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The challenge

Over 83% of freshwater habitats in the EU were 
classed as being in unfavourable condition in 2015, 
higher than any other habitat type (European Environ-
ment Agency 2015). Similarly, freshwaters in North 
America are reported to be losing species at a rate of 
4% per annum, five times faster than in terrestrial eco-
systems (Vaughn 2010). Meanwhile, more than 50% 
of freshwater flora and fauna have declined in the past 
40 years in the UK with 13% threatened with extinc-
tion and many more are already functionally extinct, 
while 25% of species in ponds with statutory protec-
tion have been lost since the 1990s alone (Hayhow 
et  al. 2016). Over 25% of all freshwater species are 

currently threatened with extinction globally (Tickner 
et al. 2020) and freshwater fauna declined globally by 
83% from 1970 to 2014, compared to 60% for all hab-
itat types (WWF 2018; Reid et al. 2019). In no other 
planetary domain is biodiversity declining so rapidly, 
despite the raft of domestic and international legisla-
tion requiring action to halt this decline. The Inter-
governmental Science-Policy Platform on Biodiver-
sity and Ecosystem Services (IPBES) has called for 
transformative change in our approaches to manage-
ment of freshwaters to meet this challenge and restore 
and protect nature (IPBES 2019), and the research 
community has proposed an emergency recovery plan 
to ‘bend the curve’ of freshwater biodiversity loss 
(Tickner et al. 2020).

Freshwater ecosystem decline is caused by a mul-
titude of different stressors, including nutrients and 
other contaminants flushed from the land and atmos-
phere to adjacent waters, habitat loss through physi-
cal modification, climate change and invasive species. 
This presents the freshwater biota with a myriad of 
changes in stressors at rates which frequently pre-
clude evolutionary adaptation (Tickner et  al. 2020). 
Impacts include changes to species distributions, 
phenology, population dynamics, food webs, local 
extinction, and modification of ecosystem function 
through alterations to metabolism from organism 
to community level (Reid et al. 2019; IPBES 2019). 
Of these stressors, increasing flux of inorganic and 
organic nutrient compounds containing carbon (C), 
nitrogen (N) and phosphorus (P) is a ubiquitous 
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problem, occurring in all farmed landscapes, all 
catchments where people live and discharge their 
wastes to waters via sewerage systems, and from 
every landscape receiving increased atmospheric N 
deposition that itself originates from fossil fuel com-
bustion and food production systems (Carpenter et al. 
2011; Moss 2012; Steffen et al. 2015; Wymore et al. 
2021). Their combined impacts include the promo-
tion of harmful algal blooms generating hepato- and 
neurotoxins as well as taste and odour problems in 
water supplies, and filamentous algal or excessive 
macrophyte growth. Rapid microbial decomposition 
of this excess biomass can generate oxygen depletion, 
enhancing resupply of nutrients from the sediment 
into the water, and in extreme cases this may lead to 
anoxia and fish kills, with knock-on consequences for 
ecosystem and human health.

Research to date

The impacts of nutrient enrichment on freshwater 
biota have been widely researched to date, but pro-
gress in defining and controlling its impacts on fresh-
water biodiversity has been limited by the physical 
challenge of experimentation and observation in a 
rapidly changing environment, particularly in streams 
and rivers where conditions vary over timescales of 
seconds to minutes.

Much of the research conducted so far has been 
based on narrowly focussed, outdated paradigms 
including concepts of ‘single nutrient limitation’ 
of biological processes that assume that a single 
stressor is controlling the response of the whole 
ecosystem. This fails to account for the control of 
multiple stressors on the structure and function of 
freshwaters. Furthermore, of the myriad of nutri-
ent compounds present in freshwaters, often only 
the inorganic nutrient fractions (typically nitrate 
 NO3

−, ammonium  NH4
+, orthophosphate  PO4

3−) 
are considered to be ‘bioavailable’ to autotrophs 
in freshwaters (Fig.  1). This fails to recognise that 
several nutrients can co-limit freshwater productiv-
ity (Elser et al. 2007; Harpole et al. 2011), and that 
multiple nutrient forms including dissolved organic 
matter (DOM) have been shown to be bioavailable 
to a diverse range of freshwater species (Jorgensen 
1987; Nedoma et al. 1994; Bronk et al. 2007; 2010; 
Liu et  al. 2012; Qin et  al. 2015; Thompson and 

Cotner 2018; Brailsford et al. 2019a; Mackay et al. 
2020). The concentration of DOM is increasing in 
many freshwaters globally, but the impact of this 
increase  on ecosystem functioning remains largely 
unknown (Regnier et  al. 2013; Creed et  al. 2018; 
McDonough et  al. 2020; Rodríguez-Cardona et  al. 
2022).

Current theories framing nutrient cycling and 
transport in running freshwaters are thus incomplete, 
and current policy and management are rooted in this 
outdated thinking. As current theory has sought to 
isolate the key nutrient driving ecosystem decline in 
freshwaters, typically assumed to be P (predominantly 
orthophosphate,  PO4

3−) despite evidence of N limita-
tion, co-limitation and no nutrient limitation reported 
in a multitude of recent papers (Harpole et al. 2011; 
Mackay et  al. 2020; Brailsford et  al. 2019a), this 
has entrenched a view in policy and management 
that, if we can identify ‘the’ single stressor driving 
eutrophication and target mitigation to control it, we 
can reduce impacts on whole ecosystems without 
having to deal with the other stressors. This includes 
other nutrient stressors such as DOM that continue, 
largely  unregulated, to drive ecosystem damage in 
freshwaters, undermining mitigation efforts and con-
ceptual progress in the field.

The absence of a holistic understanding of how 
freshwater biota access essential nutrients currently 
limits our ability to interpret trends in observational 
research from individual sites and draw out generic 
and transferable principles. It is vitally important 
that future research on nutrient enrichment does not 
ignore key biotic groups actively involved in nutrient 
cycling and metabolic responses to enrichment, such 
as the consumers (Small et al. 2009; Sutherland et al. 
2013; Stewart et al. 2018; Hammerschlag et al. 2019). 
Current theory urgently needs revision to incorporate 
the growing evidence, including our own, that the 
organic nutrients are often the dominant (> 80%) frac-
tion in natural freshwaters (Durand et al. 2011; Yates 
et al. 2019; Johnes et al. 2020; Wymore et al. 2021), 
and highly bioavailable to single-celled organisms, 
higher plants and consumers, which exhibit taxon-
specific preferences for different DOM compounds 
and can thus simultaneously access different parts of 
the nutrient pool to support production (Brailsford 
et al. 2019a; Mackay et al. 2020; Tada and Grossart 
2014; Canelhas et al. 2016; Rofner et al. 2016; Pisani 
et al. 2017).
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The DOM pool contains many thousands of com-
pounds of anthropogenic and biological origin includ-
ing pharmaceuticals, personal care products, clean-
ing agents, peptides, free amino acids, amino sugars, 
nucleic acids, lipids, organophosphates, excretion 
products such as urea and methylamines, and sub-
stances deriving from the breakdown of biopolymers, 
such as chitin and plant biopolymers, i.e. lignin and 
suberin (Pemberton et al. 2019; Lloyd et al. 2022a). 
Whole ecosystems have access to this portfolio of 
compounds, alongside inorganic nutrient fractions, 
and different biotic components of the ecosystem are 
able to access multiple nutrient compounds, driving 
changes in cell metabolism, physiological and behav-
ioural adaptation, habitat modification and species 

shifts that contribute to freshwater ecosystem decline. 
Attention to the role of DOM as a bioavailable nutri-
ent resource in freshwaters is thus required to change 
fundamentally the ways in which freshwaters are con-
ceptualised, studied and managed (McDowell 2022).

The state of the science

More recently, there has been a shift to research 
linking macroecological responses to inorganic or 
total nutrient loading, particularly in lakes, which 
has taken a multiple stressor perspective, investigat-
ing relationships between ecosystem status, nutrient 
loading and other environmental stressors including 

Atmospheric exchange
Via respiration, decomposition, 
photosynthesis, N fixation, 
denitrification and deposition

Nutrient influx
From upstream and 
catchment sources

Nutrient export
To downstream reaches

Lithospheric exchange
Via adsorption/desorption, 
deposition/mobilisation and 
precipitation/dissolution

DON, DOP, DOC, PON, 
POP, POC as a substrate 
for microbial decomposition 
and asimilation

Uptake of SRP, DOP, 
NO3

-, NO2
-, NH3, 

NH4
+, DON and DOP 

by phytoplankton

Uptake of SRP, NO3
-, NO2

-, 
NH3, NH4

+ and LMW DON 
and DOP by plants, 
epilithon and epiphytes

Consumption of PON, 
POP and POC by filter 
feeders- zooplankton 
and planktivorous fish

Fig. 1  The multiple nutrient stressors driving ecological 
impacts in freshwater ecosystems. Where: NO3

− Nitrate, NO2
− 

Nitrite, NH3 Ammonia, NH4
+ Ammonium, DON Dissolved 

Organic N, PON  Particulate Organic N, SRP  Soluble Reactive 

P (measured as PO4
3−), DOP  Dissolved Organic P, POP  Par-

ticulate Organic P, DOC Dissolved Organic C, POC Particulate 
Organic C, and LMW  Low molecular weight
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a suite of climate change proxies (Smeti et al. 2019; 
Birk et al. 2020; Leavitt et al. 2020). However, there 
are still substantial gaps in our knowledge of the role 
of DOM as a nutrient resource in freshwater ecosys-
tems. In particular:

• There is currently insufficient evidence avail-
able to determine the ecosystem functional role of 
discrete DOM compounds in freshwater ecosys-
tems, or the impact of the changing mix of DOM 
compounds on different biotic groups as a sys-
tem undergoes enrichment or nutrient reduction 
through mitigation.

• The functional mechanisms by which the biota 
access this material are not fully known, and how 
these mechanisms vary according to the specific 
DOM chemistry is not established.

• The range of genes undergoing changes in expres-
sion to allow the biota to access the different nutri-
ent forms as nutrient pool composition varies in 
space and time are not understood.

• The identity and role of different natural DOM 
compounds as a source of essential nutrients in 
cell metabolism is not known, nor are the poten-
tially disrupting effects of anthropogenically pro-
duced DOM compounds on biota understood.

• While the role of DOM as an energy resource 
driving microbial activity in freshwaters is well 
established (e.g. Battin et  al. 2008) current fun-
damental theories for running freshwater ecosys-
tems, including the Nutrient Spiralling Concept 
(Newbold et  al. 1983; Ensign and Doyle 2006) 
and the River Continuum Concept (Vannote et al. 
1980), do not account for DOM as a nutrient 
resource driving ecosystem function. As a result 
current predictive models reflecting this thinking, 
and mitigation efforts based on their simulations 
are misguided and ineffective.

There is a clear need to address these knowledge 
gaps and properly situate DOM in freshwater biogeo-
chemical cycling theory. As Fig.  2 illustrates for N, 
as an example, DOM is flushed into freshwaters from 
the surrounding catchment, taken up by the primary 
producers and non-photosynthetic microbes, cycled 
through the food web, synthesised instream by the 
biota including by both producers and consumers, and 
flushed downstream. It is a key component of stream 
elemental nutrient cycles. Yet, while C processing 

in freshwaters has received wider attention, includ-
ing the role of DOM as a microbial energy resource 
(Battin et  al. 2008; Brailsford et  al. 2019a, b; Berg-
gren and del Giorgio 2015; Creed et al. 2015), its role 
as a nutrient resource relative to the well-researched 
inorganic forms of N and for P is poorly established 
and not embedded in current theory or practice for the 
management of nutrient-enriched freshwaters.

Exploring new dimensions in the diagnosis 
of ecosystem responses to nutrient enrichment

Recently developed and applied environmental omics 
(Ficetola et  al. 2008; Russo et  al. 2016; Bista et  al. 
2017; Smith et  al. 2018; Cristescu 2019; Broman 
et  al. 2020; Launay et  al. 2020; Mikan et  al. 2020), 
optical approaches including spectral absorbance and 
fluorescence of DOM (Weishaar et al. 2003; Hernes 
et al. 2008, 2013; Fellman et al. 2010; Inamdar et al. 
2012; Minor et al. 2014; Pereira et al. 2014; Eckard 
et al. 2017), high resolution mass spectrometry (Ditt-
mar et  al. 2008; Zark and Dittmar 2018; Pember-
ton et  al. 2019; Minor and Oyler 2020; Lloyd et  al. 
2022a, b), stable isotope probing (Knowles et  al. 
2010; Kellerman et  al. 2013; Charteris et  al. 2016; 
Gooddy et al. 2016; 2018; Marina Tcaci et al. 2019; 
Reay et al. 2019; Mena-Rivera et al. 2022), and field 
experimentation methods (McKee et  al. 2003; Payn 
et  al. 2005; O’Brien et  al. 2012; Richardson et  al. 
2018;  Roth et  al. 2019; Hensley and Cohn 2020; 
Maberly et  al. 2020) provide new opportunities to 
shed light on the multiple stressors driving freshwa-
ter ecosystem decline, taxonomic information on the 
biota present, active and responding to these stress-
ors, and the specific metabolic, physiological and 
behavioural adaptations and impacts generated at the 
single organism to whole ecosystem level.

The potential of these techniques is explored in a 
series of papers in this volume. We start with an over-
view of the development of research on DOM in the 
environmental sciences with a paper by McDowell 
(2022), which contemplates the origins of our inter-
est in DOM and the development of our capacity to 
determine its nature and origins in complex environ-
mental systems. His paper then reaches forward to 
envision future directions for researchers, including 
the need to focus not only on understanding the func-
tional significance of DOM in freshwaters but also 
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its wider evolutionary role in multiple environmental 
compartments.

Our first group of papers then explore the myr-
iad of analytical and optical techniques which now 
exist to help us understand the nature, composi-
tion and complexity of the DOM pool, from Arc-
tic soils and vegetation (Allain et  al. 2022) and 
temperate headwater forests (Ryan et  al. 2022), 
to riverine systems (Lloyd et  al. 2022a) and large 
lakes (Minor and Oyler 2020). Allain et  al. (2022) 
reveal how changes in the vegetation of the Arctic 
and Subarctic regions influences the composition of 
the DOM pool flushed to streams. Meanwhile Ryan 
et  al. (2022) use optical techniques to demonstrate 
how tree-derived DOM was evident in through-
fall and stemflow collected in temperate forests, 
enriching DOC by 4–70 times over background 

concentrations in rainfall. Moving on to river sys-
tems, Lloyd et al. (2022a) use a suite of novel, high 
resolution chromatographic and mass spectrometric 
techniques to show how DOM character and molec-
ular composition varies markedly in rivers of dif-
fering environmental character, from acid peatland 
headwaters to intensively farmed and/or populated 
circumneutral clay streams. Minor and Oyler (2020) 
then contemplate how different techniques used 
to determine DOC concentrations, chromophoric 
DOM, and the  molecular scale character of DOM, 
can provide a suite of complementary insights 
into C cycling in large lakes globally, focusing on 
data from Lakes Baikal, Superior, Michigan, Tan-
ganyika and Malawi. Each paper demonstrates the 
nature and complexity of the DOM pool arriving 
in, and produced within, freshwaters, and how these 

Animal 
organic N

Detritus 
PON

Plant and bacterial 
PON, DON

NH4
+, NH3, 

DON, PON

N2O

NO2
-

NO3
-

NO2
-

N2O

N2

Nitrogen 
fixation

Anaerobic 
denitrification

Assimilation

Ammonification

Anaerobic 
nitrification

DNRA

Mineralisation

Anammox

Excretion

Feeding

DeathDeath

Fig. 2  Situating DOM in the freshwater nitrogen cycle. DNRA Dissimilatory nitrate reduction to ammonium
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techniques can reveal its biogeochemical process-
ing in freshwaters under contrasting environmental 
conditions.

We then move on to a suite of papers in which the 
authors apply these techniques at scale, often over 
multiple catchments with varying environmental 
character, to reveal the origins of DOM in freshwaters 
as this varies in space in time. The multi-catchment 
research of Williamson et  al. (2021) demonstrates 
landscape-scale controls on DOC flux to rivers across 
Great Britain, and the importance of landscape char-
acter as well as land use and management in con-
trolling this flux. Meanwhile the work of Yates et al. 
(2022) uses a combination of nutrient quantification 
and optical approaches to determine how DOC, DON 
and DOP flux (as a component of total C, N and P 
flux) and composition vary according to land use and 
management in another pan-UK research programme. 
This shows how DOM composition varies consist-
ently in relation to soil C:N ratios in particular. The 
work of Vaughn et  al. (2021) tackles a major river 
basin, the Mississippi, USA, using optical and molec-
ular-scale approaches to reveal the impacts of anthro-
pogenic land cover on DOC flux and the molecular 
composition of the stream DOM pool, with many par-
allels to be drawn between this study and the DOC 
findings reported by Yates et al. (2022) and William-
son et al. (2021). Voss et al. (2022) then use a suite of 
molecular and isotope chemistry approaches to infer 
the likely sources of DOC and the role of organic 
matter respiration on stream DOM pool composition 
in another large river basin: the Fraser River, in SW 
Canada. In this work they demonstrate the close cou-
pling between DOC and DIC, with around a third of 
DIC deriving from DOC respiration, confirming the 
active biogeochemical processing of C in the river, 
and the importance of the DOM pool in this cycle. 
Meanwhile, Holt et  al. (2021) explore the evolution 
of stream DOM composition following glacial retreat 
in SE Alaska using a suite of isotopic and molecular 
scale techniques. They report increasing abundance 
of soil and vegetation-derived DOM compounds 
with a more modern radiocarbon age in streams fur-
thest from glaciers, and anticipate shifting DOM pool 
composition towards a terrigenous signature, altering 
stream DOM composition and bioavailability under a 
changing climate.

In our final group of papers, the authors explore 
the ecological role and significance of DOM in 

freshwaters, drawing on the recently published work 
of many prior authors, such as those referred to 
above (e.g. papers by Brailsford et al. 2019a, b; Mac-
kay et al. 2020, as well as earlier work by Tada and 
Grossart 2014; Canelhas et  al. 2016; Rofner et  al. 
2016; Pisani et al. 2017). Glibert et al. (2021) focus 
on a major estuary, Chesapeake Bay, USA, examin-
ing observational records of water quality and envi-
ronmental conditions from 2009 to 2019. Their work 
suggests that organic nutrient loading to the estuary 
increases during periods of intense rainfall and dur-
ing hurricanes, creating favourable conditions for 
picocyanobacterial bloom formation, from which 
they infer a likely causal link between DON loading 
in particular and the ability of the picocyanobacteria 
to access this material as a nutrient resource. Paerl 
et  al. (2020) examine how increasing rainfall and 
flooding from tropical cyclones in North Carolina 
generate marked increases in C, N and P flux to the 
Neuse River Estuary, USA, with terrestrial sources 
dominating riverine C pools under baseflow condi-
tions, but with marked increases in wetland-derived 
C during storm events, changing the composition of 
the estuarine DOM pool. Their work also reveals both 
qualitative and quantitative impacts of the changing 
rates and composition of this nutrient flux on primary 
producers and associated microheterotrophs in the 
estuary. The work of Mena-Rivera et  al. (2022) and 
Behnke et al. (2022) takes a more focused look at the 
bioavailability and processing of organic matter in 
headwater streams, using high resolution mass spec-
trometry and in the case of Mena-Rivera et al. (2022) 
compound-specific stable isotope probing, to track 
biological responses to OM availability and character 
in streams. Behnke et al. (2022) detect differences in 
the DOM pool composition in forests, fens and wet-
lands of SE Alaska (Behnke et al. 2022), while Mena-
Rivera et  al. (2022) report experimental outcomes 
demonstrating the bioavailability of the particulate 
organic matter (POM) pool in an intensively farmed 
clay catchment in the UK, which also receives sew-
age effluent discharges. Behnke et al. (2022) demon-
strate the high bioavailability of both tree-derived and 
soil- and wetland- derived DOM to the soil biota, and 
how climate change is likely not only to increase the 
rate of tree leaching and soil DOM flushing to fresh-
waters, but also to drive changes in the stream DOM 
pool composition, influencing its ecological role and 
significance in freshwaters. Mena-Rivera et al. (2022) 
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demonstrate that this high degree of bioavailability of 
OM to stream biota is also evident in the POM pool, 
encouraging us to consider not only how DOM may 
act as a nutrient resource in freshwaters, but to also 
consider POM as an integral component of the stream 
OM pool that is bioavailable, and likely to change in 
both quantity and composition in the future.

The papers in this volume thus report not only the 
novel approaches than may be adopted to explore 
the central role that OM plays in freshwater nutrient 
cycling, but also how research can be designed from 
soil column to pan-continental scale to reveal how 
environmental character and function and the biota 
can both shape the composition of the OM pool, and 
are impacted by its changing size and composition. 
It is an exciting time to be working in this field with 
huge potential to push the frontiers of current knowl-
edge away from the current low risk focus on indi-
vidual stressors, to the holistic work needed on mul-
tiple stressors that operate in synergistic, additive or 
antagonistic ways to impact on and interact with the 
freshwater biota. The papers in this volume demon-
strate the potential for future ground-breaking science 
that will inform more effective policy and practice for 
these most damaged of habitat types, globally.
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