location,PB.destination) =
min{ distance(X.location,PB.destination)
| X ∈ PrintCsOk}

distance ZIP × ZIP −→ Float return the distance between the two ZIP
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Abstract. This paper describes a framework currently under develop-
ment for modelling, simulation, and verification of relay interlocking sys-
tems as used by the Danish railways. The framework is centred around
a domain-specific language (DSL) for describing such systems, and pro-
vides (1) a graphical editor for creating DSL descriptions, (2) a data
validator for checking that DSL descriptions follow the structural rules
of the domain, (3) a graphical simulator for simulating the dynamic be-
haviour of relay interlocking systems, and (4) verification support for
deriving and verifying safety properties of relay interlocking systems.

1 Introduction

This paper describes the visions of an ongoing project made in collaboration
with Banedanmark (Rail Net Denmark), and gives a survey of a framework of
tools being developed within this project.

Background and motivation. A conventional means of keeping the railway traffic
safe is to use interlocking systems that control signals and points in such a way
that trains are only allowed to pass a signal when this cannot lead to train
collisions or derailments. Many Danish interlocking systems are still implemented
using complex electrical circuits containing relays. These relay based interlocking
systems are documented by diagrams of the electrical circuits, and currently
the only way to analyse them is to inspect the diagrams and manually draw
conclusions. This is very difficult to do as the number of diagrams for a single
system is very high and the logic described in each of them is complicated with
many mutual dependencies. Certainly such a manual analysis is not only difficult
and time consuming, but may also be error prone. This is not satisfactory for
a safety-critical system. To help this, we started a project, the goal of which
is to formalise and automate the validation and verification process for relay
interlocking systems.

Solution approach. Our solution to the above mentioned problem is to provide a
framework of computer-based tools that support the validation and verification
process. The tools should be centred around a domain-specific language for ex-
pressing the documentation that is usually made for relay interlocking systems,

R. Calinescu and E. Jackson (Eds.): Monterey Workshops 2010, LNCS 6662, pp. 176–192, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Towards a Framework for Modelling and Verification 177

e.g. track layout and relay circuit diagrams. The idea is that to analyse or verify
a relay interlocking system the railway engineer should express the documenta-
tion of the relay interlocking system in this domain-specific language, and the
framework should provide tools that can be applied to such documentation to
analyse and verify the documented relay interlocking system. Prototypes of such
tools have already been developed. We have chosen to centre the tools around
a domain-specific language rather than a general purpose modelling language,
as it is easier for railway engineers to use a language that facilitates concepts
already known and used in the railway domain.

Related work. The author and Jan Peleska have developed a framework of tools
for the construction and verification of tramway control systems [15]. These
tools are also centred around a domain-specific language, however the language
and tools are different from those described in this paper. The differences are
due to the fact that the controllers in that work are electronic, while ours are
implemented using relay circuits. For instance, the tool set described in this
paper provides a simulator for the electrical behaviour of relay circuits (which
is not relevant for electronic systems) while the other tool set provides a control
software generator (which is not relevant for relay systems1).

For other complementary and competing approaches for the development and
verification of railway control systems the reader is e.g. referred to the contribu-
tions in [20], and for a survey of results and trends the reader is referred to the
paper [5].

Paper overview. First, in Section 2, we describe the railway application domain.
Then, in Section 3, we give an overview of the tools framework, and in the
subsequent sections we describe the domain-specific language and each of the
tool components in more detail. In section 8 we mention how such a framework
can be formally developed using the RAISE Formal Method [19]. Finally, in
section 9 we draw some conclusions and describe ideas for future work.

2 The Railway Application Domain

In this section we introduce concepts of the railway domain that are relevant for
this paper.

2.1 Equipment at a Station

The considered interlocking systems use a variety of track-side equipments to
monitor and control trains:

Track circuits: The railway tracks are divided into sections each having equip-
ment (a circuit) for train detection. The interlocking system uses this for
monitoring the occupancy status of the individual track sections.

1 For relay systems the equivalent to a control software generator would be a relay
circuit design generator. However, as the purpose of our work is only to support
the analysis and verification of relay circuits and not the creation of these, such a
generator has not been considered.
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Points: Tracks are joined by points2 which can guide trains into different di-
rections depending on the position of the points. The interlocking system
monitors and controls the positions of points. An operator can switch the
points3.

Signals: Signals are placed at the entrance of some track sections. They can
show GO and STOP aspects. The interlocking system sets the signals to
inform the train drivers whether they are allowed to enter these sections.

Figure 1 illustrates the interactions between the operator, the interlocking sys-
tem, the trains, and the track side equipment.

Fig. 1. Relationships between different elements of a station

2.2 Train Routes and Train Route Tables

The stations we are considering in this paper use a route based approach to
interlocking. The basic ideas of this approach are:

– Trains should drive on routes through the network.
– Each route is covered by an entrance signal that informs whether it is allowed

for a train to enter the route or not. The trains are assumed to respect the
signals.

– Two trains must never be allowed to drive on conflicting (i.e. overlapping)
routes at the same time. (To prevent collisions.)

2 Following the UIC (International Railway Union) railway dictionary available from
www.uic.org, this paper uses the term point to denote the assembly of rails, blades
and of auxiliaries of which some are movable. In other dictionaries the following
terms are used for the same: a set (or pair) of points, a switch and a turnout.

3 In some cases a centralised traffic control system is used to switch the points, but
even when this is the case, the operator should still be able to switch the points, e.g.
in emergency cases.
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– Before a train is allowed to enter a route, the points in the route must be
locked in positions making the route connected (i.e. it is physically possible
to go from one end of the route to the other end without derailing), and
the route must be empty (i.e. there are no trains on the route). (To prevent
derailing and collisions, respectively.)

– The points of a route must not be switched while a train is driving on the
route. (To prevent derailing.)

For each station to be controlled by an interlocking system, a train route table is
used to specify routes and interlocking rules for that station. Such tables define
for instance for each train route

– which settings of signals are required for the route to be opened (i.e. for
allowing trains to enter the route),

– which positions points must have for the route to be connected,
– which track sections must be unoccupied for the route to be empty, and
– the conditions for unlocking/releasing a route.

The tables also define which train routes are conflicting.

2.3 Relay Circuits

The interlocking systems we are considering are implemented by electrical relay
circuits. In [13] a formal domain-model for relay circuits is presented. Here we
just give an informal description.

A relay circuit is made up of components such as power supplies, relays,
contacts, lamps inside signals, and buttons, connected by wires. A relay is an
electrical switch operated by an electromagnet to connect or disconnect a number
of contacts in a circuit. When current flows through the relay, the magnet is
drawn and some of the associated contacts are connected (these contacts are said
to be upper contacts) while others (the lower contacts) are disconnected. When
no current flows through the relay, the magnet is dropped and the associated
upper and lower contacts will be disconnected and connected, respectively. When
contacts are connected/disconnected this may imply that sub-circuits containing
these contacts become live/dead. This again may imply that relays of these sub-
circuits are drawn or dropped, and so on.

The system can get input from the environment:

– Buttons can be pushed (and later released) by an operator.
– For each track section there is a (track) relay that is dropped/drawn when

a train enters/leaves that track section.
– For each point there are two associated (point) relays. One of these is dropped

or drawn when that point is moved into a new position.

The track relays and point relays are said to be external, while the relays con-
trolled by the interlocking system are said to be internal.
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2.4 Relay Circuit Diagrams

The Danish railways use diagrams to document the electrical circuits of a relay
system.

Fig. 2. Diagram for circuit controlling relay RR1

For each internal relay one of the diagrams shows the sub-circuit that controls
that relay. An example of such a diagram is shown in Figure 2. This diagram
shows the sub-circuit controlling a relay named RR1. The circuit consists of
a number of components connected by wires. The wires are depicted as black
lines. At the top is the positive pole and at the bottom is the negative pole of
the power supply. Relay RR1 is shown using this signature:

�
�
�
��
�
�
�

�� ��
RR1

Signatures for relays contain a circle that may be decorated with some bars.
(See relays 33 and 37 in Figure 6 for other examples of such decorations.) The
decorations only indicate the logical purpose of the relay – they do not indicate
any special physical behaviour. The downwards arrow to the left of the circle
informs that in the initial state this relay is dropped. (If it had been drawn the
arrow would have been upwards.)

A number of contacts belonging to other relays occur in this circuit. E.g. a
contact belonging to a relay named A1 is shown using this signature:

A1

Generally the signature of a contact is a small version of the signature of the
relay to which it belongs. The downwards arrow informs that in the initial state
relay A1 is dropped. The horizontal bar breaks the wire – this indicates that the
contact is disconnected in the initial state. If the bar had not been breaking the
wire it would have indicated that the contact had been connected in the initial
state, as it is the case for relay A2. Also a button B1 is shown on the diagram
using this signature:
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B1

This signature informs that in the initial state this button is released. A pushed
button is shown by this signature:

B1

3 Framework Overview

As mentioned in the introduction our goal is to provide a framework of tools
for analysing and verifying relay interlocking systems. In this section we give an
overview of this framework.

generators

editor

environment 
             model model

 station documentation in DSL

validator checking result

model checker
checking result

interlocking system

simulator simulation

     conditions

Fig. 3. Framework of tools

To make the framework user friendly for railway engineers we exploit the
idea to define and centre the tools around a domain-specific language, DSL, for
expressing the documentation that is usually made for the relay interlocking
system of a station. The tools we are developing comprise:

– a (graphical) editor for creating DSL descriptions,
– a validator for checking that a DSL description follows static (structural)

rules of the domain,
– a (graphical) simulator that for a given DSL description can simulate the

dynamic behaviour of the described interlocking system, and
– generators that from a DSL description produce input to (a front end of)

the SAL model checker [3]:
• a behavioural (state transition system) model of the described interlock-

ing system,
• a behavioural (state transition system) model of the described environ-

ment (track isolations, points, and operator buttons), and
• safety conditions and other kinds of conditions (expressing desired prop-

erties) formalised in the temporal logic LTL.
The model checker can then be applied to this to verify that the interlocking
system always satisfies the safety conditions and other desired properties.

Figure 3 illustrates this framework of tools. The language and tools will be
further described in the next sections.
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4 Domain-Specific Language

A specification D in DSL consists of the following station documentation:

– a track layout diagram describing the physical environment,
– a train route table specifying the interlocking rules, and
– relay circuit diagrams describing the physical implementation.

In Figures 4 and 5 are shown the track layout diagram and the train route table
for Stenstrup station (unfortunately in Danish). In Figure 6 a simplified version
of one of the circuit diagrams for Stenstrup is shown. (There are too many, too
large circuit diagrams for Stenstrup to show them here.)

A detailed explanation of how to read the track layout diagram and table is
given in [6]. Here we will only explain those details that are needed for under-
standing the remaining of this paper.

The track layout diagram shows the geographical arrangement of the tracks
and track-side equipment such as track circuits, points, and signals. From the
diagram it can be seen that Stenstrup has six track circuits (named A12, 01,
02, 03, 04, and B12), three points (named S1/S2, 01 and, 02), and eight signals
(named a, b, A, B, E, F, G, and H).

The train route table has one row for each train route. For each route the
Togveje sub-columns contain basic information about the train route such as
its identification number and whether it is an entry or exit route from/to which
other station, the Signaler sub-columns state the signal settings (gr means
green/GO and re means red/STOP) required for the route to be open (signals
that should show red must be set before the signals that should show green are
set), the Sporskifter sub-columns state required positions of points (+ means
straight position and - means branching position) for the route to be connected
(and possibly also flank protected), the Sporisolationer columns state with an
↑ which track sections must be unoccupied for the route to be empty, the Ovk
column concerns level crossings (not to be discussed in this paper), the Stop
fald column specifies that a certain signal (the entry signal of the route) should
be switched to a STOP aspect when a certain track section (the first section of
the route) becomes occupied, the Togvejsopl. columns define conditions (not to
be explained here) for when the train route can be released, and the Gensidige
spærringer marks with the symbol ◦ which routes are conflicting.

Fig. 4. Track layout for Stenstrup station
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Fig. 5. Train route table for Stenstrup station

A graphical editor for creating relay circuit diagrams and track layout dia-
grams has been implemented, see [9], and recently it has been extended with the
ability to specify train route tables, see [10].

5 Data Validation

The data validator tool can be used to check that the station documents follow
structural rules of the domain, e.g. that

1. the track layout diagram represents a legal railway network of track elements,
2. the circuit diagrams represent a legal network of circuits,
3. the train route table

(a) refers only to track elements in the track layout diagram,
(b) describes only routes that are connected paths in the railway network in

the track layout diagram,
(c) marks overlapping routes as being conflicting,
(d) ...

The data validator has been integrated with the editor.

6 Simulation

When relay circuit diagrams for an interlocking system have been created by the
editor and checked by the data validator, the simulator can be used to visualise
on these diagrams how the states of the relay circuits change over time. In this
visualisation one can see the state of wires (current carrying or not), the state
of relays (drawn or dropped), the state of contacts (connected or disconnected),
and the state of buttons (pushed or released).

The user can give input to the system by playing:

1. an operator that pushes a button of the relay circuits (to lock a train route)
or switches a point, and

2. a train that enters or leaves a track section shown in the track layout
diagram.
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State 3State 2

State 1State 0 : initial state

_ _

_

_

+

+

+

+ +

+ _

+ _

+ _ _

Fig. 6. A state sequence for a circuit
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After having given an input the user can step through the sequence of states
that the relay circuits will go through after such an input.

In Figure 6 is given an example of a simulation showing how the state of a
circuit changes when a button is pushed. Wires that are current carrying are
shown by a green colour (seen as a grey colour in black&white print). State 0 is
the initial state. In the initial state, no wires are current carrying as there is no
path from plus to minus. When the button is pushed, current flows from plus to
minus through relay 37, see state 1. As a consequence of this, relay 37 is drawn
and its associated upper contact becomes connected, opening a second path of
current from plus to minus through relay 33, see state 2. As current flows through
relay 33, this will be drawn, see state 3. In state 3 no more internal events can
happen.

A detailed description of the simulator tool and its development is given in [9].

7 Verification

This section describes how our framework provides verification support for a
relay interlocking system. More details can be found in [14,6].

We have chosen model checking as the verification approach as this allows for
full automation.

of interlocking system

of environment
   behavioural modelstation documentation

   behavioural model

RSL−SAL representation

translate−to−SAL and model check
results

     conditions

Fig. 7. Verification in two major steps

When the station documentation for the interlocking system has been created
in the domain-specific language and checked by the data validator, verification
can be performed in two major steps as illustrated in Figure 7. First, generators
are applied to automatically generate input to a front-end of the SAL model
checker [3]:

– a behavioural state transition system model Mc of the relay interlocking
system,

– a behavioural state transition system model Me of the environment (track
isolations, points, and operator buttons), and

– conditions φ in the form of formal assertions about the desired behaviour of
system.
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This input is expressed in RSL-SAL4. Then, in the second major step, the RSL-
SAL representation is translated (by a front-end translator provided by the
RAISE tool set rsltc [2,12]) into a representation in the SAL input language [8],
upon which the SAL model checker is applied to check that the concurrent com-
position of the models Mc and Me always satisfies the conditions φ.

In sections 7.1– 7.2 we briefly describe the behavioural models and the con-
ditions that are generated from a domain specific description.

The described verification approach can be used to verify that a given inter-
locking system ensures desired properties such as trains do not collide and do
not derail when some assumptions (like trains drive at a safe speed, trains do
not pass signals showing a stop aspect, and physical components are not faulty)
are meet. More examples of such assumptions are given in section 7.1, while all
assumptions are stated in [6]. The verification approach is based on the further
assumptions that

– the DSL documentation made by the user faithfully describes the given sta-
tion and its interlocking system,

– the generated conditions are correct formalisations of the desired properties
– the generated models correctly models the behaviour of the described inter-

locking system and its environment, and
– the other applied tools are correct.

The verification approach has successfully been applied to verify that Stenstrup
station in Denmark is safe. Details of this case study are given in [14,6].

7.1 Behavioural Models

The behavioural models of an interlocking system and its environment consist
of a common state space and rules for how the relays and buttons of the circuits
can change states. The state space and rules are derived from the track layout
diagram and the relay circuit diagrams.

Common state space. The common state space consists of

– a Boolean variable b for each button b and
– a Boolean variable r for each relay r.

When the value of a variable for a button/relay is true, it models that it is
pushed/drawn, and when the value is false it models that it is released/dropped.

Transition rules for the interlocking system. The transition rules for the
interlocking system describe the dynamic behaviour of the internal relays. For
each internal relay r in the relay circuit diagrams two rules are generated, one
for drawing it and one for dropping it:
4 RSL-SAL [16,17] is an extension of the RAISE Specification Language [18] with

constructs for defining state transition systems and constructs for specifying desired
properties of these in the form of formal assertions in the temporal logic LTL.
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[ draw r ] ∼r ∧ conducting r → r′ = true,
[ drop r ] r ∧ ∼ conducting r → r′ = false

The first rule expresses that r can be drawn when r is dropped and conducting
current, while the second rule expresses that r can be dropped when r is drawn
and not conducting current. The condition conducting r for current to flow
through a relay r is a logical formula determined as follows. Current will flow
through the relay if there is a path from the positive pole to the negative pole
that flows through the relay, and all contacts within this path are connected and
all buttons are pushed. Now for a given relay there are several potential paths,
p1, ..., pn, for current to flow through it. For each potential path pi we express
the condition cp i for that path to be conductive. Then the condition for the
relay to be conducting is the disjunction of these conditions:

conducting r = cp 1 ∨ ... ∨ cp n

The condition for a potential path to be conductive is a conjunction of conditions
for its contacts to be connected and its buttons to be pushed. The condition for
a button b to be pushed is b. The condition for an upper contact and a lower
contact belonging to relay r to be connected is r and ¬r, respectively.

As an example, from the diagram in Figure 6, the following condition for
current to flow through relay 37 is derived:

conducting r37 = (01+ ∧ r02+ ∧ B1) ∨ (01− ∧ r02− ∧ B1)

Transition rules for the environment. The transition rules for the environ-
ment specify assumptions on how external relays (track relays and point relays)
and buttons can change state.

A state change of an external relay or a button is considered as an input to
the interlocking system. Such an input may lead to a chain of internal events:
internal relays that are drawn and dropped. In practise such chains are very
short (at most of length 6) and take almost no time. Therefore we have taken
the assumption that new inputs can first happen when no more internal events
can happen.

The system is said to be in an idle state, when it is ready for input, i.e. no
internal event is possible. In order to easily keep track of when the system is idle,
a Boolean variable idle is added to the state space and a rule for the system to
become idle is introduced:

∼idle ∧ ∼c → idle′ = true

where c is the disjunction of all guards in the rules for internal relays.
Transition rules for external events should then always take the form:

idle ∧ ... → ..., idle′ = false

In [14,6] patterns for all rules to be generated are stated. Below we informally
explain the assumptions behind the transition rules for track relays and point
relays.
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Transition rules for track relays. The tracks are divided into track sections,
each of which is monitored by an associated track relay. We assume that track
sections are only occupied by trains and hence completely controlled by the
movement of trains: when a train enters or leaves a track section, the associated
track relay is dropped and drawn, respectively. Therefore the rules for track
relays should reflect possible train movements and will depend on the track
layout for the station and in particular on the placement of signals. The rules
reflect the following assumptions about train behaviour:

– Trains enter only a station from entry sections and leave only a station from
an exit sections.

– Trains follow the tracks.
– Trains do not pass signals showing STOP.
– Trains do not change direction while using a route.
– Trains do not split.

Transition rules for points. Points can be in one of three positions: plus
(straight), minus (branching), and intermediate (between plus and minus). Each
point p has its position monitored by two relays, p+ and p− that are drawn only
when p is in its plus position and p is in its minus position, respectively. Hence,
p is in its intermediate position when both p+ and p− are dropped.

For each point in the track layout diagram there are four transition rules for
switching the point from plus to intermediate, from intermediate to minus, from
minus to intermediate, and from intermediate to plus, respectively. Each of these
rules reflects the following assumptions about point behaviour:

– A point is only allowed to change state, when the track section of the point
is unoccupied, and all routes that include the point are unlocked/released.
(The latter condition can be determined as for each route there is a relay
that is drawn when the route is unlocked/released).

7.2 Conditions

Three kinds of conditions (LTL formulae expressed in RSL-SAL) are derived
from a domain-specific description:

– Confidence conditions, i.e. conditions expressing that the circuits are well-
designed in the sense that
• there are no internal cycles where the same sequence of internal relay

events is repeated over and over again as the reaction to an input to the
system, and

• there are no critical races (so that the system always reacts in the same
way to the same input).

These conditions are derived from the circuit diagrams.
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– High level safety conditions, i.e. conditions that directly express what it
means for the domain under control to be safe, i.e. that express that there
are no train collisions and no derailing of trains. These conditions are de-
rived from the track layout diagram and characterised by being independent
of the chosen interlocking protocol (that is why they are called high level
safety conditions).

– Low level safety conditions, i.e. conditions expressing that the interlocking
rules specified by the train route table are satisfied. These conditions depend
on the chosen approach to interlocking and are derived from the train route
table. For instance, for each route in the train route table there is a condition
expressing that the entry signal of that route must be switched to a STOP
aspect when the first section of that route becomes occupied. The signal and
the section are specified in the Stop fald column of the train route table.

In [6] patterns for all these conditions are given. Here we just give a few examples
of some of the conditions derived for Stenstrup station.

Example of a confidence condition. In our context, the absence of internal cycles
is equivalent to requiring that the system will always eventually become idle:

G(F(idle))

Example of a high level safety condition. The following condition is derived from
the track layout in Figure 4. It expresses that when a train is occupying point
01, the point must not be in a switching state:

[ no derailing 01 ] G(∼t01 ⇒ (01+ ∨ 01−))

Here t01 is modelling the track relay associated with point 01, and 01+ and 01−
are modelling the two point relays associated with the point.

Example of a low level safety condition. The following condition is derived from
the Stop fald information for route 2 in the train route table in Figure 5. It
expresses the rule that when section A12 becomes occupied, the green lamp in
signal A must be turned off and the red lamp turned on:

G(idle ∧ ∼tA12 ⇒ ∼Agreen ∧ Ared)

Here tA12 is modelling the track relay associated with track section A12, and
Agreen and Ared are modelling relays that are drawn when the green lamp is
on in signal A and when the red lamp is on in signal A, respectively. In the
condition it is necessary to add idle on the left-hand side of the implication in
order to give the system time to react on the occupation of A12, cf.[6].

8 Development of a Domain-Specific Language and Tools

We are using the RAISE Specification Language, RSL, [18] to specify the domain-
specific language and most of the tools. Examples of this can be found in [6]. As
implementation language of the tools we are using Java.



190 A.E. Haxthausen

The specifications are typically developed starting with a property-oriented
specification and ending with an executable specification. Some of the advantages
of this are:

– It is easier first to make an abstract specification in which e.g. only the prop-
erties of functions are given, and then later make an executable specification
in which algorithms for the functions are given.

– It is easier to define data types and algorithms in an RSL executable speci-
fication and then translate these into Java, than coding directly in Java.

9 Conclusions

In this paper we have given an overview of a tool set that is intended to help
railway engineers to analyse and verify relay interlocking systems. To describe a
system to be analysed or verified, the railway engineer just has to use an editor
for a domain-specific language to create documents that railway engineers are
already used to creating: track layout diagrams, train route tables, and relay
circuits. The tool set also includes a data validator, a simulator, and model and
condition generators that all take such documents as input. The data validator
can be used to check that the created documents follow the structural rules of
the domain, increasing the confidence that the documents describe a station and
its associated interlocking system. The simulator can be used to give confidence
that the electrical circuits behave as expected. The model and condition gener-
ators can be used to generate input to a model checker that can then be used to
automatically verify that the described relay interlocking system satisfies a num-
ber of conditions (like trains do not collide or derail) when some assumptions
(like trains not passing red signals and operating at safe speeds) are meet. To use
such automated tools is a great improvement compared to manual inspections
of diagrams: it is faster and easier to do, and it reduces the risk that errors or
omissions are made.

Prototypes of most of the tools have been implemented, while a few of them
are currently under development.

The framework has successfully been applied to verify that Stenstrup station
in Denmark is safe. In future work it should be tested whether the framework
can be applied to larger stations without problems such as state space explosion
during model checking.

In future work we plan also to experiment with other editors, simulators, vi-
sualisations, and model checking approaches to see what is most valuable and
most efficient. For instance, we plan to make a generator that maps descriptions
in the domain specific language into behavioural models in the form of Sync-
Charts [4] and then use the KIELER (Kiel Integrated Environment for Layout
Eclipse Rich Client) framework [1,11] to graphically visualise simulation runs of
the generated SyncCharts.

As an example of another experiment, we are currently exploring how the
Maude [7] term rewriting system and model checker can be used for the verifica-
tion of safety. The behavioural models are expressed as Maude rewrite theories
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and the safety conditions are assertions in the temporal logic LTL expressed in
the Maude Language. Details of some initial investigations are described in [10],
but the investigations are not yet finished.

In the future it could also be interesting to transfer the conceptual ideas of
this paper to other application areas such as air traffic control systems.
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Abstract. Adaptation brings with it challenges related to trust. Mission critical 
and safety related systems usually require very predictable and repeatable  
behavior in order to be deployed. However, adaptation can satisfy many of the 
newer requirements of these systems. Service oriented architectures that adapt 
can enhance robustness, yet they bring the issue of choosing which of several 
services to trust for a particular need. Some adaptive systems require human in-
teraction or must observe their human users in order to effect the adaptation. 
Users must develop trust for these systems so that they feel their time and  
energy are not wasted and that the system will in fact yield increased efficiency 
and effectiveness. This paper discusses these challenges and suggests some  
solutions for ensuring trust in adaptive systems.  

Keywords: adaptive systems, machine learning, trust, mission critical, service 
oriented. 

1   Introduction 

Earth’s fossil record is littered with evidence of species that failed to adapt success-
fully to environmental changes. The mechanism of evolution is the random mutation 
of genes during reproduction. Organisms then go through an evaluation process: life. 
Those that are successful enough to reproduce enhance the chances that their genes 
will be propagated since mutation of a gene is less likely than perfect reproduction of 
that gene. As the environment changes, different gene configurations have different 
advantages than they did previously and species adapt. 

Nature doesn’t demand that adaptations be successful. There is no preference for 
success or failure of a particular individual or species. The earth goes on and the 
composition of life forms change. While evolution has produced extremophiles that 
can be seen surviving in areas where other species cannot, it has also produced 
species that became extinct in environments that many other species find easy to 
inhabit. 

Nature has no preference, but we do. We do not usually have the time and money 
necessary to try out millions or billions of system configurations over hundreds or 
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thousands of generations and see which combinations suit our needs in our environ-
ment. Nor do we have the luxury of allowing many of our mission-critical systems to 
fail as their environment changes so that we can make use of the information of those 
that remain to make the product line stronger. Our systems must give us a promise of 
success with a typically high degree of certainty. 

Yet adaptation may still have a role to play in achieving that high degree of cer-
tainty of success. Software engineers simply cannot count on adaptation alone, and 
random mutation without some regulating mechanism cannot be our sole tool.  

In this paper, we will explore some ideas for using and regulating adaptation in 
such a way as to allow trust in those systems that use them. The first employs redun-
dancy. By using multiple redundant components of differing architectures, some of 
which adapt, while some evaluate trends in performance, and some enforce invariants, 
we may be able to regulate how adaptation is allowed to express itself.  

Second, we will look at how the environment, which includes other systems that 
may be impacted by an adapting component, evaluates whether or not to make use of 
the component. In a complex system, the improper adaptation of one component can 
cause a lack of success for another component, and possibly the entire system. An 
example of this is found in service oriented architectures. As services evolve, we 
must provide information to other components to allow them to decide how much to 
trust the services. 

Finally, we will discuss how adaptive systems can be prepared to enter the envi-
ronment in a manner that improves their chances of success, and allows the users of 
such systems to gain confidence in their use. It can be shown that because human 
users are not neutral to success or failure in the way that nature is, an adaptive system 
can fail simply because of a lack of trust, or due to an undervaluing of the systems 
long-term performance. 

2   Adaptation in Mission Critical Systems 

Are we sure that we want adaptation in mission critical systems? Directions in  
systems within the United States Department of Defense indicate that we are in fact 
beginning to deploy adaptive capabilities in critical settings. A few examples can 
illustrate the early moves.  

The Defense Advanced Research Projects Agency (DARPA) sponsored the Per-
sonalized Assistant that Learns (PAL) program that brought together researchers  
in artificial intelligence, machine perception, machine learning, natural language 
processing, knowledge representation, multi-modal dialog, cyber-awareness, human–
computer interaction, and flexible planning. The single research focus was to create 
an integrated system that can “learn in the wild”—that is, adapt to changes in its envi-
ronment and its user’s goals and tasks without programming assistance or technical 
intervention. The goals of PAL are illustrated in the figure below. 
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Fig. 1. PAL Goals [From 17] 

This goal also implies that the system will adapt without formal verification, vali-
dation, or certification. PAL is expected to learn new tasks by observing a user or 
being taught by that user. While the targeted domain of this capability is not in weap-
ons systems where direct safety and efficacy concerns might exist, it is intended to 
operate in decision-making environments. Mistakes made by decision-makers can 
lead to catastrophic results just as faults in direct safety-critical systems can. 

Several levels of adaptation were studied and developed within the PAL program. 
The figure below illustrates the varying levels of human involvement with the sys-
tem’s adaptation. 

 

 

Fig. 2. Levels of Training an Agent [From 17] 
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While we may be more comfortable with adaptation that has high active involve-
ment from the user, it is also true that we rarely allow the deployment of software 
developed by a human without some form of evaluation. Methods for evaluating the 
new possible behaviors of systems that learn in addition to mechanisms for protecting 
against learned aberrant behaviors are necessary.  

3   Unlike Redundancy 

It can be easily shown that redundancy can be employed to improve system reliabil-
ity. The Space Shuttle avionics system contains five identical computers to perform 
flight-critical functions [1]. Redundant systems are often utilized with a voting 
scheme so that components that are failing can be identified when they come up with 
answers that don’t agree with those of the others. The National Aeronautics and Space 
Administration (NASA) uses five computers so that even after two failures there will 
be still be enough computers to vote and not end up in deadlock. The main assump-
tion of this approach is that failure of one of the components is an independent event 
and is not due to a design flaw [2]. 

Sometimes it is better to use unlike redundancy, where differently designed com-
ponents perform the same function [3]. This is done when one cannot be certain that 
failure of components will be independent events and not due to a design flaw. This 
will reduce the likelihood that the components will not all fail simultaneously due to a 
common fault. 

If adaptive systems are to be used in mission critical environments, there may be a 
benefit to using unlike redundancy. In addition, adaptive systems offer opportunities 
to provide such redundancy naturally.  

3.1   An Autonomous Vehicle Problem  

Suppose that we want an autonomous vehicle to operate with minimal human inter-
vention while performing a mission critical and safety critical task. The United States 
Department of Defense (DOD) has stated in solicitations for proposals that armed 
unmanned systems will need to be able to operate autonomously, and collaboratively 
engage hostile targets “within specified rules of engagement”. While the solicitation 
includes that final decisions on engagement will be “left to the human operator”, it 
goes on to say that “Fully autonomous engagement without human intervention 
should also be considered, under user-defined conditions....” [4] 

How will such robotic systems be designed? There is research in many areas that 
may provide the technology necessary for autonomous systems to make such critical 
decisions as to whether or not to fire a weapon. Programming the tactics required for all 
situations is a difficult and imprecise process. Researchers at Stanford have shown that 
unmanned air vehicles can be taught behaviors more effectively than they can be pro-
grammed in some situations [5]. Similarly, teams of autonomous agents have been 
taught tactics using neuroevolution in a video game environment. In the NERO game, 
players train teams of virtual robots. This is accomplished by training and running suc-
cessive generations the robot teams through training games and selecting those robots 
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that exhibit elements of the desired behavior and using them to create the next genera-
tion. These teams are used for combat against teams developed by other players [6].  

But will we trust robots that have learned tactics and decision making in a simu-
lated environment and through previous operations. While they likely will have an 
advantage over rigidly programmed vehicles when the environment changes, we will 
not necessarily know how to predict vehicle responses to new situations. We expect 
emergent behaviors, yet still must make sure that they are good. 

One method proposed for dealing with the robots allowed to make important, or 
indeed lethal decisions, is to program in a conscience [7]. In this approach an ethical 
adaptor is employed. The robot predicts the outcome of each engagement. If the  
decision is to engage, then after the engagement, the robot receives feedback on the 
results (e.g., the existence of civilian casualties). If the result was worse than  
expected, the robots confidence in its evaluation is degraded and it loses the authority 
to use those weapons where the results are less certain, or loses some degree of auton-
omy. The vehicle may now only use those weapons that have less possibility for  
unexpected casualties or may have to receive additional checks from a human opera-
tor to use riskier weapons. 

Finally, there are invariants that can be programmed into an autonomous vehicle. 
Whenever a known situation can be described programmatically, this approach can be 
employed. Autonomous vehicles can be programmed not to fire weapons within some 
radius of known schools, hospitals, and etc. This approach is of course brittle in the 
face of a changing environment, but can provide safeguards in situations where a 
robot has learned incorrectly.  

3.2   A Mixed Approach May Improve Trust  

Imagine using all three of the above methods to provide unlike redundancy and allow-
ing the three subsystems to vote on the final decision. The machine learning component 
will evolve to learn when to engage and when not to within the changing environment. 
It will employ tactics taught by its commanders and through simulations. But it may 
learn some wrong things. 

The ethical adapter will serve as a check. If the decisions that the three modules 
have voted to proceed with have gone badly, it will more-and-more often vote against 
dangerous action. This is independent of the learning system, which should also learn 
from mistakes and make adjustments. By having two different approaches, mistakes 
should be fewer and we could have more trust in the system. 

Likewise, the invariant component has the third vote and whenever a constraint is 
recognized, it will vote against action. To err on the side of caution, one might give 
the invariant component and the ethical adapter components two votes each, allowing 
each to abstain as well when the environment does not offer them any information. 
Unanimity may also be required for the most serious decisions, such as weapons  
release. 

We cannot allow systems that make mission critical or safety decisions simply to 
adapt and improve without some form of check. Unlike nature, we must judge mis-
taken adaptation as being undesirable and cannot easily accept failures. 
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4   Graduated Certification 

Large systems of systems (SOS) must adapt. With very large numbers of components, 
they are typically developed in an adaptive manner, rarely remaining static. In particu-
lar large SOS are being developed using service oriented architectures (SOA) specifi-
cally so that new components can make use of previous services without the original 
services necessarily having been designed for that purpose [8]. Similarly, large  
networks of services are being developed for large sensing networks like the Ocean 
Observatories Initiative [9] and for military command and control networks [10]. 

Beyond human-driven adaptation of the network through the addition, modifica-
tion, and deletion of services, automated service composition is possible to some 
degree now and presumably more so in the future [11]. SOA is being employed pre-
cisely because many other architectures have been considered too static to handle 
changing environments. SOA are considered to be more adaptable. 

4.1   Problem of Trust in an Adaptive SOA  

There has been a great deal of research into how to ensure that a service knows who is 
asking it to perform. SOA can be even be implemented across security domains pro-
vided sufficient authentication and system-level security are present [12]. Policy 
frameworks are being defined and developed that will allow access policies to be 
developed and adapted as the network changes [13]. Services can determine whether 
or not they can trust a requestor.  

 

Fig. 3. A Rein Policy Network [From 13] 
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But the reverse problem is more complicated. As the network adapts, new or up-
graded services may appear that provide essentially the same function as previously 
available services. Some of these services may be automatically generated. Services 
may have gone through different levels of quality assurance. How can a person or 
application know which services to trust, not only with regard to more straightforward 
aspects of network security, but in terms of quality of service: how accurate will the 
answer be, how long will it take to get a response, and etc? 

The simple answer would be to have a uniform policy for evaluating new services 
and preventing the introduction of services that have not yet met the criteria for de-
ployment. This would preclude the automatic generation of new services and is likely 
to cause stagnation of very large SOA networks. 

4.2   Employing Policy Languages  

The Rein policy framework [13] is an example of a capability for providing service 
access policy. In the figure below, the framework is used to protect images on a web 
server. 

We propose using it the other way around. We would like to define a graduated 
certification scheme. Possible levels of certification are shown below. 

Table 1. Certification Grades 

Level Description 
0 Automatically Generated Service or Human Generated  

services through choreography system 
1 Automated test module executed and passed 
2 Component Testing performed at DOD Service lab 
3 Workflow testing performed at DOD Service lab 
4 Performance experience mature 

 
A policy network can be developed based on Rein to allow applications to decide 

which services they trust enough to use. Applications that require more trust will opt 
to avoid newer less mature services, while those that are not as sensitive but require 
the information provided by newer components will make use of the new information. 
Similarly, security enclaves may be automatically created around services based on 
their level of trust from the standpoint of information assurance. More trusted services 
will be allowed access and placement within areas of the network that may be more 
sensitive.  

Where there is more than one choice, applications might trade-off performance 
with certification. This type of certification policy framework will allow the network 
to evolve, while ensuring that capabilities on the network are using services that are 
appropriately mature.  

5   Preparing Adaptive Systems for the Real World 

Humans are adaptive systems, yet we do not get deployed without training. The De-
fense Advanced Research Projects Agency (DARPA) implemented a program to 
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build the first instance of a complete cognitive agent based on integrating multiple 
machine learning adaptation methods. The program, called Personalized Assistant that 
Learns (PAL), has yielded new cognitive technology of significant value not only to 
the military, but also to the business and academic sectors [14]. 

A significant question came up early in the PAL program. “When is a PAL ready 
to be fielded?” In standard military programs, deployment occurs after the system has 
passed a formal test and evaluation phase. If the system has met the requirements and 
is found to be operational useful when tried by the users, it is ready to go. The PAL 
program suggested a different approach was needed. Some of the learning technolo-
gies were designed to allow a PAL to learn many of its capabilities after being  
deployed. The users’ environment is guaranteed to be different than it was when the 
system was first specified, so PAL was created to learn in-the-wild.  

Trading off cost (including risk) with benefit is the basis of deployment decisions. 
As stated above, software that adapts through machine learning may start out with 
little benefit to go with whatever risk is present in installing it. Learning systems are 
also likely to appear more risky by their very nature because their future behavior is 
not entirely predictable. If there isn’t sufficient measurable benefit to weigh against 
the risk, the decision is likely to be negative. 

The anticipated advantages of learning in the wild are that capabilities that are dif-
ficult to specify will be achieved, and that new capabilities that are needed due to the 
rapidly changing environment can be provided without returning to the laboratory. 
PAL will learn entirely new tasks, without new software being developed by engi-
neers. Therefore, PAL would not necessarily pass a formal test against a set list of 
requirements, but PAL has capabilities to learn overtly from the user and by observ-
ing the users actions [15]. 

5.1   Three Alternative Results 

If we are to imagine deploying a PAL, there are three basic results that can be envi-
sioned, and they are likely to be determined by the behavior of the human users as 
well as the learning ability of the software. The initial knowledge state of the PAL is 
also likely to be important. 

The three possible results are: 

1. Expected (Success). The PAL is capable enough at the start and quick enough 
at learning to make it useful to its human user. The user’s initial investment 
(at the cost of efficiency and effectiveness) is not too expensive and pays off 
so that effectiveness improves over time. Eventually the learning plateaus but 
not before the investment pays off. 

2. Abandonment. The user’s performance suffers at the beginning, and it does 
not improve quickly enough so that the user will see it as useful. The user 
abandons the PAL and effectiveness goes back to pre-PAL levels.  

3. Disaster. The user’s performance suffers at the beginning, and it does not im-
prove. PAL does not learn, or learning does not benefit the user, but the user 
continues to use PAL resulting in a permanent drop in effectiveness. 

 

The figure below illustrates notional performance curves for the human-computer 
team for each of the scenarios above. From the introduction of a PAL at ‘A’, we see a 
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degradation of performance initially. We might see a bottoming or at least slowing of 
this cost by the time labeled ‘B’. If the user sees improvement early on, we may be on 
the success curve, and performance could continue to improve and overtake previous 
levels of performance at point ‘E’. Learning tends to plateau at some point, which for 
the graph below we label as ‘F’.  

Abandonment is the likeliest outcome if performance does not improve quickly 
enough. We can imagine the user becoming frustrated and needing to return to old 
ways of performing the job in order to maintain required levels of effectiveness and 
efficiency. In the notional graph below, abandonment occurs at point ‘C’, and the user 
returns to levels of performance that preceded deployment of PAL by point ‘D’.  

The final scenario is depicted by the green dotted line. Performance does not 
bounce back up, and a determined user continues to use the assistant, with continued 
decreases in performance due to efforts to train the assistant that are not working. 

 

 

Fig. 4. Notional Performance Curves 

If these scenarios are believable, then assessing the benefit of a PAL or similarly 
adaptive system becomes a problem of determining the likelihood of success. In order 
to do that, we might be able to make use of models of behavior, learning, and the 
resulting performance changes. We also may want to develop processes that improve 
the likelihood of success, and we will need models of how to measure progress during 
these processes. 

If we accept that we cannot evaluate a PAL for operational capabilities prior to its 
use, we must still be able to determine when a PAL is ready to be sent out into the 
field. Two thresholds must be surpassed. First, the PAL must know enough to learn 
from the user and from observation. Second, the PAL must be useful enough in order 
for a human to be willing to have it around. These were shown in experiments using 
simulations of the learning capabilities and randomized task lists from a test domain 
[16]. There were many other factors, but the statistical analysis showed that these 
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were the keys. So this becomes the survival test for our adaptive and adapted system. 
Will the user tolerate and teach the system? 

5.2   A Boot Camp  

Anthropomorphic descriptions are difficult to avoid when thinking about the PAL 
program. The inspiration behind the program, quite literally, is the benefit gained by 
those fortunate enough to have a human assistant. There are however, differences that 
immediately come to mind when one delves deeper into the possible capabilities of a 
PAL when compared with a human assistant. An example is that two or more PAL 
may be able to directly transfer knowledge among one another, rather than first de-
scribing that knowledge in some language that can only provide an approximation of 
the needed information with the hope that the receiver correctly interprets the message. 

However, there are many similarities between a PAL and a human assistant. For 
example, both must learn how their boss wants to conduct business, their performance 
is best measured by the change in their boss’s performance, and if not found useful 
will get cut out of processes where the boss feels that it is more expedient to just do it 
him or herself. Because of the many similarities, it is useful to consider how one deals 
with the introduction of humans into the operational environment and decide if simi-
lar processes are useful for PAL.  

Structured training is one technique used to prepare humans for their jobs. Most 
famous is military basic training, also known as boot camp. New recruits in the mili-
tary already have been to school (e.g., high school or college), but need to learn the 
basics of the military domain. For a PAL, it may be difficult to program in all the 
knowledge it can gain from the target domain within a training setting. 

Another technique used in the military for training humans is simulation. For in-
stance, naval officers moving to a joint staff tour are taught crisis action planning 
(CAP) processes in training driven by simulation systems. To be successful, the offi-
cers need to have certain amounts of prior knowledge, and can have their knowledge 
evaluated before leaving. There is no thought that the real life situations will exactly 
mirror those they have encountered in training. Rather it is believed that the skills they 
gain will allow them to learn the rest of what they need to know while on-the-job.  

This approach parallels the goals of the in-the-wild learning by PAL. The assistant 
must learn within its operational environment, but in order to do so, must have some 
basic knowledge about its domain and the basic processes that are likely to be  
encountered. 

The approach proposed for a boot camp for cognitive systems consists of three 
phases. In the phase prior to the boot camp, knowledge is being added through pro-
gramming. This can be either using traditional programming languages or as state-
ments in a logic-based knowledge base, or by any number of means. The distinction is 
that the method is one of designed and engineered programming. Learning algorithms 
may be employed, but through a controlled method, and through training data sets. 
Knowledge is primarily programmed into the assistant. 

Prior to entry into the boot camp there is an opportunity to measure the knowledge 
currently held in the assistant. In the PAL program, this was done through an adapta-
tion of traditional standardized tests for human students. First, a task analysis was 
conducted, and then necessary skills and knowledge were determined. Finally, exam 
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questions were generated to test for the necessary skills and knowledge [18]. PAL is 
meant to interact with human users, so using test techniques that are applied to hu-
mans seems appropriate. This fits, in general, with capabilities that are intended to be 
of assistance to humans. 

The consequences of inadequate programming are that the assistant cannot func-
tion well enough to learn in the simulation environment of the boot camp. This is the 
same issue we are hoping to avoid in operational use. Therefore, the measurements 
that support the decision process are equally valid in both environments. It is a sim-
pler matter to measure performance changes in the boot camp environment than in the 
operational environment and if we can use it to approximate the operational environ-
ment, we will be well off. 

The next phase, the boot camp, is characterized by the use of simulation systems. 
Players using the simulation are cooperating to create and execute plans that ade-
quately respond to the game situations presented in scenario. As the game unfolds, 
reports are generated by the simulations that drive the decision support displays. 
These communications are monitored by PAL, as are collaborative chat and email 
messages among the players. The goal of the players is to recognize the situation, 
develop a plan, and then execute it by composing and executing a plan in the simula-
tion. It is the assistant’s job to help where possible to improve the collaboration and 
even to help manage the task of composing and executing plans. These tasks are 
learned through observation and in some cases explicit instruction by the users. 

There are many measurement opportunities in this process. The efficiency and ef-
fectiveness of the players can be judged. Efficiency can be measured through the time 
it takes from a particular point in the scenario until a new plan is composed and  
completed. Effectiveness can be measured by the number of successfully developed 
operational plans, each with different reward values, and deadlines. 

Following work in the simulation environment, the opportunity exists to conduct a 
graduation exam. The mechanism for this can be the same as the test used prior to 
initiating use in the simulation environment of the boot camp, and it could well be the 
same exam in order to compare the changes in the performance on the exam with 
learning that occurred in the boot camp. The results are useful to correlate with the 
results of operational use to help determine if the boot camp is successful. 

The final step is operational use. Here the assistant is paired with a user. If the as-
sistant has been trained sufficiently, the human will be willing to use the assistant and 
the assistant can continue to learn. If the assistant has been inadequately trained, it 
either will be abandoned or will degrade the human’s effectiveness and efficiency. 

Effectiveness and efficiency are more difficult to measure in an operational envi-
ronment because we cannot set up repeatable controlled experiments. Here we have to 
rely on monitoring the behavior of the user in terms of use of the assistant. 

6   Summary 

Adaptive systems present a much more complicated problem than biological entities 
who participate in evolution. While the consequences of poor adaptation are dire for 
an individual, it means nothing to the earth. There is no judgment of a good or bad 
result to nature. 
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Our systems must adapt to their environments in order to stay useful. Development 
timeframes are much slower than the changes to the environment in many domains. 
Trust is an important factor for success of adaptive systems. Adaptive systems bring 
their own kinds of risks and in safety critical environments should perhaps be sur-
rounded by other types of technologies in order to ensure that adaptation doesn’t lead 
to catastrophe. As networks and their component services evolve, so too our ability to 
decide how much trust to give recently altered services needs to evolve. Finally, some 
adaptation requires a human to either explicitly teach or to at least allow a machine 
learning capability to participate and observe. The user must trust the system to in-
crease effectiveness and/or efficiency, and must trust that the system will successfully 
learn in order to be willing to invest time and energy into aiding the adaptation. These 
are among the many challenges we face as we bring adaptation into our systems. 
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Abstract. Safety cases have become popular, even mandated, in a num-
ber of jurisdictions that develop products that have to be safe. Prior to
their use in software certification, safety cases were already in use in
domains like aviation, military applications, and the nuclear industry.
Argument based methodologies/approaches have recently become the
cornerstone for structuring justification and evidence to support safety
claims. We believe that the safety case methodology is useful for the soft-
ware certification domain, but needs to be tailored, more clearly defined,
and more appropriately structured in analogy with regulatory regimes
in classical engineering disciplines. This paper presents a number of rea-
sons as to why current approaches to safety cases do not satisfy essential
attributes for an effective software certification process and proposes im-
provements based on lessons learned from other engineering disciplines.
In particular, the safety case approach lacks the highly prescriptive and
domain specific nature that can be seen in other engineering specialities,
in terms of engineering and analysis methods to be applied in gener-
ating the relevant evidence. Safety case approaches and corresponding
methods should aim to achieve the levels of precision and effectiveness
of engineering methods underpinning regulatory regimes in other engi-
neering disciplines.

1 Introduction

Software certification is in the news; see, for example, [1] for an academic ac-
count, and the following online discussions for “popular” reaction: an infusion
pump that had to be removed from the U.S. market [2]; a software defect that
prevented the emergency stop on the Gamma-Knife [3]; and two instances in
which software failure resulted in horrific damage caused by radiation machines
[4,5]. From automotive recalls to radiation device malfunctions, actual and po-
tential deaths caused by faulty software have woken people up to the fact that
software embedded in devices of all kinds has the capability of both helping us
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and killing us, or, less dramatically, having serious consequences for individu-
als and the environment. It is quite obvious to many, if not most, people that
software is an incredible enabling technology. It is so good, in fact, that there
is now almost no new device/technology on the market that does not depend
on software in some way, either for its function or for its design. We have also
been remarkably successful in building huge numbers of software enabled devices,
with a rather limited number of known serious problems. However, this is quite
misleading, and has resulted in severe over-confidence, both on the part of man-
ufacturers and the public at large. As software and devices become increasingly
complex and safety features get further intertwined with functional features, the
chance of creating serious disasters also dramatically increases. Every now and
again, just to remind us, software faults in critical applications feature promi-
nently in the world’s news. In contrast, establishing software certification and
regulation as the norm is not on most people’s horizon, never mind establishing
real improvements in the regulation of software based devices.

Motivated by the developments above, we have become interested in pro-
moting the concept of licensing for software and systems containing software
in order to provide the public and governments with greater confidence in the
safety (and efficacy) of such products. We want to put software certification on
a proper engineering footing, analogous to other engineering domains. A reason-
able characterization of Software Certification, in the context we are referring
to, is that it is a demonstrated assurance that the system has met relevant tech-
nical standards and specifications designed to ensure it will not endanger the
public, that it can be depended upon to deliver its intended service safely and
securely and that it is effective [6]. We also contend that the goal of certification
is to systematically determine, based on the principles of science, engineering
and measurement theory, whether an artifact satisfies accepted, well defined
and measurable criteria [6].

Although there are some regulatory regimes applicable to software, experience
has shown that most of these regimes have struggled with how software can
and/or should be regulated. These existing regimes are often based on assuring
the quality and safety of the software based on the fact that the producer of
the software adheres to some defined process, often one that is realized in an
international standard for development processes. Recently, we have detected
growing awareness that this so-called process based software certification cannot
deliver the assurance we need, and product focused certification is viewed as a
significant advance.

In the past few years, we have seen safety cases assuming a more prominent
role in regulatory regimes for software based systems. They are touted as the way
to go for certifying the safety of systems, especially those enabled by software
[7]. A good introduction to safety cases, their structure and to a methodology
for their development can be found in [8]. Safety cases are touted as the way
to go for certifying the safety of systems, especially those enabled by software
[7]. Accordingly, recent years have seen tremendous effort expended on safety
cases. For example, a start has been made to develop systematic processes and
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formalisms that would help increase the level of confidence in the soundness
of a safety case [9]. There is also interesting work on how to characterize the
chain of evidence, and how to produce it, in making the argument in a safety
case [10]. Work is also being done to extend safety claims to more general software
properties [11], and a number of researchers have broadened the safety case into
an assurance case, see [12] as well. To complete this brief review, approaches for
using safety/assurance cases to certify adaptive systems [9], as well as generic
software based systems [13], have also emerged in recent years.

We were impressed by what we read about safety cases and started looking
for more information on them: theory as well as their application in practice.
While doing this we started developing some misgivings about them. This paper
re-examines the safety case approach, using lessons we should learn from other
engineering disciplines as a criterion for evaluation - and we take as our example,
Civil Engineering. This examination leads us to identify a number of potential
problems in the use of safety cases, so that we can make suggestions on how to
modify this approach so that it can be even more useful in certifying systems
containing software.

2 Software Certification Approaches

In many cases, when we speak about software certification, we often mean that,
in certifying the system behaviour of a software driven device, we need to pay
specific attention to the behaviour of the software components and their inter-
faces to the physical device. In other cases, it may be that the software to be
certified runs on generic hardware rather than embedded in a device.

Different software certification approaches exist and are usually character-
ized by their underlying philosophy as being either process oriented or product
oriented. Nevertheless, the process versus product classifications need not be
mutually exclusive, and attempts to partition software certification approaches
based solely on the two properties could be misleading. Nothing prevents the use
of both in a certification process. For example, the certification process could
check that an approved process was followed and also provide an argument based
on product evidence. Since process oriented certification regimes usually require
compliance with some set of established standards, they are sometimes referred
to as standards based approaches. Again, this could be misleading because noth-
ing precludes a standard from being product focused. Similarly, it is not unusual
to refer to product oriented certification regimes as argument based approaches
because one has to come up with a convincing argument about one’s product,
often in the context of an argumentation theory based framework for presenting
evidence; but, again, nothing a priori, excludes process considerations in the
arguments.

In the context of argument based approaches, the way to construct the argu-
ment is surely not unique and is still under intense debate. In this context, we
see recent proposals for goal oriented and template based presentations of ar-
guments [14] (methods for realizing argumentation based approaches). Whether
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the argument should be product focused, goal based, or evidence based is still
an open question and this issue has given rise to more specific argument based
approaches. In the balance between process and product emphasis in a given
certification approach, we believe that the certifying agent should increasingly
favour the product, as the criticality of the software increases, not because pro-
cesses are irrelevant for the development of the product, but because they are
not sufficient to prove anything definite about safety, effectiveness or correctness.

2.1 Process Based Approaches

Process based certification is common because we have been “able to do it”:
it gives us the illusion, rather than a guarantee, that we have produced a good
quality product and, therefore, a safe system. It is a lot easier to evaluate confor-
mance to a development process than it is to decide on attributes that distinguish
between dependable and unreliable software products and to be able to measure
the relevant attributes effectively. Because process based standards model the
products of the process superficially, if at all, it is impossible to characterize
properly the properties of the entity we are actually interested in, namely the
application we have built. Any process based definition of quality ends up guar-
anteeing only that certain steps and activities were undertaken, but does not offer
direct evidence of the presence of desirable properties. A high quality process is
not necessarily a reliable indication of a high quality product. Nevertheless, it is
important to note that we believe that it is essential that the product be built
by an organization that has excellent processes and excellent people, because
this is likely to result in good products. It follows that certifying agents will be
interested in these aspects, but they can usually be audited in a straightforward
manner, often by a third party with no specific knowledge about the products
developed by the audited organization, or its potential problems in relation to
safety. The fact that a process standard has been adopted by some regulators
may be evidence that the regulator believes that the standard is based on an
implicit (generic) safety case that justifies the quality attributes of products
produced using the process. However, the fact that this (generic) safety case is
implicit contributes directly to the problems regulators are experiencing in eval-
uating applications based on adherence to the process standard. The developer
and the regulator end up talking at cross purposes because of the lack of this
common understanding. See below for further discussion of this point.

As a result, because process based certification approaches are inherently un-
able to guarantee the quality (in many cases, safety) that a regulator requires
in the actual product, we need to focus on evaluating attributes of the product
itself. This has generated interest in product focused certification approaches.

2.2 Product Focused Approaches

We might characterise process based approaches as providing indirect justifica-
tion of a product’s required attribute values, as needed by regulators. In contrast
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to the indirect justification of process based standards, the product(s) of the
process contain the basis for the direct justification of claims to regulators. We
refer to this focus on the attributes of the product, providing the basis for the
direct justification of safety claims, as product focused, in contrast to the process
based approaches discussed above. After all, it is the safety of the final product
in which we are interested and not the efficacy or otherwise of the process used
to produce the product. A product focused approach requires that the relevant
attributes of the product can be modeled and that there are precisely defined
measurement procedures in place to determine the values of these attributes for
a specific instance. As we will see below, typical engineering domains have a very
product focused approach to regulation, concentrating on the product itself, or
on design artifacts directly related to the final product. This use of models and
other design artifacts is made possible by the direct relationship of such design
artifacts to the final product, underpinned by physical laws and the predictability
inherent in these laws, as well as by the predictability of engineering methods in
ensuring that crucial design properties are maintained.

It is often said that classical engineering is underpinned by the continuity
principle, enabling the predictability of the artifact’s properties from those of the
models and design artifacts. While this may well be the case, the predictability
of the typical engineering method is at least as crucial in ensuring that properties
predicted on the basis of design artifacts will be realized in the engineering prod-
uct. In this regard, the process standards often used in regulatory settings related
to software are not proper engineering methods. They do not have the required
detail and prescriptive qualities to support the requirement for maintaining es-
sential properties of design artifacts through to final product. (An international
process standard does not an engineering method make!)

3 What Do Civil Engineers Do?

For many years a debate has raged as to whether software engineering is really
engineering. That debate still continues. We are convinced that software engi-
neering should be a real engineering profession. It should be a speciality within
engineering. Why? To answer that we have to understand a little about the dif-
ferences between engineering and science - and the very practical reasons that
led to the creation of engineering.

There are a number of differences between science and engineering that are
of particular importance to any discussion related to software engineering [15].

• Scientists learn and/or discover what is true of our physical world. They
learn how to confirm that these truths are, indeed, valid. They also learn
how to extend this knowledge. Engineers also need to learn what is true
of our physical world. They often learn about this from scientists. They
learn how to apply that knowledge in the construction of artifacts that are
useful, effective and safe for the general population to use. This often requires
additional knowledge from many different domains. They also need to learn
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the engineering principles applicable to their speciality that then enables
them to build safe and effective products.

• Scientists have the validity of their work judged by their peers. Scientific
results may be used by other scientists or by engineers who use the results
to build something. The results on their own usually do not represent a
danger to the public. On the other hand, one of the primary roles of the
engineer is to build products that will be used by other people. In many
cases, these products have to be constructed so that they do not pose undue
risk to the public.

• A direct result of the danger inherently posed by the construction of engi-
neered artifacts was the idea of the licensed professional engineer. Society
recognized the problem of having unqualified people (people who did not
know enough about the specific engineering domain) build potentially dan-
gerous products. There is no similar regulation of scientific personnel.

• In many jurisdictions, not only are the people who build the products regu-
lated (by law), but the products themselves may be subject to regulation that
requires “proof” that the product is safe for its intended use. In addition,
some jurisdictions (such as medical device regulation in the United States)
require “proof” that the product is effective, i.e., it works as advertised.

It is also apparent that software products, both embedded in devices, and stan-
dalone applications, may pose significant risk to society. It is also obvious that
software is pervasive, and the modern world depends on software for the function-
ing of commerce, transportation, entertainment, medicine, and the generation of
electricity. Thus, an engineering speciality, called software engineering, built on
knowledge from computer science and other domains makes perfectly good sense.
So, why the debate? We believe that the debate is largely fuelled by our failure
to model software engineering on other engineering specialities. This is not sur-
prising since software engineering is relatively new, and the fundamental science
it is dependent on is also relatively new. However, we have managed to make
incredible progress in building software products that have literally changed the
world we live in. So, we should not use its “newcomer status” too much as a
reason not to have more consensus on the fundamentals of software engineering.

To help the discussion along, it will help to look at an engineering speciality
that has a long history of building artifacts that are useful/essential to society,
have to be built at reasonable cost, and have to be safe. We will regard this
engineering speciality as representative of other engineering domains. So, after
centuries of experience, how do Civil Engineers manage to build the modern in-
frastructure required by our civilization, protect us from environmental hazards,
and do this at reasonable cost with an excellent (modern) safety record?

Well, Civil Engineers are famous for their development and use of Engineer-
ing Codes. For example, the CSA Standard CAN3-A23.3, Design of Concrete
Structures for Buildings [16] (in conjunction with other standards) is used by
Civil Engineers to ensure that concrete structures are safe for use. Before we
look at some of the details regarding concrete structures, it is interesting and
important to note a reminder in Section 1, General Requirements: “(3) The
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National Building Code of Canada requires that certain reviews be carried out by
the designer or another suitably qualified person to determine conformance with
the design.” This is clearly a built-in certification/verification.

The following examples, taken from CAN3-A23.3, are instructive because they
enable us to highlight essential differences between typical engineering regulatory
practice (as exemplified by civil engineering) and typical software regulatory
practice.

Example 1 refers to Section 15 which relates to Footings. In particular, iso-
lated footings and (some) combined footings and mats. In Section 15.4.1 we
find guidance on loads and reactions, and details relating to shaped columns
and pedestals. Rules for determining the moment in footings are included. The
rules are clearly prescriptive, and have been calculated to be conservative. They
also allow for simplified calculations in the case of more complex shapes - also
pre-determined to be conservative. Section 15.3 is note worthy, in that it clearly
does not preclude a more specific analysis. A more specific analysis may be less
conservative and allow for a more “creative” approach. There are other examples
in which the more conservative approach is mandated, even if a more “accurate”
method is available. By comparison, software regulation is hardly ever prescrip-
tive with respect to analysis methods. This is partly due to the lack of consensus
with regard to standard analyses in software engineering.

Example 1

• Section 15.4.1 “The external moment on any section of a footing shall be
determined by passing a vertical plane through the footing and computing the
moment of the forces acting over the entire area of the footing on one side
of that vertical plane.”

• For example: 15.3 “In lieu of detailed analysis, circular or regular polygon
shaped concrete columns or pedestals may be treated as square members with
the same area, for the location of critical sections for moment, shear, and
development of reinforcement in the footings”. �

Example 2 refers to Section 19 which relates to Shells and Folded Plates. In-
terestingly, as we can see in this section, the standard is also prescriptive with
respect to the analysis assumptions that must be used. It also includes specific
requirements on materials. By comparison, if software regulation does not pre-
scribe analysis methods, it is certainly not likely to prescribe assumptions related
to analyses. There are a number of software analogies we could use that relate
to material. For instance, we could think of the programming language(s) used
in an application as a fundamental component in much the same way as mate-
rial may be thought of in constructing something physical. Using this analogy,
it may be surprising that although most software regulation may not prescribe
a programming language, many jurisdictions and manufacturers have imposed
restrictions on programming languages to protect against known unsafe pro-
gramming constructs.
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Example 2

• Section 19.2.1 “Elastic behaviour shall be an accepted basis for determin-
ing internal forces and displacements of thin shells. This behaviour may be
established by computations based on an analysis of the uncracked concrete
structure in which the material is assumed linearly elastic, homogeneous, and
isotropic. Poisson’s ratio of concrete may be assumed to be equal to zero.”

• 19.3.1 “The specified compressive strength of concrete, t′c, at 28 days shall be
not less than 20MPa”; and,

• 19.3.2 “For nonprestressed reinforcement the yield strength used in calcula-
tions shall not exceed 400 MPa.” �

Finally, Example 3 refers to Section 21 which relates to Special Provisions for
Seismic Design. This rather lengthy section starts with three columns of notation
and definitions, indicative of more complexity. Our motivation for selecting this
example is that one of the reasons given for treating software differently from
other engineering specialities, is the fact that software systems are typically quite
complex. In fact, software systems are frequently amongst the most complex of
human endeavours. Section 21 now reflects the additional complexity required to
deal with constructing buildings that can withstand seismic events. For example,
Section 21.4.4 deals with Transverse Reinforcement, and Section 21.4.4.2 speci-
fies very prescriptive compliance requirements, for a problem that is inherently
complex and could be solved in a large number of ways. In addition, the product
can be checked for compliance both during and after implementation.

Example 3
Section 21.4.4.2
Transverse reinforcement, specified as follows, shall be provided unless a larger
amount is required by Clause 21.7:

(a) the volumetric ratio of spiral or circular hoop reinforcement, ρs, shall not be
less than given by

ρs = (0.12f ′
c/fyh) (21-2)

and shall not be less than that required by Equation (10-7);
(b) the total cross sectional area of the rectangular hoop reinforcement shall not

be less than the larger of the amounts given by Equations (21-3) and (21-4)

Ash = 0.3
shcf′c
fyh

(
Ag

Ach
− 1

)
(21-3)

Ash = 0.12
(

shcf′c
fyh

)
(21-4)

(c) transverse reinforcement may be provided by single or overlapping hoops.
Cross ties of the same bar sizing and spacing as the hoops may be used; and

(d) if the factored resistance of the member core is greater than the factored
load effect including earthquake, then Equations (10-7) and (21-3) need not
be satisfied outside the joint.” �
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The above examples show that CAN3-A23.3, like most engineering standards,
imposes constraints and requirements on the product, and is prescriptive on
the analysis process too. In comparison, most standards found in the soft-
ware engineering domain adopt a risk-based approach and define a process-
based generic approach for the software development lifecycle phases. One such
standard that is emerging as a key standard for the functional safety of elec-
trical/electronic/electronic programmable (E/E/EP) safety-related systems is
IEC-61508, specifically parts 3 and 7, which relate to software requirements and
techniques, respectively [17]. This standard assumes that it is not possible to
prescribe techniques and measures that will be correct for any given application.
It does, however, state that a primary objective of the IEC 61508 series is to fa-
cilitate the development of product and application focused standards, perhaps
quite similar to Engineering Codes such as the one discussed above. Since testing
is the most common way in which software engineers evaluate their products,
let us examine what IEC 61508 says regarding the Requirement for Software
module testing (IEC 61508-3, Section 7.4.7), which is part of the Software design
and development phase (IEC 61508-3, Section 7.4). First, outputs of the given
phase (or activity) are identified, such as the test result. Second, properties are
identified:

(1) completeness of testing with respect to the software design specification;
(2) correctness of testing with respect to the software design specification;
(3) repeatability;
(4) precisely defined testing configuration.

Next, a list of techniques is proposed. For example, dynamic analysis and testing
(DAT) is proposed. Then, the links between the technique and the properties
are highlighted. In this case, it identifies that DAT will positively contribute to
properties (1) and (2) but not to properties (3) and (4). This is followed by a
more detailed description of suggested techniques related to DAT. For example,
test case execution from boundary value analysis is proposed. Finally, specific
guidelines drawn from experience, are given in Part 7 of IEC 61508. For example,
”the use of the value zero, in a direct as well as in an indirect translation, is
often error-prone and demands special attention to zero divisor, blank ASCII
characters, empty stack or list element, full matrix, or zero table entry.” As
this example shows, the evolution of IEC 61508 is a small step towards more
prescriptive and product focused standards or codes. However, as can be seen in
the above discussion, even though this modern software standard sets out to be
product and application focused, it falls far short of the type of prescription we
see in other engineering disciplines.

The next section stresses some lessons we can learn from these examples.

4 What Can We Learn from Civil Engineering?

The kind of domain specific, tightly prescribed standard described above is es-
sentially unfamiliar territory for software engineers and regulators working in
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the area of software. We want to understand why analogous standards do not
exist for software and we want to make the case that they should.

The following points relate directly to lessons we can learn from: i) the
standard described in the previous section (and whenever the “standard” is
mentioned in this section, it is that CSA standard on concrete design that we
are referring to); and ii) civil engineering practice in general. In many cases
throughout this discussion, Civil Engineering simply stands as an example of
typical engineering disciplines. We also include a brief but pointed comparison
with software engineering practice. The point of the comparison is to promote
the idea that we can do better in the software domain and that, if we really want
to have proper safety standards in software engineering, we should do better.

• In the balance between safety and creativity/efficacy, safety always wins.
Architects and engineers are constrained, generally by statute, in what they
are allowed to do. This is simply accepted as a way of life for everyone in the
profession. This prescriptive regulation is also updated frequently to keep up
with advances in the field. We should not underestimate the positive effect of
smart prescriptive regulation. To comply with Canadian nuclear regulations,
developers have to separate control and safety functions. The safety system
must be completely independent of the control system. This has the effect of
severely constraining the complexity of the safety system, leading to systems
that can be mathematically defined and analysed. Contrast this with the
almost complete absence of control of creativity in software and in safety
cases! (See Bloomfield in Section 5.1.)

• The standard imposes constraints and requirements on the product. Com-
pliance with these constraints and requirements can be determined objec-
tively during and after completion of the implementation. This is because
“compliance” is defined in the context of the standard scientific/engineering
measurement framework (i.e., the MKS system of measures). There are well
defined measurement procedures that can be used to determine whether or
not some constraint or requirement has been met. Engineers typically do use
them. Software professionals typically do not. More importantly, software
standards impose much more stringent requirements on the development
process than they do on the product.

• Although the standard is predominantly product focused, it is sometimes
unashamedly prescriptive on the analysis process as well. In software we
seldom encounter anything similar. There are some exceptions, as usual. For
example, Modified Decision/Condition Coverage testing is mandated by a
civil aviation software standard.

• The standard applies to all (concrete) products.
• Although this is not obvious from the referenced standard, Civil Engineer-

ing (like other engineering disciplines, e.g., Electrical Engineering) defines
very limited interfaces. Even when very general interfaces are quite possi-
ble, standard interfaces cut the complexity of designs and implementations
tremendously. Those simple interfaces allow technicians to assemble prod-
ucts without full-time guidance of the engineers. Software Engineering has
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done almost nothing to limit our freedom to create interfaces. There has
been excellent work done to cope with the complexity of software interfaces,
but it may have been wiser to look also for ways of defining more standard
interfaces. This may still be worth examining.

To some degree, in contrast to the lessons we have been trying to learn from
the classical engineering disciplines, safety (and assurance) cases have been put
forward as a kind of panacea for software engineering. We look more closely at
safety cases in the next section.

5 Safety Cases

One approach that exhibits elements of both process based and product focused
certification, depending on the nature of the evidence being adduced in the case,
is that of the safety case. A safety case provides a structure in which the producer
makes claims related to the safety of the product, and presents a justification as
to why the claims are valid, using evidence related to and/or derived from the
product. Latterly, argumentation theory has been proposed as a way of better
presenting/structuring the safety case. This may make the safety case more com-
prehensible, but there is no reason to believe that it adds anything to its success
in demonstrating safety or efficacy. This last claim requires justification. Before
going any further, we should clarify what we mean by safety case (or assurance
case, as for the moment we will not distinguish them). The literature on safety
cases unfortunately exhibits a confused usage of the phrase. A safety case can
obviously refer to an artifact, or product in the sense we use it in this article,
namely the document containing the safety claims and the justification of those
claims. The phrase can also be used as a name for an approach to demonstrating
safety claims, as in the “safety case approach”. This usage refers to a methodol-
ogy, i.e., a set or system of methods, principles, and rules for regulating a given
discipline, as in the arts or sciences. For the safety case approach, the elements
include hazard analysis, the use of claims, adducing evidence, argumentation
principles, and so on. Finally, a well defined and prescriptive engineering method
for constructing a safety case in a well defined domain may qualify as a method
that falls within the safety case approach. An example of this usage could be
the method of goal structured argumentation using argument templates, were
it not for the fact that we do not believe that the existing literature describes
anything amounting to a proper engineering method.

The certification goal in the Introduction points to what is missing from safety
cases at all levels. The safety case approach, i.e., the methodology, is not suffi-
ciently clear on the scientific and measurement foundations of the methods and
principles of safety cases. The specific goal structured, argumentation method
for safety cases is also not well founded in terms of scientific and measurement
principles. Furthermore, it is not an effective engineering method, whose aim
is to engineer safety cases in a reliable and predictable manner. Of course, the
safety case artifact is itself deficient as it will not contain the relevant mea-
surements and scientifically based justifications required to make the safety case
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“sound”. It is this lack of proper scientific and measurement principles underly-
ing safety cases, at all three levels, which justify our scepticism about efficacy of
safety cases as noted above. We would make the same comments about assurance
cases, which subsume safety cases and address issues other than just the safety
of the system under consideration.

5.1 Why Safety Cases?

In stark contrast to the evidence from the classical engineering disciplines, Bloom-
field and Bishop present five points as to why their notion of the safety case
approach is to be preferred to more prescriptive regulation [13]:

• To prevent safety from being seen as the responsibility of the regulator rather
than the service provider.

• Prescriptive regulation typically comes from past experience and this may
be inappropriate in technically innovative industries.

• Prescriptive regulation encodes best practice at the time it was written, and
may eventually prevent developers from adopting best practice.

• Overly restrictive regulation may be viewed as a barrier to open markets.
• Prescriptive regulation can adversely affect the cost and technical quality of

products developed to comply with that regulation.

We will consider these points in turn.
“To prevent safety from being seen as the responsibility of the regulator rather

than the service provider.” We have no quarrel with the first point at all! It is
absolutely clear to us that the developer of a safety critical artifact must take
responsibility for its safety. In fact, legally the developer has no choice, whether
regulated or not. However, we do have a quarrel with the role that this statement
plays in support of the argument against overly prescriptive standards. Prescrip-
tive standards are perfectly consistent with developers taking responsibility for
the safety of their product. We do not see why this is different for software
compared with other specialties. Regulation occurs in all disciplines (and it is
the system that gets certified, not the software). Prescription should cover a
minimum safe set deemed necessary for ensuring the safety of the product.

“Prescriptive regulation typically comes from past experience and this may
be inappropriate in technically innovative industries.” Most engineers would be
offended at the accusation that, just because they have highly prescriptive regu-
latory regimes, they do not innovate. However, as Vincenti points out [18], there
is innovation, and then there is innovation. In the distinction he makes between
normal design and radical design, we see an inherent distinction between con-
trolled and predictable innovation in normal design, and some or all bets are
off innovations in radical design. Normal design embodies the experience based
prescriptive design principles beloved of engineers. They are beloved exactly be-
cause they are reliable and predictable. However, as Vincenti points out, Just
because they are prescriptive does not mean that innovation is stifled. The kind
of innovation that is well supported in normal design is incremental, controlled
innovation. For example, improving engine performance in a car or an airplane
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by 2% is almost always an example of such controlled innovation. Replacing the
usual car engine with a Wankel engine is not. This is an example of radical de-
sign and the predictability of the innovation’s properties is much lower than for
normal design.

So, in actual fact, engineers should avoid innovation, at least of a certain kind,
exactly because they want predictability and safety. Radical innovation should
have a very high price attached to it and should be stifled to some degree so as
to prevent tragic accidents.

“Prescriptive regulation encodes best practice at the time it was written, and
may eventually prevent developers from adopting best practice.” The remarks
made above about technical innovation in products apply equally to the en-
gineering methods used to produce them. The guarantees offered by normal
engineering methods are well worth their value in providing support for safety
engineering and do not prevent normal design innovation in the method. The
engineering ethos encourages such improvement. However, the price of radical
innovation in engineering methods is made clear; the burden of responsibility for
radical changes, with respect to safety properties of systems, is clearly placed on
the innovator. As it should be.

“Overly restrictive regulation may be viewed as a barrier to open markets.” As
argued above, there should be some restrictions and barriers on open markets to
make sure that the chances of damage to individuals and society are minimised.
One has only to point to financial regulation, or the lack thereof, that was
the major contributor to the world’s recent economic catastrophes. The whole
purpose of certification is to prevent the open markets from foisting dangerous
products on us.

“Prescriptive regulation can adversely affect the cost and technical quality of
products developed to comply with that regulation.” In the interest of keeping
our response polite, we will only say that safety trumps productivity, and that
prescriptive regulation does not automatically imply bad or overly prescriptive
regulation. Also, as noted often, other engineering specialities are usually regu-
lated through much more prescriptive standards than is software.

5.2 Some Weaknesses of Safety Cases

The freedom inherent in safety cases is appealing to software experts. It is ap-
pealing for exactly those reasons we believe that software engineering has re-
sisted the constraints and discipline imposed in other engineering domains. As
Vincenti [18] points out, engineers classically rely on established and recognised
methods for designing artifacts, as the established method offers certain assur-
ances about efficacy and safety. These assurances are backed up by standard
analyses and measurement procedures associated with the relevant, specific en-
gineering method being used for the design Vincenti calls this normal design, in
contrast to radical design, where some element of a normal design method is ab-
sent, say because untried technology is being used. Software engineers have made
very little attempt to develop a normal design culture, valuing their freedom to
make the same errors over and over again! And to not learn from other software
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engineers’ experiences! From the regulators’ point of view, this also makes their
job well nigh impossible. Every submission is different, and so very difficult to
evaluate in a systematic way. Regulators also need “normal evaluation” meth-
ods to work effectively and efficiently. Just as manufacturers have to use normal
design principles for predictability of design, so regulators need to be able to
apply normal evaluation procedures to reach reliable evaluation outcomes. It is
not that radical designs cannot be submitted, but the evaluation process is then
much more complicated and less certain in its judgement (see the discussion on
stifling innovation in [13]). There is an obvious and important role for the safety
case approach to play. In fact, we believe that safety cases should play this role
in the certification of all products, be they software-enabled or not. This role is
primarily as an overseer and organizer of safety-related principles and methods
relating evidence and artifacts. Individual components within the safety case
method should be domain specific and prescriptive certification strategies. For
example, a safety case document for a medical device is likely to contain compo-
nents that are software certification specific, electronic certification specific, etc.

A typical safety case document would be extremely time and resource con-
suming and potentially costly for certifying agents to evaluate. The fact that
each safety case may be a one-off example means that certifiers would have
to spend considerable time understanding the evidence and the importance of
the evidence in each individual case. That is, the certifiers are left with the
problem of rationally reconstructing the safety case method and the methodol-
ogy/approach used in creating the safety case document. So, each safety case
presents the certifier with a double scientific induction problem: one from safety
case document to safety case method and the other from safety case method to
safety case approach. This kind of induction problem is one of the most difficult
kinds of problems for scientists to solve! They also have to spend significant
amounts of time understanding the safety case structure, in each individual sub-
mission. Although ideas from argumentation theory have been proposed as a
way of structuring safety cases, this does not actually address the issue at hand,
as there is no concept of a “normal” or standard argumentation structure for
a particular class of safety cases, domain specific or not. This may also result
in an unpredictable submission process, much as we have at this time in many
regulatory regimes. This difficulty may be ameliorated somewhat, but not com-
pletely, with the advent of safety case templates [19,13]. One might add that in
those cases where a regulator relies on a process or quality standard, or both,
as in the EU and Canada for medical devices, there is a third scientific induc-
tion problem faced by developers and regulators. The process/quality standard
used is a stand in for a safety justification that motivated the structure and
content of the standard. The idea is that if the standard is followed, then all the
requirements of this implicit safety justification would be met. However, both
the developer and the regulator have to guess why elements of the standard are
required in relation to this unstated safety justification. This results in the need
for the implicit safety justification to be induced by the developer and the reg-
ulator separately, possibly resulting in diverging interpretations of the implicit
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case. This may explain to some degree the need for regulators, e.g., the U.S.
FDA, to issue guidelines to accompany these standards - one can interpret the
role of the guidelines as narrowing the gap between the interpretations of devel-
oper and regulator in relation to the implicit safety case. However, the present
process/quality standards based approaches leave both regulator and developer
with a triple scientific induction problem! How bad is that?

It is not good enough that the producer of the product supplies the evidence
and the argument(s) in the safety case. What does matter is that the certifying
agent cannot expect the same type of evidence and the same type of argument
each time. The certifying agent thus has less chance of building expertise that
will help in future submissions. This lack of expertise, or lack of appreciation
of some of the finer points perhaps in the argument, may easily lead to the
certifying agent not detecting a subtle flaw. Again, safety case templates could
help alleviate this problem .

Argumentation frameworks, suggested for use in presenting safety cases, have
some inherent flaws. An argument is not a derivation, as in logic. Hence, the
methods of logic cannot be used, on their own, to decide whether an argument
“demonstrates” its intended result. An argument has to be refined from its in-
formal presentation in the safety case into a form that can be formally analysed
[20]. There may be several or even many such refinements - there are inher-
ent ambiguities in natural language based presentations of arguments. Does one
check all of these refinements for “soundness” of the argument? If not all, then
how do we choose which one? If we manage to analyse the refinement(s) and
determine that we have a sound argument, how can we be sure that the argu-
ment formulation is appropriate to support the guarantee of safety? How do we
judge that the safety of the artifact has been established by the argument? It
seems to us that argumentation is essentially value free; here “value” is used in
the moral or subjective sense. It may be that the concept of “explanation” from
the epistemology of science may be a better basis for presenting safety cases. In
scientific explanation, the issue is how to present a case for establishing in a sci-
entific manner that some observed phenomenon can be logically demonstrated
by certain known assumptions, certain scientific laws and scientifically under-
stood procedures. On the other hand, a scientific explanation can also be used
predictively. This may be the role related to safety cases - predicting a signifi-
cant property of our software artifact and relying only on scientific/engineering
principles.

Safety cases were designed to present compelling evidence of safety. In many
instances, efficacy is also extremely important. The U.S. FDA, requires medical
devices not just to be safe, but at least as effective as a similar device already
on the market. The initial such device has to demonstrate, through clinical tri-
als, that it does what it claims to do. The relationship between demonstrating
these two properties is an interesting issue. There is almost always some tension
between efficacy and safety, and safety cases were not designed to deal explicitly
with this complication. In developing the shutdown systems for the Darlington
Generating Station, demonstrating both properties was aided tremendously by
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the separation of safety and control functions, significantly reducing the com-
plexity of the safety system.

5.3 Standards Combining Process and Product Focus with Implicit
Safety Cases

Another example that exhibits elements of both a process based and a product
focused approach is the Common Criteria [21], developed for security certifica-
tion. In the Common Criteria approach there are product definitions of varying
degrees of exactitude. There are also definitions of measurement and evaluation
procedures. What is missing is a proper product focus, due care and attention to
the demands of measurement theory, and the demands of scientific explanation.
Taking into consideration its included evaluation methodology [22], it may be
regarded as an implicit safety case approach. However, the Common Criteria is
more prescriptive than a typical assurance case approach, in that it specifies what
products have to be produced for certification at a particular level, and provides
the certifier with an evaluation methodology in [22] as part of the standard. Un-
like engineering standards though, the evaluation methodology states that the
“target audience . . . is primarily evaluators applying the CC [Common Criteria]
and certifiers confirming evaluator actions; . . . developers . . . may be a secondary
audience.” The developer can infer from [22] what evidence to produce, though
not necessarily how it should be produced. To the developer, the safety case for
the product behind the standard remains implicit and is effectively done by the
evaluator as part of the evaluation process.

An approach that we have championed is an extension of some of the ideas
and approaches used in licensing the Darlington Nuclear Generating Station’s
Shutdown Systems in Ontario, Canada. The work done on the Darlington Shut-
down Systems has actually been quoted as an example for what safety cases are
designed to prevent [13]. In reality, the Darlington licensing activity that Bloom-
field and Bishop refer to, was the original licensing of the systems in 1989/90.
The licensing process was difficult for many reasons. Prime amongst these was
that this was the first software based nuclear safety system to be built and li-
censed in Canada, and that both the regulators and the manufacturer had not
developed a plan to deal explicitly with software issues. It thus transpired that
regulator involvement in the software verification activities started after the sys-
tem, including all the software, had already been developed. This initial licensing
of the Darlington Shutdown Systems was described from the point of view of the
regulators [23], and also by some of the team who performed the verification [24].
Our contention is that a safety case approach introduced at that stage would
have fared no better. In fact, this is a good example of why we believe that of
all the safety case approaches we have seen, the assurance based approach ad-
vocated by Graydon, Knight and Strunk [12] is likely to be the most successful.
The difference here is that the safety case is used to drive development as well as
build the safety argument. Nowadays, when we refer to the Darlington approach,
it is to the methodology that was researched and implemented subsequent to the
original verification. The software development (and verification) approach was
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described briefly in [25]. As that approach was developed, it was discussed in de-
tail with the regulatory authority in Canada. The resulting methodology enabled
the regulators to conduct audits of evidence produced during the development
process, significantly simplifying the certification process, and making it much
more predictable for the manufacturer.

The foundations of that approach were laid in a standard, called the “Stan-
dard for Software Engineering of Safety Critical Software” [26]. This standard is
reasonably prescriptive in defining the (quality) attributes that must be present
in each of the major software documents that are mandated. This effectively
defines what major steps in the software development process must occur, as
well as how to judge whether the required attributes are present in the specified
documents. Although it does not specify/mandate the actual process to be used,
it does mandate that specific processes must be described in lower-level process
documents. For example, [26] has a list of process documents that must be pro-
duced, that then govern the production of a specific project output. A small
sampling of these includes: the Software Requirements Specification (SRS), the
Software Design Description (SDD), the Design Review Report (DRR) and the
Design Verification Report (DVR). Each of these lower-level “standards” then
mandates both a process to be followed, as well as the documentation that has
to be produced. The lower-level standards were created so that the relevant soft-
ware document governed by that standard would possess the quality attributes
described in [26]. All of these standards together embodied an implicit safety
case approach, although it was not viewed that way at the time.

The implicit safety case approach for the development of safety-critical soft-
ware at Ontario Power Generation and AECL, in this case, is as follows:

1. The requirements are specified mathematically and checked for completness
and consistency. A hazards analysis is required to document risks and espe-
cially to identify sources of single point failures. These hazards have to be
mitigated in the specified requirements.

2. Compliance between requirements and software design is mathematically
verified. This includes a software design review, that evaluates how well the
design exhibits mandated attributes. A prime example of such a design at-
tribute is that of maintainability. Specific criteria are used to evaluate this,
based on information hiding. This means that designers have to be able to
demonstrate why they think that anticipated changes will be accomplished
by changes to single design modules.

3. Compliance between the code and software design is verified through both
mathematical verification and testing. Compliance between code and re-
quirements is shown explicitly through testing. However, there is an implicit
argument of compliance between code and requirements through the transi-
tive closure of the mathematical verification - code to design, and design to
requirements.

It should be noted though that the Darlington Shutdown System was a safety
system that under normal circumstances did not intervene in operation of the
plant. The system’s safe operation is a substantial part of its efficacy. The other
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part of its efficacy is related to providing acceptable production, i.e. not inter-
vening unless it is really required. It is also important to note that the implicit
safety case approach actually includes more goals than does a typical safety
case approach. The CANDU standard [26] was designed to demonstrate cor-
rectness of the implementation with respect to its requirements. In the example
of the Shutdown Systems, we believe that demonstrating correctness is manda-
tory, since the complete system is a safety system. The modern movement away
from trying to show correctness (primarily because we know that it cannot be
achieved 100%) disturbs us. It is still not a bad goal!

5.4 Safety Case Improvements

As Bloomfield and Bishop [13] point out, there are a number of directions for the
future development and improvement of safety cases. Mainly, they have identified
the following directions:

• Safety Case Methodology Enhancement;
• Extension to Other Areas;
• Safety Case Structuring;
• Confidence.

Regarding methodology enhancement, we believe that the emphasis should be
on prescriptive engineering methods that are domain specific, on domain and
method specific analysis methods, and on well defined methods for combining
analyses, i.e., the result of the combination defines some enhanced level of confi-
dence over and above that engendred by the parts. Moreover, we need to exam-
ine how to strike an appropriate balance between analysis methods of different
strengths/forms of guarantee, on the one hand, and a balance between direct
product based evidence versus process based evidence, on the other hand. An-
other important issue is the problem of incremental certification, of which the
COTS problem is just one instance. For safety case structuring, Bloomfield and
Bishop [13] have identified interesting future directions. One of them is the use
of diverse arguments and evidence. We believe that the diverse arguments idea
is a mistake if it means that we should provide multiple arguments related to
the same evidence: it confuses defence in depth within the system with different
ways of arguing about the system. The latter is just confusing to the evalua-
tor; it is demonstrating something by the bludgeon method!. If what was meant
was, in reality, defence in depth, so that multiple justifications and evidence are
provided to back up a single claim, then we agree wholeheartedly.

Different structuring methods for safety cases will certainly be appropriate in
different domains and for differing levels of criticality. In each case, the struc-
turing of the case must be derived from the requirements of a safety case for
the combination of domain and level of criticality. This question of structure
should be decided once and for all by the regulator so that there is a uniform
understanding by applicants of what is required in an application for a licence.

Establishing levels of confidence goes to the very heart of the problems with
safety cases as they are currently defined. The key ingredient missing, as noted
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above, is the ability to make an objective, repeatable assessment of the confi-
dence one should have in the safety of the system. The assessment procedure
for determining one’s confidence in a product’s safety is no more and no less
than a proper engineering method. This means that the main attribute we are
interested in, the product’s safety, must be a measurement based result, derived
from directly measurable attributes by well defined functions appropriate for the
purpose, i.e., the function is the result of a scientific analysis of the value to be
attached to the various forms of evidence and to the functions used to combine
them. This issue of determining levels of confidence in safety cases is “arguably”
the most important issue for future investigation.

Early gains in improving safety cases could be made by removing the guess-
work in using process based standards and actually reverse engineering the im-
plicit safety case behind the use of the standard. Presumably, the regulators
“trust” the process standard because they feel that it implicitly supports some
sort of safety case; making this explicit would help all parties in standardiz-
ing requirements and expectations. The result will not be the ideal regime, but
will be a big step towards it. At the very least, it removes one of the induction
exercises identified in Section 5.2.

6 Conclusion

The safety case approach, and safety cases in particular, will probably play an
important role in software certification. A concern is that current safety case
approaches lack proper scientific and measurement principles, and it seems that
many proponents of safety cases are overselling the method and its tools. One
can look at our concerns and point to specific instances where the safety case will
drill down to a level at which domain specific certification results are used, and
quote these as an indication that safety cases do not preclude other certification
processes at various steps in the safety case argument. However, if the safety case
approach does not impose more prescriptive software dependent requirements
for certification, we are not solving the basic software certification problem, or
for that matter, the problem for embedded devices. It will still be possible, and
maybe easy, for people to present apparently convincing arguments to substanti-
ate their claims using evidence that they are free to choose. Of course, certifying
authorities do not have to accept the validity of the evidence or of the argument
- but that is no better, and in fact no different, from many certification regimes
in existence today. Most of the arguments for less prescriptive regulation, some
of which are presented in Section 5.1, seem unconvincing to us - and reminiscent
of similar arguments over the years regarding software. Most of the arguments
tend to favour creativity and “progress” over safety, which is exceedingly strange
for safety cases. Nevertheless, an argument that seems to have some real merit is
the one concerning responsibility. However, that has been dealt with adequately
in other engineering jurisdictions and we see no reason why it should not be
possible in software certification as well.

Moreover, the name safety case indicates the focus of the approach. However,
in many domains it is not enough to produce a safe product. Other product
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characteristics may compete with safety and therefore should be addressed in
the certification process. For example, the FDA regulations explicitly state that
medical devices must be proven to be both safe and effective and there seems
always to be a tension between safety and efficacy. Another example comes from
the nuclear industry where the nuclear power plant has to be proven productive
in the sense that the generating station must not only be safe but it must also be
cost effective in producing power. Therefore, concentrating on only one aspect
certainly gets easier but it is also not realistic. If we take that thought to its
logical extreme, the shutdown system for a nuclear generating station would be
trivial to construct. It should always just shut down the plant. So, how do safety
cases help us determine that the system is both safe and effective? We are not
convinced that they can do this effectively.

Under the safety case approach, different improvements have been proposed
recently. One of them is the generalization of safety cases to assurance cases
where the latter can consider claims that not only relate to safety but could, for
example, address effectiveness or productiveness. We believe that it is a step in
the right direction, however, their scientific and measurement principles are, as
in the case of safety cases, an open issue.

In conclusion, we believe that, in the future, an efficient certification process
could be based on argument based evidence like safety cases or more generally
assurance cases. But, similar to what is found in Civil Engineering, a “code”
for building them must be defined. This code should be prescriptive, product
focused, and should not only help and guide the product developers, but should
also focus, reduce and clarify the audit process for the regulators.
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1   Introduction  

This paper addresses improved principles for verification and validation to establish 
confidence in robustness of adaptive software systems, to include uncertainty with 
respect to cyber environment and dynamics of internal system configuration. It  
applies to component based systems with probabilistic decision making at multiple 
levels and bridges the gap between checking the correctness of a single component 
and validating systems composed of many components. 

Robust adaptive software design requires substantial architectural support. Sound 
architectural models with adaptive probabilistic software components in cyber  
systems and associated quality assurance methods collectively gain the ability to re-
place bits of systems while maintaining system dependability [1]. We focus on system 
design with recorded rationale to make the testing of adaptive probabilistic software 
components in cyber systems possible.  

This requires a shift from scenario-based testing to architecture-based quality  
assurance [2, 3, 4], along with a shift from code-based adaptation to architecture-
based adaptation [5, 6, 7]. A good cyber system architecture would have associated 
dependability properties that express stable system requirements, requirements on the 
subsystems, and a sound software evolution model capturing the design rationale [8]. 
For systems that are supposed to be automatically adaptive, the adaptation is accom-
plished by structures explicitly visible in the software architecture. The architecture 
itself would provide some degree of dependability guarantees, regardless of specific 
configuration. Testing and analysis would be applied to a suitably specified architec-
tural model in addition to the system implementation, as described in section 4.  
Realizing this vision will require a more precise and detailed description of the archi-
tecture than is commonly developed in current practice 

Robust composite systems can be composed of components in a disciplined man-
ner, according to a carefully designed software architecture. A software architecture 
consists of: 

1.  A set of components 
2.  An interconnection pattern for the components, and 
3.  A set of constraints on the components and connections. 

The constraints typically express various kinds of requirements associated with  
the entire systems as well as with the components and connections of the architecture 
[9, 22]. 
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An architecture model is an explicit and precise definition of an architecture that 
specifies the details of its structure and the constraints. Architecture models play a 
crucial role in the design and testing of flexible systems, especially for those that are 
supposed to be self-adapting at runtime. In this context, the constraints associated 
with the entire system express invariant requirements that are supposed to be met in 
all the configurations that can be reached via adaptation transitions. The constraints 
on the components and the connections express the common principles of operation 
shared by all of those configurations.  

In a well-designed adaptive system the invariant requirements can be established 
based solely on the constraints associated with the components and the connections. 
This enables the system to operate properly regardless of which concrete components 
are chosen to fill each component slot in the architecture model, as long as each con-
crete component satisfies the constraints associated with its component slot. In this 
vision, each component slot has a set of compatible components, all of which satisfy 
the role requirements associated with a given slot in the architecture, but the individ-
ual components may differ in the specifics of their behavior within the envelope  
defined by the role requirements. This set may be further organized according to fea-
ture parameters that characterize the degree of component behavior variability that 
can be accommodated by the architecture model. 

The individual components associated with a given slot in the architecture have to 
be certified with respect to the role requirements associated with the slot. All variants 
of these components must satisfy the minimum common role requirements. In cases 
where alternative slot-compatible components have different specialized capabilities, 
the role requirements may include corresponding specialized requirement clauses  
that are conditioned on the particular feature parameter values that call out the sub-
requirements for those specialized capabilities. 

2   How Testing for Adaptive Systems Differs from Traditional 
Testing 

Traditional software testing techniques like scenario-based integration testing are 
commonly used for assessing dependability of today's software systems. These tech-
niques are strongly dependent on a particular system configuration and its platform. A 
major drawback is that when the system configuration or its platform changes, it is 
necessary to reconstruct the test cases and rerun them.  Plugging in a new software 
component will lead to a completely different system and will likely invalidate previ-
ous test results, while changes to the cyber environment may reduce the effective 
coverage of the test scenarios previously used. Therefore, these techniques are not 
effective for testing adaptive probabilistic software components in cyber systems 
where dynamic system configuration and frequent changes are the norm. 

Cyber-physical systems are an important special case of adaptive systems [10]. 
Cyber-Physical Systems (CPS) are integrations of computation and physical proc-
esses. Embedded computers and networks monitor and control the physical processes, 
with feedback loops where physical processes affect computations and vice versa. 
The technology builds on the older (but still very young) discipline of embedded sys-
tems, computers and software embedded in devices whose principle mission is not 
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computation, such as cars, toys, medical devices, and scientific instruments. CPS  
integrate the dynamics of the physical processes with those of the software and net-
working, providing abstractions and modeling, design, and analysis techniques for the 
integrated whole.  [28]. 

A cyber-physical system consists of software, computers, and physical compo-
nents. The software in such systems is typically used to control the physical parts in a 
way to achieve given goals such as safety concerns, maximizing system utility, and 
minimizing costs. This control is typically based on sensor readings, and signals  
that control actuators, both of which have finite accuracy and delay. In large scale  
contexts, there are generally a variety of goals to be achieved, a variety of physical 
components to control and coordinate, multiple available sensors and actuators, envi-
ronmental conditions cannot be perfectly predicted, and all physical components  
are subject to failure. In many contexts of interest, the cyber-physical systems are 
expected to operate in inhospitable and possibly hostile environments [8, 11]. 

A similar problem also occurs when the application has to be used in a cyber envi-
ronment different from the one for which it was originally designed and tested, which 
is expected to be common for reusable adaptive probabilistic systems and compo-
nents. This raises an important concern since flexible systems are subjected to  
frequent changes. In the context of automatically adaptive systems, the situation is 
even more severe, since adaptation is supposed to happen at runtime, rapidly, and 
with little or no human intervention. This does not provide enough time for traditional 
test and evaluation procedures, which are typically time consuming, labor intensive, 
and dependent on human expertise. We therefore seek techniques that can be applied 
in advance without detailed knowledge of the specifics of the new configuration and 
the new operating environment. We need to find principles and methods for quality 
assurance that can apply to a family of possible new configurations and a family of 
possible cyber environments simultaneously [12].  

Traditional quality assurance approaches rely heavily on testing methods that  
assume system environment and system configuration are fixed and known prior to 
testing. These assumptions are invalid for adaptive complex probabilistic systems. 
Noisy data, deception, and surprise attack tactics are likely for many critical and mili-
tary systems, making system environment uncertain.  

System adaptation and machine learning are inconsistent with keeping system con-
figuration fixed. We propose to model these phenomena as the choice between differ-
ent configurations that share the same principles of operation and architecture, but 
differ in specific components that can be compatibly plugged into corresponding slots 
in the architecture. Probabilistic systems can be also be modeled in this framework, as 
nondeterministically choosing between components at runtime, where each of the 
alternative components realizes a different decision strategy. An adaptive system must 
be designed so that it can continue to operate properly despite replacement of compo-
nents with other plug-compatible components that may differ in the details of their 
behavior and capabilities. For example, this strategy is applicable when a variety of 
robotic platforms are built from a designated set of plug-compatible electronic  
components, each of which has its own specialized purpose and has been designed to 
accomplish a specific aspect of a complex mission [29]. 
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Fully realizing the dependable architecture vision thus requires new paradigms for 
both system synthesis and quality assurance. We propose such a paradigm here, based 
on the concepts of mathematical dependability contracts, interchangeable software 
parts, and computer-aided enforcement of dependability contracts, both during V & V 
and at runtime. For adaptive systems, a dependable architecture includes an explicit 
adaptation model, with its own requirements, structure, principles of operation, and 
desired dependability properties. For probabilistic systems, requirements will be  
expressed in terms of constraints that admit multiple, non-deterministic outcomes. 
Deterministic systems become a special case, in which the constraints are tight 
enough to admit only a single behavior in each situation. We assume that multi-
component systems will be designed using adaptive architectures that define the roles 
of the individual components along with the protocols for the interactions among the 
components and parameterized goals that are to be achieved by the interactions, using 
a refinement of the framework described in [13]. 

We focus primarily on the V & V aspect, but include aspects of synthesis in cases 
where constrained design techniques that guarantee certain aspects of correctness by 
construction via special-purpose design rules, analysis and checking at design time 
are more effective than methods that seek to certify arbitrary unconstrained designs. 

Current approaches to system development and testing are more analogous to indi-
vidual craftsmanship than they are to modern concepts of mass production and inter-
changeable parts. Craftsmen used to build things by individually tuning mating parts 
until they properly fit together. In such a context, designs could be relatively informal 
and relatively rough. Current software testing practices work this way, particularly for 
integration testing. Such approaches are not feasible for adaptive systems because the 
number of possible configurations is much too large (exponential in the number of 
independently adaptable components) to feasibly test them all in advance. 

In modern mass production environments, parts are built to standards with pre-
cisely specified tolerances, and it is up to the designer to determine and verify the 
tolerances necessary to make the design work for any combination of parts that meet 
the specified tolerances. For example, modern audio systems are designed this way. 
There exist specific standards for audio specifying how things need to fit together in 
order for components from different vendors to work together effectively, and com-
ponents are tested based on these standards, without knowledge of the specifics of the 
other components they will be connected to. Determining the tolerances necessary to 
make this work is difficult in general, and current practice depends on highly skilled 
individuals to get the standards right. However, standards for audio system compo-
nents can be relatively simple and manageable via relatively informal processes only 
because the requirements for stereo systems are very simple and insensitive to the 
meaning of the signals they are processing. An audio system is not concerned about 
whether it is playing a song or the news. This simplification does not apply to most 
software systems. 

3   The Scientific Problem 

We are seeking analogous synthesis and quality assurance techniques for systems 
involving software. For software systems, whose behavior is usually sensitive to the 
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meaning of the data, new types of standards will be needed to accomplish a similar 
function, along with scientific methods for designing and checking the standards to 
ensure the system will meet its dependability properties, as well as checking confor-
mance of individual components to the standards. This additional degree of rigor is 
needed for software standards intended to meet specific requirements despite varied 
choices of components (system adaptation) or nondeterministic variations in the  
behavior of a single component (probabilistic systems) because such standards are 
considerably more complex than the standards supporting mass production for elec-
tronic or mechanical systems. We are studying principles, models, and methods to 
enable general static analysis techniques to be combined with testing methods that can 
support statistically significant conclusions about conformance of components to ar-
chitecture standards. Targeted static analyses range from techniques involving general 
mathematical proofs requiring human assistance to special purpose algorithmic meth-
ods that can be completely automated for complex applications.  

One context in which the proposed approach can be employed is in the design of 
interchangeable components for robotic platforms. Here the focus is on cooperative 
robotic platforms where payloads, sensors and tasks are divided into various special-
ized modular platforms. The modular specialized platforms can then be assembled as 
a team, custom tailored for the various mission requirements.  Decomposing the com-
plex task sequences required of autonomous robots into a hierarchy of increasingly 
sophisticated control systems provides a powerful method for escalating a robot’s 
degree of autonomy [29]. Analogous synthesis and quality assurance techniques in 
designing the software for this, or different levels of autonomy at different levels of 
control, is needed to form a hierarchical command control structure that can deploy 
and orchestrate a network of autonomous robots.   

4   How to Test Adaptive Systems 

The proposed approach to quality assurance for adaptive systems encompasses: 

(1) analysis of software architecture with respect to requirements on many possible 
configurations, 

(2) testing software components against required architecture properties driven by 
both validated statistical models of expected cyber environments and trans-
formed models, and  

(3) a combination of testing and analytical methods for verifying non-interference 
between components.  

 
The transformed models compensate for uncertainty about possible cyber environ-
ments by combining alternative possible models and amplifying the frequency of rare 
events.  

A possible quality assurance approach for adaptive systems is illustrated below 
[14, 15, 31]. 
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The fundamental operation of such an approach can be outlined as follows: 
 

   1.a. System-wide capabilities are characterized by a set of dependability proper-
ties that must hold in all acceptable system configurations. These properties 
comprise the dependability contract for the system as a whole. They become 
part of the architecture for the system, and serve as the basis for system qual-
ity assurance. Dependability contracts are primarily technical rather than  
legal documents, and they are intended to be checkable via software.  

   1.b. The designers of the architecture determine the common structure of the sys-
tem and develop the component-level dependability contracts for the subsys-
tems and connectors. The common structure consists of connection patterns 
and subsystem slots to which all configurations must conform. 

2. The quality assurance team tests each component (subsystem and connector) 
against its dependability contract. This is envisioned to be an automated 
process to enable sufficient large sets of test cases for statistically significant 
conclusions about desirable dependability levels. The cost for this step is 
proportional to the number of components, and the process must be done 
once for each version of each atomic component. Technologies for doing this 
are known, and some of them are starting to be used in practice [30].  

3. The quality assurance team checks the structure of the architecture and the 
dependability contracts for subsystems and connectors to make sure they are 
strong enough to guarantee the system-wide dependability properties in all 
possible configurations. This is a new process that uses symbolic analysis 
techniques. Assuring the feasibility of this step is one of our objectives. 

4. The quality assurance team checks components for non-interference. This 
process is computer-aided. Many of the technologies for this are known and 
some of them are commonly used, such as data representation hiding en-
forced by programming language scope rules and type checking. Additional 
research is needed to get a complete set. This part of the process ensures that 
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components that work correctly in isolation will continue to do so when they 
are connected. Some examples of mechanisms that can cause this type of  
interference include mutual exclusion constraints, deadlocks, resource con-
straints (memory and bandwidth limits, etc), timing constraints, out of 
bounds memory references, etc. 

5. The assumptions about the operating environment that the architecture de-
pends on are checked by runtime monitoring. This can be done using BIT 
(Built-In-Test) technology that is currently in use in some DoD systems. 
This is recommended for all reusable components. 

6. Runtime checks that the machine code actually running in the system corre-
sponds to the source code that was subjected to quality assurance processes, 
and processes for restoring it to the proper state before execution if these 
checks fail. These processes are necessary because of the following plausible 
failure modes: 

 
a. Memory-corrupting bugs—these include out of bounds write opera-

tions on arrays and through invalid pointers. Such bugs can cause 
seemingly innocuous statements to overwrite parts of the program it-
self at runtime, with unpredictable and potentially catastrophic results. 

b. Deliberate cyber-attacks—compromise of system security via network 
or unauthorized insider access to systems can deliberately modify ma-
chine code at run-time. 

c. Memory state corruption due to hard radiation, which is plausible in 
some WMD scenarios, spacecraft, nuclear power systems, scientific 
and medical applications, etc.  

 
Some approaches to this problem can be found in [15]. 

 
Probabilistic methods for testing flexible modular systems to high levels of statistical 
confidence should be viable for testing complex probabilistic systems.  This strategy 
focuses on using high-fidelity profile-based environment models to automatically 
generate test cases by sampling from probability density functions or other kinds of 
probabilistic models that characterize environment parameters.  When combined with 
automated execution and output checking techniques, such models are capable of 
driving automated software testing, enabling affordable sample sizes large enough to 
support statistically significant conclusions about system behavior.  

5   Challenges in Validating Statistical Models for a Wide Range of 
Operating Environments 

Known methods for creating validated statistical models for operating environments 
include least-squares matching of known parametric distributions, use of the Bayesian 
Information Criterion or Akaike Information Criterion to choose the best of several 
models, and non-parametric methods such as kernel density estimation. All of these 
methods depend on the availability of historical data characterizing a given cyber en-
vironment, and assume that the intended cyber environment is known in advance.  
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These assumptions are problematic for adaptive systems, because the actual system 
configuration is not necessarily known in advance. In the context of unprecedented 
systems, the availability of historical data is also problematic. 

Prior work has explored some approaches to modeling of unknown operating  
environments in the context of software filters for maritime tracks [15], and we are 
studying, refining and extending these approaches. The legacy operating environment 
for the previously studied software consisted of large, slow moving ships. The new 
environment included threats from small fast boats, which are likely to be operated by 
dynamic non-state organizations such as terrorist groups or smugglers. The specific 
types of boats involved in such cases are largely unpredictable, as are the likely naviga-
tional tactics. The solution approach in this situation was to characterize the operating 
characteristics of a variety of commercially available small boats, in terms of parame-
ters such as maximum speed, maximum acceleration, maximum deceleration (sepa-
rately specified because speeding up and slowing down have different mechanisms that 
produce asymmetric results), and maximum turning rate. These parameters defined the 
limits of a neighborhood of environmental conditions of reasonable concern. Kernel 
density estimation techniques were then used to form a composite of the different pos-
sibilities for operating conditions. Although the resulting distribution covered a wider 
range of conditions than each individual possible type of boat was capable of exhibit-
ing, it provided a reasonable characterization of all conditions likely to be of concern, 
with tails that provided coverage of unexpected but possible conditions. Our initial 
study was conducted in a relatively simple two-dimensional environment. However, 
we see no fundamental reason why similar techniques could not be applied in more 
complex data domains and higher dimensional spaces. 

Adaptive systems must deal with equivocality in addition to uncertainty. Here “un-
certainty” refers to individually unpredictable events that follow a known probability 
distribution, and “equivocality” refers to situations where the probability distribution 
itself is uncertain, or possibly time varying according to unknown patterns. Uncer-
tainty corresponds to the case where the expected operating environment can be  
characterized in terms of stable types of activities that have a known past history, 
while equivocality corresponds to more dynamic situations in which unexpected and 
possibly unprecedented new kinds of events can arise. We have modeled equivocality 
in the context of possible operating environments under the assumption that “small” 
perturbations to operating environments are more likely than “large” ones. This leads 
to systematic exploration of sequences of possible environments produced by perturb-
ing transformations systematically arranged in order of increasing severity. One way 
to realize this in a way that captures likelihood of occurrence is to repeatedly compose 
the perturbation transformation to form more severe perturbations. This overall  
approach is compatible with a strategy that searches the most likely neighborhoods of 
the expected operating environment first and most thoroughly. 

6   Conclusion 

The usefulness of sound and systematic approaches for achieving dependable, flexi-
ble, and cost-effective software has been a focus of scientific interest for many years  
 



236 Luqi and G. Jacoby 

 

[16-35]. As we move to automatically adaptive software, these types of approaches 
are appearing to become a necessity rather than a luxury, because manual artisanship 
simply cannot reach the levels of reliability and speed of adaptation that is called for. 
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