




# **Cylinders & Valves**

Full Line Catalog

Catalog 1000



# **TABLE OF CONTENTS**

#### **TABLE OF CONTENTS**

| Class 1, 2, M Low Pressure Cast-Head Cylinders                   |
|------------------------------------------------------------------|
| Class 3 High Pressure Square-Head Cylinders                      |
| Class 5N<br>Low Pressure NFPA<br>Aluminum Cylinders              |
| Class 6 Intermediate Pressure Square-Head Cylinders              |
| Directional Control Valves Hand, Foot and Solenoid141            |
| Boosters, Intensifiers and Air/Oil Tanks Ram and Piston Type 169 |
| Terms and Conditions of Sale 187                                 |



www.nopak.com 3



# **Class 1, 2, M**

# Hydraulic and Pneumatic Cylinders







#### **TABLE OF CONTENTS**

| NOPAK Low Pressure Cast Head Cylinders $6$                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------|
| Options, Modifications and Ordering Information                                                                                    |
| Class 1, 2 & M Cast Head Cylinder<br>Cutaway View8                                                                                 |
| Cylinder Design and Construction Features . 9 Types of Cushioning Action (Classes 1, 2 and M) 9 Piston Assembly 9 Rod End Detail 9 |
| Parallel Base Mounting10                                                                                                           |
| Clevis Mounting                                                                                                                    |
| Right Angle Flat Base Mounting12                                                                                                   |
| Trunnion Mounting14                                                                                                                |
| Class M                                                                                                                            |
| Cylinder Force, Air Consumption and Torque Values                                                                                  |
| Accessories                                                                                                                        |
| Replacement Parts                                                                                                                  |
| Reed Proximity Switch                                                                                                              |



#### NOPAK LOW PRESSURE CAST HEAD CYLINDERS

#### **CLASS 1 CAST HEAD CYLINDERS**

For normal applications where low-cost, rugged air cylinders are required. Our exclusive design has been "user-proven" with over 80 years of experience as the work horse of industry.

#### **CLASS 2 CAST HEAD CYLINDERS**

For higher operating air pressures and hydraulic use. These cylinders incorporate recessed gasketed tube seals and piston to rod O-ring seals as standard features.

#### **CLASS M CAST HEAD MILL TYPE CYLINDERS**

These cylinders have all the features of NOPAK Class 2 cylinders plus oversize rods and steel tubing with welded flanges and bolted cylinder heads. See page 15.

#### **CL1/SVR CAST HEAD/SEVERE SERVICE CYLINDERS**

See the Class 1 SVR Section. These extra-rugged units feature "over-" over-size rods (as compared against competitive models) and extra-heavy duty rod bearing for the most abusive of service.

The aforesaid designs, evolving from the evermore challenging demands for gigantic Mill types, now place NOPAK in the forefront.

We welcome the opportunity to quote your most challenging applications.

| PRE       | SSURE RATINGS (PSI) | RECOMMENDED MAXIN | 1UM     |
|-----------|---------------------|-------------------|---------|
| А         | IR                  | HYDR              | AULIC   |
| CYL. DIA. | CLASS 1, 2, M       | CLASS 2           | CLASS M |
| 1-1/2     | 250                 | 450               | 650     |
| 2         | 250                 | 450               | 650     |
| 2-1/2     | 250                 | 450               | 650     |
| 3         | 250                 | 450               | 650     |
| 4         | 250                 | 450               | 650     |
| 5         | 250                 | 450               | 450     |
| 6         | 250                 | 450               | 450     |
| 8         | 250                 | 450               | 450     |
| 10        | 250                 | 450               | 450     |
| 12        | 250                 | 450               | 450     |
| 14        | 250                 | 450               | 450     |

|              |                  |       | APPROX | IMATE UN | ICRATED | CLASS 1, | 2, M CAS | T HEAD | CYLINDE | R WEIGH | TS (LBS.) |     |
|--------------|------------------|-------|--------|----------|---------|----------|----------|--------|---------|---------|-----------|-----|
|              | CYLINDER<br>BORE | 1-1/2 | 2      | 2-1/2    | 3       | 4        | 5        | 6      | 8       | 10      | 12        | 14  |
|              | Zero Stroke      | 4.5   | 6.8    | 10.6     | 13.5    | 23.4     | 30.6     | 52.2   | 113     | 175     | 321       | 415 |
| Add Per Inch | Class 1, 2       | .38   | .44    | .65      | .75     | 1.1      | 1.3      | 1.6    | 2.7     | 4.5     | 5.9       | 6.5 |
| of Stroke    | Class M          | .45   | .45    | .75      | .75     | 1.2      | 1.5      | 2      | 2.5     | 4.5     | 7.1       | 8.5 |

# OPTIONS, MODIFICATIONS AND ORDERING INFORMATION

#### **OPTIONS**

#### **BORE SIZE**

The bore size of an air cylinder should be selected to supply from 125% to 200% of the required force. The excess of force versus load will result in a faster cylinder speed assuming there is an adequate supply of air into and out of the cylinder.

The bore size of a hydraulic cylinder should be selected to supply sufficient force to exceed the load by approximately 20%. The cylinder speed is the result of flow into and out of the cylinder. Force tables to aid in cylinder sizing are on page 16.

#### **MOUNTINGS**

Select the cylinder mounting which will keep the line of force as close as possible to the centerline of the piston rod and free of misalignment. This will maximize seal and bearing life.

#### **DOUBLE ROD END**

NOPAK Class 1, 2 and M cylinders when ordered as double rod end are designated by prefixing the model with letter "X." Mounting dimensions may vary from standard because two rod end heads are used. The rod sizes or head models may be interchanged.

#### **CUSHIONS**

Unless specified otherwise NOPAK Class 1, 2 and M cylinders are furnished with self-regulating cushions on both ends. Adjustable cushions or noncushion cylinders are also available. See page 9.

The purpose of a cushion is to slow up piston speed at the end of the stroke, eliminating shock. The mass to be cushioned should be limited to one-half the cylinder force unless other provisions are made for deceleration or special cushioning.

#### SPECIAL MATERIALS AND PLATING

Special materials, metals and/or platings are available for various applications including AWWA Specifications.

#### **CUSTOM MODIFICATIONS**

#### **STOP TUBES**

In long cylinders used on push applications, internal stop tubes may be necessary to prevent excessive bearing wear. When stop tubes are required with a cushioned air cylinder, a dual or wider piston or similar arrangement is recommended to reduce the trapped air volume and provide the necessary cushion back pressure.

#### **OVERSIZE RODS**

An oversize piston rod, 1/4" larger than normal, is available for all Class 1 and Class 2 cylinder diameters except for the 8" which has an oversize rod as standard. Specify rod diameter when ordering. The rod end threading, the rod extension, and related dimensions are shown in Table 2.

The oversize rod is a standard feature on NOPAK Class M mill type cylinders.

# PISTON ROD EXTENSION AND ROD THREADING

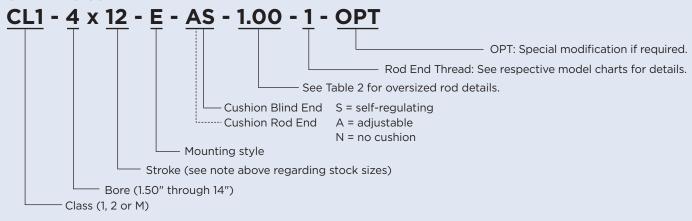
Longer than standard piston rod extensions may be required to accommodate load fastening. Depending upon the details of rod engagement to load, special threading on rod end configuration may be required.

#### CYLINDER PORTS

To increase cylinder speed, increased fluid volume is necessary. This can be done by using enlarged or additional ports.

#### **HOW TO ORDER**

#### All orders should include the following information:


- 1. Class of cylinder (1, 2 or M).
- 2. Bore or cylinder diameter size.
- 3. Stroke length in inches.
- 4. NOPAK model.
- 5. Type of cushioning.
- 6. Piston rod diameter and type of rod end threading as 1, 3, 5 or special.
- 7. Operating medium (air, oil or water).

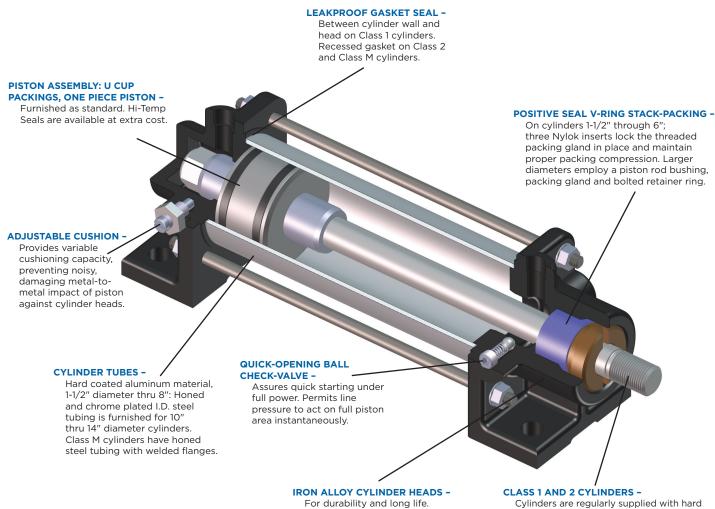
#### Also specify:

- 1. Extreme temperatures (below -20°F or above +250°F).
- 2. Minimum pressure (if less than 20 PSI).
- 3. Type of fluid (if other than air, oil or water).
- 4. Unusual operating conditions.

**NOTE:** Dimensions in inches of ALL Piston Rod Extensions must be taken with the rod retracted. For other than standard piston rod end length dimensions, locate the extreme outboard end of the piston rod in relation to the mounting dimensions of that particular model. Variations in length should be indicated in reference to this dimension. (Related to "C" dimension designation.)

#### **ORDERING CODE EXAMPLE**






#### **CLASS 1, 2 & M CAST HEAD CYLINDER CUTAWAY VIEW**

Sectional view of a NOPAK Double-Acting Cylinder with Adjustable Cushions. It graphically illustrates 8 other features of NOPAK Cylinder construction which contribute to smooth, efficient performance under severe operating conditions.

#### **MOUNTINGS**

Classes 1, 2 and M are available in the five standard mountings designated as Models A, C, D, E and F, illustrated on pages 10 to 15 inclusive.



For durability and long life.
Through a large combination of standard and special heads, it is possible to furnish cylinders with mountings for Special Applications. Double rod-end cylinders can also be furnished.

Cylinders are regularly supplied with hard chrome plated steel piston rods\*, threaded in one of three types of rod ends (1, 3, 5), fine thread series unless otherwise specified. Alternate 1/4" oversize diameter rods can be accommodated in all standard rod head castings. (Oversize diameter rod is standard in 8" bore and in Class M cylinders.) Special alloy piston rods can be furnished to specification. Wrench Flats are NOT standard but are available as an option. Dimension C will increase, consult factory.

<sup>\*</sup> Standard piston rod material is high tensile 100,000 PSI minimum yield, ground, polished, and flash chrome plated .0003/0.005 to provide a hard long-wearing surface with low friction. Consult factory for other than air applications.

## CYLINDER DESIGN AND CONSTRUCTION FEATURES

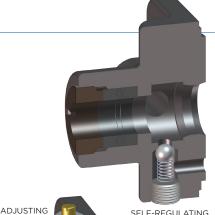
#### TYPES OF CUSHIONING ACTION (CLASSES 1, 2 AND M)

#### **SELF-REGULATING CUSHION TYPE (Operates Automatically)**

The self-regulating cylinder head requires no adjustment. Once the cylinder is assembled, its operation is entirely automatic. As the cushion sleeve enters the bore in the cylinder head, the air or fluid is trapped between the piston and the cylinder head, forming a pneumatic or hydraulic cushion.

Predetermined taper on the cushion sleeve and tolerance between it and bore in the cylinder head provide the selfregulating, positive cushion action. This maximum cushion effect remains constant at all times without needing adjustment.

#### **ADJUSTABLE CUSHION TYPE**


The adjustable cushion is often desirable where load relations to cylinder capacity are apt to vary a great deal. After the cushion is adjusted, by means of the needle valve, the speed at which the piston continues to the end of its stroke is governed by the foregoing adjustment.

#### **NON-CUSHIONED CYLINDERS**

NOPAK cylinders can also be furnished with non-cushioned stroke, providing motion at constant speed for full travel. As there is no provision for cushioning, this type is recommended only where the piston speed is very slow, where the stroke is very short, or where the piston is stopped on the work before it reaches the end of full stroke.

#### One or Both Ends May Be Cushioned

Standardized design and interchangeable components within each class of construction permit the cushioning of one or both ends, with either Adjustable or Self-Regulating Cushions.



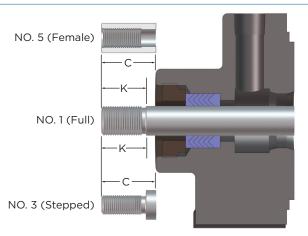
SELF-REGULATING CUSHION BALL CHECK



NEEDLE

#### **PISTON ASSEMBLY**

#### **U CUP PACKING**


U Cup packings, self-sealing by line pressure, are furnished as standard equipment in Class 1, 2 and M Mill Type cylinders. Different types of cups are recommended for different types of service, as follows:

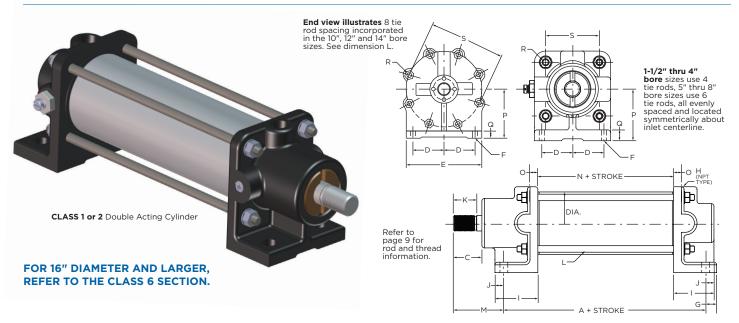
- 1. **Type A** For low pressure air, oil or water. (Water, Glycol, Fire Resistant Fluids.) Temperature -20°F to +225°F.
- 2. **Type B** Higher Temperatures -20°F to +325°F oil or air service. (Phosphate, Ester, Fire Resistant Fluids.)

The above is a simplified statement for general purpose and average conditions. Information on specific media and temperatures exceeding the above ratings should be referred to the NOPAK Engineering Department.



#### **ROD END DETAIL**




C = Distance from gland face to rod end

K = Thread length, male or female

## PARALLEL BASE MOUNTING

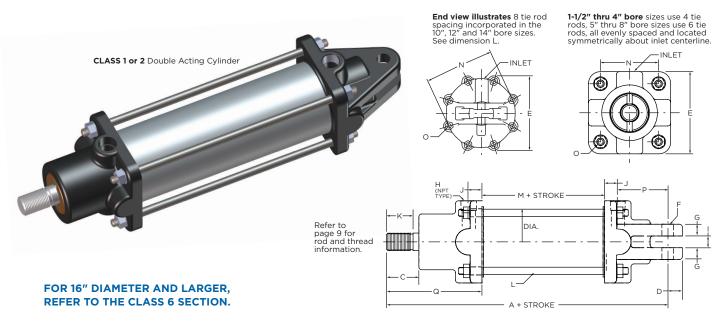


#### **MODEL A**



Model "A" is used primarily in applications requiring straight-line push-pull motion where cylinder can be mounted on a flat surface. Intermediate supports can be furnished in cases where ratio of cylinder stroke to bore is large, to prevent excessive deflection and resulting wear on cups and packings.

# Table 1 BASIC DIMENSIONS MODEL A CLASS 1 OR 2


- = A 1/4" oversize rod, standard in the 8" bore size, can be furnished using standard head castings. Rod end extension and related dimensions will therefore vary accordingly. See Table 2. Dimensions shown in this catalog may be altered without notice.
- = These are rough dimensions and should not be used for locating purposes.

| BORE  | ROD•<br>DIA. | NO. 1<br>THREAD | NO. 3<br>THREAD | NO. 5<br>THREAD<br>(FEMALE) | A      | С     | D       | E•     | F      | G     | н     | Į•    | J     | К     | L.       | М       | N     | o     | Р      | Q     | R     | s      |
|-------|--------------|-----------------|-----------------|-----------------------------|--------|-------|---------|--------|--------|-------|-------|-------|-------|-------|----------|---------|-------|-------|--------|-------|-------|--------|
| 1-1/2 | 5/8          | 5/8-18          | 3/8-24          | 1/2-20                      | 4-1/8  | 1-1/8 | 7/8     | 2-3/4  | 13/32  | 1/2   | 1/4   | 1-3/4 | 7/16  | 7/8   | (4) 5/16 | 1-7/8   | 1-3/8 | 5/8   | 1-3/4  | 3/8   | 3/8   | 2-5/8  |
| 2     | 5/8          | 5/8-18          | 1/2-20          | 1/2-20                      | 4-3/8  | 1-1/8 | 1       | 3      | 13/32  | 1/2   | 1/4   | 2     | 1/2   | 7/8   | (4) 5/16 | 1-3/4   | 1-3/8 | 5/8   | 2-1/8  | 1/2   | 1/2   | 2-7/8  |
| 2-1/2 | 3/4          | 3/4-16          | 1/2-20          | 1/2-20                      | 4-3/4  | 1-3/8 | 1-1/8   | 3-1/2  | 17/32  | 5/8   | 3/8   | 2-1/8 | 5/8   | 1-1/8 | (4) 3/8  | 2-5/8   | 1-3/4 | 5/8   | 2-3/8  | 1/2   | 1/2   | 3-1/2  |
| 3     | 3/4          | 3/4-16          | 5/8-18          | 1/2-20                      | 4-7/8  | 1-3/8 | 1-5/16  | 3-7/8  | 17/32  | 3/4   | 3/8   | 2-1/8 | 5/8   | 1-1/8 | (4) 3/8  | 2-9/16  | 1-3/4 | 3/4   | 2-1/2  | 1/2   | 1/2   | 3-7/8  |
| 4     | 1            | 1-14            | 3/4-16          | 5/8-18                      | 5-1/2  | 1-3/4 | 1-15/16 | 4-7/8  | 17/32  | 7/8   | 1/2   | 2-3/8 | 5/8   | 1-1/2 | (4) 1/2  | 3-3/8   | 2     | 1     | 3      | 1/2   | 5/8   | 5-1/8  |
| 5     | 1            | 1-14            | 3/4-16          | 5/8-18                      | 5-3/4  | 1-3/4 | 2-3/16  | 5-5/8  | 17/32  | 7/8   | 1/2   | 2-1/2 | 5/8   | 1-1/2 | (6) 1/2  | 3-1/4   | 2     | 1     | 3-3/4  | 5/8   | 1/2   | 6-1/8  |
| 6     | 1-1/4        | 1-1/4-12        | 1-14            | 3/4-16                      | 5-5/8  | 2-1/8 | 2-15/16 | 7-1/8  | 17/32  | 1-5/8 | 3/4   | 2-1/8 | 5/8   | 1-7/8 | (6) 1/2  | 4-1/4   | 2-5/8 | 1     | 4-7/16 | 5/8   | 5/8   | 7-1/8  |
| 8     | 1-3/4        | 1-3/4-12        | 1-1/2-12        | 1-14                        | 7-1/4  | 2-1/2 | 4-1/8   | 9-3/4  | 21/32  | 3/4   | 1     | 2-1/2 | 3/4   | 2-1/4 | (6) 5/8  | 4-13/16 | 3-1/2 | 1-1/8 | 6-3/8  | 3/4   | 11/16 | 9-1/2  |
| 10    | 2            | 2-12            | 1-1/2-12        | 1-1/4-12                    | 8-3/8  | 3-1/4 | 4-9/16  | 11-5/8 | 25/32  | 1-3/4 | 1-1/4 | 3-5/8 | 1-1/4 | 3     | (8) 3/4  | 5-7/8   | 3-5/8 | 1-1/8 | 7-1/2  | 1     | 1     | 11-5/8 |
| 12    | 2-1/2        | 2-1/2-12        | 2-12            | 1-1/2-12                    | 10     | 4     | 5-1/4   | 14-3/4 | 1-1/16 | 2-3/8 | 1-1/2 | 5     | 1-7/8 | 3-3/4 | (8) 7/8  | 7-1/8   | 3-3/4 | 1-3/8 | 9      | 1-1/4 | 1-1/8 | 14-3/4 |
| 14    | 2-3/4        | 2-3/4-12        | 2-1/2-12        | 1-3/4-12                    | 10-1/4 | 4     | 6-1/2   | 17     | 1-5/16 | 3     | 2     | 5-1/4 | 2     | 3-3/4 | (8) 7/8  | 7-1/8   | 3-3/4 | 2     | 10-1/4 | 1-1/2 | 1-1/8 | 17     |

# Table 2 dimension changes for 1/4" oversize rod diameter & class m

| BORE  | ROD•<br>DIA. | NO. 1<br>THREAD | NO. 3<br>THREAD | NO. 5<br>THREAD<br>(FEMALE) | A      | C<br>NO. 1<br>THREAD | C<br>NO. 3 & 5<br>THREAD | K<br>NO. 1<br>THREAD | K<br>NO. 3<br>THREAD | K<br>NO. 5 THREAD<br>(FEMALE) | M<br>NO. 1<br>THREAD | M<br>NO. 3<br>THREAD | M<br>NO. 5 THREAD<br>(FEMALE) |
|-------|--------------|-----------------|-----------------|-----------------------------|--------|----------------------|--------------------------|----------------------|----------------------|-------------------------------|----------------------|----------------------|-------------------------------|
| 1-1/2 | 7/8          | 7/8-14          | 5/8-18          | 1/2-20                      | 4-1/8  | 1-1/2                | 1-1/8                    | 1-1/4                | 7/8                  | 7/8                           | 2-1/4                | 1-7/8                | 1-7/8                         |
| 2     | 7/8          | 7/8-14          | 5/8-18          | 1/2-20                      | 4-3/8  | 1-1/2                | 1-1/8                    | 1-1/4                | 7/8                  | 7/8                           | 2-1/8                | 1-3/4                | 1-3/4                         |
| 2-1/2 | 1            | 1-14            | 3/4-16          | 1/2-20                      | 4-3/4  | 1-3/4                | 1-3/8                    | 1-1/2                | 1-1/8                | 7/8                           | 3                    | 2-5/8                | 2-5/8                         |
| 3     | 1            | 1-14            | 3/4-16          | 1/2-20                      | 4-7/8  | 1-3/4                | 1-3/8                    | 1-1/2                | 1-1/8                | 7/8                           | 2-15/16              | 2-9/16               | 2-9/16                        |
| 4     | 1-1/4        | 1-1/4-12        | 1-14            | 5/8-18                      | 5-1/2  | 2-1/8                | 1-3/4                    | 1-7/8                | 1-1/2                | 1-1/8                         | 3-3/4                | 3-3/8                | 3-3/8                         |
| 5     | 1-1/4        | 1-1/4-12        | 1-14            | 5/8-18                      | 5-3/4  | 2-1/8                | 1-3/4                    | 1-7/8                | 1-1/2                | 1-1/8                         | 3-5/8                | 3-1/4                | 3-1/4                         |
| 6     | 1-1/2        | 1-1/2-12        | 1-1/4-12        | 3/4-16                      | 5-5/8  | 2-1/2                | 2-1/8                    | 2-1/4                | 1-7/8                | 1-1/4                         | 4-5/8                | 4-1/4                | 4-1/4                         |
| 8     | 1-3/4        | 1-3/4-12        | 1-1/2-12        | 1-14                        | 7-1/4  | 2-1/2                | 2-1/2                    | 2-1/4                | 2-1/4                | 2-1/4                         | 4-13/16              | 4-7/8                | 4-7/8                         |
| 10    | 2-1/4        | 2-1/4-12        | 2-12            | 1-1/4-12                    | 8-3/8  | 3-5/8                | 3-1/4                    | 3-3/8                | 3                    | 2                             | 6-1/4                | 5-7/8                | 5-7/8                         |
| 12    | 2-3/4        | 2-3/4-12        | 2-1/2-12        | 1-1/2-12                    | 10     | 4-3/8                | 4                        | 4-1/8                | 3-3/4                | 2-3/8                         | 7-1/2                | 7-1/8                | 7-1/8                         |
| 14    | 3            | 3-12            | 2-1/2-12        | 1-3/4-12                    | 10-1/4 | 4-3/4                | 4                        | 4-1/2                | 3-3/4                | 2-3/4                         | 7-7/8                | 7-1/8                | 7-1/8                         |

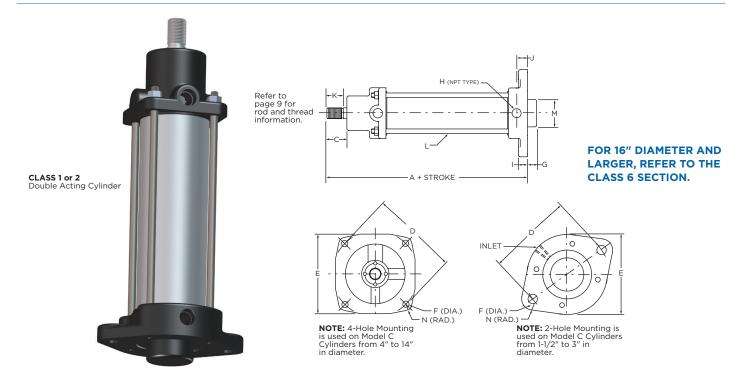
#### **MODEL E**



Model E is designed expressly for use in hoist service or where articulated or oscillating movement is required. It is often attached to ceiling, beam or other overhead surfaces, with rod end down, but is also used in the opposite position for upward pushing or tilting operations.

# Table 1 BASIC DIMENSIONS MODEL E CLASS 1 OR 2

• = A 1/4" oversize rod, standard in the 8" bore size, can be furnished using standard head castings. Rod end extension and related dimensions will therefore vary accordingly. See Table 2. Dimensions shown in this catalog may be altered without notice.


| BORE  | ROD•<br>DIA. | NO. 1<br>THREAD | NO. 3<br>THREAD | NO. 5<br>THREAD<br>(FEMALE) | Α      | С     | D     | E      | F     | G     | н     | I     | J     | к     | L        | М     | N      | 0     | Р      | Q      |
|-------|--------------|-----------------|-----------------|-----------------------------|--------|-------|-------|--------|-------|-------|-------|-------|-------|-------|----------|-------|--------|-------|--------|--------|
| 1-1/2 | 5/8          | 5/8-18          | 3/8-24          | 1/2-20                      | 6-3/4  | 1-1/8 | 1/2   | 2-3/4  | 3/8   | 3/8   | 1/4   | 1/2   | 5/8   | 7/8   | (4) 5/16 | 1-3/8 | 2-5/8  | 3/8   | 1-1/2  | 3-1/4  |
| 2     | 5/8          | 5/8-18          | 1/2-20          | 1/2-20                      | 7-1/4  | 1-1/8 | 5/8   | 3      | 1/2   | 1/2   | 1/4   | 1/2   | 5/8   | 7/8   | (4) 5/16 | 1-3/8 | 2-7/8  | 1/2   | 2      | 3-1/4  |
| 2-1/2 | 3/4          | 3/4-16          | 1/2-20          | 1/2-20                      | 8-5/8  | 1-3/8 | 5/8   | 3-1/2  | 1/2   | 1/2   | 3/8   | 1/2   | 5/8   | 1-1/8 | (4) 3/8  | 1-3/4 | 3-1/2  | 1/2   | 2-1/8  | 4-1/8  |
| 3     | 3/4          | 3/4-16          | 5/8-18          | 1/2-20                      | 8-7/8  | 1-3/8 | 5/8   | 3-3/4  | 1/2   | 1/2   | 3/8   | 1/2   | 3/4   | 1-1/8 | (4) 3/8  | 1-3/4 | 3-7/8  | 1/2   | 2-5/16 | 4-1/8  |
| 4     | 1            | 1-14            | 3/4-16          | 5/8-18                      | 10-3/4 | 1-3/4 | 7/8   | 4-7/8  | 3/4   | 3/4   | 1/2   | 3/4   | 1     | 1-1/2 | (4) 1/2  | 2     | 5-1/8  | 5/8   | 2-5/8  | 5-1/8  |
| 5     | 1            | 1-14            | 3/4-16          | 5/8-18                      | 10-7/8 | 1-3/4 | 7/8   | 6-3/8  | 3/4   | 3/4   | 1/2   | 3/4   | 1     | 1-1/2 | (6) 1/2  | 2     | 6-1/8  | 1/2   | 2-3/4  | 5-1/8  |
| 6     | 1-1/4        | 1-1/4-12        | 1-14            | 3/4-16                      | 12-3/4 | 2-1/8 | 1-1/8 | 7-1/4  | 7/8   | 1     | 3/4   | 1     | 1     | 1-7/8 | (6) 1/2  | 2-5/8 | 7-1/8  | 5/8   | 3-3/8  | 5-3/4  |
| 8     | 1-3/4        | 1-3/4-12        | 1-1/2-12        | 1-14                        | 14     | 2-1/2 | 1-1/4 | 9-5/8  | 1     | 1     | 1     | 1-1/4 | 1-1/8 | 2-1/4 | (6) 5/8  | 3-1/2 | 9-1/2  | 11/16 | 2-5/8  | 6-3/4  |
| 10    | 2            | 2-12            | 1-1/2-12        | 1-1/4-12                    | 17-3/4 | 3-1/4 | 1-1/2 | 12-3/4 | 1-1/4 | 1-1/4 | 1-1/4 | 1-1/2 | 1-1/8 | 3     | (8) 3/4  | 3-5/8 | 11-5/8 | 1     | 4-3/4  | 8-1/4  |
| 12    | 2-1/2        | 2-1/2-12        | 2-12            | 1-1/2-12                    | 21-3/4 | 4     | 1-3/4 | 15-7/8 | 1-1/2 | 1-1/2 | 1-1/2 | 2     | 1-3/8 | 3-3/4 | (8) 7/8  | 3-3/4 | 14-3/4 | 1-1/8 | 6-3/8  | 10-1/4 |
| 14    | 2-3/4        | 2-3/4-12        | 2-1/2-12        | 1-3/4-12                    | 22-7/8 | 4     | 2     | 17-3/4 | 1-3/4 | 1-3/4 | 2     | 2-1/2 | 2     | 3-3/4 | (8) 7/8  | 3-3/4 | 17     | 1-1/8 | 6-3/4  | 10-3/8 |

# Table 2 DIMENSION CHANGES FOR 1/4" OVERSIZE ROD DIAMETER & CLASS M

| BORE  | ROD•<br>DIA. | NO. 1<br>THREAD | NO. 3<br>THREAD | NO. 5<br>THREAD<br>(FEMALE) | A<br>NO. 1<br>THREAD | A<br>NO. 3 & 5<br>THREAD | C<br>NO. 1<br>THREAD | C<br>NO. 3 & 5<br>THREAD | K<br>NO. 1<br>THREAD | K<br>NO. 3<br>THREAD | K<br>NO. 5<br>THREAD<br>(FEMALE) | Q<br>NO. 1<br>THREAD | Q<br>NO. 3<br>THREAD | Q<br>NO. 5<br>THREAD<br>(FEMALE) |
|-------|--------------|-----------------|-----------------|-----------------------------|----------------------|--------------------------|----------------------|--------------------------|----------------------|----------------------|----------------------------------|----------------------|----------------------|----------------------------------|
| 1-1/2 | 7/8          | 7/8-14          | 5/8-18          | 1/2-20                      | 7-1/8                | 6-3/4                    | 1-1/2                | 1-1/8                    | 1-1/4                | 7/8                  | 7/8                              | 2-1/4                | 3-1/4                | 3-1/4                            |
| 2     | 7/8          | 7/8-14          | 5/8-18          | 1/2-20                      | 7-5/8                | 7-1/4                    | 1-1/2                | 1-1/8                    | 1-1/4                | 7/8                  | 7/8                              | 2-1/8                | 3-1/4                | 3-1/4                            |
| 2-1/2 | 1            | 1-14            | 3/4-16          | 1/2-20                      | 9                    | 8-5/8                    | 1-3/4                | 1-3/8                    | 1-1/2                | 1-1/8                | 7/8                              | 3                    | 4-1/8                | 4-1/8                            |
| 3     | 1            | 1-14            | 3/4-16          | 1/2-20                      | 9-1/4                | 8-7/8                    | 1-3/4                | 1-3/8                    | 1-1/2                | 1-1/8                | 7/8                              | 2-15/16              | 4-1/8                | 4-1/8                            |
| 4     | 1-1/4        | 1-1/4-12        | 1-14            | 5/8-18                      | 11-1/8               | 10-3/4                   | 2-1/8                | 1-3/4                    | 1-7/8                | 1-1/2                | 1-1/8                            | 3-3/4                | 5-1/8                | 5-1/8                            |
| 5     | 1-1/4        | 1-1/4-12        | 1-14            | 5/8-18                      | 11-1/4               | 10-7/8                   | 2-1/8                | 1-3/4                    | 1-7/8                | 1-1/2                | 1-1/8                            | 3-5/8                | 5-1/8                | 5-1/8                            |
| 6     | 1-1/2        | 1-1/2-12        | 1-1/4-12        | 3/4-16                      | 13-1/8               | 12-3/4                   | 2-1/2                | 2-1/8                    | 2-1/4                | 1-7/8                | 1-1/4                            | 4-5/8                | 5-3/4                | 5-3/4                            |
| 8     | 1-3/4        | 1-3/4-12        | 1-1/2-12        | 1-14                        | 14                   | 14                       | 2-1/2                | 2-1/2                    | 2-1/4                | 2-1/4                | 2-1/4                            | 4-7/8                | 6-3/4                | 6-3/4                            |
| 10    | 2-1/4        | 2-1/4-12        | 2-12            | 1-1/4-12                    | 18-1/8               | 17-3/4                   | 3-5/8                | 3-1/4                    | 3-3/8                | 3                    | 2                                | 6-1/4                | 8-1/4                | 8-1/4                            |
| 12    | 2-3/4        | 2-3/4-12        | 2-1/2-12        | 1-1/2-12                    | 22-1/8               | 21-3/4                   | 4-3/8                | 4                        | 4-1/8                | 3-3/4                | 2-3/8                            | 7-1/2                | 10-1/4               | 10-1/4                           |
| 14    | 3            | 3-12            | 2-1/2-12        | 1-3/4-12                    | 23-5/8               | 22-7/8                   | 4-3/4                | 4                        | 4-1/2                | 3-3/4                | 2-3/4                            | 7-7/8                | 10-3/8               | 10-3/8                           |



#### MODEL C BLANK END MOUNTING

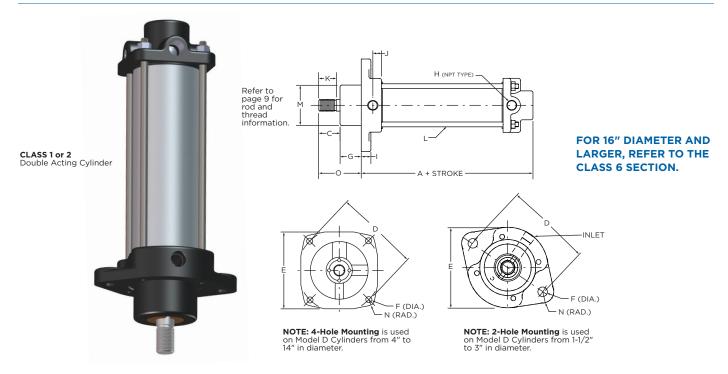


Model C may be mounted on any flat base with provision for protruding cushion boss\*. It is used in applications of upward pushing power; also for cantilever action when mounted at right angles to a wall or other vertical surface.

\* Flush mounting available at extra charge on blank end, if not cushioned.

# Table 1 Basic dimensions model c class 1 or 2

- = A 1/4" oversize rod, standard in the 8" bore size, can be furnished using standard head castings. Rod end extension and related dimensions will therefore vary accordingly. See Table 2. Dimensions shown in this catalog may be altered without notice.
- = These are rough dimensions and should not be used for locating purposes. Allow approximately 1/4" for clearance. Can be machined at extra charge if specified.


| BORE  | ROD•<br>DIA. | NO. 1<br>THREAD | NO. 3<br>THREAD | NO. 5<br>THREAD<br>(FEMALE) | А      | С     | D      | E●     | F      | G     | н     | ı     | J     | К     | L        | м●    | N     |
|-------|--------------|-----------------|-----------------|-----------------------------|--------|-------|--------|--------|--------|-------|-------|-------|-------|-------|----------|-------|-------|
| 1-1/2 | 5/8          | 5/8-18          | 3/8-24          | 1/2-20                      | 5-3/4  | 1-1/8 | 3-1/4  | 3-3/8  | 13/32  | 3/8   | 1/4   | 1/2   | 1/2   | 7/8   | (4) 5/16 | 1-1/2 | 1/2   |
| 2     | 5/8          | 5/8-18          | 1/2-20          | 1/2-20                      | 5-7/8  | 1-1/8 | 3-3/4  | 3-7/8  | 13/32  | 5/8   | 1/4   | 5/8   | 5/8   | 7/8   | (4) 5/16 | 1-3/4 | 1/2   |
| 2-1/2 | 3/4          | 3/4-16          | 1/2-20          | 1/2-20                      | 7-1/4  | 1-3/8 | 4-3/4  | 4-1/2  | 17/32  | 5/8   | 3/8   | 5/8   | 3/4   | 1-1/8 | (4) 3/8  | 1-7/8 | 5/8   |
| 3     | 3/4          | 3/4-16          | 5/8-18          | 1/2-20                      | 7-3/8  | 1-3/8 | 5-1/4  | 4-7/8  | 17/32  | 3/4   | 3/8   | 5/8   | 3/4   | 1-1/8 | (4) 3/8  | 2-1/8 | 5/8   |
| 4     | 1            | 1-14            | 3/4-16          | 5/8-18                      | 8-7/8  | 1-3/4 | 7-3/4  | 6-3/4  | 17/32  | 7/8   | 1/2   | 5/8   | 3/4   | 1-1/2 | (4) 1/2  | 2-5/8 | 5/8   |
| 5     | 1            | 1-14            | 3/4-16          | 5/8-18                      | 8-7/8  | 1-3/4 | 7-3/4  | 7-1/4  | 17/32  | 7/8   | 1/2   | 3/4   | 7/8   | 1-1/2 | (6) 1/2  | 2-5/8 | 5/8   |
| 6     | 1-1/4        | 1-1/4-12        | 1-14            | 3/4-16                      | 10-1/2 | 2-1/8 | 9      | 8-3/8  | 17/32  | 1-1/8 | 3/4   | 3/4   | 7/8   | 1-7/8 | (6) 1/2  | 3     | 5/8   |
| 8     | 1-3/4        | 1-3/4-12        | 1-1/2-12        | 1-14                        | 12-5/8 | 2-1/2 | 10-3/4 | 10-7/8 | 25/32  | -     | 1     | 7/8   | 1-1/4 | 2-1/4 | (6) 5/8  | -     | 7/8   |
| 10    | 2            | 2-12            | 1-1/2-12        | 1-1/4-12                    | 14-3/4 | 3-1/4 | 13-1/4 | 12-1/2 | 29/32  | 2     | 1-1/4 | 1-1/8 | 1-1/8 | 3     | (8) 3/4  | 4-1/2 | 1     |
| 12    | 2-1/2        | 2-1/2-12        | 2-12            | 1-1/2-12                    | 17-7/8 | 4     | 17-1/2 | 16     | 1-1/16 | 2-1/2 | 1-1/2 | 1-1/2 | 1-3/8 | 3-3/4 | (8) 7/8  | 5-1/2 | 1-1/4 |
| 14    | 2-3/4        | 2-3/4-12        | 2-1/2-12        | 1-3/4-12                    | 18-3/8 | 4     | 20     | 18-3/4 | 1-5/16 | 2-1/4 | 2     | 1-3/4 | 2     | 3-3/4 | (8) 7/8  | 5-7/8 | 1-1/2 |

# Table 2 dimension changes for 1/4" oversize rod diameter & class m

| BORE  | ROD• DIA. | A<br>NO. 1<br>THREAD | A<br>NO. 3 & 5<br>THREAD | NO. 1<br>THREAD | NO. 3<br>THREAD | NO. 5<br>THREAD<br>(FEMALE) | C<br>NO. 1<br>THREAD | C<br>NO. 3 & 5<br>THREAD | K<br>NO. 1<br>THREAD | K<br>NO. 3<br>THREAD | K<br>NO. 5 THREAD<br>(FEMALE) |
|-------|-----------|----------------------|--------------------------|-----------------|-----------------|-----------------------------|----------------------|--------------------------|----------------------|----------------------|-------------------------------|
| 1-1/2 | 7/8       | 6-1/8                | 5-3/4                    | 7/8-14          | 5/8-18          | 1/2-20                      | 1-1/2                | 1-1/8                    | 1-1/4                | 7/8                  | 7/8                           |
| 2     | 7/8       | 6-1/4                | 5-7/8                    | 7/8-14          | 5/8-18          | 1/2-20                      | 1-1/2                | 1-1/8                    | 1-1/4                | 7/8                  | 7/8                           |
| 2-1/2 | 1         | 7-5/8                | 7-1/4                    | 1-14            | 3/4-16          | 1/2-20                      | 1-3/4                | 1-3/8                    | 1-1/2                | 1-1/8                | 7/8                           |
| 3     | 1         | 7-3/4                | 7-3/8                    | 1-14            | 3/4-16          | 1/2-20                      | 1-3/4                | 1-3/8                    | 1-1/2                | 1-1/8                | 7/8                           |
| 4     | 1-1/4     | 9-1/4                | 8-7/8                    | 1-1/4-12        | 1-14            | 5/8-18                      | 2-1/8                | 1-3/4                    | 1-7/8                | 1-1/2                | 1-1/8                         |
| 5     | 1-1/4     | 9-1/4                | 8-7/8                    | 1-1/4-12        | 1-14            | 5/8-18                      | 2-1/8                | 1-3/4                    | 1-7/8                | 1-1/2                | 1-1/8                         |
| 6     | 1-1/2     | 10-7/8               | 10-1/2                   | 1-1/2-12        | 1-1/4-12        | 3/4-16                      | 2-1/2                | 2-1/8                    | 2-1/4                | 1-7/8                | 1-1/4                         |
| 8     | 1-3/4     | 12-5/8               | 12-5/8                   | 1-3/4-12        | 1-1/2-12        | 1-14                        | 2-1/2                | 2-1/2                    | 2-1/4                | 2-1/4                | 2-1/4                         |
| 10    | 2-1/4     | 15-1/8               | 14-3/4                   | 2-1/4-12        | 2-12            | 1-1/4-12                    | 3-5/8                | 3-1/4                    | 3-3/8                | 3                    | 2                             |
| 12    | 2-3/4     | 18-1/4               | 17-7/8                   | 2-3/4-12        | 2-1/2-12        | 1-1/2-12                    | 4-3/8                | 4                        | 4-1/8                | 3-3/4                | 2-3/8                         |
| 14    | 3         | 19-1/8               | 18-3/8                   | 3-12            | 2-1/2-12        | 1-3/4-12                    | 4-3/4                | 4                        | 4-1/2                | 3-3/4                | 2-3/4                         |

## RIGHT ANGLE FLAT BASE MOUNTING

## MODEL D ROD END MOUNTING



Model D is similar in construction to Model C, except that the piston rod is extended through the mounting base. It may be mounted on any flat surface in which an opening can be provided for the protruding cushion boss and extension of the rod. It is used extensively in applications of inward pulling power.

# Table 1 Basic dimensions model d class 1 or 2

- = A 1/4" oversize rod, standard in the 8" bore size, can be furnished using standard head castings. Rod end extension and related dimensions will therefore vary accordingly. See Table 2. Dimensions shown in this catalog may be altered without notice.
- = These are rough dimensions, except on the 8" diameter cylinder. For locating purposes allow approximately 1/4" for clearance. Can be machined 1/4" smaller than diameter shown at extra charge. The 8" diameter includes a machined hub 4.250-.005 as standard.

| BORE  | ROD•<br>DIA. | NO. 1<br>THREAD | NO. 3<br>THREAD | NO. 5<br>THREAD<br>(FEMALE) | A      | С     | D      | E●     | F      | G     | н     | -1    | J     | К     | L        | м•    | N     | 0     |
|-------|--------------|-----------------|-----------------|-----------------------------|--------|-------|--------|--------|--------|-------|-------|-------|-------|-------|----------|-------|-------|-------|
| 1-1/2 | 5/8          | 5/8-18          | 3/8-24          | 1/2-20                      | 4      | 1-1/8 | 3-1/4  | 3-3/8  | 13/32  | 1     | 1/4   | 1/2   | 1/2   | 7/8   | (4) 5/16 | 2     | 1/2   | 2-1/8 |
| 2     | 5/8          | 5/8-18          | 1/2-20          | 1/2-20                      | 4-1/2  | 1-1/8 | 3-3/4  | 3-7/8  | 13/32  | 7/8   | 1/4   | 5/8   | 5/8   | 7/8   | (4) 5/16 | 2     | 1/2   | 2     |
| 2-1/2 | 3/4          | 3/4-16          | 1/2-20          | 1/2-20                      | 5-1/8  | 1-3/8 | 4-3/4  | 4-1/2  | 17/32  | 1-3/8 | 3/8   | 5/8   | 3/4   | 1-1/8 | (4) 3/8  | 2-5/8 | 5/8   | 2-3/4 |
| 3     | 3/4          | 3/4-16          | 5/8-18          | 1/2-20                      | 5-1/2  | 1-3/8 | 5-1/4  | 4-7/8  | 17/32  | 1-1/4 | 3/8   | 5/8   | 3/4   | 1-1/8 | (4) 3/8  | 2-5/8 | 5/8   | 2-5/8 |
| 4     | 1            | 1-14            | 3/4-16          | 5/8-18                      | 6-1/2  | 1-3/4 | 7-3/4  | 6-3/4  | 17/32  | 1-5/8 | 1/2   | 5/8   | 3/4   | 1-1/2 | (4) 1/2  | 3     | 5/8   | 3-3/8 |
| 5     | 1            | 1-14            | 3/4-16          | 5/8-18                      | 6-5/8  | 1-3/4 | 7-3/4  | 7-1/4  | 17/32  | 1-1/2 | 1/2   | 3/4   | 7/8   | 1-1/2 | (6) 1/2  | 3     | 3/4   | 3-1/4 |
| 6     | 1-1/4        | 1-1/4-12        | 1-14            | 3/4-16                      | 7-3/4  | 2-1/8 | 9      | 8-1/4  | 17/32  | 1-5/8 | 3/4   | 3/4   | 1     | 1-7/8 | (6) 1/2  | 3-1/2 | 5/8   | 3-3/4 |
| 8     | 1-3/4        | 1-3/4-12        | 1-1/2-12        | 1-14                        | 8-1/8  | 2-1/2 | 10-3/4 | 10-7/8 | 25/32  | 1-7/8 | 1     | 7/8   | 1-1/4 | 2-1/4 | (6) 5/8  | 4-1/4 | 7/8   | 4-3/8 |
| 10    | 2            | 2-12            | 1-1/2-12        | 1-1/4-12                    | 10-3/4 | 3-1/4 | 13-1/4 | 12-1/2 | 29/32  | 2     | 1-1/4 | 1-1/8 | 1-1/8 | 3     | (8) 3/4  | 4-1/2 | 1     | 5-1/4 |
| 12    | 2-1/2        | 2-1/2-12        | 2-12            | 1-1/2-12                    | 13-1/8 | 4     | 17-1/2 | 16     | 1-1/16 | 2-3/8 | 1-1/2 | 1-1/2 | 1-3/8 | 3-3/4 | (8) 7/8  | 5-1/2 | 1-1/4 | 6-3/8 |
| 14    | 2-3/4        | 2-3/4-12        | 2-1/2-12        | 1-3/4-12                    | 14-1/4 | 4     | 20     | 18-3/4 | 1-5/16 | 2-1/8 | 2     | 1-3/4 | 2     | 3-3/4 | (8) 7/8  | 5-7/8 | 1-1/2 | 6-1/8 |

# Table 2 dimension changes for 1/4" oversize rod diameter & class m

| BORE  | ROD•<br>DIA. | NO. 1<br>THREAD | NO. 3<br>THREAD | NO. 5<br>THREAD<br>(FEMALE) | A      | C<br>NO. 1<br>THREAD | C<br>NO. 3 & 5<br>THREAD | K<br>NO. 1<br>THREAD | K<br>NO. 3<br>THREAD | K<br>NO. 5<br>THREAD<br>(FEMALE) | O<br>NO. 1<br>THREAD | O<br>NO. 3<br>THREAD | O<br>NO. 5<br>THREAD<br>(FEMALE) |
|-------|--------------|-----------------|-----------------|-----------------------------|--------|----------------------|--------------------------|----------------------|----------------------|----------------------------------|----------------------|----------------------|----------------------------------|
| 1-1/2 | 7/8          | 7/8-14          | 5/8-18          | 1/2-20                      | 4      | 1-1/2                | 1-1/8                    | 1-1/4                | 7/8                  | 7/8                              | 2-1/2                | 2-1/8                | 2-1/8                            |
| 2     | 7/8          | 7/8-14          | 5/8-18          | 1/2-20                      | 4-1/2  | 1-1/2                | 1-1/8                    | 1-1/4                | 7/8                  | 7/8                              | 2-3/8                | 2                    | 2                                |
| 2-1/2 | 1            | 1-14            | 3/4-16          | 1/2-20                      | 5-1/8  | 1-3/4                | 1-3/8                    | 1-1/2                | 1-1/8                | 7/8                              | 3-1/8                | 2-3/4                | 2-3/4                            |
| 3     | 1            | 1-14            | 3/4-16          | 1/2-20                      | 5-1/2  | 1-3/4                | 1-3/8                    | 1-1/2                | 1-1/8                | 7/8                              | 3                    | 2-5/8                | 2-5/8                            |
| 4     | 1-1/4        | 1-1/4-12        | 1-14            | 5/8-18                      | 6-1/2  | 2-1/8                | 1-3/4                    | 1-7/8                | 1-1/2                | 1-1/8                            | 3-3/4                | 3-3/8                | 3-3/8                            |
| 5     | 1-1/4        | 1-1/4-12        | 1-14            | 5/8-18                      | 6-5/8  | 2-1/8                | 1-3/4                    | 1-7/8                | 1-1/2                | 1-1/8                            | 3-5/8                | 3-1/4                | 3-1/4                            |
| 6     | 1-1/2        | 1-1/2-12        | 1-1/4-12        | 3/4-16                      | 7-3/4  | 2-1/2                | 2-1/8                    | 2-1/4                | 1-7/8                | 1-1/4                            | 4-1/8                | 3-3/4                | 3-3/4                            |
| 8     | 1-3/4        | 1-3/4-12        | 1-1/2-12        | 1-14                        | 8-1/8  | 2-1/2                | 2-1/2                    | 2-1/4                | 2-1/4                | 2-1/4                            | 4-3/8                | 4-3/8                | 4-3/8                            |
| 10    | 2-1/4        | 2-1/4-12        | 2-12            | 1-1/4-12                    | 10-3/4 | 3-5/8                | 3-1/4                    | 3-3/8                | 3                    | 2                                | 5-5/8                | 5-1/4                | 5-1/4                            |
| 12    | 2-3/4        | 2-3/4-12        | 2-1/2-12        | 1-1/2-12                    | 13-1/8 | 4-3/8                | 4                        | 4-1/8                | 3-3/4                | 2-3/8                            | 6-3/4                | 6-3/8                | 6-3/8                            |
| 14    | 3            | 3-12            | 2-1/2-12        | 1-3/4-12                    | 14-1/4 | 4-3/4                | 4                        | 4-1/2                | 3-3/4                | 2-3/4                            | 6-7/8                | 6-1/8                | 6-1/8                            |



#### **MODEL F**



The Model F Trunnion Mounting provides smooth, dependable cylinder power where oscillating movement is necessary in connection with heavy side thrust. Trunnion location is indicated by dimension "I," which is minimum and furnished as shown unless otherwise specified; it may be increased within limits of cylinder tubing length.

NOTE: Model F available without trunnion - designated as Model H.

# Table 1 BASIC DIMENSIONS MODEL F CLASS 1 OR 2

- = A 1/4" oversize rod, standard in the 8" bore size, can be furnished using standard head castings. Rod end extension and related dimensions will therefore vary accordingly. See Table 2. Dimensions shown in this catalog may be altered without notice.
- = Dimension "I" will be furnished as shown unless otherwise specified. When ordering, please specify "I" dimension.

| BORE  | ROD•<br>DIA. | NO. 1<br>THREAD | NO. 3<br>THREAD | NO. 5<br>THREAD<br>(FEMALE) | Α      | С     | D     | E      | F     | G      | н     | I•     | J     | К     | L        | М     | N       | 0     |
|-------|--------------|-----------------|-----------------|-----------------------------|--------|-------|-------|--------|-------|--------|-------|--------|-------|-------|----------|-------|---------|-------|
| 1-1/2 | 5/8          | 5/8-18          | 3/8-24          | 1/2-20                      | 6-1/8  | 1-1/8 | 5/8   | 2-3/4  | 5/8   | 4      | 1/4   | 3-3/4  | 5/8   | 7/8   | (4) 5/16 | 1-3/8 | 2-3/16  | 1/2   |
| 2     | 5/8          | 5/8-18          | 1/2-20          | 1/2-20                      | 6-1/2  | 1-1/8 | 5/8   | 3      | 3/4   | 4-5/8  | 1/4   | 3-3/4  | 5/8   | 7/8   | (4) 5/16 | 1-3/8 | 2-3/8   | 1/2   |
| 2-1/2 | 3/4          | 3/4-16          | 1/2-20          | 1/2-20                      | 7-7/8  | 1-3/8 | 3/4   | 3-1/2  | 1     | 5-3/4  | 3/8   | 4-3/4  | 5/8   | 1-1/8 | (4) 3/8  | 1-3/4 | 2-7/8   | 5/8   |
| 3     | 3/4          | 3/4-16          | 5/8-18          | 1/2-20                      | 8-1/8  | 1-3/8 | 3/4   | 3-7/8  | 1-1/8 | 6-1/2  | 3/8   | 4-3/4  | 3/4   | 1-1/8 | (4) 3/8  | 1-3/4 | 3-1/16  | 5/8   |
| 4     | 1            | 1-14            | 3/4-16          | 5/8-18                      | 9-3/4  | 1-3/4 | 1     | 4-7/8  | 1-1/4 | 7-3/4  | 1/2   | 5-7/8  | 1     | 1-1/2 | (4) 1/2  | 2     | 3-1/2   | 3/4   |
| 5     | 1            | 1-14            | 3/4-16          | 5/8-18                      | 9-7/8  | 1-3/4 | 1     | 6-7/8  | 1-1/4 | 9      | 1/2   | 5-7/8  | 1     | 1-1/2 | (6) 1/2  | 2     | 4-1/4   | 3/4   |
| 6     | 1-1/4        | 1-1/4-12        | 1-14            | 3/4-16                      | 11-1/2 | 2-1/8 | 1     | 8-3/8  | 1-1/4 | 11     | 3/4   | 6-1/2  | 1     | 1-7/8 | (6) 1/2  | 2-5/8 | 4-7/8   | 3/4   |
| 8     | 1-3/4        | 1-3/4-12        | 1-1/2-12        | 1-14                        | 12-1/2 | 2-1/2 | 1-1/2 | 10-7/8 | 1-1/4 | 12-3/4 | 1     | 7-3/4  | 1-1/8 | 2-1/4 | (6) 5/8  | 3-1/2 | 6-3/8   | 1     |
| 10    | 2            | 2-12            | 1-1/2-12        | 1-1/4-12                    | 16     | 3-1/4 | 1-1/2 | 12-3/4 | 1-1/2 | 16-1/4 | 1-1/4 | 9-1/2  | 1-1/8 | 3     | (8) 3/4  | 3-5/8 | 7-11/16 | 1-1/4 |
| 12    | 2-1/2        | 2-1/2-12        | 2-12            | 1-1/2-12                    | 19-1/2 | 4     | 2     | 15-7/8 | 2     | 20-1/4 | 1-1/2 | 11-7/8 | 1-3/8 | 3-3/4 | (8) 7/8  | 3-3/4 | 9-1/2   | 1-5/8 |
| 14    | 2-3/4        | 2-3/4-12        | 2-1/2-12        | 1-3/4-12                    | 20-3/8 | 4     | 2-1/2 | 18-1/4 | 2-1/2 | 23-1/2 | 2     | 11-7/8 | 2     | 3-3/4 | (8) 7/8  | 3-3/4 | 12-1/4  | 1-1/2 |

# Table 2 dimension changes for 1/4" OVERSIZE ROD DIAMETER & CLASS M

| BORE  | ROD•<br>DIA. | NO. 1<br>THREAD | NO. 3<br>THREAD | NO. 5<br>THREAD<br>(FEMALE) | A<br>NO. 1<br>THREAD | A<br>NO. 3 & 5<br>THREAD | C<br>NO. 1<br>THREAD | C<br>NO. 3 & 5<br>THREAD | K<br>NO. 1<br>THREAD | K<br>NO. 3<br>THREAD | K<br>NO. 5<br>THREAD<br>(FEMALE) | I<br>NO. 1<br>THREAD | I<br>NO. 3<br>THREAD | I<br>NO. 5<br>THREAD<br>(FEMALE) |
|-------|--------------|-----------------|-----------------|-----------------------------|----------------------|--------------------------|----------------------|--------------------------|----------------------|----------------------|----------------------------------|----------------------|----------------------|----------------------------------|
| 1-1/2 | 7/8          | 7/8-14          | 5/8-18          | 1/2-20                      | 6-1/2                | 6-1/8                    | 1-1/2                | 1-1/8                    | 1-1/4                | 7/8                  | 7/8                              | 4-1/8                | 3-3/4                | 3-3/4                            |
| 2     | 7/8          | 7/8-14          | 5/8-18          | 1/2-20                      | 6-7/8                | 6-1/2                    | 1-1/2                | 1-1/8                    | 1-1/4                | 7/8                  | 7/8                              | 4-1/8                | 3-3/4                | 3-3/4                            |
| 2-1/2 | 1            | 1-14            | 3/4-16          | 1/2-20                      | 8-1/4                | 7-7/8                    | 1-3/4                | 1-3/8                    | 1-1/2                | 1-1/8                | 7/8                              | 5-1/8                | 4-3/4                | 4-3/4                            |
| 3     | 1            | 1-14            | 3/4-16          | 1/2-20                      | 8-1/2                | 8-1/8                    | 1-3/4                | 1-3/8                    | 1-1/2                | 1-1/8                | 7/8                              | 5-1/8                | 4-3/4                | 4-3/4                            |
| 4     | 1-1/4        | 1-1/4-12        | 1-14            | 5/8-18                      | 10-1/8               | 9-3/4                    | 2-1/8                | 1-3/4                    | 1-7/8                | 1-1/2                | 1-1/8                            | 6-1/4                | 5-7/8                | 5-7/8                            |
| 5     | 1-1/4        | 1-1/4-12        | 1-14            | 5/8-18                      | 10-1/4               | 9-7/8                    | 2-1/8                | 1-3/4                    | 1-7/8                | 1-1/2                | 1-1/8                            | 6-1/4                | 5-7/8                | 5-7/8                            |
| 6     | 1-1/2        | 1-1/2-12        | 1-1/4-12        | 3/4-16                      | 11-7/8               | 11-1/2                   | 2-1/2                | 2-1/8                    | 2-1/4                | 1-7/8                | 1-1/4                            | 6-7/8                | 6-1/2                | 6-1/2                            |
| 8     | 1-3/4        | 1-3/4-12        | 1-1/2-12        | 1-14                        | 12-1/2               | 12-1/2                   | 2-1/2                | 2-1/2                    | 2-1/4                | 2-1/4                | 2-1/4                            | 7-3/4                | 7-3/4                | 7-3/4                            |
| 10    | 2-1/4        | 2-1/4-12        | 2-12            | 1-1/4-12                    | 16-3/8               | 16                       | 3-5/8                | 3-1/4                    | 3-3/8                | 3                    | 2                                | 9-7/8                | 9-1/2                | 9-1/2                            |
| 12    | 2-3/4        | 2-3/4-12        | 2-1/2-12        | 1-1/2-12                    | 19-7/8               | 19-1/2                   | 4-3/8                | 4                        | 4-1/8                | 3-3/4                | 2-3/8                            | 12-1/4               | 11-7/8               | 11-7/8                           |
| 14    | 3            | 3-12            | 2-1/2-12        | 1-3/4-12                    | 21-1/8               | 20-3/8                   | 4-3/4                | 4                        | 4-1/2                | 3-3/4                | 2-3/4                            | 12-5/8               | 11-7/8               | 11-7/8                           |

#### **CLASS M**



NOPAK Class M cylinders are strong and rugged in construction, especially designed for heavy duty applications in mines, quarries, steel mills, and in the heavy construction industries. Maximum system pressure is 650 PSI in all diameters to 4" – and 450 PSI in diameters of 5" and larger. The Class M construction is available in a full range of sizes and models (mountings) up through 14" in diameter for air, water or oil hydraulic service.

NO TIE RODS - Cylinder flanges are welded to steel cylinder tubing. High tensile alloy iron\* heads are bolted to those flanges.

Chrome plated or stainless steel piston rods and chrome plated or brass lined cylinder tubing can be furnished for water hydraulic applications.

#### **DIMENSIONS**

For mounting dimensions of Class M cylinders, use figures from tables of corresponding Class 1, shown on preceding pages, with exception of Piston Rod Diameter and Piston Rod Extension which are shown in tables below. Please note that dimension "I" varies from Class 1 or Class 2 dimension "I" as shown.

**Table 1** CLASS M PISTON ROD THREAD DIMENSIONS (Also Class 1 and 2 Standard Oversize)

See Clevis Information page 17

| ROD END |        |        |        |        | CYLI     | NDER DIAM | ETER     |          |          |          |          |
|---------|--------|--------|--------|--------|----------|-----------|----------|----------|----------|----------|----------|
| ROD END | 1-1/2  | 2      | 2-1/2  | 3      | 4        | 5         | 6        | 8        | 10       | 12       | 14       |
| Thread  | 7/8-14 | 7/8-14 | 1-14   | 1-14   | 1-1/4-12 | 1-1/4-12  | 1-1/2-12 | 1-3/4-12 | 2-1/4-12 | 2-3/4-12 | 3-12     |
| I DimC  | 1-1/2  | 1-1/2  | 1-3/4  | 1-3/4  | 2-1/8    | 2-1/8     | 2-1/2    | 2-1/2    | 3-5/8    | 4-3/8    | 4-3/4    |
| DimK    | 1-1/4  | 1-1/4  | 1-1/2  | 1-1/2  | 1-7/8    | 1-7/8     | 2-1/4    | 2-1/4    | 3-3/8    | 4-1/8    | 4-1/2    |
| Thread  | 1/2-20 | 1/2-20 | 1/2-20 | 1/2-20 | 5/8-18   | 5/8-18    | 3/4-16   | 1-14     | 1-1/4-12 | 1-1/2-12 | 1-3/4-12 |
| 3 DimC  | 1-1/8  | 1-1/8  | 1-3/8  | 1-3/8  | 1-3/4    | 1-3/4     | 2-1/8    | 2-1/2    | 3-1/4    | 4        | 4        |
| DimK    | 7/8    | 7/8    | 7/8    | 7/8    | 1-1/8    | 1-1/8     | 1-1/4    | 2-1/4    | 2        | 2-3/8    | 2-3/4    |
| Thread  | 5/8-18 | 5/8-18 | 3/4-16 | 3/4-16 | 1-14     | 1-14      | 1-1/4-12 | 1-1/2-12 | 2-12     | 2-1/2-12 | 2-1/2-12 |
| 5 DimC  | 1-1/8  | 1-1/8  | 1-3/8  | 1-3/8  | 1-3/4    | 1-3/4     | 2-1/8    | 2-1/2    | 3-1/4    | 4        | 4        |
| DimK    | 7/8    | 7/8    | 1-1/8  | 1-1/8  | 1-1/2    | 1-1/2     | 1-7/8    | 2-1/4    | 3        | 3-1/4    | 3-3/4    |

# Table 2 MINIMUM I DIMENSIONS CLASS M MODEL F CYLINDERS

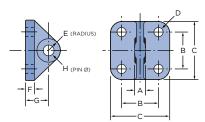
| BORE        | 1-1/2 | 2 | 2-1/2 | 3 | 4     | 5     | 6     | 8      | 10     | 12     | 14     |
|-------------|-------|---|-------|---|-------|-------|-------|--------|--------|--------|--------|
| I Dimension | 5     | 5 | 6     | 6 | 7-5/8 | 7-5/8 | 8-1/2 | 10-3/8 | 11-3/8 | 15-1/4 | 15-3/8 |

<sup>\*</sup> Steel heads are available at extra cost.



# CYLINDER FORCE, AIR CONSUMPTION AND TORQUE VALUES

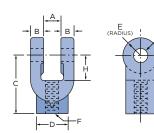
#### CYLINDER FORCE AND AIR CONSUMPTION TABLE


|              |            |       | TH    | IEORETICAL | FORCE @ F | LUID PRESS | URE   |       |       |       | CU. FT. FREE                                  |
|--------------|------------|-------|-------|------------|-----------|------------|-------|-------|-------|-------|-----------------------------------------------|
| CYL.<br>DIA. | ROD DIA.   | 40    | 60    | 80         | 100       | 125        | 200   | 250   | 450   | 650   | AIR• PER<br>IN. PISTON<br>TRAVEL AT<br>80 PSI |
|              | PUSH       | 70.8  | 106.0 | 141.4      | 176.7     | 220.9      | 353.4 | 441.8 | 795.2 | 1149  | .00658                                        |
| 1-1/2        | PULL 5/8   | 58.4  | 87.6  | 116.8      | 146.0     | 182.6      | 292.1 | 365.1 | 657.1 | 949.2 | .00658                                        |
|              | PULL 7/8   | 46.6  | 69.9  | 93.3       | 116.6     | 145.7      | 233.2 | 291.5 | 524.6 | 757.8 | .00658                                        |
|              | PUSH       | 125.7 | 188.5 | 251.3      | 314.2     | 392.7      | 628.3 | 785.4 | 1414  | 2042  | .01175                                        |
| 2            | PULL 5/8   | 113.4 | 170.1 | 226.8      | 283.5     | 354.4      | 567.0 | 708.7 | 1276  | 1843  | .01175                                        |
|              | PULL 7/8   | 101.6 | 152.4 | 203.2      | 254.0     | 317.5      | 508.1 | 635.1 | 1143  | 1651  | .01175                                        |
|              | PUSH       | 196.3 | 294.5 | 392.7      | 490.9     | 613.6      | 981.7 | 1227  | 2209  | 3191  | .0183                                         |
| 2-1/2        | PULL 3/4   | 178.7 | 268.0 | 357.3      | 446.7     | 558.4      | 893.4 | 1117  | 2010  | 2903  | .0183                                         |
|              | PULL 1     | 164.9 | 247.4 | 329.9      | 412.3     | 515.4      | 824.7 | 1031  | 1855  | 2680  | .0183                                         |
|              | PUSH       | 282.7 | 424.1 | 565.5      | 706.9     | 883.6      | 1414  | 1767  | 3181  | 4595  | .0264                                         |
| 3            | PULL 3/4   | 265.1 | 397.7 | 530.1      | 662.7     | 828.4      | 1325  | 1657  | 2982  | 4307  | .0264                                         |
|              | PULL 1     | 251.3 | 377.0 | 502.7      | 628.3     | 785.4      | 1257  | 1571  | 2827  | 4084  | .0264                                         |
|              | PUSH       | 502.7 | 754.0 | 1005       | 1257      | 1571       | 2513  | 3142  | 5655  | 8168  | .0469                                         |
| 4            | PULL 1     | 471.2 | 706.9 | 942.5      | 1178      | 1473       | 2356  | 2945  | 5301  | 7658  | .0469                                         |
|              | PULL 1-1/4 | 453.6 | 680.3 | 907.1      | 1134      | 1417       | 2268  | 2835  | 5103  | 7370  | .0469                                         |
|              | PUSH       | 785.4 | 1178  | 1571       | 1964      | 2454       | 3927  | 4909  | 8836  | -     | .0731                                         |
| 5            | PULL 1     | 754.0 | 1131  | 1508       | 1885      | 2356       | 3770  | 4712  | 8482  | -     | .0731                                         |
|              | PULL 1-1/4 | 736.3 | 1104  | 1473       | 1841      | 2301       | 3682  | 4602  | 8284  | -     | .0731                                         |
|              | PUSH       | 1131  | 1696  | 2262       | 2827      | 3534       | 5655  | 7069  | 12723 | -     | .1055                                         |
| 6            | PULL 1-1/4 | 1082  | 1623  | 2164       | 2705      | 3381       | 5409  | 6762  | 12171 | -     | .1055                                         |
|              | PULL 1-1/2 | 1060  | 1590  | 2121       | 2651      | 3313       | 5301  | 6627  | 11928 | -     | .1055                                         |
| 8            | PUSH       | 2011  | 3016  | 4021       | 5027      | 6283       | 10053 | 12566 | 22619 | -     | .188                                          |
| 0            | PULL 1-3/4 | 1914  | 2872  | 3829       | 4786      | 5982       | 9572  | 11965 | 21537 | -     | .188                                          |
|              | PUSH       | 3142  | 4712  | 6283       | 7854      | 9818       | 15708 | 19635 | 35343 | -     | .294                                          |
| 10           | PULL 2     | 3016  | 4524  | 6032       | 7540      | 9425       | 15080 | 18850 | 33929 | -     | .294                                          |
|              | PULL 2-1/4 | 2983  | 4474  | 5965       | 7456      | 9320       | 14913 | 18641 | 33554 | -     | .294                                          |
|              | PUSH       | 4524  | 6786  | 9048       | 11310     | 14138      | 22620 | 28275 | 50895 | -     | .423                                          |
| 12           | PULL 2-1/2 | 4328  | 6491  | 8655       | 10819     | 13524      | 21638 | 27048 | 48686 | -     | .423                                          |
|              | PULL 2-3/4 | 4286  | 6430  | 8573       | 10716     | 13395      | 21432 | 26790 | 48222 | -     | .423                                          |
|              | PUSH       | 6158  | 9236  | 12315      | 15394     | 19243      | 30788 | 38485 | 69273 | -     | .575                                          |
| 14           | PULL 2-3/4 | 5920  | 8880  | 11840      | 14800     | 18500      | 29600 | 37000 | 66600 | -     | .575                                          |
|              | PULL 3     | 5875  | 8812  | 11750      | 14687     | 18359      | 29374 | 36718 | 66092 | -     | .575                                          |

<sup>• = &</sup>quot;Free Air" is normal atmospheric air (sea level) at compressor location. These figures are used in determining size of compressor required. Piston travel in double acting cylinders is twice the stroke. Free Air consumption at other line pressures will vary accordingly.

#### TIE ROD (OR SOCKET HEAD CAP SCREWS ON CLASS M) TORQUE VALUES

| TIE ROD           | CON SOCKET HEAD C | AF SCILLIS ON CLA | 33 M) TORGOL VALO | LJ               |
|-------------------|-------------------|-------------------|-------------------|------------------|
| CYLINDER DIAMETER | TIE               | ROD               | CLASS 1-2         | CLASS M          |
| CTLINDER DIAMETER | DIA. THD.         | QTY.              | TORQUE (FT. LB.)  | TORQUE (FT. LB.) |
| 1.50"             | 5/16-24 NF        | 4                 | 7                 | 14               |
| 2.00"             | 5/16-24 NF        | 4                 | 7                 | 14               |
| 2.50"             | 5/16-24 NF        | 4                 | 7                 | 14               |
| 3.00"             | 3/8-24 NF         | 4                 | 14                | 20               |
| 4.00"             | 3/8-24 NF         | 4                 | 14                | 20               |
| 5.00"             | 3/8-24 NF         | 6                 | 14                | 20               |
| 6.00"             | 3/8-24 NF         | 6                 | 14                | 20               |
| 8.00"             | 1/2-20 NF         | 6                 | 40                | 70               |
| 10.00"            | 3/4-16 NF         | 8                 | 100               | 200              |
| 12.00"            | 3/4-16 NF         | 8                 | 100               | 200              |
| 14.00"            | 7/8-14 NF         | 8                 | 170               | 300              |


#### STANDARD MOUNTING BRACKET AND PIN

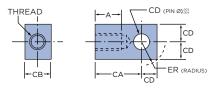


Mounting Brackets of high grade malleable iron or steel plate stock are designed to fit the blank end of Model E cylinders or into the slot of the clevises described below. Order by size and part number

|           |       |       |        |        |       |       |        | BRA           | CKET           | МТС             |               | PIN            |
|-----------|-------|-------|--------|--------|-------|-------|--------|---------------|----------------|-----------------|---------------|----------------|
| CYL. DIA. | Α     | В     | С      | D      | Е     | F     | G      | FORMER<br>P/N | CURRENT<br>P/N | MTG.<br>PIN "H" | FORMER<br>P/N | CURRENT<br>P/N |
| 1-1/2     | 7/16  | 1-3/4 | 2-3/4  | 13/32  | 1/2   | 3/8   | 1-3/16 | 1430CY        | 1801L00        | 3/8             | 3253CY-I      | 3221L46-1      |
| 2         | 7/16  | 2     | 3-1/4  | 17/32  | 5/8   | 1/2   | 1-3/8  | 1630CY        | 1802L46        | 1/2             | 3253CY-3      | 3221L46-3      |
| 2-1/2     | 7/16  | 2     | 3-1/4  | 17/32  | 5/8   | 1/2   | 1-3/8  | 1630CY        | 1802L46        | 1/2             | 3253CY-3      | 3221L46-3      |
| 3         | 7/16  | 2     | 3-1/4  | 17/32  | 5/8   | 1/2   | 1-3/8  | 1630CY        | 1802L46        | 1/2             | 3253CY-3      | 3221L46-3      |
| 4         | 5/8   | 3-1/4 | 4-1/2  | 17/32  | 7/8   | 1/2   | 1-3/4  | 1796CY        | 1803L46        | 3/4             | 3253CY-4      | 3221L46-4      |
| 5         | 5/8   | 3-1/4 | 4-1/2  | 17/32  | 7/8   | 1/2   | 1-3/4  | 1796CY        | 1803L46        | 3/4             | 3253CY-4      | 3221L46-4      |
| 6         | 7/8   | 4-1/4 | 5-1/2  | 17/32  | 1-1/8 | 5/8   | 2      | 1797CY        | 1804L06        | 7/8             | 3253CY-5      | 3221L46-5      |
| 8         | 1     | 5     | 6-1/2  | 21/32  | 1-1/4 | 3/4   | 2-1/2  | 1798CY        | 1805L07        | 1               | 3253CY-6      | 3221L46-6      |
| 10        | 1-1/4 | 6     | 8      | 25/32  | 1-1/2 | 1     | 3      | 1799CY        | 1806L08        | 1-1/4           | 3253CY-7      | 3221L46-7      |
| 12        | 1-3/4 | 6-3/4 | 10     | 1-1/16 | 2     | 1-1/4 | 3-1/2  | 1800CY        | 1807L09        | 1-1/2           | 3253CY-8      | 3221L46-8      |
| 14        | 2-1/4 | 8     | 10-1/2 | 1-5/16 | 2-1/8 | 1-1/2 | 3-3/4  | 2958CY        | 1767L46        | 1-3/4           | 3253CY-9      | 3221L46-9      |

# STANDARD FEMALE CLEVIS AND PIN




Clevises of high grade malleable iron are available for all standard model and size Class 1 and 2 cylinders. Clevises for any diameter cylinder are threaded for that particular standard 1 rod end. Class 1 and 2 cylinders with oversize rod and Class M cylinders will therefore require a larger clevis unless the rod end is turned down. Be sure to specify when ordering. Special clevises available made to order.

| CVI           | TUDEAD         |         |       |       |       |       |       |       | CI            | LEVIS       | MTG.       |               | PIN         |
|---------------|----------------|---------|-------|-------|-------|-------|-------|-------|---------------|-------------|------------|---------------|-------------|
| CYL.<br>DIA.• | THREAD<br>"F"• | A       | В     | С     | D     | E     | G     | Н     | FORMER<br>P/N | CURRENT P/N | PIN<br>"G" | FORMER<br>P/N | CURRENT P/N |
| 1-1/2         | 5/8-18         | 17/32   | 3/8   | 1-5/8 | 1     | 1/2   | 1/2   | 3/4   | 4330CY        | 1787L46     | 1/2        | 3253CY-3      | 3221L46-3   |
| 2             | 5/8-18         | 17/32   | 3/8   | 1-5/8 | 1     | 1/2   | 1/2   | 3/4   | 4330CY        | 1787L46     | 1/2        | 3253CY-3      | 3221L46-3   |
| 2-1/2         | 3/4-16         | 17/32   | 1/2   | 2     | 1-1/4 | 5/8   | 1/2   | 7/8   | 4331CY        | 1788L46     | 1/2        | 3253CY-3      | 3221L46-3   |
| 3             | 3/4-16         | 17/32   | 1/2   | 2     | 1-1/4 | 5/8   | 1/2   | 7/8   | 4331CY        | 1788L46     | 1/2        | 3253CY-3      | 3221L46-3   |
| 4             | 1-14           | 25/32   | 3/4   | 2-5/8 | 1-1/2 | 3/4   | 3/4   | 1-1/8 | 4332CY        | 1789L46     | 3/4        | 3253CY-4      | 3221L46-4   |
| 5             | 1-14           | 25/32   | 3/4   | 2-5/8 | 1-1/2 | 3/4   | 3/4   | 1-1/8 | 4332CY        | 1789L46     | 3/4        | 3253CY-4      | 3221L46-4   |
| 6             | 1-1/4-12       | 1-1/32  | 15/16 | 3-1/4 | 1-3/4 | 1-1/8 | 7/8   | 1-3/8 | 4333CY        | 1790L06     | 7/8        | 3253CY-5      | 3221L46-5   |
| 8             | 1-3/4-12       | 1-9/32  | 1     | 3-3/4 | 2-1/2 | 1-1/4 | 1     | 1-1/2 | 16989CY       | 1791L07     | 1          | 3253CY-6      | 3221L46-6   |
| 10            | 2-12           | 1-17/32 | 1-1/4 | 4-3/4 | 3     | 1-1/2 | 1-1/4 | 1-3/4 | 1373CY        | 1792L08     | 1-1/4      | 3253CY-7      | 3221L46-7   |
| 12            | 2-1/2-12       | 2-1/32  | 1-1/2 | 5-7/8 | 3-1/2 | 1-3/4 | 1-1/2 | 2-1/8 | 1374CY        | 1793L46     | 1-1/2      | 3253CY-8      | 3221L46-8   |
| 14•           | 2-1/2-12       | 2-1/32  | 1-1/2 | 5-7/8 | 3-1/2 | 1-3/4 | 1-1/2 | 2-1/8 | 1374CY        | 1793L46     | 1-1/2      | 3253CY-8      | 3221L46-8   |

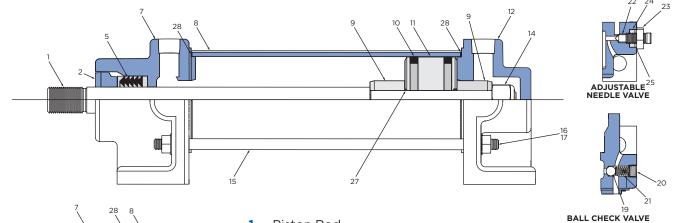
- = Indicates Class 1 and 2 cylinder diameter with Standard 1 NF rod end which clevis will fit.
- = 1-1/2-12 thread clevis 7286L07 (4334CY) available. Dimensions on 1791L07 (18510CY) apply.
- ▼ = For 5 Rod only on 14" diameter.

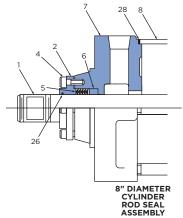
#### STANDARD ROD EYE AND PIN

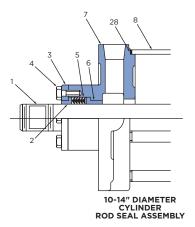
|          |       |         |       |       |        | ROD           | EYE            | P             | IN             |
|----------|-------|---------|-------|-------|--------|---------------|----------------|---------------|----------------|
| THREAD   | Α     | CA      | СВ    | CD    | ER     | FORMER<br>P/N | CURRENT<br>P/N | FORMER<br>P/N | CURRENT<br>P/N |
| 5/8-18   | 7/8   | 1-5/8   | 1     | 1/2   | 3/4    | 21789CY       | 1811L59        | 3253CY-3      | 3221L46-3      |
| 3/4-16   | 1-1/8 | 2-1/16  | 1-1/4 | 3/4   | 1-1/16 | 7061CY        | 1812L59        | 3253CY-4      | 3221L46-4      |
| 1-14     | 1-5/8 | 2-13/16 | 1-1/2 | 1     | 1-7/16 | 7062CY        | 1813L59        | 3253CY-6      | 3221L46-6      |
| 1-1/4-12 | 2     | 3-7/16  | 2     | 1-3/8 | 2      | 7063CY        | 1814L59        | 3253CY-4      | 3221L46-4      |
| 1-3/4-12 | 2-1/4 | 4       | 2-1/2 | 1-3/4 | 2-1/16 | 21790CY       | 1816L59        | 3253CY-9      | 3221L46-9      |
| 2-12     | 3     | 5       | 2-1/2 | 2     | 2-1/4  | 23464CY       | 1819L59        | 3253CY-11     | 3221L46-11     |
| 2-1/2-12 | 3-1/2 | 6-1/8   | 3     | 3     | 3-1/4  | 23465CY       | 1823L59        | 3253CY-7      | 3221L46-7      |



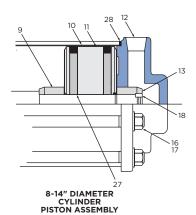
**Rod eyes** of mild steel are available for all standard model and size Class 1 and Class 2 cylinders with 1 rod ends. Other sizes of rod eyes are also available. Pins for rod eye, are not furnished unless requested.


#### **TYPICAL PIN STYLES**





## REPLACEMENT PARTS




#### **REPLACEMENT PARTS**







- 1 Piston Rod
- 2 Packing Gland
- 3 Gland Ring
- 4 Gland Ring Screws
- **5** V-ring Packing
- 6 Piston Rod Bushing
- 7 Rod End Cylinder Head
- 8 Cylinder Tube
- 9 Cushion Sleeve
- 10 Piston U-cup
- 11 Piston
- 12 Blank End Cylinder Head
- 13 Lock Sleeve
- 14 Piston Lock Nut
- 15 Tie Rods
- **16** Tie Rod Nuts
- 17 Lock Washers
- 18 Set Screw
- 19 Check Ball
- 20 Ball Check Plug
- 21 Ball Check Spring
- 22 Needle Valve
- 23 Needle Valve Lock Nut
- 24 Needle Valve Packing
- 25 Needle Valve Gland Ring
- 26 Wiper
- **27** O-ring
- 28 Gasket



## **HOW TO ORDER**

#### When using this parts list for replacements, be sure to identify:

- 1. Part by name and item number.
- 2. Diameter of cylinder.
- 3. Model of cylinder.
- 4. Serial number on NOPAK cylinder label.

## **REED PROXIMITY SWITCH**

AIR CYLINDER APPLICATIONS



#### LONG LIFE/HIGH PERFORMANCE

#### **FEATURES AND ADVANTAGES**

- Adjustable mounting allows switches to be located anywhere within range of piston travel.
- Several switches may be mounted to control or initiate any sequence function.
- No externally moving parts to wear or maintain.
- Suited for use in plant environments where dirt and contamination create difficulties for electromechanical and other types of controls.
- Neon Indicator Light provides convenient means for positioning and troubleshooting switch and circuits.
- Suitable for AC service only.

#### **WORKING PRINCIPLE**

Basically the Reed Switch consists of two overlapping ferro magnetic blades (reeds). The reeds are hermetically sealed inside a glass tube leaving a small air gap between them.

Since the reeds are magnetic, they will assume opposite polarity and be attracted to each other when influenced by a magnetic field. Sufficient magnetic flux density will cause the reeds to flex and contact each other. When the magnetic field is removed, they will again spring apart to their normal positions.

The cylinder/Reed Switch combination operates by using a magnetic band on the cylinder piston, which closes the externally mounted reed switch, as it approaches. When the piston moves away again the switch opens.

Proper application of this versatile Reed Switch can offer millions of cycles of trouble-free operation.

#### **3 AMP REED SWITCH SPECIFICATIONS**

Circuit - Normally open - SPST (Form A)

VA (Max) - 360

Switching voltage - 65-120 VAC (50/60 Hz)

Current (Break) - 3.0 Amp

Leakage - 1.7 mA

Response Time - 15 ms On, 0.83 ms Off

Switch Burden Current - 5 mA

**Note:** All incandescent loads derate switch capacity to 10% due to include current

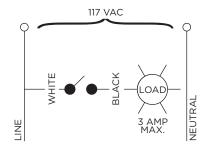
Moisture and dust proof (no NEMA rating)

#### **SHOCK RATING**

The basic switch can withstand up to 60 G maximum in the direction of contact closure without misfire or malfunction.

#### **VIBRATION SENSITIVITY**

Switch will withstand amplitude of 30 G at frequencies up to 6000 Hz without misfire. False operation can occur at vibration frequency levels higher than 6000 Hz.


#### **OPERATING TEMPERATURE**

-40°F to +170°F for standard cable.

#### CABLE SPECIFICATION

The conductors are tinned copper with polyethylene insulation, conductors are cabled with a rayon braid, a tinned copper braided shield and a chrome vinyl jacket that is resistant to hydraulic fluids.

#### **SWITCH WIRING SCHEMATIC**



### **CAUTION**

Do not connect switch without a load. Permanent damage to switch will result.

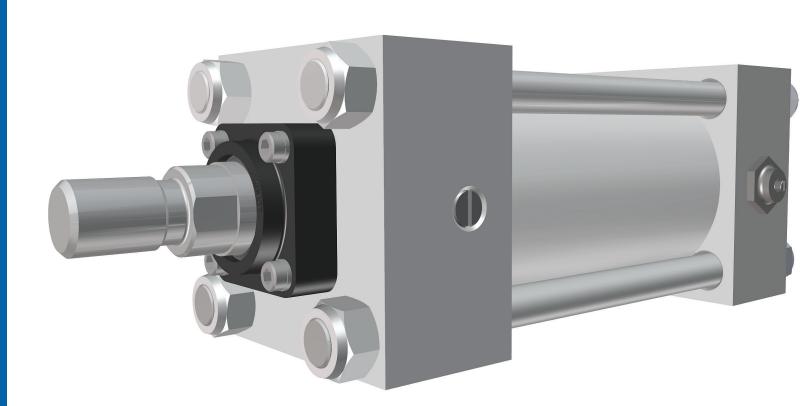
NOTE: Switch is internally protected against failure due to normal electrical transient levels. However, it may be necessary to use additional transient protection if high levels exist.

## **ORDER NUMBERS**

For switch and bracket assembly complete or separate units.

**10990E00** For switch and bracket

assembly


**10988E00** Part No. - Switch Unit **3985E00** Part No. - Adjustable

Bracket Unit



# Class 3

# High Pressure Square-Head Cylinders







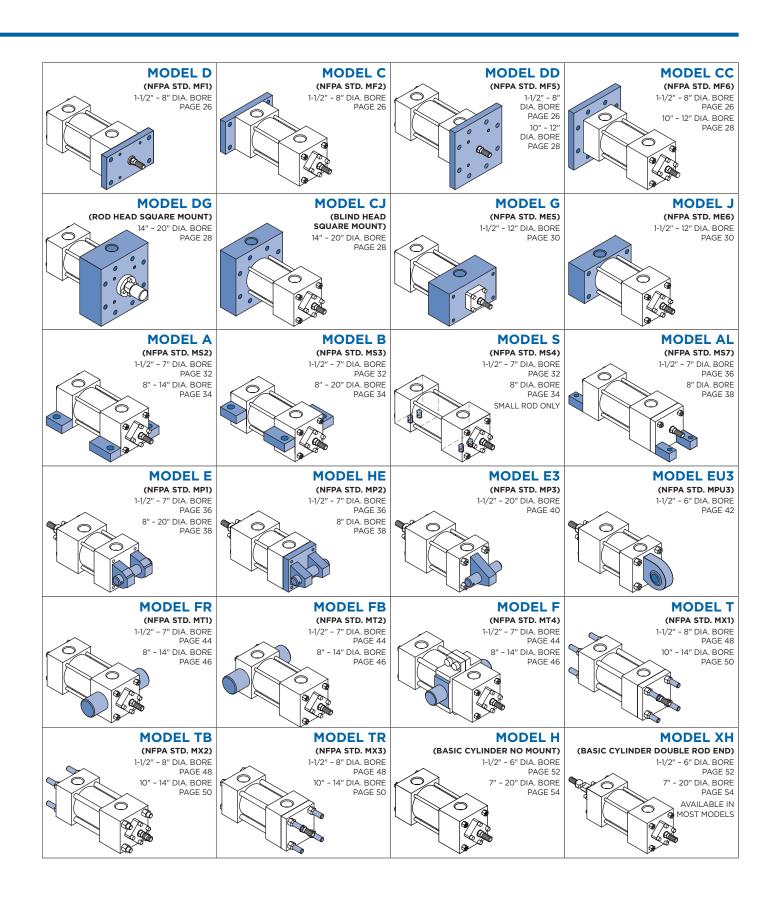
#### **TABLE OF CONTENTS**

| Pressure Ratings (PSI)                                                                |
|---------------------------------------------------------------------------------------|
| Approximate Class 3 Hydraulic Cylinder Weights (lbs)                                  |
| Mounting Styles Index27                                                               |
| Standard Features28                                                                   |
| Options, Modifications and Ordering Information                                       |
| Flange Mount Cylinders 1-1/2" Through 8" Bore                                         |
| Flange and Square-Head<br>Mount Cylinders<br>10" Through 20" Bore                     |
| Rod Head and Blind Head<br>Rectangular Mount Cylinders<br>1-1/2" Through 12" Diameter |
| Side and Lug Mount Cylinders 1-1/2" Through 7" Diameter                               |
| End Lug and Clevis Mount Cylinders 1-1/2" Through 7" Diameter                         |
| Fixed Eye Mount Cylinders<br>1-1/2" Through 20" Diameter                              |
| Spherical Eye Mount Cylinders<br>1-1/2" Through 6" Diameter                           |
| Trunnion Mount Cylinders 1-1/2" Through 7" Diameter                                   |
| Tie-Rod Mount Cylinders 1-1/2" Through 8" Diameter                                    |
| Basic Model No Mount and Double Rod End Cylinders 1-1/2" Through 6" Diameter          |
| Piston Rod Ends60                                                                     |
| Cylinder Accessories                                                                  |
| Proximity Position Indicator Switch62                                                 |
| NOPAK Linear Displacement Transducer System                                           |
| Engineering Information64                                                             |
| Engineering Data66                                                                    |
| Replacement Parts                                                                     |

#### PRESSURE RATINGS (PSI)

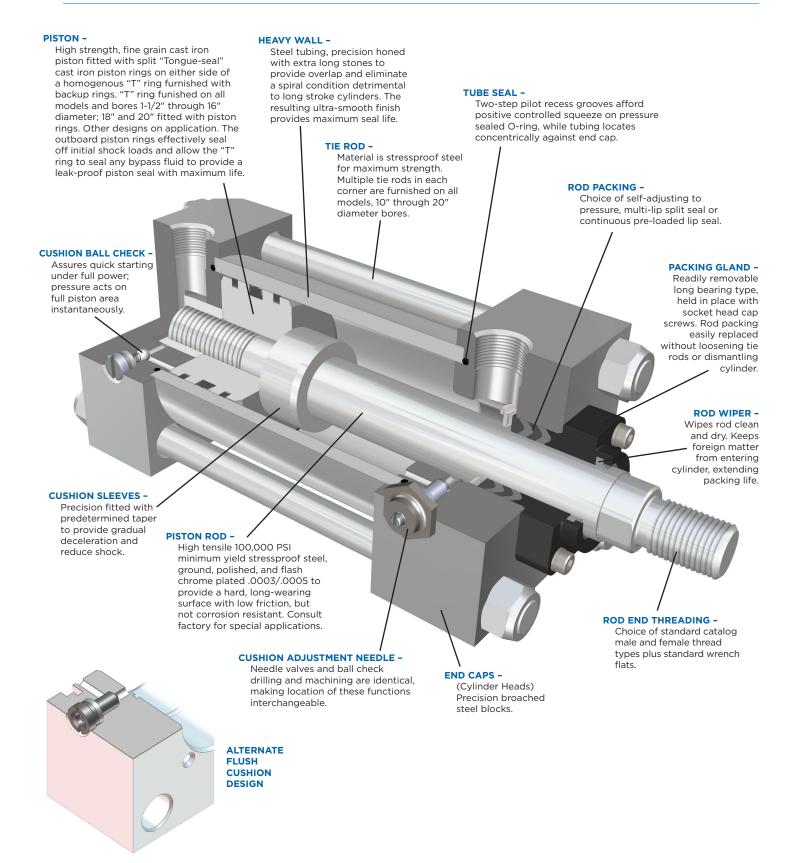
| CYL. BORE | 4/1• | RECOMMENDED MAXIMUM CONTINUOUS PRESSURE |
|-----------|------|-----------------------------------------|
| 1-1/2     | 2265 | 3000                                    |
| 2         | 3209 | 3000                                    |
| 2-1/2     | 3209 | 3000                                    |
| 3-1/4     | 2465 | 3000                                    |
| 4         | 2288 | 3000                                    |
| 5         | 2752 | 3000                                    |
| 6         | 2326 | 3000                                    |
| 7         | 2632 | 3000                                    |
| 8         | 2326 | 3000                                    |
| 10        | 3072 | 3000                                    |
| 12        | 2710 | 3000                                    |
| 14        | 2631 | 3000                                    |
| 16        | 2014 | 3000                                    |
| 18        | 2099 | 3000                                    |
| 20        | 2064 | 3000                                    |

• = The 4/1 pressure rating is the lowest calculated value of the various pressure containing elements of a cylinder and is based on 1/4th of the minimum tensile strength of the material. While this is a conservative rating method, it does not include factors for type of mounting, length of stroke, method or speed of load application, fluid, temperature, environment, or fatigue. For specific recommendations consult your nearest NOPAK field representative or factory application engineer.




CLICK HERE
TO CONFIGURE
YOUR CYLINDER

## APPROXIMATE UNCRATED CLASS 3 HYDRAULIC CYLINDER WEIGHTS (LBS)


| CYLINDER BORE                      | 1-1/2 | 2   | 2-1/2 | 3-1/4 | 4   | 5   | 6   | 7   | 8    | 10   | 12  | 14   | 16   | 18   | 20   |
|------------------------------------|-------|-----|-------|-------|-----|-----|-----|-----|------|------|-----|------|------|------|------|
| BASIC MODELS ZERO<br>STROKE        | 7.8   | 12  | 17.5  | 33    | 45  | 81  | 137 | 193 | 298  | 532  | 890 | 1480 | 1930 | 2810 | 3700 |
| MODELS ME, MF,<br>MP & MT - ADD:   | 2.2   | 3   | 3.5   | 7     | 8   | 13  | 20  | 27  | 36   | 84   | 130 | 270  | 420  | 540  | 800  |
| STANDARD ROD PER<br>INCH OF STROKE | .45   | .75 | 1.1   | 1.6   | 2.5 | 4.0 | 5.2 | 6.3 | 8.2  | 15.5 | 23  | 32   | 38   | 48   | 57   |
| LARGE ROD PER INCH<br>OF STROKE    | .59   | .95 | 1.6   | 2.1   | 3.2 | 5.8 | 7.4 | 9.9 | 12.2 | 21.9 | 30  | 43   | 46   | 52   | -    |

## **MOUNTING STYLES INDEX**





# HIGH PRESSURE SQUARE-HEAD CLASS 3 HYDRAULIC CYLINDERS CUTAWAY VIEW



#### **OPTIONS**

#### **BORE SIZE SELECTION**

Unlike air applications, the output force of a cylinder for hydraulic service need be only slightly greater than the required force. Hydraulic cylinder speed is dependent directly on the relationship of supply flow rate to cylinder volume. Force tables to aid in cylinder sizing are on page 61.

#### **MOUNTINGS**

Select the cylinder mounting which will keep the line of force as close as possible to the centerline of the piston rod and free of misalignment. This will maximize seal and bearing life.

#### **CUSTOM MODIFICATIONS**

#### **STOP TUBES**

In long cylinders used on push applications, internal stop tubes are installed to prevent excessive bearing wear. They are located between the piston and rod end head. See page 62 for instructions.

#### **OVERSIZE RODS**

For long, push stroke cylinders, oversize rods may be required. See page 62 for instructions.

#### **DOUBLE ROD END**

NOPAK Class 3 cylinders when ordered as double rod end are designated by prefixing the model with the letter "X." Mounting dimensions may vary from standard because two rod end heads are used. See page 52 through page 55.

#### **CUSHIONS**

NOPAK Class 3 cylinders are available with adjustable cushions on either or both ends, or non-cushion. The purpose of a cushion is to slow up piston speed at the end of the stroke, eliminating shock. The mass to be cushioned should be limited to one-half the cylinder force unless other provisions are made for deceleration or special cushioning.

#### PISTON ROD EXTENSION AND ROD THREADING

Longer than standard piston rod extensions may be required to accommodate load fastening. Depending upon the details of rod engagement to load, special threading or rod end configuration may be required.

#### **CYLINDER PORTS**

Ports are offered as NPTF, SAE O-ring or SAE Flange Type. SAE ports standard for 1-1/2" thru 8" diameter cylinder bores. To increase cylinder speed, increased fluid volume is necessary. This can be done by using enlarged or additional ports.

#### **HOW TO ORDER**

You can help ensure prompt processing of your order by including all of the following requested information:

- 1. Quantity required.
- 2. Specify Class 3.
- 3. Bore or cylinder diameter size.
- 4. Stroke length in inches.
- 5. Type of mounting (NOPAK model or NFPA style.)
- 6. Type of cushioning:

NN = non-cushioned

NA = cushioned blind end

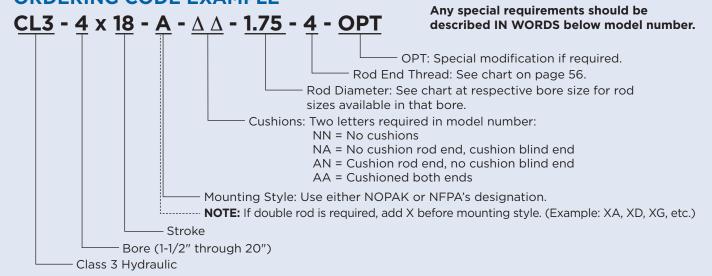
AN = cushioned rod end

AA = cushioned both ends

7. Piston rod diameter and type of rod threading - specify Type 1, 3, 4, 5, 6 or 7. See page 56.

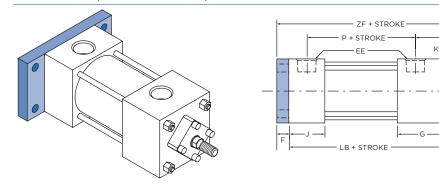
#### **Also Specify:**

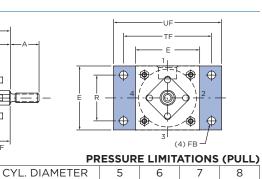
1. Position of cylinder ports and cushion adjustment screw, if other than standard. Standard positions are:


Cylinder ports - position 1

Ball check - position 2

Cushion adjustment - position 4


- 2. Extreme high or low operating or ambient temperatures.
- 3. Extreme operating pressures.
- 4. Type of operating fluid if other than standard petroleum base oil.
- 5. Any unusual operating conditions.


### **ORDERING CODE EXAMPLE**





## MODEL C (NFPA STD. MF2)

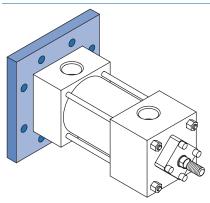


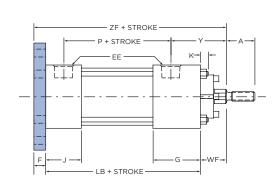


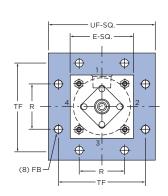
1600

1200

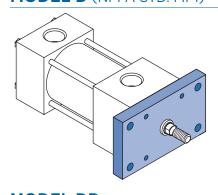
1000

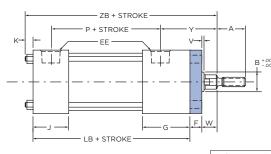

Use Model CC (below) or Model J (page 30) for Recommended Maximum Pressure.

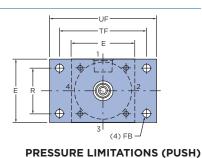

2000


PRESSURE (PSI)

WF


## MODEL CC (NFPA STD. MF6)



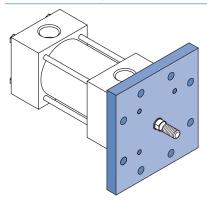



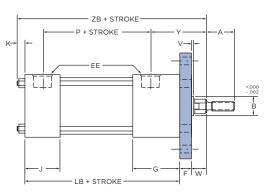


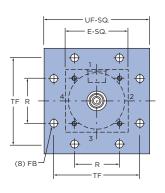

### MODEL D (NFPA STD. MF1)









 CYL. DIAMETER
 5
 6
 7
 8


 PRESSURE (PSI)
 1800
 1500
 1000
 800

#### MODEL DD (NFPA STD. MF5)

Use Model DD (below) or Model G (page 30) for Recommended Maximum Pressure.







= See Table A on page 53 for bore and rod combinations using head plates with threaded bronze glands.

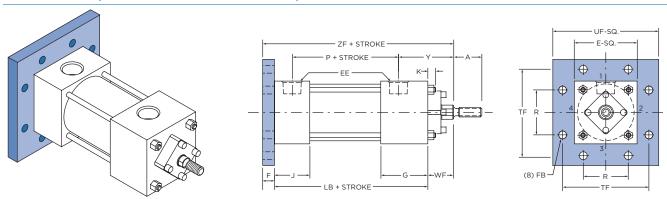
 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

Double rod end models are designated by letter "X" preceding the model identification. See page 52.

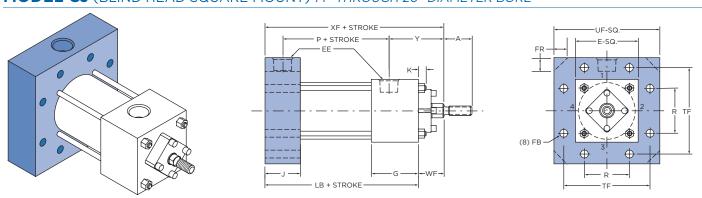
• = Dimensions refer to bolt diameter.

| BORE DIA. | Е     | F   | G     | J     | К     | R    | EE    | FB•   | TF       | UF     |
|-----------|-------|-----|-------|-------|-------|------|-------|-------|----------|--------|
| 1-1/2     | 2-1/2 | 3/8 | 1-3/4 | 1-1/2 | 1/2   | 1.63 | 1/2   | 3/8   | 3-7/16   | 4-1/4  |
| 2         | 3     | 5/8 | 1-3/4 | 1-1/2 | 1/2   | 2.05 | 1/2   | 1/2   | 4-1/8    | 5-1/8  |
| 2-1/2     | 3-1/2 | 5/8 | 1-3/4 | 1-1/2 | 5/8   | 2.55 | 1/2   | 1/2   | 4-5/8    | 5-5/8  |
| 3-1/4     | 4-1/2 | 3/4 | 2-1/4 | 1-3/4 | 3/4   | 3.25 | 3/4   | 5/8   | 5-7/8    | 7-1/8  |
| 4         | 5     | 7/8 | 2-1/4 | 1-3/4 | 3/4   | 3.82 | 3/4   | 5/8   | 6-3/8    | 7-5/8  |
| 5         | 6-1/2 | 7/8 | 2-1/4 | 1-3/4 | 1     | 4.95 | 3/4   | 7/8   | 8-3/16   | 9-3/4  |
| 6         | 7-1/2 | 1   | 2-1/2 | 2-1/4 | 1-1/8 | 5.73 | 1     | 1     | 9-7/16   | 11-1/4 |
| 7         | 8-1/2 | 1   | 2-3/4 | 2-3/4 | 1-1/8 | 6.58 | 1-1/4 | 1-1/8 | 10-5/8   | 12-5/8 |
| 8         | 9-1/2 | 1   | 3     | 3     | 1-3/8 | 7.50 | 1-1/2 | 1-1/4 | 11-13/16 | 14     |

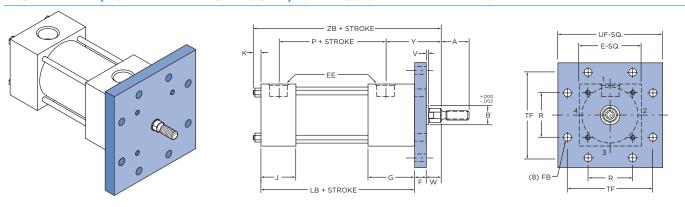
# $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$


• = For piston rod dimensions see page 56.

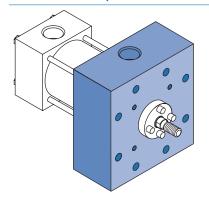
| BORE DIA. | ROD MM• | Α     | В     | Р     | V   | W     | Υ       | LB    | WF    | ZB     | ZF     |
|-----------|---------|-------|-------|-------|-----|-------|---------|-------|-------|--------|--------|
| 1.1/2     | 5/8     | 3/4   | 1-1/8 | 2-3/4 | 1/4 | 5/8   | 2-1/16  | 4-5/8 | 1     | 6-1/8  | 6      |
| 1-1/2     | 1       | 1-1/8 | 1-1/2 | 2-3/4 | 1/2 | 1     | 2-7/16  | 4-5/8 | 1-3/8 | 6-1/2  | 6-3/8  |
|           | 1       | 1-1/8 | 1-1/2 | 2-3/4 | 1/4 | 3/4   | 2-7/16  | 4-5/8 | 1-3/8 | 6-1/2  | 6-5/8  |
| 2         | 1-3/8   | 1-5/8 | 2     | 2-3/4 | 3/8 | 1     | 2-11/16 | 4-5/8 | 1-5/8 | 6-3/4  | 6-7/8  |
|           | 1       | 1-1/8 | 1-1/2 | 2-7/8 | 1/4 | 3/4   | 2-7/16  | 4-3/4 | 1-3/8 | 6-3/4  | 6-3/4  |
| 2-1/2     | 1-3/8   | 1-5/8 | 2     | 2-7/8 | 3/8 | 1     | 2-11/16 | 4-3/4 | 1-5/8 | 7      | 7      |
|           | 1-3/4   | 2     | 2-3/8 | 2-7/8 | 1/2 | 1-1/4 | 2-15/16 | 4-3/4 | 1-7/8 | 7-1/4  | 7-1/4  |
|           | 1-3/8   | 1-5/8 | 2     | 3-1/4 | 1/4 | 7/8   | 3       | 5-1/2 | 1-5/8 | 7-7/8  | 7-7/8  |
| 3-1/4     | 1-3/4   | 2     | 2-3/8 | 3-1/4 | 3/8 | 1-1/8 | 3-1/4   | 5-1/2 | 1-7/8 | 8-1/8  | 8-1/8  |
|           | 2       | 2-1/4 | 2-5/8 | 3-1/4 | 3/8 | 1-1/4 | 3-3/8   | 5-1/2 | 2     | 8-1/4  | 8-1/4  |
|           | 1-3/4   | 2     | 2-3/8 | 3-1/2 | 1/4 | 1     | 3-1/4   | 5-3/4 | 1-7/8 | 8-3/8  | 8-1/2  |
| 4         | 2       | 2-1/4 | 2-5/8 | 3-1/2 | 1/4 | 1-1/8 | 3-3/8   | 5-3/4 | 2     | 8-1/2  | 8-5/8  |
|           | 2-1/2   | 3     | 3-1/8 | 3-1/2 | 3/8 | 1-3/8 | 3-5/8   | 5-3/4 | 2-1/4 | 8-3/4  | 8-7/8  |
|           | 2       | 2-1/4 | 2-5/8 | 4     | 1/4 | 1-1/8 | 3-3/8   | 6-1/4 | 2     | 9-1/4  | 9-1/8  |
| 5         | 2-1/2   | 3     | 3-1/8 | 4     | 3/8 | 1-3/8 | 3-5/8   | 6-1/4 | 2-1/4 | 9-1/2  | 9-3/8  |
| 5         | 3       | 3-1/2 | 3-3/4 | 4     | 3/8 | 1-3/8 | 3-5/8   | 6-1/4 | 2-1/4 | 9-1/2  | 9-3/8  |
|           | 3-1/2   | 3-1/2 | 4-1/4 | 4     | 3/8 | 1-3/8 | 3-5/8   | 6-1/4 | 2-1/4 | 9-1/2  | 9-3/8  |
|           | 2-1/2   | 3     | 3-1/8 | 4-5/8 | 1/4 | 1-1/4 | 3-3/4   | 7-3/8 | 2-1/4 | 10-3/4 | 10-5/8 |
| 6         | 3       | 3-1/2 | 3-3/4 | 4-5/8 | 1/4 | 1-1/4 | 3-3/4   | 7-3/8 | 2-1/4 | 10-3/4 | 10-5/8 |
| 6         | 3-1/2   | 3-1/2 | 4-1/4 | 4-5/8 | 1/4 | 1-1/4 | 3-3/4   | 7-3/8 | 2-1/4 | 10-3/4 | 10-5/8 |
|           | 4       | 4     | 4-3/4 | 4-5/8 | 1/4 | 1-1/4 | 3-3/4   | 7-3/8 | 2-1/4 | 10-3/4 | 10-5/8 |
|           | 3       | 3-1/2 | 3-3/4 | 5-3/8 | 1/4 | 1-1/4 | 3-13/16 | 8-1/2 | 2-1/4 | 11-7/8 | 11-3/4 |
|           | 3-1/2   | 3-1/2 | 4-1/4 | 5-3/8 | 1/4 | 1-1/4 | 3-13/16 | 8-1/2 | 2-1/4 | 11-7/8 | 11-3/4 |
| 7         | 4       | 4     | 4-3/4 | 5-3/8 | 1/4 | 1-1/4 | 3-13/16 | 8-1/2 | 2-1/4 | 11-7/8 | 11-3/4 |
|           | 4-1/2   | 4-1/2 | 5-1/4 | 5-3/8 | 1/4 | 1-1/4 | 3-13/16 | 8-1/2 | 2-1/4 | 11-7/8 | 11-3/4 |
|           | 5       | 5     | 5-3/4 | 5-3/8 | 1/4 | 1-1/4 | 3-13/16 | 8-1/2 | 2-1/4 | 11-7/8 | 11-3/4 |
|           | 3-1/2   | 3-1/2 | 4-1/4 | 6     | 1/4 | 1-1/4 | 4       | 9-1/2 | 2-1/4 | 13-1/8 | 12-3/4 |
|           | 4       | 4     | 4-3/4 | 6     | 1/4 | 1-1/4 | 4       | 9-1/2 | 2-1/4 | 13-1/8 | 12-3/4 |
| 8         | 4-1/2   | 4-1/2 | 5-1/4 | 6     | 1/4 | 1-1/4 | 4       | 9-1/2 | 2-1/4 | 13-1/8 | 12-3/4 |
|           | 5       | 5     | 5-3/4 | 6     | 1/4 | 1-1/4 | 4       | 9-1/2 | 2-1/4 | 13-1/8 | 12-3/4 |
|           | 5-1/2   | 5-1/2 | 6-1/4 | 6     | 1/4 | 1-1/4 | 4       | 9-1/2 | 2-1/4 | 13-1/8 | 12-3/4 |

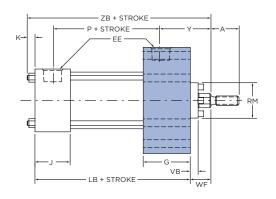

www.nopak.com CLASS 3 27

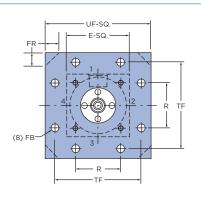



#### MODEL CC (BLIND END FLANGE MOUNT) 10" THROUGH 12" DIAMETER BORE




#### MODEL CJ (BLIND HEAD SQUARE MOUNT) 14" THROUGH 20" DIAMETER BORE





## MODEL DD (ROD END FLANGE MOUNT) 10" THROUGH 12" DIAMETER BORE



## MODEL DG (ROD HEAD SQUARE MOUNT) 14" THROUGH 20" DIAMETER BORE







# FLANGE AND SQUARE-HEAD MOUNT CYLINDERS

10" THROUGH 20" BORE

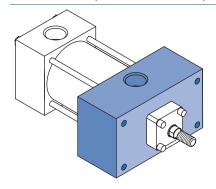
 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

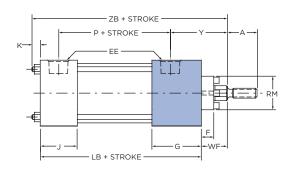
Double rod end models are designated by letter "X" preceding the model identification. See page 52.

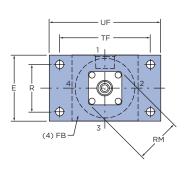
• = Dimensions refer to bolt diameter.

| BORE DIA. | Е      | F       | G       | J       | K      | R     | EE    | FB•   | FR | TF     | UF     |
|-----------|--------|---------|---------|---------|--------|-------|-------|-------|----|--------|--------|
| 10        | 12-5/8 | 1-11/16 | 3-11/16 | 3-11/16 | 1-1/8  | 9.62  | 2     | 1-3/4 | -  | 15-7/8 | 19     |
| 12        | 14-7/8 | 1-15/16 | 4-7/16  | 4-7/16  | 1-1/8  | 11.45 | 2-1/2 | 2     | -  | 18-1/2 | 22     |
| 14        | 17-1/4 | -       | 4-7/8   | 4-7/8   | 1-7/16 | 13.34 | 2-1/2 | 2-1/4 | -  | 21     | 25     |
| 16        | 19-1/4 | -       | 5-7/8   | 5-7/8   | 1-7/16 | 15.10 | 3     | 2-1/2 | -  | 23-7/8 | 28-3/8 |
| 18        | 22     | -       | 6-7/8   | 6-7/8   | 1-7/16 | 16.88 | 3     | 2-3/4 | 4  | 26-1/4 | 31     |
| 20        | 23-5/8 | -       | 7-7/8   | 7-7/8   | 1-7/16 | 18.74 | 3     | 3     | 6  | 29     | 34-1/2 |

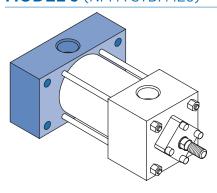
# $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$

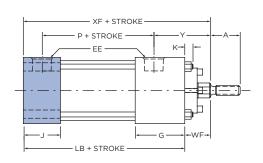

• = For piston rod dimensions see page 56.

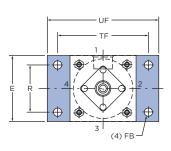

| BORE DIA. | ROD MM• | Α     | В      | Р      | ٧     | W     | Υ     | LB     | RM     | VB    | WF      | XF       | ZB       | ZF     |
|-----------|---------|-------|--------|--------|-------|-------|-------|--------|--------|-------|---------|----------|----------|--------|
|           | 4-1/2   | 4-1/2 | 5-1/4  | 8      | 1/4   | 1-1/4 | 5     | 12-1/8 | 7-3/4  | _     | 2-15/16 | 15-1/16  | 16-3/16  | 16-3/4 |
| 10        | 5       | 5     | 5-3/4  | 8      | 1/4   | 1-1/2 | 5-1/4 | 12-1/8 | 8-3/8  | _     | 3-3/16  | 15-5/16  | 16-7/16  | 17     |
| 10        | 5-1/2   | 5-1/2 | 6-1/4  | 8      | 1/4   | 1-1/2 | 5-1/4 | 12-1/8 | 9      | _     | 3-3/16  | 15-5/16  | 16-7/16  | 17     |
|           | 7       | 7     | 10-1/4 | 8      | 11/16 | 1-1/2 | 5-1/4 | 12-1/8 | 10-1/4 | 2-3/8 | 3-3/16  | 15-5/16  | 16-7/16  | 17     |
|           | 5-1/2   | 5-1/2 | 6-1/4  | 9-5/8  | 1/4   | 1-1/4 | 5-5/8 | 14-1/2 | 9      | _     | 3-3/16  | 17-11/16 | 18-13/16 | 19-5/8 |
| 12        | 7       | 7     | 10-1/4 | 9-5/8  | 7/16  | 1-1/2 | 5-7/8 | 14-1/2 | 10-1/4 | 2-3/8 | 3-7/16  | 17-15/16 | 19-1/16  | 19-7/8 |
|           | 8       | 8     | 11-1/4 | 9-5/8  | 7/16  | 1-1/2 | 5-7/8 | 14-1/2 | 11-1/4 | 2-3/8 | 3-7/16  | 17-15/16 | 19-1/16  | 19-7/8 |
|           | 7       | 7     | -      | 9-7/8  | -     | -     | 6-3/8 | 15-5/8 | 10-1/4 | 2-3/8 | 3-1/2   | 19-1/8   | 20-1/4   | 21-3/8 |
| 14        | 8       | 8     | -      | 9-7/8  | -     | _     | 6-3/8 | 15-5/8 | 11-1/4 | 2-3/8 | 3-1/2   | 19-1/8   | 20-1/4   | 21-3/8 |
|           | 10      | 10    | -      | 9-7/8  | -     | -     | 6-3/8 | 15-5/8 | 14     | 2-1/2 | 3-1/2   | 19-1/8   | 20-1/4   | 21-3/8 |
|           | 8       | 8     | _      | 11-3/8 | -     | _     | 7-3/8 | 18-1/8 | 11-1/4 | 2-3/8 | 4       | 22-1/4   | 23-9/16  | 24-7/8 |
| 16        | 9       | 9     | _      | 11-3/8 | -     | _     | 7-3/8 | 18-1/8 | 12-1/2 | 2-1/2 | 4       | 22-1/4   | 23-9/16  | 24-7/8 |
|           | 10      | 10    | _      | 11-3/8 | -     | _     | 7-3/8 | 18-1/8 | 14     | 2-1/2 | 4       | 22-1/4   | 23-9/16  | 24-7/8 |
| 18        | 9       | 9     | -      | 12-3/8 | -     | -     | 8-5/8 | 21-1/8 | 12-1/2 | 2-1/2 | 4-1/4   | 25-3/8   | 26-13/16 | 28-3/8 |
| 18        | 10      | 10    | _      | 12-3/8 | -     | _     | 8-5/8 | 21-1/8 | 14     | 2-1/2 | 4-1/4   | 25-3/8   | 26-13/16 | 28-3/8 |
| 20        | 10      | 10    | -      | 13-3/8 | -     | -     | 9-5/8 | 23-5/8 | 14     | 2-1/2 | 4-1/2   | 28-1/8   | 29-9/16  | 31-3/8 |


www.nopak.com CLASS 3 29




## MODEL G (NFPA STD. ME5)






## MODEL J (NFPA STD. ME6)







💌 = See Table A on page 53 for bore and rod combinations using head plates with threaded bronze glands.

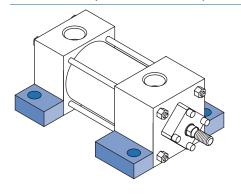
 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

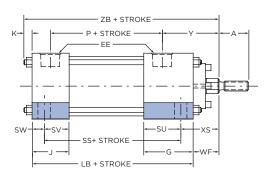
Double rod end models are designated by letter "X" preceding the model identification. See page 52.

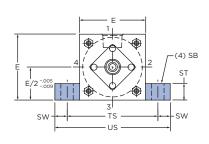
• = Dimensions refer to bolt diameter.

| BORE DIA. | E      | G       | J       | K     | R     | EE    | FB•   | TF       | UF     |
|-----------|--------|---------|---------|-------|-------|-------|-------|----------|--------|
| 1-1/2     | 2-1/2  | 1-3/4   | 1-1/2   | 1/2   | 1.63  | 1/2   | 3/8   | 3-7/16   | 4-1/4  |
| 2         | 3      | 1-3/4   | 1-1/2   | 1/2   | 2.05  | 1/2   | 1/2   | 4-1/8    | 5-1/8  |
| 2-1/2     | 3-1/2  | 1-3/4   | 1-1/2   | 5/8   | 2.55  | 1/2   | 1/2   | 4-5/8    | 5-5/8  |
| 3-1/4     | 4-1/2  | 2-1/4   | 1-3/4   | 3/4   | 3.25  | 3/4   | 5/8   | 5-7/8    | 7-1/8  |
| 4         | 5      | 2-1/4   | 1-3/4   | 3/4   | 3.82  | 3/4   | 5/8   | 6-3/8    | 7-5/8  |
| 5         | 6-1/2  | 2-1/4   | 1-3/4   | 1     | 4.95  | 3/4   | 7/8   | 8-3/16   | 9-3/4  |
| 6         | 7-1/2  | 2-1/2   | 2-1/4   | 1-1/8 | 5.73  | 1     | 1     | 9-7/16   | 11-1/4 |
| 7         | 8-1/2  | 2-3/4   | 2-3/4   | 1-1/4 | 6.58  | 1-1/4 | 1-1/8 | 10-5/8   | 12-5/8 |
| 8         | 9-1/2  | 3       | 3       | 1-1/2 | 7.50  | 1-1/2 | 1-1/4 | 11-13/16 | 14     |
| 10        | 12-5/8 | 3-11/16 | 3-11/16 | 1-1/8 | 9.62  | 2     | 1-3/4 | 15-7/8   | 19     |
| 12        | 14-7/8 | 4-7/16  | 4-7/16  | 1-1/8 | 11.45 | 2-1/2 | 2     | 18-1/2   | 22     |

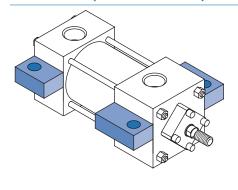
 $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$ 

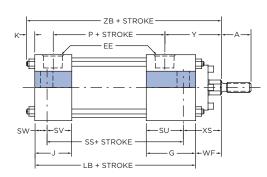

• = For piston rod dimensions see page 56.

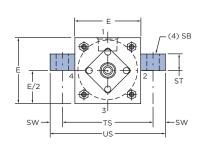

| BORE DIA. | ROD MM• | Α     | F      | Р     | Υ       | LB     | RM     | WF      | XF       | ZB       |
|-----------|---------|-------|--------|-------|---------|--------|--------|---------|----------|----------|
| 11/0      | 5/8     | 3/4   | 3/8    | 2-3/4 | 2-1/16  | 4-5/8  | 2-1/8  | 1       | 5-5/8    | 6-1/8    |
| 1-1/2     | 1       | 1-1/8 | 1/2    | 2-3/4 | 2-7/16  | 4-5/8  | 2-3/8  | 1-3/8   | 6        | 6-1/2    |
| 2         | 1       | 1-1/8 | 1/2    | 2-3/4 | 2-7/16  | 4-5/8  | 2-3/8  | 1-3/8   | 6        | 6-1/2    |
| 2         | 1-3/8   | 1-5/8 | 9/16   | 2-3/4 | 2-11/16 | 4-5/8  | 3      | 1-5/8   | 6-1/4    | 6-3/4    |
|           | 1       | 1-1/8 | 1/2    | 2-7/8 | 2-7/16  | 4-3/4  | 2-3/8  | 1-3/8   | 6-1/8    | 6-3/4    |
| 2-1/2     | 1-3/8   | 1-5/8 | 9/16   | 2-7/8 | 2-11/16 | 4-3/4  | 3      | 1-5/8   | 6-3/8    | 7        |
|           | 1-3/4   | 2     | 9/16   | 2-7/8 | 2-15/16 | 4-3/4  | 3-1/2  | 1-7/8   | 6-5/8    | 7-1/4    |
|           | 1-3/8   | 1-5/8 | 9/16   | 3-1/4 | 3       | 5-1/2  | 3      | 1-5/8   | 7-1/8    | 7-7/8    |
| 3-1/4     | 1-3/4   | 2     | 9/16   | 3-1/4 | 3-1/4   | 5-1/2  | 3-1/2  | 1-7/8   | 7-3/8    | 8-1/8    |
|           | 2       | 2-1/4 | 9/16   | 3-1/4 | 3-3/8   | 5-1/2  | 4-1/8  | 2       | 7-1/2    | 8-1/4    |
|           | 1-3/4   | 2     | 9/16   | 3-1/2 | 3-1/4   | 5-3/4  | 3-1/2  | 1-7/8   | 7-5/8    | 8-3/8    |
| 4         | 2       | 2-1/4 | 9/16   | 3-1/2 | 3-3/8   | 5-3/4  | 4-1/8  | 2       | 7-3/4    | 8-1/2    |
|           | 2-1/2   | 3     | 3/4    | 3-1/2 | 3-5/8   | 5-3/4  | 4-5/8  | 2-1/4   | 8        | 8-3/4    |
|           | 2       | 2-1/4 | 9/16   | 4     | 3-3/8   | 6-1/4  | 4-1/8  | 2       | 8-1/4    | 9-1/4    |
| 5         | 2-1/2   | 3     | 3/4    | 4     | 3-5/8   | 6-1/4  | 4-5/8  | 2-1/4   | 8-1/2    | 9-1/2    |
| 5         | 3       | 3-1/2 | 3/4    | 4     | 3-5/8   | 6-1/4  | 5-1/2  | 2-1/4   | 8-1/2    | 9-1/2    |
|           | 3-1/2   | 3-1/2 | 3/4    | 4     | 3-5/8   | 6-1/4  | 6-1/8  | 2-1/4   | 8-1/2    | 9-1/2    |
|           | 2-1/2   | 3     | 3/4    | 4-5/8 | 3-3/4   | 7-3/8  | 4-5/8  | 2-1/4   | 9-5/8    | 10-3/4   |
| 6         | 3       | 3-1/2 | 3/4    | 4-5/8 | 3-3/4   | 7-3/8  | 5-1/2  | 2-1/4   | 9-5/8    | 10-3/4   |
| 0         | 3-1/2   | 3-1/2 | 3/4    | 4-5/8 | 3-3/4   | 7-3/8  | 6-1/8  | 2-1/4   | 9-5/8    | 10-3/4   |
|           | 4       | 4     | 13/16  | 4-5/8 | 3-3/4   | 7-3/8  | 6-7/8  | 2-1/4   | 9-5/8    | 10-3/4   |
|           | 3       | 3-1/2 | 3/4    | 5-3/8 | 3-13/16 | 8-1/2  | 5-1/2  | 2-1/4   | 10-3/4   | 11-7/8   |
|           | 3-1/2   | 3-1/2 | 3/4    | 5-3/8 | 3-13/16 | 8-1/2  | 6-1/8  | 2-1/4   | 10-3/4   | 11-7/8   |
| 7         | 4       | 4     | 13/16  | 5-3/8 | 3-13/16 | 8-1/2  | 6-7/8  | 2-1/4   | 10-3/4   | 11-7/8   |
|           | 4-1/2   | 4-1/2 | 13/16  | 5-3/8 | 3-13/16 | 8-1/2  | 7-3/4  | 2-1/4   | 10-3/4   | 11-7/8   |
|           | 5       | 5     | 15/16  | 5-3/8 | 3-13/16 | 8-1/2  | 8-3/8  | 2-1/4   | 10-3/4   | 11-7/8   |
|           | 3-1/2   | 3-1/2 | 3/4    | 6     | 4       | 9-1/2  | 6-1/8  | 2-1/4   | 11-3/4   | 13-1/8   |
|           | 4       | 4     | 13/16  | 6     | 4       | 9-1/2  | 6-7/8  | 2-1/4   | 11-3/4   | 13-1/8   |
| 8         | 4-1/2   | 4-1/2 | 13/16  | 6     | 4       | 9-1/2  | 7-3/4  | 2-1/4   | 11-3/4   | 13-1/8   |
|           | 5       | 5     | 15/16  | 6     | 4       | 9-1/2  | 8-3/8  | 2-1/4   | 11-3/4   | 13-1/8   |
|           | 5-1/2   | 5-1/2 | 15/16  | 6     | 4       | 9-1/2  | 9      | 2-1/4   | 11-3/4   | 13-1/8   |
|           | 4-1/2   | 4-1/2 | 13/16  | 8     | 5       | 12-1/8 | 7-3/4  | 2-15/16 | 15-1/16  | 16-3/16  |
| 10        | 5       | 5     | 15/16  | 8     | 5-1/4   | 12-1/8 | 8-3/8  | 3-3/16  | 15-5/16  | 16-7/16  |
| 10        | 5-1/2   | 5-1/2 | 15/16  | 8     | 5-1/4   | 12-1/8 | 9      | 3-3/16  | 15-5/16  | 16-7/16  |
|           | 7       | 7     | 2-3/16 | 8     | 5-1/4   | 12-1/8 | 10-1/4 | 3-3/16  | 15-5/16  | 16-7/16  |
|           | 5-1/2   | 5-1/2 | 15/16  | 9-5/8 | 5-5/8   | 14-1/2 | 9      | 3-3/16  | 17-11/16 | 18-13/16 |
| 12        | 7       | 7     | 2-3/16 | 9-5/8 | 5-7/8   | 14-1/2 | 10-1/4 | 3-7/16  | 17-15/16 | 19-1/16  |
|           | 8       | 8     | 2-7/16 | 9-5/8 | 5-7/8   | 14-1/2 | 11-1/4 | 3-7/16  | 17-15/16 | 19-1/16  |


www.nopak.com CLASS 3 31

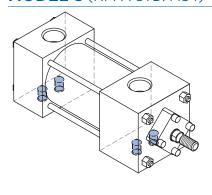



## MODEL A (NFPA STD. MS2)

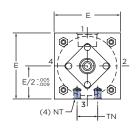






# MODEL B (NFPA STD. MS3)






## MODEL S (NFPA STD. MS4)







= See Table A on page 53 for bore and rod combinations using head plates with threaded bronze glands.

# SIDE AND LUG MOUNT CYLINDERS

1-1/2" THROUGH 7" DIAMETER

 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

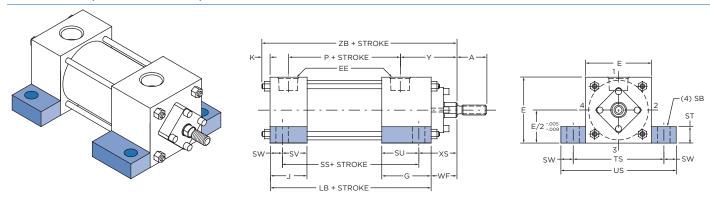
For double rod end cylinders Model A and B: subtract dimensions SV from SU and add to dimension SS + Stroke. See pages 52-55. Double rod end models are designated by letter "X" preceding the model identification. See page 52.

• = Dimensions refer to bolt diameter.

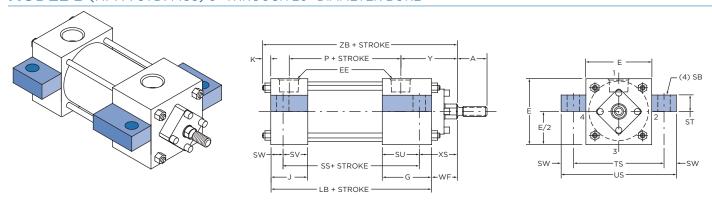
| BORE DIA. | E     | G     | J     | K     | EE    | NT      | SB•   | SG      | SJ      | ST    | SU     | sv     | sw    | TN      | TS     | US    |
|-----------|-------|-------|-------|-------|-------|---------|-------|---------|---------|-------|--------|--------|-------|---------|--------|-------|
| 1-1/2     | 2-1/2 | 1-3/4 | 1-1/2 | 1/2   | 1/2   | 3/8-16  | 3/8   | 3/4     | 3/4     | 1/2   | 1-3/8  | 1-1/8  | 3/8   | 3/4     | 3-1/4  | 4     |
| 2         | 3     | 1-3/4 | 1-1/2 | 1/2   | 1/2   | 1/2-13  | 1/2   | 3/4     | 3/4     | 3/4   | 1-1/4  | 1      | 1/2   | 15/16   | 4      | 5     |
| 2-1/2     | 3-1/2 | 1-3/4 | 1-1/2 | 5/8   | 1/2   | 5/8-11  | 3/4   | 3/4     | 3/4     | 1     | 1-1/16 | 13/16  | 11/16 | 1-5/16  | 4-7/8  | 6-1/4 |
| 3-1/4     | 4-1/2 | 2-1/4 | 1-3/4 | 3/4   | 3/4   | 3/4-10  | 3/4   | 1-1/8   | 7/8     | 1     | 1-9/16 | 1-1/16 | 11/16 | 1-1/2   | 5-7/8  | 7-1/4 |
| 4         | 5     | 2-1/4 | 1-3/4 | 3/4   | 3/4   | 1-8     | 1     | 1-1/8   | 7/8     | 1-1/4 | 1-3/8  | 7/8    | 7/8   | 2-1/16  | 6-3/4  | 8-1/2 |
| 5         | 6-1/2 | 2-1/4 | 1-3/4 | 1     | 3/4   | 1-8     | 1     | 1-1/8   | 7/8     | 1-1/4 | 1-3/8  | 7/8    | 7/8   | 2-15/16 | 8-1/4  | 10    |
| 6         | 7-1/2 | 2-1/2 | 2-1/4 | 1-1/8 | 1     | 1-1/4-7 | 1-1/4 | 1-1/4   | 1-1/4   | 1-1/2 | 1-3/8  | 1-1/8  | 1-1/8 | 3-5/16  | 9-3/4  | 12    |
| 7         | 8-1/2 | 2-3/4 | 2-3/4 | 1-1/8 | 1-1/4 | 1-1/2-6 | 1-1/2 | 1-13/16 | 1-11/16 | 1-3/4 | 1-3/8  | 1-3/8  | 1-3/8 | 3-3/4   | 11-1/4 | 14    |

# Table 2 The dimensions given on this table are affected by the piston rod diameter and the stroke.

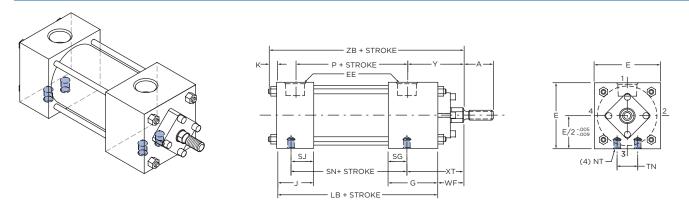
For double rod end cylinders Model S: in place of dimension SN + stroke, multiply dimension XT times 2 and to this total add the cylinder stroke. From this figure, subtract the ZM + double stroke. See pages 52-55.


• = For piston rod dimensions see page 56.

| BORE DIA. | ROD MM• | Α     | Р     | Y       | LB    | SN    | SS    | WF    | XS      | XT      | ZB     |
|-----------|---------|-------|-------|---------|-------|-------|-------|-------|---------|---------|--------|
| 1.1/0     | 5/8     | 3/4   | 2-3/4 | 2-1/16  | 4-5/8 | 2-7/8 | 3-7/8 | 1     | 1-3/8   | 2       | 6-1/8  |
| 1-1/2     | 1       | 1-1/8 | 2-3/4 | 2-7/16  | 4-5/8 | -     | 3-7/8 | 1-3/8 | 1-3/4   | -       | 6-1/2  |
| 2         | 1       | 1-1/8 | 2-3/4 | 2-7/16  | 4-5/8 | 2-7/8 | 3-5/8 | 1-3/8 | 1-7/8   | 2-3/8   | 6-1/2  |
| 2         | 1-3/8   | 1-5/8 | 2-3/4 | 2-11/16 | 4-5/8 | -     | 3-5/8 | 1-5/8 | 2-1/8   | -       | 6-3/4  |
|           | 1       | 1-1/8 | 2-7/8 | 2-7/16  | 4-3/4 | 3     | 3-3/8 | 1-3/8 | 2-1/16  | 2-3/8   | 6-3/4  |
| 2-1/2     | 1-3/8   | 1-5/8 | 2-7/8 | 2-11/16 | 4-3/4 | -     | 3-3/8 | 1-5/8 | 2-5/16  | -       | 7      |
|           | 1-3/4   | 2     | 2-7/8 | 2-15/16 | 4-3/4 | _     | 3-3/8 | 1-7/8 | 2-9/16  | -       | 7-1/4  |
|           | 1-3/8   | 1-5/8 | 3-1/4 | 3       | 5-1/2 | 3-1/2 | 4-1/8 | 1-5/8 | 2-5/16  | 2-3/4   | 7-7/8  |
| 3-1/4     | 1-3/4   | 2     | 3-1/4 | 3-1/4   | 5-1/2 | _     | 4-1/8 | 1-7/8 | 2-9/16  | -       | 8-1/8  |
|           | 2       | 2-1/4 | 3-1/4 | 3-3/8   | 5-1/2 | -     | 4-1/8 | 2     | 2-11/16 | -       | 8-1/4  |
|           | 1-3/4   | 2     | 3-1/2 | 3-1/4   | 5-3/4 | 3-3/4 | 4     | 1-7/8 | 2-3/4   | 3       | 8-3/8  |
| 4         | 2       | 2-1/4 | 3-1/2 | 3-3/8   | 5-3/4 | -     | 4     | 2     | 2-7/8   | -       | 8-1/2  |
|           | 2-1/2   | 3     | 3-1/2 | 3-5/8   | 5-3/4 | -     | 4     | 2-1/4 | 3-1/8   | -       | 8-3/4  |
|           | 2       | 2-1/4 | 4     | 3-3/8   | 6-1/4 | 4-1/4 | 4-1/2 | 2     | 2-7/8   | 3-1/8   | 9-1/4  |
| _         | 2-1/2   | 3     | 4     | 3-5/8   | 6-1/4 | -     | 4-1/2 | 2-1/4 | 3-1/8   | -       | 9-1/2  |
| 5         | 3       | 3-1/2 | 4     | 3-5/8   | 6-1/4 | -     | 4-1/2 | 2-1/4 | 3-1/8   | -       | 9-1/2  |
|           | 3-1/2   | 3-1/2 | 4     | 3-5/8   | 6-1/4 | _     | 4-1/2 | 2-1/4 | 3-1/8   | -       | 9-1/2  |
|           | 2-1/2   | 3     | 4-5/8 | 3-3/4   | 7-3/8 | 5-1/8 | 5-1/8 | 2-1/4 | 3-3/8   | 3-1/2   | 10-3/4 |
| 6         | 3       | 3-1/2 | 4-5/8 | 3-3/4   | 7-3/8 | -     | 5-1/8 | 2-1/4 | 3-3/8   | -       | 10-3/4 |
| 6         | 3-1/2   | 3-1/2 | 4-5/8 | 3-3/4   | 7-3/8 | -     | 5-1/8 | 2-1/4 | 3-3/8   | -       | 10-3/4 |
|           | 4       | 4     | 4-5/8 | 3-3/4   | 7-3/8 | _     | 5-1/8 | 2-1/4 | 3-3/8   | -       | 10-3/4 |
|           | 3       | 3-1/2 | 5-3/8 | 3-13/16 | 8-1/2 | 5-7/8 | 5-3/4 | 2-1/4 | 3-5/8   | 3-13/16 | 11-7/8 |
|           | 3-1/2   | 3-1/2 | 5-3/8 | 3-13/16 | 8-1/2 | -     | 5-3/4 | 2-1/4 | 3-5/8   | -       | 11-7/8 |
| 7         | 4       | 4     | 5-3/8 | 3-13/16 | 8-1/2 | -     | 5-3/4 | 2-1/4 | 3-5/8   | -       | 11-7/8 |
|           | 4-1/2   | 4-1/2 | 5-3/8 | 3-13/16 | 8-1/2 | -     | 5-3/4 | 2-1/4 | 3-5/8   | -       | 11-7/8 |
|           | 5       | 5     | 5-3/8 | 3-13/16 | 8-1/2 | -     | 5-3/4 | 2-1/4 | 3-5/8   | -       | 11-7/8 |


www.nopak.com CLASS 3 33




## **MODEL A** (NFPA STD. MS2) 8" THROUGH 14" DIAMETER BORE



## MODEL B (NFPA STD. MS3) 8" THROUGH 20" DIAMETER BORE



## MODEL S (NFPA STD. MS4) 8" DIAMETER BORE



NOTE: This model available in small rod only.

# SIDE AND LUG MOUNT CYLINDERS

8" THROUGH 20" DIAMETER

# Table 1 These dimensions are constant regardless of rod diameter or stroke.

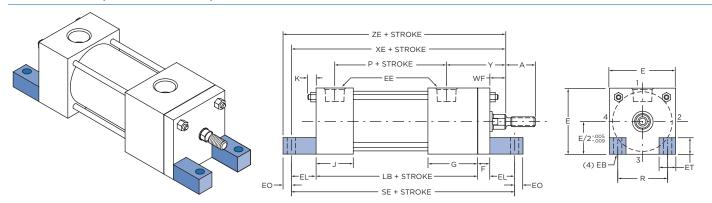
For double rod end cylinders Model A and B: subtract dimension SV from SU and add to dimension SS + stroke. See pages 52-55. Double rod end models are designated by letter "X" preceding the model identification. See page 52.

• = Dimensions refer to bolt diameter.

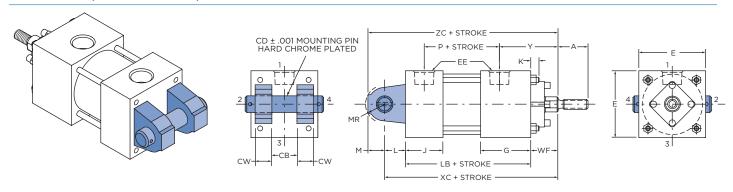
| BORE DIA. | E      | G       | J       | K      | EE    | NT      | SB•   | SG     | SJ      | ST    | SU     | sv     | sw    | TN    | TS     | US     |
|-----------|--------|---------|---------|--------|-------|---------|-------|--------|---------|-------|--------|--------|-------|-------|--------|--------|
| 8         | 9-1/2  | 3       | 3       | 1-3/8  | 1-1/2 | 1-1/2-6 | 1-1/2 | 1-5/16 | 1-13/16 | 1-3/4 | 1-5/8  | 1-5/8  | 1-3/8 | 4-1/4 | 12-1/4 | 15     |
| 10        | 12-5/8 | 3-11/16 | 3-11/16 | 1-1/8  | 2     | -       | 1-1/2 | -      | -       | 2-1/4 | 2-1/16 | 2-1/16 | 1-5/8 | -     | 15-7/8 | 19-1/8 |
| 12        | 14-7/8 | 4-7/16  | 4-7/16  | 1-1/8  | 2-1/2 | -       | 1-1/2 | -      | -       | 3     | 2-7/16 | 2-7/16 | 2     | -     | 18-7/8 | 22-7/8 |
| 14        | 17-1/4 | 4-7/8   | 4-7/8   | 1-7/16 | 2-1/2 | -       | 2-1/4 | -      | -       | 4     | 2-5/8  | 2-5/8  | 2-1/4 | -     | 21-3/4 | 26-1/4 |
| 16        | 19-1/4 | 5-7/8   | 5-7/8   | 1-7/16 | 3     | _       | 2-1/2 | _      | -       | 4-1/2 | 3-1/8  | 3-1/8  | 2-1/2 | -     | 24-1/4 | 29-1/4 |
| 18        | 22     | 6-7/8   | 6-7/8   | 1-7/16 | 3     | -       | 2-3/4 | _      | -       | 5-1/4 | 3-5/8  | 3-5/8  | 2-3/4 | -     | 27-1/2 | 33     |
| 20        | 23-5/8 | 7-7/8   | 7-7/8   | 1-7/16 | 3     | _       | 3     | _      | -       | 6-1/2 | 4      | 4      | 3-1/4 | -     | 30-1/8 | 36-5/8 |

# Table 2 The dimensions given on this table are affected by the piston rod diameter and the stroke.

For double rod end cylinders Model S: in place of dimension SN + stroke, multiply dimension XT times 2 and to this total add the cylinder stroke. From this figure, subtract the ZM + double stroke. See pages 52-55.

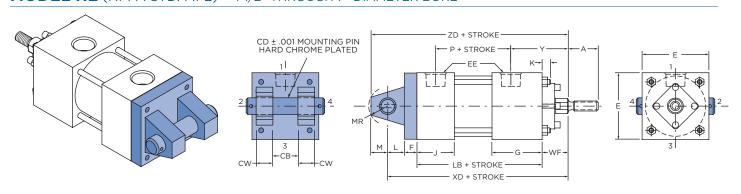

• = For piston rod dimensions see page 56.

| BORE DIA. | ROD MM• | Α     | Р      | Y     | LB     | SN    | SS     | WF      | XS      | XT      | ZB       |
|-----------|---------|-------|--------|-------|--------|-------|--------|---------|---------|---------|----------|
|           | 3-1/2   | 3-1/2 | 6      | 4     | 9-1/2  | 6-5/8 | 6-3/4  | 2-1/4   | 3-5/8   | 3-15/16 | 13-1/8   |
|           | 4       | 4     | 6      | 4     | 9-1/2  | -     | 6-3/4  | 2-1/4   | 3-5/8   | -       | 13-1/8   |
| 8         | 4-1/2   | 4-1/2 | 6      | 4     | 9-1/2  | -     | 6-3/4  | 2-1/4   | 3-5/8   | -       | 13-1/8   |
|           | 5       | 5     | 6      | 4     | 9-1/2  | 1     | 6-3/4  | 2-1/4   | 3-5/8   | -       | 13-1/8   |
|           | 5-1/2   | 5-1/2 | 6      | 4     | 9-1/2  | -     | 6-3/4  | 2-1/4   | 3-5/8   | -       | 13-1/8   |
|           | 4-1/2   | 4-1/2 | 8      | 5     | 12-1/8 | -     | 8-7/8  | 2-15/16 | 4-9/16  | -       | 16-3/16  |
| 10        | 5       | 5     | 8      | 5-1/4 | 12-1/8 | -     | 8-7/8  | 3-3/16  | 4-13/16 | -       | 16-7/16  |
| 10        | 5-1/2   | 5-1/2 | 8      | 5-1/4 | 12-1/8 | ı     | 8-7/8  | 3-3/16  | 4-13/16 | -       | 16-7/16  |
|           | 7       | 7     | 8      | 5-1/4 | 12-1/8 | -     | 8-7/8  | 3-3/16  | 4-13/16 | -       | 16-7/16  |
|           | 5-1/2   | 5-1/2 | 9-5/8  | 5-5/8 | 14-1/2 | -     | 10-1/2 | 3-3/16  | 5-3/16  | -       | 18-13/16 |
| 12        | 7       | 7     | 9-5/8  | 5-7/8 | 14-1/2 | -     | 10-1/2 | 3-7/16  | 5-7/16  | -       | 19-1/16  |
|           | 8       | 8     | 9-5/8  | 5-7/8 | 14-1/2 | -     | 10-1/2 | 3-7/16  | 5-7/16  | -       | 19-1/16  |
|           | 7       | 7     | 9-7/8  | 6-3/8 | 15-5/8 | -     | 11-1/8 | 3-1/2   | 5-3/4   | -       | 20-1/4   |
| 14        | 8       | 8     | 9-7/8  | 6-3/8 | 15-5/8 | -     | 11-1/8 | 3-1/2   | 5-3/4   | -       | 20-1/4   |
|           | 10      | 10    | 9-7/8  | 6-3/8 | 15-5/8 | -     | 11-1/8 | 3-1/2   | 5-3/4   | -       | 20-1/4   |
|           | 8       | 8     | 11-3/8 | 7-3/8 | 18-1/8 | -     | 12-5/8 | 4       | 6-3/4   | -       | 23-9/16  |
| 16        | 9       | 9     | 11-3/8 | 7-3/8 | 18-1/8 | -     | 12-5/8 | 4       | 6-3/4   | -       | 23-9/16  |
|           | 10      | 10    | 11-3/8 | 7-3/8 | 18-1/8 | -     | 12-5/8 | 4       | 6-3/4   | -       | 23-9/16  |
| 18        | 9       | 9     | 12-3/8 | 8-5/8 | 21-1/8 | -     | 14-5/8 | 4-1/4   | 7-1/2   | -       | 26-13/16 |
| 18        | 10      | 10    | 12-3/8 | 8-5/8 | 21-1/8 | -     | 14-5/8 | 4-1/4   | 7-1/2   | -       | 26-13/16 |
| 20        | 10      | 10    | 13-3/8 | 9-5/8 | 23-5/8 | -     | 15-7/8 | 4-1/2   | 8-3/8   | -       | 29-9/16  |


www.nopak.com CLASS 3 35



## MODEL AL (NFPA STD. MS7)




## MODEL E (NFPA STD. MP1)



**NOTE:** Pin  $\emptyset$  is CD. Swing radius is MR.

## **MODEL HE** (NFPA STD. MP2) 1-1/2" THROUGH 7" DIAMETER BORE



 $\textbf{NOTE:} \ \mathsf{Pin} \ \varnothing \ \mathsf{is} \ \mathsf{CD}. \ \mathsf{Swing} \ \mathsf{radius} \ \mathsf{is} \ \mathsf{MR}.$ 

🕶 = See Table A on page 53 for bore and rod combinations using head plates with threaded bronze glands.

# **END LUG AND CLEVIS MOUNT CYLINDERS**

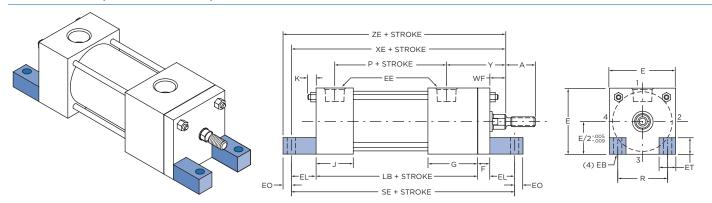
1-1/2" THROUGH 7" DIAMETER

 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

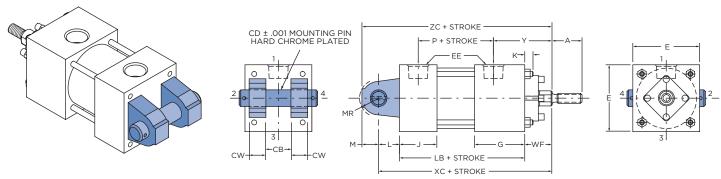
For double rod end cylinders Model AL: subtract dimension J from G and add to dimension SE + stroke. Double rod end models are designated by letter "X" preceding the model identification. See page 52.

• = Dimensions refer to bolt diameter.

| BODE DIA  | _     |     | F      | G        |       | V     |       | М     |      | СВ    | CD    | CVA   | ЕВ•   | EE    |         | EO  | ET     | MR    |
|-----------|-------|-----|--------|----------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|---------|-----|--------|-------|
| BORE DIA. | E     | AL  | HE     | <b>.</b> | ,     | K     | _     | M     | R    | СВ    | CD    | cw    | EB.   | EE    | EL      | EU  |        | MK    |
| 1-1/2     | 2-1/2 | 3/8 | 3/8    | 1-3/4    | 1-1/2 | 1/2   | 3/4   | 1/2   | 1.81 | 3/4   | 1/2   | 1/2   | 3/8   | 1/2   | 7/8     | 3/8 | 11/16  | 5/8   |
| 2         | 3     | 5/8 | 5/8    | 1-3/4    | 1-1/2 | 1/2   | 1-1/4 | 3/4   | 2.19 | 1-1/4 | 3/4   | 5/8   | 1/2   | 1/2   | 15/16   | 1/2 | 13/16  | 7/8   |
| 2-1/2     | 3-1/2 | 5/8 | 5/8    | 1-3/4    | 1-1/2 | 5/8   | 1-1/4 | 3/4   | 2.55 | 1-1/4 | 3/4   | 5/8   | 1/2   | 1/2   | 15/16   | 1/2 | 15/16  | 7/8   |
| 3-1/4     | 4-1/2 | 3/4 | 7/8    | 2-1/4    | 1-3/4 | 3/4   | 1-1/2 | 1     | 3.25 | 1-1/2 | 1     | 3/4   | 5/8   | 3/4   | 1-1/8   | 5/8 | 1-1/4  | 1-1/4 |
| 4         | 5     | 7/8 | 7/8    | 2-1/4    | 1-3/4 | 3/4   | 2-1/8 | 1-3/8 | 3.82 | 2     | 1-3/8 | 1     | 5/8   | 3/4   | 1-1/8   | 5/8 | 1-3/16 | 1-5/8 |
| 5         | 6-1/2 | 7/8 | 1-1/8  | 2-1/4    | 1-3/4 | 1     | 2-1/4 | 1-3/4 | 4.95 | 2-1/2 | 1-3/4 | 1-1/4 | 7/8   | 3/4   | 1-1/2   | 3/4 | 1-9/16 | 2     |
| 6         | 7-1/2 | 1   | 1-7/16 | 2-1/2    | 2-1/4 | 1-1/8 | 2-1/2 | 2     | 5.73 | 2-1/2 | 2     | 1-1/4 | 1     | 1     | 1-11/16 | 7/8 | 1-3/4  | 2-3/8 |
| 7         | 8-1/2 | 1   | 1-5/8  | 2-3/4    | 2-3/4 | 1-1/8 | 3     | 2-1/2 | 6.58 | 3     | 2-1/2 | 1-1/2 | 1-1/8 | 1-1/4 | 1-13/16 | 1   | 1-7/8  | 3     |

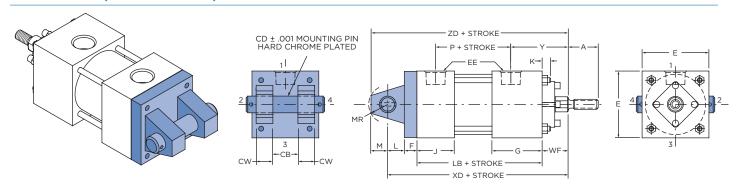

# Table 2 The dimensions given on this table are affected by the piston rod diameter and the stroke.

• = For piston rod dimensions see page 56.


| BORE DIA. | ROD MM• | Α     | P     | W     | Y       | LB    | SE     | WF    | хс     | XD      | XE      | ZC     | ZD      | ZE      |
|-----------|---------|-------|-------|-------|---------|-------|--------|-------|--------|---------|---------|--------|---------|---------|
| 1.1/2     | 5/8     | 3/4   | 2-3/4 | 5/8   | 2-1/16  | 4-5/8 | 6-3/4  | 1     | 6-3/8  | 6-3/4   | 6-1/2   | 6-7/8  | 7-1/4   | 6-7/8   |
| 1-1/2     | 1       | 1-1/8 | 2-3/4 | 1     | 2-7/16  | 4-5/8 | 6-3/4  | 1-3/8 | 6-3/4  | 7-1/8   | 6-7/8   | 7-1/4  | 7-5/8   | 7-1/4   |
| 2         | 1       | 1-1/8 | 2-3/4 | 3/4   | 2-7/16  | 4-5/8 | 7-1/8  | 1-3/8 | 7-1/4  | 7-7/8   | 6-15/16 | 8      | 8-5/8   | 7-7/16  |
| 2         | 1-3/8   | 1-5/8 | 2-3/4 | 1     | 2-11/16 | 4-5/8 | 7-1/8  | 1-5/8 | 7-1/2  | 8-1/8   | 7-3/16  | 8-1/4  | 8-7/8   | 7-11/16 |
|           | 1       | 1-1/8 | 2-7/8 | 3/4   | 2-7/16  | 4-3/4 | 7-1/4  | 1-3/8 | 7-3/8  | 8       | 7-1/16  | 8-1/8  | 8-3/4   | 7-9/16  |
| 2-1/2     | 1-3/8   | 1-5/8 | 2-7/8 | 1     | 2-11/16 | 4-3/4 | 7-1/4  | 1-5/8 | 7-5/8  | 8-1/4   | 7-5/16  | 8-3/8  | 9       | 7-13/16 |
|           | 1-3/4   | 2     | 2-7/8 | 1-1/4 | 2-15/16 | 4-3/4 | 7-1/4  | 1-7/8 | 7-7/8  | 8-1/2   | 7-9/16  | 8-5/8  | 9-1/4   | 8-1/16  |
|           | 1-3/8   | 1-5/8 | 3-1/4 | 7/8   | 3       | 5-1/2 | 8-1/2  | 1-5/8 | 8-5/8  | 9-1/2   | 8-1/4   | 9-5/8  | 10-1/2  | 8-7/8   |
| 3-1/4     | 1-3/4   | 2     | 3-1/4 | 1-1/8 | 3-1/4   | 5-1/2 | 8-1/2  | 1-7/8 | 8-7/8  | 9-3/4   | 8-1/2   | 9-7/8  | 10-3/4  | 9-1/8   |
|           | 2       | 2-1/4 | 3-1/4 | 1-1/4 | 3-3/8   | 5-1/2 | 8-1/2  | 2     | 9      | 9-7/8   | 8-5/8   | 10     | 10-7/8  | 9-1/4   |
|           | 1-3/4   | 2     | 3-1/2 | 1     | 3-1/4   | 5-3/4 | 8-7/8  | 1-7/8 | 9-3/4  | 10-5/8  | 8-3/4   | 11-1/8 | 12      | 9-3/8   |
| 4         | 2       | 2-1/4 | 3-1/2 | 1-1/8 | 3-3/8   | 5-3/4 | 8-7/8  | 2     | 9-7/8  | 10-3/4  | 8-7/8   | 11-1/4 | 12-1/8  | 9-1/2   |
|           | 2-1/2   | 3     | 3-1/2 | 1-3/8 | 3-5/8   | 5-3/4 | 8-7/8  | 2-1/4 | 10-1/8 | 11      | 9-1/8   | 11-1/2 | 12-3/8  | 9-3/4   |
|           | 2       | 2-1/4 | 4     | 1-1/8 | 3-3/8   | 6-1/4 | 10-1/8 | 2     | 10-1/2 | 11-5/8  | 9-3/4   | 12-1/4 | 13-3/8  | 10-1/2  |
| 5         | 2-1/2   | 3     | 4     | 1-3/8 | 3-5/8   | 6-1/4 | 10-1/8 | 2-1/4 | 10-3/4 | 11-7/8  | 10      | 12-1/2 | 13-5/8  | 10-3/4  |
| 5         | 3       | 3-1/2 | 4     | 1-3/8 | 3-5/8   | 6-1/4 | 10-1/8 | 2-1/4 | 10-3/4 | 11-7/8  | 10      | 12-1/2 | 13-5/8  | 10-3/4  |
|           | 3-1/2   | 3-1/2 | 4     | 1-3/8 | 3-5/8   | 6-1/4 | 10-1/8 | 2-1/4 | 10-3/4 | 11-7/8  | 10      | 12-1/2 | 13-5/8  | 10-3/4  |
|           | 2-1/2   | 3     | 4-5/8 | 1-1/4 | 3-3/4   | 7-3/8 | 11-3/4 | 2-1/4 | 12-1/8 | 13-9/16 | 11-5/16 | 14-1/8 | 15-9/16 | 12-1/2  |
| 6         | 3       | 3-1/2 | 4-5/8 | 1-1/4 | 3-3/4   | 7-3/8 | 11-3/4 | 2-1/4 | 12-1/8 | 13-9/16 | 11-5/16 | 14-1/8 | 15-9/16 | 12-1/2  |
| 0         | 3-1/2   | 3-1/2 | 4-5/8 | 1-1/4 | 3-3/4   | 7-3/8 | 11-3/4 | 2-1/4 | 12-1/8 | 13-9/16 | 11-5/16 | 14-1/8 | 15-9/16 | 12-1/2  |
|           | 4       | 4     | 4-5/8 | 1-1/4 | 3-3/4   | 7-3/8 | 11-3/4 | 2-1/4 | 12-1/8 | 13-9/16 | 11-5/16 | 14-1/8 | 15-9/16 | 12-1/2  |
|           | 3       | 3-1/2 | 5-3/8 | 1-1/4 | 3-13/16 | 8-1/2 | 13-1/8 | 2-1/4 | 13-3/4 | 15-3/8  | 12-9/16 | 16-1/4 | 17-7/8  | 13-9/16 |
|           | 3-1/2   | 3-1/2 | 5-3/8 | 1-1/4 | 3-13/16 | 8-1/2 | 13-1/8 | 2-1/4 | 13-3/4 | 15-3/8  | 12-9/16 | 16-1/4 | 17-7/8  | 13-9/16 |
| 7         | 4       | 4     | 5-3/8 | 1-1/4 | 3-13/16 | 8-1/2 | 13-1/8 | 2-1/4 | 13-3/4 | 15-3/8  | 12-9/16 | 16-1/4 | 17-7/8  | 13-9/16 |
|           | 4-1/2   | 4-1/2 | 5-3/8 | 1-1/4 | 3-13/16 | 8-1/2 | 13-1/8 | 2-1/4 | 13-3/4 | 15-3/8  | 12-9/16 | 16-1/4 | 17-7/8  | 13-9/16 |
|           | 5       | 5     | 5-3/8 | 1-1/4 | 3-13/16 | 8-1/2 | 13-1/8 | 2-1/4 | 13-3/4 | 15-3/8  | 12-9/16 | 16-1/4 | 17-7/8  | 13-9/16 |



## MODEL AL (NFPA STD. MS7) 8" DIAMETER BORE




## MODEL E (NFPA STD. MP1) 8" THROUGH 20" DIAMETER BORE



 $\textbf{NOTE:} \ \mathsf{Pin} \ \varnothing \ \mathsf{is} \ \mathsf{CD.} \ \mathsf{Swing} \ \mathsf{radius} \ \mathsf{is} \ \mathsf{MR}.$ 

#### MODEL HE (NFPA STD. MP2) 8" DIAMETER BORE



**NOTE:** Pin  $\varnothing$  is CD. Swing radius is MR.

# **END LUG AND CLEVIS MOUNT CYLINDERS**

8" THROUGH 20" DIAMETER

 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

For double rod end cylinders Model AL: subtract dimension J from G and add to dimension SE + stroke. Double rod end models are designated by letter "X" preceding the model identification. See page 52.

• = Dimensions refer to bolt diameter.

| BODE DIA  | _      | F  | -  | G       |         | К      |       | М     | _    | СВ    | СD    | cw    | ЕВ•   | EE    | EL | EO    | ET | MR    |
|-----------|--------|----|----|---------|---------|--------|-------|-------|------|-------|-------|-------|-------|-------|----|-------|----|-------|
| BORE DIA. | E      | AL | HE | G       | ,       |        | L     | М     | R    | СВ    | CD    | CW    | EB.   |       | EL |       |    | MR    |
| 8         | 9-1/2  | 1  | 2  | 3       | 3       | 1-3/8  | 3-1/4 | 2-3/4 | 7.50 | 3     | 3     | 1-1/2 | 1-1/4 | 1-1/2 | 2  | 1-1/8 | 2  | 3-1/4 |
| 10        | 12-5/8 | -  | -  | 3-11/16 | 3-11/16 | 1-1/8  | 4     | 3-1/2 | _    | 4     | 3-1/2 | 2     | -     | 2     | -  | -     | -  | 3-1/2 |
| 12        | 14-7/8 | -  | -  | 4-7/16  | 4-7/16  | 1-1/8  | 4-5/8 | 4     | -    | 4-1/2 | 4     | 2-1/4 | -     | 2-1/2 | -  | -     | -  | 4     |
| 14        | 17-1/4 | -  | -  | 4-7/8   | 4-7/8   | 1-7/16 | 5-5/8 | 5     | -    | 6     | 5     | 3     | -     | 2-1/2 | -  | -     | -  | 5     |
| 16        | 19-1/4 | -  | -  | 5-7/8   | 5-7/8   | 1-7/16 | 7     | 6     | -    | 7     | 6     | 3-1/2 | -     | 3     | -  | -     | -  | 6     |
| 18        | 22     | -  | -  | 6-7/8   | 6-7/8   | 1-7/16 | 7-5/8 | 6-1/2 | -    | 8     | 6-1/2 | 4     | -     | 3     | -  | -     | -  | 6-1/2 |
| 20        | 23-5/8 | -  | -  | 7-7/8   | 7-7/8   | 1-7/16 | 8-3/4 | 7-1/2 | _    | 9     | 7-1/2 | 4-1/2 | -     | 3     | -  | -     | -  | 7-1/2 |

# $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$

• = For piston rod dimensions see page 56.

| BORE DIA. | ROD MM• | Α     | P      | W     | Υ     | LB     | SE     | WF      | хс      | XD | XE     | zc       | ZD     | ZE     |
|-----------|---------|-------|--------|-------|-------|--------|--------|---------|---------|----|--------|----------|--------|--------|
|           | 3-1/2   | 3-1/2 | 6      | 1-1/4 | 4     | 9-1/2  | 14-1/2 | 2-1/4   | 15      | 17 | 13-3/4 | 17-3/4   | 19-3/4 | 14-7/8 |
|           | 4       | 4     | 6      | 1-1/4 | 4     | 9-1/2  | 14-1/2 | 2-1/4   | 15      | 17 | 13-3/4 | 17-3/4   | 19-3/4 | 14-7/8 |
| 8         | 4-1/2   | 4-1/2 | 6      | 1-1/4 | 4     | 9-1/2  | 14-1/2 | 2-1/4   | 15      | 17 | 13-3/4 | 17-3/4   | 19-3/4 | 14-7/8 |
|           | 5       | 5     | 6      | 1-1/4 | 4     | 9-1/2  | 14-1/2 | 2-1/4   | 15      | 17 | 13-3/4 | 17-3/4   | 19-3/4 | 14-7/8 |
|           | 5-1/2   | 5-1/2 | 6      | 1-1/4 | 4     | 9-1/2  | 14-1/2 | 2-1/4   | 15      | 17 | 13-3/4 | 17-3/4   | 19-3/4 | 14-7/8 |
|           | 4-1/2   | 4-1/2 | 8      | -     | 5     | 12-1/8 | -      | 2-15/16 | 19-1/16 | -  | -      | 22-9/16  | ı      | -      |
| 10        | 5       | 5     | 8      | _     | 5-1/4 | 12-1/8 | -      | 3-3/16  | 19-5/16 | -  | -      | 22-13/16 | -      | -      |
| 10        | 5-1/2   | 5-1/2 | 8      | -     | 5-1/4 | 12-1/8 | -      | 3-3/16  | 19-5/16 | -  | -      | 22-13/16 | ı      | -      |
|           | 7       | 7     | 8      | -     | 5-1/4 | 12-1/8 | -      | 3-3/16  | 19-5/16 | -  | -      | 22-13/16 | -      | -      |
|           | 5-1/2   | 5-1/2 | 9-5/8  | -     | 5-5/8 | 14-1/2 | -      | 3-3/16  | 22-5/16 | -  | -      | 26-5/16  | -      | -      |
| 12        | 7       | 7     | 9-5/8  | _     | 5-7/8 | 14-1/2 | _      | 3-7/16  | 22-9/16 | -  | -      | 26-9/16  | -      | _      |
|           | 8       | 8     | 9-5/8  | -     | 5-7/8 | 14-1/2 | -      | 3-7/16  | 22-9/16 | -  | -      | 26-9/16  | -      | -      |
|           | 7       | 7     | 9-7/8  | -     | 6-3/8 | 15-5/8 | -      | 3-1/2   | 24-3/4  | -  | -      | 29-3/4   | -      | -      |
| 14        | 8       | 8     | 9-7/8  | -     | 6-3/8 | 15-5/8 | -      | 3-1/2   | 24-3/4  | -  | -      | 29-3/4   | -      | -      |
|           | 10      | 10    | 9-7/8  | -     | 6-3/8 | 15-5/8 | -      | 3-1/2   | 24-3/4  | -  | -      | 29-3/4   | -      | -      |
|           | 8       | 8     | 11-3/8 | -     | 7-3/8 | 18-1/8 | -      | 4       | 29-1/8  | -  | -      | 35-1/8   | 1      | -      |
| 16        | 9       | 9     | 11-3/8 | _     | 7-3/8 | 18-1/8 | -      | 4       | 29-1/8  | -  | -      | 35-1/8   | -      | _      |
|           | 10      | 10    | 11-3/8 | -     | 7-3/8 | 18-1/8 | -      | 4       | 29-1/8  | -  | -      | 35-1/8   | -      | -      |
| 18        | 9       | 9     | 12-3/8 | _     | 8-5/8 | 21-1/8 | _      | 4-1/4   | 33      | -  | -      | 39-1/2   | -      | -      |
| 10        | 10      | 10    | 12-3/8 | -     | 8-5/8 | 21-1/8 | -      | 4-1/4   | 33      | -  | -      | 39-1/2   | -      | -      |
| 20        | 10      | 10    | 13-3/8 | _     | 9-5/8 | 23-5/8 | _      | 4-1/2   | 36-7/8  | _  | -      | 44-3/8   | _      | -      |



# MODEL E3 (NFPA STD. MP3)

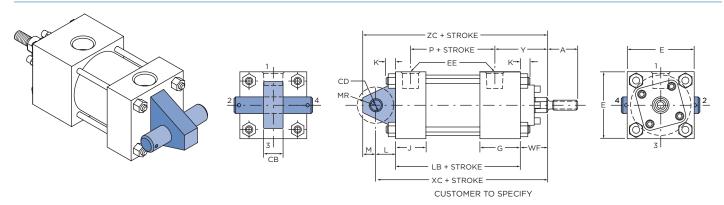



 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

| BORE DIA. | Е      | F   | G       | J       | K      | L     | М     | СВ    | CD    | EE    | MR    |
|-----------|--------|-----|---------|---------|--------|-------|-------|-------|-------|-------|-------|
| 1-1/2     | 2-1/2  | 3/8 | 1-3/4   | 1-1/2   | 1/2    | 3/4   | 1/2   | 3/4   | 1/2   | 1/2   | 5/8   |
| 2         | 3      | 5/8 | 1-3/4   | 1-1/2   | 1/2    | 1-1/4 | 3/4   | 1-1/4 | 3/4   | 1/2   | 7/8   |
| 2-1/2     | 3-1/2  | 5/8 | 1-3/4   | 1-1/2   | 5/8    | 1-1/4 | 3/4   | 1-1/4 | 3/4   | 1/2   | 7/8   |
| 3-1/4     | 4-1/2  | 3/4 | 2-1/4   | 1-3/4   | 3/4    | 1-1/2 | 1     | 1-1/2 | 1     | 3/4   | 1-1/4 |
| 4         | 5      | 7/8 | 2-1/4   | 1-3/4   | 3/4    | 2-1/8 | 1-3/8 | 2     | 1-3/8 | 3/4   | 1-5/8 |
| 5         | 6-1/2  | 7/8 | 2-1/4   | 1-3/4   | 1      | 2-1/4 | 1-3/4 | 2-1/2 | 1-3/4 | 3/4   | 2     |
| 6         | 7-1/2  | 1   | 2-1/2   | 2-1/4   | 1-1/8  | 2-1/2 | 2     | 2-1/2 | 2     | 1     | 2-3/8 |
| 7         | 8-1/2  | 1   | 2-3/4   | 2-3/4   | 1-1/8  | 3     | 2-1/2 | 3     | 2-1/2 | 1-1/4 | 3     |
| 8         | 9-1/2  | 1   | 3       | 3       | 1-3/8  | 3-1/4 | 2-3/4 | 3     | 3     | 1-1/2 | 3-1/4 |
| 10        | 12-5/8 | -   | 3-11/16 | 3-11/16 | 1-1/8  | 4     | 3-1/2 | 4     | 3-1/2 | 2     | 3-1/2 |
| 12        | 14-7/8 | _   | 4-7/16  | 4-7/16  | 1-1/8  | 4-5/8 | 4     | 4-1/2 | 4     | 2-1/2 | 4     |
| 14        | 17-1/4 | -   | 4-7/8   | 4-7/8   | 1-1/8  | 5-5/8 | 5     | 6     | 5     | 2-1/2 | 5     |
| 16        | 19-1/4 | _   | 5-718   | 5-718   | 1-7/16 | 7     | 6     | 7     | 6     | 3     | 6     |
| 18        | 22     | -   | 6-718   | 6-718   | 1-7/16 | 7-5/8 | 6-1/2 | 8     | 6-1/2 | 3     | 6-1/2 |
| 20        | 23-5/8 | _   | 7-7/8   | 7-7/8   | 1-7/16 | 8-3/4 | 7-1/2 | 9     | 7-1/2 | 3     | 7-1/2 |

 $\begin{tabular}{lll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$ 

• = For piston rod dimensions see page 56.

| BORE DIA. | ROD MM• | Α     | Р      | W     | Υ       | LB     | WF      | хс      | ZC       |
|-----------|---------|-------|--------|-------|---------|--------|---------|---------|----------|
|           | 5/8     | 3/4   | 2-3/4  | 5/8   | 2-1/16  | 4-5/8  | 1       | 6-3/8   | 6-7/8    |
| 1-1/2     | 1       | 1-1/8 | 2-3/4  | 1     | 2-7/16  | 1-3/8  | 6-3/4   | 7-1/4   | 8        |
|           | 1       | 1-1/8 | 2-3/4  | 3/4   | 2-7/16  | 4-5/8  | 1-3/8   | 7-1/4   | 8        |
| 2         | 1-3/8   | 1-5/8 | 2-3/4  | 1     | 2-1/1/6 | 4-5/8  | 1-5/8   | 7-1/2   | 8-1/4    |
|           | 1       | 1-1/8 | 2-7/8  | 3/4   | 2-7/16  | 4-3/4  | 1-3/8   | 7-3/8   | 8-1/8    |
| 2-1/2     | 1-3/8   | 1-5/8 | 2-7/8  | 1     | 2-1/1/6 | 4-3/4  | 1-5/8   | 7-5/8   | 8-3/8    |
| _ ,, _    | 1-3/4   | 2     | 2-7/8  | 1-1/4 | 2-15/16 | 4-3/4  | 1-7/8   | 7-7/8   | 8-5/8    |
|           | 1-3/8   | 1-5/8 | 3-1/4  | 7/8   | 3       | 5-1/2  | 1-5/8   | 8-5/8   | 9-5/8    |
| 3-1/4     | 1-3/4   | 2     | 3-1/4  | 1-1/8 | 3-1/4   | 5-1/2  | 1-7/8   | 8-718   | 9-7/8    |
| ,         | 2       | 2-1/4 | 3-1/4  | 1-1/4 | 3-3/8   | 5-1/2  | 2       | 9       | 10       |
|           | 1-3/4   | 2     | 3-1/2  | 1     | 3-1/4   | 5-3/4  | 1-7/8   | 9-3/4   | 11-1/8   |
| 4         | 2       | 2-1/4 | 3-1/2  | 1-1/8 | 3-3/8   | 5-3/4  | 2       | 9-7/8   | 11-1/4   |
|           | 2-1/2   | 3     | 3-1/2  | 1-3/8 | 3-5/8   | 5-3/4  | 2-1/4   | 10-1/8  | 11-1/2   |
|           | 2       | 2-1/4 | 4      | 1-1/8 | 3-3/8   | 6-1/4  | 2       | 10-1/2  | 12-1/4   |
| _         | 2-1/2   | 3     | 4      | 1-3/8 | 3-5/8   | 6-1/4  | 2-1/4   | 10-3/4  | 12-1/2   |
| 5         | 3       | 3-1/2 | 4      | 1-3/8 | 3-5/8   | 6-1/4  | 2-1/4   | 10-3/4  | 12-1/2   |
|           | 3-1/2   | 3-1/2 | 4      | 1-3/8 | 3-5/8   | 6-1/4  | 2-1/4   | 10-3/4  | 12-1/2   |
|           | 2-1/2   | 3     | 4-5/8  | 1-1/4 | 3-3/4   | 7-3/8  | 2-1/4   | 12-1/8  | 14-1/8   |
|           | 3       | 3-1/2 | 4-5/8  | 1-1/4 | 3-3/4   | 7-3/8  | 2-1/4   | 12-1/8  | 14-1/8   |
| 6         | 3-1/2   | 3-1/2 | 4-5/8  | 1-1/4 | 3-3/4   | 7-3/8  | 2-1/4   | 12-1/8  | 14-1/8   |
|           | 4       | 4     | 4-5/8  | 1-1/4 | 3-3/4   | 7-3/8  | 2-1/4   | 12-1/8  | 14-1/8   |
|           | 3       | 3-1/2 | 5-3/8  | 1-1/4 | 3-13/16 | 8-1/2  | 2-1/4   | 13-3/4  | 16-1/4   |
|           | 3-1/2   | 3-1/2 | 5-3/8  | 1-1/4 | 3-13/16 | 8-1/2  | 2-1/4   | 13-3/4  | 16-1/4   |
| 7         | 4       | 4     | 5-3/8  | 1-1/4 | 3-13/16 | 8-1/2  | 2-1/4   | 13-3/4  | 16-1/4   |
|           | 4-1/2   | 4-1/2 | 5-3/8  | 1-1/4 | 3-13/16 | 8-1/2  | 2-1/4   | 13-3/4  | 16-1/4   |
|           | 5       | 5     | 5-3/8  | 1-1/4 | 3-13/16 | 8-1/2  | 2-1/4   | 13-3/4  | 16-1/4   |
|           | 3-1/2   | 3-1/2 | 6      | 1-1/4 | 4       | 9-1/2  | 2-1/4   | 15      | 17-3/4   |
|           | 4       | 4     | 6      | 1-1/4 | 4       | 9-1/2  | 2-1/4   | 15      | 17-3/4   |
| 8         | 4-1/2   | 4-1/2 | 6      | 1-1/4 | 4       | 9-1/2  | 2-1/4   | 15      | 17-3/4   |
|           | 5       | 5     | 6      | 1-1/4 | 4       | 9-1/2  | 2-1/4   | 15      | 17-3/4   |
|           | 5-1/2   | 5-1/2 | 6      | 1-1/4 | 4       | 9-1/2  | 2-1/4   | 15      | 17-3/4   |
|           | 4-1/2   | 4-1/2 | 8      | -     | 5       | 12-1/8 | 2-15/16 | 19-1/16 | 22-9/16  |
| 10        | 5       | 5     | 8      | _     | 5-1/4   | 12-1/8 | 3-3/16  | 19-5/16 | 22-13/16 |
| 10        | 5-1/2   | 5-1/2 | 8      | -     | 5-1/4   | 12-1/8 | 3-3/16  | 19-5/16 | 22-13/16 |
|           | 7       | 7     | 8      | -     | 5-1/4   | 12-1/8 | 3-3/16  | 19-5/16 | 22-13/16 |
|           | 5-1/2   | 5-1/2 | 9-5/8  | -     | 5-5/8   | 14-1/2 | 3-3/16  | 22-5/16 | 26-5/16  |
| 12        | 7       | 7     | 9-5/8  | _     | 5-7/8   | 14-1/2 | 3/7-16  | 22-9/16 | 26-9/16  |
|           | 8       | 8     | 9-5/8  | -     | 5-7/8   | 14-1/2 | 3/7-16  | 22-9/16 | 26-9/16  |
|           | 7       | 7     | 9-7/8  | -     | 6-3/8   | 15-5/8 | 3-1/2   | 24-3/4  | 29-3/4   |
| 14        | 8       | 8     | 9-7/8  | -     | 6-3/8   | 15-5/8 | 3-1/2   | 24-3/4  | 29-3/4   |
|           | 10      | 10    | 9-7/8  | -     | 6-3/8   | 15-5/8 | 3-1/2   | 24-3/4  | 29-3/4   |
|           | 8       | 8     | 11-3/8 | -     | 7-3/8   | 18-1/8 | 4       | 29-1/8  | 35-1/8   |
| 16        | 9       | 9     | 11-3/8 | -     | 7-3/8   | 18-1/8 | 4       | 29-1/8  | 35-1/8   |
|           | 10      | 10    | 11-3/8 | -     | 7-3/8   | 18-1/8 | 4       | 29-1/8  | 35-1/8   |
| 18        | 9       | 9     | 12-3/8 | -     | 8-5/8   | 21-1/8 | 4-1/4   | 33      | 39-1/2   |
| 10        | 10      | 10    | 12-3/8 | -     | 8-5/8   | 21-1/8 | 4-1/4   | 33      | 39-1/2   |
| 20        | 10      | 10    | 13-3/8 | -     | 9-5/8   | 23-5/8 | 4-1/2   | 36-7/8  | 44-3/8   |



# MODEL EU3 (NFPA STD. MPU3)

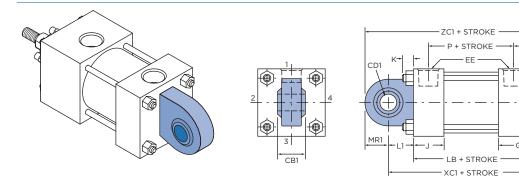


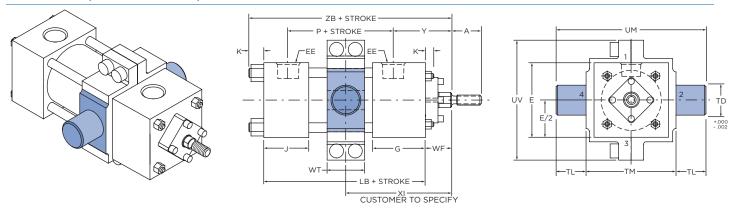

 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

| BORE DIA. | Е     | G     | J     | K     | EE  | L1    | CB1     | CD1   | MR1   | PRESSURE RATING |
|-----------|-------|-------|-------|-------|-----|-------|---------|-------|-------|-----------------|
| 1-1/2     | 2-1/2 | 1-3/4 | 1-1/2 | 1/2   | 1/2 | 3/4   | 7/16    | 1/2   | 7/8   | 1500 PSI        |
| 2         | 3     | 1-3/4 | 1-1/2 | 1/2   | 1/2 | 1-1/4 | 21/32   | 3/4   | 1-1/4 | 2000 PSI        |
| 2-1/2     | 3-1/2 | 1-3/4 | 1-1/2 | 5/8   | 1/2 | 1-1/4 | 21/32   | 3/4   | 1-1/4 | 1400 PSI        |
| 3-1/4     | 4-1/2 | 2-1/4 | 1-3/4 | 3/4   | 3/4 | 1-1/2 | 7/8     | 1     | 1-1/2 | 1400 PSI        |
| 4         | 5     | 2-1/4 | 1-3/4 | 3/4   | 3/4 | 2-1/8 | 1-3/16  | 1-3/8 | 1-3/4 | 1600 PSI        |
| 5         | 61/2  | 2-1/4 | 1-3/4 | 1     | 3/4 | 2-1/4 | 1-17/32 | 1-3/4 | 2-1/4 | 1800 PSI        |
| 6         | 71/2  | 2-1/2 | 2-1/4 | 1-1/8 | 1   | 2-1/2 | 1-3/4   | 2     | 2-3/4 | 1700 PSI        |

طَطِ

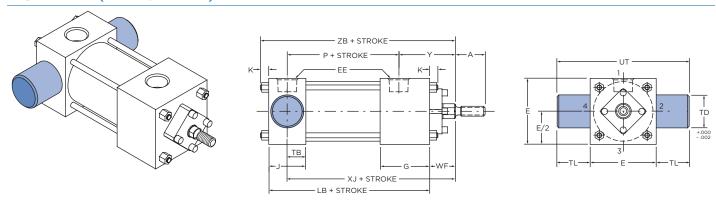
# **SPHERICAL EYE MOUNT CYLINDERS**

1-1/2" THROUGH 6" DIAMETER


 $\begin{tabular}{lll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$ 

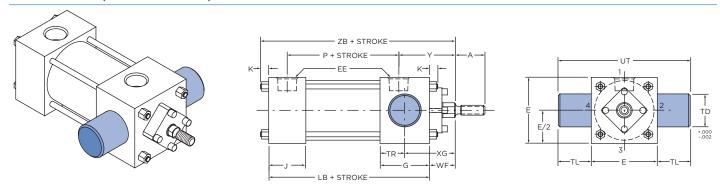
• = For piston rod dimensions see page 56.

| BORE DIA. | ROD MM• | Α     | P     | Υ       | LB    | WF    | XC1    | ZC1    |
|-----------|---------|-------|-------|---------|-------|-------|--------|--------|
| 1.1/2     | 5/8     | 3/4   | 2-3/4 | 2-1/16  | 4-5/8 | 1     | 6-3/8  | 7-1/4  |
| 1-1/2     | 1       | 1-1/8 | 2-3/4 | 2-7/16  | 4-5/8 | 1-3/8 | 6-3/4  | 7-5/8  |
| 2         | 1       | 1-1/8 | 2-3/4 | 2-7/16  | 4-5/8 | 1-3/8 | 7-1/4  | 8-1/2  |
| 2         | 1-3/8   | 1-5/8 | 2-3/4 | 2-11/16 | 4-5/8 | 1-5/8 | 7-1/2  | 8-3/4  |
|           | 1       | 1-1/8 | 2-7/8 | 2-7/16  | 4-3/4 | 1-3/8 | 7-3/8  | 8-5/8  |
| 2-1/2     | 1-3/8   | 1-5/8 | 2-7/8 | 2-11/16 | 4-3/4 | 1-5/8 | 7-5/8  | 8-7/8  |
|           | 1-3/4   | 2     | 2-7/8 | 2-15/16 | 4-3/4 | 1-7/8 | 7-7/8  | 9-1/8  |
|           | 1-3/8   | 1-5/8 | 3-1/4 | 3       | 5-1/2 | 1-5/8 | 8-5/8  | 10-1/8 |
| 3-1/4     | 1-3/4   | 2     | 3-1/4 | 3-1/4   | 5-1/2 | 1-7/8 | 8-7/8  | 10-3/8 |
|           | 2       | 2-1/4 | 3-1/4 | 3-3/8   | 5-1/2 | 2     | 9      | 10-1/2 |
|           | 1-3/4   | 2     | 3-1/2 | 3-1/4   | 5-3/4 | 1-7/8 | 9-3/4  | 11-1/2 |
| 4         | 2       | 2-1/4 | 3-1/2 | 3-3/8   | 5-3/4 | 2     | 9-7/8  | 11-5/8 |
|           | 2-1/2   | 3     | 3-1/2 | 3-5/8   | 5-3/4 | 2-1/4 | 10-1/8 | 11-7/8 |
|           | 2       | 2-1/4 | 4     | 3-3/8   | 6-1/4 | 2     | 10-1/2 | 12-3/4 |
| 5         | 2-1/2   | 3     | 4     | 3-5/8   | 6-1/4 | 2-1/4 | 10-3/4 | 13     |
| 5         | 3       | 3-1/2 | 4     | 3.375   | 6-1/4 | 2-1/4 | 10-3/4 | 13     |
|           | 3-1/2   | 3-1/2 | 4     | 3.375   | 6-1/4 | 2-1/4 | 10-3/4 | 13     |
|           | 2-1/2   | 3     | 4-5/8 | 3-3/4   | 7-3/8 | 2-1/4 | 12-1/8 | 14-7/8 |
|           | 3       | 3-1/2 | 4-5/8 | 3.4375  | 7-3/8 | 2-1/4 | 12-1/8 | 14-7/8 |
| 6         | 3-1/2   | 3-1/2 | 4-5/8 | 3.4375  | 7-3/8 | 2-1/4 | 12-1/8 | 14-7/8 |
|           | 4       | 4     | 4-5/8 | 3.4375  | 7-3/8 | 2-1/4 | 12-1/8 | 14-7/8 |




## **MODEL F** (NFPA STD. MT4)




Integral trunnion pins are designed for shear, not bending, loads. The intermediate trunnion pin mounting location, being non-adjustable, is determined by the "XI" dimension which should be specified by the customer. It can be located at any point between the heads of the cylinder.

## MODEL FB (NFPA STD. MT2)



Integral trunnion pins are designed for shear, not bending, loads.

## MODEL FR (NFPA STD. MT1)



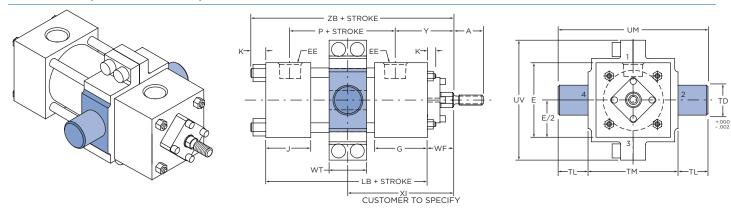
Integral trunnion pins are designed for shear, not bending, loads.

🕶 = See Table A on page 53 for bore and rod combinations using head plates with threaded bronze glands.

 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

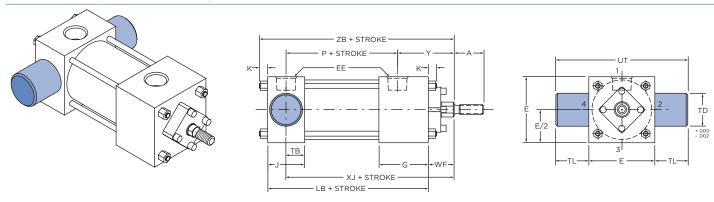
Double rod end models are designated by letter "X" preceding the model identification. See page 52.

| BORE DIA. | E     | G     | J     | K     | EE    | ТВ    | TD    | TL    | TM    | TR    | UM     | UT     | UV     | WT    |
|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|-------|
| 1-1/2     | 2-1/2 | 1-3/4 | 1-1/2 | 1/2   | 1/2   | 3/4   | 1     | 1     | 3     | 7/8   | 5      | 4-1/2  | 4      | 1-1/4 |
| 2         | 3     | 1-3/4 | 1-1/2 | 1/2   | 1/2   | 3/4   | 1-3/8 | 1-3/8 | 3-1/2 | 7/8   | 6-1/4  | 5-3/4  | 4-3/4  | 1-1/2 |
| 2-1/2     | 3-1/2 | 1-3/4 | 1-1/2 | 5/8   | 1/2   | 3/4   | 1-3/8 | 1-3/8 | 4     | 7/8   | 6-3/4  | 6-1/4  | 5-1/4  | 1-1/2 |
| 3-1/4     | 4-1/2 | 2-1/4 | 1-3/4 | 3/4   | 3/4   | 7/8   | 1-3/4 | 1-3/4 | 5     | 1-1/4 | 8-1/2  | 8      | 6-3/4  | 2     |
| 4         | 5     | 2-1/4 | 1-3/4 | 3/4   | 3/4   | 7/8   | 1-3/4 | 1-3/4 | 5-1/2 | 1-1/4 | 9      | 8-1/2  | 7-1/4  | 2     |
| 5         | 6-1/2 | 2-1/4 | 1-3/4 | 1     | 3/4   | 7/8   | 1-3/4 | 1-3/4 | 7     | 1-1/4 | 10-1/2 | 10     | 9      | 2     |
| 6         | 7-1/2 | 2-1/2 | 2-1/4 | 1-1/8 | 1     | 1     | 2     | 2     | 8     | 1-3/8 | 12     | 11-1/2 | 10-1/4 | 2-1/2 |
| 7         | 8-1/2 | 2-3/4 | 2-3/4 | 1-1/8 | 1-1/4 | 1-3/8 | 2-1/2 | 2-1/2 | 9     | 1-3/8 | 14     | 13-1/2 | 11-1/4 | 2-3/4 |


# $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$

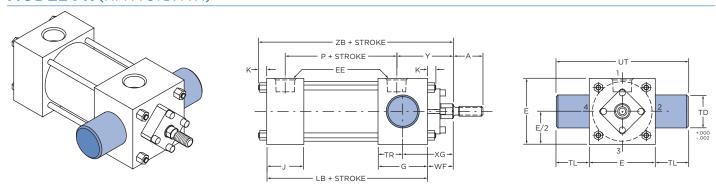
• = For piston rod dimensions see page 56.

| BORE DIA. | ROD MM• | Α     | Р     | Υ       | LB    | WF    | XG    | XI (MIN) | XJ    | ZB     |
|-----------|---------|-------|-------|---------|-------|-------|-------|----------|-------|--------|
| 1.1/2     | 5/8     | 3/4   | 2-3/4 | 2-1/16  | 4-5/8 | 1     | 1-7/8 | 3-7/16   | 4-7/8 | 6-1/8  |
| 1-1/2     | 1       | 1-1/8 | 2-3/4 | 2-7/16  | 4-5/8 | 1-3/8 | 2-1/4 | 3-13/16  | 5-1/4 | 6-1/2  |
| 2         | 1       | 1-1/8 | 2-3/4 | 2-7/16  | 4-5/8 | 1-3/8 | 2-1/4 | 3-15/16  | 5-1/4 | 6-1/2  |
| 2         | 1-3/8   | 1-5/8 | 2-3/4 | 2-11/16 | 4-5/8 | 1-5/8 | 2-1/2 | 4-3/16   | 5-1/2 | 6-3/4  |
|           | 1       | 1-1/8 | 2-7/8 | 2-7/16  | 4-3/4 | 1-3/8 | 2-1/4 | 3-15/16  | 5-3/8 | 6-3/4  |
| 2-1/2     | 1-3/8   | 1-5/8 | 2-7/8 | 2-11/16 | 4-3/4 | 1-5/8 | 2-1/2 | 4-3/16   | 5-5/8 | 7      |
|           | 1-3/4   | 2     | 2-7/8 | 2-15/16 | 4-3/4 | 1-7/8 | 2-3/4 | 4-7/16   | 5-7/8 | 7-1/4  |
|           | 1-3/8   | 1-5/8 | 3-1/4 | 3       | 5-1/2 | 1-5/8 | 2-5/8 | 4-15/16  | 6-1/4 | 7-7/8  |
| 3-1/4     | 1-3/4   | 2     | 3-1/4 | 3-1/4   | 5-1/2 | 1-7/8 | 2-7/8 | 5-3/16   | 6-1/2 | 8-1/8  |
|           | 2       | 2-1/4 | 3-1/4 | 3-3/8   | 5-1/2 | 2     | 3     | 5-5/16   | 6-5/8 | 8-1/4  |
|           | 1-3/4   | 2     | 3-1/2 | 3-1/4   | 5-3/4 | 1-7/8 | 2-7/8 | 5-3/16   | 6-3/4 | 8-3/8  |
| 4         | 2       | 2-1/4 | 3-1/2 | 3-3/8   | 5-3/4 | 2     | 3     | 5-5/16   | 6-7/8 | 8-1/2  |
|           | 2-1/2   | 3     | 3-1/2 | 3-5/8   | 5-3/4 | 2-1/4 | 3-1/4 | 5-9/16   | 7-1/8 | 8-3/4  |
|           | 2       | 2-1/4 | 4     | 3-3/8   | 6-1/4 | 2     | 3     | 5-5/16   | 7-3/8 | 9-1/4  |
| _         | 2-1/2   | 3     | 4     | 3-5/8   | 6-1/4 | 2-1/4 | 3-1/4 | 5-9/16   | 7-5/8 | 9-1/2  |
| 5         | 3       | 3-1/2 | 4     | 3-5/8   | 6-1/4 | 2-1/4 | 3-1/4 | 5-9/16   | 7-5/8 | 9-1/2  |
|           | 3-1/2   | 3-1/2 | 4     | 3-5/8   | 6-1/4 | 2-1/4 | 3-1/4 | 5-9/16   | 7-5/8 | 9-1/2  |
|           | 2-1/2   | 3     | 4-5/8 | 3-3/4   | 7-3/8 | 2-1/4 | 3-3/8 | 6-1/16   | 8-3/8 | 10-3/4 |
| 6         | 3       | 3-1/2 | 4-5/8 | 3-3/4   | 7-3/8 | 2-1/4 | 3-3/8 | 6-1/16   | 8-3/8 | 10-3/4 |
| 6         | 3-1/2   | 3-1/2 | 4-5/8 | 3-3/4   | 7-3/8 | 2-1/4 | 3-3/8 | 6-1/16   | 8-3/8 | 10-3/4 |
|           | 4       | 4     | 4-5/8 | 3-3/4   | 7-3/8 | 2-1/4 | 3-3/8 | 6-1/16   | 8-3/8 | 10-3/4 |
|           | 3       | 3-1/2 | 5-3/8 | 3-13/16 | 8-1/2 | 2-1/4 | 3-5/8 | 6-7/16   | 8-3/8 | 11-7/8 |
|           | 3-1/2   | 3-1/2 | 5-3/8 | 3-13/16 | 8-1/2 | 2-1/4 | 3-5/8 | 6-7/16   | 9-3/8 | 11-7/8 |
| 7         | 4       | 4     | 5-3/8 | 3-13/16 | 8-1/2 | 2-1/4 | 3-5/8 | 6-7/16   | 9-3/8 | 11-7/8 |
|           | 4-1/2   | 4-1/2 | 5-3/8 | 3-13/16 | 8-1/2 | 2-1/4 | 3-5/8 | 6-7/16   | 9-3/8 | 11-7/8 |
|           | 5       | 5     | 5-3/8 | 3-13/16 | 8-1/2 | 2-1/4 | 3-5/8 | 6-7/16   | 9-3/8 | 11-7/8 |




## MODEL F (NFPA STD. MT4)




Integral trunnion pins are designed for shear, not bending, loads. The intermediate trunnion pin mounting location, being non-adjustable, is determined by the "XI" dimension which should be specified by the customer. It can be located at any point between the heads of the cylinder.

### MODEL FB (NFPA STD. MT2)



Integral trunnion pins are designed for shear, not bending, loads.

## MODEL FR (NFPA STD. MT1)



Integral trunnion pins are designed for shear, not bending, loads.

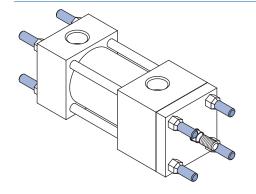
# **TRUNNION MOUNT CYLINDERS**

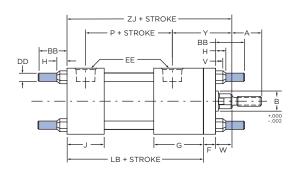
8" THROUGH 14" DIAMETER

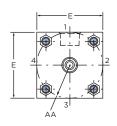
 $\begin{tabular}{ll} \textbf{Table 1} \\ \textbf{These dimensions are constant regardless of rod diameter or stroke.} \\ \end{tabular}$ 

Double rod end models are designated by letter "X" preceding the model identification. See page 52.

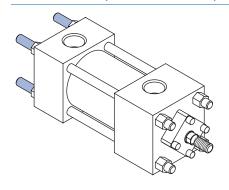
| BORE DIA. | E      | G       | J       | K      | EE    | ТВ     | TD    | TL    | TM     | TR    | UM     | UT     | UV     | WT    |
|-----------|--------|---------|---------|--------|-------|--------|-------|-------|--------|-------|--------|--------|--------|-------|
| 8         | 9-1/2  | 3       | 3       | 1-3/8  | 1-1/2 | 1-1/2  | 3     | 3     | 10     | 1-1/2 | 16     | 15-1/2 | 12-1/2 | 3-1/4 |
| 10        | 12-5/8 | 3-11/16 | 3-11/16 | 1-1/8  | 2     | 1-7/8  | 3-1/2 | 3-1/2 | 14     | 1-7/8 | 21     | 19-5/8 | 16-1/2 | 4-1/2 |
| 12        | 14-7/8 | 4-7/16  | 4-7/16  | 1-1/8  | 2-1/2 | 2-1/4  | 4     | 4     | 16-1/2 | 2-1/4 | 24-1/2 | 22-7/8 | 19-1/4 | 5-1/2 |
| 14        | 17-1/4 | 4-7/8   | 4-7/8   | 1-7/16 | 2-1/2 | 2-7/16 | 4-1/2 | 4-1/2 | 19-5/8 | 2-1/2 | 28-5/8 | 26-1/8 | 22-1/2 | 5-1/2 |

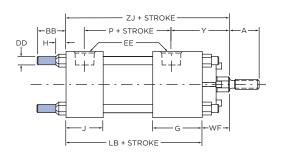

# $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$

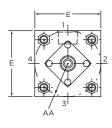

• = For piston rod dimensions see page 56.


| BORE DIA. | ROD MM• | Α     | Р     | Y     | LB     | WF      | XG    | XI (MIN) | XJ     | ZB      |
|-----------|---------|-------|-------|-------|--------|---------|-------|----------|--------|---------|
|           | 3-1/2   | 3-1/2 | 6     | 4     | 9-1/2  | 2-1/4   | 3-3/4 | 6-15/16  | 10-1/4 | 13-1/8  |
|           | 4       | 4     | 6     | 4     | 9-1/2  | 2-1/4   | 3-3/4 | 6-15/16  | 10-1/4 | 13-1/8  |
| 8         | 4-1/2   | 4-1/2 | 6     | 4     | 9-1/2  | 2-1/4   | 3-3/4 | 6-15/16  | 10-1/4 | 13-1/8  |
|           | 5       | 5     | 6     | 4     | 9-1/2  | 2-1/4   | 3-3/4 | 6-15/16  | 10-1/4 | 13-1/8  |
|           | 5-1/2   | 5-1/2 | 6     | 4     | 9-1/2  | 2-1/4   | 3-3/4 | 6-15/16  | 10-1/4 | 13-1/8  |
|           | 4-1/2   | 4-1/2 | 8     | 5     | 12-1/8 | 2-15/16 | 4-3/4 | 8-7/8    | 13-1/4 | 16-3/16 |
| 10        | 5       | 5     | 8     | 5-1/4 | 12-1/8 | 3-3/16  | 5     | 9-1/8    | 13-1/2 | 16-7/16 |
| 10        | 5-1/2   | 5-1/2 | 8     | 5-1/4 | 12-1/8 | 3-3/16  | 5     | 9-1/8    | 13-1/2 | 16-7/16 |
|           | 7       | 7     | 8     | 5-1/4 | 12-1/8 | 3-3/16  | 5     | 9-1/8    | 13-1/2 | 16-7/16 |
|           | 5-1/2   | 5-1/2 | 9-5/8 | 5-5/8 | 14-1/2 | 3-3/16  | 5-3/8 | 10-3/8   | 15-1/2 | 18-3/16 |
| 12        | 7       | 7     | 9-5/8 | 5-7/8 | 14-1/2 | 3-7/16  | 5-5/8 | 10-5/8   | 15-3/4 | 19-1/16 |
|           | 8       | 8     | 9-5/8 | 5-7/8 | 14-1/2 | 3-7/16  | 5-5/8 | 10-5/8   | 15-3/4 | 19-1/16 |
|           | 7       | 7     | 9-7/8 | 6-3/8 | 15-5/8 | 3-1/2   | 5-7/8 | 11-1/8   | 16-3/4 | 20-1/4  |
| 14        | 8       | 8     | 9-7/8 | 6-3/8 | 15-5/8 | 3-1/2   | 5-7/8 | 11-1/8   | 16-3/4 | 20-1/4  |
|           | 10      | 10    | 9-7/8 | 6-3/8 | 15-5/8 | 3-1/2   | 5-7/8 | 11-1/8   | 16-3/4 | 20-1/4  |

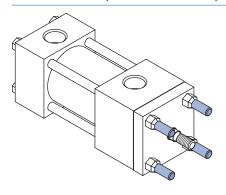


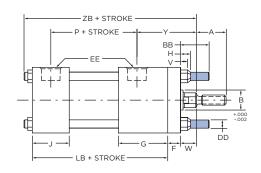

## MODEL T (NFPA STD. MX1)

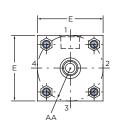






## MODEL TB (NFPA STD. MX2)






# MODEL TR (NFPA STD. MX3)







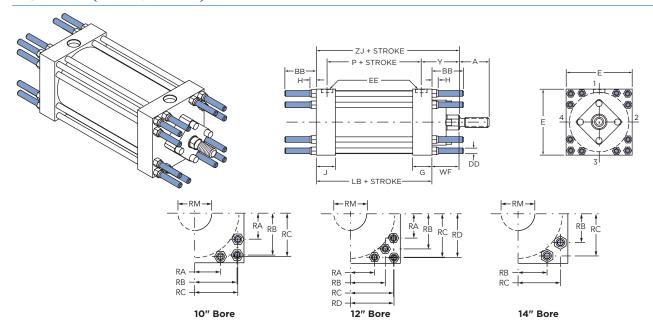
= See Table A on page 53 for bore and rod combinations using head plates with threaded bronze glands.

1-1/2" THROUGH 8" DIAMETER

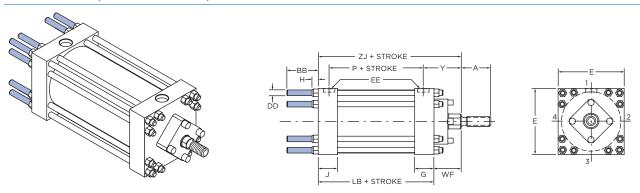
 $\begin{tabular}{ll} \textbf{Table 1} \\ \textbf{These dimensions are constant regardless of rod diameter or stroke.} \\ \end{tabular}$ 

Double rod end models are designated by letter "X" preceding the model identification. See page 52.

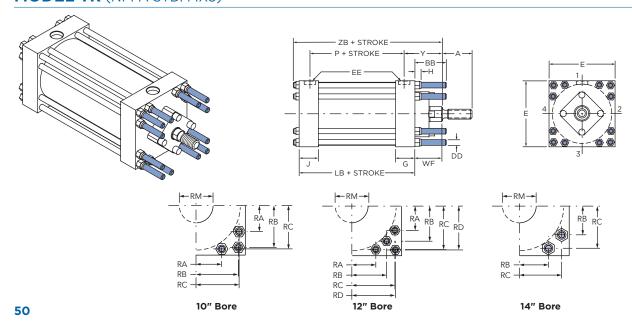
| BORE DIA. | E     | F   | G     | н     | J     | AA    | ВВ    | DD       | EE    |
|-----------|-------|-----|-------|-------|-------|-------|-------|----------|-------|
| 1-1/2     | 2-1/2 | 3/8 | 1-3/4 | 11/32 | 1-1/2 | 2.56  | 1-3/8 | 3/8-24   | 1/2   |
| 2         | 3     | 5/8 | 1-3/4 | 3/8   | 1-1/2 | 3.10  | 1-5/8 | 7/16-20  | 1/2   |
| 2-1/2     | 3-1/2 | 5/8 | 1-3/4 | 15/32 | 1-1/2 | 3.61  | 1-7/8 | 1/2-20   | 1/2   |
| 3-1/4     | 4-1/2 | 3/4 | 2-1/4 | 9/16  | 1-3/4 | 4.60  | 2-3/8 | 5/8-18   | 3/4   |
| 4         | 5     | 7/8 | 2-1/4 | 9/16  | 1-3/4 | 5.40  | 2-3/8 | 5/8-18   | 3/4   |
| 5         | 6-1/2 | 7/8 | 2-1/4 | 25/32 | 1-3/4 | 7.00  | 3-1/4 | 7/8-14   | 3/4   |
| 6         | 7-1/2 | 1   | 2-1/2 | 7/8   | 2-1/4 | 8.10  | 3-5/8 | 1-14     | 1     |
| 7         | 8-1/2 | 1   | 2-3/4 | 1     | 2-3/4 | 9.30  | 4-1/8 | 1-1/8-12 | 1-1/4 |
| 8         | 9-1/2 | 1   | 3     | 1-1/8 | 3     | 10.61 | 4-1/2 | 1-1/4-12 | 1-1/2 |


# Table 2 The dimensions given on this table are affected by the piston rod diameter and the stroke.

• = For piston rod dimensions see page 56.


| BORE DIA. | ROD MM• | Α     | В     | Р     | V   | W     | Υ       | LB    | WF    | ZB     | ZJ     |
|-----------|---------|-------|-------|-------|-----|-------|---------|-------|-------|--------|--------|
| 1.1/0     | 5/8     | 3/4   | 1-1/8 | 2-3/4 | 1/4 | 5/8   | 2-1/16  | 4-5/8 | 1     | 6-1/8  | 5-5/8  |
| 1-1/2     | 1       | 1-1/8 | 1-1/2 | 2-3/4 | 1/2 | 1     | 2-7/16  | 4-5/8 | 1-3/8 | 6-1/2  | 6      |
| 2         | 1       | 1-1/8 | 1-1/2 | 2-3/4 | 1/4 | 3/4   | 2-7/16  | 4-5/8 | 1-3/8 | 6-1/2  | 6      |
| 2         | 1-3/8   | 1-5/8 | 2     | 2-3/4 | 3/8 | 1     | 2-11/16 | 4-5/8 | 1-5/8 | 6-3/4  | 6-1/4  |
|           | 1       | 1-1/8 | 1-1/2 | 2-7/8 | 1/4 | 3/4   | 2-7/16  | 4-3/4 | 1-3/8 | 6-3/4  | 6-1/8  |
| 2-1/2     | 1-3/8   | 1-5/8 | 2     | 2-7/8 | 3/8 | 1     | 2-11/16 | 4-3/4 | 1-5/8 | 7      | 6-3/8  |
|           | 1-3/4   | 2     | 2-3/8 | 2-7/8 | 1/2 | 1-1/4 | 2-15/16 | 4-3/4 | 1-7/8 | 7-1/4  | 6-5/8  |
|           | 1-3/8   | 1-5/8 | 2     | 3-1/4 | 1/4 | 7/8   | 3       | 5-1/2 | 1-5/8 | 7-7/8  | 7-1/8  |
| 3-1/4     | 1-3/4   | 2     | 2-3/8 | 3-1/4 | 3/8 | 1-1/8 | 3-1/4   | 5-1/2 | 1-7/8 | 8-1/8  | 7-3/8  |
|           | 2       | 2-1/4 | 2-5/8 | 3-1/4 | 3/8 | 1-1/4 | 3-3/8   | 5-1/2 | 2     | 8-1/4  | 7-1/2  |
|           | 1-3/4   | 2     | 2-3/8 | 3-1/2 | 1/4 | 1     | 3-1/4   | 5-3/4 | 1-7/8 | 8-3/8  | 7-5/8  |
| 4         | 2       | 2-1/4 | 2-5/8 | 3-1/2 | 1/4 | 1-1/8 | 3-3/8   | 5-3/4 | 2     | 8-1/2  | 7-3/4  |
|           | 2-1/2   | 3     | 3-1/8 | 3-1/2 | 3/8 | 1-3/8 | 3-5/8   | 5-3/4 | 2-1/4 | 8-3/4  | 8      |
|           | 2       | 2-1/4 | 2-5/8 | 4     | 1/4 | 1-1/8 | 3-3/8   | 6-1/4 | 2     | 9-1/4  | 8-1/4  |
| _         | 2-1/2   | 3     | 3-1/8 | 4     | 3/8 | 1-3/8 | 3-5/8   | 6-1/4 | 2-1/4 | 9-1/2  | 8-1/2  |
| 5         | 3       | 3-1/2 | 3-3/4 | 4     | 3/8 | 1-3/8 | 3-5/8   | 6-1/4 | 2-1/4 | 9-1/2  | 8-1/2  |
|           | 3-1/2   | 3-1/2 | 4-1/4 | 4     | 3/8 | 1-3/8 | 3-5/8   | 6-1/4 | 2-1/4 | 9-1/2  | 8-1/2  |
|           | 2-1/2   | 3     | 3-1/8 | 4-5/8 | 1/4 | 1-1/4 | 3-3/4   | 7-3/8 | 2-1/4 | 10-3/4 | 9-5/8  |
| 6         | 3       | 3-1/2 | 3-3/4 | 4-5/8 | 1/4 | 1-1/4 | 3-3/4   | 7-3/8 | 2-1/4 | 10-3/4 | 9-5/8  |
| 0         | 3-1/2   | 3-1/2 | 4-1/4 | 4-5/8 | 1/4 | 1-1/4 | 3-3/4   | 7-3/8 | 2-1/4 | 10-3/4 | 9-5/8  |
|           | 4       | 4     | 4-3/4 | 4-5/8 | 1/4 | 1-1/4 | 3-3/4   | 7-3/8 | 2-1/4 | 10-3/4 | 9-5/8  |
|           | 3       | 3-1/2 | 3-3/4 | 5-3/8 | 1/4 | 1-1/4 | 3-13/16 | 8-1/2 | 2-1/4 | 11-7/8 | 10-3/4 |
|           | 3-1/2   | 3-1/2 | 4-1/4 | 5-3/8 | 1/4 | 1-1/4 | 3-13/16 | 8-1/2 | 2-1/4 | 11-7/8 | 10-3/4 |
| 7         | 4       | 4     | 4-3/4 | 5-3/8 | 1/4 | 1-1/4 | 3-13/16 | 8-1/2 | 2-1/4 | 11-7/8 | 10-3/4 |
|           | 4-1/2   | 4-1/2 | 5-1/4 | 5-3/8 | 1/4 | 1-1/4 | 3-13/16 | 8-1/2 | 2-1/4 | 11-7/8 | 10-3/4 |
|           | 5       | 5     | 5-3/4 | 5-3/8 | 1/4 | 1-1/4 | 3-13/16 | 8-1/2 | 2-1/4 | 11-7/8 | 10-3/4 |
|           | 3-1/2   | 3-1/2 | 4-1/4 | 6     | 1/4 | 1-1/4 | 4       | 9-1/2 | 2-1/4 | 13-1/8 | 11-3/4 |
|           | 4       | 4     | 4-3/4 | 6     | 1/4 | 1-1/4 | 4       | 9-1/2 | 2-1/4 | 13-1/8 | 11-3/4 |
| 8         | 4-1/2   | 4-1/2 | 5-1/4 | 6     | 1/4 | 1-1/4 | 4       | 9-1/2 | 2-1/4 | 13-1/8 | 11-3/4 |
|           | 5       | 5     | 5-3/4 | 6     | 1/4 | 1-1/4 | 4       | 9-1/2 | 2-1/4 | 13-1/8 | 11-3/4 |
|           | 5-1/2   | 5-1/2 | 6-1/4 | 6     | 1/4 | 1-1/4 | 4       | 9-1/2 | 2-1/4 | 13-1/8 | 11-3/4 |




## MODEL T (NFPA STD. MX1)



## MODEL TB (NFPA STD. MX2)



# MODEL TR (NFPA STD. MX3)



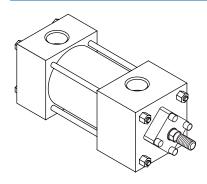
# **TIE-ROD MOUNT CYLINDERS**

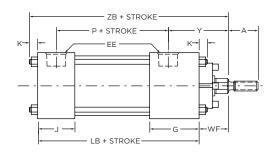
10" THROUGH 14" DIAMETER

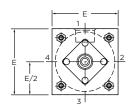
 $\begin{tabular}{ll} \textbf{Table 1} \\ \textbf{These dimensions are constant regardless of rod diameter or stroke.} \\ \end{tabular}$ 

Double rod end models are designated by letter "X" preceding the model identification. See page 52.

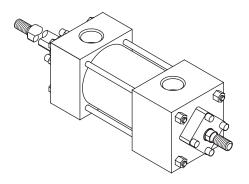
| BORE DIA. | Е      | G       | Н      | J       | ВВ | DD       | EE    | RA    | RB    | RC    | RD    | RE |
|-----------|--------|---------|--------|---------|----|----------|-------|-------|-------|-------|-------|----|
| 10        | 12-5/8 | 3-11/16 | 7/8    | 3-11/16 | 6  | 1-14     | 2     | 3.312 | 5.438 | 5.531 | -     | -  |
| 12        | 14-7/8 | 4-7/16  | 7/8    | 4-7/16  | 7  | 1-14     | 2-1/2 | 3.718 | 5.344 | 6.593 | 6.656 | -  |
| 14        | 17-1/4 | 4-7/8   | 1-9/32 | 4-7/8   | 8  | 1-1/2-12 | 2-1/2 | -     | 5     | 7.313 | -     | -  |

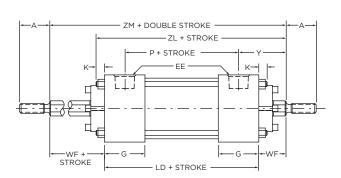

# Table 2 The dimensions given on this table are affected by the piston rod diameter and the stroke.

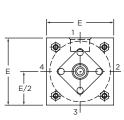

• = For piston rod dimensions see page 56.


| BORE DIA. | ROD MM• | Α     | Р     | Υ     | LB     | RM     | WF      | ZB       | ZJ       |
|-----------|---------|-------|-------|-------|--------|--------|---------|----------|----------|
|           | 4-1/2   | 4-1/2 | 8     | 5     | 12-1/8 | 7-3/4  | 2-15/16 | 16-3/16  | 15-1/16  |
| 10        | 5       | 5     | 8     | 5-1/4 | 12-1/8 | 8-3/8  | 3-3/16  | 16-7/16  | 15-5/16  |
| 10        | 5-1/2   | 5-1/2 | 8     | 5-1/4 | 12-1/8 | 9      | 3-3/16  | 16-7/16  | 15-5/16  |
|           | 7       | 7     | 8     | 5-1/4 | 12-1/8 | 10-1/4 | 3-3/16  | 16-7/16  | 15-5/16  |
|           | 5-1/2   | 5-1/2 | 9-5/8 | 5-5/8 | 14-1/2 | 9      | 3-3/16  | 18-13/16 | 17-11/16 |
| 12        | 7       | 7     | 9-5/8 | 5-7/8 | 14-1/2 | 10-1/4 | 3-7/16  | 19-1/16  | 17-15/16 |
|           | 8       | 8     | 9-5/8 | 5-7/8 | 14-1/2 | 11-1/4 | 3-7/16  | 19-1/16  | 17-15/16 |
|           | 7       | 7     | 9-7/8 | 6-3/8 | 15-5/8 | 10-1/4 | 3-1/2   | 20-1/4   | 19-1/8   |
| 14        | 8       | 8     | 9-7/8 | 6-3/8 | 15-5/8 | 11-1/4 | 3-1/2   | 20-1/4   | 19-1/8   |
|           | 10      | 10    | 9-7/8 | 6-3/8 | 15-5/8 | 14     | 3-1/2   | 20-1/4   | 19-1/8   |




## MODEL H (BASIC CYLINDER NO MOUNT)






## MODEL XH (BASIC CYLINDER DOUBLE ROD END)







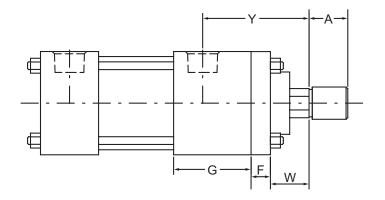
= See Table A on page 53 for bore and rod combinations using head plates with threaded bronze glands.

 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

| BORE DIA. | E     | F   | G     | J     | K     |
|-----------|-------|-----|-------|-------|-------|
| 1-1/2     | 2-1/2 | 3/8 | 1-3/4 | 1-1/2 | 1/2   |
| 2         | 3     | 5/8 | 1-3/4 | 1-1/2 | 1/2   |
| 2-1/2     | 3-1/2 | 5/8 | 1-3/4 | 1-1/2 | 5/8   |
| 3-1/4     | 4-1/2 | 3/4 | 2-1/4 | 1-3/4 | 3/4   |
| 4         | 5     | 7/8 | 2-1/4 | 1-3/4 | 3/4   |
| 5         | 6-1/2 | 7/8 | 2-1/4 | 1-3/4 | 1     |
| 6         | 7-1/2 | 1   | 2-1/2 | 2-1/4 | 1-1/8 |

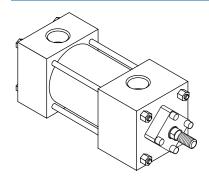
 $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$ 

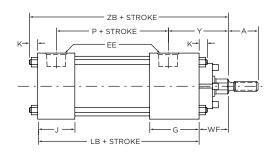
• = For piston rod dimensions see page 56.

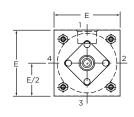

| BORE DIA. | ROD MM• | Α     | Р     | Y       | LB    | LD    | W     | WF    | ZB     | ZL    | ZM     |
|-----------|---------|-------|-------|---------|-------|-------|-------|-------|--------|-------|--------|
| 1 1/2     | 5/8     | 3/4   | 2-3/4 | 2-1/16  | 4-5/8 | 4-7/8 | 5/8   | 1     | 6-1/8  | 6-3/8 | 6-7/8  |
| 1-1/2     | 1       | 1-1/8 | 2-3/4 | 2-7/16  | 4-5/8 | 4-7/8 | 1     | 1-3/8 | 6-1/2  | 6-3/4 | 7-5/8  |
| 2         | 1       | 1-1/8 | 2-3/4 | 2-7/16  | 4-5/8 | 4-7/8 | 3/4   | 1-3/8 | 6-1/2  | 6-3/4 | 7-5/8  |
| 2         | 1-3/8   | 1-5/8 | 2-3/4 | 2-11/16 | 4-5/8 | 4-7/8 | 1     | 1-5/8 | 6-3/4  | 7     | 8-1/8  |
|           | 1       | 1-1/8 | 2-7/8 | 2-7/16  | 4-3/4 | 5     | 3/4   | 1-3/8 | 6-3/4  | 7     | 7-3/4  |
| 2-1/2     | 1-3/8   | 1-5/8 | 2-7/8 | 2-11/16 | 4-3/4 | 5     | 1     | 1-5/8 | 7      | 7-1/4 | 8-1/4  |
|           | 1-3/4   | 2     | 2-7/8 | 2-15/16 | 4-3/4 | 5     | 1-1/4 | 1-7/8 | 7-1/4  | 7-1/2 | 8-3/4  |
|           | 1-3/8   | 1-5/8 | 3-1/4 | 3       | 5-1/2 | 6     | 7/8   | 1-5/8 | 7-7/8  | 8-3/8 | 9-1/4  |
| 3-1/4     | 1-3/4   | 2     | 3-1/4 | 3-1/4   | 5-1/2 | 6     | 1-1/8 | 1-7/8 | 8-1/8  | 8-5/8 | 9-3/4  |
|           | 2       | 2-1/4 | 3-1/4 | 3-3/8   | 5-1/2 | 6     | 1-1/4 | 2     | 8-1/4  | 8-3/4 | 10     |
|           | 1-3/4   | 2     | 3-1/2 | 3-1/4   | 5-3/4 | 6-1/4 | 1     | 1-7/8 | 8-3/8  | 8-7/8 | 10     |
| 4         | 2       | 2-1/4 | 3-1/2 | 3-3/8   | 5-3/4 | 6-1/4 | 1-1/8 | 2     | 8-1/2  | 9     | 10-1/4 |
|           | 2-1/2   | 3     | 3-1/2 | 3-5/8   | 5-3/4 | 6-1/4 | 1-3/8 | 2-1/4 | 8-3/4  | 9-1/4 | 10-3/4 |
|           | 2       | 2-1/4 | 4     | 3-3/8   | 6-1/4 | 6-3/4 | 1-1/8 | 2     | 9-1/4  | 9-3/4 | 10-3/4 |
| 5         | 2-1/2   | 3     | 4     | 3-5/8   | 6-1/4 | 6-3/4 | 1-3/8 | 2-1/4 | 9-1/2  | 10    | 11-1/4 |
| 5         | 3       | 3-1/2 | 4     | 3-5/8   | 6-1/4 | 6-3/4 | 1-3/8 | 2-1/4 | 9-1/2  | 10    | 11-1/4 |
|           | 3-1/2   | 3-1/2 | 4     | 3-5/8   | 6-1/4 | 6-3/4 | 1-3/8 | 2-1/4 | 9-1/2  | 10    | 11-1/4 |
|           | 2-1/2   | 3     | 4-5/8 | 3-3/4   | 7-3/8 | 7-5/8 | 1-1/4 | 2-1/4 | 10-3/4 | 11    | 12-1/8 |
| 6         | 3       | 3-1/2 | 4-5/8 | 3-3/4   | 7-3/8 | 7-5/8 | 1-1/4 | 2-1/4 | 10-3/4 | 11    | 12-1/8 |
| 6         | 3-1/2   | 3-1/2 | 4-5/8 | 3-3/4   | 7-3/8 | 7-5/8 | 1-1/4 | 2-1/4 | 10-3/4 | 11    | 12-1/8 |
|           | 4       | 4     | 4-5/8 | 3-3/4   | 7-3/8 | 7-5/8 | 1-1/4 | 2-1/4 | 10-3/4 | 11    | 12-1/8 |

NOTE: Cylinder mountings, rod sizes and thread types are interchangeable on either end of double rod end cylinder assembly.

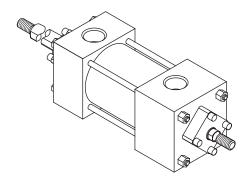
# **Table A**

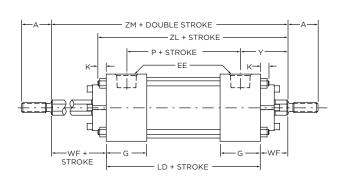

| THE FOLLO | THE FOLLOWING BORE/ROD COMBINATIONS USE HEAD PLATE AND BRONZE GLANDS AS SHOWN AT RIGHT |  |  |  |  |  |  |  |
|-----------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| BORE      | BORE ROD DIAMETER (MM)                                                                 |  |  |  |  |  |  |  |
| 1-1/2     | 1.00"                                                                                  |  |  |  |  |  |  |  |
| 2         | 1.38"                                                                                  |  |  |  |  |  |  |  |
| 2-1/2     | 1.75"                                                                                  |  |  |  |  |  |  |  |

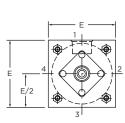

**NOTE:** Threaded Bronze Gland used on all Model D and DD Cylinders. Bolt-on Gland used on all Model G & DG Cylinders.







# **MODEL H** (BASIC CYLINDER NO MOUNT)






## MODEL XH (BASIC CYLINDER DOUBLE ROD END)







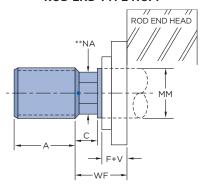
7" THROUGH 20" DIAMETER

 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

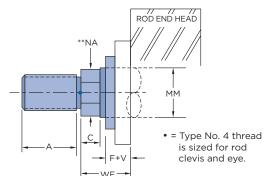
| BORE DIA. | E      | G       | J       | K      | EE    |
|-----------|--------|---------|---------|--------|-------|
| 7         | 8-1/2  | 2-3/4   | 2-3/4   | 1-1/8  | 1-1/4 |
| 8         | 9-1/2  | 3       | 3       | 1-3/8  | 1-1/2 |
| 10        | 12-5/8 | 3-11/16 | 3-11/16 | 1-1/8  | 2     |
| 12        | 14-7/8 | 4-7/16  | 4-7/16  | 1-1/8  | 2-1/2 |
| 14        | 17-1/4 | 4-7/8   | 4-7/8   | 1-1/4  | 2-1/2 |
| 16        | 19-1/4 | 5-7/8   | 5-7/8   | 1-7/16 | 3     |
| 18        | 22     | 6-7/8   | 6-7/8   | 1-7/16 | 3     |
| 20        | 23-5/8 | 7-7/8   | 7-7/8   | 1-7/16 | 3     |

 $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$ 

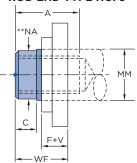
• = For piston rod dimensions see page 56.


| BORE DIA. | ROD MM• | Α     | Р      | Υ       | LB     | LD     | WF      | ZB       | ZL       | ZM     |
|-----------|---------|-------|--------|---------|--------|--------|---------|----------|----------|--------|
|           | 3       | 3-1/2 | 5-3/8  | 3-13/16 | 8-1/2  | 8-1/2  | 2-1/4   | 11-7/8   | 11-7/8   | 13     |
|           | 3-1/2   | 3-1/2 | 5-3/8  | 3-13/16 | 8-1/2  | 8-1/2  | 2-1/4   | 11-7/8   | 11-7/8   | 13     |
| 7         | 4       | 4     | 5-3/8  | 3-13/16 | 8-1/2  | 8-1/2  | 2-1/4   | 11-7/8   | 11-7/8   | 13     |
|           | 4-1/2   | 4-1/2 | 5-3/8  | 3-13/16 | 8-1/2  | 8-1/2  | 2-1/4   | 11-7/8   | 11-7/8   | 13     |
|           | 5       | 5     | 5-3/8  | 3-13/16 | 8-1/2  | 8-1/2  | 2-1/4   | 11-7/8   | 11-7/8   | 13     |
|           | 3-1/2   | 3-1/2 | 6      | 4       | 9-1/2  | 9-1/2  | 2-1/4   | 13-1/8   | 13-1/8   | 14     |
|           | 4       | 4     | 6      | 4       | 9-1/2  | 9-1/2  | 2-1/4   | 13-1/8   | 13-1/8   | 14     |
| 8         | 4-1/2   | 4-1/2 | 6      | 4       | 9-1/2  | 9-1/2  | 2-1/4   | 13-1/8   | 13-1/8   | 14     |
|           | 5       | 5     | 6      | 4       | 9-1/2  | 9-1/2  | 2-1/4   | 13-1/8   | 13-1/8   | 14     |
|           | 5-1/2   | 5-1/2 | 6      | 4       | 9-1/2  | 9-1/2  | 2-1/4   | 13-1/8   | 13-1/8   | 14     |
|           | 4-1/2   | 4-1/2 | 8      | 5       | 12-1/8 | 12-1/8 | 2-15/16 | 16-3/16  | 16-3/16  | 18     |
| 10        | 5       | 5     | 8      | 5-1/4   | 12-1/8 | 12-1/8 | 3-3/16  | 16-7/16  | 16-7/16  | 18-1/2 |
| 10        | 5-1/2   | 5-1/2 | 8      | 5-1/4   | 12-1/8 | 12-1/8 | 3-3/16  | 16-7/16  | 16-7/16  | 18-1/2 |
|           | 7       | 7     | 8      | 5-1/4   | 12-1/8 | 12-1/8 | 3-3/16  | 16-7/16  | 16-7/16  | 18-1/2 |
|           | 5-1/2   | 5-1/2 | 9-5/8  | 5-5/8   | 14-1/2 | 14-1/2 | 3-3/16  | 18-13/16 | 18-13/16 | 20-7/8 |
| 12        | 7       | 7     | 9-5/8  | 5-7/8   | 14-1/2 | 14-1/2 | 3-7/16  | 19-1/16  | 19-1/16  | 21-3/8 |
|           | 8       | 8     | 9-5/8  | 5-7/8   | 14-1/2 | 14-1/2 | 3-7/16  | 19-1/16  | 19-1/16  | 21-3/8 |
|           | 7       | 7     | 9-7/8  | 6-3/8   | 15-5/8 | 15-5/8 | 3-1/2   | 20-1/4   | 20-1/4   | 22-5/8 |
| 14        | 8       | 8     | 9-7/8  | 6-3/8   | 15-5/8 | 15-5/8 | 3-1/2   | 20-1/4   | 20-1/4   | 22-5/8 |
|           | 10      | 10    | 9-7/8  | 6-3/8   | 15-5/8 | 15-5/8 | 3-1/2   | 20-1/4   | 20-1/4   | 22-5/8 |
|           | 8       | 8     | 11-3/8 | 7-3/8   | 18-1/8 | 18-1/8 | 4       | 23-9/16  | 23-9/16  | 26-1/8 |
| 16        | 9       | 9     | 11-3/8 | 7-3/8   | 18-1/8 | 18-1/8 | 4       | 23-9/16  | 23-9/16  | 26-1/8 |
|           | 10      | 10    | 11-3/8 | 7-3/8   | 18-1/8 | 18-1/8 | 4       | 23-9/16  | 23-9/16  | 26-1/8 |
| 18        | 9       | 9     | 12-3/8 | 8-5/8   | 21-1/8 | 21-1/8 | 4-1/4   | 26-13/16 | 26-13/16 | 29-5/8 |
| 10        | 10      | 10    | 12-3/8 | 8-5/8   | 21-1/8 | 21-1/8 | 4-1/4   | 26-13/16 | 26-13/16 | 29-5/8 |
| 20        | 10      | 10    | 13-3/8 | 9-5/8   | 23-5/8 | 23-5/8 | 4-1/2   | 29-9/16  | 29-9/16  | 32-5/8 |

NOTE: Cylinder mountings, rod sizes and thread types are interchangeable on either end of double rod end cylinder assembly.




### **CLASS 3 CYLINDER PISTON ROD END DIMENSIONAL DATA**

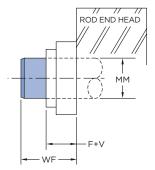

#### **ROD END TYPE NO. 1**



#### ROD END TYPE NO. 3 & NO. 4•

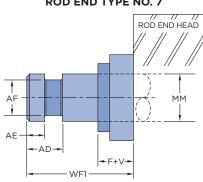


#### **ROD END TYPE NO. 5**




\*\* = Dimension NA is .060 under MM diameter dimension.

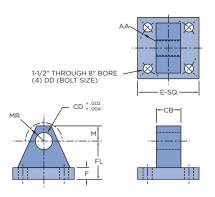
| DIA DOD MM  |          | ROD EN   | ID TYPE  |          |       |     |         | E. 1/  |                   |
|-------------|----------|----------|----------|----------|-------|-----|---------|--------|-------------------|
| DIA. ROD MM | NO. 1    | NO. 3    | NO. 4•   | NO. 5    | A     | С   | D•      | F+V    | WF                |
| 5/8         | 5/8-18   | 1/2-20   | 7/16-20  | 7/16-20  | 3/4   | 3/8 | 1/2     | 5/8    |                   |
| 1           | 1-14     | 7/8-14   | 3/4-16   | 3/4-16   | 1-1/8 | 1/2 | 7/8     | 3/4    |                   |
| 1-3/8       | 1-3/8-12 | 1-1/4-12 | 1-14     | 1-14     | 1-5/8 | 5/8 | 1-1/8   | 1      |                   |
| 1-3/4       | 1-3/4-12 | 1-1/2-12 | 1-1/4-12 | 1-1/4-12 | 2     | 3/4 | 1-1/2   | 3/4    |                   |
| 2           | 2-12     | 1-3/4-12 | 1-1/2-12 | 1-1/2-12 | 2-1/4 | 7/8 | 1-11/16 | 7/8    | See the           |
| 2-1/2       | 2-1/2-12 | 2-1/4-12 | 1-7/8-12 | 1-7/8-12 | 3     | 1   | 2-1/16  | 1-1/16 | respective        |
| 3           | 3-12     | 2-3/4-12 | 2-1/4-12 | 2-1/4-12 | 3-1/2 | 1   | 2-5/8   | 1-1/8  | charts            |
| 3-1/2       | 3-1/2-12 | 3-1/4-12 | 2-1/2-12 | 2-1/2-12 | 3-1/2 | 1   | 3       | 1-1/8  | covering<br>model |
| 4           | 4-12     | 3-3/4-12 | 3-12     | 3-12     | 4     | 1   | 3-3/8   | 1-1/4  | (mount),          |
| 4-1/2       | 4-1/2-12 | 4-1/4-12 | 3-1/4-12 | 3-1/4-12 | 4-1/2 | 1   | 3-7/8   | 1-1/4  | bore,             |
| 5           | 5-12     | 4-3/4-12 | 3-1/2-12 | 3-1/2-12 | 5     | 1   | 4-1/4   | 1-1/4  | and rod           |
| 5-1/2       | 5-1/2-12 | 5-1/4-12 | 4-12     | 4-12     | 5-1/2 | 1   | 4-5/8   | 1-1/4  | diameter          |
| 7           | 7-12     | 6-1/2-12 | 5-1/2-12 | 5-1/2-12 | 7     | 1   | -       | 2-3/8  |                   |
| 8           | 8-12     | 7-1/2-12 | 5-3/4-12 | 5-3/4-12 | 8     | 1   | -       | 2-3/8  |                   |
| 9           | 9-12     | 8-1/2-12 | 6-1/2-12 | 6-1/2-12 | 9     | 1   | -       | 2-1/2  |                   |
| 10          | 10-12    | 9-1/2-12 | 7-1/4-12 | 7-1/4-12 | 10    | 1   | -       | 2-1/2  |                   |


- = Type 4 thread sized for clevis and rod eye accessories.
- = Dimension D is size across wrench flats.

#### **ROD END TYPE NO. 6**



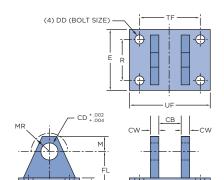
| DIA. ROD MM | F+V    | WF    |
|-------------|--------|-------|
| 5/8         | 5/8    | 1     |
| 1           | 3/4    | 1-3/8 |
| 1-3/8       | 1      | 1-5/8 |
| 1-3/4       | 3/4    | 1-7/8 |
| 2           | 7/8    | 2     |
| 2-1/2       | 1-1/16 | 2-1/4 |
| 3           | 1-1/8  | 2-1/4 |
| 3-1/2       | 1-1/8  | 2-1/4 |
| 4           | 1-1/4  | 2-1/4 |
| 4-1/2       | 1-1/4  | 2-1/4 |
| 5           | 1-1/4  | 2-1/4 |
| 5-1/2       | 1-1/4  | 2-1/4 |


#### **ROD END TYPE NO. 7**



| DIA. ROD MM | F+V    | WF1   | AD      | AE    | AF    |
|-------------|--------|-------|---------|-------|-------|
| 5/8         | 5/8    | 1-3/4 | 5/8     | 1/4   | 3/8   |
| 1           | 3/4    | 2-1/2 | 15/16   | 3/8   | 11/16 |
| 1-3/8       | 1      | 2-3/4 | 1-1/16  | 3/8   | 7/8   |
| 1-3/4       | 3/4    | 3-1/8 | 1-5/16  | 1/2   | 1-1/8 |
| 2           | 7/8    | 3-3/4 | 1-11/16 | 5/8   | 1-3/8 |
| 2-1/2       | 1-1/16 | 4-1/2 | 1-15/16 | 3/4   | 1-3/4 |
| 3           | 1-1/8  | 4-7/8 | 2-7/16  | 7/8   | 2-1/4 |
| 3-1/2       | 1-1/8  | 5-5/8 | 2-11/16 | 1     | 2-1/2 |
| 4           | 1-1/4  | 5-3/4 | 2-11/16 | 1     | 3     |
| 4-1/2       | 1-1/4  | 6-1/2 | 3-3/16  | 1-1/2 | 3-1/2 |
| 5           | 1-1/4  | 6-5/8 | 3-3/16  | 1-1/2 | 3-7/8 |
| 5-1/2       | 1-1/4  | 7-1/2 | 3-15/16 | 1-7/8 | 4-3/8 |

# **CYLINDER ACCESSORIES**


## **EYE BRACKET**



| CYL. DIA. | E      | F      | М     | AA    | СВ    | CD    | DD    | FL      | MR    | PART NO. |
|-----------|--------|--------|-------|-------|-------|-------|-------|---------|-------|----------|
| 1-1/2     | 2-1/2  | 3/8    | 1/2   | 2.30  | 3/4   | 1/2   | 3/8   | 1-1/8   | 5/8   | 2716 L47 |
| 2 - 2-1/2 | 3-1/2  | 5/8    | 3/4   | 3.61  | 1-1/4 | 3/4   | 1/2   | 1-7/8   | 7/8   | 2719 L32 |
| 3-1/4     | 4-1/2  | 7/8    | 1     | 4.60  | 1-1/2 | 1     | 5/8   | 2-3/8   | 1-1/4 | 2720 L33 |
| 4         | 5      | 7/8    | 1-3/8 | 5.40  | 2     | 1-3/8 | 5/8   | 3       | 1-5/8 | 2721 L34 |
| 5         | 6-1/2  | 1-1/8  | 1-3/4 | 7.00  | 2-1/2 | 1-3/4 | 7/8   | 3-3/8   | 2     | 2722 L35 |
| 6         | 7-1/2  | 1-7/16 | 2     | 8.10  | 2-1/2 | 2     | 1     | 3-15/16 | 2-3/8 | 2723 L36 |
| 7         | 8-1/2  | 1-5/8  | 2-1/2 | 9.30  | 3     | 2-1/2 | 1-1/8 | 4-5/8   | 3     | 2724 L37 |
| 8         | 9-1/2  | 2      | 2-3/4 | 10.61 | 3     | 3     | 1-1/4 | 5-1/4   | 3-1/4 | 2725 L38 |
| 10        | 12-5/8 | 2-3/8  | 3-1/2 | •     | 4     | 3-1/2 | 1     | 6-3/8   | 3-1/2 | 2726 L39 |
| 12        | 14-7/8 | 2-7/8  | 4     | •     | 4-1/2 | 4     | 1     | 7-1/2   | 4     | 2727 L40 |
| 14        | 17-1/4 | 3-3/8  | 5     | •     | 6     | 5     | 1     | 9       | 5     | 2728 L41 |

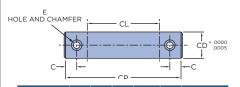
For clevis bracket reference see models on page 36 and page 38.

• = See page 50 for bolt hole location.



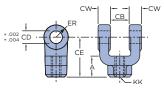
### **MOUNTING BRACKET**

| CYL. DIA. | E      | F      | М     | R     | СВ    | CD    | cw    | DD    | FL      | MR    | TF     | UF     | PART NO. |
|-----------|--------|--------|-------|-------|-------|-------|-------|-------|---------|-------|--------|--------|----------|
| 1-1/2     | 2-1/2  | 3/8    | 1/2   | 1.63  | 3/4   | 1/2   | 1/2   | 3/8   | 1-1/8   | 5/8   | 2-3/4  | 3-1/2  | 2683 L47 |
| 2 - 2-1/2 | 3-1/2  | 5/8    | 3/4   | 2.55  | 1-1/4 | 3/4   | 5/8   | 1/2   | 1-7/8   | 7/8   | 3-3/4  | 4-3/4  | 2684 L47 |
| 3-1/4     | 4-1/2  | 7/8    | 1     | 3.25  | 1-1/2 | 1     | 3/4   | 5/8   | 2-3/8   | 1-1/4 | 4-1/2  | 5-3/4  | 2685 L47 |
| 4         | 5      | 7/8    | 1-3/8 | 3.82  | 2     | 1-3/8 | 1     | 5/8   | 3       | 1-5/8 | 5-1/2  | 6-3/4  | 2686 L47 |
| 5         | 6-1/2  | 1-1/8  | 1-3/4 | 4.95  | 2-1/2 | 1-3/4 | 1-1/4 | 7/8   | 3-3/8   | 2     | 7      | 8-1/2  | 2687 L47 |
| 6         | 7-1/2  | 1-7/16 | 2     | 5.73  | 2-1/2 | 2     | 1-1/4 | 1     | 3-15/16 | 2-3/8 | 7-1/2  | 9-1/4  | 2688 L47 |
| 7         | 8-1/2  | 1-5/8  | 2-1/2 | 6.58  | 3     | 2-1/2 | 1-1/2 | 1-1/8 | 4-5/8   | 3     | 8-1/2  | 10-1/2 | 2689 L47 |
| 8         | 9-1/2  | 2      | 2-3/4 | 7.50  | 3     | 3     | 1-1/2 | 1-1/4 | 5-1/4   | 3-1/4 | 8-3/4  | 10-3/4 | 2690 L47 |
| 10        | 12-5/8 | 2-3/8  | 3-1/2 | 9.62  | 4-1/8 | 3-1/2 | 2     | 1-3/4 | 6-3/8   | 3-1/2 | 12     | 15     | 2691 L47 |
| 12        | 14-7/8 | 2-7/8  | 4     | 11.45 | 4-5/8 | 4     | 2-1/4 | 2     | 7-1/2   | 4     | 14     | 18     | 2692 L47 |
| 14        | 17-1/4 | 3-3/8  | 5     | 13.36 | 6-1/8 | 5     | 3     | 2-1/4 | 9       | 5     | 17-3/4 | 22-1/2 | 2693 L47 |







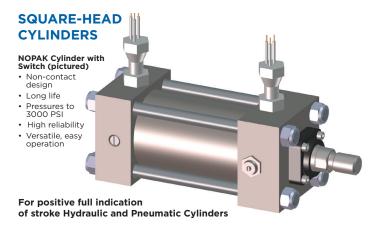


| KK       | Α     | CA      | СВ    | CD    | ER     | PART NO. |
|----------|-------|---------|-------|-------|--------|----------|
| 7/16-20  | 3/4   | 1-1/2   | 3/4   | 1/2   | 5/8    | 1810 L59 |
| 3/4-16   | 1-1/8 | 2-1/16  | 1-1/4 | 3/4   | 1-1/16 | 1812 L59 |
| 1-14     | 1-5/8 | 2-13/16 | 1-1/2 | 1     | 1-7/16 | 1813 L59 |
| 1-1/4-12 | 2     | 3-7/16  | 2     | 1-3/8 | 2      | 1814 L59 |
| 1-1/2-12 | 2-1/4 | 4       | 2-1/2 | 1-3/4 | 2-1/16 | 1815 L59 |
| 1-7/8-12 | 3     | 5       | 2-1/2 | 2     | 2-1/4  | 1817 L59 |
| 2-1/4-12 | 3-1/2 | 5-13/16 | 3     | 2-1/2 | 2-7/8  | 1820 L59 |
| 2-1/2-12 | 3-1/2 | 6-1/8   | 3     | 3     | 3-1/8  | 1821 L59 |
| 3-1/4-12 | 4-1/2 | 7-5/8   | 4     | 3-1/2 | 3-7/8  | 1824 L59 |
| 4-12     | 5-1/2 | 9-1/8   | 4-1/2 | 4     | 4-7/16 | 1825 L59 |
| 5-1/2-12 | 7     | 11-7/8  | 6     | 5     | 5      | 1826 L59 |

### **PIVOT - PIN**



| CYL. DIA. | С    | E    | CD    | СР     | CL   | PART NO.    |
|-----------|------|------|-------|--------|------|-------------|
| 1-1/2     | 3/16 | 1/8  | 1/2   | 2-3/8  | 1.8  | 3222 L47-1  |
| 2 - 2-1/2 | 1/4  | 3/16 | 3/4   | 3-1/4  | 2.6  | 3222 L47-2  |
| 3-1/4     | 1/4  | 3/16 | 1     | 3-3/4  | 3.1  | 3222 L47-3  |
| 4         | 1/4  | 3/16 | 1-3/8 | 4-7/8  | 4.1  | 3222 L47-4  |
| 5         | 1/4  | 3/16 | 1-3/4 | 5-7/8  | 5.1  | 3222 L47-5  |
| 6         | 5/16 | 1/4  | 2     | 6-1/8  | 5.2  | 3222 L47-6  |
| 7         | 5/16 | 1/4  | 2-1/2 | 7-1/8  | 6.3  | 3222 L47-8  |
| 8         | 5/16 | 1/4  | 3     | 7-1/8  | 6.3  | 3222 L47-7  |
| 10        | 3/8  | 1/4  | 3-1/2 | 9-1/4  | 8.0  | 3222 L47-9  |
| 12        | 3/8  | 1/4  | 4     | 10-1/4 | 9.0  | 3222 L47-10 |
| 14        | 3/8  | 1/4  | 5     | 13-1/2 | 12.3 | 3222 L47-11 |

## **CLEVIS (FEMALE)**




| KK       | Α     | СВ    | CD    | CE     | cw    | ER    | PART NO. |
|----------|-------|-------|-------|--------|-------|-------|----------|
| 7/16-20  | 3/4   | 3/4   | 1/2   | 1-1/2  | 1/2   | 1/2   | 2834 L59 |
| 3/4-16   | 1-1/8 | 1-1/4 | 3/4   | 2-3/8  | 5/8   | 3/4   | 2835 L59 |
| 1-14     | 1-5/8 | 1-1/2 | 1     | 3-1/8  | 3/4   | 1     | 2836 L59 |
| 1-1/4-12 | 2     | 2     | 1-3/8 | 4-1/8  | 1     | 1-3/8 | 2837 L59 |
| 1-1/2-12 | 2-1/4 | 2-1/2 | 1-3/4 | 4-1/2  | 1-1/4 | 1-3/4 | 2838 L59 |
| 1-7/8-12 | 3     | 2-1/2 | 2     | 5-1/2  | 1-1/4 | 2     | 2839 L59 |
| 2-1/4-12 | 3-1/2 | 3     | 2-1/2 | 6-1/2  | 1-1/2 | 2-1/2 | 2840 L59 |
| 2-1/2-12 | 3-1/2 | 3     | 3     | 6-3/4  | 1-1/2 | 3     | 2841 L59 |
| 3-1/4-12 | 4-1/2 | 4     | 3-1/2 | 8-1/2  | 2     | 3-1/2 | 2842 L59 |
| 4-12     | 5-1/2 | 4-1/2 | 4     | 10     | 2-1/4 | 4     | 2843 L59 |
| 5-1/2-12 | 7     | 6     | 5     | 12-3/4 | 3     | 5     | 2844 L59 |



## PROXIMITY POSITION INDICATOR SWITCH

HYDRAULIC OR PNEUMATIC CYLINDER OPERATIONS



#### **WORKING PRINCIPLE**

NOPAK Position Indicator Switches are easily mounted in both hydraulic and pneumatic cylinder heads to confirm the position of the piston in either extended or retracted positions. Designed for versatility, NOPAK switches can be mounted in virtually any position. When inserted in the cylinder head, the switch senses the cushion sleeve's position at end of stroke. NOPAK's threaded switch screws easily into the cylinder heads making it a natural for accurate confirmation. Totally self-contained, the switch will not be contaminated by dirt, oil, grease, and most corrosive atmospheres. The non-contact design also eliminates the need for linkage or external actuators. Heavy-duty construction allows the switch to withstand up to 3000 PSI of external pressure (higher pressure available upon request).

#### **DESIGN FEATURES**

- Very Economical Easy to install, NOPAK Position Indicator Switches are totally self-contained, eliminating external power supply requirements.
- Enclosure 300 Series Stainless Steel provides reliable performance under even the most adverse conditions.
- Hermetically Sealed To ensure a clean, stable contact environment, the entire assembly is completely evacuated, then back-filled under pressure.
- Long Life Tested to over 1,000,000 cycles. (Actual life varies with load.)
- High Contact Pressure Heavy vibrations will not cause false operations of the switch. Good electrical characteristics for dry circuit and low load applications.

#### **SPECIFICATIONS**

#### **CONTACT ARRANGEMENT:**

Single Pole Double Throw SPDT (Form C)

#### **CONTACT RATINGS:**

UL Rated (NEMA Type 1)

240 VAC @ 2A

250 VDC @ 0.5A Resistive

Although not UL General Purpose, switch is suitable for: 24 VDC @ 50 mA

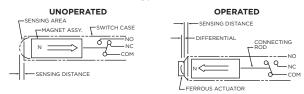
#### **TEMPERATURE RANGE:**

-40°F (-40°C) to 221°F (105°C)

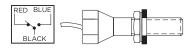
**RESPONSE TIME:** 8 milliseconds

#### REPEATABILITY:

0.002" (0.05 mm) of setpoint under identical operating conditions.


Consult Factory for other contact arrangements, ratings, terminations, and approvals.

# PROXIMITY POSITION INDICATOR SWITCH PRINCIPLES OF OPERATION


The NOPAK Proximity Limit Switch is based on an operating principle which utilizes "new," high energy, rare earth magnets to provide an end sensing range fixed at approximately .072" (1.83 mm) with a ferrous actuator. Use of an external magnet increases this appreciably. The differential (hysteresis) is approximately half of the sensing range.

When time, accuracy, and dependability count... you can count on a NOPAK Indicator Switch. Maintenance free: engineered for precision, performance and reliability.

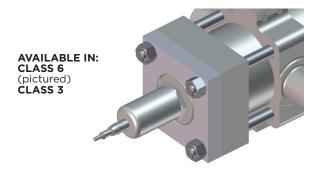
NOTE: This is not a 'reed' type switch.



Wiring Color Code: Black = Common, Red = Normally Closed; Blue = Normally Open



Switch enclosure incorporates a 1/2-14 NPT conduit connection. Switch wire connections are a potted 3 wire cable 18" long. External mounting threads are locked to cylinder head port with a hex jam nut and seal.


Where installation height is limited some switches are available with side-potted leads. Consult factory.





## NOPAK LINEAR DISPLACEMENT TRANSDUCER SYSTEM

NLDT SYSTEM SWITCH NUMBER



**DESIGN AND PERFORMANCE FEATURES** 

- Non-contacting design no wear, no friction, no noise and no adjustments.
- Completely solid state.
- Both analog and digital outputs are available.
- Quartz crystal time reference.
- Withstands corrosive environments and pressures up to 3000 PSI.
- Feedback sensor inside cylinder is protected from debris and mechanical damage.
- Absolute output, not incremental no loss of position at restart.

NOPAK has a linear displacement transducer that is designed for use in air or hydraulic cylinder actuators. The transducer, available in lengths up to thirty feet, is threaded into the cylinder and sealed to withstand the pressures of hydraulic fluid. A permanent magnet is mounted on the piston end of the cylinder rod, and is used to determine the position of the piston inside the cylinder. Double ended rods not applicable.

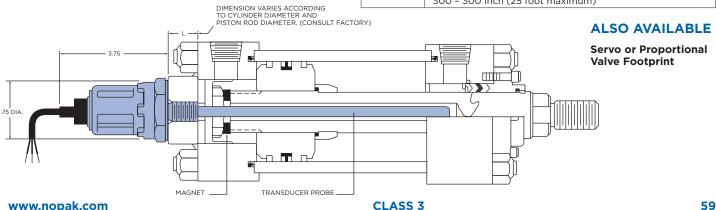
HERE'S HOW IT WORKS: It simply measures the time interval required for an electric current pulse to travel between two points. The two points of measurement are the fixed magnet located on the piston position

and the sensor at the end of the transducer probe. This concept has been successful in eliminating considerable expense for potentiometers, tach generators, encoders, racks, pinions, and other special hardware.

ADVANTAGES PLUS: Includes a non-contact operation, no wear, no noise generation, high reliability, infinite resolution (analog), high linearity (.05%), excellent repeatability (.002%), and direct digital output if required.

LDT Systems can be adapted to all NOPAK P6, H6 and H3 cylinder diameters with a 1-3/8" diameter rod or larger.

We welcome the opportunity to discuss your applications and help you supply your needs.


|                                         | NLDT SPECIFICATIONS                                                                                                                                                                                                 |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electrical stroke                       | Standard - up to 25 feet.                                                                                                                                                                                           |
| Null                                    | Positioned as required.                                                                                                                                                                                             |
| Null adjustment                         | 2% of total stroke nominal.                                                                                                                                                                                         |
| Scale adjustment                        | 1% of total stroke nominal.                                                                                                                                                                                         |
| Non-linearity                           | Less than ±0.05% of full range.                                                                                                                                                                                     |
| Repeatability                           | Better than ±0.001% of full range.                                                                                                                                                                                  |
| Temperature coefficient of scale factor | Transducer: less than 0.00011 inch/°F + [3 ppm/°F per inch of full stroke].  Analog Output Module: 20 ppm/°F.                                                                                                       |
| Frequency<br>response                   | Stroke dependent. 200 Hz to 50 Hz is typical for lengths of 12 inch to 100 inch respectively – wider response frequencies are available upon request. For digital systems, output is updated at discrete intervals. |
| Hysteresis                              | Less than 0.0008 in. maximum.                                                                                                                                                                                       |
| Output                                  | Analog: 0 to +10 VDC, 4 to 20 mA ungrounded (others available). Digital: pulse width modulated signal, TTL compatible.                                                                                              |
| Operating impendance                    | 10 ohms.                                                                                                                                                                                                            |
| Operating temperature range             | -35°F to 150°F (transducer probe to 180°F).                                                                                                                                                                         |
| Storage<br>temperature range            | -40°F to 180°F.                                                                                                                                                                                                     |
| Operation in hydraulic fluid            | The .375 inch dia. transducer probe is capable of operating in hydraulic fluid and will withstand 3,000 PSI operating pressure.                                                                                     |

| HOW TO ORDER |                    |
|--------------|--------------------|
|              | STROKE IN<br>NCHES |
|              |                    |

When ordering: Code Number must be completed using options listed at right.

For further detailed information contact your NOPAK distributor.

| DIGIT  | DESCRIPTION                                                                                                        |
|--------|--------------------------------------------------------------------------------------------------------------------|
| FIRST  | OUTPUT                                                                                                             |
|        | 1. 0 to +10 VDC w/Analog Output Module                                                                             |
|        | O to +10 VDC w/built-in Analog Personality Module     (Eliminates separate Analog Output Module)                   |
|        | 3. 4 to 20 MA grounded w/Analog Output Module                                                                      |
|        | 4. Half digital w/Digital Personality Module                                                                       |
|        | <ol> <li>Full digital w/Digital Personality Module and Digital<br/>Counter Card. Specify Binary or BCD.</li> </ol> |
|        | 6. Digital with RS422 Personality Module                                                                           |
|        | 7. Others (specify)                                                                                                |
| SECOND | ELECTRICAL STROKE IN INCHES (Example: 12.75 inches) 1 - 1 Inch through 300 - 300 Inch (25 foot maximum)            |





NOPAK Class 3 pressure-rated cylinders are designed for hydraulic service. For reference to basic pressure ratings, see table page 22. Cylinders 1-1/2" through 8" diameter bore are assembled from standard inventory components. Special design and large diameter Class 3 cylinders are available. Send us your specifications.

#### **OPERATING TEMPERATURES AND MEDIA**

Class 3 hydraulic cylinders equipped with standard Type A packings may be operated at temperatures from -40°F to 225°F air, water or oil. The following chart relates in a simplified general purpose manner the limitations and uses of available piston and rod packings.

| PACKIN                               | G TYPE                                  |
|--------------------------------------|-----------------------------------------|
| A = NITRILE (BUNA-N)                 | B = FLUOROCARBON                        |
| -40°F to +225°F<br>Std. Hyd. Oil     | -20°F to +325°F<br>Std. Hyd. Oil        |
| Air                                  | Air                                     |
| Water<br>(not steam)                 |                                         |
| Water Glycol<br>Fire Resistant Fluid | Phosphate Ester<br>Fire Resistant Fluid |

For specific media and temperature or conditions exceeding the chart ratings, consult NOPAK Engineering Department.

Applications involving Fire Resistant Fluids must be so specified for compatible component materials. When considering temperature, remember that as the temperature increases (within the rated limits) the packing life decreases.

#### **INTERCHANGEABILITY**

Class 3 cylinders are dimensionally interchangeable with other square-head cylinders of the same pressure classification. Construction and performance are in conformance with applicable recommended NFPA Standards.

#### **CUSHIONS**

NOPAK Class 3 cylinders are available with adjustable cushions on either or both ends, or non-cushion.

The purpose of a cushion is to slow up piston speed at the end of the stroke, eliminating hammer and shock. Where standard cushions are inadequate for unusual requirements, special cushions possibly requiring longer-than-standard heads can be furnished at additional charge. Very rapid cushioning of high speed movement may require deceleration valves.

The purpose of the ball check in the cushion mechanism is to allow fluid to pass to the piston face without obstruction (while the cushion sleeve is still within the bore in the head). This results in essential quick starting of the piston. Cushion adjusting screws serve to bypass the fluid from the trapped section between the piston and the cylinder head when the cushion sleeve has entered the bore. Turning the needle inward against the seat results in maximum cushion intensity. Backing up on the needle decreases the effect.

#### **CYLINDER PORT TYPES & LOCATION**

Standard ports are NPT. SAE O-ring boss ports are available. SAE 4-bolt flange ports are offered at extra charge. Specify Code 61 or Code 62.

Inlet ports are located in Position 1 as standard (see rod end view on dimension drawings). They can however, be located at other numbered locations on application. Extra inlets furnished at additional charge. Oversize and special inlets require dimensions and quotation on application.

#### WATER SERVICE

Special cylinders can be built for water service. Due to the uncertainty of action of water supply on some materials, responsibility for premature failure due to corrosion, mineral deposits or electrolysis cannot be accepted.

## **ENGINEERING INFORMATION**

#### PRE-STRESSING TIE RODS

Some of the tie rod torque values shown in Table A may be impractical to obtain with an ordinary torque wrench. If so, another method for prestressing the tie rods may be used. Lightly tighten opposite tie rods

alternately to a 100 ft. lb. torque value. Measure the stressed length of the tie rod (the distance between the nut faces

#### TABLE A - TIE ROD TORQUE

| CYL. DIA.       | 1-1/2 | 2    | 2-1/2 | 3-1/4 | 4   | 5   | 6    | 7     | 8     | 10   | 12   | 14    | 16    | 18    | 20    |
|-----------------|-------|------|-------|-------|-----|-----|------|-------|-------|------|------|-------|-------|-------|-------|
| No. of Tie Rod  | 4     | 4    | 4     | 4     | 4   | 4   | 4    | 4     | 4     | 12   | 16   | 8     | 8     | 12    | 12    |
| Tie Rod Size    | 3/8   | 7/16 | 1/2   | 5/8   | 5/8 | 7/8 | 1    | 1-1/8 | 1-1/4 | 1    | 1    | 1-1/2 | 1-1/2 | 1-1/2 | 1-1/2 |
| Torque Ft. Lbs. | 20    | 45   | 60    | 150   | 150 | 400 | 600  | 850   | 1000  | 600  | 600  | 2500  | 2500  | 2500  | 2500  |
| N. Factor       | -     | -    | -     | -     | -   | -   | .043 | .036  | .040  | .044 | .044 | .044  | .043  | .044  | .043  |

of thread engaged surfaces) and multiply this length by the proper "N" factor as specified in Table A. This will indicate the amount of turn or turns required. Scribe a reference mark on each nut and the adjacent bolted surface to assist in determining the amount of rotation. Slowly and evenly heat the exposed center length of the tie rod using caution not to overheat the tie rod or nearby cylinder or head surfaces. (If desired, use a fireproof heat shield for insulation of the cylinder barrel). When the tie rod is sufficiently heated the nut can be turned to the proper location. This procedure may be followed for the other tie rods in the alternate fashion until all the tie rods have been tightened the desired amount. After they have cooled, the tie rods will be stressed to the proper torque value.

#### TABLE B - DEDUCTIONS FOR PULL STROKE FORCE AND DISPLACEMENT

| ROD SIZE | ROD AREA<br>SQ. IN. | R      | OD DIAMETE | R FORCE IN I | POUNDS FOR | VARIOUS LIN | NE PRESSURE | s       | DISPLA<br>PER INCH ( | CEMENT<br>OF STROKE |
|----------|---------------------|--------|------------|--------------|------------|-------------|-------------|---------|----------------------|---------------------|
|          | 5G. IN.             | 500    | 750        | 1000         | 1250       | 1500        | 2000        | 3000    | CU. INCH             | GALLONS             |
| 5/8      | .307                | 154    | 230        | 307          | 384        | 461         | 614         | 921     | .307                 | .0013               |
| 1        | .785                | 393    | 589        | 785          | 981        | 1178        | 1570        | 2355    | .785                 | .0034               |
| 1-3/8    | 1.485               | 743    | 1114       | 1485         | 1856       | 2228        | 2970        | 4455    | 1.485                | .0064               |
| 1-3/4    | 2.405               | 1203   | 1804       | 2405         | 3006       | 3608        | 4810        | 7215    | 2.405                | .0104               |
| 2        | 3.142               | 1571   | 2357       | 3142         | 3928       | 4713        | 6284        | 9426    | 3.142                | .0136               |
| 2-1/2    | 4.909               | 2455   | 3682       | 4909         | 6137       | 7364        | 9818        | 14,727  | 4.909                | .0213               |
| 3        | 7.069               | 3535   | 5302       | 7069         | 8836       | 10,604      | 14,138      | 21,207  | 7.069                | .0306               |
| 3-1/2    | 9.621               | 4811   | 7216       | 9621         | 12,026     | 14,432      | 19,242      | 28,863  | 9.621                | .0416               |
| 4        | 12.566              | 6283   | 9425       | 12,566       | 15,708     | 18,849      | 25,132      | 37,698  | 12.566               | .0544               |
| 4-1/2    | 15.904              | 7952   | 11,928     | 15,904       | 19,880     | 23,856      | 31,808      | 47,712  | 15.904               | .0688               |
| 5        | 19.635              | 9818   | 14,726     | 19,635       | 24,544     | 29,452      | 39,270      | 58,905  | 19.635               | .0850               |
| 5-1/2    | 23.758              | 11,879 | 17,819     | 23,758       | 29,698     | 35,637      | 47,516      | 71,274  | 23.758               | .1028               |
| 7        | 38.484              | 19,242 | 28,863     | 38,484       | 48,105     | 57,726      | 76,968      | 115,452 | 38.484               | .1666               |
| 8        | 50.265              | 25,133 | 37,699     | 50,265       | 62,831     | 75,398      | 100,530     | 150,795 | 50.265               | .2176               |
| 9        | 63.617              | 31,809 | 47,713     | 63,617       | 79,521     | 95,426      | 127,234     | 190,851 | 63.617               | .2754               |
| 10       | 78.539              | 39,270 | 58,904     | 78,539       | 98,174     | 117,809     | 157,079     | 235,617 | 78.539               | .3400               |

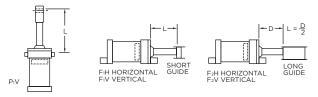
#### NOTE:

To determine cylinder pull stroke force or displacement, deduct force or displacement corresponding to rod size in Table B from force or displacement corresponding to bore size shown in Table C.

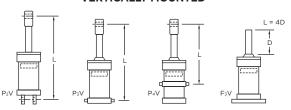
1 gallon = 231 Cu. In.

Area of Circle = .7854 d<sup>2</sup>

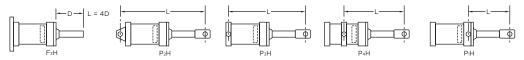
Piston Speed (In./Min.) =  $\frac{\text{Pressure Source Delivery (GPM)}}{\text{Control Pressure Source Delivery (GPM)}}$ Cylinder Displacement (Gal./ln.)


### **TABLE C - THRUST FORCE AND DISPLACEMENT**

| BORE SIZE | PISTON<br>AREA SQ. | СҮ      | LINDER THR | JST FORCE II | N POUNDS FO | R VARIOUS L | INE PRESSUF | RES     |          | CEMENT<br>OF STROKE |
|-----------|--------------------|---------|------------|--------------|-------------|-------------|-------------|---------|----------|---------------------|
|           | IN.                | 500     | 750        | 1000         | 1250        | 1500        | 2000        | 3000    | CU. INCH | GALLONS             |
| 1-1/2     | 1.767              | 884     | 1,325      | 1,767        | 2,209       | 2,650       | 3,534       | 5,301   | 1.767    | .00765              |
| 2         | 3.142              | 1,571   | 2,357      | 3,142        | 3,928       | 4,713       | 6,284       | 9,426   | 3.142    | .0136               |
| 2-1/2     | 4.909              | 2,455   | 3,682      | 4,909        | 6,137       | 7,364       | 9,818       | 14,727  | 4.909    | .0213               |
| 3-1/4     | 8.296              | 4,148   | 6,222      | 8,296        | 10,370      | 12,444      | 16,592      | 24,888  | 8.296    | .0359               |
| 4         | 12.566             | 6,283   | 9,425      | 12,566       | 15,708      | 18,849      | 25,132      | 37,698  | 12.566   | .0544               |
| 5         | 19.635             | 9,818   | 14,726     | 19,635       | 24,544      | 29,452      | 39,270      | 58,905  | 19.365   | .0850               |
| 6         | 28.274             | 14,137  | 21,206     | 28,274       | 35,342      | 42,411      | 56,548      | 84,822  | 28.274   | .1224               |
| 7         | 38.485             | 19,242  | 28,864     | 38,485       | 48,106      | 57,727      | 76,970      | 115,455 | 38.485   | .1666               |
| 8         | 50.265             | 25,133  | 37,699     | 50,265       | 62,832      | 75,398      | 100,530     | 150,795 | 50.265   | .2176               |
| 10        | 78.54              | 39,270  | 58,905     | 78,540       | 98,175      | 117,810     | 157,080     | 235,620 | 78.54    | .3400               |
| 12        | 113.10             | 56,550  | 84,825     | 113,100      | 141,375     | 169,650     | 226,200     | 339,300 | 113.10   | .4896               |
| 14        | 153.94             | 76,970  | 115,455    | 153,940      | 192,425     | 230,910     | 307,880     | 461,820 | 153.94   | .666                |
| 16        | 201.06             | 100,530 | 150,795    | 201,060      | 251,325     | 301,590     | 402,120     | 603,180 | 201.06   | .870                |
| 18        | 254.47             | 127,235 | 190,853    | 254,470      | 318,088     | 381,705     | 508,940     | 763,410 | 254.47   | 1.102               |
| 20        | 314.16             | 157,080 | 235,620    | 314,160      | 392,700     | 471,240     | 628,320     | 942,480 | 314.16   | 1.360               |




#### INFORMATION TO PREVENT EXCESSIVE BEARING WEAR AND PISTON ROD COLUMN FAILURES


#### **GROUP A - WITH PISTON RODS EXTENDED**



# **GROUP B -** TO BE CHECKED FOR BUCKLING OR JACK-KNIFING WITH PISTON RODS EXTENDED AND VERTICALLY MOUNTED



#### GROUP C - TO BE CHECKED FOR LOAD ON BEARING WITH PISTON RODS EXTENDED AND HORIZONTALLY MOUNTED



**STEP 1** — Find drawing in one of three groups above that fits your cylinder application and follow instructions listed for that group.

**Instructions:** Stop tubes are used on long push stroke cylinders to prevent jack-knifing or buckling. They are placed between the piston and cylinder head to restrict the extended position of the piston rod so that the lengthened space between piston and bushing provides additional piston rod guide support.

The best choice for a cylinder with an exceptionally long stop tube requirement is the DOUBLE PISTON WITH SPACER. Note that the piston effective bearing area is doubled in addition to gaining the normal increased minimum distance between bearing points.

To determine whether a stop tube is required on a push stroke cylinder, proceed as follows:

- a. Using above drawings, determine value of "L" from stroke length, rod and cylinder dimensions.
- b. Refer to TABLE A Minimum and Maximum Stop Tube Lengths on page 63 for stop tube recommendation. A cylinder having an "L" value 45 requires a minimum of 1" stop tube and a maximum of 5" stop tube. Specifications for more than the maximum stop tube will usually adversely increase the cylinder weight.

**Example:** In a  $P_2V$  type application requiring 32" of stroke, "L" = 32" + 32" + approximately 10" for head and cap thickness = 74". A stop tube 4" long is required (when a fraction of an inch of stop tube is calculated, use the next full inch.) Adjusted value of "L" is 74" + 4" or 78". Use of up to 8" of stop tube will further reduce bearing loads.

**Instructions:** Stop tubing is recommended for reducing piston and bushing/bearing loads on long stroke cylinders of the types shown. To determine length of stop tube required for this type of application, resolve the turning moments and loads between the piston and rod bushing. Include the weight of the fluid, especially on large bore cylinders. It is ideal to keep projected bearing area loads lower than 200 PSI.

**Caution:** Do not use oversize rods to lessen bearing loads. Stop tubes are more economical and effective; oversize rods are heavier, cost more than stop tubing and if misalignment occurs, bearing loads are considerably increased due to stiffness of the oversize rod.

If your drawing is  $F_3H$ ,  $P_2H$ ,  $P_3H$ , or  $P_4H$ , in Group C, check for stop tube requirements from instructions in Group B.

Use whichever stop tube is longer. Determine value of "L" and proceed to Step 2.

**STEP 2** — Find Rod Diameter for Column Strength.

Standard diameter piston rods are recommended on all installations except where column strength, piston rod sag, or return rate of hydraulic cylinders requires larger diameter rods.

Bushing/bearing loads caused by unavoidable misalignment are minimized when piston rods of correct diameter instead of unnecessarily large diameter piston rods are used. Correct (usually standard) piston rod diameters decrease and absorb shock loads to a greater extent than unnecessarily large oversize rods.

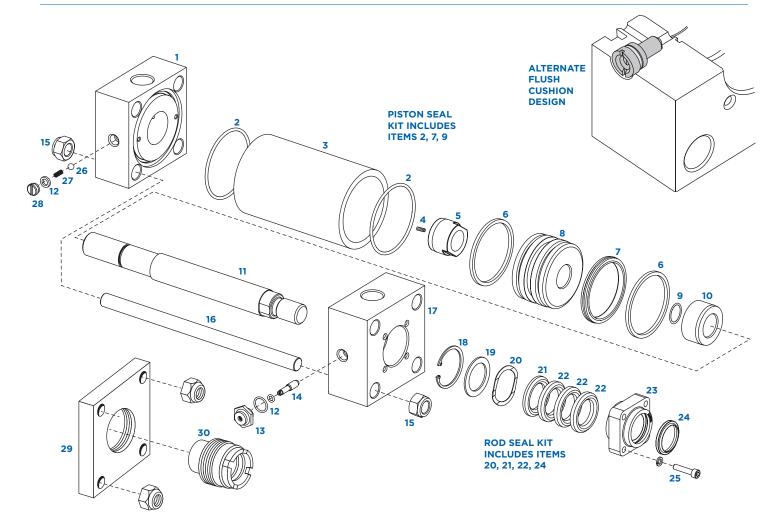
To determine the minimum piston rod diameter on push stroke cylinders:

- a. Determine your push stroke thrust from TABLE C Thrust Force and Displacement on page 61.
- b. Find your push stroke thrust "T" in TABLE B Value of "L" In Inches on page 63. If exact thrust isn't shown, use next larger shown.
- c. In the horizontal column in line with your thrust, find value of "L" determined in Step 1.
- d. Find minimum piston rod diameter required by following the same vertical line where your value of "L" is located, toward the top of the table.

**TABLE A - MINIMUM AND MAXIMUM STOP TUBE LENGTHS** 

| "L"<br>INCHES | MINIMUM STOP<br>TUBE LENGTH<br>(INCHES) | MAXIMUM STOP<br>TUBE LENGTH<br>(INCHES) | "L"<br>INCHES | MINIMUM STOP<br>TUBE LENGTH<br>(INCHES) | MAXIMUM STOP<br>TUBE LENGTH<br>(INCHES) | "L"<br>INCHES | MINIMUM STOP<br>TUBE LENGTH<br>(INCHES) | MAXIMUM STOP<br>TUBE LENGTH<br>(INCHES) |
|---------------|-----------------------------------------|-----------------------------------------|---------------|-----------------------------------------|-----------------------------------------|---------------|-----------------------------------------|-----------------------------------------|
| 5-10          | _                                       | 1                                       | 111-120       | 8                                       | 12                                      | 211-220       | 18                                      | 22                                      |
| 11-20         | -                                       | 2                                       | 121-130       | 9                                       | 13                                      | 221-230       | 19                                      | 23                                      |
| 21-30         | -                                       | 3                                       | 131-140       | 10                                      | 14                                      | 231-240       | 20                                      | 24                                      |
| 31-40         | -                                       | 4                                       | 141-150       | 11                                      | 15                                      | 241-250       | 21                                      | 25                                      |
| 41-50         | 1                                       | 5                                       | 151-160       | 12                                      | 16                                      | 251-260       | 22                                      | 26                                      |
| 51-60         | 2                                       | 6                                       | 161-170       | 13                                      | 17                                      | 261-270       | 23                                      | 27                                      |
| 61-70         | 3                                       | 7                                       | 171-180       | 14                                      | 18                                      | 271-280       | 24                                      | 28                                      |
| 71-80         | 4                                       | 8                                       | 181-190       | 15                                      | 19                                      | 281-290       | 25                                      | 29                                      |
| 81-90         | 5                                       | 9                                       | 191-200       | 16                                      | 20                                      | 291-300       | 26                                      | 30                                      |
| 91-100        | 6                                       | 10                                      | 201-210       | 17                                      | 21                                      | 301-310       | 27                                      | 31                                      |
| 101-110       | 7                                       | 11                                      |               |                                         |                                         |               |                                         |                                         |

NOTE: Using stop tube lengths greater than "Maximum Stop Tube" has diminishing effect on reducing bearing loads.


TABLE B - VALUE OF "L" IN INCHES

|                                 |                           |                |                 |                   | IAI               | DLE D             |                   |                   | L" IN IN          |                   |                   |                   |                   |                   |                   |                   |
|---------------------------------|---------------------------|----------------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| VALUE OF<br>"T" IN LBS.         | E OF PISTON ROD DIAMETERS |                |                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| IN THIS<br>COLUMN               | 0.63                      | 1.00           | 1.38            | 1.75              | 2.00              | 2.50              | 3.00              | 3.50              | 4.00              | 4.50              | 5.00              | 5.50              | 7.00              | 8.00              | 9.00              | 10.00             |
| 1,000<br>1,400<br>1,800         | 27<br>24<br>23            | 60<br>53<br>48 | 105<br>92<br>82 | 155<br>142<br>127 | 190<br>174<br>160 | 257<br>244<br>230 | 330<br>308<br>296 | 385<br>366        | 440               |                   |                   |                   |                   |                   |                   |                   |
| 2,400<br>3,200<br>4,000         | 19<br>16<br>13            | 45<br>41<br>38 | 75<br>67<br>63  | 114<br>103<br>94  | 145<br>130<br>119 | 213<br>194<br>175 | 281<br>261<br>240 | 347<br>329<br>310 | 415<br>400<br>378 | 488<br>461<br>446 |                   |                   |                   |                   |                   |                   |
| 5,000<br>6,000<br>8,000         | 9                         | 34<br>30<br>26 | 60<br>56<br>50  | 87<br>82<br>76    | 110<br>102<br>93  | 163<br>152<br>137 | 225<br>208<br>188 | 289<br>274<br>245 | 360<br>342<br>310 | 426<br>410<br>375 | 494<br>476<br>447 |                   |                   |                   |                   |                   |
| 10,000<br>12,000<br>16,000      |                           | 21<br>17       | 45<br>41<br>34  | 70<br>65<br>57    | 89<br>84<br>75    | 125<br>118<br>110 | 172<br>155<br>142 | 222<br>210<br>188 | 279<br>269<br>235 | 349<br>326<br>292 | 412<br>388<br>350 | 482<br>454<br>420 |                   |                   |                   |                   |
| 20,000<br>30,000<br>40,000      |                           |                | 28              | 52<br>39<br>22    | 68<br>55<br>43    | 103<br>87<br>74   | 136<br>120<br>108 | 172<br>156<br>142 | 218<br>189<br>177 | 270<br>230<br>210 | 326<br>285<br>248 | 385<br>330<br>294 |                   |                   |                   |                   |
| 50,000<br>60,000<br>80,000      |                           |                |                 |                   | 30                | 66<br>57<br>36    | 96<br>88<br>71    | 130<br>119<br>104 | 165<br>154<br>137 | 200<br>190<br>170 | 234<br>225<br>204 | 269<br>256<br>240 | 408<br>384<br>336 |                   |                   |                   |
| 100,000<br>120,000<br>140,000   |                           |                |                 |                   |                   |                   | 57<br>45          | 90<br>77<br>64    | 120<br>108<br>98  | 154<br>140<br>128 | 189<br>175<br>160 | 222<br>207<br>194 | 324<br>313<br>301 | 400<br>377<br>365 |                   |                   |
| 160,000<br>200,000<br>250,000   |                           |                |                 |                   |                   |                   |                   | 47                | 86<br>67          | 118<br>98<br>72   | 148<br>131<br>109 | 182<br>161<br>141 | 279<br>260<br>236 | 350<br>330<br>301 | 421<br>402<br>375 |                   |
| 300,000<br>350,000<br>400,000   |                           |                |                 |                   |                   |                   |                   |                   |                   |                   | 86<br>52          | 120<br>100<br>77  | 212<br>195<br>182 | 281<br>261<br>241 | 351<br>328<br>309 | 420<br>396<br>374 |
| 500,000<br>600,000<br>700,000   |                           |                |                 |                   |                   |                   |                   |                   |                   |                   |                   |                   | 152<br>114<br>70  | 212<br>183<br>162 | 274<br>247<br>221 | 341<br>310<br>280 |
| 800,000<br>900,000<br>1,000,000 |                           |                |                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | 118<br>82         | 197<br>168<br>115 | 260<br>237<br>212 |

Values of "L" less than those shown have a slenderness ratio (length  $\div$  radius of gyration which is length  $\div$  1/4 diameter of piston rod) of less than 50. Thus, the compressive strength formula (s = thrust  $\div$  rod area) is used rather than the column strength formula on which Table B is based. For very low slenderness ratios (below 20), compressive strength formulae with a 2 to 1 factor of safety are satisfactory. For slenderness ratios between 20 and 50, use compressive strength formulae with proportionate factors between 2 to 1 and 5 to 1.



#### **EXPLODED VIEW**



- 1 Blind end head
- 2 Tube seal •
- 3 Tube
- 4 Lock screw
- 5 Lock sleeve
- 6 Piston ring
- 7 "T" seal and back-ups • A
- 8 Piston
- 9 Piston O-ring •
- Cushion sleeve rod end
- Piston rod

- 12 Seal
- Cushion adjusting screw gland
- Cushion adjusting screw
- 15 Tie rod nut
- 16 Tie rod
- 17 Rod end head
- 18 Retainer ring
- 19 Packing spacer
- 20 Wave spring 1
- 21 Bottom adapter ring • •
- 22 Rod packing 1
- $\Delta$  = "T" seal used through 16" diameter bore; 18" and 20" fitted with piston rings. = For 7" diameter rods and larger:
  - Part 18, 19, 20 and 21 are eliminated
  - Part 22 replaced by a U-cup style seal
  - Part 23 replaced by a rod bearing and a multi-bolt gland retainer.
- = Items are included in seal repair kits. See page 65 for ordering information.
- <sup>0</sup> = Item 21 is metallic for high temp. applications.

#### When ordering replacement parts be sure to specify:

- Part by name and item number
- Bore, stroke and mounting
- Serial number shown on NOPAK label

NOTE: Isometric view of Double Rod cylinders available at N/C. Consult factory or an authorized distributor.

- 23 Packing gland
- 24 Rod wiper•
- 25 Packing gland cap screw
- 26 Check ball
- 27 Ball check spring
- 28 Ball check plug

#### **IF APPLICABLE:**

- 29 Head plate
- 30 Screw gland

### **REPAIR KITS - CLASS 3**

#### **ROD SEAL KITS**

| SINGLE ROD• |          |  |  |  |  |  |  |  |  |
|-------------|----------|--|--|--|--|--|--|--|--|
| ROD DIA.    | PART NO. |  |  |  |  |  |  |  |  |
| 0.63"       | RK3-63   |  |  |  |  |  |  |  |  |
| 1.00"       | RK3-100  |  |  |  |  |  |  |  |  |
| 1.38"       | RK3-138  |  |  |  |  |  |  |  |  |
| 1.75"       | RK3-175  |  |  |  |  |  |  |  |  |
| 2.00"       | RK3-200  |  |  |  |  |  |  |  |  |
| 2.50"       | RK3-250  |  |  |  |  |  |  |  |  |
| 3.00"       | RK3-300  |  |  |  |  |  |  |  |  |
| 3.50"       | RK3-350  |  |  |  |  |  |  |  |  |
| 4.00"       | RK3-400  |  |  |  |  |  |  |  |  |
| 4.50"       | RK3-450  |  |  |  |  |  |  |  |  |
| 5.00"       | RK3-500  |  |  |  |  |  |  |  |  |
| 5.50"       | RK3-550  |  |  |  |  |  |  |  |  |
| 7.00"       | RK3-700  |  |  |  |  |  |  |  |  |

Each Rod Seal Kit consists of:

- 1 V-ring rod packing
- 1 Rod wiper
- 1 Wave spring
- = To service Double Rod End Cylinder, order one Rod Kit for EACH rod end, and if applicable, one Piston Kit.

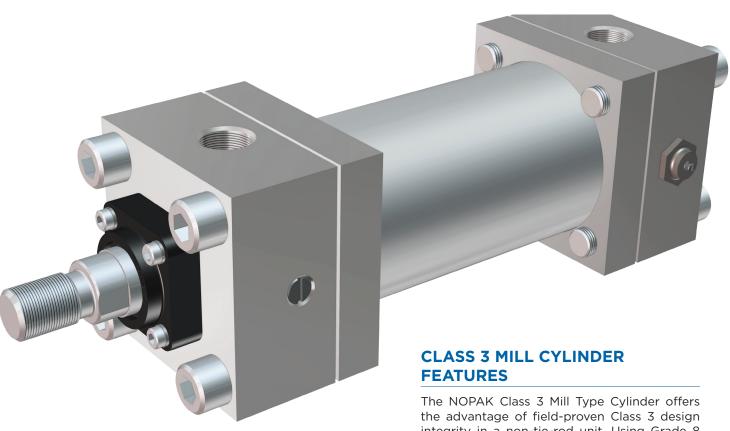
#### **PISTON SEAL KITS**

| SINGLE OR DOUBLE ROD |            |  |  |  |  |  |  |  |  |
|----------------------|------------|--|--|--|--|--|--|--|--|
| BORE SIZE            | PART NO. 1 |  |  |  |  |  |  |  |  |
| 1.50"                | PK3-150    |  |  |  |  |  |  |  |  |
| 2.00"                | PK3-200    |  |  |  |  |  |  |  |  |
| 2.50"                | PK3-250    |  |  |  |  |  |  |  |  |
| 3.25"                | PK3-325    |  |  |  |  |  |  |  |  |
| 4.00"                | PK3-400    |  |  |  |  |  |  |  |  |
| 5.00"                | PK3-500    |  |  |  |  |  |  |  |  |
| 6.00"                | PK3-600    |  |  |  |  |  |  |  |  |
| 7.00"                | PK3-700    |  |  |  |  |  |  |  |  |
| 8.00"                | PK3-800    |  |  |  |  |  |  |  |  |
| 10.00"               | PK3-1000   |  |  |  |  |  |  |  |  |
| 12.00"               | PK3-1200   |  |  |  |  |  |  |  |  |
| 14.00"               | PK3-1400   |  |  |  |  |  |  |  |  |

Each Piston Seal Kit consists of:

- 2 Tube O-rings
- 1 G. T. ring (piston seal)
- 1 Piston O-ring

NOTE: Cast iron rings NOT included.


U = When ordering, specify Type "A" or Type "B" seals. Type "A" = Buna-N (NITRILE) Type "B" = Fluorocarbon

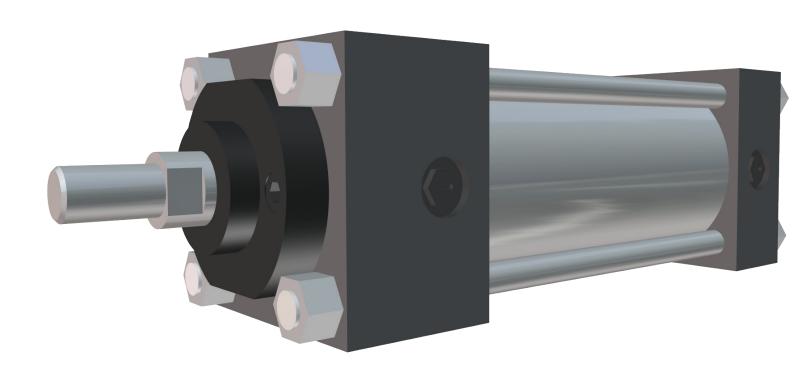
### **PACKING GLANDS - CLASS 3**

| ROD DIA. | ALL MODELS EXCEPT D<br>& DD <sup>[]</sup> | MODELS D & DD ONLY |  |  |  |  |
|----------|-------------------------------------------|--------------------|--|--|--|--|
|          | PART NUMBER                               | PART NUMBER        |  |  |  |  |
| 0.63"    | 1069G70                                   | 1071G70            |  |  |  |  |
| 1.00" •  | 1068G73                                   | 2859G73            |  |  |  |  |
| 1.38" •  | 1066G75                                   | 2858G75            |  |  |  |  |
| 1.75" •  | 1067G77                                   | 2857G77            |  |  |  |  |
| 2.00"    | 1065G78                                   | 2856G78            |  |  |  |  |
| 2.50"    | 1064G79                                   | 2855G79            |  |  |  |  |
| 3.00"    | 1063G81                                   | 2854G81            |  |  |  |  |
| 3.50"    | 1062G82                                   | 2853G82            |  |  |  |  |
| 4.00"    | 1061G83                                   | 2852G83            |  |  |  |  |
| 4.50"    | 1060G84                                   | C/F                |  |  |  |  |
| 5.00"    | 1070G85                                   | C/F                |  |  |  |  |
| 5.50"    | 1059G86                                   | C/F                |  |  |  |  |
| 7.00"    | C/F                                       | C/F                |  |  |  |  |

- = Use packing gland 2859G73 for 1.50" cyl. with 1.00" Ø rod
  Use packing gland 2858G75 for 2.00" cyl. with 1.38" Ø rod
  Use packing gland 2857G77 for 2.50" cyl. with 1.75" Ø rod
- $\ensuremath{\mathbb{I}}$  = For Models AL, T and TR, consult factory.








the NOPAK Class 3 Mill Type Cylinder offers the advantage of field-proven Class 3 design integrity in a non-tie-rod unit. Using Grade 8 fasteners we bolt NOPAK production cylinder heads to square flanges that have been welded to both ends of the cylinder tube.

All the features found in NOPAK's Class 3 are incorporated in the 3M series. A long list of options, including dual piston stop tube, integral LDT (Linear Displacement Transducer), servo or proportional valve footprint in cylinder head, and multiple mounting styles are available.

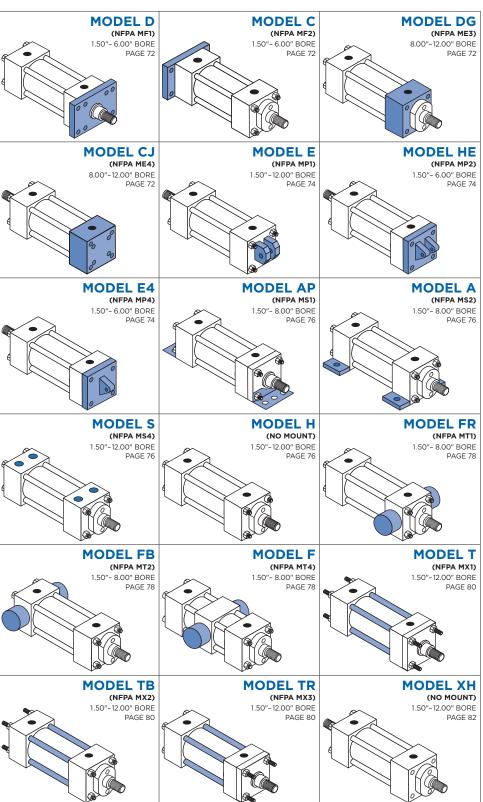
# Class 5N

# Low Pressure NFPA Aluminum Cylinders

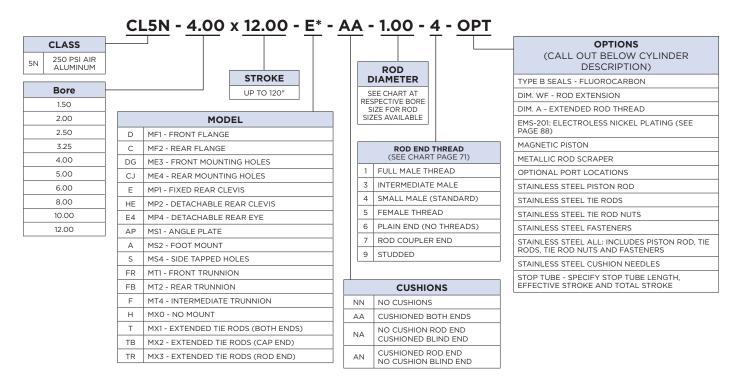







## **MOUNTING STYLES INDEX**

#### **TABLE OF CONTENTS**

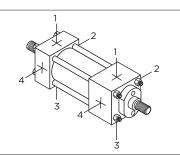

| Mounting Styles Index72                                      |
|--------------------------------------------------------------|
| How To Order73Ordering Code Example73Combination Mounts73    |
| Class 5N Features                                            |
| Piston Rod Dimension Data                                    |
| Flange Mount Cylinders<br>1.50" Through 12.00" Bore          |
| Clevis and Eye Mount Cylinders<br>1.50" Through 12.00" Bore  |
| Angle and Side Lug Mount Cylinders 1.50" Through 12.00" Bore |
| Trunnion Mount Cylinders<br>1.50" Through 8.00" Bore         |
| Tie Rod Mount Cylinders<br>1.50" Through 12.00" Bore         |
| Double Rod End Cylinders<br>1.50" Through 12.00" Bore        |
| Technical Data                                               |
| Accessories                                                  |
| Options and Modifications90                                  |



CLICK HERE
TO CONFIGURE
YOUR
CYLINDER



#### ORDERING CODE EXAMPLE

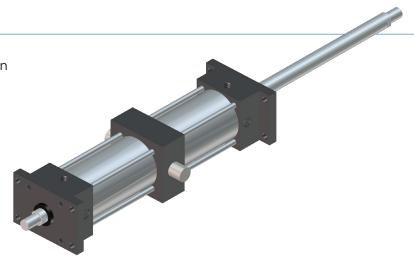



\* FOR DOUBLE ROD END CYLINDERS, ADD AN "X" BEFORE THE MODEL IDENTIFICATION (EXAMPLE: XA, XD, XFR).

# STANDARD PORT AND CUSHION ADJUSTMENT POSITIONS

- PORTS POSITION 1
- CUSHION ADJUSTMENT POSITION 2

**NOTE:** When optional port locations are ordered, specify both port locations, even if one port is in the standard location.




#### **COMBINATION MOUNTS**

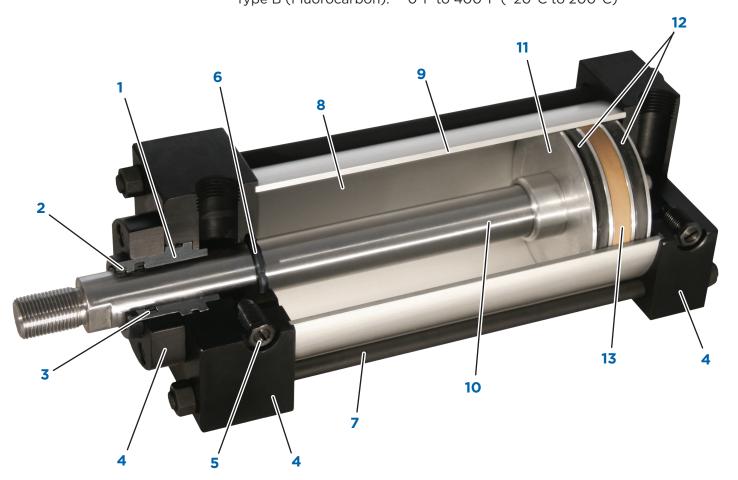
Cylinders can be ordered with a combination of mounts for added design flexibility.

#### **HOW TO ORDER:**

Combination mount part numbers can be constructed by adding a dash (-) in between the desired mounts in the part number. Consult factory for more information.






#### **CLASS 5N ALUMINUM NFPA CYLINDERS**

#### **HEAVY-DUTY DESIGN FOR RELIABLE, CONSISTENT OPERATION**

OPERATING PRESSURE
OPERATING TEMPERATURE

250 PSI Air

Type A (Nitrile): 20°F to 200°F (-25°C to 90°C)
Type B (Fluorocarbon): 0°F to 400°F (-20°C to 200°C)



#### 1. ROD BUSHING -

Precision machined from 150,000 PSI rated graphite-filled cast iron and PTFE coated to reduce friction and extend cycle life. Bushing design traps lubrication in effective bearing area.

#### 2. ROD WIPER -

Abrasion resistant urethane provides aggressive wiping action in all environments. External lip design prevents debris from entering cylinder.

#### 3. ROD SEALS -

Heavy lip design Carboxilated Nitrile construction. Seals are pressure activated and wear-compensating for long life (self-lubricating material).

#### 4. HEAD, CAP & RETAINER -

Precision machined from high strength 6061-T6 aluminum alloy. Black anodized for corrosion resistance.

#### 5. CUSHION ADJUSTMENT NEEDLE -

Adjustable steel needle design has fine thread metering and is positively captured to prevent needle ejection during adjustment.

#### 6. CUSHIONS -

Floating cushion seal designed for maximum cushion performance, quick return stroke break-away and extended life.

#### 7. TIE RODS -

Pre-stressed high carbon steel tie rod construction eliminates axial loading of cylinder tube and maintains compression on tube and end seals.

#### 8. PERMANENT LUBRICATION -

Permanently lubricated with Magnalube-G PTFE based grease on all internal components. This is a non-migratory type high performance grease providing outstanding service life. No additional lubrication is required.

#### 9. CYLINDER TUBE -

Precision machined from 6063-T6832 high tensile aluminum alloy and hard coat to 60 Rc for wear resistance and extended cycle life.

#### 10. PISTON ROD -

Precision machined from high yield, polished and hard chrome plated steel.

#### 11. PISTON -

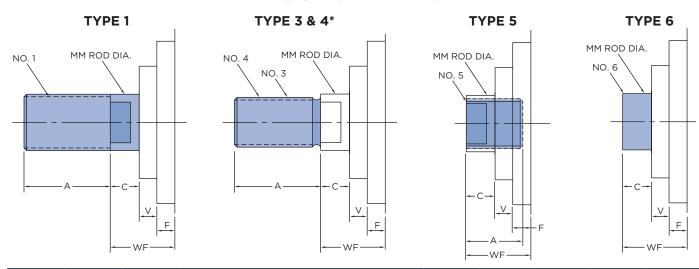
Precision machined from 6061-T651 aluminum alloy, provides an excellent bearing surface for extended cylinder life.

#### 12. PISTON SEALS -

Heavy lip design Carboxilated Nitrile construction. Seals are pressure activated and wear-compensating for long life (self-lubricating material).

#### 13. PISTON WEAR BAND -

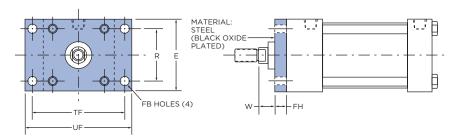
90% Virgin PTFE and 10% Polyphenylene Sulfidefilled wear band; extremely low wear rate.


### **ABOUT ROD END TYPES**

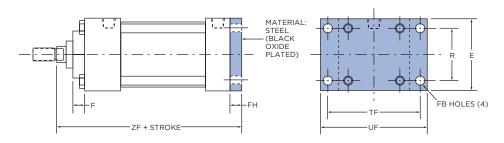
Type 4\* Male Rod End is STANDARD.

Other NFPA Styles are available (see chart).

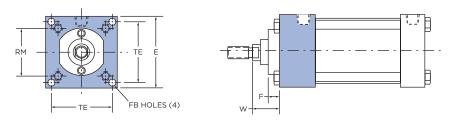
Special rod ends are available, including metric threads, coarse (UNC) threads, etc. Consult factory for more information. For custom thread lengths, specify Dim. A = (length).


#### **PISTON ROD END TYPES**

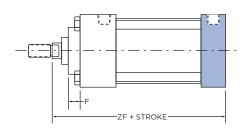


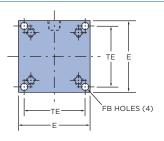

| BORE  | ROD MM | ROD END TYPE |           |          |          |            | A        | С    | F    | v        | WF   |
|-------|--------|--------------|-----------|----------|----------|------------|----------|------|------|----------|------|
| BORE  |        | NO. 1        | NO. 3     | NO. 4*   | NO. 5    | NO. 6      | <b>^</b> |      | F    | <b>'</b> | VVF  |
| 1.50  | 0.63   | 0.63 -18     | 0.50-20   | 0.44-20  | 0.44-20  | No Threads | 0.75     | 0.38 | 0.38 | 0.25     | 1.00 |
| 1.50  | 1.00   | 1.00 -14     | 0.88 -14  | 0.75 -16 | 0.75 -16 | No Threads | 1.13     | 0.50 | 0.38 | 0.50     | 1.38 |
| 2.00  | 0.63   | 0.63 -18     | 0.50 - 20 | 0.44-20  | 0.44-20  | No Threads | 0.75     | 0.38 | 0.38 | 0.25     | 1.00 |
| 2.00  | 1.00   | 1.00 -14     | 0.88-14   | 0.75 -16 | 0.75 -16 | No Threads | 1.13     | 0.50 | 0.38 | 0.50     | 1.38 |
| 2.50  | 0.63   | 0.63 -18     | 0.50 - 20 | 0.44-20  | 0.44-20  | No Threads | 0.75     | 0.38 | 0.38 | 0.25     | 1.00 |
| 2.50  | 1.00   | 1.00 -14     | 0.88 -14  | 0.75 -16 | 0.75 -16 | No Threads | 1.13     | 0.50 | 0.38 | 0.50     | 1.38 |
| 7.05  | 1.00   | 1.00 -14     | 0.88 -14  | 0.75 -16 | 0.75 -16 | No Threads | 1.13     | 0.50 | 0.63 | 0.25     | 1.38 |
| 3.25  | 1.38   | 1.38 -12     | 1.25 -12  | 1.00 -14 | 1.00 -14 | No Threads | 1.63     | 0.63 | 0.63 | 0.38     | 1.63 |
| 4.00  | 1.00   | 1.00 -14     | 0.88 -14  | 0.75 -16 | 0.75 -16 | No Threads | 1.13     | 0.50 | 0.63 | 0.25     | 1.38 |
| 4.00  | 1.38   | 1.38 -12     | 1.25 -12  | 1.00 -14 | 1.00 -14 | No Threads | 1.63     | 0.63 | 0.63 | 0.38     | 1.63 |
| 5.00  | 1.00   | 1.00 -14     | 0.88 -14  | 0.75 -16 | 0.75 -16 | No Threads | 1.13     | 0.50 | 0.63 | 0.25     | 1.38 |
| 5.00  | 1.38   | 1.38 -12     | 1.25 -12  | 1.00 -14 | 1.00 -14 | No Threads | 1.63     | 0.63 | 0.63 | 0.38     | 1.63 |
| 6.00  | 1.38   | 1.38 -12     | 1.25 -12  | 1.00 -14 | 1.00 -14 | No Threads | 1.63     | 0.63 | 0.63 | 0.38     | 1.63 |
| 6.00  | 1.75   | 1.75 -12     | 1.50 -12  | 1.25 -12 | 1.25 -12 | No Threads | 2.00     | 0.75 | 0.63 | 0.50     | 1.88 |
| 0.00  | 1.38   | 1.38 -12     | 1.25 -12  | 1.00 -14 | 1.00 -14 | No Threads | 1.63     | 0.63 | 0.63 | 0.38     | 1.63 |
| 8.00  | 1.75   | 1.75 -12     | 1.50 -12  | 1.25 -12 | 1.25 -12 | No Threads | 2.00     | 0.75 | 0.63 | 0.50     | 1.88 |
| 10.00 | 1.75   | 1.75 -12     | 1.50 -12  | 1.25 -12 | 1.25 -12 | No Threads | 2.00     | 0.75 | 0.63 | 0.50     | 1.88 |
| 10.00 | 2.00   | 2.00 -12     | 1.75 -12  | 1.50 -12 | 1.50 -12 | No Threads | 2.25     | 0.88 | 0.75 | 0.38     | 2.00 |
| 12.00 | 2.00   | 2.00 -12     | 1.75 -12  | 1.50 -12 | 1.50 -12 | No Threads | 2.25     | 0.88 | 0.75 | 0.38     | 2.00 |
| 12.00 | 2.50   | 2.50 -12     | 2.25 -12  | 1.88 -12 | 1.88 -12 | No Threads | 3.00     | 1.00 | 0.75 | 0.50     | 2.25 |



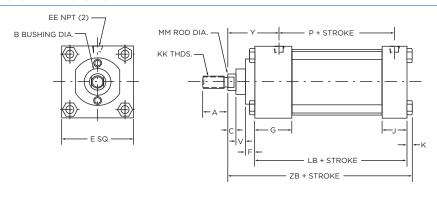

## **MODEL D** (NFPA MF1) 1.50" - 6.00" BORES




## **MODEL C** (NFPA MF2) 1.50" - 6.00" BORES




### **MODEL DG** (NFPA ME3) 8.00"-12.00" BORES




## **MODEL CJ** (NFPA ME4) 8.00"-12.00" BORES





### **BASIC DIMENSIONS**

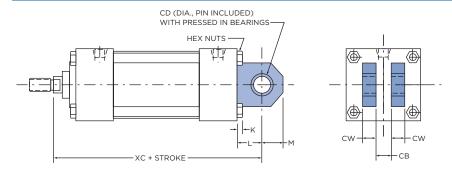


# **FLANGE MOUNT CYLINDERS**

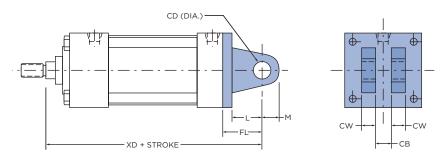
1.50" THROUGH 12.00" BORE

 Table 1
 BASIC DIMENSIONS STANDARD & OVERSIZE RODS

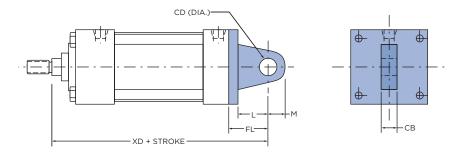
| BORE  | ROD<br>DIAMETER | Α     | В     | С     | EE    | G     | J     | К     | KK        | LB    | ММ    | Р     | v     | Y     | ZB    |
|-------|-----------------|-------|-------|-------|-------|-------|-------|-------|-----------|-------|-------|-------|-------|-------|-------|
| 1.50  | 0.63            | 0.750 | 1.125 | 0.375 | 0.375 | 1.500 | 1.000 | 0.250 | 7/16 - 20 | 3.625 | 0.625 | 2.375 | 0.250 | 1.875 | 4.875 |
| 1.50  | 1.00            | 1.125 | 1.500 | 0.500 | 0.375 | 1.500 | 1.000 | 0.250 | 3/4-16    | 3.625 | 1.000 | 2.375 | 0.500 | 2.250 | 5.250 |
| 2.00  | 0.63            | 0.750 | 1.125 | 0.375 | 0.375 | 1.500 | 1.000 | 0.313 | 7/16 - 20 | 3.625 | 0.625 | 2.375 | 0.250 | 1.875 | 4.938 |
| 2.00  | 1.00            | 1.125 | 1.500 | 0.500 | 0.375 | 1.500 | 1.000 | 0.313 | 3/4 -16   | 3.625 | 1.000 | 2.375 | 0.500 | 2.250 | 5.313 |
| 2.50  | 0.63            | 0.750 | 1.125 | 0.375 | 0.375 | 1.500 | 1.000 | 0.313 | 7/16 - 20 | 3.750 | 0.625 | 2.500 | 0.250 | 1.875 | 5.063 |
| 2.50  | 1.00            | 1.125 | 1.500 | 0.500 | 0.375 | 1.500 | 1.000 | 0.313 | 3/4 -16   | 3.750 | 1.000 | 2.500 | 0.500 | 2.250 | 5.438 |
| 3.25  | 1.00            | 1.125 | 1.500 | 0.500 | 0.500 | 1.750 | 1.250 | 0.375 | 3/4 -16   | 4.250 | 1.000 | 2.750 | 0.250 | 2.375 | 6.000 |
| 3.25  | 1.38            | 1.625 | 2.000 | 0.625 | 0.500 | 1.750 | 1.250 | 0.375 | 1-14      | 4.250 | 1.000 | 1.375 | 0.375 | 2.625 | 6.250 |
| 4.00  | 1.00            | 1.125 | 1.500 | 0.500 | 0.500 | 1.750 | 1.250 | 0.375 | 3/4 -16   | 4.250 | 1.000 | 2.750 | 0.250 | 2.375 | 6.000 |
| 4.00  | 1.38            | 1.625 | 2.000 | 0.625 | 0.500 | 1.750 | 1.250 | 0.375 | 1-14      | 4.250 | 1.000 | 1.375 | 0.375 | 2.625 | 6.250 |
| 5.00  | 1.00            | 1.125 | 1.500 | 0.500 | 0.500 | 1.750 | 1.250 | 0.438 | 3/4 -16   | 4.500 | 1.000 | 3.000 | 0.250 | 2.375 | 6.313 |
| 3.00  | 1.38            | 1.625 | 2.000 | 0.625 | 0.500 | 1.750 | 1.250 | 0.438 | 1-14      | 4.500 | 1.000 | 1.375 | 0.375 | 2.625 | 6.563 |
| 6.00  | 1.38            | 1.625 | 2.000 | 0.625 | 0.750 | 2.000 | 1.500 | 0.438 | 1-14      | 5.000 | 1.375 | 3.250 | 0.375 | 2.750 | 7.063 |
| 6.00  | 1.75            | 2.000 | 2.375 | 0.750 | 0.750 | 2.000 | 1.500 | 0.438 | 1-1/4-12  | 5.000 | 1.750 | 3.250 | 0.500 | 3.000 | 7.313 |
| 8.00  | 1.38            | 1.625 | 2.000 | 0.625 | 0.750 | 2.000 | 1.500 | 0.563 | 1-14      | 5.125 | 1.375 | 3.375 | 0.375 | 2.750 | 7.313 |
| 8.00  | 1.75            | 2.000 | 2.375 | 0.750 | 0.750 | 2.000 | 1.500 | 0.563 | 1-1/4-12  | 5.125 | 1.750 | 3.375 | 0.500 | 3.000 | 7.563 |
| 10.00 | 1.75            | 2.000 | 2.375 | 0.750 | 1.000 | 2.250 | 2.000 | 0.688 | 1-1/4-12  | 6.375 | 1.750 | 4.313 | 0.500 | 3.063 | 8.938 |
| 10.00 | 2.00            | 2.250 | 2.625 | 0.875 | 1.000 | 2.250 | 2.000 | 0.688 | 1-1/2-12  | 6.375 | 2.000 | 4.313 | 0.375 | 3.188 | 9.063 |
| 12.00 | 2.00            | 2.250 | 2.625 | 0.875 | 1.000 | 2.250 | 2.000 | 0.688 | 1-1/2-12  | 6.875 | 2.000 | 4.813 | 0.375 | 3.188 | 9.563 |
| 12.00 | 2.50            | 3.000 | 3.125 | 1.000 | 1.000 | 2.250 | 2.000 | 0.688 | 1-7/8-12  | 6.875 | 2.500 | 4.813 | 0.500 | 3.438 | 9.813 |


 Table 2
 MODELS D, C, DG AND CJ FLANGE MOUNT DIMENSIONS

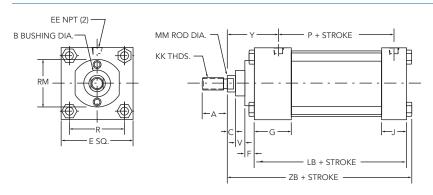
| BORE  | ROD DIAMETER | E      | F     | FB    | FH    | R     | RM    | TE     | TF    | UF    | W     | ZF    |
|-------|--------------|--------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|
| 1.50  | 0.63         | 2.000  | 0.375 | 0.313 | 0.375 | 1.438 | -     | -      | 2.750 | 3.375 | 0.625 | 5.000 |
| 1.50  | 1.00         | 2.000  | 0.375 | 0.313 | 0.375 | 1.438 | -     | -      | 2.750 | 3.375 | 1.000 | 5.375 |
| 2.00  | 0.63         | 2.500  | 0.375 | 0.375 | 0.375 | 1.848 | -     | -      | 3.375 | 4.125 | 0.625 | 5.000 |
| 2.00  | 1.00         | 2.500  | 0.375 | 0.375 | 0.375 | 1.848 | -     | -      | 3.375 | 4.125 | 1.000 | 5.375 |
| 2.50  | 0.63         | 3.000  | 0.375 | 0.375 | 0.375 | 2.188 | -     | -      | 3.875 | 4.625 | 0.625 | 5.125 |
| 2.50  | 1.00         | 3.000  | 0.375 | 0.375 | 0.375 | 2.188 | -     | -      | 3.875 | 4.625 | 1.000 | 5.500 |
| 3.25  | 1.00         | 3.750  | 0.625 | 0.438 | 0.625 | 2.766 | -     | -      | 4.688 | 5.500 | 0.750 | 6.250 |
| 3.25  | 1.38         | 3.750  | 0.625 | 0.438 | 0.625 | 2.766 | -     | -      | 4.688 | 5.500 | 1.000 | 6.500 |
| 4.00  | 1.00         | 4.500  | 0.625 | 0.438 | 0.625 | 3.328 | -     | -      | 5.438 | 6.250 | 0.750 | 6.250 |
| 4.00  | 1.38         | 4.500  | 0.625 | 0.438 | 0.625 | 3.328 | -     | -      | 5.438 | 6.250 | 1.000 | 6.500 |
| 5.00  | 1.00         | 5.500  | 0.625 | 0.563 | 0.625 | 4.100 | -     | -      | 6.625 | 7.625 | 0.750 | 6.500 |
| 3.00  | 1.38         | 5.500  | 0.625 | 0.563 | 0.625 | 4.100 | -     | -      | 6.625 | 7.625 | 1.000 | 6.750 |
| 6.00  | 1.38         | 6.500  | 0.625 | 0.563 | 0.750 | 4.875 | -     | -      | 7.625 | 8.625 | 0.875 | 7.375 |
| 0.00  | 1.75         | 6.500  | 0.625 | 0.563 | 0.750 | 4.875 | -     | -      | 7.625 | 8.625 | 1.125 | 7.625 |
| 8.00  | 1.38         | 8.500  | 0.625 | 0.688 | N/A   | N/A   | 3.500 | 7.570  | N/A   | N/A   | 1.625 | 6.750 |
| 8.00  | 1.75         | 8.500  | 0.625 | 0.688 | N/A   | N/A   | 3.500 | 7.570  | N/A   | N/A   | 1.875 | 7.000 |
| 10.00 | 1.75         | 10.625 | 0.625 | 0.813 | N/A   | N/A   | 3.500 | 9.400  | N/A   | N/A   | 1.875 | 8.250 |
| 10.00 | 2.00         | 10.625 | 0.750 | 0.813 | N/A   | N/A   | 5.000 | 9.400  | N/A   | N/A   | 2.000 | 8.375 |
| 12.00 | 2.00         | 12.750 | 0.750 | 0.813 | N/A   | N/A   | 5.000 | 11.100 | N/A   | N/A   | 2.000 | 8.875 |
| 12.00 | 2.50         | 12.750 | 0.750 | 0.813 | N/A   | N/A   | 5.000 | 11.100 | N/A   | N/A   | 2.250 | 9.125 |


www.nopak.com CLASS 5N 73




# MODEL E (NFPA MP1)




## **MODEL HE** (NFPA MP2) 1.50"- 6.00" BORES



# MODEL E4 (NFPA MP4) 1.50"- 6.00" BORES



# **BASIC DIMENSIONS**



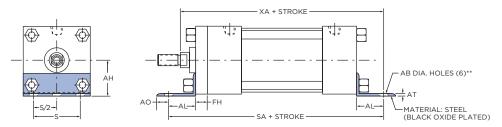
# **CLEVIS AND EYE MOUNT CYLINDERS**

1.50" THROUGH 12.00" BORE

 Table 1
 BASIC DIMENSIONS STANDARD & OVERSIZE RODS

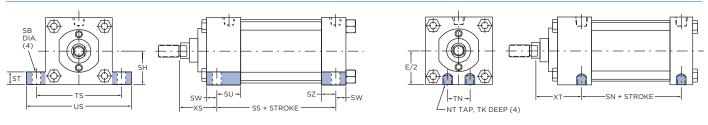
| BORE  | ROD<br>DIAMETER | Α     | В     | С     | E      | EE    | F     | G     | J     | кк        | LB    | ММ    | Р     | R     | RM   | v     | Υ     | ZB    |
|-------|-----------------|-------|-------|-------|--------|-------|-------|-------|-------|-----------|-------|-------|-------|-------|------|-------|-------|-------|
| 1.50  | 0.63            | 0.750 | 1.125 | 0.375 | 2.000  | 0.375 | 0.375 | 1.500 | 1.000 | 7/16 - 20 | 3.625 | 0.625 | 2.375 | 1.438 | 2.00 | 0.250 | 1.875 | 4.875 |
| 1.50  | 1.00            | 1.125 | 1.500 | 0.500 | 2.000  | 0.375 | 0.375 | 1.500 | 1.000 | 3/4-16    | 3.625 | 1.000 | 2.375 | 1.438 | 2.00 | 0.500 | 2.250 | 5.250 |
| 2.00  | 0.63            | 0.750 | 1.125 | 0.375 | 2.500  | 0.375 | 0.375 | 1.500 | 1.000 | 7/16 - 20 | 3.625 | 0.625 | 2.375 | 1.844 | 2.00 | 0.250 | 1.875 | 4.938 |
| 2.00  | 1.00            | 1.125 | 1.500 | 0.500 | 2.500  | 0.375 | 0.375 | 1.500 | 1.000 | 3/4 -16   | 3.625 | 1.000 | 2.375 | 1.844 | 2.50 | 0.500 | 2.250 | 5.313 |
| 2.50  | 0.63            | 0.750 | 1.125 | 0.375 | 3.000  | 0.375 | 0.375 | 1.500 | 1.000 | 7/16 - 20 | 3.750 | 0.625 | 2.500 | 2.188 | 2.00 | 0.250 | 1.875 | 5.063 |
| 2.50  | 1.00            | 1.125 | 1.500 | 0.500 | 3.000  | 0.375 | 0.375 | 1.500 | 1.000 | 3/4-16    | 3.750 | 1.000 | 2.500 | 2.188 | 3.00 | 0.500 | 2.250 | 5.438 |
| 3.25  | 1.00            | 1.125 | 1.500 | 0.500 | 3.750  | 0.500 | 0.625 | 1.750 | 1.250 | 3/4-16    | 4.250 | 1.000 | 2.750 | 2.766 | 2.75 | 0.250 | 2.375 | 6.000 |
| 3.25  | 1.38            | 1.625 | 2.000 | 0.625 | 3.750  | 0.500 | 0.625 | 1.750 | 1.250 | 1-14      | 4.250 | 1.000 | 1.375 | 2.766 | 3.75 | 0.375 | 2.625 | 6.250 |
| 4.00  | 1.00            | 1.125 | 1.500 | 0.500 | 4.500  | 0.500 | 0.625 | 1.750 | 1.250 | 3/4 -16   | 4.250 | 1.000 | 2.750 | 3.320 | 2.75 | 0.250 | 2.375 | 6.000 |
| 4.00  | 1.38            | 1.625 | 2.000 | 0.625 | 4.500  | 0.500 | 0.625 | 1.750 | 1.250 | 1-14      | 4.250 | 1.000 | 1.375 | 3.320 | 3.50 | 0.375 | 2.625 | 6.250 |
| 5.00  | 1.00            | 1.125 | 1.500 | 0.500 | 5.500  | 0.500 | 0.625 | 1.750 | 1.250 | 3/4 -16   | 4.500 | 1.000 | 3.000 | 4.100 | 2.75 | 0.250 | 2.375 | 6.313 |
| 5.00  | 1.38            | 1.625 | 2.000 | 0.625 | 5.500  | 0.500 | 0.625 | 1.750 | 1.250 | 1-14      | 4.500 | 1.000 | 1.375 | 4.100 | 3.50 | 0.375 | 2.625 | 6.563 |
| 6.00  | 1.38            | 1.625 | 2.000 | 0.625 | 6.500  | 0.750 | 0.625 | 2.000 | 1.500 | 1-14      | 5.000 | 1.375 | 3.250 | 4.875 | 3.50 | 0.375 | 2.750 | 7.063 |
| 6.00  | 1.75            | 2.000 | 2.375 | 0.750 | 6.500  | 0.750 | 0.625 | 2.000 | 1.500 | 1-1/4-12  | 5.000 | 1.750 | 3.250 | 4.875 | 3.50 | 0.500 | 3.000 | 7.313 |
| 8.00  | 1.38            | 1.625 | 2.000 | 0.625 | 8.500  | 0.750 | 0.625 | 2.000 | 1.500 | 1-14      | 5.125 | 1.375 | 3.375 | 6.438 | 3.50 | 0.375 | 2.750 | 7.313 |
| 8.00  | 1.75            | 2.000 | 2.375 | 0.750 | 8.500  | 0.750 | 0.625 | 2.000 | 1.500 | 1-1/4-12  | 5.125 | 1.750 | 3.375 | 6.438 | 3.50 | 0.500 | 3.000 | 7.563 |
| 10.00 | 1.75            | 2.000 | 2.375 | 0.750 | 10.625 | 1.000 | 0.625 | 2.250 | 2.000 | 1-1/4-12  | 6.375 | 1.750 | 4.313 | 7.922 | 3.50 | 0.500 | 3.063 | 8.938 |
| 10.00 | 2.00            | 2.250 | 2.625 | 0.875 | 10.625 | 1.000 | 0.750 | 2.250 | 2.000 | 1-1/2-12  | 6.375 | 2.000 | 4.313 | 7.922 | 5.00 | 0.375 | 3.188 | 9.063 |
| 12.00 | 2.00            | 2.250 | 2.625 | 0.875 | 12.750 | 1.000 | 0.750 | 2.250 | 2.000 | 1-1/2-12  | 6.875 | 2.000 | 4.813 | 9.400 | 5.00 | 0.375 | 3.188 | 9.563 |
| 12.00 | 2.50            | 3.000 | 3.125 | 1.000 | 12.750 | 1.000 | 0.750 | 2.250 | 2.000 | 1-7/8-12  | 6.875 | 2.500 | 4.813 | 9.400 | 5.00 | 0.500 | 3.438 | 9.813 |

 Table 2
 MODEL E, HE CLEVIS MOUNT AND MODEL E4 EYE MOUNT DIMENSIONS


| BORE  | ROD<br>DIAMETER | СВ    | CD    | cw    | FL    | К     | L     | М     | хс     | XD    |
|-------|-----------------|-------|-------|-------|-------|-------|-------|-------|--------|-------|
| 1.50  | 0.63            | 0.750 | 0.500 | 0.500 | 1.125 | N/A   | 0.750 | 0.625 | 5.375  | 5.750 |
| 1.50  | 1.00            | 0.750 | 0.500 | 0.500 | 1.125 | N/A   | 0.750 | 0.625 | 5.750  | 6.125 |
| 2.00  | 0.63            | 0.750 | 0.500 | 0.500 | 1.125 | N/A   | 0.750 | 0.625 | 5.375  | 5.750 |
| 2.00  | 1.00            | 0.750 | 0.500 | 0.500 | 1.125 | N/A   | 0.750 | 0.625 | 5.750  | 6.125 |
| 2.50  | 0.63            | 0.750 | 0.500 | 0.500 | 1.125 | N/A   | 0.750 | 0.625 | 5.500  | 5.875 |
| 2.50  | 1.00            | 0.750 | 0.500 | 0.500 | 1.125 | N/A   | 0.750 | 0.625 | 5.875  | 6.250 |
| 3.25  | 1.00            | 1.250 | 0.750 | 0.625 | 1.875 | 0.375 | 1.250 | 0.875 | 6.875  | 7.500 |
| 3.25  | 1.38            | 1.250 | 0.750 | 0.625 | 1.875 | 0.375 | 1.250 | 0.875 | 7.125  | 7.750 |
| 4.00  | 1.00            | 1.250 | 0.750 | 0.625 | 1.875 | 0.375 | 1.250 | 0.875 | 6.875  | 7.500 |
| 4.00  | 1.38            | 1.250 | 0.750 | 0.625 | 1.875 | 0.375 | 1.250 | 0.875 | 7.125  | 7.750 |
| 5.00  | 1.00            | 1.250 | 0.750 | 0.625 | 1.875 | 0.438 | 1.250 | 0.875 | 7.125  | 7.750 |
| 5.00  | 1.38            | 1.250 | 0.750 | 0.625 | 1.875 | 0.438 | 1.250 | 0.875 | 7.375  | 8.000 |
| 6.00  | 1.38            | 1.500 | 1.000 | 0.750 | 2.250 | 0.438 | 1.500 | 1.000 | 8.125  | 8.875 |
| 6.00  | 1.75            | 1.500 | 1.000 | 0.750 | 2.250 | 0.438 | 1.500 | 1.000 | 8.375  | 9.125 |
| 0.00  | 1.38            | 1.500 | 1.000 | 0.750 | N/A   | 0.563 | 1.500 | 1.000 | 8.250  | N/A   |
| 8.00  | 1.75            | 1.500 | 1.000 | 0.750 | N/A   | 0.563 | 1.500 | 1.000 | 8.500  | N/A   |
| 10.00 | 1.75            | 2.000 | 1.375 | 1.000 | N/A   | 0.688 | 2.125 | 1.375 | 10.375 | N/A   |
| 10.00 | 2.00            | 2.000 | 1.375 | 1.000 | N/A   | 0.688 | 2.125 | 1.375 | 10.500 | N/A   |
| 12.00 | 2.00            | 2.500 | 1.750 | 1.250 | N/A   | 0.688 | 2.250 | 1.750 | 11.125 | N/A   |
| 12.00 | 2.50            | 2.500 | 1.750 | 1.250 | N/A   | 0.688 | 2.250 | 1.750 | 11.375 | N/A   |

Clevis pins are provided with pivot mounts.

www.nopak.com CLASS 5N 75




# MODEL AP (NFPA MS1) 1.50"- 8.00" BORES



# **MODEL A** (NFPA MS2) 1.50"-8.00" BORES

# MODEL S (NFPA MS4)



# **MODEL H** (NO MOUNT)

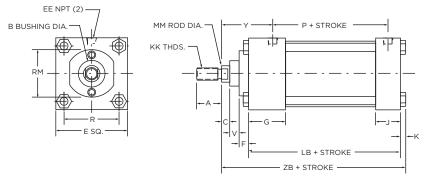



 Table 1
 BASIC DIMENSIONS STANDARD & OVERSIZE RODS

| BORE  | ROD<br>DIAMETER | A     | В     | С     | E      | EE    | F     | G     | J     | К     | KK        | LB    | мм    | Р     | R     | RM   | V     | Υ     | ZB    |
|-------|-----------------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-----------|-------|-------|-------|-------|------|-------|-------|-------|
| 1.50  | 0.63            | 0.750 | 1.125 | 0.375 | 2.000  | 0.375 | 0.375 | 1.500 | 1.000 | 0.250 | 7/16 - 20 | 3.625 | 0.625 | 2.375 | 1.438 | 2.00 | 0.250 | 1.875 | 4.875 |
| 1.50  | 1.00            | 1.125 | 1.500 | 0.500 | 2.000  | 0.375 | 0.375 | 1.500 | 1.000 | 0.250 | 3/4 -16   | 3.625 | 1.000 | 2.375 | 1.438 | 2.00 | 0.500 | 2.250 | 5.250 |
| 2.00  | 0.63            | 0.750 | 1.125 | 0.375 | 2.500  | 0.375 | 0.375 | 1.500 | 1.000 | 0.313 | 7/16-20   | 3.625 | 0.625 | 2.375 | 1.844 | 2.00 | 0.250 | 1.875 | 4.938 |
| 2.00  | 1.00            | 1.125 | 1.500 | 0.500 | 2.500  | 0.375 | 0.375 | 1.500 | 1.000 | 0.313 | 3/4 -16   | 3.625 | 1.000 | 2.375 | 1.844 | 2.50 | 0.500 | 2.250 | 5.313 |
| 2.50  | 0.63            | 0.750 | 1.125 | 0.375 | 3.000  | 0.375 | 0.375 | 1.500 | 1.000 | 0.313 | 7/16 - 20 | 3.750 | 0.625 | 2.500 | 2.188 | 2.00 | 0.250 | 1.875 | 5.063 |
| 2.50  | 1.00            | 1.125 | 1.500 | 0.500 | 3.000  | 0.375 | 0.375 | 1.500 | 1.000 | 0.313 | 3/4-16    | 3.750 | 1.000 | 2.500 | 2.188 | 3.00 | 0.500 | 2.250 | 5.438 |
| 3.25  | 1.00            | 1.125 | 1.500 | 0.500 | 3.750  | 0.500 | 0.625 | 1.750 | 1.250 | 0.375 | 3/4-16    | 4.250 | 1.000 | 2.750 | 2.766 | 2.75 | 0.250 | 2.375 | 6.000 |
| 3.23  | 1.38            | 1.625 | 2.000 | 0.625 | 3.750  | 0.500 | 0.625 | 1.750 | 1.250 | 0.375 | 1-14      | 4.250 | 1.000 | 1.375 | 2.766 | 3.75 | 0.375 | 2.625 | 6.250 |
| 4.00  | 1.00            | 1.125 | 1.500 | 0.500 | 4.500  | 0.500 | 0.625 | 1.750 | 1.250 | 0.375 | 3/4-16    | 4.250 | 1.000 | 2.750 | 3.320 | 2.75 | 0.250 | 2.375 | 6.000 |
| 4.00  | 1.38            | 1.625 | 2.000 | 0.625 | 4.500  | 0.500 | 0.625 | 1.750 | 1.250 | 0.375 | 1-14      | 4.250 | 1.000 | 1.375 | 3.320 | 3.50 | 0.375 | 2.625 | 6.250 |
| 5.00  | 1.00            | 1.125 | 1.500 | 0.500 | 5.500  | 0.500 | 0.625 | 1.750 | 1.250 | 0.438 | 3/4 -16   | 4.500 | 1.000 | 3.000 | 4.100 | 2.75 | 0.250 | 2.375 | 6.313 |
| 3.00  | 1.38            | 1.625 | 2.000 | 0.625 | 5.500  | 0.500 | 0.625 | 1.750 | 1.250 | 0.438 | 1-14      | 4.500 | 1.000 | 1.375 | 4.100 | 3.50 | 0.375 | 2.625 | 6.563 |
| 6.00  | 1.38            | 1.625 | 2.000 | 0.625 | 6.500  | 0.750 | 0.625 | 2.000 | 1.500 | 0.438 | 1-14      | 5.000 | 1.375 | 3.250 | 4.875 | 3.50 | 0.375 | 2.750 | 7.063 |
| 0.00  | 1.75            | 2.000 | 2.375 | 0.750 | 6.500  | 0.750 | 0.625 | 2.000 | 1.500 | 0.438 | 1-1/4-12  | 5.000 | 1.750 | 3.250 | 4.875 | 3.50 | 0.500 | 3.000 | 7.313 |
| 8.00  | 1.38            | 1.625 | 2.000 | 0.625 | 8.500  | 0.750 | 0.625 | 2.000 | 1.500 | 0.563 | 1-14      | 5.125 | 1.375 | 3.375 | 6.438 | 3.50 | 0.375 | 2.750 | 7.313 |
| 8.00  | 1.75            | 2.000 | 2.375 | 0.750 | 8.500  | 0.750 | 0.625 | 2.000 | 1.500 | 0.563 | 1-1/4-12  | 5.125 | 1.750 | 3.375 | 6.438 | 3.50 | 0.500 | 3.000 | 7.563 |
| 10.00 | 1.75            | 2.000 | 2.375 | 0.750 | 10.625 | 1.000 | 0.625 | 2.250 | 2.000 | 0.688 | 1-1/4-12  | 6.375 | 1.750 | 4.313 | 7.922 | 3.50 | 0.500 | 3.063 | 8.938 |
| 10.00 | 2.00            | 2.250 | 2.625 | 0.875 | 10.625 | 1.000 | 0.750 | 2.250 | 2.000 | 0.688 | 1-1/2-12  | 6.375 | 2.000 | 4.313 | 7.922 | 5.00 | 0.375 | 3.188 | 9.063 |
| 12.00 | 2.00            | 2.250 | 2.625 | 0.875 | 12.750 | 1.000 | 0.750 | 2.250 | 2.000 | 0.688 | 1-1/2-12  | 6.875 | 2.000 | 4.813 | 9.400 | 5.00 | 0.375 | 3.188 | 9.563 |
| 12.00 | 2.50            | 3.000 | 3.125 | 1.000 | 12.750 | 1.000 | 0.750 | 2.250 | 2.000 | 0.688 | 1-7/8-12  | 6.875 | 2.500 | 4.813 | 9.400 | 5.00 | 0.500 | 3.438 | 9.813 |

# **ANGLE AND SIDE LUG MOUNT CYLINDERS**

1.50" THROUGH 12.00" BORE

 Table 2
 MODEL AP ANGLE BASE MOUNT DIMENSIONS

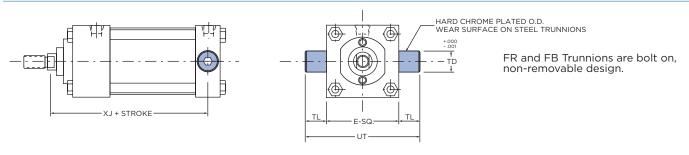
| BORE | ROD DIAMETER | АВ    | АН    | AL    | AO    | AT    | FH     | S     | <b>SA</b><br>ADD STROKE | XA<br>ADD STROKE |
|------|--------------|-------|-------|-------|-------|-------|--------|-------|-------------------------|------------------|
| 1.50 | 0.63         | 0.438 | 1.188 | 1.000 | 0.375 | 0.188 | 0.375  | 1.250 | 6.000                   | 5.625            |
| 1.50 | 1.00         | 0.438 | 1.188 | 1.000 | 0.375 | 0.188 | 0.375  | 1.250 | 6.000                   | 6.000            |
| 2.00 | 0.63         | 0.438 | 1.438 | 1.000 | 0.375 | 0.188 | 0.375  | 1.750 | 6.000                   | 5.625            |
| 2.00 | 1.00         | 0.438 | 1.438 | 1.000 | 0.375 | 0.188 | 0.375  | 1.750 | 6.000                   | 6.000            |
| 2.50 | 0.63         | 0.438 | 1.625 | 1.000 | 0.375 | 0.188 | 0.375  | 2.250 | 6.125                   | 5.750            |
| 2.50 | 1.00         | 0.438 | 1.625 | 1.000 | 0.375 | 0.188 | 0.375  | 2.250 | 6.125                   | 6.125            |
| 3.25 | 1.00         | 0.563 | 1.938 | 1.250 | 0.500 | 0.125 | 0.625  | 2.750 | 7.375                   | 6.875            |
| 3.23 | 1.38         | 0.563 | 1.938 | 1.250 | 0.500 | 0.125 | 0.625  | 2.750 | 7.375                   | 7.125            |
| 4.00 | 1.00         | 0.563 | 2.250 | 1.250 | 0.500 | 0.125 | 0.625  | 3.500 | 7.375                   | 6.875            |
| 4.00 | 1.38         | 0.563 | 2.250 | 1.250 | 0.500 | 0.125 | 0.625  | 3.500 | 7.375                   | 7.125            |
| 5.00 | 1.00         | 0.688 | 2.750 | 1.375 | 0.625 | 0.188 | 0.625  | 4.250 | 7.875                   | 7.250            |
| 5.00 | 1.38         | 0.688 | 2.750 | 1.375 | 0.625 | 0.188 | 0.625  | 4.250 | 7.875                   | 7.500            |
| 6.00 | 1.38         | 0.813 | 3.250 | 1.375 | 0.625 | 0.188 | 0.750  | 5.250 | 8.500                   | 8.000            |
| 0.00 | 1.75         | 0.813 | 3.250 | 1.375 | 0.625 | 0.188 | 0.750  | 5.250 | 8.500                   | 8.250            |
| 8.00 | 1.38         | 0.813 | 4.250 | 1.813 | 0.688 | 0.250 | 0.625* | 7.125 | 8.750                   | 8.563            |
| 6.00 | 1.75         | 0.813 | 4.250 | 1.813 | 0.688 | 0.250 | 0.625* | 7.125 | 8.750                   | 8.813            |

<sup>\* 3.50&</sup>quot; diameter round retainer on 8.00" bore (AP BRACKET BOLTED DIRECTLY TO HEAD). \*\* 1.50" bore has four (4) AB diameter holes.

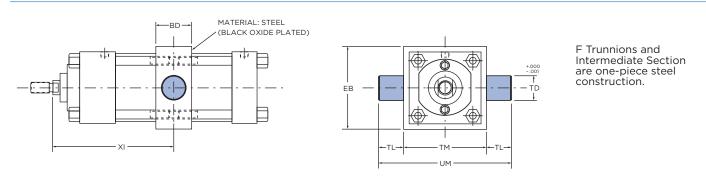
 Table 3
 MODEL A SIDE LUG BASE MOUNT DIMENSIONS

| BORE | ROD DIAMETER | SB    | SH    | ST    | su    | sw    | sz    | TS    | US     | xs    | SS<br>ADD STROKE |
|------|--------------|-------|-------|-------|-------|-------|-------|-------|--------|-------|------------------|
| 1.50 | 0.63         | 0.438 | 1.000 | 0.500 | 1.125 | 0.375 | 0.625 | 2.750 | 3.500  | 1.375 | 2.875            |
| 1.50 | 1.00         | 0.438 | 1.000 | 0.500 | 1.125 | 0.375 | 0.625 | 2.750 | 3.500  | 1.750 | 2.875            |
| 2.00 | 0.63         | 0.438 | 1.250 | 0.500 | 1.125 | 0.375 | 0.625 | 3.250 | 4.000  | 1.375 | 2.875            |
| 2.00 | 1.00         | 0.438 | 1.250 | 0.500 | 1.125 | 0.375 | 0.625 | 3.250 | 4.000  | 1.750 | 2.875            |
| 2.50 | 0.63         | 0.438 | 1.500 | 0.500 | 1.125 | 0.375 | 0.625 | 3.750 | 4.500  | 1.375 | 3.000            |
| 2.50 | 1.00         | 0.438 | 1.500 | 0.500 | 1.125 | 0.375 | 0.625 | 3.750 | 4.500  | 1.750 | 3.000            |
| 3.25 | 1.00         | 0.563 | 1.875 | 0.750 | 1.250 | 0.500 | 0.750 | 4.750 | 5.750  | 1.875 | 3.250            |
| 3.25 | 1.38         | 0.563 | 1.875 | 0.750 | 1.250 | 0.500 | 0.750 | 4.750 | 5.750  | 2.125 | 3.250            |
| 4.00 | 1.00         | 0.563 | 2.250 | 0.750 | 1.250 | 0.500 | 0.750 | 5.500 | 6.500  | 1.875 | 3.250            |
| 4.00 | 1.38         | 0.563 | 2.250 | 0.750 | 1.250 | 0.500 | 0.750 | 5.500 | 6.500  | 2.125 | 3.250            |
| 5.00 | 1.00         | 0.813 | 2.750 | 1.000 | 1.063 | 0.688 | 0.563 | 6.875 | 8.250  | 2.063 | 3.125            |
| 5.00 | 1.38         | 0.813 | 2.750 | 1.000 | 1.063 | 0.688 | 0.563 | 6.875 | 8.250  | 2.313 | 3.125            |
| 6.00 | 1.38         | 0.813 | 3.250 | 1.000 | 1.313 | 0.688 | 0.813 | 7.875 | 9.250  | 2.313 | 3.625            |
| 6.00 | 1.75         | 0.813 | 3.250 | 1.000 | 1.313 | 0.688 | 0.813 | 7.875 | 9.250  | 2.563 | 3.625            |
| 8.00 | 1.38         | 0.813 | 4.250 | 1.000 | 1.313 | 0.688 | 0.813 | 9.875 | 11.250 | 2.313 | 3.750            |
| 6.00 | 1.75         | 0.813 | 4.250 | 1.000 | 1.313 | 0.688 | 0.813 | 9.875 | 11.250 | 2.563 | 3.750            |

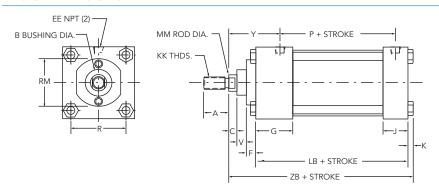
 Table 4
 MODEL S BOTTOM TAPPED BASE MOUNT DIMENSIONS


| BORE  | ROD DIAMETER | E/2   | NT       | тк    | TN    | хт    | SN<br>ADD STROKE |
|-------|--------------|-------|----------|-------|-------|-------|------------------|
| 150   | 0.63         | 1.000 | 1/4 - 20 | 0.375 | 0.625 | 1.938 | 2.250            |
| 1.50  | 1.00         | 1.000 | 1/4 - 20 | 0.375 | 0.625 | 2.313 | 2.250            |
| 2.00  | 0.63         | 1.250 | 5/16 -18 | 0.500 | 0.875 | 1.938 | 2.250            |
| 2.00  | 1.00         | 1.250 | 5/16 -18 | 0.500 | 0.875 | 2.313 | 2.250            |
| 2.50  | 0.63         | 1.500 | 3/8-16   | 0.625 | 1.250 | 1.938 | 2.3875           |
| 2.50  | 1.00         | 1.500 | 3/8-16   | 0.625 | 1.250 | 2.313 | 2.3875           |
| 3.25  | 1.00         | 1.875 | 1/2-13   | 0.750 | 1.500 | 2.438 | 2.625            |
| 3.25  | 1.38         | 1.875 | 1/2-13   | 0.750 | 1.500 | 2.688 | 2.625            |
| 4.00  | 1.00         | 2.250 | 1/2 -13  | 0.750 | 2.063 | 2.438 | 2.625            |
| 4.00  | 1.38         | 2.250 | 1/2-13   | 0.750 | 2.063 | 2.688 | 2.625            |
| F 00  | 1.00         | 2.750 | 5/8 -11  | 1.000 | 2.688 | 2.438 | 2.875            |
| 5.00  | 1.38         | 2.750 | 5/8 -11  | 1.000 | 2.688 | 2.688 | 2.875            |
| C 00  | 1.38         | 3.250 | 3/4-10   | 1.125 | 3.250 | 2.813 | 3.125            |
| 6.00  | 1.75         | 3.250 | 3/4 -10  | 1.125 | 3.250 | 3.063 | 3.125            |
| 0.00  | 1.38         | 4.250 | 3/4 -10  | 1.125 | 4.500 | 2.813 | 3.250            |
| 8.00  | 1.75         | 4.250 | 3/4 -10  | 1.125 | 4.500 | 3.063 | 3.250            |
| 10.00 | 1.75         | 5.313 | 1-8      | 1.500 | 5.500 | 3.125 | 4.125            |
| 10.00 | 2.00         | 5.313 | 1-8      | 1.500 | 5.500 | 3.250 | 4.125            |
| 12.00 | 2.00         | 6.375 | 1-8      | 1.500 | 7.250 | 3.250 | 4.625            |
| 12.00 | 2.50         | 6.375 | 1-8      | 1.500 | 7.250 | 3.500 | 4.625            |




# MODEL FR (NFPA MT1)




## **MODEL FB** (NFPA MT2)



## MODEL F (NFPA MT4)



### **BASIC DIMENSIONS**



# **TRUNNION MOUNT CYLINDERS**

1.50" THROUGH 8.00" BORE

 Table 1
 BASIC DIMENSIONS STANDARD & OVERSIZE RODS

| BORE | ROD<br>DIAMETER | Α     | В     | С     | EE    | F     | G     | J     | К     | KK        | LB    | ММ    | Р     | R     | RM   | v     | Υ     | ZB    |
|------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|-------|-------|-------|-------|------|-------|-------|-------|
| 1.50 | 0.63            | 0.750 | 1.125 | 0.375 | 0.375 | 0.375 | 1.500 | 1.000 | 0.250 | 7/16 - 20 | 3.625 | 0.625 | 2.375 | 1.438 | 2.00 | 0.250 | 1.875 | 4.875 |
| 1.50 | 1.00            | 1.125 | 1.500 | 0.500 | 0.375 | 0.375 | 1.500 | 1.000 | 0.250 | 3/4-16    | 3.625 | 1.000 | 2.375 | 1.438 | 2.00 | 0.500 | 2.250 | 5.250 |
| 2.00 | 0.63            | 0.750 | 1.125 | 0.375 | 0.375 | 0.375 | 1.500 | 1.000 | 0.313 | 7/16 - 20 | 3.625 | 0.625 | 2.375 | 1.844 | 2.00 | 0.250 | 1.875 | 4.938 |
| 2.00 | 1.00            | 1.125 | 1.500 | 0.500 | 0.375 | 0.375 | 1.500 | 1.000 | 0.313 | 3/4-16    | 3.625 | 1.000 | 2.375 | 1.844 | 2.50 | 0.500 | 2.250 | 5.313 |
| 2.50 | 0.63            | 0.750 | 1.125 | 0.375 | 0.375 | 0.375 | 1.500 | 1.000 | 0.313 | 7/16 - 20 | 3.750 | 0.625 | 2.500 | 2.188 | 2.00 | 0.250 | 1.875 | 5.063 |
| 2.50 | 1.00            | 1.125 | 1.500 | 0.500 | 0.375 | 0.375 | 1.500 | 1.000 | 0.313 | 3/4 -16   | 3.750 | 1.000 | 2.500 | 2.188 | 3.00 | 0.500 | 2.250 | 5.438 |
| 3.25 | 1.00            | 1.125 | 1.500 | 0.500 | 0.500 | 0.625 | 1.750 | 1.250 | 0.375 | 3/4 -16   | 4.250 | 1.000 | 2.750 | 2.766 | 2.75 | 0.250 | 2.375 | 6.000 |
| 3.23 | 1.38            | 1.625 | 2.000 | 0.625 | 0.500 | 0.625 | 1.750 | 1.250 | 0.375 | 1-14      | 4.250 | 1.000 | 1.375 | 2.766 | 3.75 | 0.375 | 2.625 | 6.250 |
| 4.00 | 1.00            | 1.125 | 1.500 | 0.500 | 0.500 | 0.625 | 1.750 | 1.250 | 0.375 | 3/4 -16   | 4.250 | 1.000 | 2.750 | 3.320 | 2.75 | 0.250 | 2.375 | 6.000 |
| 4.00 | 1.38            | 1.625 | 2.000 | 0.625 | 0.500 | 0.625 | 1.750 | 1.250 | 0.375 | 1-14      | 4.250 | 1.000 | 1.375 | 3.320 | 3.50 | 0.375 | 2.625 | 6.250 |
| 5.00 | 1.00            | 1.125 | 1.500 | 0.500 | 0.500 | 0.625 | 1.750 | 1.250 | 0.438 | 3/4-16    | 4.500 | 1.000 | 3.000 | 4.100 | 2.75 | 0.250 | 2.375 | 6.313 |
| 3.00 | 1.38            | 1.625 | 2.000 | 0.625 | 0.500 | 0.625 | 1.750 | 1.250 | 0.438 | 1-14      | 4.500 | 1.000 | 1.375 | 4.100 | 3.50 | 0.375 | 2.625 | 6.563 |
| 6.00 | 1.38            | 1.625 | 2.000 | 0.625 | 0.750 | 0.625 | 2.000 | 1.500 | 0.438 | 1-14      | 5.000 | 1.375 | 3.250 | 4.875 | 3.50 | 0.375 | 2.750 | 7.063 |
| 0.00 | 1.75            | 2.000 | 2.375 | 0.750 | 0.750 | 0.625 | 2.000 | 1.500 | 0.438 | 1-1/4-12  | 5.000 | 1.750 | 3.250 | 4.875 | 3.50 | 0.500 | 3.000 | 7.313 |
| 8.00 | 1.38            | 1.625 | 2.000 | 0.625 | 0.750 | 0.625 | 2.000 | 1.500 | 0.563 | 1-14      | 5.125 | 1.375 | 3.375 | 6.438 | 3.50 | 0.375 | 2.750 | 7.313 |
| 8.00 | 1.75            | 2.000 | 2.375 | 0.750 | 0.750 | 0.625 | 2.000 | 1.500 | 0.563 | 1-1/4-12  | 5.125 | 1.750 | 3.375 | 6.438 | 3.50 | 0.500 | 3.000 | 7.563 |

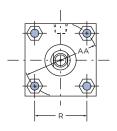
 Table 2
 MODEL FR HEAD TRUNNION MOUNT AND MODEL FB CAP TRUNNION MOUNT DIMENSIONS

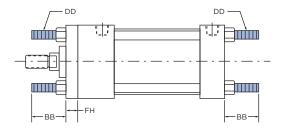
| BORE | ROD DIAMETER | E     | TD    | TL    | UT     | XG    | <b>XJ</b><br>ADD STROKE |
|------|--------------|-------|-------|-------|--------|-------|-------------------------|
| 1.50 | 0.63         | 2.000 | 1.000 | 1.000 | 4.000  | 1.750 | 4.125                   |
| 1.50 | 1.00         | 2.000 | 1.000 | 1.000 | 4.000  | N/A*  | 4.500                   |
| 2.00 | 0.63         | 2.500 | 1.000 | 1.000 | 4.500  | 1.750 | 4.125                   |
| 2.00 | 1.00         | 2.500 | 1.000 | 1.000 | 4.500  | 2.125 | 4.500                   |
| 2.50 | 0.63         | 3.000 | 1.000 | 1.000 | 5.000  | 1.750 | 4.250                   |
| 2.50 | 1.00         | 3.000 | 1.000 | 1.000 | 5.000  | 2.125 | 4.625                   |
| 3.25 | 1.00         | 3.750 | 1.000 | 1.000 | 5.750  | 2.250 | 5.000                   |
| 3.25 | 1.38         | 3.750 | 1.000 | 1.000 | 5.750  | 2.500 | 5.250                   |
| 4.00 | 1.00         | 4.500 | 1.000 | 1.000 | 6.500  | 2.250 | 5.000                   |
| 4.00 | 1.38         | 4.500 | 1.000 | 1.000 | 6.500  | 2.500 | 5.250                   |
| F.00 | 1.00         | 5.500 | 1.000 | 1.000 | 7.500  | 2.250 | 5.250                   |
| 5.00 | 1.38         | 5.500 | 1.000 | 1.000 | 7.500  | 2.500 | 5.500                   |
| 6.00 | 1.38         | 6.500 | 1.375 | 1.375 | 9.250  | 2.625 | 5.875                   |
| 6.00 | 1.75         | 6.500 | 1.375 | 1.375 | 9.250  | 2.875 | 6.125                   |
| 8.00 | 1.38         | 8.500 | 1.375 | 1.375 | 11.250 | 2.625 | 6.000                   |
| 6.00 | 1.75         | 8.500 | 1.375 | 1.375 | 11.250 | 2.875 | 6.250                   |

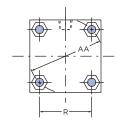
<sup>\*</sup> No oversize rod available on 1.50" bore Model FR.

 Table 3
 model f intermediate trunnion mount dimensions

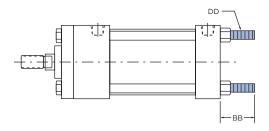
| BORE | BD    | EB    | TD    | TL    | TM    | UM     | XI            |
|------|-------|-------|-------|-------|-------|--------|---------------|
| 1.50 | 1.250 | 2.500 | 1.000 | 1.000 | 2.500 | 4.500  |               |
| 2.00 | 1.500 | 3.000 | 1.000 | 1.000 | 3.000 | 5.000  |               |
| 2.50 | 1.500 | 3.500 | 1.000 | 1.000 | 3.500 | 5.500  |               |
| 3.25 | 2.000 | 4.250 | 1.000 | 1.000 | 4.500 | 6.500  | Customer      |
| 4.00 | 2.000 | 5.000 | 1.000 | 1.000 | 5.250 | 7.250  | to<br>Specify |
| 5.00 | 2.000 | 6.000 | 1.000 | 1.000 | 6.250 | 8.250  | -             |
| 6.00 | 2.000 | 7.000 | 1.375 | 1.375 | 7.625 | 10.375 |               |
| 8.00 | 2.500 | 9.500 | 1.375 | 1.375 | 9.750 | 12.500 |               |

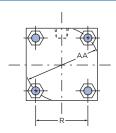

**Table 4** MODELS FR, FB AND F STANDARD CUSHION LOCATIONS


| MOUNT | HEAD<br>CUSHION | CAP<br>CUSHION |
|-------|-----------------|----------------|
| FR    | 3               | 2              |
| FB    | 2               | 3              |
| F     | 2               | 2              |

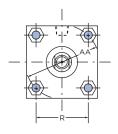

Ports or cushions cannot be on same side as FR & FB Trunnions.

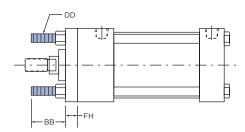



# MODEL T (NFPA MX1)

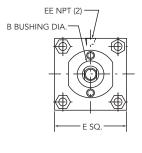


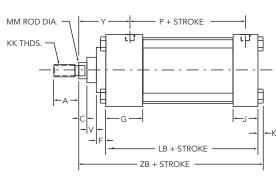




# **MODEL TB** (NFPA MX2)







# **MODEL TR** (NFPA MX3)





#### **BASIC DIMENSIONS**





# **TIE ROD MOUNT CYLINDERS**

1.50" THROUGH 12.00" BORE

 Table 1
 BASIC DIMENSIONS STANDARD & OVERSIZE RODS

| BORE  | ROD<br>DIAMETER | Α     | В     | С     | E      | EE    | F     | G     | J     | K     | КК        | LB    | ММ    | Р     | RM   | v     | Υ     | ZB    |
|-------|-----------------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-----------|-------|-------|-------|------|-------|-------|-------|
| 1.50  | 0.63            | 0.750 | 1.125 | 0.375 | 2.000  | 0.375 | 0.375 | 1.500 | 1.000 | 0.250 | 7/16 - 20 | 3.625 | 0.625 | 2.375 | 2.00 | 0.250 | 1.875 | 4.875 |
| 1.50  | 1.00            | 1.125 | 1.500 | 0.500 | 2.000  | 0.375 | 0.375 | 1.500 | 1.000 | 0.250 | 3/4-16    | 3.625 | 1.000 | 2.375 | 2.00 | 0.500 | 2.250 | 5.250 |
| 2.00  | 0.63            | 0.750 | 1.125 | 0.375 | 2.500  | 0.375 | 0.375 | 1.500 | 1.000 | 0.313 | 7/16-20   | 3.625 | 0.625 | 2.375 | 2.00 | 0.250 | 1.875 | 4.938 |
| 2.00  | 1.00            | 1.125 | 1.500 | 0.500 | 2.500  | 0.375 | 0.375 | 1.500 | 1.000 | 0.313 | 3/4-16    | 3.625 | 1.000 | 2.375 | 2.50 | 0.500 | 2.250 | 5.313 |
| 2.50  | 0.63            | 0.750 | 1.125 | 0.375 | 3.000  | 0.375 | 0.375 | 1.500 | 1.000 | 0.313 | 7/16-20   | 3.750 | 0.625 | 2.500 | 2.00 | 0.250 | 1.875 | 5.063 |
| 2.50  | 1.00            | 1.125 | 1.500 | 0.500 | 3.000  | 0.375 | 0.375 | 1.500 | 1.000 | 0.313 | 3/4-16    | 3.750 | 1.000 | 2.500 | 3.00 | 0.500 | 2.250 | 5.438 |
| 3.25  | 1.00            | 1.125 | 1.500 | 0.500 | 3.750  | 0.500 | 0.625 | 1.750 | 1.250 | 0.375 | 3/4 -16   | 4.250 | 1.000 | 2.750 | 2.75 | 0.250 | 2.375 | 6.000 |
| 3.25  | 1.38            | 1.625 | 2.000 | 0.625 | 3.750  | 0.500 | 0.625 | 1.750 | 1.250 | 0.375 | 1-14      | 4.250 | 1.000 | 1.375 | 3.75 | 0.375 | 2.625 | 6.250 |
| 4.00  | 1.00            | 1.125 | 1.500 | 0.500 | 4.500  | 0.500 | 0.625 | 1.750 | 1.250 | 0.375 | 3/4 -16   | 4.250 | 1.000 | 2.750 | 2.75 | 0.250 | 2.375 | 6.000 |
| 4.00  | 1.38            | 1.625 | 2.000 | 0.625 | 4.500  | 0.500 | 0.625 | 1.750 | 1.250 | 0.375 | 1-14      | 4.250 | 1.000 | 1.375 | 3.50 | 0.375 | 2.625 | 6.250 |
| 5.00  | 1.00            | 1.125 | 1.500 | 0.500 | 5.500  | 0.500 | 0.625 | 1.750 | 1.250 | 0.438 | 3/4 -16   | 4.500 | 1.000 | 3.000 | 2.75 | 0.250 | 2.375 | 6.313 |
| 5.00  | 1.38            | 1.625 | 2.000 | 0.625 | 5.500  | 0.500 | 0.625 | 1.750 | 1.250 | 0.438 | 1-14      | 4.500 | 1.000 | 1.375 | 3.50 | 0.375 | 2.625 | 6.563 |
| 6.00  | 1.38            | 1.625 | 2.000 | 0.625 | 6.500  | 0.750 | 0.625 | 2.000 | 1.500 | 0.438 | 1-14      | 5.000 | 1.375 | 3.250 | 3.50 | 0.375 | 2.750 | 7.063 |
| 6.00  | 1.75            | 2.000 | 2.375 | 0.750 | 6.500  | 0.750 | 0.625 | 2.000 | 1.500 | 0.438 | 1-1/4-12  | 5.000 | 1.750 | 3.250 | 3.50 | 0.500 | 3.000 | 7.313 |
| 0.00  | 1.38            | 1.625 | 2.000 | 0.625 | 8.500  | 0.750 | 0.625 | 2.000 | 1.500 | 0.563 | 1-14      | 5.125 | 1.375 | 3.375 | 3.50 | 0.375 | 2.750 | 7.313 |
| 8.00  | 1.75            | 2.000 | 2.375 | 0.750 | 8.500  | 0.750 | 0.625 | 2.000 | 1.500 | 0.563 | 1-1/4-12  | 5.125 | 1.750 | 3.375 | 3.50 | 0.500 | 3.000 | 7.563 |
| 10.00 | 1.75            | 2.000 | 2.375 | 0.750 | 10.625 | 1.000 | 0.625 | 2.250 | 2.000 | 0.688 | 1-1/4-12  | 6.375 | 1.750 | 4.313 | 3.50 | 0.500 | 3.063 | 8.938 |
| 10.00 | 2.00            | 2.250 | 2.625 | 0.875 | 10.625 | 1.000 | 0.750 | 2.250 | 2.000 | 0.688 | 1-1/2-12  | 6.375 | 2.000 | 4.313 | 5.00 | 0.375 | 3.188 | 9.063 |
| 12.00 | 2.00            | 2.250 | 2.625 | 0.875 | 12.750 | 1.000 | 0.750 | 2.250 | 2.000 | 0.688 | 1-1/2-12  | 6.875 | 2.000 | 4.813 | 5.00 | 0.375 | 3.188 | 9.563 |
| 12.00 | 2.50            | 3.000 | 3.125 | 1.000 | 12.750 | 1.000 | 0.750 | 2.250 | 2.000 | 0.688 | 1-7/8-12  | 6.875 | 2.500 | 4.813 | 5.00 | 0.500 | 3.438 | 9.813 |

 Table 2
 MODELS T, TB AND TR TIE ROD EXTENDED MOUNT DIMENSIONS

| BORE  | ROD DIAMETER | AA     | ВВ      | DD        | FH     | R     |
|-------|--------------|--------|---------|-----------|--------|-------|
| 1.50  | 0.63         | 2.020  | 1.000   | 1/4 - 28  | 0.375  | 1.430 |
| 1.50  | 1.00         | 2.020  | 1.000   | 1/4-28    | 0.375  | 1.430 |
| 2.00  | 0.63         | 2.600  | 1.125   | 5/16 - 24 | 0.375  | 1.840 |
| 2.00  | 1.00         | 2.600  | 1.125   | 5/16-24   | 0.375  | 1.840 |
| 2.50  | 0.63         | 3.100  | 1.125   | 5/16-24   | 0.375  | 2.190 |
| 2.50  | 1.00         | 3.100  | 1.125   | 5/16 - 24 | 0.375  | 2.190 |
| 3.25  | 1.00         | 3.900  | 1.375   | 3/8-24    | 0.625  | 2.760 |
| 3.25  | 1.38         | 3.900  | 1.375   | 3/8-24    | 0.625  | 2.760 |
| 4.00  | 1.00         | 4.700  | 1.375   | 3/8-24    | 0.625  | 3.320 |
| 4.00  | 1.38         | 4.700  | 1.375   | 3/8-24    | 0.625  | 3.320 |
| 5.00  | 1.00         | 5.800  | 1.813   | 1/2-20    | 0.625  | 4.100 |
| 5.00  | 1.38         | 5.800  | 1.813   | 1/2-20    | 0.625  | 4.100 |
| 6.00  | 1.38         | 6.900  | 1.813   | 1/2-20    | 0.750  | 4.880 |
| 6.00  | 1.75         | 6.900  | 1.813   | 1/2-20    | 0.750  | 4.880 |
| 8.00  | 1.38         | 9.100  | **2.313 | 5/8-18    | *0.625 | 6.440 |
| 8.00  | 1.75         | 9.100  | **2.313 | 5/8-18    | *0.625 | 6.440 |
| 10.00 | 1.75         | 11.200 | **2.688 | 3/4 -16   | *0.625 | 7.920 |
| 10.00 | 2.00         | 11.200 | **2.688 | 3/4 -16   | *0.750 | 7.920 |
| 12.00 | 2.00         | 13.300 | **2.688 | 3/4 -16   | *0.750 | 9.400 |
| 12.00 | 2.50         | 13.300 | **2.688 | 3/4 -16   | *0.750 | 9.400 |

 $<sup>^{*}</sup>$  T & TR have full square bushing retainer on 1.50"– 6.00" bores, round retainers on 8.00"–12.00" bores.

www.nopak.com CLASS 5N 81

<sup>\*\*</sup> BB dimension from face of head.



# **DOUBLE ROD END CYLINDERS**


1.50" THROUGH 12.00" BORE

## **DOUBLE ROD END MODELS**

#### **BENEFITS:**

- Standard and Oversize Piston Rods available.
- Full range of Standard Options.
- Durable design. Full Rod Bearing at each end of cylinder.
- Available in Models A, AP, D, DG, F, FR, S, T and TR.

Double rod end models are designated by letter "X" preceding the model identification.



• Specify Non-Standard Positions When Ordering

# **MODEL XH** (NO MOUNT)

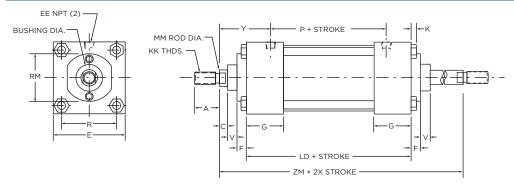



 Table 1
 BASIC DIMENSIONS DOUBLE ROD END STANDARD & OVERSIZE RODS

| BORE  | ROD<br>DIAMETER | Α     | В     | С     | E      | EE    | F     | G     | к     | KK        | LD    | мм    | Р     | R     | RM   | v     | Y     | ZM     |
|-------|-----------------|-------|-------|-------|--------|-------|-------|-------|-------|-----------|-------|-------|-------|-------|------|-------|-------|--------|
| 1.50  | 0.63            | 0.750 | 1.125 | 0.375 | 2.000  | 0.375 | 0.375 | 1.500 | 0.250 | 7/16 - 20 | 4.125 | 0.625 | 2.375 | 1.430 | 2.00 | 0.250 | 1.875 | 6.125  |
| 1.50  | 1.00            | 1.125 | 1.500 | 0.500 | 2.000  | 0.375 | 0.375 | 1.500 | 0.250 | 3/4 -16   | 4.125 | 1.000 | 2.375 | 1.430 | 2.00 | 0.500 | 2.250 | 6.875  |
| 2.00  | 0.63            | 0.750 | 1.125 | 0.375 | 2.500  | 0.375 | 0.375 | 1.500 | 0.313 | 7/16 - 20 | 4.125 | 0.625 | 2.375 | 1.844 | 2.00 | 0.250 | 1.875 | 6.125  |
| 2.00  | 1.00            | 1.125 | 1.500 | 0.500 | 2.500  | 0.375 | 0.375 | 1.500 | 0.313 | 3/4-16    | 4.125 | 1.000 | 2.375 | 1.844 | 2.50 | 0.500 | 2.250 | 6.875  |
| 2.50  | 0.63            | 0.750 | 1.125 | 0.375 | 3.000  | 0.375 | 0.375 | 1.500 | 0.313 | 7/16 - 20 | 4.250 | 0.625 | 2.500 | 2.188 | 2.00 | 0.250 | 1.875 | 6.250  |
| 2.50  | 1.00            | 1.125 | 1.500 | 0.500 | 3.000  | 0.375 | 0.375 | 1.500 | 0.313 | 3/4-16    | 4.250 | 1.000 | 2.500 | 2.188 | 3.00 | 0.500 | 2.250 | 7.000  |
| 3.25  | 1.00            | 1.125 | 1.500 | 0.500 | 3.750  | 0.500 | 0.625 | 1.750 | 0.375 | 3/4 -16   | 4.750 | 1.000 | 2.750 | 2.760 | 2.75 | 0.250 | 2.375 | 7.500  |
| 3.25  | 1.38            | 1.625 | 2.000 | 0.625 | 3.750  | 0.500 | 0.625 | 1.750 | 0.375 | 1-14      | 4.750 | 1.375 | 2.750 | 2.760 | 3.75 | 0.375 | 2.625 | 8.000  |
| 4.00  | 1.00            | 1.125 | 1.500 | 0.500 | 4.500  | 0.500 | 0.625 | 1.750 | 0.375 | 3/4 -16   | 4.750 | 1.000 | 2.750 | 3.320 | 2.75 | 0.250 | 2.375 | 7.500  |
| 4.00  | 1.38            | 1.625 | 2.000 | 0.625 | 4.500  | 0.500 | 0.625 | 1.750 | 0.375 | 1-14      | 4.750 | 1.375 | 2.750 | 3.320 | 3.50 | 0.375 | 2.625 | 8.000  |
| 5.00  | 1.00            | 1.125 | 1.500 | 0.500 | 5.500  | 0.500 | 0.625 | 1.750 | 0.438 | 3/4 -16   | 5.000 | 1.000 | 3.000 | 4.100 | 2.75 | 0.250 | 2.375 | 7.750  |
| 5.00  | 1.38            | 1.625 | 2.000 | 0.625 | 5.500  | 0.500 | 0.625 | 1.750 | 0.438 | 1-14      | 5.000 | 1.375 | 3.000 | 4.100 | 3.50 | 0.375 | 2.625 | 8.250  |
| 6.00  | 1.38            | 1.625 | 2.000 | 0.625 | 6.500  | 0.750 | 0.625 | 2.000 | 0.438 | 1-14      | 5.500 | 1.375 | 3.250 | 4.875 | 3.50 | 0.375 | 2.750 | 8.750  |
| 6.00  | 1.75            | 2.000 | 2.375 | 0.750 | 6.500  | 0.750 | 0.625 | 2.000 | 0.438 | 1-1/4-12  | 5.500 | 1.750 | 3.250 | 4.875 | 3.50 | 0.500 | 3.000 | 9.250  |
| 8.00  | 1.38            | 1.625 | 2.000 | 0.625 | 8.500  | 0.750 | 0.625 | 2.000 | 0.563 | 1-14      | 5.625 | 1.375 | 3.375 | 6.438 | 3.50 | 0.375 | 2.750 | 8.875  |
| 8.00  | 1.75            | 2.000 | 2.375 | 0.750 | 8.500  | 0.750 | 0.625 | 2.000 | 0.563 | 1-1/4-12  | 5.625 | 1.750 | 3.375 | 6.438 | 3.50 | 0.500 | 3.000 | 9.375  |
| 10.00 | 1.75            | 2.000 | 2.375 | 0.750 | 10.625 | 1.000 | 0.625 | 2.250 | 0.688 | 1-1/4-12  | 6.625 | 1.750 | 4.313 | 7.922 | 3.50 | 0.500 | 3.060 | 10.375 |
| 10.00 | 2.00            | 2.250 | 2.625 | 0.875 | 10.625 | 1.000 | 0.750 | 2.250 | 0.688 | 1-1/2-12  | 6.625 | 2.000 | 4.313 | 7.922 | 5.00 | 0.375 | 3.188 | 10.625 |
| 12.00 | 2.00            | 2.250 | 2.625 | 0.875 | 12.750 | 1.000 | 0.750 | 2.250 | 0.688 | 1-1/2-12  | 7.125 | 2.000 | 4.813 | 9.400 | 5.00 | 0.375 | 3.188 | 11.125 |
| 12.00 | 2.50            | 3.000 | 3.125 | 1.000 | 12.750 | 1.000 | 0.750 | 2.250 | 0.688 | 1-7/8-12  | 7.125 | 2.500 | 4.813 | 9.400 | 5.00 | 0.500 | 3.438 | 11.625 |

## **BASIC CYLINDER FORCE CHART**

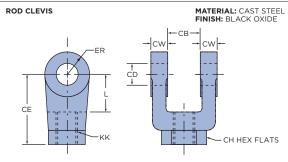
|       |          |                | EEEECTIVE                   |      | ı    | POUNDS OF | FORCE AT PS | SI .  |       | CU. FT.                              |
|-------|----------|----------------|-----------------------------|------|------|-----------|-------------|-------|-------|--------------------------------------|
| BORE  | ROD DIA. | STROKE<br>TYPE | EFFECTIVE<br>PISTON<br>AREA | 60   | 80   | 100       | 200         | 250   | 400   | DISPLACEMENT<br>PER IN. OF<br>STROKE |
|       | ALL      | PUSH           | 1.767                       | 106  | 142  | 177       | 353         | 442   | 706   | .00102                               |
| 1.50  | 0.63     | PULL           | 1.460                       | 88   | 117  | 146       | 292         | 365   | 584   | .00084                               |
|       | 1.00     | PULL           | 0.982                       | 59   | 79   | 98        | 196         | 246   | 392   | .00057                               |
|       | ALL      | PUSH           | 3.142                       | 188  | 251  | 314       | 628         | 785   | 1256  | .00182                               |
| 2.00  | 0.63     | PULL           | 2.835                       | 170  | 227  | 284       | 567         | 708   | 1134  | .00164                               |
|       | 1.00     | PULL           | 2.357                       | 141  | 189  | 236       | 471         | 589   | 942   | .00136                               |
|       | ALL      | PUSH           | 4.909                       | 295  | 393  | 491       | 981         | 1227  | 1962  | .00284                               |
| 2.50  | 0.63     | PULL           | 4.602                       | 276  | 368  | 460       | 920         | 1150  | 1840  | .00266                               |
|       | 1.00     | PULL           | 4.124                       | 247  | 330  | 412       | 825         | 1031  | 1650  | .00239                               |
|       | ALL      | PUSH           | 8.296                       | 498  | 664  | 830       | 1659        | 2074  | 3318  | .00480                               |
| 3.25  | 1.00     | PULL           | 7.511                       | 451  | 601  | 751       | 1502        | 1877  | 3004  | .00435                               |
|       | 1.38     | PULL           | 6.811                       | 409  | 545  | 681       | 1362        | 1702  | 2724  | .00394                               |
|       | ALL      | PUSH           | 12.566                      | 754  | 1005 | 1257      | 2513        | 3141  | 5026  | .00727                               |
| 4.00  | 1.00     | PULL           | 11.781                      | 707  | 942  | 1178      | 2356        | 2945  | 4712  | .00682                               |
|       | 1.38     | PULL           | 11.081                      | 665  | 886  | 1108      | 2216        | 2770  | 4432  | .00641                               |
|       | ALL      | PUSH           | 19.635                      | 1178 | 1571 | 1964      | 3927        | 4908  | 7854  | .01136                               |
| 5.00  | 1.00     | PULL           | 18.850                      | 1131 | 1508 | 1885      | 3770        | 4712  | 7540  | .01090                               |
|       | 1.38     | PULL           | 18.150                      | 1089 | 1452 | 1815      | 3630        | 4537  | 7260  | .01050                               |
|       | ALL      | PUSH           | 28.274                      | 1696 | 2262 | 2827      | 5655        | 7068  | 11310 | .01636                               |
| 6.00  | 1.38     | PULL           | 26.789                      | 1607 | 2144 | 2679      | 5358        | 6697  | 10716 | .01550                               |
|       | 1.75     | PULL           | 25.869                      | 1552 | 2070 | 2587      | 5174        | 6467  | 10348 | .01497                               |
|       | ALL      | PUSH           | 50.265                      | 3016 | 4021 | 5026      | 10053       | 12566 | 20106 | .02908                               |
| 8.00  | 1.38     | PULL           | 48.780                      | 2927 | 3902 | 4878      | 9756        | 12195 | 19512 | .02832                               |
|       | 1.75     | PULL           | 47.860                      | 2872 | 3829 | 4786      | 9572        | 11965 | 19144 | .02770                               |
|       | ALL      | PUSH           | 78.540                      | 4712 | 6283 | 7854      | 15708       | 19635 | 31416 | .04545                               |
| 10.00 | 1.75     | PULL           | 76.130                      | 4568 | 6090 | 7613      | 15226       | 19032 | 30452 | .04406                               |
|       | 2.00     | PULL           | 75.400                      | 4524 | 6032 | 7540      | 15080       | 18850 | 30160 | .04363                               |
|       | ALL      | PUSH           | 113.098                     | 6786 | 9048 | 11310     | 22620       | 28275 | 45239 | .06545                               |
| 12.00 | 2.00     | PULL           | 109.956                     | 6597 | 8796 | 10996     | 21992       | 27489 | 43982 | .06363                               |
|       | 2.50     | PULL           | 108.189                     | 6491 | 8655 | 10819     | 21638       | 27047 | 43276 | .06261                               |

<sup>\*</sup> Theoretical force. Actual force will be reduced by friction.

## **TORQUE CHARTS**

#### **CYLINDER TIE RODS**

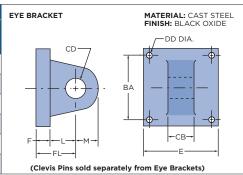
| CYLINDER BORE | TIE ROD THREAD<br>SIZE | TORQUE IN FTLBS. |
|---------------|------------------------|------------------|
| 1.50          | 1/4 - 28               | 7                |
| 2.00          | 5/16 - 24              | 12               |
| 2.50          | 5/16 - 24              | 14               |
| 3.25          | 3/8-24                 | 30               |
| 4.00          | 3/8 - 24               | 35               |
| 5.00          | 1/2-20                 | 45               |
| 6.00          | 1/2-20                 | 50               |
| 8.00          | 5/8-18                 | 125              |
| 10.00         | 3/4 -16                | 125              |
| 12.00         | 3/4 -16                | 125              |


### Tighten cylinders using an "X" tightening pattern on tie rods.

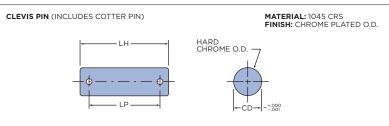
### **RETAINER SCREWS**

| CYLINDER BORE | SIZE            | TORQUE IN FTLBS. |
|---------------|-----------------|------------------|
| 2.00 - 2.50   | #10-32 S.H.C.S. | 5                |
| 3.25 - 12.00  | 1/4-28 S.H.C.S. | 12               |

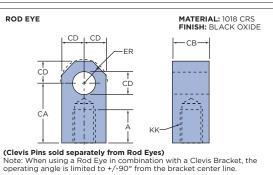



|                |                                       | ROE   | CLEV         | IS DIM | ENSIO | NS    |                |           |       |  |
|----------------|---------------------------------------|-------|--------------|--------|-------|-------|----------------|-----------|-------|--|
| PART<br>NUMBER | MAX LOAD<br>(TENSION)<br>RATED IN LBS | СВ    | CD<br>(DIA.) | CE     | СН    | cw    | ER<br>(RADIUS) | KK        | L     |  |
| 2834L59-A      | 2950                                  | 0.750 | 0.500        | 1.500  | 1.000 | 0.500 | 0.500          | 7/16 - 20 | 0.750 |  |
| 2835L59-A      | 11200                                 | 1.250 | 0.750        | 2.375  | 1.250 | 0.625 | 0.750          | 3/4-16    | 1.250 |  |
| 2836L59-A      | 19500                                 | 1.500 | 1.000        | 3.125  | 1.500 | 0.750 | 1.000          | 1-14      | 1.500 |  |
| 2837L59-A      | 26800                                 | 2.000 | 1.375        | 4.125  | 2.000 | 1.000 | 1.375          | 1-1/4-12  | 2.125 |  |
| 2838L59-A      | 39500                                 | 2.500 | 1.750        | 4.500  | 2.375 | 1.250 | 1.750          | 1-1/2-12  | 2.250 |  |
| 2839L59-A      | 56000                                 | 2.500 | 2.000        | 5.500  | 3.000 | 1.250 | 2.000          | 1-7/8-12  | 2.500 |  |

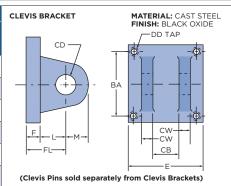



(Clevis Pins sold separately from Rod Clevises)

Note: When using a Rod Clevis in combination with an Eye Bracket, the operating angle is limited to +/-75° from the bracket center line.


|             | EYE BRACKET DIMENSIONS                |       |       |              |       |       |       |       |       |       |
|-------------|---------------------------------------|-------|-------|--------------|-------|-------|-------|-------|-------|-------|
| PART NUMBER | MAX LOAD<br>(TENSION)<br>RATED IN LBS | ВА    | СВ    | CD<br>(DIA.) | DD    | E     | F     | FL    | L     | М     |
| 2716L47-A   | 3375                                  | 1.625 | 0.750 | 0.500        | 0.406 | 2.500 | 0.375 | 1.125 | 0.750 | 0.500 |
| 2719L32-A   | 8400                                  | 2.563 | 1.250 | 0.750        | 0.531 | 3.500 | 0.625 | 1.875 | 1.250 | 0.750 |
| 2720L33-A   | 13500                                 | 3.250 | 1.500 | 1.000        | 0.656 | 4.500 | 0.750 | 2.250 | 1.500 | 1.000 |
| 2721L34-A   | 25000                                 | 3.813 | 2.000 | 1.375        | 0.656 | 5.000 | 0.875 | 3.000 | 2.125 | 1.375 |
| 2722L35-A   | 45000                                 | 4.938 | 2.500 | 1.750        | 0.906 | 6.500 | 0.875 | 3.125 | 2.250 | 1.750 |
| 2723L36-A   | 45000                                 | 5.750 | 2.500 | 2.000        | 1.063 | 7.500 | 1.000 | 3.500 | 2.500 | 2.000 |




| CLE         | CLEVIS PIN (WITH COTTER PINS) |       |       |  |  |  |  |  |  |  |  |
|-------------|-------------------------------|-------|-------|--|--|--|--|--|--|--|--|
| PART NUMBER | CD<br>(DIA.)                  | LH    | LP    |  |  |  |  |  |  |  |  |
| 3222L47-1-A | 0.500                         | 2.250 | 1.938 |  |  |  |  |  |  |  |  |
| 3222L47-2-A | 0.750                         | 3.000 | 2.719 |  |  |  |  |  |  |  |  |
| 3222L47-3-A | 1.000                         | 3.500 | 3.219 |  |  |  |  |  |  |  |  |
| 3222L47-4-A | 1.375                         | 5.000 | 4.250 |  |  |  |  |  |  |  |  |
| 3222L47-5-A | 1.750                         | 6.000 | 5.500 |  |  |  |  |  |  |  |  |
| 3222L47-6-A | 2.000                         | 6.000 | 5.500 |  |  |  |  |  |  |  |  |



|             |                                       | ROD E | YE DIMEN | ISIONS |              |                |           |
|-------------|---------------------------------------|-------|----------|--------|--------------|----------------|-----------|
| PART NUMBER | MAX LOAD<br>(TENSION)<br>RATED IN LBS | A     | CA       | СВ     | CD<br>(DIA.) | ER<br>(RADIUS) | кк        |
| 1810L59-A   | 2950                                  | 0.750 | 1.500    | 0.750  | 0.500        | 0.625          | 7/16 - 20 |
| 1812L59-A   | 8400                                  | 1.125 | 2.063    | 1.250  | 0.750        | 0.875          | 3/4 -16   |
| 1813L59-A   | 13500                                 | 1.625 | 2.813    | 1.500  | 1.000        | 1.180          | 1-14      |
| 1814L59-A   | 24500                                 | 2.000 | 3.438    | 2.000  | 1.375        | 1.563          | 1-1/4-12  |
| 1815L59-A   | 39000                                 | 2.250 | 4.000    | 2.500  | 1.750        | 2.000          | 1-1/2-12  |
| 1817L59-A   | 45000                                 | 3.000 | 5.000    | 2.500  | 2.000        | 2.500          | 1-7/8-12  |



|             | CLEVIS BRACKET DIMENSIONS             |       |       |              |       |         |       |       |       |       |       |
|-------------|---------------------------------------|-------|-------|--------------|-------|---------|-------|-------|-------|-------|-------|
| PART NUMBER | MAX LOAD<br>(TENSION)<br>RATED IN LBS | ВА    | СВ    | CD<br>(DIA.) | cw    | DD      | E     | F     | FL    | L     | М     |
| 2683L47-A   | 4500                                  | 1.625 | 0.750 | 0.500        | 0.500 | 3/8-24  | 2.500 | 0.375 | 1.125 | 0.750 | 0.500 |
| 2684L47-A   | 8400                                  | 2.563 | 1.250 | 0.750        | 0.625 | 1/2-20  | 3.500 | 0.625 | 1.875 | 1.250 | 0.750 |
| 2685L47-A   | 13500                                 | 3.250 | 1.500 | 1.000        | 0.750 | 5/8-18  | 4.500 | 0.750 | 2.250 | 1.500 | 1.000 |
| 2686L47-A   | 34000                                 | 3.813 | 2.000 | 1.375        | 1.000 | 5/8-18  | 5.000 | 0.875 | 3.000 | 2.125 | 1.375 |
| 2687L47-A   | 54000                                 | 4.938 | 2.500 | 1.750        | 1.250 | 7/8 -14 | 6.500 | 0.875 | 3.125 | 2.250 | 1.750 |
| 2688L47-A   | 89000                                 | 5.750 | 2.500 | 2.000        | 1.250 | 1-14    | 7.500 | 1.000 | 3.500 | 2.500 | 2.000 |



### **REED SWITCH WITH BRACKET**

Miniature Reed Switch, 24" (24 AWG Wire, PVC Jacket)

Plain Cable Lead, Circuit Protection (2 wire Switch)

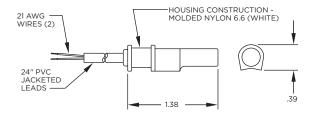
| BORE SIZE      | PART NUMBER |
|----------------|-------------|
| 1.50" - 2.50"  | 19456E00-1  |
| 3.25" - 12.00" | 19456E00-2  |

**Contacts** SPST Form A (Normally Open)

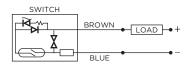
Contact Rating 10 Watts Max.

**Input Voltage** 120 Volts Max. (AC or DC)

Maximum Load Current150 mA Max.Actuating Time Average1.0 millisecond


**LED Indicator** High Luminescence Housing **Temperature Range** -4°F to 158°F (-20°C to 70°C)

Protection Rating IP67


**Circuit Protection** 

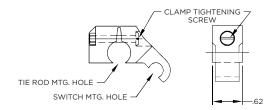
**Varistor** 138 Volts **Choke** 680 μH

**NOTE:** The circuit protection consists of a Varistor and Choke arrangement. The Varistor will take transient & voltage spikes out of the line and is mounted in parallel with the switch. The Choke will disperse inrush currents (normally caused by long cable runs) and is mounted in series with the switch.



#### WIRING DIAGRAM

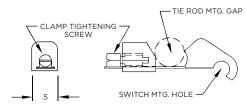



Miniature Reed Switch, Cable Type (2 Wire Switch)

Input Voltage 120 Volts Max. AC/DC

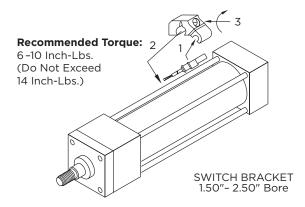
Maximum Load Current 150 mA Max.

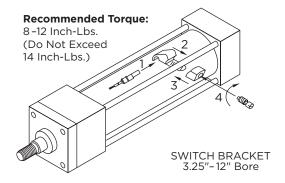
## **SWITCH BRACKET**


(For 1.50" Through 2.50" Bore Cylinders) **Bracket Construction:** Molded Nylon 6 (Black) and
Stainless Steel Hardware



#### **SWITCH BRACKET**

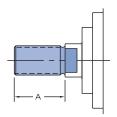

(For 3.25" Through 12.00" Bore Cylinders) **Bracket Construction:** Molded Nylon 6 (Black) and


Stainless Steel Hardware



#### HOW TO ASSEMBLE SWITCH AND BRACKETS

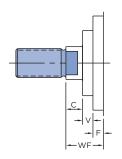
CF






Specify Magnetic Piston option for ALL switch models when ordering cylinders.

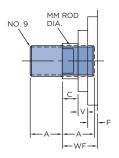



#### **EXTENDED PISTON ROD THREAD**



"A" refers to the length of piston rod thread.

Shorter than standard lengths can be furnished at no charge. Longer than standard lengths can be furnished at a nominal price adder.


### **EXTENDED PISTON ROD**



"WF" is commonly referred to as Piston Rod Extension.

Piston rods can be extended to any length up to 120" total piston rod length, including stroke portion. Cylinders with long "WF" lengths can be mounted away from obstacles or outside hazardous environments.

#### STUDDED PISTON ROD

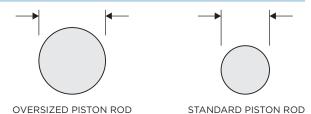


Type 9 combines the Type 5 female threaded rod end design and a case-hardened stud, with permanent Loctite®. When assembled, the Type 9 has the same dimensions as a Type 4 rod end.

This option is useful in applications that typically break standard Type 4 rod ends due to high load impacting.

### SPECIAL ROD THREAD

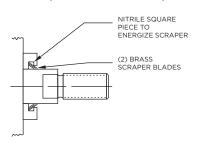
NOPAK can machine virtually any diameter and type of rod thread on the piston rod end. Standard NFPA rod threads are UNF (fine), class 2 threads. Common alternative choices are UNC (course) threads. Some uncommon thread choices are threads larger than the rod diameter. This is only possible by providing a Type 5 (female) rod end and making a stud with the larger rod thread.


**NOTE:** Unless otherwise specified, the rod thread will be standard catalog "A" dimension lengths.

#### **METRIC ROD THREAD**

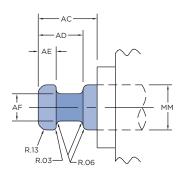
ISO 6431 is a very popular European tie rod cylinder design. Equipment that is imported from outside the United States typically will contain metric tie-rod cylinders. In general, ISO 6431 tie rod cylinders are not as robust as NFPA cylinder designs and some customers prefer to replace the metric cylinders with NFPA designs that will provide longer life.

NOPAK can provide cylinders with metric piston rod end threads to assist customers in mating replacement cylinders to existing equipment.


#### **OVERSIZE ROD**



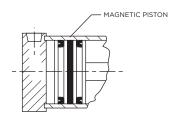
Applications requiring long strokes may require oversize piston rod diameters to prevent sagging or buckling. To determine the recommended rod diameter, refer to Chart 3 on page 89.


### **METALLIC ROD SCRAPER**

Aggressively scrapes the piston rod, removing foreign material such as spatter, sprays and powders (brass construction).



# **OPTIONS AND MODIFICATIONS**

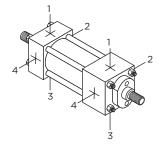

### **ROD COUPLER END**



The Type 7 rod end was made popular in 3000 PSI hydraulic applications due to its versatility and high strength. Typically, a commercially available split flange end coupler and weld plate is used to connect the cylinder directly to the work that is being performed.

| ROD DIAMETER (MM) | AC    | AD    | AE    | AF    |
|-------------------|-------|-------|-------|-------|
| ROD DIAMETER (MM) | AC    |       | AL    | Al    |
| 0.63              | 1.125 | 0.625 | 0.250 | 0.375 |
| 1.00              | 1.625 | 0.938 | 0.375 | 0.688 |
| 1.38              | 1.750 | 1.062 | 0.375 | 0.875 |
| 1.75              | 2.000 | 1.313 | 0.500 | 1.125 |
| 2.00              | 2.625 | 1.688 | 0.625 | 1.375 |
| 2.50              | 3.250 | 1.938 | 0.750 | 1.750 |

#### **MAGNETIC PISTON**




Magnetic Pistons are used in conjunction with NOPAK Reed Switches. (See page 85 for switches).

### **OPTIONAL PORT LOCATION**

Optional port locations can be ordered simply by calling out the location numbers.

**NOTE:** When optional port locations are ordered, specify both port locations, even if one port is in the standard location.



- STANDARD PORT POSITIONS @ 1
- STANDARD CUSHION POSITIONS @ 2
- SPECIFY NON-STANDARD LOCATIONS WHEN ORDERING

#### **FLUOROCARBON SEALS**

Type B Option contains two (2) Fluorocarbon U-Cup piston seals, Bushing O-Ring, rod seal and rod wiper.

Fluorocarbon seal material has an overall shorter seal life due to the higher wear rate inherent with the material. In general, Fluorocarbon seals should only be specified when temperatures exceed 200°F for prolonged periods of time or when there is a fluid compatibility issue with standard seals.

# **BENEFITS OF FLUOROCARBON SEALS:**

- Higher temperature performance: 0°F to 400°F (-20°C to 200°C)
- Higher chemical resistance: Resists most wash down solutions

Many other seal materials are available. Contact NOPAK for proper seal material selection in tough applications or environments.



#### **ELECTROLESS NICKEL**

Electroless Nickel (EMS-201) plating was invented in 1946 and has gained worldwide commercial usage since 1964. Common usages include aircraft landing gear, automotive brake cylinder and components, fuel injector parts, gas turbine parts, spray nozzles for chemical applications and many electronic devices including hard drives.

The properties of Electroless Nickel contribute to the multitude of uses. The coating provides an attractive finish, while exhibiting high abrasion and corrosion resistance. Its ability to uniformly coat blind holes, threads, internal surfaces and sharp edges contributes to its effectiveness. It has a very high bonding strength to the base metal (100,000-200,000 PSI), so much so that gas turbines use electroless nickel plating as a base to braze broken blades to.

#### **EMS-201 CYLINDER SPECIFICATIONS**

#### **EMS-201 PLATED PARTS:**

Tube, Head, Cap, Bushing Retainer, Mounts (excluding FR/FB, which is hard chrome plated stainless steel).

#### **OTHER COMPONENTS:**

303/304 Stainless Steel: Tie Rods & Nuts, Retainer Screws, Piston Rod (hard chrome plated), Rod Bushing with PTFE Wear Band and Rod Wiper.

## **EMS-201 PLATING SPECIFICATIONS:**

**HIGH PHOSPHORUS** Highest corrosion resistant

Electroless Nickel plating available

**COMPOSITION:** 87-90% Nickel, 10-13% Phosphorus

**HARDNESS:** Rc 46-48

THICKNESS: .0005"-.0007"

**LUBRICITY:** Excellent (Similar to chrome)

COEFFICIENT

OF FRICTION:

Low

**FINISH:** Bright and very smooth

#### STAINLESS STEEL

Stainless Steel, when used in conjunction with Anodized Aluminum Heads, Caps and Tube, provides corrosion resistance in outdoor applications and wet environments.

Customize your cylinder by choosing from Stainless Steel Fasteners, Piston Rod or Tie Rods & Nuts.

| Stainless Steel Piston Rod (Hard-Chrome Plated),           | Stainless Steel Cushion Needle                      |
|------------------------------------------------------------|-----------------------------------------------------|
| Stainless Steel Fasteners, Stainless Steel Tie Rods & Nuts | (External Adjustment Components)                    |
| Stainless Steel Tie Rods and Nuts                          | Stainless Steel Fasteners (Bushing Retainer Screws) |
| Stainless Steel Piston Rod (Hard-Chrome Plated)            |                                                     |

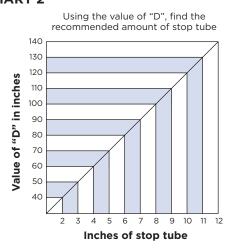
# **OPTIONS AND MODIFICATIONS**

### **STOP TUBE**

Stop Tubes are designed to reduce the piston rod bushing stress to within the designed range of the bearing material. This will ensure proper cylinder performance, in any given application. Stop Tubes lower the cylinder bearing stress by adding length to the piston, which increases the overall length of the cylinder.

**NOTE:** NOPAK uses a double piston design for 2" and longer stop tubes.

#### STOP TUBE SELECTION


To determine the proper amount of stop tube for your application, you must first find the value of "D," which represents the "stroke, adjusted for mounting condition." Each mounting condition creates different levels of bushing stress, which have direct impact on the amount of stop tube required (see Chart 1).

Once the value of "D" is known, refer to Chart 2 for the recommended amount of stop tube.

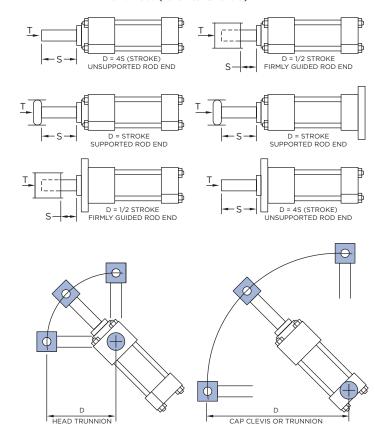
To order a Stop Tube, add the stop tube prefix "ST=" and the length, to the end of your cylinder model number.

The effective stroke (ES) must be included when ordering.

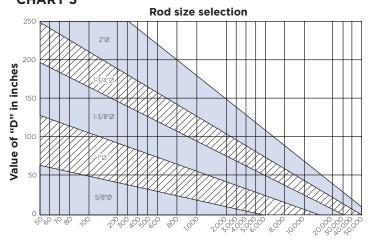
## CHART 2



#### **CHART 1**


#### Find the value of "D" for your application

NOTE: Measure "D" when cylinder is fully extended.

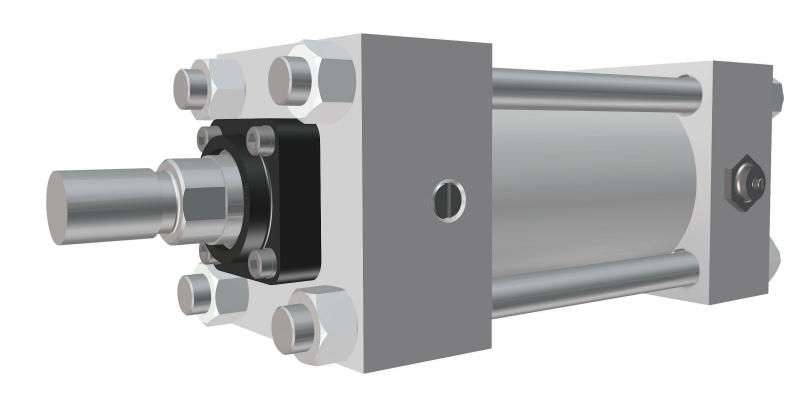

"D" = Stroke, adjusted for mounting condition

"S" = Actual cylinder stroke

"T" = Axial thrust (refer to Chart 3)



## CHART 3




Axial thrust "T" (lbs) (area of bore x PSI)



# Class 6

# Intermediate Pressure Square-Head Cylinders







#### **TABLE OF CONTENTS**

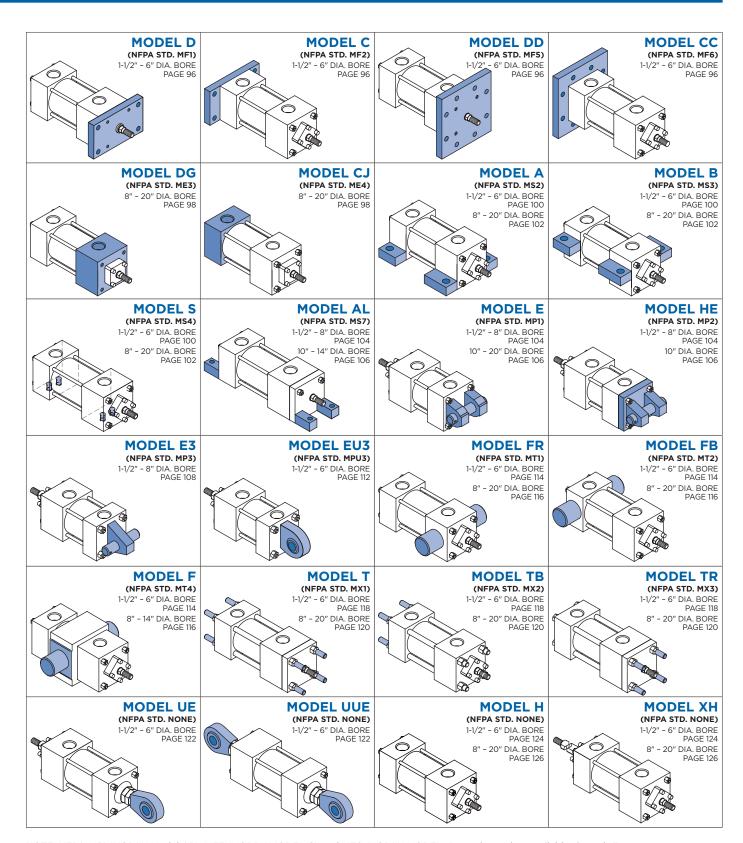
| Pressure Ratings (PSI)                                           | 96                       |
|------------------------------------------------------------------|--------------------------|
| Mounting Styles Index                                            | 97                       |
| Standard Features                                                | 98                       |
| Ordering Information                                             | 99                       |
| Flange Mount Cylinders 1-1/2" Through 6" Bore                    |                          |
| Side and Lug Mount Cylinders 1-1/2" Through 6" Bore              |                          |
| End Lug and Clevis Mount Cylinders<br>1-1/2" Through 8" Diameter | 108<br>.110              |
| Fixed Eye Mount Cylinders<br>1-1/2" Through 8" Diameter          | . 112                    |
| Detachable Eye Mount Cylinders<br>1-1/2" Through 10" Diameter    | .114                     |
| Spherical Eye Mount Cylinders<br>1-1/2" Through 6" Diameter      | .116                     |
| Trunnion Mount Cylinders 1-1/2" Through 6" Diameter              | . 118<br>120             |
| Tie-Rod Mount Cylinders 1-1/2" Through 6" Diameter               |                          |
| Spherical Eye Pin Mount Cylinders<br>1-1/2" Through 6" Diameter  | 126                      |
| Basic Model No Mount Cylinders<br>1-1/2" Through 6" Diameter     |                          |
| Piston Rod Ends                                                  | 132                      |
| Cylinder Accessories                                             | 133                      |
| Reed Proximity Switch                                            | 134                      |
| Proximity Position Indicator Switch                              | 135                      |
| NOPAK Linear Displacement<br>Transducer System                   | 136                      |
| NLDT System Switch Number<br>How To Order                        | 137<br>137               |
| Engineering Information                                          | 138                      |
| Engineering Data                                                 | 40                       |
| Repair Kits - Class P6 and H6                                    | 142<br>142<br>143<br>143 |

### PRESSURE RATINGS (PSI)

NOPAK intermediate pressure square-head cylinders are designed as Class P6 for pneumatic (air) services to 250 PSI Class H6 for hydraulic service to 1500 PSI.

|           | P6 (                                                    | AIR)                                          | H6 (HYD.)                                               |                                               |  |  |  |
|-----------|---------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|-----------------------------------------------|--|--|--|
| CYL. BORE | RECOMMENDED<br>CONTINUOUS DUTY<br>OPERATING<br>PRESSURE | MAXIMUM NON-<br>CONTINUOUS<br>PRESSURE RATING | RECOMMENDED<br>CONTINUOUS<br>DUTY OPERATING<br>PRESSURE | MAXIMUM NON-<br>CONTINUOUS<br>PRESSURE RATING |  |  |  |
| 1-1/2     | 250                                                     | 750                                           | 1500                                                    | 2500                                          |  |  |  |
| 2         | 250                                                     | 750                                           | 1500                                                    | 2500                                          |  |  |  |
| 2-1/2     | 250                                                     | 500                                           | 1100                                                    | 1600                                          |  |  |  |
| 3-1/4     | 250                                                     | 650                                           | 1050                                                    | 1550                                          |  |  |  |
| 4         | 250                                                     | 400                                           | 750                                                     | 1000                                          |  |  |  |
| 5         | 250                                                     | 400                                           | 900                                                     | 1200                                          |  |  |  |
| 6         | 200                                                     | 250                                           | 500                                                     | 700                                           |  |  |  |
| 8         | 200                                                     | 250                                           | 500                                                     | 800                                           |  |  |  |
| 10        | 200                                                     | 250                                           | 400<br>Steel Tube                                       | 800<br>Steel Tube                             |  |  |  |
| 10        | 200                                                     | 250                                           | 400<br>Brass Tube                                       | 450<br>Brass Tube                             |  |  |  |
| 12        | 200                                                     | 250                                           | 400                                                     | 800                                           |  |  |  |
| 14        | 200                                                     | 250                                           | 400                                                     | 800                                           |  |  |  |
| 16        | 200                                                     | 250                                           | 200                                                     | 500                                           |  |  |  |
| 18        | 200                                                     | 250                                           | 200                                                     | 500                                           |  |  |  |
| 20        | 200                                                     | 250                                           | 200                                                     | 500                                           |  |  |  |

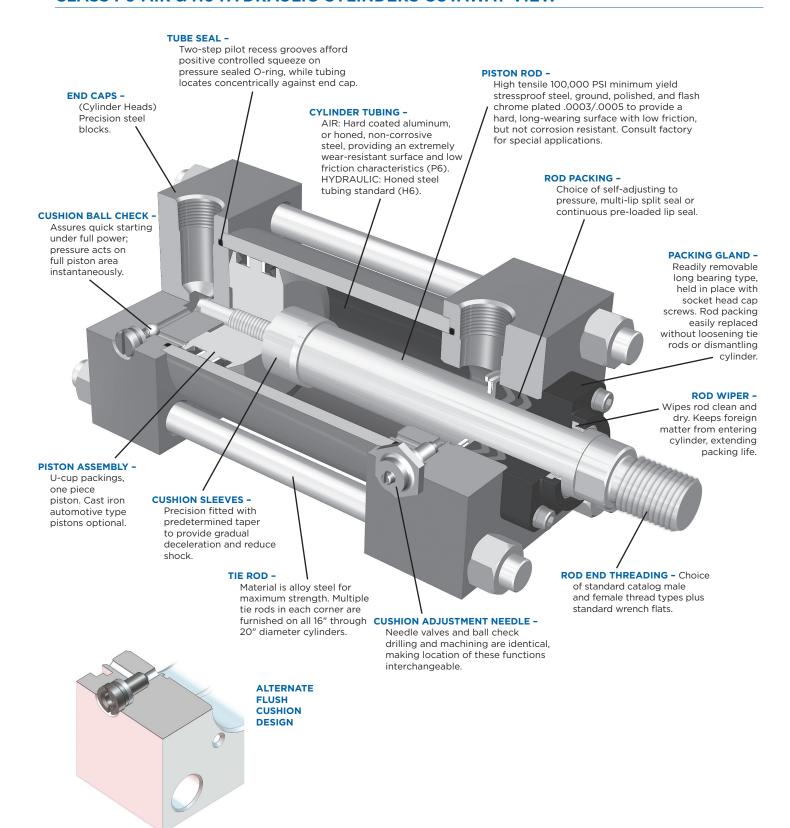
**Note 1 —** In addition to the pressure ratings, proper choice and application of a cylinder are dependent on mounting type, stroke, method of load application, fluid, temperature, environment, and other such conditions. For specific recommendations, consult your nearest NOPAK field representative or factory application engineer.


**Note 2** — While P6 cylinders are designed primarily for air service as noted, they are also suitable for limited range low-pressure hydraulic service, consult factory. Unless otherwise specified any order received for a hydraulic cylinder will be entered as Class H6.

**Note 3** — Maximum non-continuous ratings should be used only when all operating conditions are accurately known and *only* on applications intended for intermittent duty. For specific recommendations consult your nearest NOPAK field representative or factory application engineer.

**Note 4 —** For pressures above these ratings, refer to NOPAK Class 3 High Pressure Hydraulic Cylinders in the Class 3 Section.




# **MOUNTING STYLES INDEX**



NOTE: NFPA-MS1 (NOPAK Model AP), ME5 (NOPAK MODEL G) and ME6 (NOPAK MODEL J) not shown, but available. Consult Factory.



# INTERMEDIATE PRESSURE SQUARE-HEAD CLASS P6-AIR & H6 HYDRAULIC CYLINDERS CUTAWAY VIEW



#### **HOW TO ORDER**

# YOU CAN HELP ENSURE PROMPT PROCESSING OF YOUR ORDER BY INCLUDING ALL OF THE FOLLOWING REQUESTED INFORMATION:

- 1. Quantity required.
- Operating medium: Series P6 or H6.P for pneumatic and H for hydraulic.
- 3. Bore size.
- 4. Stroke length in inches.
- 5. Type of mounting (NOPAK Model or NFPA STD. style).
- 6. Type of cushioning:

NN = non-cushioned

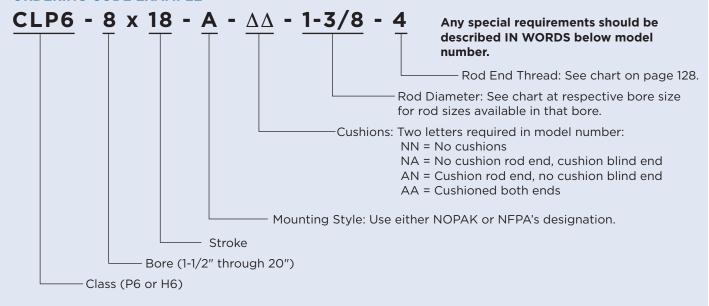
NA = cushioned blind end

AN = cushioned rod end

AA = cushioned both ends

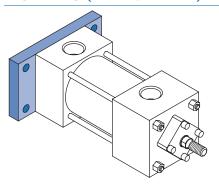
7. Piston rod diameter and type of rod threading - specify Type 1, 3, 4, 5, 6 or 7. See page 128.

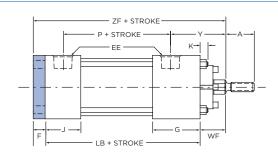
#### **ALSO SPECIFY:**

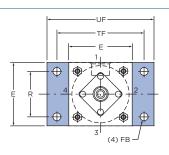

1. Position of cylinder ports and cushion adjustment screws, if other than standard. Standard positions are:

National pipe thread inlets - position 1 Ball check - position 2

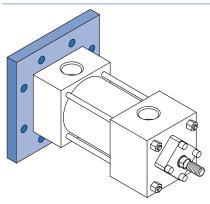
Cushion adjustment - position 4

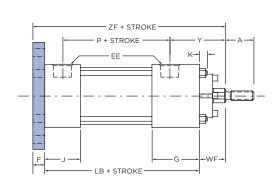

- 2. Extreme high or low operating or ambient temperatures.
- 3. Type of hydraulic fluid if other than standard petroleum base oil.
- 4. Any unusual operating conditions.

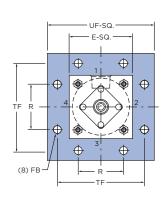

#### **ORDERING CODE EXAMPLE**



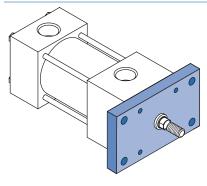


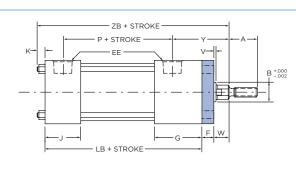


# MODEL C (NFPA STD. MF2)

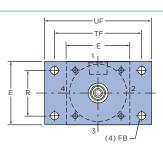


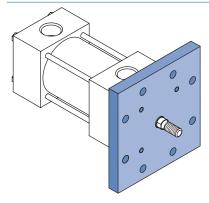


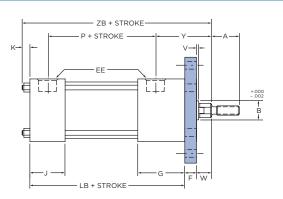


# MODEL CC (NFPA STD. MF6)

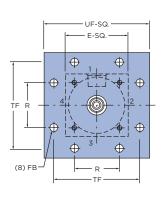






# MODEL D (NFPA STD. MF1)






# MODEL DD (NFPA STD. MF5)







= See Table A on page 123 for bore and rod combinations using head plates with threaded bronze glands.

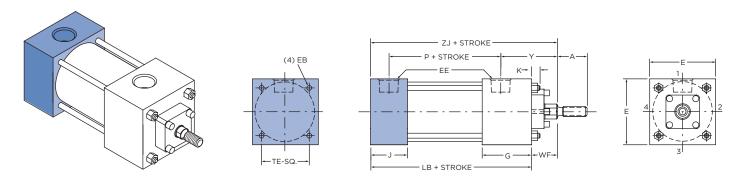
 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

Double rod end models are designated by letter "X" preceding the model identification. See page 124.

• = Dimensions refer to bolt diameter.

| BORE DIA. | E     | F   | G     | J     | K    | R    | EE  | FB•  | TF      | UF    |
|-----------|-------|-----|-------|-------|------|------|-----|------|---------|-------|
| 1-1/2     | 2     | 3/8 | 1-1/2 | 1-1/8 | 1/4  | 1.43 | 3/8 | 1/4  | 2-3/4   | 3-3/8 |
| 2         | 2-1/2 | 3/8 | 1-1/2 | 1-1/8 | 7/16 | 1.84 | 3/8 | 5/16 | 3-3/8   | 4-1/8 |
| 2-1/2     | 3     | 3/8 | 1-1/2 | 1-1/8 | 5/16 | 2.19 | 3/8 | 5/16 | 3-7/8   | 4-5/8 |
| 3-1/4     | 3-3/4 | 5/8 | 1-3/4 | 1-1/4 | 7/16 | 2.76 | 1/2 | 3/8  | 4-11/16 | 5-1/2 |
| 4         | 4-1/2 | 5/8 | 1-3/4 | 1-1/4 | 7/16 | 3.32 | 1/2 | 3/8  | 5-7/16  | 6-1/4 |
| 5         | 5-1/2 | 5/8 | 1-3/4 | 1-1/4 | 1/2  | 4.10 | 1/2 | 1/2  | 6-5/8   | 7-5/8 |
| 6         | 6-1/2 | 3/4 | 2     | 1-1/2 | 9/16 | 4.88 | 3/4 | 1/2  | 7-5/8   | 8-5/8 |

# $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$


• = For piston rod dimensions see page 128.

| BORE DIA. | ROD MM• | Α     | В     | Р     | V   | w     | Υ       | LB    | WF    | ZB      | ZF    |
|-----------|---------|-------|-------|-------|-----|-------|---------|-------|-------|---------|-------|
| 1.1/2     | 5/8     | 3/4   | 1-1/8 | 2-1/8 | 1/4 | 5/8   | 1-15/16 | 3-5/8 | 1     | 4-7/8   | 5     |
| 1-1/2     | 1       | 1-1/8 | 1-1/2 | 2-1/8 | 1/2 | 1     | 2-5/16  | 3-5/8 | 1-3/8 | 5-1/4   | 5-3/8 |
|           | 5/8     | 3/4   | 1-1/8 | 2-1/8 | 1/4 | 5/8   | 1-15/16 | 3-5/8 | 1     | 5-1/16  | 5     |
| 2         | 1       | 1-1/8 | 1-1/2 | 2-1/8 | 1/2 | 1     | 2-5/16  | 3-5/8 | 1-3/8 | 5-7/16  | 5-3/8 |
|           | 1-3/8   | 1-5/8 | 2     | 2-1/8 | 5/8 | 1-1/4 | 2-9/16  | 3-5/8 | 1-5/8 | 5-11/16 | 5-5/8 |
|           | 5/8     | 3/4   | 1-1/8 | 2-1/4 | 1/4 | 5/8   | 1-15/16 | 3-3/4 | 1     | 5-1/16  | 5-1/8 |
| 2-1/2     | 1       | 1-1/8 | 1-1/2 | 2-1/4 | 1/2 | 1     | 2-5/16  | 3-3/4 | 1-3/8 | 5-7/16  | 5-1/2 |
| 2-1/2     | 1-3/8   | 1-5/8 | 2     | 2-1/4 | 5/8 | 1-1/4 | 2-9/16  | 3-3/4 | 1-5/8 | 5-11/16 | 5-3/4 |
|           | 1-3/4   | 2     | 2-3/8 | 2-1/4 | 3/4 | 1-1/2 | 2-13/16 | 3-3/4 | 1-7/8 | 5-15/16 | 6     |
|           | 1       | 1-1/8 | 1-1/2 | 2-1/2 | 1/4 | 3/4   | 2-1/2   | 4-1/4 | 1-3/8 | 6-1/16  | 6-1/4 |
| 7 1/4     | 1-3/8   | 1-5/8 | 2     | 2-1/2 | 3/8 | 1     | 2-3/4   | 4-1/4 | 1-5/8 | 6-5/16  | 6-1/2 |
| 3-1/4     | 1-3/4   | 2     | 2-3/8 | 2-1/2 | 1/2 | 1-1/4 | 3       | 4-1/4 | 1-7/8 | 6-9/16  | 6-3/4 |
|           | 2       | 2-1/4 | 2-5/8 | 2-1/2 | 1/2 | 1-3/8 | 3-1/8   | 4-1/4 | 2     | 6-11/16 | 6-7/8 |
|           | 1       | 1-1/8 | 1-1/2 | 2-1/2 | 1/4 | 3/4   | 2-1/2   | 4-1/4 | 1-3/8 | 6-1/16  | 6-1/4 |
|           | 1-3/8   | 1-5/8 | 2     | 2-1/2 | 3/8 | 1     | 2-3/4   | 4-1/4 | 1-5/8 | 6-5/16  | 6-1/2 |
| 4         | 1-3/4   | 2     | 2-3/8 | 2-1/2 | 1/2 | 1-1/4 | 3       | 4-1/4 | 1-7/8 | 6-9/16  | 6-3/4 |
|           | 2       | 2-1/4 | 2-5/8 | 2-1/2 | 1/2 | 1-3/8 | 3-1/8   | 4-1/4 | 2     | 6-11/16 | 6-7/8 |
|           | 2-1/2   | 3     | 3-1/8 | 2-1/2 | 5/8 | 1-5/8 | 3-3/8   | 4-1/4 | 2-1/4 | 6-15/16 | 7-1/8 |
|           | 1       | 1-1/8 | 1-1/2 | 2-3/4 | 1/4 | 3/4   | 2-1/2   | 4-1/2 | 1-3/8 | 6-3/8   | 6-1/2 |
|           | 1-3/8   | 1-5/8 | 2     | 2-3/4 | 3/8 | 1     | 2-3/4   | 4-1/2 | 1-5/8 | 6-5/8   | 6-3/4 |
|           | 1-3/4   | 2     | 2-3/8 | 2-3/4 | 1/2 | 1-1/4 | 3       | 4-1/2 | 1-7/8 | 6-7/8   | 7     |
| 5         | 2       | 2-1/4 | 2-5/8 | 2-3/4 | 1/2 | 1-3/8 | 3-1/8   | 4-1/2 | 2     | 7       | 7-1/8 |
|           | 2-1/2   | 3     | 3-1/8 | 2-3/4 | 5/8 | 1-5/8 | 3-3/8   | 4-1/2 | 2-1/4 | 7-1/4   | 7-3/8 |
|           | 3       | 3-1/2 | 3-3/4 | 2-3/4 | 5/8 | 1-5/8 | 3-3/8   | 4-1/2 | 2-1/4 | 7-1/4   | 7-3/8 |
|           | 3-1/2   | 3-1/2 | 4-1/4 | 2-3/4 | 5/8 | 1-5/8 | 3-3/8   | 4-1/2 | 2-1/4 | 7-1/4   | 7-3/8 |
|           | 1-3/8   | 1-5/8 | 2     | 3-1/8 | 1/4 | 7/8   | 2-13/16 | 5     | 1-5/8 | 7-3/16  | 7-3/8 |
|           | 1-3/4   | 2     | 2-3/8 | 3-1/8 | 3/8 | 1-1/8 | 3-1/16  | 5     | 1-7/8 | 7-7/16  | 7-5/8 |
|           | 2       | 2-1/4 | 2-5/8 | 3-1/8 | 3/8 | 1-1/4 | 3-3/16  | 5     | 2     | 7-9/16  | 7-3/4 |
| 6         | 2-1/2   | 3     | 3-1/8 | 3-1/8 | 1/2 | 1-1/2 | 3-7/16  | 5     | 2-1/4 | 7-13/16 | 8     |
|           | 3       | 3-1/2 | 3-3/4 | 3-1/8 | 1/2 | 1-1/2 | 3-3/16  | 5     | 2-1/4 | 7-13/16 | 8     |
|           | 3-1/2   | 3-1/2 | 4-1/4 | 3-1/8 | 1/2 | 1-1/2 | 3-7/16  | 5     | 2-1/4 | 7-13/16 | 8     |
|           | 4       | 4     | 4-3/4 | 3-1/8 | 1/2 | 1-1/2 | 3-7/16  | 5     | 2-1/4 | 7-13/16 | 8     |

www.nopak.com CLASS 6 97



# MODEL CJ (NFPA STD. ME4)



# MODEL DG (NFPA STD. ME3)

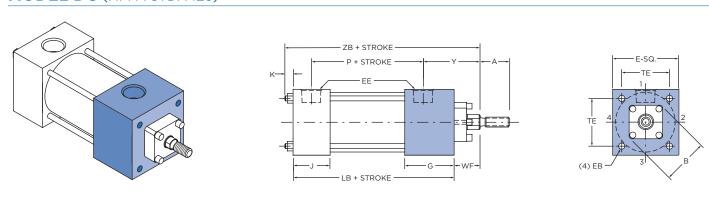


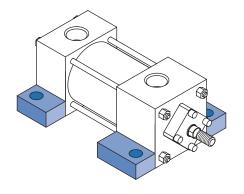

 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

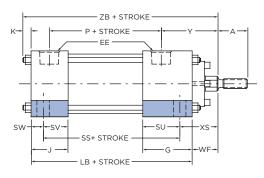
Double rod end models are designated by letter "X" preceding the model identification. See page 124.

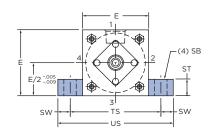
• = Dimensions refer to bolt diameter.

| BORE DIA. | E      | G       | J       | K     | EB•   | EE    | TE     |
|-----------|--------|---------|---------|-------|-------|-------|--------|
| 8         | 8-1/2  | 2       | 1-1/2   | 5/8   | 5/8   | 3/4   | 7.57   |
| 10        | 10-5/8 | 2-1/4   | 2       | 3/4   | 3/4   | 1     | 9.4    |
| 12        | 12-3/4 | 2-1/4   | 2       | 3/4   | 3/4   | 1     | 11.1   |
| 14        | 14-3/4 | 2-3/4   | 2-1/4   | 7/8   | 7/8   | 1-1/4 | 12.87  |
| 16        | 17-1/2 | 3       | 3       | 1     | 1-1/4 | 1-1/2 | 14-3/4 |
| 18        | 19-1/2 | 3-7/16  | 3-7/16  | 1-1/8 | 1-1/2 | 1-1/2 | 16-1/2 |
| 20        | 21-3/4 | 3-15/16 | 3-15/16 | 1-1/4 | 1-3/4 | 2     | 18-1/4 |

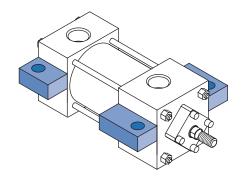
 $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$ 

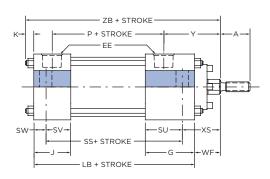

• = For piston rod dimensions see page 128.

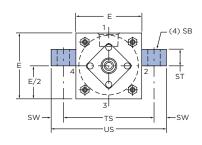

| BORE DIA. | ROD MM• | Α     | Р     | Υ       | LB     | RM    | WF    | ZB     | ZJ     |
|-----------|---------|-------|-------|---------|--------|-------|-------|--------|--------|
|           | 1-3/8   | 1-5/8 | 3-1/4 | 2-13/16 | 5-1/8  | 3     | 1-5/8 | 7-3/8  | 6-3/4  |
|           | 1-3/4   | 2     | 3-1/4 | 3-1/16  | 5-1/8  | 3-1/2 | 1-7/8 | 7-5/8  | 7      |
|           | 2       | 2-1/4 | 3-1/4 | 3-3/16  | 5-1/8  | 4-1/8 | 2     | 7-3/4  | 7-1/8  |
|           | 2-1/2   | 3     | 3-1/4 | 3-7/16  | 5-1/8  | 4-5/8 | 2-1/4 | 8      | 7-3/8  |
|           | 3       | 3-1/2 | 3-1/4 | 3-7/16  | 5-1/8  | 5-1/2 | 2-1/4 | 8      | 7-3/8  |
| 8         | 3-1/2   | 3-1/2 | 3-1/4 | 3-7/16  | 5-1/8  | 6-1/8 | 2-1/4 | 8      | 7-3/8  |
|           | 4       | 4     | 3-1/4 | 3-7/16  | 5-1/8  | 6-7/8 | 2-1/4 | 8      | 7-3/8  |
|           | 4-1/2   | 4-1/2 | 3-1/4 | 3-7/16  | 5-1/8  | 7-3/4 | 2-1/4 | 8      | 7-3/8  |
|           | 5       | 5     | 3-1/4 | 3-7/16  | 5-1/8  | 8-3/8 | 2-1/4 | 8      | 7-3/8  |
|           | 5-1/2   | 5-1/2 | 3-1/4 | 3-7/16  | 5-1/8  | 9     | 2-1/4 | 8      | 7-3/8  |
|           | 1-3/4   | 2     | 4     | 3-3/16  | 6-3/8  | 3-1/2 | 1-7/8 | 9      | 8-1/4  |
|           | 2       | 2-1/4 | 4     | 3-5/16  | 6-3/8  | 4-1/8 | 2     | 9-1/8  | 8-3/8  |
|           | 2-1/2   | 3     | 4     | 3-9/16  | 6-3/8  | 4-5/8 | 2-1/4 | 9-3/8  | 8-5/8  |
|           | 3       | 3-1/2 | 4     | 3-9/16  | 6-3/8  | 5-1/2 | 2-1/4 | 9-3/8  | 8-5/8  |
| 10        | 3-1/2   | 3-1/2 | 4     | 3-9/16  | 6-3/8  | 6-1/8 | 2-1/4 | 9-3/8  | 8-5/8  |
|           | 4       | 4     | 4     | 3-9/16  | 6-3/8  | 6-7/8 | 2-1/4 | 9-3/8  | 8-5/8  |
|           | 4-1/2   | 4-1/2 | 4     | 3-9/16  | 6-3/8  | 7-3/4 | 2-1/4 | 9-3/8  | 8-5/8  |
|           | 5       | 5     | 4     | 3-9/16  | 6-3/8  | 8-3/8 | 2-1/4 | 9-3/8  | 8-5/8  |
|           | 5-1/2   | 5-1/2 | 4     | 3-9/16  | 6-3/8  | 9     | 2-1/4 | 9-3/8  | 8-5/8  |
|           | 2       | 2-1/4 | 4-1/2 | 3-5/16  | 6-7/8  | 4-1/8 | 2     | 9-5/8  | 8-7/8  |
|           | 2-1/2   | 3     | 4-1/2 | 3-9/16  | 6-7/8  | 4-5/8 | 2-1/4 | 9-7/8  | 9-1/8  |
|           | 3       | 3-1/2 | 4-1/2 | 3-9/16  | 6-7/8  | 5-1/2 | 2-1/4 | 9-7/8  | 9-1/8  |
| 10        | 3-1/2   | 3-1/2 | 4-1/2 | 3-9/16  | 6-7/8  | 6-1/8 | 2-1/4 | 9-7/8  | 9-1/8  |
| 12        | 4       | 4     | 4-1/2 | 3-9/16  | 6-7/8  | 6-7/8 | 2-1/4 | 9-7/8  | 9-1/8  |
|           | 4-1/2   | 4-1/2 | 4-1/2 | 3-9/16  | 6-7/8  | 7-3/4 | 2-1/4 | 9-7/8  | 9-1/8  |
|           | 5       | 5     | 4-1/2 | 3-9/16  | 6-7/8  | 8-3/8 | 2-1/4 | 9-7/8  | 9-1/8  |
|           | 5-1/2   | 5-1/2 | 4-1/2 | 3-9/16  | 6-7/8  | 9     | 2-1/4 | 9-7/8  | 9-1/8  |
|           | 2-1/2   | 3     | 5-1/2 | 3-13/16 | 8-1/8  | 4-5/8 | 2-1/4 | 11-1/4 | 10-3/8 |
|           | 3       | 3-1/2 | 5-1/2 | 3-13/16 | 8-1/8  | 5-1/2 | 2-1/4 | 11-1/4 | 10-3/8 |
|           | 3-1/2   | 3-1/2 | 5-1/2 | 3-13/16 | 8-1/8  | 6-1/8 | 2-1/4 | 11-1/4 | 10-3/8 |
| 14        | 4       | 4     | 5-1/2 | 3-13/16 | 8-1/8  | 6-7/8 | 2-1/4 | 11-1/4 | 10-3/8 |
|           | 4-1/2   | 4-1/2 | 5-1/2 | 3-13/16 | 8-1/8  | 7-3/4 | 2-1/4 | 11-1/4 | 10-3/8 |
|           | 5       | 5     | 5-1/2 | 3-13/16 | 8-1/8  | 8-3/8 | 2-1/4 | 11-1/4 | 10-3/8 |
|           | 5-1/2   | 5-1/2 | 5-1/2 | 3-13/16 | 8-1/8  | 9     | 2-1/4 | 11-1/4 | 10-3/8 |
|           | 2-1/2   | 3     | 5-7/8 | 3-15/16 | 9-1/4  | 4-5/8 | 2-1/4 | 12-1/2 | 11-1/2 |
|           | 3       | 3-1/2 | 5-7/8 | 3-15/16 | 9-1/4  | 5-1/2 | 2-1/4 | 12-1/2 | 11-1/2 |
|           | 3-1/2   | 3-1/2 | 5-7/8 | 3-15/16 | 9-1/4  | 6-1/8 | 2-1/4 | 12-1/2 | 11-1/2 |
| 16        | 4       | 4     | 5-7/8 | 3-15/16 | 9-1/4  | 6-7/8 | 2-1/4 | 12-1/2 | 11-1/2 |
|           | 4-1/2   | 4-1/2 | 5-7/8 | 3-15/16 | 9-1/4  | 7-3/4 | 2-1/4 | 12-1/2 | 11-1/2 |
|           | 5       | 5     | 5-7/8 | 3-15/16 | 9-1/4  | 8-3/8 | 2-1/4 | 12-1/2 | 11-1/2 |
|           | 5-1/2   | 5-1/2 | 5-7/8 | 3-15/16 | 9-1/4  | 9     | 2-1/4 | 12-1/2 | 11-1/2 |
|           | 3-1/2   | 3-1/2 | 6     | 4-3/8   | 10-1/4 | 6-1/8 | 2-1/4 | 13-5/8 | 12-1/2 |
| 1.0       | 4       | 4     | 6     | 4-3/8   | 10-1/4 | 6-7/8 | 2-1/4 | 13-5/8 | 12-1/2 |
| 18        | 4-1/2   | 4-1/2 | 6     | 4-3/8   | 10-1/4 | 7-3/4 | 2-1/4 | 13-5/8 | 12-1/2 |
|           | 5       | 5     | 6     | 4-3/8   | 10-1/4 | 8-3/8 | 2-1/4 | 13-5/8 | 12-1/2 |
|           | 5-1/2   | 5-1/2 | 6     | 4-3/8   | 10-1/4 | 9     | 2-1/4 | 13-5/8 | 12-1/2 |
|           | 4 1/0   | 4 1/0 | 7-1/8 | 4-9/16  | 11-3/4 | 6-7/8 | 2-1/4 | 15-1/4 | 14     |
| 20        | 4-1/2   | 4-1/2 | 7-1/8 | 4-9/16  | 11-3/4 | 7-3/4 | 2-1/4 | 15-1/4 | 14     |
|           | 5       | 5     | 7-1/8 | 4-9/16  | 11-3/4 | 8-3/8 | 2-1/4 | 15-1/4 | 14     |
|           | 5-1/2   | 5-1/2 | 7-1/8 | 4-9/16  | 11-3/4 | 9     | 2-1/4 | 15-1/4 | 14     |


www.nopak.com CLASS 6 99

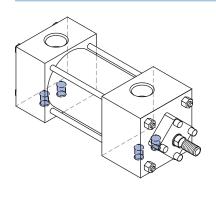


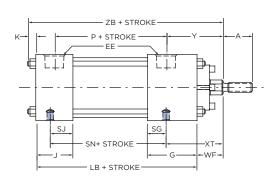

# MODEL A (NFPA STD. MS2)

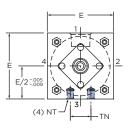






# MODEL B (NFPA STD. MS3)






# MODEL S (NFPA STD. MS4)







🕶 = See Table A on page 123 for bore and rod combinations using head plates with threaded bronze glands.

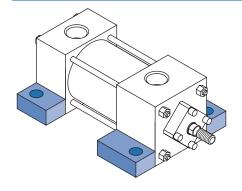
 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

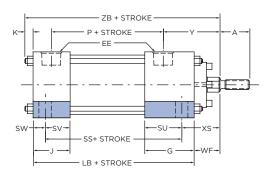
For double rod end cylinders Model A and B 1-1/2" through 6" bore: add 1/2" to dimension SS. See pages 124-127. Double rod end models are designated by letter "X" preceding the model identification. See page 124.

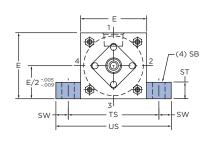
• = Dimensions refer to bolt diameter.

| BORE<br>DIA. | E     | G     | J     | К    | EE  | NT      | SB• | sg    | SJ    | ST  | su     | sv    | sw     | TN      | TS    | US    |
|--------------|-------|-------|-------|------|-----|---------|-----|-------|-------|-----|--------|-------|--------|---------|-------|-------|
| 1-1/2        | 2     | 1-1/2 | 1-1/8 | 1/4  | 3/8 | 1/4-20  | 3/8 | 9/16  | 11/16 | 1/2 | 1-1/8  | 3/4   | 3/8    | 5/8     | 2-3/4 | 3-1/2 |
| 2            | 2-1/2 | 1-1/2 | 1-1/8 | 3/8  | 3/8 | 5/16-18 | 3/8 | 9/16  | 11/16 | 1/2 | 1-1/8  | 3/4   | 3/8    | 7/8     | 3-1/4 | 4     |
| 2-1/2        | 3     | 1-1/2 | 1-1/8 | 3/8  | 3/8 | 3/8-16  | 3/8 | 9/16  | 11/16 | 1/2 | 1-1/8  | 3/4   | 3/8    | 1-1/4   | 3-3/4 | 4-1/2 |
| 3-1/4        | 3-3/4 | 1-3/4 | 1-1/4 | 7/16 | 1/2 | 1/2-13  | 1/2 | 11/16 | 11/16 | 3/4 | 1-1/4  | 3/4   | 1/2    | 1-1/2   | 4-3/4 | 5-3/4 |
| 4            | 4-1/2 | 1-3/4 | 1-1/4 | 7/16 | 1/2 | 1/2-13  | 1/2 | 11/16 | 11/16 | 3/4 | 1-1/4  | 3/4   | 1/2    | 2-1/16  | 5-1/2 | 6-1/2 |
| 5            | 5-1/2 | 1-3/4 | 1-1/4 | 1/2  | 1/2 | 5/8-11  | 3/4 | 11/16 | 11/16 | 1   | 1-1/16 | 9/16  | 1-1/16 | 2-11/16 | 6-7/8 | 8-1/4 |
| 6            | 6-1/2 | 2     | 1-1/2 | 9/16 | 3/4 | 3/4-10  | 3/4 | 13/16 | 13/16 | 1   | 1-5/16 | 13/16 | 1-1/16 | 3-1/4   | 7-7/8 | 9-1/4 |

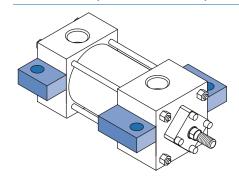
 Table 2
 The dimensions given on this table are affected by the piston rod diameter and the stroke.

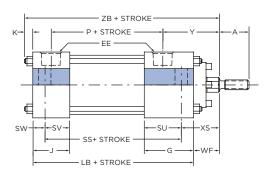

For double rod end cylinders Model S 1-1/2" through 2-1/2" bore: add 0.13" to dimension SN. See pages 124-127.
• = For piston rod dimensions see page 128.

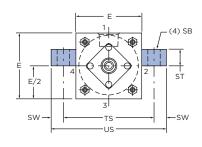

| BORE DIA. | ROD MM• | A     | Р     | Υ       | LB    | SN    | SS    | WF    | XS      | XT      | ZB      |
|-----------|---------|-------|-------|---------|-------|-------|-------|-------|---------|---------|---------|
| 1-1/2     | 5/8     | 3/4   | 2-1/8 | 1-15/16 | 3-5/8 | 2-1/4 | 2-7/8 | 1     | 1-3/8   | 1-15/16 | 4-7/8   |
| 1-1/2     | 1       | 1-1/8 | 2-1/8 | 2-5/16  | 3-5/8 | 2-1/4 | 2-7/8 | 1-3/8 | 1-3/4   | 2-5/16  | 5-1/4   |
|           | 5/8     | 3/4   | 2-1/8 | 1-15/16 | 3-5/8 | 2-1/4 | 2-7/8 | 1     | 1-3/8   | 1-15/16 | 5       |
| 2         | 1       | 1-1/8 | 2-1/8 | 2-5/16  | 3-5/8 | 2-1/4 | 2-7/8 | 1-3/8 | 1-3/4   | 2-5/16  | 5-3/8   |
|           | 1-3/8   | 1-5/8 | 2-1/8 | 2-9/16  | 3-5/8 | 2-1/4 | 2-7/8 | 1-5/8 | 2       | 2-9/16  | 5-11/16 |
|           | 5/8     | 3/4   | 2-1/4 | 1-15/16 | 3-3/4 | 2-3/8 | 3     | 1     | 1-3/8   | 1-15/16 | 5-1/16  |
| 2-1/2     | 1       | 1-1/8 | 2-1/4 | 2-5/16  | 3-3/4 | 2-3/8 | 3     | 1-3/8 | 1-3/4   | 2-5/16  | 5-7/16  |
| 2-1/2     | 1-3/8   | 1-5/8 | 2-1/4 | 2-9/16  | 3-3/4 | 2-3/8 | 3     | 1-5/8 | 2       | 2-9/16  | 5-11/16 |
|           | 1-3/4   | 2     | 2-1/4 | 2-13/16 | 3-3/4 | 2-3/8 | 3     | 1-7/8 | 2-1/4   | 2-13/16 | 5-15/16 |
|           | 1       | 1-1/8 | 2-1/2 | 2-1/2   | 4-1/4 | 2-5/8 | 3-1/4 | 1-3/8 | 1-7/8   | 2-7/16  | 6-1/16  |
| 3-1/4     | 1-3/8   | 1-5/8 | 2-1/2 | 2-3/4   | 4-1/4 | 2-5/8 | 3-1/4 | 1-5/8 | 2-1/8   | 2-11/16 | 6-5/16  |
| 3-1/4     | 1-3/4   | 2     | 2-1/2 | 3       | 4-1/4 | 2-5/8 | 3-1/4 | 1-7/8 | 2-3/8   | 2-15/16 | 6-9/16  |
|           | 2       | 2-1/4 | 2-1/2 | 3-1/8   | 4-1/4 | 2-5/8 | 3-1/4 | 2     | 2-1/2   | 3-1/16  | 6-11/16 |
|           | 1       | 1-1/8 | 2-1/2 | 2-1/2   | 4-1/4 | 2-5/8 | 3-1/4 | 1-3/8 | 1-7/8   | 2-7/16  | 6-1/16  |
|           | 1-3/8   | 1-5/8 | 2-1/2 | 2-3/4   | 4-1/4 | 2-5/8 | 3-1/4 | 1-5/8 | 2-1/8   | 2-11/16 | 6-5/16  |
| 4         | 1-3/4   | 2     | 2-1/2 | 3       | 4-1/4 | 2-5/8 | 3-1/4 | 1-7/8 | 2-3/8   | 2-15/16 | 6-9/16  |
|           | 2       | 2-1/4 | 2-1/2 | 3-1/8   | 4-1/4 | 2-5/8 | 3-1/4 | 2     | 2-1/2   | 3-1/16  | 6-11/16 |
|           | 2-1/2   | 3     | 2-1/2 | 3-3/8   | 4-1/4 | 2-5/8 | 3-1/4 | 2-1/4 | 2-3/4   | 3-5/16  | 6-15/16 |
|           | 1       | 1-1/8 | 2-3/4 | 2-1/2   | 4-1/2 | 2-7/8 | 3-1/8 | 1-3/8 | 2-1/16  | 2-7/16  | 6-3/8   |
|           | 1-3/8   | 1-5/8 | 2-3/4 | 2-3/4   | 4-1/2 | 2-7/8 | 3-1/8 | 1-5/8 | 2-5/16  | 2-11/16 | 6-5/8   |
|           | 1-3/4   | 2     | 2-3/4 | 3       | 4-1/2 | 2-7/8 | 3-1/8 | 1-7/8 | 2-9/16  | 2-15/16 | 6-7/8   |
| 5         | 2       | 2-1/4 | 2-3/4 | 3-1/8   | 4-1/2 | 2-7/8 | 3-1/8 | 2     | 2-11/16 | 3-1/16  | 7       |
|           | 2-1/2   | 3     | 2-3/4 | 3-3/8   | 4-1/2 | 2-7/8 | 3-1/8 | 2-1/4 | 2-15/16 | 3-5/16  | 7-1/4   |
|           | 3       | 3-1/2 | 2-3/4 | 3-3/8   | 4-1/2 | 2-7/8 | 3-1/8 | 2-1/4 | 2-15/16 | 3-5/16  | 7-1/4   |
|           | 3-1/2   | 3-1/2 | 2-3/4 | 3-3/8   | 4-1/2 | 2-7/8 | 3-1/8 | 2-1/4 | 2-15/16 | 3-5/16  | 7-1/4   |
|           | 1-3/8   | 1-5/8 | 3-1/8 | 2-13/16 | 5     | 3-1/8 | 3-5/8 | 1-5/8 | 2-5/16  | 2-13/16 | 7-3/16  |
|           | 1-3/4   | 2     | 3-1/8 | 3-1/16  | 5     | 3-1/8 | 3-5/8 | 1-7/8 | 2-9/16  | 3-1/16  | 7-7/16  |
|           | 2       | 2-1/4 | 3-1/8 | 3-3/16  | 5     | 3-1/8 | 3-5/8 | 2     | 2-11/16 | 3-3/16  | 7-9/16  |
| 6         | 2-1/2   | 3     | 3-1/8 | 3-7/16  | 5     | 3-1/8 | 3-5/8 | 2-1/4 | 2-15/16 | 3-7/16  | 7-13/16 |
|           | 3       | 3-1/2 | 3-1/8 | 3-7/16  | 5     | 3-1/8 | 3-5/8 | 2-1/4 | 2-15/16 | 3-7/16  | 7-13/16 |
|           | 3-1/2   | 3-1/2 | 3-1/8 | 3-7/16  | 5     | 3-1/8 | 3-5/8 | 2-1/4 | 2-15/16 | 3-7/16  | 7-13/16 |
|           | 4       | 4     | 3-1/8 | 3-7/16  | 5     | 3-1/8 | 3-5/8 | 2-1/4 | 2-15/16 | 3-7/16  | 7-13/16 |


www.nopak.com CLASS 6 101

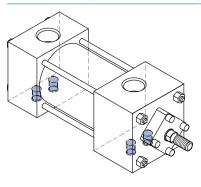


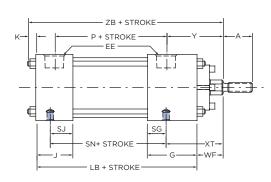

# MODEL A (NFPA STD. MS2)







# MODEL B (NFPA STD. MS3)








# MODEL S (NFPA STD. MS4)





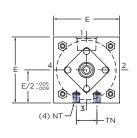


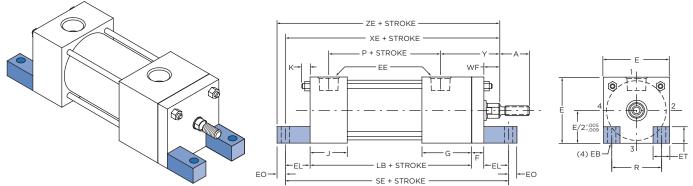

 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

For double rod end cylinders Model A and B 8" through 14" bore: subtract dimension SV from dimension SS and add dimension SU. See pages 124-127. Double rod end models are designated by letter "X" preceding the model identification. See page 124.

• = Dimensions refer to bolt diameter.

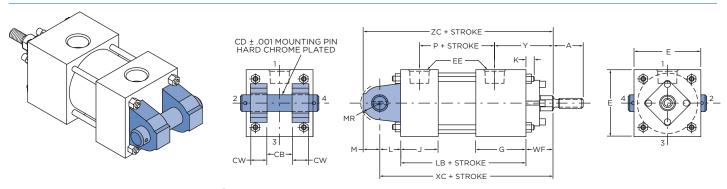
| BORE<br>DIA. | E      | G       | J       | К     | EE    | NT       | SB•   | SG     | SJ      | ST    | SU     | sv     | sw    | TN    | TS     | US     |
|--------------|--------|---------|---------|-------|-------|----------|-------|--------|---------|-------|--------|--------|-------|-------|--------|--------|
| 8            | 8-1/2  | 2       | 1-1/2   | 5/8   | 3/4   | 3/4-10   | 3/4   | 13/16  | 13/16   | 1     | 1-5/16 | 13/16  | 11/16 | 4-1/2 | 9-7/8  | 11-1/4 |
| 10           | 10-5/8 | 2-1/4   | 2       | 3/4   | 1     | 1-8      | 1     | 1      | 1       | 1-1/4 | 1-3/8  | 1-1/8  | 7/8   | 5-1/2 | 12-3/8 | 14-1/8 |
| 12           | 12-3/4 | 2-1/4   | 2       | 3/4   | 1     | 1-8      | 1     | 1      | 1       | 1-1/4 | 1-3/8  | 1-1/8  | 7/8   | 7-1/4 | 14-1/2 | 16-1/4 |
| 14           | 14-3/4 | 2-3/4   | 2-1/4   | 7/8   | 1-1/4 | 1-1/4-7  | 1-1/4 | 1-3/16 | 1-3/16  | 1-1/2 | 1-5/8  | 1-1/8  | 1-1/8 | 8-3/8 | 17     | 19-1/4 |
| 16           | 17-1/2 | 3       | 3       | 1     | 1-1/2 | 1-3/4-12 | 1-3/4 | 1-9/16 | 1-11/16 | 2     | 1-1/4  | 1-1/4  | 1-5/8 | 7     | 21     | 24-1/4 |
| 18           | 19-1/2 | 3-7/16  | 3-7/16  | 1-1/8 | 1-1/2 | 2-12     | 2     | 1-3/4  | 1-7/8   | 2-1/2 | 1-7/16 | 1-7/16 | 2     | 8     | 23-1/2 | 27-1/2 |
| 20           | 21-3/4 | 3-15/16 | 3-15/16 | 1-1/4 | 2     | 2-1/4-12 | 2-1/4 | 2      | 1-7/8   | 3     | 1-9/16 | 1-9/16 | 2-3/8 | 8-1/2 | 26-1/2 | 31-1/4 |

**Table 2** The dimensions given on this table are affected by the piston rod diameter and the stroke.

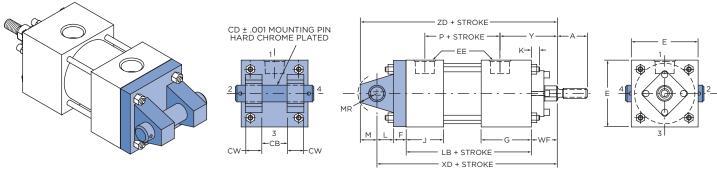

For double rod end cylinders Model S 16" through 20" bore: subtract dimension SJ from dimension SN and add dimension SG. See pages 124-127.
• = For piston rod dimensions see page 128.

| 1-3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BORE DIA. | ROD MM• | Α     | Р     | Υ       | LB    | SN    | SS    | WF    | XS    | XT      | ZB     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|-------|-------|---------|-------|-------|-------|-------|-------|---------|--------|
| 1-3/4   2   3-1/4   3-1/16   5-1/8   3-1/4   3-3/4   3-3/4   3-3/4   3-3/6   5-3/6   3-3/16   7-3/8     2-1/2   3   3-1/4   3-7/16   5-1/8   3-1/4   3-3/4   2-1/4   2-15/16   3-7/16   8     3   3-1/2   3-1/4   3-7/16   5-1/8   3-1/4   3-3/4   2-1/4   2-15/16   3-7/16   8     3   3-1/2   3-1/4   3-7/16   5-1/8   3-1/4   3-3/4   2-1/4   2-15/16   3-7/16   8     4   4   3-1/4   3-7/16   5-1/8   3-1/4   3-3/4   2-1/4   2-15/16   3-7/16   8     4   1/2   4-1/2   3-1/4   3-7/16   5-1/8   3-1/4   3-3/4   2-1/4   2-15/16   3-7/16   8     5   5   3-1/4   3-7/16   5-1/8   3-1/4   3-3/4   2-1/4   2-15/16   3-7/16   8     5   5   3-1/4   3-7/16   5-1/8   3-1/4   3-3/4   2-1/4   2-15/16   3-7/16   8     5   7   3-1/4   3-7/16   5-1/8   3-1/4   3-3/4   2-1/4   2-15/16   3-7/16   8     5   7   3-1/4   3-7/16   5-1/8   3-1/4   3-3/4   2-1/4   2-15/16   3-7/16   8     5   7   3-1/4   3-7/16   5-1/8   3-1/4   3-3/4   2-1/4   2-15/16   3-7/16   8     1-3/4   2   4   3-5/16   6-3/8   4-1/8   4-5/8   1-7/8   2-1/4   3-1/8   3-1/2   9-3/8     2   2-1/4   4   3-5/16   6-3/8   4-1/8   4-5/8   2-1/4   3-1/8   3-1/2   9-3/8     3   3-1/2   4   3-9/16   6-3/8   4-1/8   4-5/8   2-1/4   3-1/8   3-1/2   9-3/8     3   3-1/2   4   3-9/16   6-3/8   4-1/8   4-5/8   2-1/4   3-1/8   3-1/2   9-3/8     4   1/2   4-1/2   4   3-9/16   6-3/8   4-1/8   4-5/8   2-1/4   3-1/8   3-1/2   9-3/8     5   5   4   3-9/16   6-3/8   4-1/8   4-5/8   2-1/4   3-1/8   3-1/2   9-3/8     5   5   4   3-9/16   6-3/8   4-1/8   4-5/8   2-1/4   3-1/8   3-1/2   9-3/8     5   5   4   3-9/16   6-3/8   4-1/8   4-5/8   2-1/4   3-1/8   3-1/2   9-3/8     5   5   5   4   3-9/16   6-3/8   4-1/8   4-5/8   2-1/4   3-1/8   3-1/2   9-3/8     5   5   5   4   3-9/16   6-3/8   4-1/8   4-5/8   2-1/4   3-1/8   3-1/2   9-3/8     5   5   5   4   3-9/16   6-3/8   4-1/8   4-5/8   2-1/4   3-1/8   3-1/2   9-3/8     5   5   5   4   3-9/16   6-3/8   4-1/8   3-5/8   3-1/4   3-1/8   3-1/2   9-3/8     5   5   5   6   6-3/8   4-1/8   3-5/8   3-1/8   3-1/8   3-1/2   9-3/8   3-1/2   3-1/2   3-1/2   3-1/  | BORE DIA. |         |       |       |         |       |       |       |       |       |         |        |
| 2   2-1/4   3-1/4   3-3/16   5-1/8   3-1/4   3-3/4   2-1/16   3-3/16   3-7/16   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | -       | -     | -     |         |       | ,     |       | -     |       | -       |        |
| 2-1/2   3   3-1/4   3-7/16   5-1/8   3-1/4   3-3/4   2-1/4   2-15/16   3-7/16   8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |         |       |       |         |       |       | -     |       |       | -       |        |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |         | -     | -     | -       | -     | -     | -     |       | -     | -       |        |
| 8   3-1/2   3-1/2   3-1/4   3-3-7/16   5-1/8   3-1/4   3-5/4   2-1/4   2-15/16   3-7/16   8   4   4   3-1/4   3-7/16   5-1/8   3-1/4   3-3/4   2-1/4   2-15/16   3-7/16   8   6-1/8   3-1/4   3-3/4   2-1/4   2-15/16   3-7/16   8   6-1/8   3-1/4   3-3/4   2-1/4   2-15/16   3-7/16   8   5   5   3-1/4   3-7/16   5-1/8   3-1/4   3-3/4   2-1/4   2-15/16   3-7/16   8   5-1/2   3-1/4   3-7/16   5-1/8   3-1/4   3-3/4   2-1/4   2-15/16   3-7/16   8   7-1/6   7-1/6   8   7-1/6   7-1/6   8   7-1/6   7-1/6   8   7-1/6   7-1/6   8   7-1/6   7-1/6   8   7-1/6   7-1/6   8   7-1/6   7-1/6   8   7-1/6   7-1/6   7-1/6   8   7-1/6   7-1/6   7-1/6   8   7-1/6   7-1/6   7-1/6   8   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   8   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6   7-1/6 |           |         |       |       |         |       |       |       |       |       |         |        |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8         |         |       |       |         |       | -     | -     |       | -     | -       |        |
| A-1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |       |       |         |       |       |       |       |       |         |        |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |         |       |       |         |       |       |       |       |       |         |        |
| S-1/2   S-1/2   S-1/2   S-1/4   S-7/16   S-1/8   S-1/4   S-3/4   S-1/4   S-15/16   S-7/16    |           |         |       |       |         |       |       |       | -     | 1     |         |        |
| 1-3/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         |       | -     | -       |       |       | -     | -     |       | -       |        |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |         | -     | -     | -       | -     | -     |       | -     | -     |         |        |
| 2-1/2   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |       |       |         |       | -     |       | -     |       |         |        |
| 10   3   3-1/2   4   3-9/16   6-3/8   4-1/8   4-5/8   2-1/4   3-1/8   3-1/2   9-3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |         |       |       | -       | -     | -     |       |       |       | -       |        |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |         |       |       | -       | -     | -     | -     |       |       |         |        |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10        |         |       |       | -       |       |       |       |       |       |         |        |
| 14-1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10        | -       |       |       |         |       | -     | -     | -     |       |         |        |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |         |       |       |         |       | -     |       |       |       |         |        |
| S-1/2   S-1/2   4   3-9/16   6-3/8   4-1/8   4-5/8   2-1/4   3-1/8   3-1/2   9-3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |         |       |       |         |       |       | 1     |       | 1     |         |        |
| 2   2-1/4   4-1/2   3-5/16   6-7/8   4-5/8   5-1/8   2   2-7/8   3-1/4   9-5/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |       |       |         |       |       |       |       | 1     |         |        |
| 2-1/2   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |       |       |         |       |       |       |       |       |         |        |
| 12   3   3-1/2   4-1/2   3-9/16   6-7/8   4-5/8   5-1/8   2-1/4   3-1/8   3-1/2   9-7/8     3-1/2   3-1/2   4-1/2   3-9/16   6-7/8   4-5/8   5-1/8   2-1/4   3-1/8   3-1/2   9-7/8     4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |         |       | -     |         |       |       |       |       |       |         |        |
| 12   3-1/2   3-1/2   4-1/2   3-9/16   6-7/8   4-5/8   5-1/8   2-1/4   3-1/8   3-1/2   9-7/8     4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |         |       |       |         |       |       |       | -     |       |         |        |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |         |       |       | -       |       |       |       |       |       | -       |        |
| 4-1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12        | -       | -     | -     | -       |       |       | -     | -     | -     | -       |        |
| S   S   4-1/2   3-9/16   6-7/8   4-5/8   5-1/8   2-1/4   3-1/8   3-1/2   9-7/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |       |       |         |       |       |       |       |       |         |        |
| S-1/2   S-1/2   4-1/2   3-9/16   6-7/8   4-5/8   S-1/8   2-1/4   3-1/8   3-1/2   9-7/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |         |       |       | -       |       |       | -     | -     | -     |         |        |
| 2-1/2   3   5-1/2   3-13/16   8-1/8   5-1/2   5-7/8   2-1/4   3-3/8   3-13/16   11-1/4     3   3-1/2   5-1/2   3-13/16   8-1/8   5-1/2   5-7/8   2-1/4   3-3/8   3-13/16   11-1/4     4   4   4   5-1/2   3-13/16   8-1/8   5-1/2   5-7/8   2-1/4   3-3/8   3-13/16   11-1/4     4   4   4   5-1/2   3-13/16   8-1/8   5-1/2   5-7/8   2-1/4   3-3/8   3-13/16   11-1/4     4-1/2   4-1/2   5-1/2   3-13/16   8-1/8   5-1/2   5-7/8   2-1/4   3-3/8   3-13/16   11-1/4     5   5   5-1/2   3-13/16   8-1/8   5-1/2   5-7/8   2-1/4   3-3/8   3-13/16   11-1/4     5   5   5-1/2   3-13/16   8-1/8   5-1/2   5-7/8   2-1/4   3-3/8   3-13/16   11-1/4     5   5   5-1/2   3-13/16   8-1/8   5-1/2   5-7/8   2-1/4   3-3/8   3-13/16   11-1/4     5   5   5-1/2   3-13/16   8-1/8   5-1/2   5-7/8   2-1/4   3-3/8   3-13/16   11-1/4     5   7   7   7   7   7   7   7     6   7   7   7   7   7   7   7     10   7   7   7   7   7   7   7   7     10   7   7   7   7   7   7   7   7   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |         |       | -     |         |       | -     |       |       |       |         |        |
| 3   3-1/2   5-1/2   3-13/16   8-1/8   5-1/2   5-7/8   2-1/4   3-3/8   3-13/16   11-1/4     3-1/2   3-1/2   5-1/2   3-13/16   8-1/8   5-1/2   5-7/8   2-1/4   3-3/8   3-13/16   11-1/4     4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |         |       |       |         | -     | -     | -     | -     | 1     |         |        |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |         |       |       |         |       |       |       |       | i e   |         |        |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |         |       |       |         |       |       |       |       |       | -       |        |
| 4-1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14        | -       | -     |       |         |       |       |       | -     |       | -       |        |
| 5         5         5-1/2         3-13/16         8-1/8         5-1/2         5-7/8         2-1/4         3-3/8         3-13/16         11-1/4           5-1/2         5-1/2         5-1/2         3-13/16         8-1/8         5-1/2         5-7/8         2-1/4         3-3/8         3-13/16         11-1/4           2-1/2         3         5-7/8         3-15/16         9-1/4         6-1/2         5-3/4         2-1/4         4         3-11/16         12-1/2           3         3-1/2         5-7/8         3-15/16         9-1/4         6-1/2         5-3/4         2-1/4         4         3-11/16         12-1/2           3-1/2         3-1/2         5-7/8         3-15/16         9-1/4         6-1/2         5-3/4         2-1/4         4         3-11/16         12-1/2           3-1/2         3-1/2         5-7/8         3-15/16         9-1/4         6-1/2         5-3/4         2-1/4         4         3-11/16         12-1/2           4-1/2         4-1/2         5-7/8         3-15/16         9-1/4         6-1/2         5-3/4         2-1/4         4         3-11/16         12-1/2           5-1/2         5-1/2         5-7/8         3-15/16         9-1/4         6-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 4-1/2   | 4-1/2 |       |         |       |       |       | 2-1/4 |       |         |        |
| S-1/2   S-1/2   S-1/2   S-1/2   S-1/2   S-1/2   S-1/3/16   S-1/8   S-1/2   S-7/8   S-1/4   S-3/8   S-13/16   S-11-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 5       | 5     | 5-1/2 | 3-13/16 | 8-1/8 | 5-1/2 | 5-7/8 | 2-1/4 | 3-3/8 | 3-13/16 |        |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 5-1/2   | 5-1/2 | 5-1/2 | 3-13/16 | 8-1/8 |       | 5-7/8 | 2-1/4 | 3-3/8 | 3-13/16 | 11-1/4 |
| 3   3-1/2   5-7/8   3-15/16   9-1/4   6-1/2   5-3/4   2-1/4   4   3-11/16   12-1/2     3-1/2   3-1/2   5-7/8   3-15/16   9-1/4   6-1/2   5-3/4   2-1/4   4   3-11/16   12-1/2     4   4   5-7/8   3-15/16   9-1/4   6-1/2   5-3/4   2-1/4   4   3-11/16   12-1/2     4-1/2   4-1/2   5-7/8   3-15/16   9-1/4   6-1/2   5-3/4   2-1/4   4   3-11/16   12-1/2     5   5   5-7/8   3-15/16   9-1/4   6-1/2   5-3/4   2-1/4   4   3-11/16   12-1/2     5   5   5-7/8   3-15/16   9-1/4   6-1/2   5-3/4   2-1/4   4   3-11/16   12-1/2     5-1/2   5-1/2   5-7/8   3-15/16   9-1/4   6-1/2   5-3/4   2-1/4   4   3-11/16   12-1/2     5   5   5-7/8   3-15/16   9-1/4   6-1/2   5-3/4   2-1/4   4   3-11/16   12-1/2     5   5-1/2   5-1/2   5-7/8   3-15/16   9-1/4   7   6-1/4   2-1/4   4-1/4   3-15/16   13-5/8     4   4   6   4-3/8   10-1/4   7   6-1/4   2-1/4   4-1/4   3-15/16   13-5/8     5   5   6   4-3/8   10-1/4   7   6-1/4   2-1/4   4-1/4   3-15/16   13-5/8     5   5   6   4-3/8   10-1/4   7   6-1/4   2-1/4   4-1/4   3-15/16   13-5/8     5   5   6   4-3/8   10-1/4   7   6-1/4   2-1/4   4-1/4   3-15/16   13-5/8     5   5   6   4-3/8   10-1/4   7   6-1/4   2-1/4   4-1/4   3-15/16   13-5/8     4   4   7-1/8   4-9/16   11-3/4   7-3/4   7   2-1/4   4-5/8   4-3/16   15-1/4     4   4   7-1/8   4-9/16   11-3/4   7-3/4   7   2-1/4   4-5/8   4-3/16   15-1/4     5   5   7-1/8   4-9/16   11-3/4   7-3/4   7   2-1/4   4-5/8   4-3/16   15-1/4     5   5   7-1/8   4-9/16   11-3/4   7-3/4   7   2-1/4   4-5/8   4-3/16   15-1/4     5   5   7-1/8   4-9/16   11-3/4   7-3/4   7   2-1/4   4-5/8   4-3/16   15-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 2-1/2   |       | 5-7/8 | 3-15/16 |       |       |       |       |       |         |        |
| 3-1/2 3-1/2 5-7/8 3-15/16 9-1/4 6-1/2 5-3/4 2-1/4 4 3-11/16 12-1/2 4-1/2 4-1/2 5-7/8 3-15/16 9-1/4 6-1/2 5-3/4 2-1/4 4 3-11/16 12-1/2 5-7/8 3-15/16 9-1/4 6-1/2 5-3/4 2-1/4 4 3-11/16 12-1/2 5-7/8 3-15/16 9-1/4 6-1/2 5-3/4 2-1/4 4 3-11/16 12-1/2 5-1/2 5-1/2 5-7/8 3-15/16 9-1/4 6-1/2 5-3/4 2-1/4 4 3-11/16 12-1/2 5-1/2 5-1/2 5-7/8 3-15/16 9-1/4 6-1/2 5-3/4 2-1/4 4 3-11/16 12-1/2 3-1/2 3-1/2 6 4-3/8 10-1/4 7 6-1/4 2-1/4 4-1/4 3-15/16 13-5/8 4 4 6 4-3/8 10-1/4 7 6-1/4 2-1/4 4-1/4 3-15/16 13-5/8 4 4-1/2 4-1/2 6 4-3/8 10-1/4 7 6-1/4 2-1/4 4-1/4 3-15/16 13-5/8 5 5 6 4-3/8 10-1/4 7 6-1/4 2-1/4 4-1/4 3-15/16 13-5/8 5 5 6 4-3/8 10-1/4 7 6-1/4 2-1/4 4-1/4 3-15/16 13-5/8 5-1/2 5-1/2 6 4-3/8 10-1/4 7 6-1/4 2-1/4 4-1/4 3-15/16 13-5/8 5-1/2 5-1/2 6 4-3/8 10-1/4 7 6-1/4 2-1/4 4-1/4 3-15/16 13-5/8 4 4 7-1/8 4-9/16 11-3/4 7-3/4 7 2-1/4 4-5/8 4-3/16 15-1/4 4-1/2 4-1/2 7-1/8 4-9/16 11-3/4 7-3/4 7 2-1/4 4-5/8 4-3/16 15-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |         | 3-1/2 |       |         |       |       |       |       | 4     |         |        |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 3-1/2   |       |       | -       |       |       |       |       |       |         | -      |
| 4-1/2         4-1/2         5-7/8         3-15/16         9-1/4         6-1/2         5-3/4         2-1/4         4         3-11/16         12-1/2           5         5         5-7/8         3-15/16         9-1/4         6-1/2         5-3/4         2-1/4         4         3-11/16         12-1/2           5-1/2         5-1/2         5-7/8         3-15/16         9-1/4         6-1/2         5-3/4         2-1/4         4         3-11/16         12-1/2           3-1/2         3-1/2         6         4-3/8         10-1/4         7         6-1/4         2-1/4         4-1/4         3-15/16         13-5/8           4         4         6         4-3/8         10-1/4         7         6-1/4         2-1/4         4-1/4         3-15/16         13-5/8           4         4         6         4-3/8         10-1/4         7         6-1/4         2-1/4         4-1/4         3-15/16         13-5/8           5         5         6         4-3/8         10-1/4         7         6-1/4         2-1/4         4-1/4         3-15/16         13-5/8           5         5         6         4-3/8         10-1/4         7         6-1/4         2-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16        | 4       |       |       |         |       |       |       | 2-1/4 |       |         |        |
| 5         5         5-7/8         3-15/16         9-1/4         6-1/2         5-3/4         2-1/4         4         3-11/16         12-1/2           5-1/2         5-1/2         5-7/8         3-15/16         9-1/4         6-1/2         5-3/4         2-1/4         4         3-11/16         12-1/2           3-1/2         3-1/2         6         4-3/8         10-1/4         7         6-1/4         2-1/4         4-1/4         3-15/16         13-5/8           4         4         6         4-3/8         10-1/4         7         6-1/4         2-1/4         4-1/4         3-15/16         13-5/8           4         4-1/2         6         4-3/8         10-1/4         7         6-1/4         2-1/4         4-1/4         3-15/16         13-5/8           5         5         6         4-3/8         10-1/4         7         6-1/4         2-1/4         4-1/4         3-15/16         13-5/8           5-1/2         5-1/2         6         4-3/8         10-1/4         7         6-1/4         2-1/4         4-1/4         3-15/16         13-5/8           4         4         7-1/8         4-9/16         11-3/4         7-3/4         7         2-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |         |       |       |         |       |       |       |       |       |         |        |
| 5-1/2 5-1/2 5-7/8 3-15/16 9-1/4 6-1/2 5-3/4 2-1/4 4 3-11/16 12-1/2  3-1/2 3-1/2 6 4-3/8 10-1/4 7 6-1/4 2-1/4 4-1/4 3-15/16 13-5/8  4 4 6 4-3/8 10-1/4 7 6-1/4 2-1/4 4-1/4 3-15/16 13-5/8  4-1/2 4-1/2 6 4-3/8 10-1/4 7 6-1/4 2-1/4 4-1/4 3-15/16 13-5/8  5 5 6 4-3/8 10-1/4 7 6-1/4 2-1/4 4-1/4 3-15/16 13-5/8  5 5 6 4-3/8 10-1/4 7 6-1/4 2-1/4 4-1/4 3-15/16 13-5/8  5-1/2 5-1/2 6 4-3/8 10-1/4 7 6-1/4 2-1/4 4-1/4 3-15/16 13-5/8  4 4 7-1/8 4-9/16 11-3/4 7-3/4 7 2-1/4 4-5/8 4-3/16 15-1/4  4-1/2 4-1/2 7-1/8 4-9/16 11-3/4 7-3/4 7 2-1/4 4-5/8 4-3/16 15-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |         |       |       | i e     |       |       | 1     |       |       |         |        |
| 18     3-1/2     3-1/2     6     4-3/8     10-1/4     7     6-1/4     2-1/4     4-1/4     3-15/16     13-5/8       4     4     6     4-3/8     10-1/4     7     6-1/4     2-1/4     4-1/4     3-15/16     13-5/8       4-1/2     4-1/2     6     4-3/8     10-1/4     7     6-1/4     2-1/4     4-1/4     3-15/16     13-5/8       5     5     6     4-3/8     10-1/4     7     6-1/4     2-1/4     4-1/4     3-15/16     13-5/8       5-1/2     5-1/2     6     4-3/8     10-1/4     7     6-1/4     2-1/4     4-1/4     3-15/16     13-5/8       4     4     7-1/8     4-9/16     11-3/4     7-3/4     7     2-1/4     4-5/8     4-3/16     15-1/4       4-1/2     4-1/2     7-1/8     4-9/16     11-3/4     7-3/4     7     2-1/4     4-5/8     4-3/16     15-1/4       5     5     7-1/8     4-9/16     11-3/4     7-3/4     7     2-1/4     4-5/8     4-3/16     15-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 5-1/2   |       |       |         |       |       |       |       |       |         |        |
| 4     4     6     4-3/8     10-1/4     7     6-1/4     2-1/4     4-1/4     3-15/16     13-5/8       4-1/2     4-1/2     6     4-3/8     10-1/4     7     6-1/4     2-1/4     4-1/4     3-15/16     13-5/8       5     5     6     4-3/8     10-1/4     7     6-1/4     2-1/4     4-1/4     3-15/16     13-5/8       5-1/2     5-1/2     6     4-3/8     10-1/4     7     6-1/4     2-1/4     4-1/4     3-15/16     13-5/8       4     4     7-1/8     4-9/16     11-3/4     7-3/4     7     2-1/4     4-5/8     4-3/16     15-1/4       4-1/2     4-1/2     7-1/8     4-9/16     11-3/4     7-3/4     7     2-1/4     4-5/8     4-3/16     15-1/4       5     5     7-1/8     4-9/16     11-3/4     7-3/4     7     2-1/4     4-5/8     4-3/16     15-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |         |       |       |         |       |       |       |       |       |         |        |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |         |       |       |         |       |       | 1     |       | 1     |         |        |
| 5 5 6 4-3/8 10-1/4 7 6-1/4 2-1/4 4-1/4 3-15/16 13-5/8 5-1/2 5-1/2 6 4-3/8 10-1/4 7 6-1/4 2-1/4 4-1/4 3-15/16 13-5/8  4 4 7-1/8 4-9/16 11-3/4 7-3/4 7 2-1/4 4-5/8 4-3/16 15-1/4  4-1/2 4-1/2 7-1/8 4-9/16 11-3/4 7-3/4 7 2-1/4 4-5/8 4-3/16 15-1/4  5 5 7-1/8 4-9/16 11-3/4 7-3/4 7 2-1/4 4-5/8 4-3/16 15-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18        | 4-1/2   |       |       |         |       |       |       |       |       |         |        |
| 5-1/2 5-1/2 6 4-3/8 10-1/4 7 6-1/4 2-1/4 4-1/4 3-15/16 13-5/8  4 4 7-1/8 4-9/16 11-3/4 7-3/4 7 2-1/4 4-5/8 4-3/16 15-1/4  4-1/2 4-1/2 7-1/8 4-9/16 11-3/4 7-3/4 7 2-1/4 4-5/8 4-3/16 15-1/4  5 5 7-1/8 4-9/16 11-3/4 7-3/4 7 2-1/4 4-5/8 4-3/16 15-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |         |       |       |         |       |       |       |       |       |         |        |
| 20 4 4 7-1/8 4-9/16 11-3/4 7-3/4 7 2-1/4 4-5/8 4-3/16 15-1/4<br>4-1/2 4-1/2 7-1/8 4-9/16 11-3/4 7-3/4 7 2-1/4 4-5/8 4-3/16 15-1/4<br>5 5 7-1/8 4-9/16 11-3/4 7-3/4 7 2-1/4 4-5/8 4-3/16 15-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 5-1/2   |       |       |         |       |       |       |       |       |         |        |
| 20 4-1/2 4-1/2 7-1/8 4-9/16 11-3/4 7-3/4 7 2-1/4 4-5/8 4-3/16 15-1/4<br>5 5 7-1/8 4-9/16 11-3/4 7-3/4 7 2-1/4 4-5/8 4-3/16 15-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |         |       |       |         |       |       |       |       | 1     |         |        |
| 5 5 7-1/8 4-9/16 11-3/4 7-3/4 7 2-1/4 4-5/8 4-3/16 15-1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20        | 4-1/2   | 4-1/2 |       |         |       |       | 7     |       | 1     |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20        |         |       |       |         |       |       | 7     |       |       |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | 5-1/2   | 5-1/2 |       | i e     |       |       |       |       |       |         |        |

www.nopak.com CLASS 6 103




## MODEL AL (NFPA STD. MS7)




Model AL 1-1/2" diameter through 6" diameter cylinders furnished with head plates. 8" diameter through 14" diameter cylinders use (4) bolt glands as shown on page 106.

# MODEL E (NFPA STD. MP1)



# **MODEL HE** (NFPA STD. MP2)



= See Table A on page 123 for bore and rod combinations using head plates with threaded bronze glands.

# Table 1 These dimensions are constant regardless of rod diameter or stroke.

For double rod end cylinders Model AL: subtract dimension J from dimension G and add to dimension SE + stroke. For 1-1/2" through 6" bore: also add dimension F. See pages 124-127.

Double rod end models are designated by letter "X" preceding the model identification. See page 124.

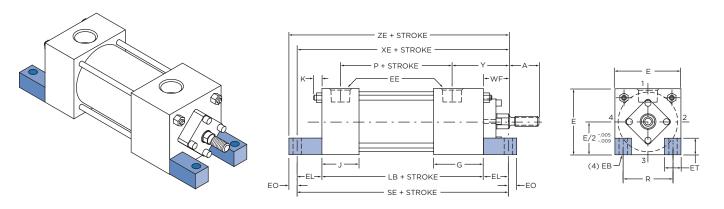
• = Dimensions refer to bolt diameter.

| BORE E | F     |     | c   | G     | G     | G    | G     | G   | G    | G     | G   | G   | -    | G   | c      | c    | c       | -     | G  | G   | G    | G  | G  |    | IV. |  | М | R | СВ | CD | cw | EB• | EE | EL | EO | ET | MR |
|--------|-------|-----|-----|-------|-------|------|-------|-----|------|-------|-----|-----|------|-----|--------|------|---------|-------|----|-----|------|----|----|----|-----|--|---|---|----|----|----|-----|----|----|----|----|----|
| DIA.   | DIA.  | AL  | HE  |       |       |      |       |     |      |       |     |     | _ ^  | _   | М      | K    | CB      | CD    | CW | EB. | E-E- | == | EO | E' | MIK |  |   |   |    |    |    |     |    |    |    |    |    |
| 1-1/2  | 2     | 3/8 | 3/8 | 1-1/2 | 1-1/8 | 1/4  | 3/4   | 1/2 | 1.43 | 3/4   | 1/2 | 1/2 | 1/4  | 3/8 | 3/4    | 1/4  | 1/2     | 5/8   |    |     |      |    |    |    |     |  |   |   |    |    |    |     |    |    |    |    |    |
| 2      | 2-1/2 | 3/8 | 3/8 | 1-1/2 | 1-1/8 | 3/8  | 3/4   | 1/2 | 1.84 | 3/4   | 1/2 | 1/2 | 5/16 | 3/8 | 15/16  | 5/16 | 19/32   | 5/8   |    |     |      |    |    |    |     |  |   |   |    |    |    |     |    |    |    |    |    |
| 2-1/2  | 3     | 3/8 | 3/8 | 1-1/2 | 1-1/8 | 5/16 | 3/4   | 1/2 | 2.19 | 3/4   | 1/2 | 1/2 | 5/16 | 3/8 | 1-1/16 | 5/16 | 3/4     | 5/8   |    |     |      |    |    |    |     |  |   |   |    |    |    |     |    |    |    |    |    |
| 3-1/4  | 3-3/4 | 5/8 | 5/8 | 1-3/4 | 1-1/4 | 7/16 | 1-1/4 | 3/4 | 2.76 | 1-1/4 | 3/4 | 5/8 | 3/8  | 1/2 | 7/8    | 3/8  | 29/32   | 7/8   |    |     |      |    |    |    |     |  |   |   |    |    |    |     |    |    |    |    |    |
| 4      | 4-1/2 | 5/8 | 5/8 | 1-3/4 | 1-1/4 | 7/16 | 1-1/4 | 3/4 | 3.32 | 1-1/4 | 3/4 | 5/8 | 3/8  | 1/2 | 1      | 3/8  | 1-1/8   | 7/8   |    |     |      |    |    |    |     |  |   |   |    |    |    |     |    |    |    |    |    |
| 5      | 5-1/2 | 5/8 | 5/8 | 1-3/4 | 1-1/4 | 1/2  | 1-1/4 | 3/4 | 4.1  | 1-1/4 | 3/4 | 5/8 | 1/2  | 1/2 | 1-1/16 | 1/2  | 1-11/32 | 7/8   |    |     |      |    |    |    |     |  |   |   |    |    |    |     |    |    |    |    |    |
| 6      | 6-1/2 | 3/4 | 7/8 | 2     | 1-1/2 | 9/16 | 1-1/2 | 1   | 4.88 | 1-1/2 | 1   | 3/4 | 1/2  | 3/4 | 1      | 1/2  | 1-9/16  | 1-1/4 |    |     |      |    |    |    |     |  |   |   |    |    |    |     |    |    |    |    |    |
| 8      | 8-1/2 | 3/4 | 7/8 | 2     | 1-1/2 | 5/8  | 1-1/2 | 1   | 6.44 | 1-1/2 | 1   | 3/4 | 5/8  | 3/4 | 1-1/8  | 5/8  | 2       | 1-1/4 |    |     |      |    |    |    |     |  |   |   |    |    |    |     |    |    |    |    |    |

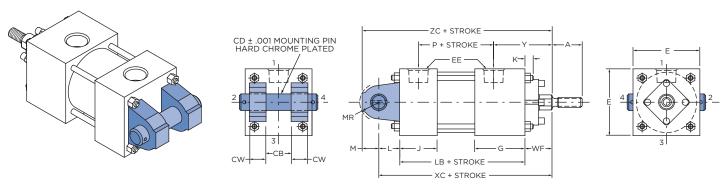
# **END LUG AND CLEVIS MOUNT CYLINDERS**

1-1/2" THROUGH 8" DIAMETER

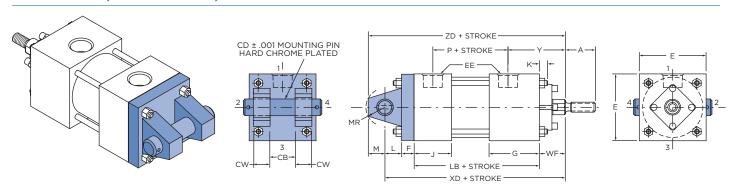
 $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$ 


• = For piston rod dimensions see page 128.

| BORE DIA. | ROD MM• | Α     | Р     | W     | Y       | LB    | SE    | WF    | хс    | XD    | XE      | ZC    | ZD     | ZE      |
|-----------|---------|-------|-------|-------|---------|-------|-------|-------|-------|-------|---------|-------|--------|---------|
|           | 5/8     | 3/4   | 2-1/8 | 5/8   | 1-15/16 | 3-5/8 | 5-1/2 | 1     | 5-3/8 | 5-3/4 | 5-3/8   | 5-7/8 | 6-1/4  | 5-5/8   |
| 1-1/2     | 1       | 1-1/8 | 2-1/8 | 1     | 2-5/16  | 3-5/8 | 5-1/2 | 1-3/8 | 5-3/4 | 6-1/8 | 5-3/4   | 6-1/4 | 6-5/8  | 6       |
|           | 5/8     | 3/4   | 2-1/8 | 5/8   | 1-15/16 | 3-5/8 | 5-7/8 | 1     | 5-3/8 | 5-3/4 | 5-9/16  | 5-7/8 | 6-1/4  | 5-7/8   |
| 2         | 1       | 1-1/8 | 2-1/8 | 1     | 2-5/16  | 3-5/8 | 5-7/8 | 1-3/8 | 5-3/4 | 6-1/8 | 5-15/16 | 6-1/4 | 6-5/8  | 6-1/4   |
|           | 1-3/8   | 1-5/8 | 2-1/8 | 1-1/4 | 2-9/16  | 3-5/8 | 5-7/8 | 1-5/8 | 6     | 6-3/8 | 6-3/16  | 6-1/2 | 6-7/8  | 6-1/2   |
|           | 5/8     | 3/4   | 2-1/4 | 5/8   | 1-15/16 | 3-3/4 | 6-1/4 | 1     | 5-1/2 | 5-7/8 | 5-13/16 | 6     | 6-3/8  | 6-1/8   |
| 0.1/0     | 1       | 1-1/8 | 2-1/4 | 1     | 2-5/16  | 3-3/4 | 6-1/4 | 1-3/8 | 5-7/8 | 6-1/4 | 6-3/16  | 6-3/8 | 6-3/4  | 6-1/2   |
| 2-1/2     | 1-3/8   | 1-5/8 | 2-1/4 | 1-1/4 | 2-9/16  | 3-3/4 | 6-1/4 | 1-5/8 | 6-1/8 | 6-1/2 | 6-7/16  | 6-5/8 | 7      | 6-3/4   |
|           | 1-3/4   | 2     | 2-1/4 | 1-1/2 | 2-13/16 | 3-3/4 | 6-1/4 | 1-7/8 | 6-3/8 | 6-3/4 | 6-11/16 | 6-7/8 | 7-1/4  | 7       |
|           | 1       | 1-1/8 | 2-1/2 | 3/4   | 2-1/2   | 4-1/4 | 6-5/8 | 1-3/8 | 6-7/8 | 7-1/2 | 6-1/2   | 7-5/8 | 8-1/4  | 6-7/8   |
| 7 1/4     | 1-3/8   | 1-5/8 | 2-1/2 | 1     | 2-3/4   | 4-1/4 | 6-5/8 | 1-5/8 | 7-1/8 | 7-3/4 | 6-3/4   | 7-7/8 | 8-1/2  | 7-1/8   |
| 3-1/4     | 1-3/4   | 2     | 2-1/2 | 1-1/4 | 3       | 4-1/4 | 6-5/8 | 1-7/8 | 7-3/8 | 8     | 7       | 8-1/8 | 8-3/4  | 7-3/8   |
|           | 2       | 2-1/4 | 2-1/2 | 1-3/8 | 3-1/8   | 4-1/4 | 6-5/8 | 2     | 7-1/2 | 8-1/8 | 7-1/8   | 8-1/4 | 8-7/8  | 7-1/2   |
|           | 1       | 1-1/8 | 2-1/2 | 3/4   | 2-1/2   | 4-1/4 | 6-7/8 | 1-3/8 | 6-7/8 | 7-1/2 | 6-5/8   | 7-5/8 | 8-1/4  | 7       |
|           | 1-3/8   | 1-5/8 | 2-1/2 | 1     | 2-3/4   | 4-1/4 | 6-7/8 | 1-5/8 | 7-1/8 | 7-3/4 | 6-7/8   | 7-7/8 | 8-1/2  | 7-1/4   |
| 4         | 1-3/4   | 2     | 2-1/2 | 1-1/4 | 3       | 4-1/4 | 6-7/8 | 1-7/8 | 7-3/8 | 8     | 7-1/8   | 8-1/8 | 8-3/4  | 7-1/2   |
|           | 2       | 2-1/4 | 2-1/2 | 1-3/8 | 3-1/8   | 4-1/4 | 6-7/8 | 2     | 7-1/2 | 8-1/8 | 7-1/4   | 8-1/4 | 8-7/8  | 7-5/8   |
|           | 2-1/2   | 3     | 2-1/2 | 1-5/8 | 3-3/8   | 4-1/4 | 6-7/8 | 2-1/4 | 7-3/4 | 8-3/8 | 7-1/2   | 8-1/2 | 9-1/8  | 7-7/8   |
|           | 1       | 1-1/8 | 2-3/4 | 3/4   | 2-1/2   | 4-1/2 | 7-1/4 | 1-3/8 | 7-1/8 | 7-3/4 | 6-15/16 | 7-7/8 | 8-1/2  | 7-7/16  |
|           | 1-3/8   | 1-5/8 | 2-3/4 | 1     | 2-3/4   | 4-1/2 | 7-1/4 | 1-5/8 | 7-3/8 | 8     | 7-3/16  | 8-1/8 | 8-3/4  | 7-11/16 |
|           | 1-3/4   | 2     | 2-3/4 | 1-1/4 | 3       | 4-1/2 | 7-1/4 | 1-7/8 | 7-5/8 | 8-1/4 | 7-7/16  | 8-3/8 | 9      | 7-15/16 |
| 5         | 2       | 2-1/4 | 2-3/4 | 1-3/8 | 3-1/8   | 4-1/2 | 7-1/4 | 2     | 7-3/4 | 8-3/8 | 7-9/16  | 8-1/2 | 9-1/8  | 8-1/16  |
|           | 2-1/2   | 3     | 2-3/4 | 1-5/8 | 3-3/8   | 4-1/2 | 7-1/4 | 2-1/4 | 8     | 8-5/8 | 7-13/16 | 8-3/4 | 9-3/8  | 8-5/16  |
|           | 3       | 3-1/2 | 2-3/4 | 1-5/8 | 3-3/8   | 4-1/2 | 7-1/4 | 2-1/4 | 8     | 8-5/8 | 7-13/16 | 8-3/4 | 9-3/8  | 8-5/16  |
|           | 3-1/2   | 3-1/2 | 2-3/4 | 1-5/8 | 3-3/8   | 4-1/2 | 7-1/4 | 2-1/4 | 8     | 8-5/8 | 7-13/16 | 8-3/4 | 9-3/8  | 8-5/16  |
|           | 1-3/8   | 1-5/8 | 3-1/8 | 7/8   | 2-13/16 | 5     | 7-3/4 | 1-5/8 | 8-1/8 | 9     | 7-5/8   | 9-1/8 | 10     | 8-1/8   |
|           | 1-3/4   | 2     | 3-1/8 | 1-1/8 | 3-1/16  | 5     | 7-3/4 | 1-7/8 | 8-3/8 | 9-1/4 | 7-7/8   | 9-3/8 | 10-1/4 | 8-3/8   |
|           | 2       | 2-1/4 | 3-1/8 | 1-1/4 | 3-3/16  | 5     | 7-3/4 | 2     | 8-1/2 | 9-3/8 | 8       | 9-1/2 | 10-3/8 | 8-1/2   |
| 6         | 2-1/2   | 3     | 3-1/8 | 1-1/2 | 3-7/16  | 5     | 7-3/4 | 2-1/4 | 8-3/4 | 9-5/8 | 8-1/4   | 9-3/4 | 10-5/8 | 8-3/4   |
|           | 3       | 3-1/2 | 3-1/8 | 1-1/2 | 3-7/16  | 5     | 7-3/4 | 2-1/4 | 8-3/4 | 9-5/8 | 8-1/4   | 9-3/4 | 10-5/8 | 8-3/4   |
|           | 3-1/2   | 3-1/2 | 3-1/8 | 1-1/2 | 3-7/16  | 5     | 7-3/4 | 2-1/4 | 8-3/4 | 9-5/8 | 8-1/4   | 9-3/4 | 10-5/8 | 8-3/4   |
|           | 4       | 4     | 3-1/8 | 1-1/2 | 3-7/16  | 5     | 7-3/4 | 2-1/4 | 8-3/4 | 9-5/8 | 8-1/4   | 9-3/4 | 10-5/8 | 8-3/4   |
|           | 1-3/8   | 1-5/8 | 3-1/4 | -     | 2-13/16 | 5-1/8 | 7-3/8 | 1-5/8 | 8-1/4 | 9-1/8 | 7-7/8   | 9-1/4 | 10-1/8 | 8-1/2   |
|           | 1-3/4   | 2     | 3-1/4 | -     | 3-1/16  | 5-1/8 | 7-3/8 | 1-7/8 | 8-1/2 | 9-3/8 | 8-1/8   | 9-1/2 | 10-3/8 | 8-3/4   |
|           | 2       | 2-1/4 | 3-1/4 | -     | 3-3/16  | 5-1/8 | 7-3/8 | 2     | 8-5/8 | 9-1/2 | 8-1/4   | 9-5/8 | 10-1/2 | 8-7/8   |
|           | 2-1/2   | 3     | 3-1/4 | -     | 3-7/16  | 5-1/8 | 7-3/8 | 2-1/4 | 8-7/8 | 9-3/4 | 8-1/2   | 9-7/8 | 10-3/4 | 9-1/8   |
| 8         | 3       | 3-1/2 | 3-1/4 | -     | 3-7/16  | 5-1/8 | 7-3/8 | 2-1/4 | 8-7/8 | 9-3/4 | 8-1/2   | 9-7/8 | 10-3/4 | 9-1/8   |
|           | 3-1/2   | 3-1/2 | 3-1/4 | -     | 3-7/16  | 5-1/8 | 7-3/8 | 2-1/4 | 8-7/8 | 9-3/4 | 8-1/2   | 9-7/8 | 10-3/4 | 9-1/8   |
|           | 4       | 4     | 3-1/4 | -     | 3-7/16  | 5-1/8 | 7-3/8 | 2-1/4 | 8-7/8 | 9-3/4 | 8-1/2   | 9-7/8 | 10-3/4 | 9-1/8   |
|           | 4-1/2   | 4-1/2 | 3-1/4 | -     | 3-7/16  | 5-1/8 | 7-3/8 | 2-1/4 | 8-7/8 | 9-3/4 | 8-1/2   | 9-7/8 | 10-3/4 | 9-1/8   |
|           | 5       | 5     | 3-1/4 | -     | 3-7/16  | 5-1/8 | 7-3/8 | 2-1/4 | 8-7/8 | 9-3/4 | 8-1/2   | 9-7/8 | 10-3/4 | 9-1/8   |
|           | 5-1/2   | 5-1/2 | 3-1/4 | -     | 3-7/16  | 5-1/8 | 7-3/8 | 2-1/4 | 8-7/8 | 9-3/4 | 8-1/2   | 9-7/8 | 10-3/4 | 9-1/8   |


www.nopak.com CLASS 6 105




# MODEL AL (NFPA STD. MS7) 10" THROUGH 14" DIAMETER



# MODEL E (NFPA STD. MP1) 10" THROUGH 20" DIAMETER



# MODEL HE (NFPA STD. MP2) 10" DIAMETER



 $\begin{tabular}{ll} \textbf{Table 1} \\ \textbf{These dimensions are constant regardless of rod diameter or stroke.} \\ \end{tabular}$ 

For double rod end cylinders Model AL: subtract dimension J from dimension G and add to dimension SE + stroke. See pages 124-127. Double rod end models are designated by letter "X" preceding the model identification. See page 124.

• = Dimensions refer to bolt diameter.

| BORE<br>DIA. | E      | F   | G       | J       | К     | L     | М     | R    | СВ    | CD    | cw    | ЕВ• | EE    | EL     | EO      | ET    | MR    |
|--------------|--------|-----|---------|---------|-------|-------|-------|------|-------|-------|-------|-----|-------|--------|---------|-------|-------|
| 10           | 10-5/8 | 7/8 | 2-1/4   | 2       | 3/4   | 2-1/8 | 1-3/8 | 7.92 | 2     | 1-3/8 | 1     | 3/4 | 1     | 1-5/16 | 1-5/16  | 2-5/8 | 1-5/8 |
| 12           | 12-3/4 | -   | 2-1/4   | 2       | 3/4   | 2-1/4 | 1-3/4 | 9.4  | 2-1/2 | 1-3/4 | 1-1/4 | 3/4 | 1     | 1-5/16 | 1-11/16 | 3-3/8 | 2     |
| 14           | 14-3/4 | -   | 2-3/4   | 2-1/4   | 7/8   | 2-1/2 | 2     | 10.9 | 2-1/2 | 2     | 1-1/4 | 7/8 | 1-1/4 | 1-1/2  | 2       | 3-7/8 | 2-3/8 |
| 16           | 17-1/2 | -   | 3       | 3       | 1     | 2-1/2 | 2     | -    | 2-1/2 | 2     | 1-1/4 | -   | 1-1/2 | -      | -       | -     | 2-3/8 |
| 18           | 19-1/2 | -   | 3-7/16  | 3-7/16  | 1-1/8 | 3     | 2-3/4 | -    | 3     | 2-1/2 | 1-1/2 | -   | 1-1/2 | -      | -       | -     | 3     |
| 20           | 21-3/4 | -   | 3-15/16 | 3-15/16 | 1-1/4 | 3-1/4 | 2-3/4 | -    | 3     | 3     | 1-1/2 | -   | 2     | -      | -       | -     | 3-1/4 |

# **END LUG AND CLEVIS MOUNT CYLINDERS**

10" THROUGH 20" DIAMETER

 $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$ 

• = For piston rod dimensions see page 128.

| BORE DIA. | ROD MM• | Α     | Р     | Y       | LB     | SE     | WF    | хс     | XD     | XE      | ZC     | ZD     | ZE     |
|-----------|---------|-------|-------|---------|--------|--------|-------|--------|--------|---------|--------|--------|--------|
|           | 1-3/4   | 2     | 4     | 3-3/16  | 6-3/8  | 9      | 1-7/8 | 10-3/8 | 11-1/4 | 9-9/16  | 11-3/4 | 12-5/8 | 10-7/8 |
|           | 2       | 2-1/4 | 4     | 3-5/16  | 6-3/8  | 9      | 2     | 10-1/2 | 11-3/8 | 9-11/16 | 11-7/8 | 12-3/4 | 11     |
|           | 2-1/2   | 3     | 4     | 3-9/16  | 6-3/8  | 9      | 2-1/4 | 10-3/4 | 11-5/8 | 9-15/16 | 12-1/8 | 13     | 11-1/4 |
|           | 3       | 3-1/2 | 4     | 3-9/16  | 6-3/8  | 9      | 2-1/4 | 10-3/4 | 11-5/8 | 9-15/16 | 12-1/8 | 13     | 11-1/4 |
| 10        | 3-1/2   | 3-1/2 | 4     | 3-9/16  | 6-3/8  | 9      | 2-1/4 | 10-3/4 | 11-5/8 | 9-15/16 | 12-1/8 | 13     | 11-1/4 |
|           | 4       | 4     | 4     | 3-9/16  | 6-3/8  | 9      | 2-1/4 | 10-3/4 | 11-5/8 | 9-15/16 | 12-1/8 | 13     | 11-1/4 |
|           | 4-1/2   | 4-1/2 | 4     | 3-9/16  | 6-3/8  | 9      | 2-1/4 | 10-3/4 | 11-5/8 | 9-15/16 | 12-1/8 | 13     | 11-1/4 |
|           | 5       | 5     | 4     | 3-9/16  | 6-3/8  | 9      | 2-1/4 | 10-3/4 | 11-5/8 | 9-15/16 | 12-1/8 | 13     | 11-1/4 |
|           | 5-1/2   | 5-1/2 | 4     | 3-9/16  | 6-3/8  | 9      | 2-1/4 | 10-3/4 | 11-5/8 | 9-15/16 | 12-1/8 | 13     | 11-1/4 |
|           | 2       | 2-1/4 | 4-1/2 | 3-5/16  | 6-7/8  | 9-1/2  | 2     | 11-1/8 | -      | 10-3/16 | 12-7/8 | -      | 11-7/8 |
|           | 2-1/2   | 3     | 4-1/2 | 3-9/16  | 6-7/8  | 9-1/2  | 2-1/4 | 11-3/8 | -      | 10-7/16 | 13-1/8 | -      | 12-1/8 |
|           | 3       | 3-1/2 | 4-1/2 | 3-9/16  | 6-7/8  | 9-1/2  | 2-1/4 | 11-3/8 | -      | 10-7/16 | 13-1/8 | -      | 12-1/8 |
| 10        | 3-1/2   | 3-1/2 | 4-1/2 | 3-9/16  | 6-7/8  | 9-1/2  | 2-1/4 | 11-3/8 | -      | 10-7/16 | 13-1/8 | -      | 12-1/8 |
| 12        | 4       | 4     | 4-1/2 | 3-9/16  | 6-7/8  | 9-1/2  | 2-1/4 | 11-3/8 | -      | 10-7/16 | 13-1/8 | -      | 12-1/8 |
|           | 4-1/2   | 4-1/2 | 4-1/2 | 3-9/16  | 6-7/8  | 9-1/2  | 2-1/4 | 11-3/8 | -      | 10-7/16 | 13-1/8 | -      | 12-1/8 |
|           | 5       | 5     | 4-1/2 | 3-9/16  | 6-7/8  | 9-1/2  | 2-1/4 | 11-3/8 | -      | 10-7/16 | 13-1/8 | -      | 12-1/8 |
|           | 5-1/2   | 5-1/2 | 4-1/2 | 3-9/16  | 6-7/8  | 9-1/2  | 2-1/4 | 11-3/8 | -      | 10-7/16 | 13-1/8 | -      | 12-1/8 |
|           | 2-1/2   | 3     | 5-1/2 | 3-13/16 | 8-1/8  | 11-1/8 | 2-1/4 | 12-7/8 | -      | 11-7/8  | 14-7/8 | -      | 13-7/8 |
|           | 3       | 3-1/2 | 5-1/2 | 3-13/16 | 8-1/8  | 11-1/8 | 2-1/4 | 12-7/8 | -      | 11-7/8  | 14-7/8 | -      | 13-7/8 |
|           | 3-1/2   | 3-1/2 | 5-1/2 | 3-13/16 | 8-1/8  | 11-1/8 | 2-1/4 | 12-7/8 | -      | 11-7/8  | 14-7/8 | -      | 13-7/8 |
| 14        | 4       | 4     | 5-1/2 | 3-13/16 | 8-1/8  | 11-1/8 | 2-1/4 | 12-7/8 | -      | 11-7/8  | 14-7/8 | -      | 13-7/8 |
|           | 4-1/2   | 4-1/2 | 5-1/2 | 3-13/16 | 8-1/8  | 11-1/8 | 2-1/4 | 12-7/8 | -      | 11-7/8  | 14-7/8 | -      | 13-7/8 |
|           | 5       | 5     | 5-1/2 | 3-13/16 | 8-1/8  | 11-1/8 | 2-1/4 | 12-7/8 | -      | 11-7/8  | 14-7/8 | -      | 13-7/8 |
|           | 5-1/2   | 5-1/2 | 5-1/2 | 3-13/16 | 8-1/8  | 11-1/8 | 2-1/4 | 12-7/8 | -      | 11-7/8  | 14-7/8 | -      | 13-7/8 |
|           | 2-1/2   | 3     | 5-7/8 | 3-15/16 | 9-1/4  | -      | 2-1/4 | 14     | -      | -       | 16     | -      | _      |
|           | 3       | 3-1/2 | 5-7/8 | 3-15/16 | 9-1/4  | -      | 2-1/4 | 14     | -      | -       | 16     | -      | -      |
|           | 3-1/2   | 3-1/2 | 5-7/8 | 3-15/16 | 9-1/4  | _      | 2-1/4 | 14     | _      | -       | 16     | -      |        |
| 16        | 4       | 4     | 5-7/8 | 3-15/16 | 9-1/4  | -      | 2-1/4 | 14     | -      | -       | 16     | -      | -      |
|           | 4-1/2   | 4-1/2 | 5-7/8 | 3-15/16 | 9-1/4  | -      | 2-1/4 | 14     | -      | -       | 16     | -      | -      |
|           | 5       | 5     | 5-7/8 | 3-15/16 | 9-1/4  | -      | 2-1/4 | 14     | -      | -       | 16     | -      | -      |
|           | 5-1/2   | 5-1/2 | 5-7/8 | 3-15/16 | 9-1/4  | -      | 2-1/4 | 14     | -      | -       | 16     | -      | _      |
|           | 3-1/2   | 3-1/2 | 6     | 4-3/8   | 10-1/4 | -      | 2-1/4 | 15-1/2 | -      | -       | 18     | -      | -      |
|           | 4       | 4     | 6     | 4-3/8   | 10-1/4 | -      | 2-1/4 | 15-1/2 | -      | -       | 18     | -      | -      |
| 18        | 4-1/2   | 4-1/2 | 6     | 4-3/8   | 10-1/4 | -      | 2-1/4 | 15-1/2 | -      | -       | 18     | -      | -      |
|           | 5       | 5     | 6     | 4-3/8   | 10-1/4 | -      | 2-1/4 | 15-1/2 | -      | -       | 18     | -      | _      |
|           | 5-1/2   | 5-1/2 | 6     | 4-3/8   | 10-1/4 | -      | 2-1/4 | 15-1/2 | -      | -       | 18     | -      | -      |
|           | 4       | 4     | 7-1/8 | 4-9/16  | 11-3/4 | -      | 2-1/4 | 17-1/4 | -      | -       | 20     | -      | _      |
| 20        | 4-1/2   | 4-1/2 | 7-1/8 | 4-9/16  | 11-3/4 | -      | 2-1/4 | 17-1/4 | -      | -       | 20     | -      | -      |
|           | 5       | 5     | 7-1/8 | 4-9/16  | 11-3/4 | -      | 2-1/4 | 17-1/4 | -      | -       | 20     | -      | _      |
|           | 5-1/2   | 5-1/2 | 7-1/8 | 4-9/16  | 11-3/4 | -      | 2-1/4 | 17-1/4 | -      | -       | 20     | -      | -      |

www.nopak.com CLASS 6 107



# MODEL E3 (NFPA STD. MP3)

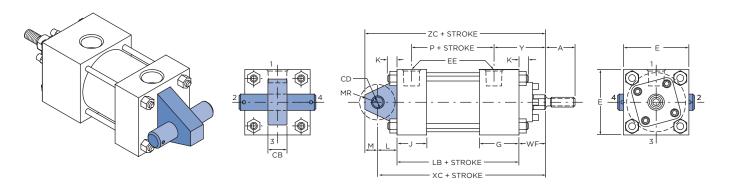



 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

| BORE DIA. | E     | F   | G     | J     | K    | L     | М   | СВ    | CD  | EE  | MR    |
|-----------|-------|-----|-------|-------|------|-------|-----|-------|-----|-----|-------|
| 1-1/2     | 2     | 3/8 | 1-1/2 | 1-1/8 | 1/4  | 3/4   | 1/2 | 3/4   | 1/2 | 3/8 | 5/8   |
| 2         | 2-1/2 | 3/8 | 1-1/2 | 1-1/8 | 3/8  | 3/4   | 1/2 | 3/4   | 1/2 | 3/8 | 5/8   |
| 2-1/2     | 3     | 3/8 | 1-1/2 | 1-1/8 | 5/16 | 3/4   | 1/2 | 3/4   | 1/2 | 3/8 | 5/8   |
| 3-1/4     | 3-3/4 | 5/8 | 1-3/4 | 1-1/4 | 7/16 | 1-1/4 | 3/4 | 1-1/4 | 3/4 | 1/2 | 7/8   |
| 4         | 4-1/2 | 5/8 | 1-3/4 | 1-1/4 | 7/16 | 1-1/4 | 3/4 | 1-1/4 | 3/4 | 1/2 | 7/8   |
| 5         | 5-1/2 | 5/8 | 1-3/4 | 1-1/4 | 1/2  | 1-1/4 | 3/4 | 1-1/4 | 3/4 | 1/2 | 7/8   |
| 6         | 6-1/2 | 3/4 | 2     | 1-1/2 | 9/16 | 1-1/2 | 1   | 1-1/2 | 1   | 3/4 | 1-1/4 |
| 8         | 8-1/2 | 3/4 | 2     | 1-1/2 | 5/8  | 1-1/2 | 1   | 1-1/2 | 1   | 3/4 | 1-1/4 |

 $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$ 

• = For piston rod dimensions see page 128.

| BORE DIA. | ROD MM• | Α     | Р     | W     | Y       | LB    | WF    | XC    | zc    |
|-----------|---------|-------|-------|-------|---------|-------|-------|-------|-------|
| BOKE DIA. | 5/8     | 3/4   | 2-1/8 | 5/8   | 1-15/16 | 3-5/8 | 1     | 5-3/8 | 5-7/8 |
| 1-1/2     | 1       | 1-1/8 | 2-1/8 | 1     | 2-5/16  | 3-5/8 | 1-3/8 | 5-3/4 | 6-1/4 |
|           | 5/8     | 3/4   | 2-1/8 | 5/8   | 1-15/16 | 3-5/8 | 1     | 5-3/8 | 5-7/8 |
| 2         | 1       | 1-1/8 | 2-1/8 | 1     | 2-5/16  | 3-5/8 | 1-3/8 | 5-3/4 | 6-1/4 |
| _         | 1-3/8   | 1-5/8 | 2-1/8 | 1-1/4 | 2-9/16  | 3-5/8 | 1-5/8 | 6     | 6-1/2 |
|           | 5/8     | 3/4   | 2-1/4 | 5/8   | 1-15/16 | 3-3/4 | 1     | 5-1/2 | 6     |
|           | 1       | 1-1/8 | 2-1/4 | 1     | 2-5/16  | 3-3/4 | 1-3/8 | 5-7/8 | 6-3/8 |
| 2-1/2     | 1-3/8   | 1-5/8 | 2-1/4 | 1-1/4 | 2-9/16  | 3-3/4 | 1-5/8 | 6-1/8 | 6-5/8 |
|           | 1-3/4   | 2     | 2-1/4 | 1-1/2 | 2-13/16 | 3-3/4 | 1-7/8 | 6-3/8 | 6-7/8 |
|           | 1       | 1-1/8 | 2-1/2 | 3/4   | 2-1/2   | 4-1/4 | 1-3/8 | 6-7/8 | 7-5/8 |
|           | 1-3/8   | 1-5/8 | 2-1/2 | 1     | 2-3/4   | 4-1/4 | 1-5/8 | 7-1/8 | 7-7/8 |
| 3-1/4     | 1-3/4   | 2     | 2-1/2 | 1-1/4 | 3       | 4-1/4 | 1-7/8 | 7-3/8 | 8-1/8 |
|           | 2       | 2-1/4 | 2-1/2 | 1-3/8 | 3-1/8   | 4-1/4 | 2     | 7-1/2 | 8-1/4 |
|           | 1       | 1-1/8 | 2-1/2 | 3/4   | 2-1/2   | 4-1/4 | 1-3/8 | 6-7/8 | 7-5/8 |
|           | 1-3/8   | 1-5/8 | 2-1/2 | 1     | 2-3/4   | 4-1/4 | 1-5/8 | 7-1/8 | 7-7/8 |
| 4         | 1-3/4   | 2     | 2-1/2 | 1-1/4 | 3       | 4-1/4 | 1-7/8 | 7-3/8 | 8-1/8 |
|           | 2       | 2-1/4 | 2-1/2 | 1-3/8 | 3-1/8   | 4-1/4 | 2     | 7-1/2 | 8-1/4 |
|           | 2-1/2   | 3     | 2-1/2 | 1-5/8 | 3-3/8   | 4-1/4 | 2-1/4 | 7-3/4 | 8-1/2 |
|           | 1       | 1-1/8 | 2-3/4 | 3/4   | 2-1/2   | 4-1/2 | 1-3/8 | 7-1/8 | 7-7/8 |
|           | 1-3/8   | 1-5/8 | 2-3/4 | 1     | 2-3/4   | 4-1/2 | 1-5/8 | 7-3/8 | 8-1/8 |
|           | 1-3/4   | 2     | 2-3/4 | 1-1/4 | 3       | 4-1/2 | 1-7/8 | 7-5/8 | 8-3/8 |
| 5         | 2       | 2-1/4 | 2-3/4 | 1-3/8 | 3-1/8   | 4-1/2 | 2     | 7-3/4 | 8-1/2 |
|           | 2-1/2   | 3     | 2-3/4 | 1-5/8 | 3-3/8   | 4-1/2 | 2-1/4 | 8     | 8-3/4 |
|           | 3       | 3-1/2 | 2-3/4 | 1-5/8 | 3-3/8   | 4-1/2 | 2-1/4 | 8     | 8-3/4 |
|           | 3-1/2   | 3-1/2 | 2-3/4 | 1-5/8 | 3-3/8   | 4-1/2 | 2-1/4 | 8     | 8-3/4 |
|           | 1-3/8   | 1-5/8 | 3-1/8 | 7/8   | 2-13/16 | 5     | 1-5/8 | 8-1/8 | 9-1/8 |
|           | 1-3/4   | 2     | 3-1/8 | 1-1/8 | 3-1/16  | 5     | 1-7/8 | 8-3/8 | 9-3/8 |
|           | 2       | 2-1/4 | 3-1/8 | 1-1/4 | 3-3/16  | 5     | 2     | 8-1/2 | 9-1/2 |
| 6         | 2-1/2   | 3     | 3-1/8 | 1-1/2 | 3-7/16  | 5     | 2-1/4 | 8-3/4 | 9-3/4 |
|           | 3       | 3-1/2 | 3-1/8 | 1-1/2 | 3-7/16  | 5     | 2-1/4 | 8-3/4 | 9-3/4 |
|           | 3-1/2   | 3-1/2 | 3-1/8 | 1-1/2 | 3-7/16  | 5     | 2-1/4 | 8-3/4 | 9-3/4 |
|           | 4       | 4     | 3-1/8 | 1-1/2 | 3-7/16  | 5     | 2-1/4 | 8-3/4 | 9-3/4 |
|           | 1-3/8   | 1-5/8 | 3-1/4 | _     | 2-13/16 | 5-1/8 | 1-5/8 | 8-1/4 | 9-1/4 |
|           | 1-3/4   | 2     | 3-1/4 | -     | 3-1/16  | 5-1/8 | 1-7/8 | 8-1/2 | 9-1/2 |
|           | 2       | 2-1/4 | 3-1/4 | -     | 3-3/16  | 5-1/8 | 2     | 8-5/8 | 9-5/8 |
|           | 2-1/2   | 3     | 3-1/4 | -     | 3-7/16  | 5-1/8 | 2-1/4 | 8-7/8 | 9-7/8 |
| 8         | 3       | 3-1/2 | 3-1/4 | -     | 3-7/16  | 5-1/8 | 2-1/4 | 8-7/8 | 9-7/8 |
|           | 3-1/2   | 3-1/2 | 3-1/4 | -     | 3-7/16  | 5-1/8 | 2-1/4 | 8-7/8 | 9-7/8 |
|           | 4       | 4     | 3-1/4 | -     | 3-7/16  | 5-1/8 | 2-1/4 | 8-7/8 | 9-7/8 |
|           | 4-1/2   | 4-1/2 | 3-1/4 | -     | 3-7/16  | 5-1/8 | 2-1/4 | 8-7/8 | 9-7/8 |
|           | 5       | 5     | 3-1/4 | -     | 3-7/16  | 5-1/8 | 2-1/4 | 8-7/8 | 9-7/8 |
|           | 5-1/2   | 5-1/2 | 3-1/4 | -     | 3-7/16  | 5-1/8 | 2-1/4 | 8-7/8 | 9-7/8 |



## MODEL E4 (NFPA STD. MP4)

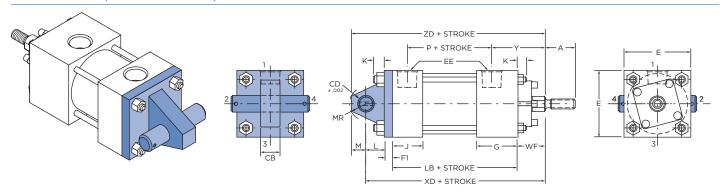



 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

| BORE DIA. | Е      | F   | G     | J     | К    | L     | М     | СВ    | CD    | EE  | MR    |
|-----------|--------|-----|-------|-------|------|-------|-------|-------|-------|-----|-------|
| 1-1/2     | 2      | 3/8 | 1-1/2 | 1-1/8 | 1/4  | 3/4   | 1/2   | 3/4   | 1/2   | 3/8 | 5/8   |
| 2         | 2-1/2  | 3/8 | 1-1/2 | 1-1/8 | 3/8  | 3/4   | 1/2   | 3/4   | 1/2   | 3/8 | 5/8   |
| 2-1/2     | 3      | 3/8 | 1-1/2 | 1-1/8 | 3/8  | 3/4   | 1/2   | 3/4   | 1/2   | 3/8 | 5/8   |
| 3-1/4     | 3-3/4  | 5/8 | 1-3/4 | 1-1/4 | 7/16 | 1-1/4 | 3/4   | 1-1/4 | 3/4   | 1/2 | 7/8   |
| 4         | 4-1/2  | 5/8 | 1-3/4 | 1-1/4 | 7/16 | 1-1/4 | 3/4   | 1-1/4 | 3/4   | 1/2 | 7/8   |
| 5         | 5-1/2  | 5/8 | 1-3/4 | 1-1/4 | 1/2  | 1-1/4 | 3/4   | 1-1/4 | 3/4   | 1/2 | 7/8   |
| 6         | 6-1/2  | 7/8 | 2     | 1-1/2 | 9/16 | 1-1/2 | 1     | 1-1/2 | 1     | 3/4 | 1-1/4 |
| 8         | 8-1/2  | 7/8 | 2     | 1-1/2 | 5/8  | 1-1/2 | 1     | 1-1/2 | 1     | 3/4 | 1-1/4 |
| 10        | 10-5/8 | 7/8 | 2-1/4 | 2     | 3/4  | 2-1/8 | 1-3/8 | 2     | 1-3/8 | 1   | 1-5/8 |

 $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$ 

• = For piston rod dimensions see page 128.

| BORE DIA. | ROD MM•    | Α      | Р              | Υ                | LB             | WF         | XD               | ZD               |
|-----------|------------|--------|----------------|------------------|----------------|------------|------------------|------------------|
| 1.1/0     | 5/8        | 3/4    | 2-1/8          | 1-15/16          | 3-5/8          | 1          | 5-3/4            | 6-1/4            |
| 1-1/2     | 1          | 1-1/8  | 2-1/8          | 2-5/16           | 3-5/8          | 1-3/8      | 6-1/8            | 6-5/8            |
|           | 5/8        | 3/4    | 2-1/8          | 1-15/16          | 3-5/8          | 1          | 5-3/4            | 6-1/4            |
| 2         | 1          | 1-1/8  | 2-1/8          | 2-5/16           | 3-5/8          | 1-3/8      | 6-1/8            | 6-5/8            |
|           | 1-3/8      | 1-5/8  | 2-1/8          | 2-9/16           | 3-5/8          | 1-5/8      | 6-3/8            | 6-7/8            |
|           | 5/8        | 3/4    | 2-1/4          | 1-15/16          | 3-3/4          | 1          | 5-7/8            | 6-3/8            |
| 0.1/0     | 1          | 1-1/8  | 2-1/4          | 2-5/16           | 3-3/4          | 1-3/8      | 6-1/4            | 6-3/4            |
| 2-1/2     | 1-3/8      | 1-5/8  | 2-1/4          | 2-9/16           | 3-3/4          | 1-5/8      | 6-1/2            | 7                |
|           | 1-3/4      | 2      | 2-1/4          | 2-13/16          | 3-3/4          | 1-7/8      | 6-3/4            | 7-1/4            |
|           | 1          | 1-1/8  | 2-1/2          | 2-1/2            | 4-1/4          | 1-3/8      | 7-1/2            | 8-1/4            |
| 7 1/4     | 1-3/8      | 1-5/8  | 2-1/2          | 2-3/4            | 4-1/4          | 1-5/8      | 7-3/4            | 8-1/2            |
| 3-1/4     | 1-3/4      | 2      | 2-1/2          | 3                | 4-1/4          | 1-7/8      | 8                | 8-3/4            |
|           | 2          | 2-1/4  | 2-1/2          | 3-1/8            | 4-1/4          | 2          | 8-1/8            | 8-7/8            |
|           | 1          | 1-1/8  | 2-1/2          | 2-1/2            | 4-1/4          | 1-3/8      | 7-1/2            | 8-1/4            |
|           | 1-3/8      | 1-5/8  | 2-1/2          | 2-3/4            | 4-1/4          | 1-5/8      | 7-3/4            | 8-1/2            |
| 4         | 1-3/4      | 2      | 2-1/2          | 3                | 4-1/4          | 1-7/8      | 8                | 8-3/4            |
|           | 2          | 2-1/4  | 2-1/2          | 3-1/8            | 4-1/4          | 2          | 8-1/8            | 8-7/8            |
|           | 2-1/2      | 3      | 2-1/2          | 3-3/8            | 4-1/4          | 2-1/4      | 8-3/8            | 9-1/8            |
|           | 1          | 1-1/8  | 2-3/4          | 2-1/2            | 4-1/2          | 1-3/8      | 7-3/4            | 8-1/2            |
|           | 1-3/8      | 1-5/8  | 2-3/4          | 2-3/4            | 4-1/2          | 1-5/8      | 8                | 8-3/4            |
|           | 1-3/4      | 2      | 2-3/4          | 3                | 4-1/2          | 1-7/8      | 8-1/4            | 9                |
| 5         | 2          | 2-1/4  | 2-3/4          | 3-1/8            | 4-1/2          | 2          | 8-3/8            | 9-1/8            |
|           | 2-1/2      | 3      | 2-3/4          | 3-3/8            | 4-1/2          | 2-1/4      | 8-5/8            | 9-3/8            |
|           | 3          | 3-1/2  | 2-3/4          | 3-3/8            | 4-1/2          | 2-1/4      | 8-5/8            | 9-3/8            |
|           | 3-1/2      | 3-1/2  | 2-3/4          | 3-3/8            | 4-1/2          | 2-1/4      | 8-5/8            | 9-3/8            |
|           | 1-3/8      | 1-5/8  | 3-1/8          | 2-13/16          | 5              | 1-5/8      | 9                | 10               |
|           | 1-3/4      | 2      | 3-1/8          | 3-1/16           | 5              | 1-7/8      | 9-1/4            | 10-1/4           |
|           | 2          | 2-1/4  | 3-1/8          | 3-3/16           | 5              | 2          | 9-3/8            | 10-3/8           |
| 6         | 2-1/2      | 3      | 3-1/8          | 3-7/16           | 5              | 2-1/4      | 9-5/8            | 10-5/8           |
|           | 3          | 3-1/2  | 3-1/8          | 3-7/16           | 5              | 2-1/4      | 9-5/8            | 10-5/8           |
|           | 3-1/2      | 3-1/2  | 3-1/8          | 3-7/16           | 5              | 2-1/4      | 9-5/8            | 10-5/8           |
|           | 4          | 4      | 3-1/8          | 3-7/16           | 5              | 2-1/4      | 9-5/8            | 10-5/8           |
|           | 1-3/8      | 1-5/8  | 3-1/4          | 2-13/16          | 5-1/8          | 1-5/8      | 9-1/8            | 10-1/8           |
|           | 1-3/4      | 2      | 3-1/4          | 3-1/16           | 5-1/8          | 1-7/8      | 9-3/8            | 10-3/8           |
|           | 2          | 2-1/4  | 3-1/4          | 3-3/16           | 5-1/8          | 2          | 9-1/2            | 10-1/2           |
|           | 2-1/2      | 3      | 3-1/4          | 3-7/16           | 5-1/8          | 2-1/4      | 9-3/4            | 10-3/4           |
| 8         | 3          | 3-1/2  | 3-1/4          | 3-7/16           | 5-1/8          | 2-1/4      | 9-3/4            | 10-3/4           |
|           | 3-1/2      | 3-1/2  | 3-1/4          | 3-7/16           | 5-1/8          | 2-1/4      | 9-3/4            | 10-3/4           |
|           | 4 1/2      | 4 1/2  | 3-1/4          | 3-7/16           | 5-1/8          | 2-1/4      | 9-3/4            | 10-3/4           |
|           | 4-1/2      | 4-1/2  | 3-1/4          | 3-7/16           | 5-1/8          | 2-1/4      | 9-3/4            | 10-3/4           |
|           | 5 5-1/2    | 5-1/2  | 3-1/4<br>7-1/4 | 3-7/16<br>3-7/16 | 5-1/8<br>5-1/9 | 2-1/4      | 9-3/4<br>9-3/4   | 10-3/4           |
|           | 5-1/2      | 5-1/2  | 3-1/4          | 3-7/16<br>3-3/16 | 5-1/8          | 2-1/4      | -                | 10-3/4           |
|           | 1-3/4      | 2-1/4  | 4              |                  | 6-3/8          | 1-7/8<br>2 | 11-1/4<br>11-3/8 | 12-5/8<br>12-3/4 |
|           |            | 3      | 4              | 3-5/16<br>3-9/16 | 6-3/8<br>6-3/8 | 2-1/4      | 11-5/8           | 13               |
|           | 2-1/2<br>3 | 3-1/2  | 4              | 3-9/16           | 6-3/8          | 2-1/4      | 11-5/8           | 13               |
| 10        | 3-1/2      | 3-1/2  | 4              | 3-9/16           | 6-3/8          | 2-1/4      | 11-5/8           | 13               |
|           | 4          | 3-1/2  | 4              | 3-9/16           | 6-3/8          | 2-1/4      | 11-5/8           | 13               |
|           | 4-1/2      | 4-1/2  | 4              | 3-9/16           | 6-3/8          | 2-1/4      | 11-5/8           | 13               |
|           | 5          | 5      | 4              | 3-9/16           | 6-3/8          | 2-1/4      | 11-5/8           | 13               |
|           | 5-1/2      | 5-1/2  | 4              | 3-9/16           | 6-3/8          | 2-1/4      | 11-5/8           | 13               |
|           | J-1/ Z     | J-1/ Z | - +            | J-3/10           | 0-3/0          | Z-1/4      | 11-3/0           | l 13             |



## MODEL EU3 (NFPA STD. MPU3)

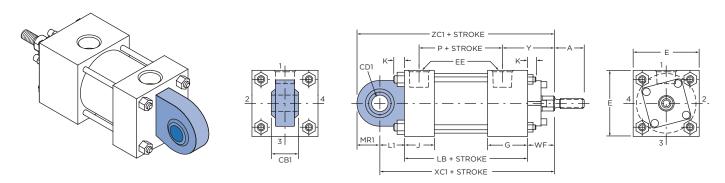
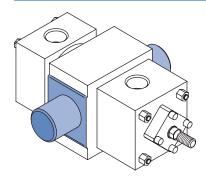


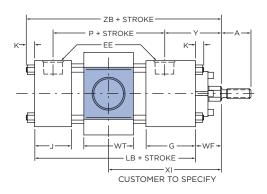

 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

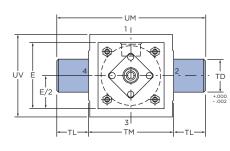
| BORE DIA. | E     | G     | J     | K    | EE  | L1    | CB1   | CD1 | MR1   | PRESSURE RATING |
|-----------|-------|-------|-------|------|-----|-------|-------|-----|-------|-----------------|
| 1-1/2     | 2     | 1-1/2 | 1-1/8 | 1/4  | 3/8 | 3/4   | 7/16  | 1/2 | 7/8   | 1750 PSI        |
| 2         | 2-1/2 | 1-1/2 | 1-1/8 | 3/8  | 3/8 | 3/4   | 7/16  | 1/2 | 7/8   | 980 PSI         |
| 2-1/2     | 3     | 1-1/2 | 1-1/8 | 3/8  | 3/8 | 3/4   | 7/16  | 1/2 | 7/8   | 630 PSI         |
| 3-1/4     | 3-3/4 | 1-3/4 | 1-1/4 | 7/16 | 1/2 | 1-1/4 | 21/32 | 3/4 | 1-1/4 | 830 PSI         |
| 4         | 4-1/2 | 1-3/4 | 1-1/4 | 7/16 | 1/2 | 1-1/4 | 21/32 | 3/4 | 1-1/4 | 550 PSI         |
| 5         | 5-1/2 | 1-3/4 | 1-1/4 | 1/2  | 1/2 | 1-1/4 | 21/32 | 3/4 | 1-1/4 | 350 PSI         |
| 6         | 6-1/2 | 2     | 1-1/2 | 9/16 | 3/4 | 1-1/2 | 7/8   | 1   | 1-1/2 | 440 PSI         |

## SPHERICAL EYE MOUNT CYLINDERS

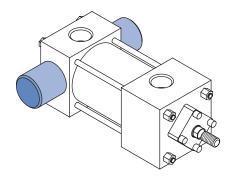
1-1/2" THROUGH 6" DIAMETER

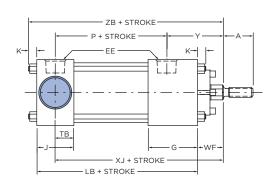

 Table 2
 The dimensions given on this table are affected by the piston rod diameter and the stroke.

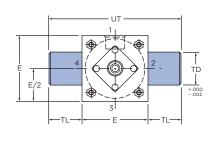

• = For piston rod dimensions see page 128.


| BORE DIA. | ROD MM• | Α     | Р     | W     | Υ       | LB    | WF    | XC1    | ZC1     |
|-----------|---------|-------|-------|-------|---------|-------|-------|--------|---------|
| 1.1/0     | 5/8     | 3/4   | 2-1/8 | 5/8   | 1-15/16 | 3-5/8 | 1     | 5-3/8  | 6-1/8   |
| 1-1/2     | 1       | 1-1/8 | 2-1/8 | 1     | 2-5/16  | 3-5/8 | 1-3/8 | 5-3/4  | 6-1/2   |
|           | 5/8     | 3/4   | 2-1/8 | 5/8   | 1-15/16 | 3-5/8 | 1     | 5-3/8  | 6-1/8   |
| 2         | 1       | 1-1/8 | 2-1/8 | 1     | 2-5/16  | 3-5/8 | 1-3/8 | 5-3/4  | 6-1/2   |
|           | 1-3/8   | 1-5/8 | 2-1/8 | 1-1/4 | 2-9/16  | 3-5/8 | 1-5/8 | 6      | 6-3/4   |
|           | 5/8     | 3/4   | 2-1/4 | 5/8   | 1-15/16 | 3-3/4 | 1     | 5-1/2  | 6-1/4   |
| 2.1/2     | 1       | 1-1/8 | 2-1/4 | 1     | 2-5/16  | 3-3/4 | 1-3/8 | 5-7/8  | 5-5/8   |
| 2-1/2     | 1-3/8   | 1-5/8 | 2-1/4 | 1-1/4 | 2-9/16  | 3-3/4 | 1-5/8 | 6-1/8  | 6-7/8   |
|           | 1-3/4   | 2     | 2-1/4 | 1-1/2 | 2-13/16 | 3-3/4 | 1-7/8 | 6-3/8  | 7-1/8   |
|           | 1       | 1-1/8 | 2-1/2 | 3/4   | 2-1/2   | 4-1/4 | 1-3/8 | 6-7/8  | 8-1/16  |
| 7 1/4     | 1-3/8   | 1-5/8 | 2-1/2 | 1     | 2-3/4   | 4-1/4 | 1-5/8 | 7-1/8  | 8-5/16  |
| 3-1/4     | 1-3/4   | 2     | 2-1/2 | 1-1/4 | 3       | 4-1/4 | 1-7/8 | 7-3/8  | 8-9/16  |
|           | 2       | 2-1/4 | 2-1/2 | 1-3/8 | 3-1/8   | 4-1/4 | 2     | 7-1 /2 | 8-11/16 |
|           | 1       | 1-1/8 | 2-1/2 | 3/4   | 2-1/2   | 4-1/4 | 1-3/8 | 6-7/8  | 8-1/16  |
|           | 1-3/8   | 1-5/8 | 2-1/2 | 1     | 2-3/4   | 4-1/4 | 1-5/8 | 7-1/8  | 8-5/16  |
| 4         | 1-3/4   | 2     | 2-1/2 | 1-1/4 | 3       | 4-1/4 | 1-7/8 | 7-3/8  | 8-9/16  |
|           | 2       | 2-1/4 | 2-1/2 | 1-3/8 | 3-1/8   | 4-1/4 | 2     | 7-1/2  | 8-11/16 |
|           | 2-1/2   | 3     | 2-1/2 | 1-5/8 | 3-3/8   | 4-1/4 | 2-1/4 | 7-3/4  | 8-15/16 |
|           | 1       | 1-1/8 | 2-3/4 | 3/4   | 2-1/2   | 4-1/2 | 1-3/8 | 7-1/8  | 8-5/16  |
|           | 1-3/8   | 1-5/8 | 2-3/4 | 1     | 2-3/4   | 4-1/2 | 1-5/8 | 7-3/8  | 8-9/16  |
|           | 1-3/4   | 2     | 2-3/4 | 1-1/4 | 3       | 4-1/2 | 1-7/8 | 7-5/8  | 8-13/16 |
| 5         | 2       | 2-1/4 | 2-3/4 | 1-3/8 | 3-1/8   | 4-1/2 | 2     | 7-3/4  | 8-15/16 |
|           | 2-1/2   | 3     | 2-3/4 | 1-5/8 | 3-3/8   | 4-1/2 | 2-1/4 | 8      | 9-3/16  |
|           | 3       | 3-1/2 | 2-3/4 | 1-5/8 | 3-3/8   | 4-1/2 | 2-1/4 | 8      | 9-3/16  |
|           | 3-1/2   | 3-1/2 | 2-3/4 | 1-5/8 | 3-3/8   | 4-1/2 | 2-1/4 | 8      | 9-3/16  |
|           | 1-3/8   | 1-5/8 | 3-1/8 | 7/8   | 2-13/16 | 5     | 1-5/8 | 8-1/8  | 9-5/8   |
|           | 1-3/4   | 2     | 3-1/8 | 1-1/8 | 3-1/16  | 5     | 1-7/8 | 8-3/8  | 9-7/8   |
|           | 2       | 2-1/4 | 3-1/8 | 1-1/4 | 3-3/16  | 5     | 2     | 8-1/2  | 10      |
| 6         | 2-1/2   | 3     | 3-1/8 | 1-1/2 | 3-7/16  | 5     | 2-1/4 | 8-3/4  | 10-1/4  |
|           | 3       | 3-1/2 | 3-1/8 | -     | 3-3/16  | 5     | -     | 8-3/4  | 10-1/4  |
|           | 3-1/2   | 3-1/2 | 3-1/8 | -     | 3-7/16  | 5     | -     | 8-3/4  | 10-1/4  |
|           | 4       | 4     | 3-1/8 | -     | -       | 5     | -     | 8-3/4  | 10-1/4  |

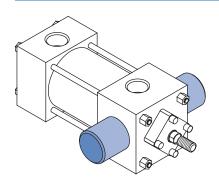


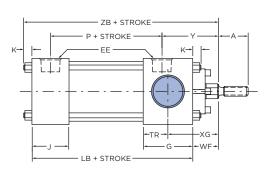

## MODEL F (NFPA STD. MT4)

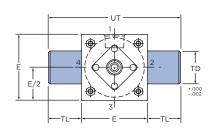






## MODEL FB (NFPA STD. MT2)






## MODEL FR (NFPA STD. MT1)





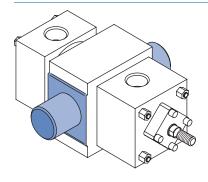


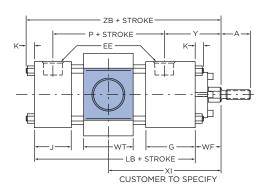
= See Table A on page 123 for bore and rod combinations using head plates with threaded bronze glands.

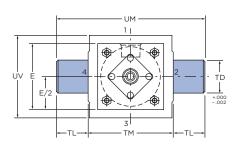
 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

Double rod end models are designated by letter "X" preceding the model identification. See page 124.

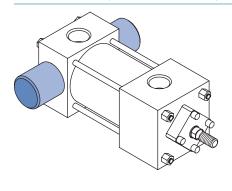
| BORE<br>DIA. | E     | G     | J     | К    | EE  | тв   | TD    | TL    | тм    | TR  | UM     | UT    | UV    | WT    |
|--------------|-------|-------|-------|------|-----|------|-------|-------|-------|-----|--------|-------|-------|-------|
| 1-1/2        | 2     | 1-1/2 | 1-1/8 | 1/4  | 3/8 | 9/16 | 1     | 1     | 2-1/2 | 3/4 | 4-1/2  | 4     | 2-1/2 | 1-1/2 |
| 2            | 2-1/2 | 1-1/2 | 1-1/8 | 3/8  | 3/8 | 9/16 | 1     | 1     | 3     | 3/4 | 5      | 4-1/2 | 3     | 1-1/2 |
| 2-1/2        | 3     | 1-1/2 | 1-1/8 | 3/8  | 3/8 | 9/16 | 1     | 1     | 3-1/2 | 3/4 | 5-1/2  | 5     | 3-1/2 | 1-1/2 |
| 3-1/4        | 3-3/4 | 1-3/4 | 1-1/4 | 7/16 | 1/2 | 5/8  | 1     | 1     | 4-1/2 | 7/8 | 6-1/2  | 5-3/4 | 4-1/2 | 2     |
| 4            | 4-1/2 | 1-3/4 | 1-1/4 | 7/16 | 1/2 | 5/8  | 1     | 1     | 5-1/4 | 7/8 | 7-1/4  | 6-1/2 | 5     | 2     |
| 5            | 5-1/2 | 1-3/4 | 1-1/4 | 1/2  | 1/2 | 5/8  | 1     | 1     | 6-1/4 | 7/8 | 8-1/4  | 7-1/2 | 6     | 2     |
| 6            | 6-1/2 | 2     | 1-1/2 | 9/16 | 3/4 | 3/4  | 1-3/8 | 1-3/8 | 7-5/8 | 1   | 10-3/8 | 9-1/4 | 7     | 2-1/2 |

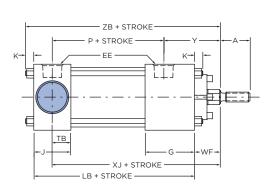

## $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$

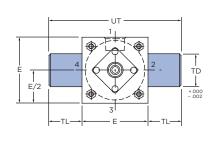

• = For piston rod dimensions see page 128.


| BORE DIA. | ROD MM• | Α     | Р     | Υ       | LB    | WF    | XG    | XI (MIN) | XJ      | ZB      |
|-----------|---------|-------|-------|---------|-------|-------|-------|----------|---------|---------|
| 1.1/0     | 5/8     | 3/4   | 2-1/8 | 1-15/16 | 3-5/8 | 1     | 1-3/4 | 3-1/4    | 4-1/16  | 4-7/8   |
| 1-1/2     | 1       | 1-1/8 | 2-1/8 | 2-5/16  | 3-5/8 | 1-3/8 | 2-1/8 | 3-5/8    | 4-7/16  | 5-1/4   |
|           | 5/8     | 3/4   | 2-1/8 | 1-15/16 | 3-5/8 | 1     | 1-3/4 | 3-1/4    | 4-1/16  | 5       |
| 2         | 1       | 1-1/8 | 2-1/8 | 2-5/16  | 3-5/8 | 1-3/8 | 2-1/8 | 3-5/8    | 4-7/16  | 5-3/8   |
|           | 1-3/8   | 1-5/8 | 2-1/8 | 2-9/16  | 3-5/8 | 1-5/8 | 2-3/8 | 3-7/8    | 4-11/16 | 5-11/16 |
|           | 5/8     | 3/4   | 2-1/4 | 1-15/16 | 3-3/4 | 1     | 1-3/4 | 3-1/4    | 4-3/16  | 5-1/16  |
| 0.1/0     | 1       | 1-1/8 | 2-1/4 | 2-5/16  | 3-3/4 | 1-3/8 | 2-1/8 | 3-5/8    | 4-9/16  | 5-7/16  |
| 2-1/2     | 1-3/8   | 1-5/8 | 2-1/4 | 2-9/16  | 3-3/4 | 1-5/8 | 2-3/8 | 3-7/8    | 4-13/16 | 5-11/16 |
|           | 1-3/4   | 2     | 2-1/4 | 2-13/16 | 3-3/4 | 1-7/8 | 2-5/8 | 4-1/8    | 5-1/16  | 5-15/16 |
|           | 1       | 1-1/8 | 2-1/2 | 2-1/2   | 4-1/4 | 1-3/8 | 2-1/4 | 4-1/8    | 5       | 6-1/16  |
| 7.1/4     | 1-3/8   | 1-5/8 | 2-1/2 | 2-3/4   | 4-1/4 | 1-5/8 | 2-1/2 | 4-3/8    | 5-1/4   | 6-5/16  |
| 3-1/4     | 1-3/4   | 2     | 2-1/2 | 3       | 4-1/4 | 1-7/8 | 2-3/4 | 4-5/8    | 5-1/2   | 6-9/16  |
|           | 2       | 2-1/4 | 2-1/2 | 3-1/8   | 4-1/4 | 2     | 2-7/8 | 4-3/4    | 5-5/8   | 6-11/16 |
|           | 1       | 1-1/8 | 2-1/2 | 2-1/2   | 4-1/4 | 1-3/8 | 2-1/4 | 4-1/8    | 5       | 6-1/16  |
|           | 1-3/8   | 1-5/8 | 2-1/2 | 2-3/4   | 4-1/4 | 1-5/8 | 2-1/2 | 4-3/8    | 5-1/4   | 6-5/16  |
| 4         | 1-3/4   | 2     | 2-1/2 | 3       | 4-1/4 | 1-7/8 | 2-3/4 | 4-5/8    | 5-1/2   | 6-9/16  |
|           | 2       | 2-1/4 | 2-1/2 | 3-1/8   | 4-1/4 | 2     | 2-7/8 | 4-3/4    | 5-5/8   | 6-11/16 |
|           | 2-1/2   | 3     | 2-1/2 | 3-3/8   | 4-1/4 | 2-1/4 | 3-1/8 | 5        | 5-7/8   | 6-15/16 |
|           | 1       | 1-1/8 | 2-3/4 | 2-1/2   | 4-1/2 | 1-3/8 | 2-1/4 | 4-1/8    | 5-1/4   | 6-3/8   |
|           | 1-3/8   | 1-5/8 | 2-3/4 | 2-3/4   | 4-1/2 | 1-5/8 | 2-1/2 | 4-3/8    | 5-1/2   | 6-5/8   |
|           | 1-3/4   | 2     | 2-3/4 | 3       | 4-1/2 | 1-7/8 | 2-3/4 | 4-5/8    | 5-3/4   | 6-7/8   |
| 5         | 2       | 2-1/4 | 2-3/4 | 3-1/8   | 4-1/2 | 2     | 2-7/8 | 4-3/4    | 5-7/8   | 7       |
|           | 2-1/2   | 3     | 2-3/4 | 3-3/8   | 4-1/2 | 2-1/4 | 3-1/8 | 5        | 6-1/8   | 7-1/4   |
|           | 3       | 3-1/2 | 2-3/4 | 3-3/8   | 4-1/2 | 2-1/4 | 3-1/8 | 5        | 6-1/8   | 7-1/4   |
|           | 3-1/2   | 3-1/2 | 2-3/4 | 3-3/8   | 4-1/2 | 2-1/4 | 3-1/8 | 5        | 6-1/8   | 7-1/4   |
|           | 1-3/8   | 1-5/8 | 3-1/8 | 2-13/16 | 5     | 1-5/8 | 2-5/8 | 4-7/8    | 5-7/8   | 7-3/16  |
|           | 1-3/4   | 2     | 3-1/8 | 3-1/16  | 5     | 1-7/8 | 2-7/8 | 5-1/8    | 6-1/8   | 7-7/16  |
|           | 2       | 2-1/4 | 3-1/8 | 3-3/16  | 5     | 2     | 3     | 5-1/4    | 6-1/4   | 7-9/16  |
| 6         | 2-1/2   | 3     | 3-1/8 | 3-7/16  | 5     | 2-1/4 | 3-1/4 | 5-1/2    | 6-1/2   | 7-13/16 |
|           | 3       | 3-1/2 | 3-1/8 | 3-7/16  | 5     | 2-1/4 | 3-1/4 | 5-1/2    | 6-1/2   | 7-13/16 |
|           | 3-1/2   | 3-1/2 | 3-1/8 | 3-7/16  | 5     | 2-1/4 | 3-1/4 | 5-1/2    | 6-1/2   | 7-13/16 |
|           | 4       | 4     | 3-1/8 | 3-7/16  | 5     | 2-1/4 | 3-1/4 | 5-1/2    | 6-1/2   | 7-13/16 |

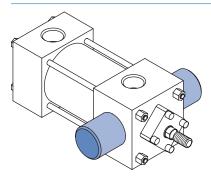


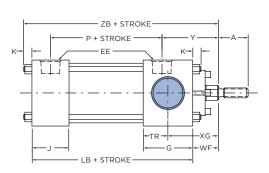

## **MODEL F** (NFPA STD. MT4) 8" THROUGH 14" DIAMETER

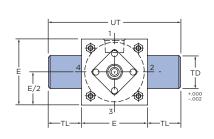






## MODEL FB (NFPA STD. MT2) 8" THROUGH 20" DIAMETER






## MODEL FR (NFPA STD. MT1) 8" THROUGH 20" DIAMETER



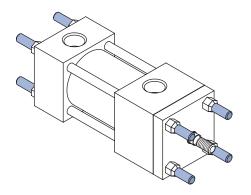


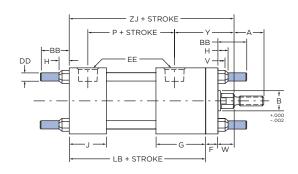


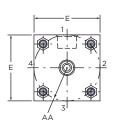
 $\begin{tabular}{ll} \textbf{Table 1} \\ \textbf{These dimensions are constant regardless of rod diameter or stroke.} \\ \end{tabular}$ 

Double rod end models are designated by letter "X" preceding the model identification. See page 124.

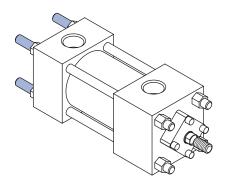
| BORE DIA. | E      | G       | J       | K     | EE    | ТВ      | TD    | TL    | TM     | TR      | UM     | UT     | UV     | WT    |
|-----------|--------|---------|---------|-------|-------|---------|-------|-------|--------|---------|--------|--------|--------|-------|
| 8         | 8-1/2  | 2       | 1-1/2   | 5/8   | 3/4   | 3/4     | 1-3/8 | 1-3/8 | 9-3/4  | 1       | 12-1/2 | 11-1/4 | 9-1/2  | 2-1/2 |
| 10        | 10-5/8 | 2-1/4   | 2       | 3/4   | 1     | 1       | 1-3/4 | 1-3/4 | 12     | 1-1/8   | 15-1/2 | 14-1/8 | 11-3/4 | 3     |
| 12        | 12-3/4 | 2-1/4   | 2       | 3/4   | 1     | 1       | 1-3/4 | 1-3/4 | 14     | 1-1/8   | 17-1/2 | 16-1/4 | 13-3/4 | 3     |
| 14        | 14-3/4 | 2-3/4   | 2-1/4   | 7/8   | 1-1/4 | 1-1/8   | 2     | 2     | 16-1/4 | 1-3/8   | 20-1/4 | 18-3/4 | 16     | 3-1/2 |
| 16        | 17-1/2 | 3       | 3       | 1     | 1-1/2 | 1-1/2   | 2-3/4 | 2-3/4 | _      | 1-1/2   | -      | 23     | _      | -     |
| 18        | 19-1/2 | 3-7/16  | 3-7/16  | 1-1/8 | 1-1/2 | 1-11/16 | 3     | 3     | -      | 1-11/16 | -      | 25-1/2 | -      | -     |
| 20        | 21-3/4 | 3-15/16 | 3-15/16 | 1-1/4 | 2     | 1-15/16 | 3-1/2 | 3-1/2 | _      | 1-15/16 | -      | 28-3/4 | _      | _     |

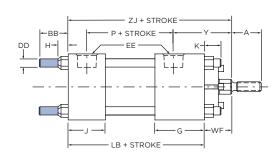

 $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$ 

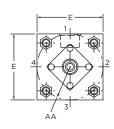

• = For piston rod dimensions see page 128.


| BORE DIA. | ROD MM• | Α     | P     | Υ       | LB     | WF    | XG    | XI (MIN) | XJ     | ZB     |
|-----------|---------|-------|-------|---------|--------|-------|-------|----------|--------|--------|
|           | 1-3/8   | 1-5/8 | 3-1/4 | 2-13/16 | 5-1/8  | 1-5/8 | 2-5/8 | 4-7/8    | 6      | 7-3/8  |
|           | 1-3/4   | 2     | 3-1/4 | 3-1/16  | 5-1/8  | 1-7/8 | 2-7/8 | 5-1/8    | 6-1/4  | 7-5/8  |
|           | 2       | 2-1/4 | 3-1/4 | 3-3/16  | 5-1/8  | 2     | 3     | 5-1/4    | 6-3/8  | 7-3/4  |
|           | 2-1/2   | 3     | 3-1/4 | 3-7/16  | 5-1/8  | 2-1/4 | 3-1/4 | 5-1/2    | 6-5/8  | 8      |
|           | 3       | 3-1/2 | 3-1/4 | 3-7/16  | 5-1/8  | 2-1/4 | 3-1/4 | 5-1/2    | 6-5/8  | 8      |
| 8         | 3-1/2   | 3-1/2 | 3-1/4 | 3-7/16  | 5-1/8  | 2-1/4 | 3-1/4 | 5-1/2    | 6-5/8  | 8      |
|           | 4       | 4     | 3-1/4 | 3-7/16  | 5-1/8  | 2-1/4 | 3-1/4 | 5-1/2    | 6-5/8  | 8      |
|           | 4-1/2   | 4-1/2 | 3-1/4 | 3-7/16  | 5-1/8  | 2-1/4 | 3-1/4 | 5-1/2    | 6-5/8  | 8      |
|           | 5       | 5     | 3-1/4 | 3-7/16  | 5-1/8  | 2-1/4 | 3-1/4 | 5-1/2    | 6-5/8  | 8      |
|           | 5-1/2   | 5-1/2 | 3-1/4 | 3-7/16  | 5-1/8  | 2-1/4 | 3-1/4 | 5-1/2    | 6-5/8  | 8      |
|           | 1-3/4   | 2     | 4     | 3-3/16  | 6-3/8  | 1-7/8 | 3     | 5-5/8    | 7-1/4  | 9      |
|           | 2       | 2-1/4 | 4     | 3-5/16  | 6-3/8  | 2     | 3-1/8 | 5-3/4    | 7-3/8  | 9-1/8  |
|           | 2-1/2   | 3     | 4     | 3-9/16  | 6-3/8  | 2-1/4 | 3-3/8 | 6        | 7-5/8  | 9-3/8  |
|           | 3       | 3-1/2 | 4     | 3-9/16  | 6-3/8  | 2-1/4 | 3-3/8 | 6        | 7-5/8  | 9-3/8  |
| 10        | 3-1/2   | 3-1/2 | 4     | 3-9/16  | 6-3/8  | 2-1/4 | 3-3/8 | 6        | 7-5/8  | 9-3/8  |
|           | 4       | 4     | 4     | 3-9/16  | 6-3/8  | 2-1/4 | 3-3/8 | 6        | 7-5/8  | 9-3/8  |
|           | 4-1/2   | 4-1/2 | 4     | 3-9/16  | 6-3/8  | 2-1/4 | 3-3/8 | 6        | 7-5/8  | 9-3/8  |
|           | 5       | 5     | 4     | 3-9/16  | 6-3/8  | 2-1/4 | 3-3/8 | 6        | 7-5/8  | 9-3/8  |
|           | 5-1/2   | 5-1/2 | 4     | 3-9/16  | 6-3/8  | 2-1/4 | 3-3/8 | 6        | 7-5/8  | 9-3/8  |
|           | 2       | 2-1/4 | 4-1/2 | 3-5/16  | 6-7/8  | 2     | 3-1/8 | 5-3/4    | 7-7/8  | 9-5/8  |
|           | 2-1/2   | 3     | 4-1/2 | 3-9/16  | 6-7/8  | 2-1/4 | 3-3/8 | 6        | 8-1/8  | 9-7/8  |
|           | 3       | 3-1/2 | 4-1/2 | 3-9/16  | 6-7/8  | 2-1/4 | 3-3/8 | 6        | 8-1/8  | 9-7/8  |
| 10        | 3-1/2   | 3-1/2 | 4-1/2 | 3-9/16  | 6-7/8  | 2-1/4 | 3-3/8 | 6        | 8-1/8  | 9-7/8  |
| 12        | 4       | 4     | 4-1/2 | 3-9/16  | 6-7/8  | 2-1/4 | 3-3/8 | 6        | 8-1/8  | 9-7/8  |
|           | 4-1/2   | 4-1/2 | 4-1/2 | 3-9/16  | 6-7/8  | 2-1/4 | 3-3/8 | 6        | 8-1/8  | 9-7/8  |
|           | 5       | 5     | 4-1/2 | 3-9/16  | 6-7/8  | 2-1/4 | 3-3/8 | 6        | 8-1/8  | 9-7/8  |
|           | 5-1/2   | 5-1/2 | 4-1/2 | 3-9/16  | 6-7/8  | 2-1/4 | 3-3/8 | 6        | 8-1/8  | 9-7/8  |
|           | 2-1/2   | 3     | 5-1/2 | 3-13/16 | 8-1/8  | 2-1/4 | 3-5/8 | 6        | 9-1/4  | 11-1/4 |
|           | 3       | 3-1/2 | 5-1/2 | 3-13/16 | 8-1/8  | 2-1/4 | 3-5/8 | 6        | 9-1/4  | 11-1/4 |
|           | 3-1/2   | 3-1/2 | 5-1/2 | 3-13/16 | 8-1/8  | 2-1/4 | 3-5/8 | 6        | 9-1/4  | 11-1/4 |
| 14        | 4       | 4     | 5-1/2 | 3-13/16 | 8-1/8  | 2-1/4 | 3-5/8 | 6        | 9-1/4  | 11-1/4 |
|           | 4-1/2   | 4-1/2 | 5-1/2 | 3-13/16 | 8-1/8  | 2-1/4 | 3-5/8 | 6        | 9-1/4  | 11-1/4 |
|           | 5       | 5     | 5-1/2 | 3-13/16 | 8-1/8  | 2-1/4 | 3-5/8 | 6        | 9-1/4  | 11-1/4 |
|           | 5-1/2   | 5-1/2 | 5-1/2 | 3-13/16 | 8-1/8  | 2-1/4 | 3-5/8 | 6        | 9-1/4  | 11-1/4 |
|           | 2-1/2   | 3     | 5-7/8 | 3-15/16 | 9-1/4  | 2-1/4 | 3-3/4 | -        | 10     | 12-1/2 |
|           | 3       | 3-1/2 | 5-7/8 | 3-15/16 | 9-1/4  | 2-1/4 | 3-3/4 | -        | 10     | 12-1/2 |
|           | 3-1/2   | 3-1/2 | 5-7/8 | 3-15/16 | 9-1/4  | 2-1/4 | 3-3/4 | -        | 10     | 12-1/2 |
| 16        | 4       | 4     | 5-7/8 | 3-15/16 | 9-1/4  | 2-1/4 | 3-3/4 | -        | 10     | 12-1/2 |
|           | 4-1/2   | 4-1/2 | 5-7/8 | 3-15/16 | 9-1/4  | 2-1/4 | 3-3/4 | -        | 10     | 12-1/2 |
|           | 5       | 5     | 5-7/8 | 3-15/16 | 9-1/4  | 2-1/4 | 3-3/4 | -        | 10     | 12-1/2 |
|           | 5-1/2   | 5-1/2 | 5-7/8 | 3-15/16 | 9-1/4  | 2-1/4 | 3-3/4 | -        | 10     | 12-1/2 |
|           | 3-1/2   | 3-1/2 | 6     | 4-3/8   | 10-1/4 | 2-1/4 | 4     | -        | 10-3/4 | 13-5/8 |
|           | 4       | 4     | 6     | 4-3/8   | 10-1/4 | 2-1/4 | 4     | -        | 10-3/4 | 13-5/8 |
| 18        | 4-1/2   | 4-1/2 | 6     | 4-3/8   | 10-1/4 | 2-1/4 | 4     | -        | 10-3/4 | 13-5/8 |
|           | 5       | 5     | 6     | 4-3/8   | 10-1/4 | 2-1/4 | 4     | -        | 10-3/4 | 13-5/8 |
|           | 5-1/2   | 5-1/2 | 6     | 4-3/8   | 10-1/4 | 2-1/4 | 4     | -        | 10-3/4 | 13-5/8 |
|           | 4       | 4     | 7-1/8 | 4-9/16  | 11-3/4 | 2-1/4 | 4-1/4 | -        | 12     | 15-1/4 |
| 20        | 4-1/2   | 4-1/2 | 7-1/8 | 4-9/16  | 11-3/4 | 2-1/4 | 4-1/4 | -        | 12     | 15-1/4 |
|           | 5       | 5     | 7-1/8 | 4-9/16  | 11-3/4 | 2-1/4 | 4-1/4 | -        | 12     | 15-1/4 |
|           | 5-1/2   | 5-1/2 | 7-1/8 | 4-9/16  | 11-3/4 | 2-1/4 | 4-1/4 | -        | 12     | 15-1/4 |

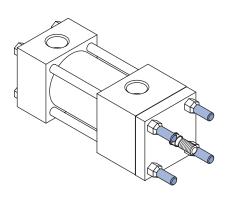


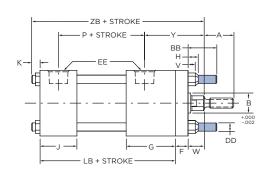

## MODEL T (NFPA STD. MX1)

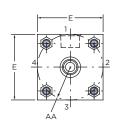






## **MODEL TB** (NFPA STD. MX2)






## MODEL TR (NFPA STD. MX3)







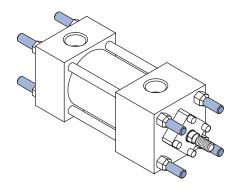
= See Table A on page 123 for bore and rod combinations using head plates with threaded bronze glands.

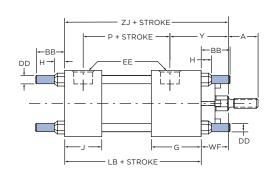
1-1/2" THROUGH 6" DIAMETER

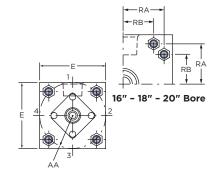
 $\begin{tabular}{ll} \textbf{Table 1} \\ \textbf{These dimensions are constant regardless of rod diameter or stroke.} \\ \end{tabular}$ 

Double rod end models are designated by letter "X" preceding the model identification. See page 124.

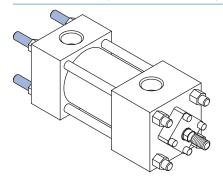
| BORE DIA. | Е     | F   | G     | Н    | J     | K    | AA   | ВВ     | DD      | EE  |
|-----------|-------|-----|-------|------|-------|------|------|--------|---------|-----|
| 1-1/2     | 2     | 3/8 | 1-1/2 | 7/32 | 1-1/8 | 1/4  | 2.02 | 7/8    | 1/4-28  | 3/8 |
| 2         | 2-1/2 | 3/8 | 1-1/2 | 9/32 | 1-1/8 | 7/16 | 2.60 | 1-3/16 | 5/16-24 | 3/8 |
| 2-1/2     | 3     | 3/8 | 1-1/2 | 9/32 | 1-1/8 | 5/16 | 3.10 | 1-1/8  | 5/16-24 | 3/8 |
| 3-1/4     | 3-3/4 | 5/8 | 1-3/4 | 3/8  | 1-1/4 | 7/16 | 4.00 | 1-3/8  | 3/8-24  | 1/2 |
| 4         | 4-1/2 | 5/8 | 1-3/4 | 3/8  | 1-1/4 | 7/16 | 4.75 | 1-3/8  | 3/8-24  | 1/2 |
| 5         | 5-1/2 | 5/8 | 1-3/4 | 7/16 | 1-1/4 | 1/2  | 5.80 | 1-3/4  | 1/2-20  | 1/2 |
| 6         | 6-1/2 | 3/4 | 2     | 1/2  | 1-1/2 | 9/16 | 6.90 | 1-3/4  | 1/2-20  | 3/4 |

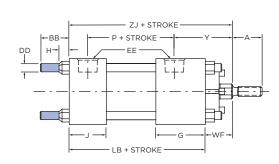

## $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$

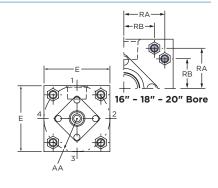

• = For piston rod dimensions see page 128.


| BORE DIA. | ROD MM• | Α     | В     | Р     | V   | w     | Υ       | LB    | WF    | ZB      | ZJ    |
|-----------|---------|-------|-------|-------|-----|-------|---------|-------|-------|---------|-------|
| 1-        | 5/8     | 3/4   | 1-1/8 | 2-1/8 | 1/4 | 5/8   | 1-15/16 | 3-5/8 | 1     | 4-7/8   | 4-5/8 |
| 1-1/2     | 1       | 1-1/8 | 1-1/2 | 2-1/8 | 1/2 | 1     | 2-5/16  | 3-5/8 | 1-3/8 | 5-1/4   | 5     |
|           | 5/8     | 3/4   | 1-1/8 | 2-1/8 | 1/4 | 5/8   | 1-15/16 | 3-5/8 | 1     | 5       | 4-5/8 |
| 2         | 1       | 1-1/8 | 1-1/2 | 2-1/8 | 1/2 | 1     | 2-5/16  | 3-5/8 | 1-3/8 | 5-3/8   | 5     |
|           | 1-3/8   | 1-5/8 | 2     | 2-1/8 | 5/8 | 1-1/4 | 2-9/16  | 3-5/8 | 1-5/8 | 5-11/16 | 5-1/4 |
|           | 5/8     | 3/4   | 1-1/8 | 2-1/4 | 1/4 | 5/8   | 1-15/16 | 3-3/4 | 1     | 5-1/16  | 4-3/4 |
| 2.1/2     | 1       | 1-1/8 | 1-1/2 | 2-1/4 | 1/2 | 1     | 2-5/16  | 3-3/4 | 1-3/8 | 5-7/16  | 5-1/8 |
| 2-1/2     | 1-3/8   | 1-5/8 | 2     | 2-1/4 | 5/8 | 1-1/4 | 2-9/16  | 3-3/4 | 1-5/8 | 5-11/16 | 5-3/8 |
|           | 1-3/4   | 2     | 2-3/8 | 2-1/4 | 3/4 | 1-1/2 | 2-13/16 | 3-3/4 | 1-7/8 | 5-15/16 | 5-5/8 |
|           | 1       | 1-1/8 | 1-1/2 | 2-1/2 | 1/4 | 3/4   | 2-1/2   | 4-1/4 | 1-3/8 | 6-1/16  | 5-5/8 |
| 3-1/4     | 1-3/8   | 1-5/8 | 2     | 2-1/2 | 3/8 | 1     | 2-3/4   | 4-1/4 | 1-5/8 | 6-5/16  | 5-7/8 |
| 3-1/4     | 1-3/4   | 2     | 2-3/8 | 2-1/2 | 1/2 | 1-1/4 | 3       | 4-1/4 | 1-7/8 | 6-9/16  | 6-1/8 |
|           | 2       | 2-1/4 | 2-5/8 | 2-1/2 | 1/2 | 1-3/8 | 3-1/8   | 4-1/4 | 2     | 6-11/16 | 6-1/4 |
|           | 1       | 1-1/8 | 1-1/2 | 2-1/2 | 1/4 | 3/4   | 2-1/2   | 4-1/4 | 1-3/8 | 6-1/16  | 5-5/8 |
|           | 1-3/8   | 1-5/8 | 2     | 2-1/2 | 3/8 | 1     | 2-3/4   | 4-1/4 | 1-5/8 | 6-5/16  | 5-7/8 |
| 4         | 1-3/4   | 2     | 2-3/8 | 2-1/2 | 1/2 | 1-1/4 | 3       | 4-1/4 | 1-7/8 | 6-9/16  | 6-1/8 |
|           | 2       | 2-1/4 | 2-5/8 | 2-1/2 | 1/2 | 1-3/8 | 3-1/8   | 4-1/4 | 2     | 6-11/16 | 6-1/4 |
|           | 2-1/2   | 3     | 3-1/8 | 2-1/2 | 5/8 | 1-5/8 | 3-3/8   | 4-1/4 | 2-1/4 | 6-15/16 | 6-1/2 |
|           | 1       | 1-1/8 | 1-1/2 | 2-3/4 | 1/4 | 3/4   | 2-1/2   | 4-1/2 | 1-3/8 | 6-3/8   | 5-7/8 |
|           | 1-3/8   | 1-5/8 | 2     | 2-3/4 | 3/8 | 1     | 2-3/4   | 4-1/2 | 1-5/8 | 6-5/8   | 6-1/8 |
|           | 1-3/4   | 2     | 2-3/8 | 2-3/4 | 1/2 | 1-1/4 | 3       | 4-1/2 | 1-7/8 | 6-7/8   | 6-3/8 |
| 5         | 2       | 2-1/4 | 2-5/8 | 2-3/4 | 1/2 | 1-3/8 | 3-1/8   | 4-1/2 | 2     | 7       | 6-1/2 |
|           | 2-1/2   | 3     | 3-1/8 | 2-3/4 | 5/8 | 1-5/8 | 3-3/8   | 4-1/2 | 2-1/4 | 7-1/4   | 6-3/4 |
|           | 3       | 3-1/2 | 3-3/4 | 2-3/4 | 5/8 | 1-5/8 | 3-3/8   | 4-1/2 | 2-1/4 | 7-1/4   | 6-3/4 |
|           | 3-1/2   | 3-1/2 | 4-1/4 | 2-3/4 | 5/8 | 1-5/8 | 3-3/8   | 4-1/2 | 2-1/4 | 7-1/4   | 6-3/4 |
|           | 1-3/8   | 1-5/8 | 2     | 3-1/8 | 1/4 | 7/8   | 2-13/16 | 5     | 1-5/8 | 7-3/16  | 6-5/8 |
|           | 1-3/4   | 2     | 2-3/8 | 3-1/8 | 3/8 | 1-1/8 | 3-1/16  | 5     | 1-7/8 | 7-7/16  | 6-7/8 |
|           | 2       | 2-1/4 | 2-5/8 | 3-1/8 | 3/8 | 1-1/4 | 3-3/16  | 5     | 2     | 7-9/16  | 7     |
| 6         | 2-1/2   | 3     | 3-1/8 | 3-1/8 | 1/2 | 1-1/2 | 3-7/16  | 5     | 2-1/4 | 7-13/16 | 7-1/4 |
|           | 3       | 3-1/2 | 3-3/4 | 3-1/8 | 1/2 | 1-1/2 | 3-7/16  | 5     | 2-1/4 | 7-13/16 | 7-1/4 |
|           | 3-1/2   | 3-1/2 | 4-1/4 | 3-1/8 | 1/2 | 1-1/2 | 3-7/16  | 5     | 2-1/4 | 7-13/16 | 7-1/4 |
|           | 4       | 4     | 4-3/4 | 3-1/8 | 1/2 | 1-1/2 | 3-7/16  | 5     | 2-1/4 | 7-13/16 | 7-1/4 |

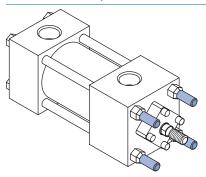


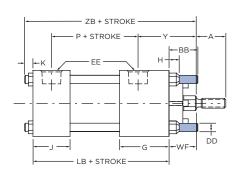

## MODEL T (NFPA STD. MX1)







## MODEL TB (NFPA STD. MX2)








## MODEL TR (NFPA STD. MX3)





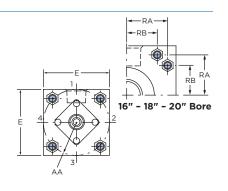
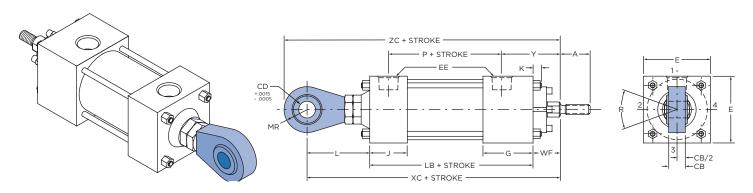


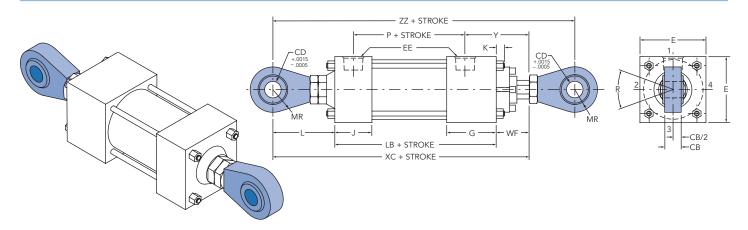

 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

Double rod end models are designated by letter "X" preceding the model identification. See page 124.

| BORE DIA. | E      | G       | Н     | J       | K     | AA    | ВВ      | DD       | EE    | RA   | RB   |
|-----------|--------|---------|-------|---------|-------|-------|---------|----------|-------|------|------|
| 8         | 8-1/2  | 2       | 9/16  | 1-1/2   | 5/8   | 9.10  | 2-1/4   | 5/8-18   | 3/4   | _    | -    |
| 10        | 10-5/8 | 2-1/4   | 5/8   | 2       | 3/4   | 11.31 | 2-5/8   | 3/4-16   | 1     | -    | -    |
| 12        | 12-3/4 | 2-1/4   | 5/8   | 2       | 3/4   | 13.30 | 2-11/16 | 3/4-16   | 1     | _    | -    |
| 14        | 14-3/4 | 2-3/4   | 3/4   | 2-1/4   | 7/8   | 15.40 | 3-3/16  | 7/8-14   | 1-1/4 | -    | -    |
| 16        | 17-1/2 | 3       | 7/8   | 3       | 1     | 18.25 | 3-5/8   | 1-14     | 1-1/2 | 7.48 | 5.23 |
| 18        | 19-1/2 | 3-7/16  | 1     | 3-7/16  | 1-1/8 | 20.50 | 4-1/8   | 1-1/8-12 | 1-1/2 | 8.40 | 5.88 |
| 20        | 21-3/4 | 3-15/16 | 1-1/8 | 3-15/16 | 1-1/4 | 22.62 | 4-1/2   | 1-1/4-12 | 2     | 9.27 | 6.49 |


 $\begin{tabular}{lll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$ 

• = For piston rod dimensions see page 128.


| BORE DIA. | ROD MM• | Α     | Р     | Υ       | LB     | WF    | ZB     | ZJ     |
|-----------|---------|-------|-------|---------|--------|-------|--------|--------|
|           | 1-3/8   | 1-5/8 | 3-1/4 | 2-13/16 | 5-1/8  | 1-5/8 | 7-3/8  | 6-3/4  |
|           | 1-3/4   | 2     | 3-1/4 | 3-1/16  | 5-1/8  | 1-7/8 | 7-5/8  | 7      |
|           | 2       | 2-1/4 | 3-1/4 | 3-3/16  | 5-1/8  | 2     | 7-3/4  | 7-1/8  |
|           | 2-1/2   | 3     | 3-1/4 | 3-7/16  | 5-1/8  | 2-1/4 | 8      | 7-3/8  |
|           | 3       | 3-1/2 | 3-1/4 | 3-7/16  | 5-1/8  | 2-1/4 | 8      | 7-3/8  |
| 8         | 3-1/2   | 3-1/2 | 3-1/4 | 3-7/16  | 5-1/8  | 2-1/4 | 8      | 7-3/8  |
|           | 4       | 4     | 3-1/4 | 3-7/16  | 5-1/8  | 2-1/4 | 8      | 7-3/8  |
|           | 4-1/2   | 4-1/2 | 3-1/4 | 3-7/16  | 5-1/8  | 2-1/4 | 8      | 7-3/8  |
|           | 5       | 5     | 3-1/4 | 3-7/16  | 5-1/8  | 2-1/4 | 8      | 7-3/8  |
|           | 5-1/2   | 5-1/2 | 3-1/4 | 3-7/16  | 5-1/8  | 2-1/4 | 8      | 7-3/8  |
|           | 1-3/4   | 2     | 4     | 3-3/16  | 6-3/8  | 1-7/8 | 9      | 8-1/4  |
|           | 2       | 2-1/4 | 4     | 3-5/16  | 6-3/8  | 2     | 9-1/8  | 8-3/8  |
|           | 2-1/2   | 3     | 4     | 3-9/16  | 6-3/8  | 2-1/4 | 9-3/8  | 8-5/8  |
|           | 3       | 3-1/2 | 4     | 3-9/16  | 6-3/8  | 2-1/4 | 9-3/8  | 8-5/8  |
| 10        | 3-1/2   | 3-1/2 | 4     | 3-9/16  | 6-3/8  | 2-1/4 | 9-3/8  | 8-5/8  |
|           | 4       | 4     | 4     | 3-9/16  | 6-3/8  | 2-1/4 | 9-3/8  | 8-5/8  |
|           | 4-1/2   | 4-1/2 | 4     | 3-9/16  | 6-3/8  | 2-1/4 | 9-3/8  | 8-5/8  |
|           | 5       | 5     | 4     | 3-9/16  | 6-3/8  | 2-1/4 | 9-3/8  | 8-5/8  |
|           | 5-1/2   | 5-1/2 | 4     | 3-9/16  | 6-3/8  | 2-1/4 | 9-3/8  | 8-5/8  |
|           | 2       | 2-1/4 | 4-1/2 | 3-5/16  | 6-7/8  | 2     | 9-5/8  | 8-7/8  |
|           | 2-1/2   | 3     | 4-1/2 | 3-9/16  | 6-7/8  | 2-1/4 | 9-7/8  | 9-1/8  |
|           | 3       | 3-1/2 | 4-1/2 | 3-9/16  | 6-7/8  | 2-1/4 | 9-7/8  | 9-1/8  |
| 10        | 3-1/2   | 3-1/2 | 4-1/2 | 3-9/16  | 6-7/8  | 2-1/4 | 9-7/8  | 9-1/8  |
| 12        | 4       | 4     | 4-1/2 | 3-9/16  | 6-7/8  | 2-1/4 | 9-7/8  | 9-1/8  |
|           | 4-1/2   | 4-1/2 | 4-1/2 | 3-9/16  | 6-7/8  | 2-1/4 | 9-7/8  | 9-1/8  |
|           | 5       | 5     | 4-1/2 | 3-9/16  | 6-7/8  | 2-1/4 | 9-7/8  | 9-1/8  |
|           | 5-1/2   | 5-1/2 | 4-1/2 | 3-9/16  | 6-7/8  | 2-1/4 | 9-7/8  | 9-1/8  |
|           | 2-1/2   | 3     | 5-1/2 | 3-13/16 | 8-1/8  | 2-1/4 | 11-1/4 | 10-3/8 |
|           | 3       | 3-1/2 | 5-1/2 | 3-13/16 | 8-1/8  | 2-1/4 | 11-1/4 | 10-3/8 |
|           | 3-1/2   | 3-1/2 | 5-1/2 | 3-13/16 | 8-1/8  | 2-1/4 | 11-1/4 | 10-3/8 |
| 14        | 4       | 4     | 5-1/2 | 3-13/16 | 8-1/8  | 2-1/4 | 11-1/4 | 10-3/8 |
|           | 4-1/2   | 4-1/2 | 5-1/2 | 3-13/16 | 8-1/8  | 2-1/4 | 11-1/4 | 10-3/8 |
|           | 5       | 5     | 5-1/2 | 3-13/16 | 8-1/8  | 2-1/4 | 11-1/4 | 10-3/8 |
|           | 5-1/2   | 5-1/2 | 5-1/2 | 3-13/16 | 8-1/8  | 2-1/4 | 11-1/4 | 10-3/8 |
|           | 2-1/2   | 3     | 5-7/8 | 3-15/16 | 9-1/4  | 2-1/4 | 12-1/2 | 11-1/2 |
|           | 3       | 3-1/2 | 5-7/8 | 3-15/16 | 9-1/4  | 2-1/4 | 12-1/2 | 11-1/2 |
|           | 3-1/2   | 3-1/2 | 5-7/8 | 3-15/16 | 9-1/4  | 2-1/4 | 12-1/2 | 11-1/2 |
| 16        | 4       | 4     | 5-7/8 | 3-15/16 | 9-1/4  | 2-1/4 | 12-1/2 | 11-1/2 |
|           | 4-1/2   | 4-1/2 | 5-7/8 | 3-15/16 | 9-1/4  | 2-1/4 | 12-1/2 | 11-1/2 |
|           | 5       | 5     | 5-7/8 | 3-15/16 | 9-1/4  | 2-1/4 | 12-1/2 | 11-1/2 |
|           | 5-1/2   | 5-1/2 | 5-7/8 | 3-15/16 | 9-1/4  | 2-1/4 | 12-1/2 | 11-1/2 |
|           | 3-1/2   | 3-1/2 | 6     | 4-3/8   | 10-1/4 | 2-1/4 | 13-5/8 | 12-1/2 |
|           | 4       | 4     | 6     | 4-3/8   | 10-1/4 | 2-1/4 | 13-5/8 | 12-1/2 |
| 18        | 4-1/2   | 4-1/2 | 6     | 4-3/8   | 10-1/4 | 2-1/4 | 13-5/8 | 12-1/2 |
|           | 5       | 5     | 6     | 4-3/8   | 10-1/4 | 2-1/4 | 13-5/8 | 12-1/2 |
|           | 5-1/2   | 5-1/2 | 6     | 4-3/8   | 10-1/4 | 2-1/4 | 13-5/8 | 12-1/2 |
|           | 4       | 4     | 7-1/8 | 4-9/16  | 11-3/4 | 2-1/4 | 15-1/4 | 14     |
| 20        | 4-1/2   | 4-1/2 | 7-1/8 | 4-9/16  | 11-3/4 | 2-1/4 | 15-1/4 | 14     |
|           | 5       | 5     | 7-1/8 | 4-9/16  | 11-3/4 | 2-1/4 | 15-1/4 | 14     |
|           | 5-1/2   | 5-1/2 | 7-1/8 | 4-9/16  | 11-3/4 | 2-1/4 | 15-1/4 | 14     |



## MODEL UE (NFPA STD. NONE)



## MODEL UUE (NFPA STD. NONE)

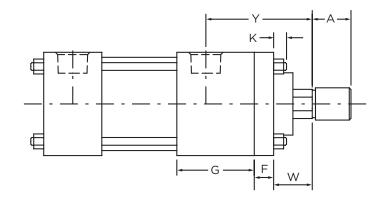


🕶 = See Table A on page 123 for bore and rod combinations using head plates with threaded bronze glands.

 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

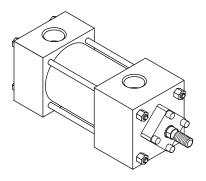
| BORE DIA. | E     | F   | G     | K    | L     | R       | СВ    | CD  | EE  | MR    |
|-----------|-------|-----|-------|------|-------|---------|-------|-----|-----|-------|
| 1-1/2     | 2     | 3/8 | 1-1/2 | 1/4  | 1-7/8 | 12°     | 5/8   | 1/2 | 3/8 | 11/16 |
| 2         | 2-1/2 | 3/8 | 1-1/2 | 3/8  | 1-7/8 | 12°     | 5/8   | 1/2 | 3/8 | 11/16 |
| 2-1/2     | 3     | 3/8 | 1-1/2 | 5/16 | 1-7/8 | 12°     | 5/8   | 1/2 | 3/8 | 11/16 |
| 3-1/4     | 3-3/4 | 5/8 | 1-3/4 | 7/16 | 2-7/8 | 13-1/2° | 7/8   | 3/4 | 1/2 | 7/8   |
| 4         | 4-1/2 | 5/8 | 1-3/4 | 7/16 | 2-7/8 | 13-1/2° | 7/8   | 3/4 | 1/2 | 7/8   |
| 5         | 5-1/2 | 5/8 | 1-3/4 | 1/2  | 2-7/8 | 13-1/2° | 7/8   | 3/4 | 1/2 | 7/8   |
| 6         | 6-1/2 | 3/4 | 2     | 9/16 | 4-1/8 | 14°     | 1-3/8 | 1   | 3/4 | 1-3/8 |

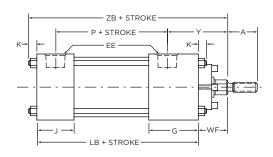
 $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$ 

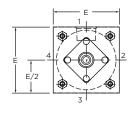

• = For piston rod dimensions see page 128.

| BORE DIA. | ROD MM• | Α     | Р     | Υ       | LB    | W     | WF    | хс     | zc      | ZZ       |
|-----------|---------|-------|-------|---------|-------|-------|-------|--------|---------|----------|
| 1.1/0     | 5/8     | 3/4   | 2-1/8 | 1-15/16 | 3-5/8 | 5/8   | 1     | 6-1/2  | 7-3/16  | 7-11/16  |
| 1-1/2     | 1       | 1-1/8 | 2-1/8 | 2-5/16  | 3-5/8 | 1     | 1-3/8 | 6-7/8  | 7-9/16  | 8-1/16   |
|           | 5/8     | 3/4   | 2-1/8 | 1-15/16 | 3-5/8 | -     | 1     | 6-1/2  | 7-3/16  | 7-11/16  |
| 2         | 1       | 1-1/8 | 2-1/8 | 2-5/16  | 3-5/8 | 1     | 1-3/8 | 6-7/8  | 7-9/16  | 8-1/16   |
|           | 1-3/8   | 1-5/8 | 2-1/8 | 2-9/16  | 3-5/8 | 1-1/4 | 1-5/8 | 7-1/8  | 7-13/16 | 8-5/16   |
|           | 5/8     | 3/4   | 2-1/4 | 1-15/16 | 3-3/4 | -     | 1     | 6-5/8  | 7-5/16  | 7-13/16  |
| 2.1/2     | 1       | 1-1/8 | 2-1/4 | 2-5/16  | 3-3/4 | -     | 1-3/8 | 7      | 7-11/16 | 8-3/16   |
| 2-1/2     | 1-3/8   | 1-5/8 | 2-1/4 | 2-9/16  | 3-3/4 | -     | 1-5/8 | 7-1/4  | 7-15/16 | 8-7/16   |
|           | 1-3/4   | 2     | 2-1/4 | 2-13/16 | 3-3/4 | 1-1/2 | 1-7/8 | 7-1/2  | 8-3/16  | 8-11/16  |
|           | 1       | 1-1/8 | 2-1/2 | 2-1/2   | 4-1/4 | -     | 1-3/8 | 8-1/2  | 9-3/8   | 10-1/16  |
| 7 1/4     | 1-3/8   | 1-5/8 | 2-1/2 | 2-3/4   | 4-1/4 | -     | 1-5/8 | 8-3/4  | 9-5/8   | 10-5/16  |
| 3-1/4     | 1-3/4   | 2     | 2-1/2 | 3       | 4-1/4 | -     | 1-7/8 | 9      | 9-7/8   | 10-9/16  |
|           | 2       | 2-1/4 | 2-1/2 | 3-1/8   | 4-1/4 | 1-3/8 | 2     | 9-1/8  | 10      | 10-11/16 |
|           | 1       | 1-1/8 | 2-1/2 | 2-1/2   | 4-1/4 | -     | 1-3/8 | 8-1/2  | 9-3/8   | 10-1/16  |
|           | 1-3/8   | 1-5/8 | 2-1/2 | 2-3/4   | 4-1/4 | -     | 1-5/8 | 8-3/4  | 9-5/8   | 10-5/16  |
| 4         | 1-3/4   | 2     | 2-1/2 | 3       | 4-1/4 | -     | 1-7/8 | 9      | 9-7/8   | 10-9/16  |
|           | 2       | 2-1/4 | 2-1/2 | 3-1/8   | 4-1/4 | -     | 2     | 9-1/8  | 10      | 10-11/16 |
|           | 2-1/2   | 3     | 2-1/2 | 3-3/8   | 4-1/4 | 1-5/8 | 2-1/4 | 9-3/8  | 10-1/4  | 10-15/16 |
|           | 1       | 1-1/8 | 2-3/4 | 2-1/2   | 4-1/2 | -     | 1-3/8 | 8-3/4  | 9-5/8   | 10-5/16  |
|           | 1-3/8   | 1-5/8 | 2-3/4 | 2-3/4   | 4-1/2 | -     | 1-5/8 | 9      | 9-7/8   | 10-9/16  |
|           | 1-3/4   | 2     | 2-3/4 | 3       | 4-1/2 | -     | 1-7/8 | 9-1/4  | 10-1/8  | 10-13/16 |
| 5         | 2       | 2-1/4 | 2-3/4 | 3-1/8   | 4-1/2 | -     | 2     | 9-3/8  | 10-1/4  | 10-15/16 |
|           | 2-1/2   | 3     | 2-3/4 | 3-3/8   | 4-1/2 | _     | 2-1/4 | 9-5/8  | 10-1/2  | 11-3/16  |
|           | 3       | 3-1/2 | 2-3/4 | 3-3/8   | 4-1/2 | -     | 2-1/4 | 9-5/8  | 10-1/2  | 11-3/16  |
|           | 3-1/2   | 3-1/2 | 2-3/4 | 3-3/8   | 4-1/2 | 1-5/8 | 2-1/4 | 9-5/8  | 10-1/2  | 11-3/16  |
|           | 1-3/8   | 1-5/8 | 3-1/8 | 2-13/16 | 5     | -     | 1-5/8 | 10-3/4 | 12-1/8  | 13-5/16  |
|           | 1-3/4   | 2     | 3-1/8 | 3-1/16  | 5     | -     | 1-7/8 | 11     | 12-3/8  | 13-9/16  |
|           | 2       | 2-1/4 | 3-1/8 | 3-3/16  | 5     | -     | 2     | 11-1/8 | 12-1/2  | 13-11/16 |
| 6         | 2-1/2   | 3     | 3-1/8 | 3-7/16  | 5     | -     | 2-1/4 | 11-3/8 | 12-3/4  | 13-15/16 |
|           | 3       | 3-1/2 | 3-1/8 | 3-7/16  | 5     | -     | 2-1/4 | 11-3/8 | 12-3/4  | 13-15/16 |
|           | 3-1/2   | 3-1/2 | 3-1/8 | 3-7/16  | 5     | -     | 2-1/4 | 11-3/8 | 12-3/4  | 13-15/16 |
|           | 4       | 4     | 3-1/8 | 3-7/16  | 5     | 1-1/2 | 2-1/4 | 11-3/8 | 12-3/4  | 13-15/16 |

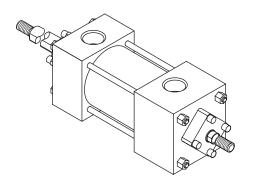
## **Table A**

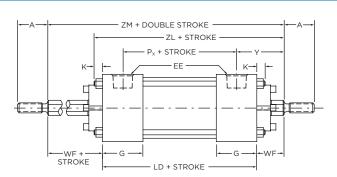

| THE FOLLO | WING BORE/ROD COMBINATIONS USE HEAD<br>ND BRONZE GLANDS AS SHOWN AT RIGHT |
|-----------|---------------------------------------------------------------------------|
| BORE      | ROD DIAMETER (MM)                                                         |
| 1-1/2     | 5/8 & 1                                                                   |
| 2         | 1 & 1-3/8                                                                 |
| 2-1/2     | 1-3/4                                                                     |
| 3-1/4     | 2                                                                         |
| 4         | 2-1/2                                                                     |
| 5         | 3-1/2                                                                     |
| 6         | 4                                                                         |

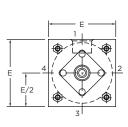

**NOTE:** Bolt-on glands not available on these combinations. **NOTE:** Threaded Bronze Gland used on all Model D Cylinders. Bolt-on Gland used on all Model DG Cylinders.







## MODEL H (NFPA STD. NONE)






## MODEL XH (NFPA STD. NONE)







🕶 = See Table A on page 123 for bore and rod combinations using head plates with threaded bronze glands.

 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

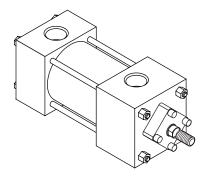
Double rod end models are designated by letter "X" preceding the model identification.

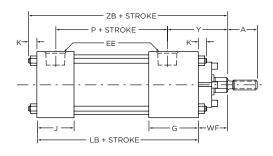
| BORE DIA. | E     | G     | J     | К    | EE  |
|-----------|-------|-------|-------|------|-----|
| 1-1/2     | 2     | 1-1/2 | 1-1/8 | 1/4  | 3/8 |
| 2         | 2-1/2 | 1-1/2 | 1-1/8 | 3/8  | 3/8 |
| 2-1/2     | 3     | 1-1/2 | 1-1/8 | 5/16 | 3/8 |
| 3-1/4     | 3-3/4 | 1-3/4 | 1-1/4 | 7/16 | 1/2 |
| 4         | 4-1/2 | 1-3/4 | 1-1/4 | 7/16 | 1/2 |
| 5         | 5-1/2 | 1-3/4 | 1-1/4 | 1/2  | 1/2 |
| 6         | 6-1/2 | 2     | 1-1/2 | 9/16 | 3/4 |

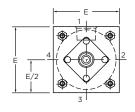
## **BASIC MODEL NO MOUNT CYLINDERS**

1-1/2" THROUGH 6" DIAMETER

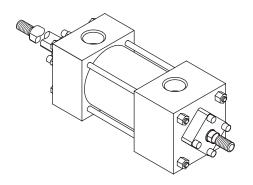
 $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$ 

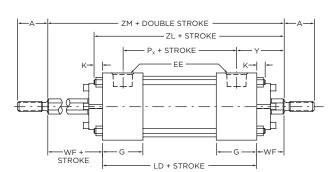

• = For piston rod dimensions see page 128.


| BORE DIA. | ROD MM• | Α     | Р     | Px    | Υ       | LB    | LD    | WF    | ZB      | ZL      | ZM    |
|-----------|---------|-------|-------|-------|---------|-------|-------|-------|---------|---------|-------|
| 1.1/0     | 5/8     | 3/4   | 2-1/8 | 2-1/4 | 1-15/16 | 3-5/8 | 4-1/8 | 1     | 4-7/8   | 5-3/8   | 6-1/8 |
| 1-1/2     | 1       | 1-1/8 | 2-1/8 | 2-1/4 | 2-5/16  | 3-5/8 | 4-1/8 | 1-3/8 | 5-1/4   | 5-3/4   | 6-7/8 |
|           | 5/8     | 3/4   | 2-1/8 | 2-1/4 | 1-15/16 | 3-5/8 | 4-1/8 | 1     | 5       | 5-1/2   | 6-1/8 |
| 2         | 1       | 1-1/8 | 2-1/8 | 2-1/4 | 2-5/16  | 3-5/8 | 4-1/8 | 1-3/8 | 5-3/8   | 5-7/8   | 6-7/8 |
|           | 1-3/8   | 1-5/8 | 2-1/8 | 2-1/4 | 2-9/16  | 3-5/8 | 4-1/8 | 1-5/8 | 5-11/16 | 6-1/8   | 7-3/8 |
|           | 5/8     | 3/4   | 2-1/4 | 2-3/8 | 1-15/16 | 3-3/4 | 4-1/4 | 1     | 5-1/16  | 5-9/16  | 6-1/4 |
| 2.1/2     | 1       | 1-1/8 | 2-1/4 | 2-3/8 | 2-5/16  | 3-3/4 | 4-1/4 | 1-3/8 | 5-7/16  | 5-15/16 | 7     |
| 2-1/2     | 1-3/8   | 1-5/8 | 2-1/4 | 2-3/8 | 2-9/16  | 3-3/4 | 4-1/4 | 1-5/8 | 5-11/16 | 6-3/16  | 7-1/2 |
|           | 1-3/4   | 2     | 2-1/4 | 2-3/8 | 2-13/16 | 3-3/4 | 4-1/4 | 1-7/8 | 5-15/16 | 6-7/16  | 8     |
|           | 1       | 1-1/8 | 2-1/2 | 2-1/2 | 2-1/2   | 4-1/4 | 4-3/4 | 1-3/8 | 6-1/16  | 6-9/16  | 7-1/2 |
| 3-1/4     | 1-3/8   | 1-5/8 | 2-1/2 | 2-1/2 | 2-3/4   | 4-1/4 | 4-3/4 | 1-5/8 | 6-5/16  | 6-13/16 | 8     |
| 3-1/4     | 1-3/4   | 2     | 2-1/2 | 2-1/2 | 3       | 4-1/4 | 4-3/4 | 1-7/8 | 6-9/16  | 7-1/16  | 8-1/2 |
|           | 2       | 2-1/4 | 2-1/2 | 2-1/2 | 3-1/8   | 4-1/4 | 4-3/4 | 2     | 6-11/16 | 7-3/16  | 8-3/4 |
|           | 1       | 1-1/8 | 2-1/2 | 2-1/2 | 2-1/2   | 4-1/4 | 4-3/4 | 1-3/8 | 6-1/16  | 6-9/16  | 7-1/2 |
|           | 1-3/8   | 1-5/8 | 2-1/2 | 2-1/2 | 2-3/4   | 4-1/4 | 4-3/4 | 1-5/8 | 6-5/16  | 6-13/16 | 8     |
| 4         | 1-3/4   | 2     | 2-1/2 | 2-1/2 | 3       | 4-1/4 | 4-3/4 | 1-7/8 | 6-9/16  | 7-1/16  | 8-1/2 |
|           | 2       | 2-1/4 | 2-1/2 | 2-1/2 | 3-1/8   | 4-1/4 | 4-3/4 | 2     | 6-11/16 | 7-3/16  | 8-3/4 |
|           | 2-1/2   | 3     | 2-1/2 | 2-1/2 | 3-3/8   | 4-1/4 | 4-3/4 | 2-1/4 | 6-15/16 | 7-7/16  | 9-1/4 |
|           | 1       | 1-1/8 | 2-3/4 | 2-3/4 | 2-1/2   | 4-1/2 | 5     | 1-3/8 | 6-3/8   | 6-7/8   | 7-3/4 |
|           | 1-3/8   | 1-5/8 | 2-3/4 | 2-3/4 | 2-3/4   | 4-1/2 | 5     | 1-5/8 | 6-5/8   | 7-1/8   | 8-1/4 |
|           | 1-3/4   | 2     | 2-3/4 | 2-3/4 | 3       | 4-1/2 | 5     | 1-7/8 | 6-7/8   | 7-3/8   | 8-3/4 |
| 5         | 2       | 2-1/4 | 2-3/4 | 2-3/4 | 3-1/8   | 4-1/2 | 5     | 2     | 7       | 7-1/2   | 9     |
|           | 2-1/2   | 3     | 2-3/4 | 2-3/4 | 3-3/8   | 4-1/2 | 5     | 2-1/4 | 7-1/4   | 7-3/4   | 9-1/2 |
|           | 3       | 3-1/2 | 2-3/4 | 2-3/4 | 3-3/8   | 4-1/2 | 5     | 2-1/4 | 7-1/4   | 7-3/4   | 9-1/2 |
|           | 3-1/2   | 3-1/2 | 2-3/4 | 2-3/4 | 3-3/8   | 4-1/2 | 5     | 2-1/4 | 7-1/4   | 7-3/4   | 9-1/2 |
|           | 1-3/8   | 1-5/8 | 3-1/8 | 3-1/8 | 2-13/16 | 5     | 5-1/2 | 1-5/8 | 7-3/16  | 7-11/16 | 8-3/4 |
|           | 1-3/4   | 2     | 3-1/8 | 3-1/8 | 3-1/16  | 5     | 5-1/2 | 1-7/8 | 7-7/16  | 7-15/16 | 9-1/4 |
|           | 2       | 2-1/4 | 3-1/8 | 3-1/8 | 3-3/16  | 5     | 5-1/2 | 2     | 7-9/16  | 8-1/16  | 9-1/2 |
| 6         | 2-1/2   | 3     | 3-1/8 | 3-1/8 | 3-7/16  | 5     | 5-1/2 | 2-1/4 | 7-13/16 | 8-5/16  | 10    |
|           | 3       | 3-1/2 | 3-1/8 | 3-1/8 | 3-7/16  | 5     | 5-1/2 | 2-1/4 | 7-13/16 | 8-5/16  | 10    |
|           | 3-1/2   | 3-1/2 | 3-1/8 | 3-1/8 | 3-7/16  | 5     | 5-1/2 | 2-1/4 | 7-13/16 | 8-5/16  | 10    |
|           | 4       | 4     | 3-1/8 | 3-1/8 | 3-7/16  | 5     | 5-1/2 | 2-1/4 | 7-13/16 | 9-5/16  | 10    |


**CLASS 6** www.nopak.com 125




## MODEL H (NFPA STD. NONE)








## MODEL XH (NFPA STD. NONE)





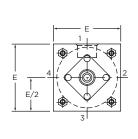



 Table 1
 These dimensions are constant regardless of rod diameter or stroke.

Double rod end models are designated by letter "X" preceding the model identification.

| BORE DIA. | E      | G       | J       | K     | EE    |
|-----------|--------|---------|---------|-------|-------|
| 8         | 8-1/2  | 2       | 1-1/2   | 5/8   | 3/4   |
| 10        | 10-5/8 | 2-1/4   | 2       | 3/4   | 1     |
| 12        | 12-3/4 | 2-1/4   | 2       | 3/4   | 1     |
| 14        | 14-3/4 | 2-3/4   | 2-1/4   | 7/8   | 1-1/4 |
| 16        | 17-1/2 | 3       | 3       | 1     | 1-1/4 |
| 18        | 19-1/2 | 3-7/16  | 3-7/16  | 1-1/8 | 1-1/2 |
| 20        | 21-3/4 | 3-15/16 | 3-15/16 | 1-1/4 | 2     |

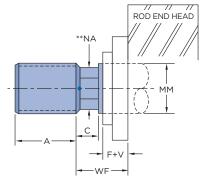
## **BASIC MODEL NO MOUNT CYLINDERS**

8" THROUGH 20" DIAMETER

 $\begin{tabular}{ll} \textbf{Table 2} & \textbf{The dimensions given on this table are affected by the piston rod diameter and the stroke.} \end{tabular}$ 

• = For piston rod dimensions see page 128.

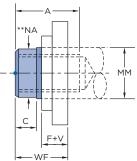
| BORE DIA. | ROD MM•        | Α              | Р     | Υ              | LB              | LD               | WF             | ZB               | ZL               | ZM               |
|-----------|----------------|----------------|-------|----------------|-----------------|------------------|----------------|------------------|------------------|------------------|
|           | 1-3/8          | 1-5/8          | 3-1/4 | 2-13/16        | 5-1/8           | 5-5/8            | 1-5/8          | 7-3/8            | 7-7/8            | 8-7/8            |
|           | 1-3/4          | 2              | 3-1/4 | 3-1/16         | 5-1/8           | 5-5/8            | 1-7/8          | 7-5/8            | 8-1/8            | 9-3/8            |
|           | 2              | 2-1/4          | 3-1/4 | 3-3/16         | 5-1/8           | 5-5/8            | 2              | 7-3/4            | 8-1/4            | 9-5/8            |
|           | 2-1/2          | 3              | 3-1/4 | 3-7/16         | 5-1/8           | 5-5/8            | 2-1/4          | 8                | 8-1/2            | 10-1/8           |
|           | 3              | 3-1/2          | 3-1/4 | 3-7/16         | 5-1/8           | 5-5/8            | 2-1/4          | 8                | 8-1/2            | 10-1/8           |
| 8         | 3-1/2          | 3-1/2          | 3-1/4 | 3-7/16         | 5-1/8           | 5-5/8            | 2-1/4          | 8                | 8-1/2            | 10-1/8           |
|           | 4              | 4              | 3-1/4 | 3-7/16         | 5-1/8           | 5-5/8            | 2-1/4          | 8                | 8-1/2            | 10-1/8           |
|           | 4-1/2          | 4-1/2          | 3-1/4 | 3-7/16         | 5-1/8           | 5-5/8            | 2-1/4          | 8                | 8-1/2            | 10-1/8           |
|           | 5              | 5              | 3-1/4 | 3-7/16         | 5-1/8           | 5-5/8            | 2-1/4          | 8                | 8-1/2            | 10-1/8           |
|           | 5-1/2          | 5-1/2          | 3-1/4 | 3-7/16         | 5-1/8           | 5-5/8            | 2-1/4          | 8                | 8-1/2            | 10-1/8           |
|           | 1-3/4          | 2              | 4     | 3-3/16         | 6-3/8           | 6-5/8            | 1-7/8          | 9                | 9-1/4            | 10-3/8           |
|           | 2              | 2-1/4          | 4     | 3-5/16         | 6-3/8           | 6-5/8            | 2              | 9-1/8            | 9-3/8            | 10-5/8           |
|           | 2-1/2          | 3              | 4     | 3-9/16         | 6-3/8           | 6-5/8            | 2-1/4          | 9-3/8            | 9-5/8            | 11-1/8           |
|           | 3              | 3-1/2          | 4     | 3-9/16         | 6-3/8           | 6-5/8            | 2-1/4          | 9-3/8            | 9-5/8            | 11-1/8           |
| 10        | 3-1/2          | 3-1/2          | 4     | 3-9/16         | 6-3/8           | 6-5/8            | 2-1/4          | 9-3/8            | 9-5/8            | 11-1/8           |
|           | 4              | 4              | 4     | 3-9/16         | 6-3/8           | 6-5/8            | 2-1/4          | 9-3/8            | 9-5/8            | 11-1/8           |
|           | 4-1/2          | 4-1/2          | 4     | 3-9/16         | 6-3/8           | 6-5/8            | 2-1/4          | 9-3/8            | 9-5/8            | 11-1/8           |
|           | 5              | 5              | 4     | 3-9/16         | 6-3/8           | 6-5/8            | 2-1/4          | 9-3/8            | 9-5/8            | 11-1/8           |
|           | 5-1/2          | 5-1/2          | 4     | 3-9/16         | 6-3/8           | 6-5/8            | 2-1/4          | 9-3/8            | 9-5/8            | 11-1/8           |
|           | 2              | 2-1/4          | 4-1/2 | 3-5/16         | 6-7/8           | 7-1/8            | 2              | 9-5/8            | 9-7/8            | 11-1/8           |
|           | 2-1/2          | 3              | 4-1/2 | 3-9/16         | 6-7/8           | 7-1/8            | 2-1/4          | 9-7/8            | 10-1/8           | 11-5/8           |
|           | 3              | 3-1/2          | 4-1/2 | 3-9/16         | 6-7/8           | 7-1/8            | 2-1/4          | 9-7/8            | 10-1/8           | 11-5/8           |
| 12        | 3-1/2          | 3-1/2          | 4-1/2 | 3-9/16         | 6-7/8           | 7-1/8            | 2-1/4          | 9-7/8            | 10-1/8           | 11-5/8           |
| 12        | 4              | 4              | 4-1/2 | 3-9/16         | 6-7/8           | 7-1/8            | 2-1/4          | 9-7/8            | 10-1/8           | 11-5/8           |
|           | 4-1/2          | 4-1/2          | 4-1/2 | 3-9/16         | 6-7/8           | 7-1/8            | 2-1/4          | 9-7/8            | 10-1/8           | 11-5/8           |
|           | 5              | 5              | 4-1/2 | 3-9/16         | 6-7/8           | 7-1/8            | 2-1/4          | 9-7/8            | 10-1/8           | 11-5/8           |
|           | 5-1/2          | 5-1/2          | 4-1/2 | 3-9/16         | 6-7/8           | 7-1/8            | 2-1/4          | 9-7/8            | 10-1/8           | 11-5/8           |
|           | 2-1/2          | 3              | 5-1/2 | 3-13/16        | 8-1/8           | 8-5/8            | 2-1/4          | 11-1/4           | 11-3/4           | 13-1/8           |
|           | 3              | 3-1/2          | 5-1/2 | 3-13/16        | 8-1/8           | 8-5/8            | 2-1/4          | 11-1/4           | 11-3/4           | 13-1/8           |
|           | 3-1/2          | 3-1/2          | 5-1/2 | 3-13/16        | 8-1/8           | 8-5/8            | 2-1/4          | 11-1/4           | 11-3/4           | 13-1/8           |
| 14        | 4              | 4              | 5-1/2 | 3-13/16        | 8-1/8           | 8-5/8            | 2-1/4          | 11-1/4           | 11-3/4           | 13-1/8           |
|           | 4-1/2          | 4-1/2          | 5-1/2 | 3-13/16        | 8-1/8           | 8-5/8            | 2-1/4          | 11-1/4           | 11-3/4           | 13-1/8           |
|           | 5              | 5              | 5-1/2 | 3-13/16        | 8-1/8           | 8-5/8            | 2-1/4          | 11-1/4           | 11-3/4           | 13-1/8           |
|           | 5-1/2          | 5-1/2          | 5-1/2 | 3-13/16        | 8-1/8           | 8-5/8            | 2-1/4          | 11-1/4           | 11-3/4           | 13-1/8           |
|           | 2-1/2          | 3              | 5-7/8 | 3-15/16        | 9-1/4           | 9-1/4            | 2-1/4          | 12-1/2           | 12-1/2           | 13-3/4           |
|           | 3              | 3-1/2          | 5-7/8 | 3-15/16        | 9-1/4           | 9-1/4            | 2-1/4          | 12-1/2           | 12-1/2           | 13-3/4           |
| 10        | 3-1/2          | 3-1/2          | 5-7/8 | 3-15/16        | 9-1/4           | 9-1/4            | 2-1/4          | 12-1/2           | 12-1/2           | 13-3/4           |
| 16        | 4 1/2          | 4 1/2          | 5-7/8 | 3-15/16        | 9-1/4           | 9-1/4            | 2-1/4          | 12-1/2           | 12-1/2           | 13-3/4           |
|           | 4-1/2          | 4-1/2          | 5-7/8 | 3-15/16        | 9-1/4           | 9-1/4            | 2-1/4          | 12-1/2           | 12-1/2           | 13-3/4           |
|           | 5              | 5              | 5-7/8 | 3-15/16        | 9-1/4           | 9-1/4            | 2-1/4          | 12-1/2           | 12-1/2           | 13-3/4           |
|           | 5-1/2<br>7-1/2 | 5-1/2<br>7-1/2 | 5-7/8 | 3-15/16        | 9-1/4<br>10-1/4 | 9-1/4            | 2-1/4          | 12-1/2           | 12-1/2           | 13-3/4           |
|           | 3-1/2<br>4     | 3-1/2          | 6     | 4-3/8          | 10-1/4          | 10-1/4           | 2-1/4<br>2-1/4 | 13-5/8<br>13-5/8 | 13-5/8           | 14-3/4           |
| 18        | 4-1/2          | 4-1/2          | 6     | 4-3/8<br>4-3/8 | 10-1/4          | 10-1/4<br>10-1/4 | 2-1/4          | 13-5/8           | 13-5/8<br>13-5/8 | 14-3/4<br>14-3/4 |
| 10        | 5              | 5              | 6     | 4-3/8          | 10-1/4          | 10-1/4           | 2-1/4          | 13-5/8           | 13-5/8           | 14-3/4           |
|           | 5-1/2          | 5-1/2          | 6     | 4-3/8          | 10-1/4          | 10-1/4           | 2-1/4          | 13-5/8           | 13-5/8           | 14-3/4           |
|           | 4              | 4              | 7-1/8 | 4-3/6          | 11-3/4          | 11-3/4           | 2-1/4          | 15-3/6           | 15-3/6           | 16-1/4           |
|           | 4-1/2          | 4-1/2          | 7-1/8 | 4-9/16         | 11-3/4          | 11-3/4           | 2-1/4          | 15-1/4           | 15-1/4           | 16-1/4           |
| 20        | 5              | 5              | 7-1/8 | 4-9/16         | 11-3/4          | 11-3/4           | 2-1/4          | 15-1/4           | 15-1/4           | 16-1/4           |
|           | 5-1/2          | 5-1/2          | 7-1/8 | 4-9/16         | 11-3/4          | 11-3/4           | 2-1/4          | 15-1/4           | 15-1/4           | 16-1/4           |
|           | J-1/ Z         | J-1/ Z         | 7-1/0 | 4-3/10         | 11-3/4          | 11-3/4           | 2-1/4          | 15-1/4           | 15-1/4           | 10-1/4           |




### **CLASS 6 CYLINDER PISTON ROD END DIMENSIONAL DATA**

NOTE: Rod threads are Class UNF-2A or 2B unless specifically quoted otherwise.

NOTE: Standard (smallest) diameter rods in each bore size with standard (#4) thread are STOCKED in even-inch stroke increments 1" through 20". Cushioned and non-cushioned. This translates to MUCH QUICKER delivery.

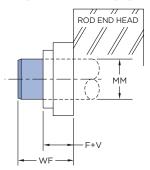

#### **ROD END TYPE NO. 1**



#### **ROD END TYPE NO. 3 & NO. 4**

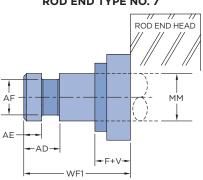


#### **ROD END TYPE NO. 5**



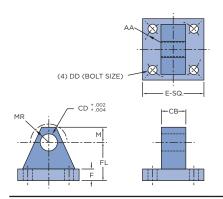

\*\* = Dimension NA is .060 under MM diameter dimension.

| DIA DOD WW  |          | ROD EN   | D TYPE   |          |       |     |         | =      |       |
|-------------|----------|----------|----------|----------|-------|-----|---------|--------|-------|
| DIA. ROD MM | NO. 1    | NO. 3    | NO. 4•   | NO. 5    | A     | С   | D•      | F+V    | WF    |
| 5/8         | 5/8-18   | 1/2-20   | 7/16-20  | 7/16-20  | 3/4   | 3/8 | 1/2     | 5/8    | 1     |
| 1           | 1-14     | 7/8-14   | 3/4-16   | 3/4-16   | 1-1/8 | 1/2 | 7/8     | 3/4    | 1-3/8 |
| 1-3/8       | 1-3/8-12 | 1-1/4-12 | 1-14     | 1-14     | 1-5/8 | 5/8 | 1-1/8   | 1      | 1-5/8 |
| 1-3/4       | 1-3/4-12 | 1-1/2-12 | 1-1/4-12 | 1-1/4-12 | 2     | 3/4 | 1-1/2   | 3/4    | 1-7/8 |
| 2           | 2-12     | 1-3/4-12 | 1-1/2-12 | 1-1/2-12 | 2-1/4 | 7/8 | 1-11/16 | 7/8    | 2     |
| 2-1/2       | 2-1/2-12 | 2-1/4-12 | 1-7/8-12 | 1-7/8-12 | 3     | 1   | 2-1/16  | 1-1/16 | 2-1/4 |
| 3           | 3-12     | 2-3/4-12 | 2-1/4-12 | 2-1/4-12 | 3-1/2 | 1   | 2-5/8   | 1-1/8  | 2-1/4 |
| 3-1/2       | 3-1/2-12 | 3-1/4-12 | 2-1/2-12 | 2-1/2-12 | 3-1/2 | 1   | 3       | 1-1/8  | 2-1/4 |
| 4           | 4-12     | 3-3/4-12 | 3-12     | 3-12     | 4     | 1   | 3-3/8   | 1-1/4  | 2-1/4 |
| 4-1/2       | 4-1/2-12 | 4-1/4-12 | 3-1/4-12 | 3-1/4-12 | 4-1/2 | 1   | 3-7/8   | 1-1/4  | 2-1/4 |
| 5           | 5-12     | 4-3/4-12 | 3-1/2-12 | 3-1/2-12 | 5     | 1   | 4-1/4   | 1-1/4  | 2-1/4 |
| 5-1/2       | 5-1/2-12 | 5-1/4-12 | 4-12     | 4-12     | 5-1/2 | 1   | 4-5/8   | 1-1/4  | 2-1/4 |


- = Type 4 thread sized for clevis and rod eye accessories.
- = Dimension D is size across wrench flats.

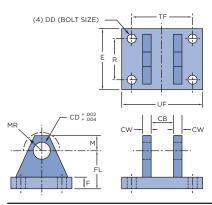
#### **ROD END TYPE NO. 6**




| DIA. ROD MM | F+V    | WF    |
|-------------|--------|-------|
| 5/8         | 5/8    | 1     |
| 1           | 3/4    | 1-3/8 |
| 1-3/8       | 1      | 1-5/8 |
| 1-3/4       | 3/4    | 1-7/8 |
| 2           | 7/8    | 2     |
| 2-1/2       | 1-1/16 | 2-1/4 |
| 3           | 1-1/8  | 2-1/4 |
| 3-1/2       | 1-1/8  | 2-1/4 |
| 4           | 1-1/4  | 2-1/4 |
| 4-1/2       | 1-1/4  | 2-1/4 |
| 5           | 1-1/4  | 2-1/4 |
| 5-1/2       | 1-1/4  | 2-1/4 |

#### **ROD END TYPE NO. 7**



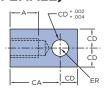

| DIA. ROD MM | F+V    | WF1   | AD      | AE    | AF    |
|-------------|--------|-------|---------|-------|-------|
| 5/8         | 5/8    | 1-3/4 | 5/8     | 1/4   | 3/8   |
| 1           | 3/4    | 2-1/2 | 15/16   | 3/8   | 11/16 |
| 1-3/8       | 1      | 2-3/4 | 1-1/16  | 3/8   | 7/8   |
| 1-3/4       | 3/4    | 3-1/8 | 1-5/16  | 1/2   | 1-1/8 |
| 2           | 7/8    | 3-3/4 | 1-11/16 | 5/8   | 1-3/8 |
| 2-1/2       | 1-1/16 | 4-1/2 | 1-15/16 | 3/4   | 1-3/4 |
| 3           | 1-1/8  | 4-7/8 | 2-7/16  | 7/8   | 2-1/4 |
| 3-1/2       | 1-1/8  | 5-5/8 | 2-11/16 | 1     | 2-1/2 |
| 4           | 1-1/4  | 5-3/4 | 2-11/16 | 1     | 3     |
| 4-1/2       | 1-1/4  | 6-1/2 | 3-3/16  | 1-1/2 | 3-1/2 |
| 5           | 1-1/4  | 6-5/8 | 3-3/16  | 1-1/2 | 3-7/8 |
| 5-1/2       | 1-1/4  | 7-1/2 | 3-15/16 | 1-7/8 | 4-3/8 |

## **CYLINDER ACCESSORIES**



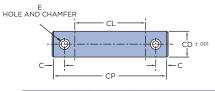
#### **EYE BRACKET**

| CYL. DIA.     | Е     | F      | М     | AA    | СВ    | CD    | DD    | FL      | MR    | PART NO. |
|---------------|-------|--------|-------|-------|-------|-------|-------|---------|-------|----------|
| 1-1/2-2-2-1/2 | 2-1/2 | 3/8    | 1/2   | 2.30  | 3/4   | 1/2   | 3/8   | 1-1/8   | 5/8   | 2716L47  |
| 3-1/4-4-5     | 3-1/2 | 5/8    | 3/4   | 3.61  | 1-1/4 | 3/4   | 1/2   | 1-7/8   | 7/8   | 2719L32  |
| 6-8           | 4-1/2 | 7/8    | 1     | 4.60  | 1-1/2 | 1     | 5/8   | 2-3/8   | 1-1/4 | 2720L33  |
| 10            | 5     | 7/8    | 1-3/8 | 5.40  | 2     | 1-3/8 | 5/8   | 3       | 1-5/8 | 2721L34  |
| 12            | 6-1/2 | 1-1/8  | 1-3/4 | 7.00  | 2-1/2 | 1-3/4 | 7/8   | 3-3/8   | 2     | 2722L35  |
| 14-16         | 7-1/2 | 1-7/16 | 2     | 8.10  | 2-1/2 | 2     | 1     | 3-15/16 | 2-3/8 | 2723L36  |
| 18            | 8-1/2 | 1-5/8  | 2-1/2 | 9.30  | 3     | 2-1/2 | 1-1/8 | 4-5/8   | 3     | 2724L37  |
| 20            | 9-1/2 | 2      | 2-3/4 | 10.61 | 3     | 3     | 1-1/4 | 5-1/4   | 3-1/4 | 2725L38  |



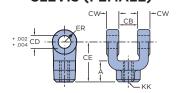

### **MOUNTING BRACKET**

| CYL. DIA.     | E     | F      | М     | R    | СВ    | CD    | cw    | DD    | FL      | MR    | TF    | UF     | PART NO. |
|---------------|-------|--------|-------|------|-------|-------|-------|-------|---------|-------|-------|--------|----------|
| 1-1/2-2-2-1/2 | 2-1/2 | 3/8    | 1/2   | 1.63 | 3/4   | 1/2   | 1/2   | 3/8   | 1-1/8   | 5/8   | 2-3/4 | 3-1/2  | 2683L47  |
| 3-1/4-4-5     | 3-1/2 | 5/8    | 3/4   | 2.55 | 1-1/4 | 3/4   | 5/8   | 1/2   | 1-7/8   | 7/8   | 3-3/4 | 4-3/4  | 2684L47  |
| 6-8           | 4-1/2 | 7/8    | 1     | 3.25 | 1-1/2 | 1     | 3/4   | 5/8   | 2-3/8   | 1-1/4 | 4-1/2 | 5-3/4  | 2685L47  |
| 10            | 5     | 7/8    | 1-3/8 | 3.82 | 2     | 1-3/8 | 1     | 5/8   | 3       | 1-5/8 | 5-1/2 | 6-3/4  | 2686L47  |
| 12            | 6-1/2 | 1-1/8  | 1-3/4 | 4.95 | 2-1/2 | 1-3/4 | 1-1/4 | 7/8   | 3-3/8   | 2     | 7     | 8-1/2  | 2687L47  |
| 14-16         | 7-1/2 | 1-7/16 | 2     | 5.73 | 2-1/2 | 2     | 1-1/4 | 1     | 3-15/16 | 2-3/8 | 7-1/2 | 9-1/4  | 2688L47  |
| 18            | 8-1/2 | 1-5/8  | 2-1/2 | 6.58 | 3     | 2-1/2 | 1-1/2 | 1-1/8 | 4-5/8   | 3     | 8-1/2 | 10-1/2 | 2689L47  |
| 20            | 9-1/2 | 2      | 2-3/4 | 7.50 | 3     | 3     | 1-1/2 | 1-1/4 | 5-1/4   | 3-1/4 | 8-3/4 | 10-3/4 | 2690L47  |



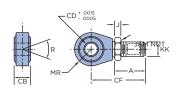






| KK       | Α     | CA      | СВ    | CD    | ER     | PART NO. |
|----------|-------|---------|-------|-------|--------|----------|
| 7/16-20  | 3/4   | 1-1/2   | 3/4   | 1/2   | 5/8    | 1810L59  |
| 3/4-16   | 1-1/8 | 2-1/16  | 1-1/4 | 3/4   | 1-1/16 | 1812L59  |
| 1-14     | 1-5/8 | 2-13/16 | 1-1/2 | 1     | 1-7/16 | 1813L59  |
| 1-1/4-12 | 2     | 3-7/16  | 2     | 1-3/8 | 2      | 1814L59  |
| 1-1/2-12 | 2-1/4 | 4       | 2-1/2 | 1-3/4 | 2-1/16 | 1815L59  |
| 1-7/8-12 | 3-1/2 | 5       | 2-1/2 | 2     | 2-1/4  | 1817L59  |
| 2-1/4-12 | 3-1/2 | 5-13/16 | 3     | 2-1/2 | 2-7/8  | 1820L59  |
| 2-1/2-12 | 3-1/2 | 6-1/8   | 3     | 3     | 3-1/8  | 1821L59  |
| 3-1/4-12 | 4-1/2 | 7-5/8   | 4     | 3-1/2 | 3-7/8  | 1824L59  |

### **PIVOT - PIN**




| CYL. DIA.           | С    | Е    | CD    | СР      | CL    | PART NO.  |
|---------------------|------|------|-------|---------|-------|-----------|
| 1-1/2-2-2-1/2       | 3/16 | 1/8  | 1/2   | 2-3/8   | 1-3/4 | 3222L47-1 |
| 3-1/4-4-5           | 1/4  | 3/16 | 3/4   | 3-1/8   | 2-1/2 | 3222L47-2 |
| 6-8                 | 1/4  | 3/16 | 1     | 3-5/8   | 3     | 3222L47-3 |
| 10                  | 1/4  | 3/16 | 1-3/8 | 4-3/4   | 4     | 3222L47-4 |
| 12                  | 1/4  | 3/16 | 1-3/4 | 5-13/16 | 5     | 3222L47-5 |
| 14                  | 5/16 | 1/4  | 2     | 5-13/16 | 5     | 3222L47-6 |
| 16                  | 5/16 | 1/4  | 2-1/2 | 6-7/8   | 6     | 3222L47-8 |
| 18-20               | 5/16 | 1/4  | 3     | 6-7/8   | 6     | 3222L47-7 |
| ROD EYE &<br>CLEVIS | 3/8  | 1/4  | 3-1/2 | 9-1/4   | 8     | 3222L47-9 |

## **CLEVIS (FEMALE)**



| KK       | Α     | СВ    | CD    | CE    | cw    | ER    | PART NO. |
|----------|-------|-------|-------|-------|-------|-------|----------|
| 7/16-20  | 3/4   | 3/4   | 1/2   | 1-1/2 | 1/2   | 1/2   | 2834L59  |
| 3/4-16   | 1-1/8 | 1-1/4 | 3/4   | 2-3/8 | 5/8   | 3/4   | 2835L59  |
| 1-14     | 1-5/8 | 1-1/2 | 1     | 3-1/8 | 3/4   | 1     | 2836L59  |
| 1-1/4-12 | 2     | 2     | 1-3/8 | 4-1/8 | 1     | 1-3/8 | 2837L59  |
| 1-1/2-12 | 2-1/4 | 2-1/2 | 1-3/4 | 4-1/2 | 1-1/4 | 1-3/4 | 2838L59  |
| 1-7/8-12 | 3     | 2-1/2 | 2     | 5-1/2 | 1-1/4 | 2     | 2839L59  |
| 2-1/4-12 | 3-1/2 | 3     | 2-1/2 | 6-1/2 | 1-1/2 | 2-1/2 | 2840L59  |
| 2-1/2-12 | 3-1/2 | 3     | 3     | 6-3/4 | 1-1/2 | 2-3/4 | 2841L59  |
| 3-1/4-12 | 4-1/2 | 4     | 3-1/2 | 8-1/2 | 2     | 3-1/2 | 2842L59  |

### **SPHERICAL ROD EYE**




| CYL. DIA.     | Α     | J    | R       | СВ    | CD  | CF     | кк      | MR     | THRUST<br>RATING | PART NO.  |
|---------------|-------|------|---------|-------|-----|--------|---------|--------|------------------|-----------|
| 1-1/2-2-2-1/2 | 1-1/2 | 1/4  | 12°     | 5/8   | 1/2 | 2-7/16 | 7/16-20 | 11/16  | 5,500#           | 2825L48-1 |
| 1-1/2-2-2-1/2 | 15/16 | 1/4  | 12°     | 5/8   | 1/2 | 1-7/8  | 7/16-20 | 11/16  | 5,500#           | 2825L48-2 |
| 3-1/4-4-5     | 1-3/4 | 7/16 | 13-1/2° | 7/8   | 3/4 | 2-7/8  | 3/4-16  | 7/8    | 10,000#          | 2825L48-3 |
| 6-8           | 2-1/8 | 9/16 | 14°     | 1-3/8 | 1   | 4-1/8  | 1-14    | 1-7/16 | 12,000#          | 2825L48-4 |
| 8             | 2-1/8 | 9/16 | 14°     | 1-3/8 | 1   | 4-1/8  | 1-14    | 1-7/16 | 19,000#          | 2825L48-5 |

For 8" Cyl. Diameter — Hydraulics only.



## REED PROXIMITY SWITCH

AIR CYLINDER APPLICATIONS



#### LONG LIFE/HIGH PERFORMANCE

#### **FEATURES AND ADVANTAGES**

- Adjustable mounting allows switches to be located anywhere within range of piston travel.
- Several switches may be mounted to control or initiate any sequence function.
- No externally moving parts to wear or maintain.
- Suited for use in plant environments where dirt and contamination create difficulties for electromechanical and other types of controls.
- Neon Indicator Light provides convenient means for positioning and troubleshooting switch and circuits.
- · Suitable for AC service only.

#### **WORKING PRINCIPLE**

Basically the Reed Switch consists of two overlapping ferro magnetic blades (reeds). The reeds are hermetically sealed inside a glass tube leaving a small air gap between them.

Since the reeds are magnetic, they will assume opposite polarity and be attracted to each other when influenced by a magnetic field. Sufficient magnetic flux density will cause the reeds to flex and contact each other. When the magnetic field is removed, they will again spring apart to their normal positions.

The cylinder/Reed Switch combination operates by using a magnetic band on the cylinder piston, which closes the externally mounted reed switch, as it approaches. When the piston moves away again the switch opens.

Proper application of this versatile Reed Switch can offer millions of cycles of trouble-free operation.

#### **3 AMP REED SWITCH SPECIFICATIONS**

Circuit - Normally open - SPST (Form A)

VA (Max) - 360

Switching voltage - 65-120 VAC (50/60 Hz)

Current (Break) - 3.0 Amp

Leakage - 1.7 mA

Response Time - 15 ms On, 0.83 ms Off

Switch Burden Current - 5 mA

**Note:** All incandescent loads derate switch capacity to 10% due to inrush current

Moisture and dust proof (no NEMA rating)

#### **SHOCK RATING**

The basic switch can withstand up to 60 G maximum in the direction of contact closure without misfire or malfunction.

#### **VIBRATION SENSITIVITY**

Switch will withstand amplitude of 30 G at frequencies up to 6000 Hz without misfire. False operation can occur at vibration frequency levels higher than 6000 Hz.


#### **OPERATING TEMPERATURE**

-40°F to +170°F for standard cable.

#### **CABLE SPECIFICATION**

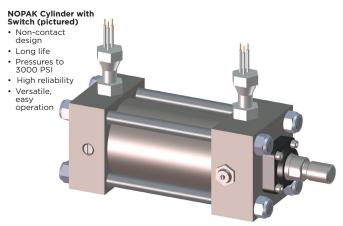
The conductors are tinned copper with polyethylene insulation, conductors are cabled with a rayon braid, a tinned copper braided shield and a chrome vinyl jacket that is resistant to hydraulic fluids.

### **SWITCH WIRING SCHEMATIC**



#### **CAUTION**

Do not connect switch without a load. Permanent damage to switch will result.


NOTE: Switch is internally protected against failure due to normal electrical transient levels.

However, it may be necessary to use additional transient protection if high levels exist.

## PROXIMITY POSITION INDICATOR SWITCH

HYDRAULIC OR PNEUMATIC CYLINDER OPERATIONS

#### **SQUARE-HEAD CYLINDERS**



For positive full indication of stroke Hydraulic and Pneumatic Cylinders

#### **WORKING PRINCIPLE**

NOPAK Position Indicator Switches are easily mounted in both hydraulic and pneumatic cylinder heads to confirm the position of the piston in either extended or retracted positions. Designed for versatility, NOPAK switches can be mounted in virtually any position. When inserted in the cylinder head, the switch senses the cushion sleeve's position at end of stroke. NOPAK's threaded switch screws easily into the cylinder heads making it a natural for accurate confirmation. Totally self-contained, the switch will not be contaminated by dirt, oil, grease, and most corrosive atmospheres. The non-contact design also eliminates the need for linkage or external actuators. Heavy-duty construction allows the switch to withstand up to 3000 PSI of external pressure (higher pressure available upon request).

#### **DESIGN FEATURES**

- Very Economical Easy to install, NOPAK Position Indicator Switches are totally self-contained, eliminating external power supply requirements.
- **Enclosure** 300 Series Stainless Steel provides reliable performance under even the most adverse conditions.
- Hermetically Sealed To ensure a clean, stable contact environment, the entire assembly is completely evacuated, then back-filled under pressure.
- Long Life Tested to over 1,000,000 cycles. (Actual life varies with load.)
- High Contact Pressure Heavy vibrations will not cause false operations of the switch. Good electrical characteristics for dry circuit and low load applications.

#### **SPECIFICATIONS**

#### **CONTACT ARRANGEMENT:**

Single Pole Double Throw SPDT (Form C)

#### **CONTACT RATINGS:**

UL Rated (NEMA Type 1)

240 VAC @ 2A

250 VDC @ 0.5A Resistive

Although not UL General Purpose, switch is suitable for: 24 VDC @ 50 mA

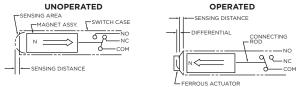
#### **TEMPERATURE RANGE:**

-40°F (-40°C) to 221°F (105°C)

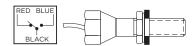
**RESPONSE TIME:** 8 milliseconds

#### REPEATABILITY:

0.002" (0.05 mm) of setpoint under identical operating conditions.


Consult Factory for other contact arrangements, ratings, terminations, and approvals.

## PROXIMITY POSITION INDICATOR SWITCH PRINCIPLES OF OPERATION


The NOPAK Proximity Limit Switch is based on an operating principle which utilizes "new," high energy, rare earth magnets to provide an end sensing range fixed at approximately .072" (1.83 mm) with a ferrous actuator. Use of an external magnet increases this appreciably. The differential (hysteresis) is approximately half of the sensing range.

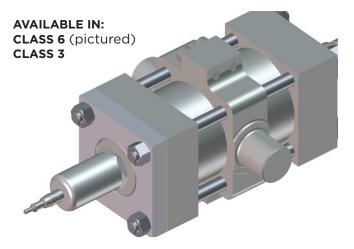
When time, accuracy, and dependability count... you can count on a NOPAK Indicator Switch. Maintenance free: engineered for precision, performance and reliability.

NOTE: This is not a 'reed' type switch.



Wiring Color Code: Black = Common, Red = Normally Closed; Blue = Normally Open




Switch enclosure incorporates a 1/2-14 NPT conduit connection. Switch wire connections are a potted 3 wire cable 18" long. External mounting threads are locked to cylinder head port with a hex jam nut and seal.

Where installation height is simited some switches are available with side-potted leads. Consult factory.





# NOPAK LINEAR DISPLACEMENT TRANSDUCER SYSTEM



#### **DESIGN AND PERFORMANCE FEATURES**

- Non-contacting design no wear, no friction, no noise and no adjustments.
- Completely solid state.
- Both analog and digital outputs are available.
- · Quartz crystal time reference.
- Withstands corrosive environments and pressures up to 3000 PSI.
- Feedback sensor inside cylinder is protected from debris and mechanical damage.
- Absolute output, not incremental no loss of position at restart.

**NOPAK** has a linear displacement transducer that is designed for use in air or hydraulic cylinder actuators. The transducer, available in lengths up to thirty feet, is threaded into the cylinder and sealed to withstand the pressures of hydraulic fluid. A permanent magnet is mounted on the piston end of the cylinder rod, and is used to determine the position of the piston inside the cylinder. Double ended rods not applicable.

#### **HERE'S HOW IT WORKS:**

It simply measures the time interval required for an electric current pulse to travel between two points. The two points of measurement are the fixed magnet located on the piston position and the sensor at the end of the transducer probe. This concept has been successful in eliminating considerable expense for potentiometers, tach generators, encoders, racks, pinions, and other special hardware.

#### **ADVANTAGES:**

Includes a non-contact operation, no wear, no noise generation, high reliability, infinite resolution (analog), high linearity (.05%), excellent repeatability (.002%), and direct digital output if required.

LDT Systems can be adapted to all NOPAK P6 and H6 cylinder diameters with a 1-3/8" diameter rod or larger.

We welcome the opportunity to discuss your applications and help you supply your needs.

#### **NLDT SPECIFICATIONS**

Electrical stroke Standard - up to 25 feet.

Null Positioned as required.

Null adjustment 2% of total stroke nominal.

Scale adjustment 1% of total stroke nominal.

Non-linearity Less than  $\pm 0.05\%$  of full range. Repeatability Better than  $\pm 0.001\%$  of full range.

Temperature coefficient of

scale factor

Transducer - Less than 0.00011 inch/°F + [3 ppm/°F per inch of full stroke].

Analog Output Module -20 ppm/°F.

Frequency response Stroke dependent. 200 Hz to 50 Hz is typical for lengths of 12 inch to 100 inch

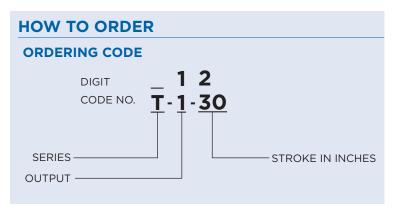
respectively - wider response frequencies are available upon request. For digital

systems, output is updated at discrete intervals.

Hysteresis Less than 0.0008 in. maximum.

Output Analog -0 to +10 VDC, 4 to 20 mA ungrounded, (others available). Digital-pulse

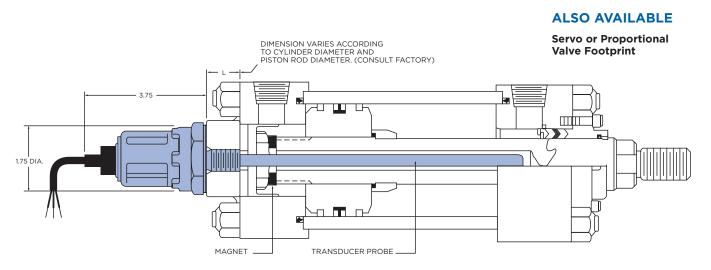
width modulated signal, TTL compatible.


Operating impendance 10 ohms.

Operating temperature range -35°F to 150°F (transducer probe to 180°F).

Storage temperature range -40°F to 180°F.

Operation in hydraulic fluid The .375 inch dia. transducer probe is capable of operating in hydraulic fluid and


will withstand 3,000 psi operating pressure.



| DIGIT  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIRST  | <ol> <li>OUTPUT</li> <li>0 to +10 VDC w/Analog Output Module</li> <li>0 to +10 VDC w/built-in Analog Personality Module         (Eliminates separate Analog Output Module)</li> <li>4 to 20 MA grounded w/Analog Output Module</li> <li>Half digital w/Digital Personality Module</li> <li>Full digital w/Digital Personality Module and Digital Counter Card. Specify Binary or BCD.</li> <li>Digital with RS422 Personality Module</li> <li>Others (specify)</li> </ol> |
| SECOND | ELECTRICAL STROKE IN INCHES (Example: 12.75 inches)  1 - 1 Inch through 300 - 300 Inch (25 foot maximum)                                                                                                                                                                                                                                                                                                                                                                  |

### When ordering: Code Number must be completed using options listed above.

For further detailed information contact your NOPAK distributor.





NOPAK Class 6 bore-rated cylinders are identified as P6 for air and H6 for hydraulic service. Please refer to Pressure Ratings (PSI) on page 92. Cylinders 1-1/2" through 10" diameter bore are assembled from standard inventory components. Special design and large diameter Class 6 cylinders are available. Send us your specifications.

#### **OPERATING TEMPERATURES AND MEDIA**

Class P6 air and H6 hydraulic cylinders equipped with standard Type A packings may be operated at temperatures from -20°F to 250°F air, water or oil. The following chart relates in a simplified general purpose manner the limitations and uses of available piston and rod packings.

| PACKIN                               | IG TYPE                                 |
|--------------------------------------|-----------------------------------------|
| A                                    | В                                       |
| -20°F to +250°F<br>Std. Hyd. Oil     | -20°F to +375°F<br>Std. Hyd. Oil        |
| Air                                  | Air                                     |
| Water<br>(not steam)                 |                                         |
| Water Glycol Fire<br>Resistant Fluid | Phosphate Ester Fire<br>Resistant Fluid |

For specific media and temperature or conditions exceeding the chart ratings, consult NOPAK Engineering Department.

Applications involving Fire Resistant Fluids must be so specified for compatible component materials. When considering temperature, remember that as the temperature increases (within the rated limits) the packing life decreases.

#### **INTERCHANGEABILITY**

Class 6 cylinders are dimensionally interchangeable with other square-head cylinders of the same pressure classification. Construction and performance are in conformance with applicable NFPA recommended standards.

For P6 (pneumatic) cylinders with Integral Limit Switch(es), see page 130.

#### **CUSHIONS**

NOPAK Class 6 cylinders are available with adjustable cushions on either or both ends, or non-cushion.

The purpose of a cushion is to slow down piston speed at the end of the stroke, eliminating hammer and noise. Where standard cushions are inadequate for unusual requirements, special cushions possibly requiring longer-than-standard heads can be furnished at additional charge. Very rapid cushioning of high speed movement may require deceleration valves.

The purpose of the ball check in the cushion mechanism is to allow fluid to pass to the piston face without obstruction (while the cushion sleeve is still within the bore in the head). This results in essential quick starting of the piston. Cushion adjusting screws serve to bypass the fluid from the trapped section between the piston and the cylinder head when the cushion sleeve has entered the bore. Turning the needle inward against the seat results in maximum cushion intensity. Backing up on the needle decreases the effect.

#### **CYLINDER PORT LOCATION**

Inlet ports are located in Position 1 as standard (see rod end view on dimension drawings). They can however, be located at other numbered locations on application. Extra inlets furnished at additional charge. Oversize and special inlets require dimensions and quotation on application.

#### **WATER SERVICE**

Special cylinders can be built for water service. Due to the uncertainty of action of water supply on some materials, responsibility for premature failure due to corrosion, mineral deposits or electrolysis cannot be accepted.

## **ENGINEERING INFORMATION**

## TABLE A - TIE ROD TORQUE CHART CLASS P6 AIR AND H6 HYDRAULIC CYLINDERS

| CYLINDER<br>DIAMETER | NO. OF TIE RODS | TIE ROD SIZE |
|----------------------|-----------------|--------------|
| 1-1/2                | 4               | 1/4          |
| 2                    | 4               | 5/16         |
| 2-1/2                | 4               | 5/16         |
| 3-1/4                | 4               | 3/8          |
| 4                    | 4               | 3/8          |
| 5                    | 4               | 1/2          |
| 6                    | 4               | 1/2          |
| 8                    | 4               | 5/8          |
| 10                   | 4               | 3/4          |
| 12                   | 4               | 3/4          |
| 14                   | 4               | 7/8          |
| 16                   | 8               | 1            |
| 18                   | 8               | 1-1/8        |
| 20                   | 8               | 1-1/4        |

## TABLE B - VOLUME OF OIL PER 12" OF STROKE

|                  | BLIND END D       | SPLACEMENT              |                                     | ROD END DIS             | PLACEMENT                               |                         |
|------------------|-------------------|-------------------------|-------------------------------------|-------------------------|-----------------------------------------|-------------------------|
| CYLINDER<br>BORE | AREA<br>(SQ. IN.) | GALS./FOOT<br>OF STROKE | NET AREA<br>(SQ. IN.)<br>WITH R ROD | GALS./FOOT<br>OF STROKE | NET AREA<br>(SQ. IN.)<br>WITH HR<br>ROD | GALS./FOOT<br>OF STROKE |
| 1-1/2            | 1.767             | .0918                   | 1.460                               | .0758                   | .982                                    | .0510                   |
| 2                | 3.142             | .1632                   | 2.835                               | .1473                   | 1.656                                   | .0852                   |
| 2-1/2            | 4.909             | .2550                   | 4.602                               | .2390                   | 2.503                                   | .1301                   |
| 3-1/4            | 8.296             | .4309                   | 7.511                               | .3902                   | 5.154                                   | .2700                   |
| 4                | 12.566            | .6528                   | 11.781                              | .6120                   | 7.658                                   | .4010                   |
| 5                | 19.635            | 1.020                   | 18.850                              | .9792                   | 10.014                                  | .5210                   |
| 6                | 28.274            | 1.468                   | 26.789                              | 1.392                   | 15.708                                  | .8201                   |
| 8                | 50.266            | 2.611                   | 48.781                              | 2.534                   | 26.507                                  | 1.380                   |
| 10               | 78.540            | 4.080                   | 76.135                              | 3.956                   | 54.780                                  | 2.850                   |
| 12               | 113.10            | 5.918                   | 109.96                              | 5.712                   | 89.337                                  | 4.640                   |
| 14               | 153.94            | 7.997                   | 149.04                              | 7.309                   | 130.178                                 | 6.760                   |
| 16               | 201.06            | 10.444                  | 196.16                              | 10.190                  | 178.302                                 | 9.260                   |
| 18               | 254.47            | 13.219                  | 244.85                              | 12.715                  | 230.709                                 | 11.980                  |
| 20               | 314.16            | 16.320                  | 301.60                              | 15.667                  | 291.400                                 | 15.140                  |

TABLE B covers the smallest and the largest rod available per cylinder diameter. Intermediate rod end displacements can be calculated.

#### TABLE C - CYLINDER PUSH AND PULL FORCES

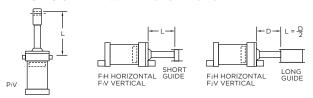
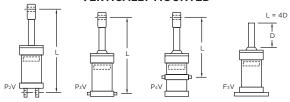
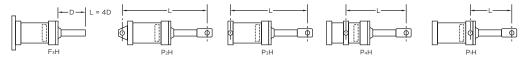

| DODE  | POD                                          |                         |                         | THEO                    | RETICAL F                  | ORCE IN PO                 | OUNDS @                 | FLUID PRE               | SSURE                   |                         |                      |
|-------|----------------------------------------------|-------------------------|-------------------------|-------------------------|----------------------------|----------------------------|-------------------------|-------------------------|-------------------------|-------------------------|----------------------|
| BORE  | ROD                                          | 100                     | 250                     | 300                     | 500                        | 800                        | 1000                    | 1200                    | 1500                    | 2250                    | 2500                 |
| 1-1/2 | PUSH<br>PULL — 5/8 ROD<br>PULL — 1 ROD       | 176.7<br>146.0<br>98.0  | 441.8<br>365.0<br>245   | 530.1<br>438.0<br>294   | 883.5<br>730.0<br>490      | 1414<br>1168<br>783        | 1767<br>1460<br>980     | 2120<br>1752<br>1175    | 2650<br>2190<br>1470    | 3976<br>3285<br>2200    | 4418<br>3650<br>2450 |
| 2     | PUSH<br>PULL — 5/8 ROD<br>PULL — 1-3/8 ROD   | 314.2<br>283.5<br>165.6 | 785.5<br>708.7<br>414   | 942.6<br>850.5<br>496.8 | 1571<br>1417<br>828        | 2514<br>2268<br>1324.8     | 3142<br>2835<br>1656    | 3770<br>3402<br>1987.2  | 4713<br>4252<br>2484    | 7070<br>6379<br>3726    | 7855<br>7087<br>4140 |
| 2-1/2 | PUSH<br>PULL — 5/8 ROD<br>PULL — 1-3/4 ROD   | 490.9<br>460.2<br>250.3 | 1227<br>1150<br>625.8   | 1473<br>1381<br>751     | 2454<br>2301<br>1251       | 3927<br>3682<br>2002       | 4909<br>4602<br>2503    | 5891<br>5522<br>3004    | 7364<br>6903<br>3755    |                         |                      |
| 3-1/4 | PUSH<br>PULL — 1 ROD<br>PULL — 2 ROD         | 829.6<br>751.1<br>515.4 | 2074<br>1878<br>1288    | 2489<br>2253<br>1546    | 4148<br>3756<br>2577       | 6637<br>6009<br>4123       | 8296<br>7511<br>5154    | 9955<br>9013<br>6185    | 12444<br>11270<br>7731  | 18670<br>16900<br>11596 |                      |
| 4     | PUSH<br>PULL — 1 ROD<br>PULL — 2-1/2 ROD     | 1257<br>1178<br>765.7   | 3142<br>2945<br>1914    | 3770<br>3534<br>2297    | 6283<br>5890<br>3828       | 10050<br>9425<br>6126      | 12566<br>11781<br>7657  | 15079<br>14137<br>9189  | 18850<br>17671<br>11486 |                         |                      |
| 5     | PUSH<br>PULL — 1 ROD<br>PULL — 3-1/2 ROD     | 1963<br>1885<br>1001    | 4908<br>4712<br>2503    | 5890<br>5655<br>3004    | 9817<br>9425<br>5006       | 15708<br>15080<br>8011     | 19635<br>18850<br>10013 | 23562<br>22620<br>12016 |                         |                         |                      |
| 6     | PUSH<br>PULL — 1-3/8 ROD<br>PULL — 4 ROD     | 2827<br>2679<br>1570    | 7078<br>6697<br>3926    | 8482<br>8037<br>4712    | 14137<br>13394<br>7853     | 22619<br>21431<br>12566    | 28274<br>26789<br>15707 | 33928<br>32147<br>18850 |                         |                         |                      |
| 8     | PUSH<br>PULL — 1-3/8 ROD<br>PULL — 5-1/2 ROD | 5027<br>4878<br>2650    | 12566<br>12195<br>6626  | 15079<br>14634<br>7952  | 25133<br>24390<br>13253    | 40213<br>39025<br>21205    | 50266<br>48781<br>26507 |                         |                         |                         |                      |
| 10    | PUSH<br>PULL — 1-3/4 ROD<br>PULL — 5-1/2 ROD | 7854<br>7614<br>5478    | 19635<br>19034<br>13695 | 23562<br>22840<br>16434 | 39270<br>38068<br>27390    | 62832<br>60908<br>43825    |                         |                         |                         |                         |                      |
| 12    | PUSH<br>PULL — 2 ROD<br>PULL — 5-1/2 ROD     | 11130<br>10995<br>8933  | 28275<br>27486<br>22334 | 33930<br>32985<br>26801 | 56550<br>54975<br>44670    | 90480<br>87948<br>71471    |                         |                         |                         |                         |                      |
| 14    | PUSH<br>PULL — 2-1/2 ROD<br>PULL — 5-1/2 ROD | 15394<br>14900<br>13018 | 38485<br>37250<br>32545 | 46182<br>44700<br>39054 | 76970<br>74500<br>65090    | 123152<br>119232<br>104152 |                         |                         |                         |                         |                      |
| 16    | PUSH<br>PULL — 2-1/2 ROD<br>PULL — 5-1/2 ROD | 20106<br>19616<br>17730 | 50265<br>49040<br>44325 | 60318<br>58480<br>53190 | 100530<br>98080<br>88650   |                            |                         |                         |                         |                         |                      |
| 18    | PUSH<br>PULL — 3-1/2 ROD<br>PULL — 5-1/2 ROD | 25447<br>24485<br>23072 | 63617<br>61213<br>57680 | 76341<br>73445<br>69216 | 127235<br>122425<br>115360 |                            |                         |                         |                         |                         |                      |
| 20    | PUSH<br>PULL — 4 ROD<br>PULL — 5-1/2 ROD     | 31416<br>30160<br>29041 | 78640<br>75400<br>72603 | 94248<br>90480<br>87123 | 157080<br>150800<br>145205 |                            |                         |                         |                         |                         |                      |

TABLE C covers the smallest and the largest rod available per cylinder diameter. Intermediate rod pull force can be calculated.




## INFORMATION TO PREVENT EXCESSIVE BEARING WEAR AND PISTON ROD COLUMN FAILURES


#### **GROUP A - WITH PISTON RODS EXTENDED**



## GROUP B - TO BE CHECKED FOR BUCKLING OR JACK-KNIFING WITH PISTON RODS EXTENDED AND VERTICALLY MOUNTED



#### GROUP C - TO BE CHECKED FOR LOAD ON BEARING WITH PISTON RODS EXTENDED AND HORIZONTALLY MOUNTED



**STEP 1** — Find drawing in one of three groups above that fits your cylinder application and follow instructions listed for that group.

**Instructions:** Stop tubes are used on long push stroke cylinders to prevent jack-knifing or buckling. They are placed between the piston and cylinder head to restrict the extended position of the piston rod so that the lengthened space between piston and bushing provides additional piston rod guide support.

The best choice for a cylinder with an exceptionally long stop tube requirement is the DOUBLE PISTON WITH SPACER. Note that the piston effective bearing area is doubled in addition to gaining the normal increased minimum distance between bearing points.

To determine whether a stop tube is required on a push stroke cylinder, proceed as follows:

- Using above drawings, determine value of "L" from stroke length, rod and cylinder dimensions.
- b. Refer to TABLE A Minimum and Maximum Stop Tube Lengths on page 137 for stop tube recommendation. A cylinder having an "L" value 45 requires a minimum of 1" stop tube and a maximum of 5" stop tube. Specifications for more than the maximum stop tube will usually adversely increase the cylinder weight.

**Example:** In a  $P_2V$  type application requiring 32" of stroke, "L" = 32" + 32" + approximately 10" for head and cap thickness = 74". A stop tube 4" long is required (when a fraction of an inch of stop tube is calculated, use the next full inch.) Adjusted value of "L" is 74" + 4" or 78". Use of up to 8" of stop tube will further reduce bearing loads.

**Instructions:** Stop tubing is recommended for reducing piston and bushing/bearing loads on long stroke cylinders of the types shown. To determine length of stop tube required for this type of application, resolve the turning moments and loads between the piston and rod bushing. Include the weight of the fluid, especially on large bore cylinders. It is ideal to keep projected bearing area loads lower than 200 PSI.

**Caution:** Do not use oversize rods to lessen bearing loads. Stop tubes are more economical and effective; oversize rods are heavier, cost more than stop tubing and if misalignment occurs, bearing loads are considerably increased due to stiffness of the oversize rod.

If your drawing is  $F_3H$ ,  $P_2H$ ,  $P_3H$ , or  $P_4H$ , in Group C, check for stop tube requirements from instructions in Group B.

Use whichever stop tube is longer. Determine value of "L" and proceed to Step 2.

STEP 2 - Find Rod Diameter for Column Strength.

Standard diameter piston rods are recommended on all installations except where column strength, piston rod sag, or return rate of hydraulic cylinders requires larger diameter rods.

Bushing/bearing loads caused by unavoidable misalignment are minimized when piston rods of correct diameter instead of unnecessarily large diameter piston rods are used. Correct (usually standard) piston rod diameters decrease and absorb shock loads to a greater extent than unnecessarily large oversize rods.

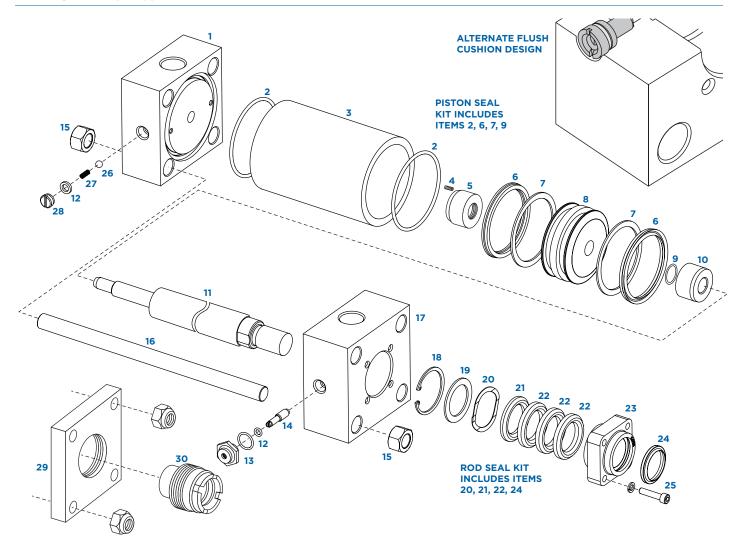
To determine the minimum piston rod diameter on push stroke cylinders:

- a. Determine your push stroke thrust from TABLE C Cylinder Push and Pull Forces on page 135.
- b. Find your push stroke thrust "T" in TABLE B Value of "L" In Inches on page 137. If exact thrust isn't shown, use next larger shown.
- c. In the horizontal column in line with your thrust, find value of "L" determined in Step 1.
- d. Find minimum piston rod diameter required by following the same vertical line where your value of "L" is located, toward the top of the table.

**TABLE A - MINIMUM AND MAXIMUM STOP TUBE LENGTHS** 

| "L"<br>INCHES | MINIMUM STOP<br>TUBE LENGTH<br>(INCHES) | MAXIMUM STOP<br>TUBE LENGTH<br>(INCHES) | "L"<br>INCHES | MINIMUM STOP<br>TUBE LENGTH<br>(INCHES) | MAXIMUM STOP<br>TUBE LENGTH<br>(INCHES) | "L"<br>INCHES | MINIMUM STOP<br>TUBE LENGTH<br>(INCHES) | MAXIMUM STOP<br>TUBE LENGTH<br>(INCHES) |
|---------------|-----------------------------------------|-----------------------------------------|---------------|-----------------------------------------|-----------------------------------------|---------------|-----------------------------------------|-----------------------------------------|
| 5-10          | _                                       | 1                                       | 111-120       | 8                                       | 12                                      | 211-220       | 18                                      | 22                                      |
| 11-20         | -                                       | 2                                       | 121-130       | 9                                       | 13                                      | 221-230       | 19                                      | 23                                      |
| 21-30         | -                                       | 3                                       | 131-140       | 10                                      | 14                                      | 231-240       | 20                                      | 24                                      |
| 31-40         | -                                       | 4                                       | 141-150       | 11                                      | 15                                      | 241-250       | 21                                      | 25                                      |
| 41-50         | 1                                       | 5                                       | 151-160       | 12                                      | 16                                      | 251-260       | 22                                      | 26                                      |
| 51-60         | 2                                       | 6                                       | 161-170       | 13                                      | 17                                      | 261-270       | 23                                      | 27                                      |
| 61-70         | 3                                       | 7                                       | 171-180       | 14                                      | 18                                      | 271-280       | 24                                      | 28                                      |
| 71-80         | 4                                       | 8                                       | 181-190       | 15                                      | 19                                      | 281-290       | 25                                      | 29                                      |
| 81-90         | 5                                       | 9                                       | 191-200       | 16                                      | 20                                      | 291-300       | 26                                      | 30                                      |
| 91-100        | 6                                       | 10                                      | 201-210       | 17                                      | 21                                      | 301-310       | 27                                      | 31                                      |
| 101-110       | 7                                       | 11                                      |               |                                         |                                         |               |                                         |                                         |

NOTE: Using stop tube lengths greater than "Maximum Stop Tube" has diminishing effect on reducing bearing loads.


TABLE B - VALUE OF "L" IN INCHES

| AXIAL THRUST                                        |                            |                            |                              |                                 | MINIM                           | UM PISTON                       | ROD DIA                         | METER                           |                                 |                                 |                                 |                                 |
|-----------------------------------------------------|----------------------------|----------------------------|------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| "T" AGAINST<br>ROD END IN LBS.<br>FORCE             | 0.63                       | 1.00                       | 1.38                         | 1.75                            | 2.00                            | 2.50                            | 3.00                            | 3.50                            | 4.00                            | 4.50                            | 5.00                            | 5.50                            |
| 50<br>100<br>150<br>250<br>400                      | 67<br>59<br>53<br>43<br>37 | 110<br>103<br>94<br>83     | 134                          | 186                             |                                 |                                 |                                 |                                 |                                 |                                 |                                 |                                 |
| 700<br>1,000<br>1,400<br>1,800<br>2,400             | 30<br>27<br>24<br>23<br>19 | 68<br>60<br>53<br>48<br>45 | 118<br>105<br>92<br>82<br>75 | 168<br>155<br>142<br>127<br>114 | 202<br>190<br>174<br>160<br>145 | 275<br>257<br>244<br>230<br>213 | 308<br>294<br>281               | 385<br>366<br>347               | 440<br>415                      | 488                             |                                 |                                 |
| 3,200<br>4,000<br>5,000<br>6,000<br>8,000           | 16<br>13<br>9              | 41<br>38<br>34<br>30<br>26 | 67<br>63<br>60<br>56<br>50   | 103<br>94<br>87<br>82<br>76     | 130<br>119<br>110<br>102<br>93  | 194<br>175<br>163<br>152<br>137 | 262<br>240<br>225<br>209<br>186 | 329<br>310<br>289<br>274<br>245 | 400<br>378<br>360<br>342<br>310 | 461<br>446<br>426<br>411<br>375 | 494<br>476<br>447               |                                 |
| 10,000<br>12,000<br>16,000<br>20,000<br>30,000      |                            | 21<br>17                   | 45<br>41<br>34<br>28         | 70<br>65<br>57<br>52<br>39      | 89<br>84<br>75<br>68<br>55      | 125<br>118<br>110<br>103<br>87  | 172<br>155<br>141<br>136<br>120 | 222<br>210<br>188<br>172<br>156 | 279<br>269<br>235<br>218<br>189 | 349<br>326<br>291<br>270<br>232 | 412<br>388<br>350<br>326<br>285 | 482<br>455<br>421<br>384<br>330 |
| 40,000<br>50,000<br>60,000<br>80,000<br>100,000     |                            |                            |                              | 22                              | 43<br>30                        | 74<br>66<br>57<br>36            | 108<br>97<br>88<br>71<br>56     | 142<br>130<br>119<br>104<br>90  | 177<br>165<br>154<br>137<br>120 | 210<br>201<br>190<br>170<br>154 | 248<br>234<br>225<br>204<br>189 | 294<br>269<br>256<br>240<br>224 |
| 120,000<br>140,000<br>160,000<br>200,000<br>250,000 |                            |                            |                              |                                 |                                 |                                 | 45                              | 77<br>64<br>47                  | 108<br>98<br>86<br>67           | 140<br>129<br>118<br>98<br>72   | 175<br>160<br>148<br>131<br>109 | 207<br>194<br>182<br>160<br>143 |
| 300,000<br>350,000<br>400,000                       |                            |                            |                              |                                 |                                 |                                 |                                 |                                 |                                 |                                 | 86<br>52                        | 120<br>100<br>71                |

Values of "L" less than those shown have a slenderness ratio (length  $\div$  radius of gyration which is length  $\div$  1/4 diameter of piston rod) of less than 50. Thus, the compressive strength formula (s = thrust  $\div$  rod area) is used rather than the column strength formula on which Table B is based. For very low slenderness ratios (below 20), compressive strength formulae with a 2 to 1 factor of safety are satisfactory. For slenderness ratios between 20 and 50, use compressive strength formulae with proportionate factors between 2 to 1 and 5 to 1.



#### **EXPLODED VIEW**



- 1 Blind end head
- 2 Tube seal •
- **3** Tube
- 4 Lock screw
- 5 Lock sleeve •
- 6 U-cup•
- 7 Back-up ring•
- 8 Piston
- 9 Piston O-ring •
- 10 Cushion sleeve rod end
- 11 Piston rod

- 12 Seal
- 13 Cushion adjusting screw gland
- 14 Cushion adjusting screw
- 15 Tie rod nut
- 16 Tie rod
- 17 Rod end head
- 18 Retainer ring
- 19 Packing spacer
- 20 Wave spring •
- 21 Bottom adapter ring •
- 22 Rod packing •

- 23 Packing gland
- 24 Rod wiper•
- 25 Packing gland cap screw
- 26 Check ball
- 27 Ball check spring
- 28 Ball check plug

## IF APPLICABLE:

- 29 Head plate
- 30 Screw gland

- = Items are included in seal repair kits. See page 139 for ordering information.
- = Item 21 is metallic for high temp. applications. NOTE: Head and Screw Gland Option Available in all Models except DG (ME-3).
- = Use lock nut or threaded piston on 1.50"-8.00" bore with or without cushion, or cushion nose.

#### When ordering replacement parts be sure to specify:

- Part by name and item number
- Bore, stroke and mounting
- Serial number shown on NOPAK label

NOTE: Isometric view of DOUBLE ROD cylinders available at N/C. Consult factory or an authorized distributor.

### **REPAIR KITS - CLASS P6 AND H6**

FOR CURRENT DESIGN CYLINDERS MANUFACTURED AFTER MARCH 1982

#### **ROD KITS**

| SINGLE ROD• |            |  |
|-------------|------------|--|
| ROD DIA.    | PART NO. ● |  |
| 0.63"       | RK6-63     |  |
| 1.00"       | RK6-100    |  |
| 1.38"       | RK6-138    |  |
| 1.75"       | RK6-175    |  |
| 2.00"       | RK6-200    |  |
| 2.50"       | RK6-250    |  |
| 3.00"       | RK6-300    |  |
| 3.50"       | RK6-350    |  |
| 4.00"       | RK6-400    |  |
| 4.50"       | RK6-450    |  |
| 5.00"       | RK6-500    |  |
| 5.50"       | RK6-550    |  |

#### Each Rod Kit consists of:

- 1 V-ring rod packing
- 1 Rod wiper
- 1 Wave spring

#### **PISTON KITS**

| SINGLE OR DOUBLE ROD |            |  |
|----------------------|------------|--|
| BORE SIZE            | PART NO. ● |  |
| 1.50"                | PK6-150    |  |
| 2.00"                | PK6-200    |  |
| 2.50"                | PK6-250    |  |
| 3.25"                | PK6-325    |  |
| 4.00"                | PK6-400    |  |
| 5.00"                | PK6-500    |  |
| 6.00"                | PK6-600    |  |
| 8.00"                | PK6-800    |  |
| 10.00"               | PK6-1000   |  |
| 12.00"               | PK6-1200   |  |
| 14.00"               | PK6-1400   |  |

Each Piston Kit consists of:

- 2 Tube O-rings
- 2 Piston U-cups
- 2 Back-up washers
- 1 Piston O-ring

= When ordering, specify Type "A" or Type "B" seals.
 Type "A" = Buna-N (NITRILE)
 Type "B" = Fluorocarbon

#### PACKING GLANDS - CLASS P6 AND H6

| ROD DIA. | ALL MODELS EXCEPT D & DD • | MODELS D & DD ONLY |
|----------|----------------------------|--------------------|
|          | PART NUMBER                | PART NUMBER        |
| 0.63"•   | 1069G70                    | 1071G70            |
| 1.00"•   | 1068G73                    | 2859G73            |
| 1.38"•   | 1066G75                    | 2858G75            |
| 1.75"•   | 1067G77                    | 2857G77            |
| 2.00"•   | 1065G78                    | 2856G78            |
| 2.50"•   | 1064G79                    | 2855G79            |
| 3.00"    | 1063G81                    | 2854G81            |
| 3.50"•   | 1062G82                    | 2853G82            |
| 4.00"•   | 1061G83                    | 2852G83            |
| 4.50"    | 1060G84                    | 2851G84            |
| 5.00"    | 1070G85                    | 2850G85            |
| 5.50"    | 1059G86                    | C/F                |

- Use packing gland 1071G70 for 1.50" cyl. with 0.63" Ø rod
  Use packing gland 2859G73 for 1.50" & 2.00" cyls. with 1.00" Ø rod
  Use packing gland 2858G75 for 2.00" cyl. with 1.38" Ø rod
  Use packing gland 2857G77 for 2.50" cyl. with 1.75" Ø rod
  Use packing gland 2856G78 for 3.25" cyl. with 2.00" Ø rod
  Use packing gland 2855G79 for 4.00" cyl. with 2.50" Ø rod
  Use packing gland 2853G82 for 5.00" cyl. with 3.50" Ø rod
  Use packing gland 2852G83 for 6.00" cyl. with 4.00" Ø rod
- = For Models AL, T and TR, consult factory.

<sup>• =</sup> To service DOUBLE ROD END CYLINDER, order one Rod Kit for EACH rod end, and if applicable, one Piston Kit.



# **Directional Control Valves**

Hand, Foot and Solenoid







#### **TABLE OF CONTENTS**

| Hand & Foot Valves146                                 |
|-------------------------------------------------------|
| Features and Benefits147                              |
| How To Order                                          |
| "Foundry Tough" Hand<br>Valves - Disc Type148         |
| Foot Valves - Disc Type                               |
| Flotrol Valves                                        |
| Parts List - NOPAK Disc Valves                        |
| Replacement Parts - NOPAK Disc Valves                 |
| Disc Valves                                           |
| Solenoid Valves156                                    |
| Series 310, 320, 410 & 420 -<br>Features and Benefits |
| Series 310PP & 410PP - Features and Benefits157       |
| How To Order157                                       |
| 3-Way and 4-Way Valve Use158                          |
| The Flow-Director                                     |
| 3-Way Series 300                                      |
| 3-Way Series 310PP161                                 |
| 3-Way Series 310                                      |
| 3-Way Series 320163                                   |
| 4-Way Series 400                                      |
| 4-Way Series 410PP                                    |
| 4-Way Series 410                                      |
| 4-Way Series 420167                                   |
| Disassembly                                           |
| Make-Up Bleed                                         |
| Direct Current Solenoids                              |
| $C_{_{v}}$ Factors                                    |
| Pressure Drop vs. Air Flow Graph 172                  |

## NOPAK DIRECTIONAL CONTROL VALVES

NOPAK Directional Control Valves are noted throughout industry for their simplicity of design, rugged construction, long-lived, trouble-free service, and low maintenance. The original NOPAK Valve design, with its patented, rotating lapped disc, has been augmented with other designs until today the NOPAK line includes valves for control of fluid power under practically all operating conditions.

In specifying NOPAK Valves, operating requirements are the most important consideration. Such factors as unusual working conditions (heat, cold or moisture), the operating medium to be used (air, oil or water), line pressure and capacity, type of control (hand, foot, solenoid or pilot valve) – all must be considered in choosing the particular NOPAK Valve best suited for the application.

#### **FEATURES AND BENEFITS**

NOPAK Disc-Type Valves have a well-earned reputation of being "practically indestructible." They have established an enviable record for efficient, trouble-free operation, freedom from leakage and pressure loss, and long service life under extremely rugged operating conditions. These benefits are a direct result of the simplicity and ruggedness of the basic NOPAK Rotating Disc design. The flat, lapped disc, rotating at right angles to the stream flow, results in the following advantages:

#### **PRECISION CONTROL**

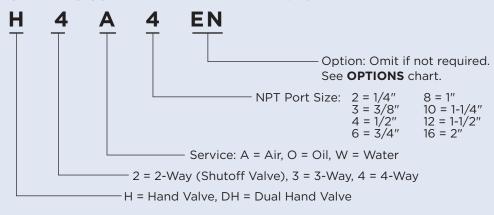
Positive precision control through the complete cycle of valve operation, from slow gradual throttling action to instant full opening, without damaging shock, impact or pressure cutting.

#### **SEALING SURFACES IMPROVE WITH USE**

The precision-lapped sealing surfaces of disc and seat actually improve with use because the "lapping-in" process continues while the valve is operated. The flat disc and seat have no interlocking contours; therefore, they cannot stick and always remain free for easy operation.

## PROTECTED AGAINST GRIT, ABRASION OR WIRE DRAWING

The valve seat is always covered by the rotating disc so that both sealing surfaces are always shielded from direct pressure flow and possible abrasion caused by grit, scale or other foreign matter usually present in air or hydraulic lines. An internal channel in the disc carries off such abrasive materials without damage to the sealing surfaces.


#### PRESSURE SEALING

Line pressure is exerted against the valve disc at all times to keep the lapped surfaces of disc and seat positively sealed.

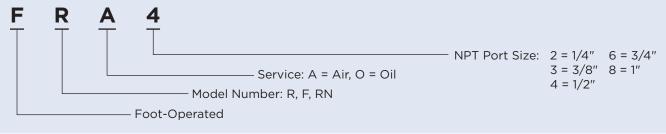
#### **PACKLESS CONSTRUCTION**

NOPAK Valves depend entirely upon metal-to-metal, precision-lapped sealing surfaces for their leakproof construction. When used for hydraulic service (oil or water), additional protection against leakage past the valve stem has been provided by the use of an O-ring in the valve body and around the stem, just below the operating handle.





#### ORDERING CODE EXAMPLE - HAND VALVES, PANEL MOUNT


One size available: 1/4" NPT. See page 146.

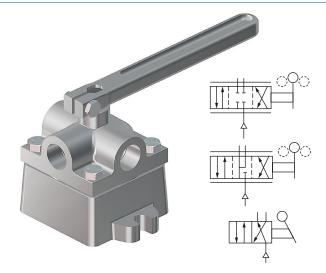


#### **OPTIONS**

| CODE | DESCRIPTION                                   |
|------|-----------------------------------------------|
| EN   | Exhaust In Neutral                            |
| SRN  | Spring Return To<br>Neutral                   |
| ST   | Short Throw                                   |
| STR  | Short Throw & Spring<br>Return                |
| STNS | Short Throw No Spring                         |
| ENR  | Exhaust In Neutral &<br>Spring Return Neutral |
| В    | Bleeder/Bleed Off                             |
| ОС   | Open Center                                   |
| CC   | Closed Center                                 |

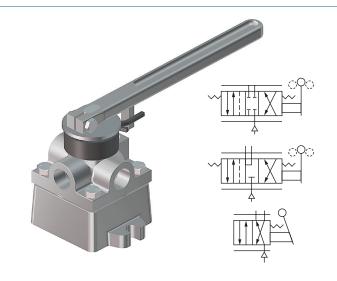
### **ORDERING CODE EXAMPLE - FOOT VALVES**






### 4-WAY, 3-POSITION AIR AND HYDRAULIC VALVES

The standard 4-way valve has two cycles of operation and is generally used to actuate double-acting cylinders. The construction and materials are identical to the 3-way valve. Both 3- and 4-way hand-operated air valves, 3/4" pipe size and larger, are fitted with grease cups to lubricate lapped surfaces.


#### 4-Way, 2-Position, Short Throw

This valve has no neutral and is available with a total lever throw of  $45^{\circ}$  in the 1/4'', 3/8'', 1/2'', 3/4'' and 1'' pipe sizes. It is available with a total lever throw of  $60^{\circ}$  in the 1-1/4'', 1-1/2'' and 2'' pipe sizes. It is dimensionally identical with the standard 4-way valve and identified by "2/P" stamped on the spindle end.



#### 4-WAY SPRING RETURN TO NEUTRAL VALVES

Having the same basic construction and cycles of operation as the 4-way valves above, this valve is available in 1/4" through 1" pipe size for air, water and oil service at line pressures up to 100 PSI. Moving the lever to either extreme position pressurizes either cylinder port. A torsion spring located under the operating lever returns the lever to the neutral position when released. It is also available in the 2-position short throw valve.



#### **3-WAY AIR AND HYDRAULIC VALVES**

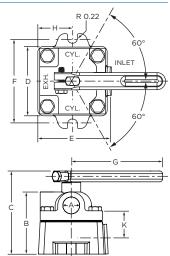
The 3-way valve has two lever positions, pressure and exhaust, and is used to actuate single-acting cylinders.

The body and cap are made of semi-steel, the disc of hard bronze. This construction provides the best friction coefficient for air service and ensures easy operating and long wearing qualities.

These same materials are used for oil hydraulic service along with an O-ring in the body for extra precaution against stem leakage. For Water Service the valve body is constructed of cast bronze, uses a bronze spindle, a Nye-Koted cap, and the stem is equipped with an O-ring.

A 3-way, 3-position valve with a hold position can be had by using a standard 4-way valve and plugging one cylinder port.

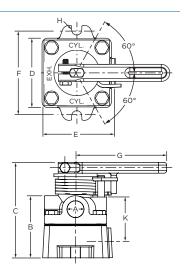



# "FOUNDRY TOUGH" HAND VALVES - DISC TYPE

# **DATA AND DIMENSIONS**

# 4-WAY VALVE, 250 PSI MAX. PRESSURE

| MODEL NUMBER | A<br>(PIPE<br>SIZE) | В      | С       | D     | E      | F     | G     | н     | К       | WEIGHT<br>IN<br>POUNDS |
|--------------|---------------------|--------|---------|-------|--------|-------|-------|-------|---------|------------------------|
| H4( ) 2 ()   | 1/4                 | 1-7/8  | 3       | 2-1/2 | 2-1/2  | 2-3/4 | 4-1/4 | 5/16  | 1-3/16  | 2-1/4                  |
| H4( ) 3 ()   | 3/8                 | 2-1/4  | 3-7/8   | 2-7/8 | 3-1/16 | 3-3/4 | 6-1/8 | 7/16  | 1-9/16  | 4-3/4                  |
| H4( ) 4 ()   | 1/2                 | 2-1/4  | 3-7/8   | 2-7/8 | 3-1/16 | 3-3/4 | 6-1/8 | 7/16  | 1-9/16  | 4-3/4                  |
| H4( ) 6 ()   | 3/4                 | 2-3/4  | 4-7/8   | 3-7/8 | 4      | 4-5/8 | 8     | 9/16  | 1-15/16 | 6                      |
| H4( )8()     | 1                   | 3-1/2  | 5-5/8   | 4-1/4 | 4-1/4  | 5-3/8 | 9     | 9/16  | 2-1/2   | 16-7/8                 |
| H4( ) 10 ()  | 1-1/4               | 5-1/4  | 7-13/16 | 6     | 6-7/16 | 6-3/4 | 12    | 9/16  | 3-3/4   | 29                     |
| H4( ) 12 ()  | 1-1/2               | 5-1/4  | 7-13/16 | 6     | 6-7/16 | 6-3/4 | 12    | 9/16  | 3-3/4   | 29                     |
| H4( ) 16 ()  | 2                   | 6-7/16 | 9-3/4   | 7-1/4 | 7-7/16 | 8-3/8 | 15    | 13/16 | 4-1/2   | 49-1/4                 |

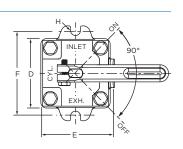

NOTE: 1-1/4" and 1-1/2" valves have 3 mounting lugs on cap.

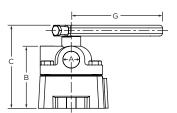


# **DATA AND DIMENSIONS**

# 4-WAY SPRING RETURN TO NEUTRAL VALVE, 100 PSI MAX. PRESSURE

| MODEL<br>NUMBER | A<br>(PIPE<br>SIZE) | В     | С     | D     | E      | F     | G     | н    | К       | WEIGHT<br>IN<br>POUNDS |
|-----------------|---------------------|-------|-------|-------|--------|-------|-------|------|---------|------------------------|
| H4( ) 2 ()      | 1/4                 | 1-7/8 | 3-5/8 | 2-1/2 | 2-1/2  | 2-3/4 | 5-1/2 | 5/16 | 1-3/16  | 2-3/4                  |
| H4( ) 3 ()      | 3/8                 | 2-1/4 | 4-5/8 | 3-1/8 | 3-1/4  | 3-3/4 | 8     | 7/16 | 1-3/4   | 6-5/8                  |
| H4( ) 4 ()      | 1/2                 | 2-1/4 | 4-5/8 | 3-1/8 | 3-1/4  | 3-3/4 | 8     | 7/16 | 1-3/4   | 6-5/8                  |
| H4( )6()        | 3/4                 | 2-3/4 | 4-7/8 | 3-7/8 | 4      | 4-5/8 | 8     | 9/16 | 1-13/16 | 7                      |
| H4( )8()        | 1                   | 3-1/2 | 6-3/8 | 4-1/4 | 4-9/16 | 5-3/8 | 9     | 9/16 | 2-1/2   | 16                     |





# **DATA AND DIMENSIONS**

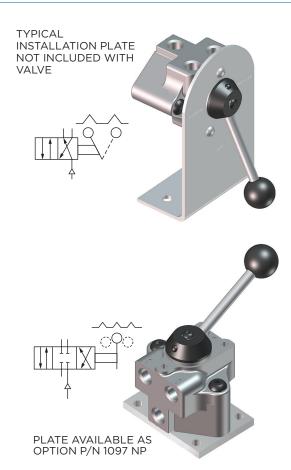
# 3-WAY VALVE, 250 PSI MAX. PRESSURE

| MODEL NUMBER  | A<br>(PIPE<br>SIZE) | В       | С       | D     | E      | F     | G     | н     | WEIGHT<br>IN<br>POUNDS |
|---------------|---------------------|---------|---------|-------|--------|-------|-------|-------|------------------------|
| H3( ) 2 ()    | 1/4                 | 1-7/8   | 3       | 2-1/2 | 2-5/16 | 2-3/4 | 4-1/4 | 5/16  | 2                      |
| H3( ) 3 () •  | 3/8                 | 2-11/16 | 4-3/16  | 3-1/8 | 3-1/16 | 3-3/4 | 6     | 7/16  | 5-1/2                  |
| H3( ) 4 () •  | 1/2                 | 2-11/16 | 4-3/16  | 3-1/8 | 3-1/16 | 3-3/4 | 6     | 7/16  | 5-1/2                  |
| H3( ) 6 () •  | 3/4                 | 2-3/4   | 4-7/8   | 3-7/8 | 4      | 4-5/8 | 8     | 9/16  | 6                      |
| H3( )8()•     | 1                   | 3-1/2   | 5-5/8   | 4-1/4 | 4-1/4  | 5-3/8 | 9     | 9/16  | 16-7/8                 |
| H3( ) 10 () • | 1-1/4               | 5-1/4   | 7-13/16 | 6     | 6-7/16 | 6-3/4 | 12    | 9/16  | 29                     |
| H3( ) 12 () • | 1-1/2               | 5-1/4   | 7-13/16 | 6     | 6-7/16 | 6-3/4 | 12    | 9/16  | 29                     |
| H3( ) 16 () • | 2                   | 6-7/16  | 9-3/4   | 7-1/4 | 7-7/16 | 8-3/8 | 15    | 13/16 | 49-1/4                 |

<sup>• =</sup> This valve is the 4-way of the same pipe size described in the table at the top of this page, with one cylinder port plugged.

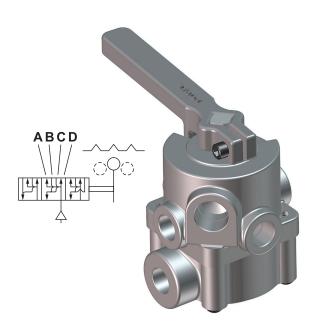






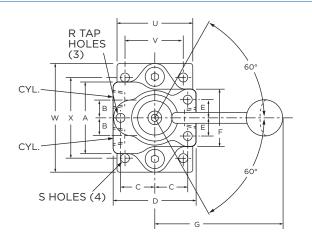

# NOPAK PANEL MOUNTED VALVE

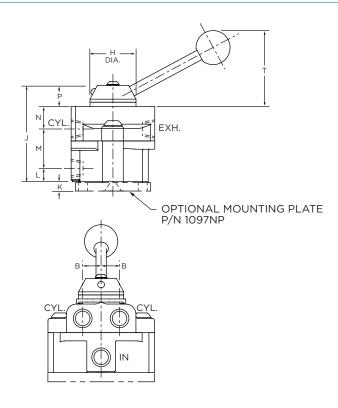
The NOPAK Panel Mounted Valve, Model 250 PM, incorporates the same basic patented construction and sealing features of the reliable and rugged NOPAK Handand Foot-Operated Valves, so well known throughout the industry for many years. The rotating lapped disc feature gives you precision control, sealing surfaces that improve with use, protection against grit, abrasion and wire drawing, pressure sealing, and packless construction.


The NOPAK Panel Mounted Valve is suitable for air and oil pressures to 250 PSI, and is presently offered in the 1/4" pipe size only. All-position detents are standard. An exhaust in neutral cycle is also available. The valve can also be furnished as 2-position short throw, which also includes detents as standard.

Panel mounting of the valve itself is easily accomplished by inserting the hand lever and pilot hub section through the panel and securing the valve by three cap screws. An optional detachable foot mounting plate is also available where panel mounting is not required or desired, NOPAK P/N 1097 NP.




# **NOPAK DUAL 4-WAY HAND VALVE**


This valve is the equivalent of two 4-way valves in one; it makes it possible to control the action of two double-acting cylinders with a single operating lever. Available in 1/2" size only.



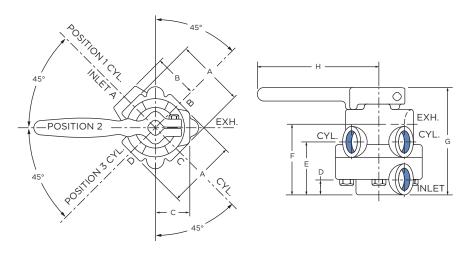
# "FOUNDRY TOUGH" HAND VALVES - DISC TYPE

# **DATA AND DIMENSIONS**





| MODEL<br>NUMBER | PIPE<br>SIZE | A     | В    | С | D     | E   | F     | G     | н     | J       | K   | L   | М      | N   | Р   | R      | S    | Т     | U     | ٧     | W     | x     |
|-----------------|--------------|-------|------|---|-------|-----|-------|-------|-------|---------|-----|-----|--------|-----|-----|--------|------|-------|-------|-------|-------|-------|
| 250 PM ()       | 1/4          | 2-1/8 | 9/16 | 1 | 2-1/2 | 1/2 | 1-3/4 | 3-7/8 | 1-3/8 | 2-15/16 | 1/4 | 1/2 | 1-3/16 | 5/8 | 1/8 | 1/4-20 | 9/32 | 2-1/2 | 2-1/4 | 1-3/4 | 3-1/4 | 2-1/2 |


# **DATA AND DIMENSIONS**

# **DUAL 4-WAY VALVE, 250 PSI MAX. PRESSURE**

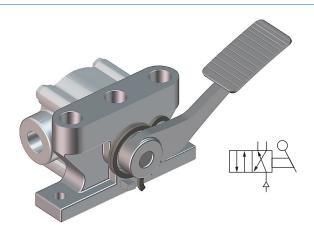
| MODEL<br>NUMBER | PIPE SIZE | A | В     | С | D   | E      | F      | G     | н | WEIGHT IN POUNDS |
|-----------------|-----------|---|-------|---|-----|--------|--------|-------|---|------------------|
| HD4()4()        | 1/2       | 4 | 2-1/4 | 2 | 7/8 | 2-9/16 | 3-7/16 | 5-3/8 | 6 | 8                |

# **VALVE FUNCTION**

| LEVER<br>POSITION | PRESSURE<br>PORTS | EXHAUST<br>PORTS |
|-------------------|-------------------|------------------|
| 1                 | A-C               | B-D              |
| 2                 | A-D               | B-C              |
| 3                 | B-D               | A-C              |



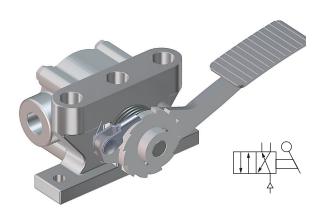



NOPAK Foot-Operated Valves incorporate all the features found in the NOPAK Hand-Operated models, including the lapped disc type design with the packless spindle construction.

In addition to the standard valves for air service, NOPAK Foot-Operated Valves are available for oil service at additional cost.

# **MODEL R**

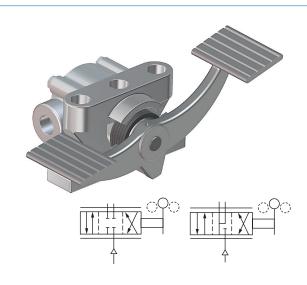
MODEL R VALVE has an oscillating disc with no neutral position. The valve spindle is pinned to the foot pedal. When pedal is up, the line pressure is always on Port No. 1 with Port No. 2 open to exhaust. When pedal is depressed 30°, cycle reverses, that is, line pressure is on Port No. 2 and Port No. 1 is open to exhaust. When pedal is released, the torque spring returns pedal to original position with pressure again on Port No. 1.


This valve can be used as a 3-way valve, for a single-acting cylinder, by inserting a pipe plug in one cylinder port. It can also be used as a spring-return shut-off valve, as follows: (a) Normally Closed by plugging Port No. 1 and exhaust; (b) Normally Open by plugging Port No. 2 and exhaust; (c) Bleeder arrangement for (a) or (b) is obtained by omitting plug in exhaust port.



# **MODEL F**

**MODEL F VALVE** utilizes a pawl driven ratchet for rotation of the disc which has no neutral position.


The valve spindle is pinned to the ratchet. Let us assume that line pressure is on Port No. 1. Then, when foot pedal is depressed, the pawl, attached thereto, engages the ratchet and rotates it 30°, thereby reversing the valve cycle. When pedal is released, the torque spring returns pedal, but position of ratchet does not change. A second depression of pedal rotates ratchet a further 30°, again putting line pressure on Port No. 1. This model is particularly suited to applications in which the operator is required to leave the valve after depressing the foot pedal. This valve can also be used as a 3-way or shut-off valve, as described under Model R.



# **MODEL RN**

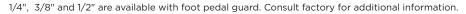
**MODEL RN VALVE** Double-Pedal, Foot-Operated, has a "NEUTRAL" or "SHUT-OFF" position in which both cylinder ports and exhaust ports are closed to pressure. It can be employed as an inching valve, its neutral holding position permitting an air cylinder to be positioned and held at any point along the full length of its stroke. This valve can also be furnished with cylinder ports open to exhaust in neutral position.

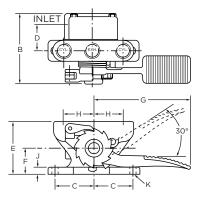
MODEL RN can also be furnished without spring-return to neutral, for either or both pedals. When spring-return is eliminated, the respective foot pedal rests in the "ON" position, holding the cylinder under pressure until operator steps on opposite pedal.



# **DATA AND DIMENSIONS**

# **MODEL R VALVE, 125\* PSI MAX. PRESSURE**


| MODEL<br>NUMBER | PIPE<br>SIZE | В      | С      | D       | E      | F       | G     | н     | J   | к    | WEIGHT<br>IN<br>POUNDS |
|-----------------|--------------|--------|--------|---------|--------|---------|-------|-------|-----|------|------------------------|
| FR()2           | 1/4          | 5-1/16 | 2-9/16 | 1-11/16 | 3-9/16 | 1-13/16 | 6-1/2 | 2     | 1/2 | 7/16 | 10                     |
| FR()3           | 3/8          | 5-1/16 | 2-9/16 | 1-11/16 | 3-9/16 | 1-13/16 | 6-1/2 | 2     | 1/2 | 7/16 | 10                     |
| FR()4           | 1/2          | 5-1/16 | 2-9/16 | 1-11/16 | 3-9/16 | 1-13/16 | 6-1/2 | 2     | 1/2 | 7/16 | 10                     |
| FR()6           | 3/4          | 5-7/8  | 3-1/4  | 1-15/16 | 4-5/16 | 2-5/16  | 6-1/2 | 2-1/4 | 5/8 | 9/16 | 14-5/8                 |
| FR()8           | 1            | 5-7/8  | 3-1/4  | 1-15/16 | 4-5/16 | 2-5/16  | 6-1/2 | 2-1/4 | 5/8 | 9/16 | 14-5/8                 |

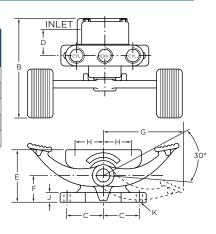

1/4", 3/8" and 1/2" are available with foot pedal guard. Consult factory for additional information.

# **DATA AND DIMENSIONS**

# **MODEL F VALVE, 250 PSI MAX. PRESSURE**

| MODEL<br>NUMBER | PIPE<br>SIZE | В      | С      | D       | E      | F       | G     | н     | J   | К    | WEIGHT<br>IN<br>POUNDS |
|-----------------|--------------|--------|--------|---------|--------|---------|-------|-------|-----|------|------------------------|
| FF()2           | 1/4          | 4-9/16 | 2-9/16 | 1-11/16 | 3-9/16 | 1-13/16 | 6-7/8 | 2     | 1/2 | 7/16 | 10                     |
| FF()3           | 3/8          | 4-9/16 | 2-9/16 | 1-11/16 | 3-9/16 | 1-13/16 | 6-7/8 | 2     | 1/2 | 7/16 | 10                     |
| FF()4           | 1/2          | 4-9/16 | 2-9/16 | 1-11/16 | 3-9/16 | 1-13/16 | 6-7/8 | 2     | 1/2 | 7/16 | 10                     |
| FF()6           | 3/4          | 5-7/8  | 3-1/4  | 1-15/16 | 4-5/16 | 2-5/16  | 6-7/8 | 2-1/4 | 5/8 | 9/16 | 14-5/8                 |
| FF()8           | 1            | 5-7/8  | 3-1/4  | 1-15/16 | 4-5/16 | 2-5/16  | 6-7/8 | 2-1/4 | 5/8 | 9/16 | 14-5/8                 |






# **DATA AND DIMENSIONS**

# **MODEL RN VALVE, 125\* PSI MAX. PRESSURE**

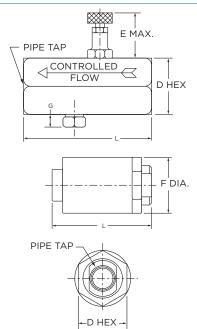
| MODEL<br>NUMBER | PIPE<br>SIZE | В      | С      | D       | E      | F       | G     | н     | J   | К    | WEIGHT<br>IN<br>POUNDS |
|-----------------|--------------|--------|--------|---------|--------|---------|-------|-------|-----|------|------------------------|
| FRN() 2 ()      | 1/4          | 6-9/16 | 2-9/16 | 1-11/16 | 3-9/16 | 1-13/16 | 5-5/8 | 2     | 1/2 | 7/16 | 11-3/4                 |
| FRN() 3 ()      | 3/8          | 6-9/16 | 2-9/16 | 1-11/16 | 3-9/16 | 1-13/16 | 5-5/8 | 2     | 1/2 | 7/16 | 11-3/4                 |
| FRN() 4 ()      | 1/2          | 6-9/16 | 2-9/16 | 1-11/16 | 3-9/16 | 1-13/16 | 5-5/8 | 2     | 1/2 | 7/16 | 11-3/4                 |
| FRN()6()        | 3/4          | 7-1/4  | 3-1/4  | 1-15/16 | 4-5/16 | 2-5/16  | 5-5/8 | 2-1/4 | 5/8 | 9/16 | 16-3/4                 |
| FRN()8()        | 3/4          | 7-1/4  | 3-1/4  | 1-15/16 | 4-5/16 | 2-5/16  | 5-5/8 | 2-1/4 | 5/8 | 9/16 | 16-3/4                 |

 $<sup>^{</sup>st}$  This maximum pressure is limited by the returning power of the foot lever spring. Suitable for 250 PSI if returned by foot, not spring.



<sup>\*</sup> Model R maximum pressure is limited by the returning power of the foot lever spring.




# NOPAK FLOTROL VALVES - AVAILABLE IN TWO BODY STYLES, FIVE PIPE SIZES

Features of the NOPAK Flotrol include full pipe area through the valve and a compact design that holds space requirements to a minimum and easy installation in the line. Valves are constructed of rust and corrosion resistant materials throughout and are adaptable to most industrial fluids.

Flotrol valves are available in two body styles that offer a total of five different pipe sizes ranging from 1/4" to 1" NPT. They are designed to handle pressures up to 2000 PSI in the 1/4", 3/8" and 1/2" sizes and to 300 PSI in the 3/4" and 1" sizes.

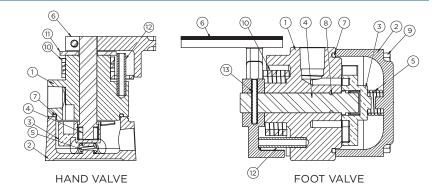
Bodies of the 1/4", 3/8" and 1/2" pipe sizes are machined from solid hexagon bronze bar stock. An aluminum body and bronze interior construction is used for the 3/4" and 1" models.

Control of the amount of flow going through the 1/4", 3/8" and 1/2" model Flotrols is regulated by a combination stainless steel needle valve and floating piston and spring assemblies. Flow through the 3/4" and 1" valves is adjusted by rotating a center floating sleeve - the sleeve acting as a union in the piping. Only 180° rotation is required from closed to full open.



# **DIMENSIONS**

| MODEL<br>NUMBER | PIPE<br>SIZES | D      | E     | F     | G    | L      |
|-----------------|---------------|--------|-------|-------|------|--------|
| SC-2            | 1/4           | 7/8    | 1-1/4 | -     | 7/32 | 2-3/8  |
| SC-3            | 3/8           | 1-1/16 | 1-3/8 | -     | 1/4  | 2-3/4  |
| SC-4            | 1/2           | 1-5/16 | 1-3/8 | -     | 9/32 | 3-3/16 |
| SC-6            | 3/4           | 2-3/16 | -     | 2-1/2 | -    | 4      |
| SC-8            | 1             | 2-3/16 | -     | 2-1/2 | -    | 4      |

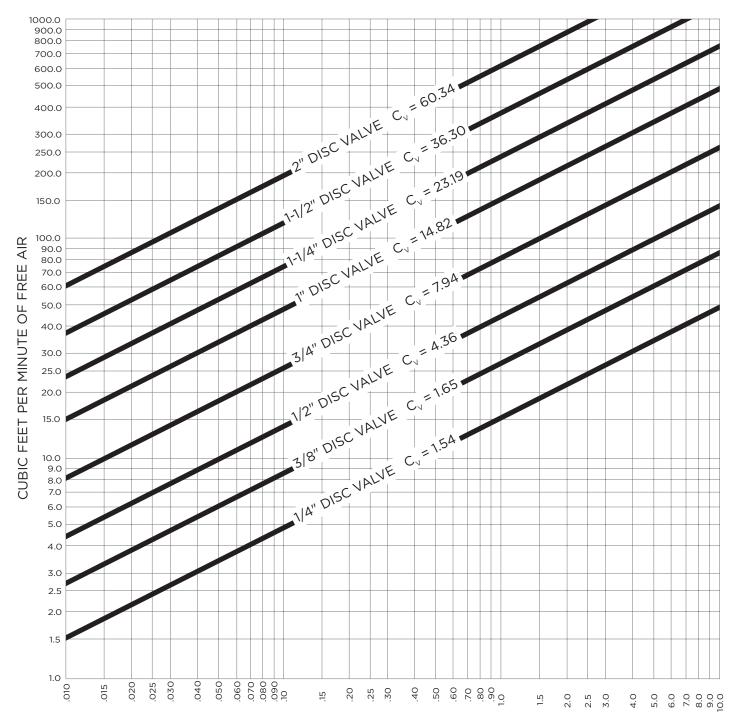

# PARTS LIST - NOPAK DISC VALVES

# HAND / FOOT / SPECIAL PURPOSE MODELS

- 1. Valve body
- Valve cap
- 3.
- valve uisc Valve spindle ] (one piece on some earlier models) 4.
- Disc spring
- Lever (hand, foot, operating) complete 6.
- Body O-ring (hydraulic use only)
- 8. Spindle O-ring (hydraulic use only) - 3" size and up
- Cap screws (not shown)

#### **SPRING RETURN MODELS**

- 10 Return spring
- 11. Washer
- Spring stop




# **REPLACEMENT PARTS - NOPAK DISC VALVES**

When ordering replacement parts, please give the following information: Name of Part, Part Number, Dash No. (Pipe Size of valve), Type of Valve (full description: Manifold Valve, Spring Return Valve), and if possible, the Purchase Order Number on which the original valve was purchased. The valve body and valve disc should be replaced as a unit.



Note especially the simple rugged design, minimum number of parts.



PRESSURE DROP IN PSI ( $\Delta P$ )  $P_s$  = 100 PSIG

For other values of  $P_s$   $\frac{100}{P_s} (\Delta P_{100}) = \Delta P_s$ 



# SERIES 310, 320, 410 & 420

HIGH SPEED, HIGH VOLUME NOPAK-MATIC SINGLE AND DOUBLE SOLENOID VALVES

# **FEATURES AND BENEFITS**

"FLOW-DIRECTOR" PILOT HEAD - Simplifies piping and makes desired valve operation

simple by piping to the proper port.

**INTERCHANGEABLE PILOT HEADS - Any** pilot head fits any

valve, regardless of type or size.

# **SOLENOIDS** -

Low amperage, continuously rated industrial type with hardened plunger faces.

REPLACEABLE, SELF-CLEANING

**SEATS** - Fast and inexpensive replacement of all seats. Poppets do not seat on valve body.

POSITIVE SEALING - Resilient, bonded poppet seals ensure leakproof operation and long life.

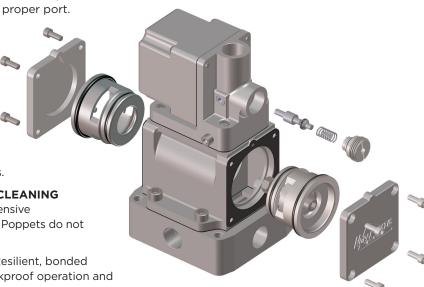
RAPID RESPONSE - Valve shifts in less than .05 of a second.

FULL FLOW - All passages oversized for minimum pressure drop through the valve (up to 1").

NO SPRINGS - Piston-poppets shift with air pressure.

**LIGHT WEIGHT, COMPACT -** Aluminum used extensively for smaller overall dimensions. Every model has a clean, neat appearance that complements modern machine design. Base mounting is provided, but light weight of valves permits in-line mounting of largest valve.

**CORROSION RESISTANT -** All materials corrosion resistant.


PART INTERCHANGEABILITY - Design allows maximum part interchangeability from one valve to another and perfect "non-selected" fit of factory shipped maintenance parts.

**SIMPLIFIED PIPING -** Exclusive "Flow-Director" allows piping with fewer fittings...makes fewer valves adaptable to more applications. See page 155.

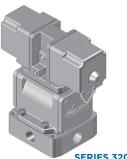
MANIFOLD MOUNTING - Multiple valves of the various series or sizes can be mounted on a common manifold requiring only one inlet and exhaust.

# **ADDITIONAL FEATURES**

- Subplate mounted
- Splash- and dust-proof solenoid covers
- Manual solenoid pushbuttons
- · Covers chained to valve
- Solenoid inoperative with covers removed





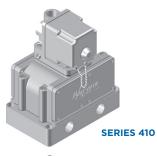



**SERIES 300** 



**SERIES 310PP** 






**SERIES 320** 

# FEATURES AND BENEFITS ORDERING INFORMATION









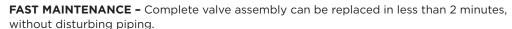
# **SERIES 310PP & 410PP**

COMPACT, RELIABLE NOPAK-MATIC SINGLE SOLENOID VALVES

# **FEATURES AND BENEFITS**

**ALL PURPOSE -** Developed especially as a compact, rugged, economically priced valve to solve the most demanding solenoid pilot operated air valve applications.

FOR ALL ATMOSPHERIC CONDITIONS AND APPLICATIONS - Simple pilot head operator is tolerant to dry, unlubricated air and dusty atmospheric conditions. Ideal for heavyduty batching plant, construction, excavation and foundry applications.


**FAST ACTION -** Produces instantaneous valve response, even after long periods of solenoid energization or de-energization.

**MANUAL OVERRIDE -** Solenoid pilot available with manual override.

**Single Unit -** One pilot head fits all pipe size standard NOPAK-Matic master valves.

**LOW WATTAGE -** Efficient solenoid pilot rated at 10 operating watts in closed position.

**EXPLOSION PROOF** - As well as specially impregnated solenoid coils are available for hazardous, wet or high temperature environments.



**REPLACEABLE, SELF-CLEANING SEATS -** Fast and inexpensive to replace. Only two seat sizes required to fit all valves and are completely interchangeable within the valve or with other valves.

This valve is available with operating pressures to 125 PSI air in the 310PP and 410PP single-solenoid series only. In the case of the 4-way, when the solenoid is energized, pressure is admitted to one cylinder port, the opposite cylinder port being open to exhaust. When the solenoid is de-energized, the cycle is reversed.

Seats Replaceable Without Disturbing Plumbing.



# **HOW TO ORDER**

WHEN ORDERING VALVES WITHOUT A SOLENOID, BE SURE TO SPECIFY: (1) Model Number and (2) Pipe Size. Unless otherwise specified, all valves shipped are for standard air service. If the "make-up bleed" feature is required, it must be ordered as such.

WHEN ORDERING VALVES WITH SOLENOID, BE SURE TO SPECIFY: (1) Model Number, (2) Pipe Size and (3) Voltage and Cycle. Unless otherwise specified, all valves are shipped for standard air service, with 115V/60 solenoids.

WHEN ORDERING VALVES FOR LOW PRESSURE (BELOW 15 PSI) OR VACUUM OPERATION, BE SURE TO SPECIFY: Remote pilot supply and add suffix "M2" to the model number.

WHEN ORDERING PARTS, BE SURE TO SPECIFY: (1) Model Number, (2) Pipe Size, (3) Item Number, (4) Part Name, (5) Part Number and (6) Voltage and Cycle.



# **3-WAY AND 4-WAY VALVE USE**

# **USE 3-WAY NOPAK-MATIC VALVES:**

- To control single-acting (spring-return) cylinders.
- To control double-acting cylinders:
  - Piping one 3-way valve at each end of the cylinder provides both quick exhaust and immediate pressure supply for extremely fast cylinder operation.
  - On long-stroke cylinders, using two 3-way valves eliminates filling and exhausting long lengths of pipe, thus reducing air consumption and increasing cylinder speed.
- To provide two pressure operation of a double-acting cylinder. Regulated pressure is directed to one end of cylinder through a 3-way valve, and line pressure to the other end of cylinder through the other 3-way valve.
- To provide directional control. Pressure can be piped to the outlet port and flow directed to either Port "A" or Port "B".

# **USE 4-WAY NOPAK-MATIC VALVES:**

- To obtain reciprocating action of double-acting cylinders.
- To operate long-stroke double-acting cylinders when maximum speed is not of prime importance.
- To obtain fast action and quick reversal of short-stroke cylinders.
- To provide control of low pressure and vacuum operation. Valve is modified by the addition of springloaded piston-poppet valve seat assemblies and may require remote pilot supply. (Also applicable to 3-Ways.) See Engineering Section.
- To control fluids other than air. In this case, fluid is piped into the valve body and pilot air pressure is brought to the pilot head from a remote source. See Engineering Section.

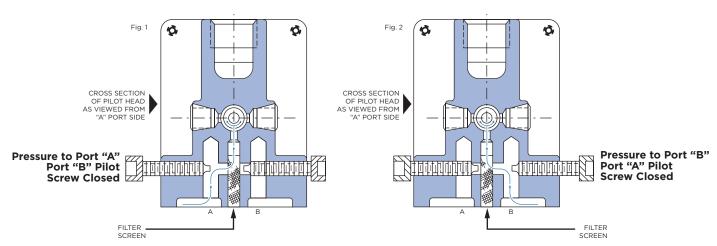
| SERIES 300, 310PP, 310 AND 320 3-WAY VALVES FOR                    | MODEL AND PIPE SIZE |       |           |       |       |       |       |  |  |  |  |
|--------------------------------------------------------------------|---------------------|-------|-----------|-------|-------|-------|-------|--|--|--|--|
| NORMALLY ÓPEN ÓR NORMALLY CLOSED OPERATION                         | 1/4                 | 3/8   | 1/2•      | 1/2   | 3/4   | 1     | 1-1/4 |  |  |  |  |
| Series 300 Master valves for remote control                        | 300                 | 301   | 301-1/2   | 302   | 303   | 304   | 305   |  |  |  |  |
| Series 310PP Special purpose, single solenoid                      | 310PP               | 311PP | 311-1/2PP | 312PP | 313PP | 314PP | 315PP |  |  |  |  |
| Series 310 Single solenoid valves<br>with spring-return pilot head | 310                 | 311   | 311-1/2   | 312   | 313   | 314   | 315   |  |  |  |  |
| Series 320 Double solenoid valves<br>(momentary contact-type)      | 320                 | 321   | 321-1/2   | 322   | 323   | 324   | 325   |  |  |  |  |

• = Models 301-1/2, 311-1/2 and 321-1/2 are 3/8" valves modified for 1/2" Ports.

| CERTES 400 410RR 410 AND 420 4 WAY VALVES                          | MODEL AND PIPE SIZE |       |           |       |       |       |       |  |  |  |
|--------------------------------------------------------------------|---------------------|-------|-----------|-------|-------|-------|-------|--|--|--|
| SERIES 400, 410PP, 410 AND 420 4-WAY VALVES                        | 1/4                 | 3/8   | 1/2•      | 1/2   | 3/4   | 1     | 1-1/4 |  |  |  |
| Series 400 Master valves for remote control                        | 400                 | 401   | 401-1/2   | 402   | 403   | 404   | 405   |  |  |  |
| Series 410PP Special purpose, single solenoid                      | 410PP               | 411PP | 411-1/2PP | 412PP | 413PP | 414PP | 415PP |  |  |  |
| Series 410 Single solenoid valves<br>with spring-return pilot head | 410                 | 411   | 411-1/2   | 412   | 413   | 414   | 415   |  |  |  |
| Series 420 Double solenoid valves<br>(momentary contact-type)      | 420                 | 421   | 421-1/2   | 422   | 423   | 424   | 425   |  |  |  |

<sup>• =</sup> Models 401-1/2, 411-1/2 and 421-1/2 are 3/8" valves modified for 1/2" Ports.

# **IN-LINE (ON-THE-JOB) MAINTENANCE**


"In-line" maintenance is accomplished with small loss of production time. A NOPAK-Matic valve can be completely serviced in the line in less than fifteen minutes. The cover plates of the valve body, when removed, give immediate access to the piston-poppets and inserted valve seats. These parts are removable as complete assemblies. It is only a matter of minutes to completely replace all moving parts in the main valve. Damage to valve seats machined in the body can never be the cause of a NOPAK-Matic valve malfunctioning, for all valve seats are inserts and completely interchangeable.

# **SUBPLATE MOUNTING**

NOPAK-Matic makes use of subplate mounting of all valves. A complete valve assembly can be replaced in less than two minutes simply by loosening the four mounting screws that hold the valve body assembly to the subplate. Piping need never be disturbed.

Similarly, pilot heads are quickly replaceable as a unit simply by removing the four screws attaching it to the valve body.

Precision machining of all parts and maximum interchange of parts between valves of different types and sizes allow complete service of more than one hundred valve combinations with less than twenty-five individual parts. No waiting for special parts is required to get back in operation when you use NOPAK-Matic. A very small stock of parts is required for complete service of all sizes or types of NOPAK-Matic valves.



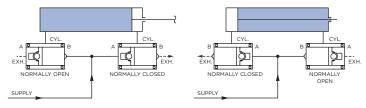
# THE FLOW-DIRECTOR

The Flow-Director®, exclusive with NOPAK-Matic™, gives you the choice of a Normally Closed or Normally Open 3-way valve, without time consuming and complicated reassembly of basic parts, and precludes the expense of buying special valves for each cycle. Also, in 4-way valves, crisscross piping can be eliminated.

The Flow-Director, using two manually set pilot screws, permits line pressure to be directed from the optional supply port to the pilot head.

# **4-WAY SERIES 410 OR 420 SOLENOID VALVES**

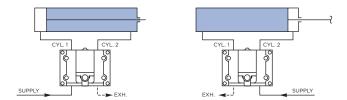
Unless otherwise specified, all 4-way valves are assembled for pressure supply to Port "A" and pilot screws set as in Fig. 1. If line pressure supplied to Port "B" should result in more convenient piping, reverse position of pilot screws (see Fig. 2) as follows: BACK OUT THE PILOT SCREW ABOVE PORT "B" 6 COMPLETE TURNS, counter-clockwise. Then turn in clockwise, the opposite pilot screw, (above Port "A"),


until it solidly bottoms. Then FORCE IN 1/2 TURN MORE, to ensure tight seating.

# **3-WAY SERIES 310 OR 320 SOLENOID VALVES**

Unless otherwise specified, all 3-way valves are assembled for NORMALLY CLOSED operation, with pilot screws set as in Fig. 1: supply to Port "A"; CYL. Port(s) closed to pressure and connected to Port "B" exhaust. For NORMALLY OPEN operation, reverse setting of pilot screws as shown in Fig. 2 and connect pressure supply to Port "B".

# PILOT HEAD FILTER SCREEN


All NOPAK-Matic pilot heads are equipped with a filter screen (see cross section above) to protect the pilot head seals. If screen collects an excessive amount of foreign matter, valve action may be slower than normal. If this occurs, remove and clean screen.



# 3-WAY NORMALLY OPEN OR NORMALLY CLOSED

Piping supply to Port "A" provides Normally Closed operation; supply to Port "B" provides Normally Open operation. Rotating the pilot head 180° (PP Models) or closing one Flow-Director needle or the other is all that's necessary to change operation. All 3-way valves have two cylinder outlet ports for further piping convenience.

The exclusive NOPAK-Matic Flow-Director pilot head selects pilot pressure from whichever port is used as inlet. It eliminates special valves for each application or reassembling parts. Addition of a pipe plug to any NOPAK-Matic 3-way valve converts it for 2-way operation. They can also be used for directional control.



# **ELIMINATE CRISSCROSS PIPING**

All NOPAK-Matic 4-way valves can be piped with pressure to Port "A" or Port "B". Flow through the valve is thus changed to meet the application requirements (rod extended or retracted). Crisscross piping to the cylinder is eliminated. Here again, the Flow-Director pilot head selects pilot pressure from the inlet port. There are no extensive changes to make in the valve...just reset the needles.



# **MASTER VALVES**

# **OPERATION**

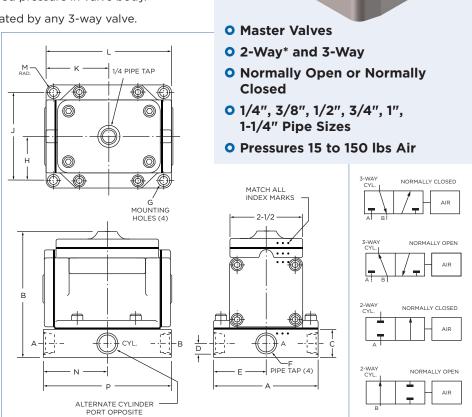
**NORMALLY CLOSED OPERATION** — Supply connected to Port "A", "CYL" Port closed to pressure, Port "B" exhaust.

**NORMALLY OPEN OPERATION** — Supply connected to Port "B", "CYL" Port open to pressure, Port "A" exhaust.

\*2-WAY OPERATION — "For 2-Way Operation" must be so specified on the order as valve must be modified by insertion of poppet return spring in the master valve.

**PLUG EXHAUST PORT** — "B" for Normally Closed operation, "A" for Normally Open operation. Note that two cylinder ports are provided for simplification of piping. A sealing plug is provided for the unused port.

PILOT PRESSURE - Should equal or exceed pressure in valve body.


**ACTUATION** — Master valves can be actuated by any 3-way valve.

# **OPTIONAL FEATURES**

 Series 300 valves can be modified for lower pressures, vacuum operation or service other than air. See Engineering Section.

# **INSTALLATION DATA**

- Valves must have ADEQUATE SUPPLY (VOLUME) and UNRESTRICTED EXHAUST. Supply or exhaust lines should not be reduced more than one pipe size. Speed control valves or other restrictions can be placed in the cylinder supply lines.
- These valves can be operated Normally Open or Normally Closed to pressure simply by changing the piping. See OPERATION above.
- Valves will operate mounted in any position.



# Table 1 Dimension and Installation Data

| SIZE  | MODEL   |        | DIMENSIONS IN INCHES |        |        |         |       |       |         |        |         |         |      |        |        |
|-------|---------|--------|----------------------|--------|--------|---------|-------|-------|---------|--------|---------|---------|------|--------|--------|
| SIZE  | NUMBER  | Α      | В                    | С      | D      | E       | F     | G     | Н       | J      | K       | L       | М    | N      | Р      |
| 1/4   | 300     | 3-9/16 | 4-1/2                | 1-1/8  | 9/16   | 1-25/32 | 1/4   | 17/64 | 1-17/32 | 3-1/16 | 1-29/32 | 3-13/16 | 1/4  | 2-5/32 | 4-5/16 |
| 3/8   | 301     | 3-9/16 | 4-1/2                | 1-1/8  | 9/16   | 1-25/32 | 3/8   | 17/64 | 1-17/32 | 3-1/16 | 1-29/32 | 3-13/16 | 1/4  | 2-5/32 | 4-5/16 |
| 1/2•  | 301-1/2 | 3-9/16 | 4-1/2                | 1-1/8  | 9/16   | 1-25/32 | 1/2   | 17/64 | 1-17/32 | 3-1/16 | 1-29/32 | 3-13/16 | 1/4  | 2-5/32 | 4-5/16 |
| 1/2   | 302     | 4      | 5-1/16               | 1-1/2  | 3/4    | 2       | 1/2   | 21/64 | 1-11/16 | 3-3/8  | 1-3/4   | 3-1/2   | 5/16 | 2-5/32 | 4-5/16 |
| 3/4   | 303     | 4      | 5-1/16               | 1-1/2  | 3/4    | 2       | 3/4   | 21/64 | 1-11/16 | 3-3/8  | 1-3/4   | 3-1/2   | 5/16 | 2-5/32 | 4-5/16 |
| 1     | 304     | 4-1/4  | 6-1/8                | 2-9/16 | 1-3/16 | 2-1/8   | 1     | 11/32 | 1-11/16 | 3-3/8  | 2-15/16 | 5-7/8   | 3/8  | 3-5/16 | 6-5/8  |
| 1-1/4 | 305     | 4-1/4  | 6-1/8                | 2-9/16 | 1-3/16 | 2-1/8   | 1-1/4 | 11/32 | 1-11/16 | 3-3/8  | 2-15/16 | 5-7/8   | 3/8  | 3-5/16 | 6-5/8  |

 $<sup>\</sup>bullet$  = Model 301-1/2 is the standard 301 valve with 1/2" pipe taps.

# SPECIAL PURPOSE SINGLE SOLENOID VALVES

# **FEATURES**

Simple pilot head operator, tolerant to dry, unlubricated air and dusty environment. Ideal for heavy-duty batching plant, construction, excavating and foundry applications. Instantaneous valve response even after long periods of energization or de-energization. Solenoid pilot with manual override. Available for 115, 230, 460 volt A.C.; also D.C.

\*2-WAY OPERATION — "For 2-Way Operation" must be so specified on the order as valve must be modified by insertion of poppet return spring in the master valve.

#### **INSTALLATION DATA**

- 310PP valves are assembled as standard for Normally Closed operation: supply to Port "A", "CYL" Port blocked, Port "B" exhaust.
- Normally Open cycle can be obtained on the 310PP valves only by rotating the pilot head, but not the gasket, 180°. Inlet to Port "B", "CYL" Port open, Port "A" to exhaust in energized position.

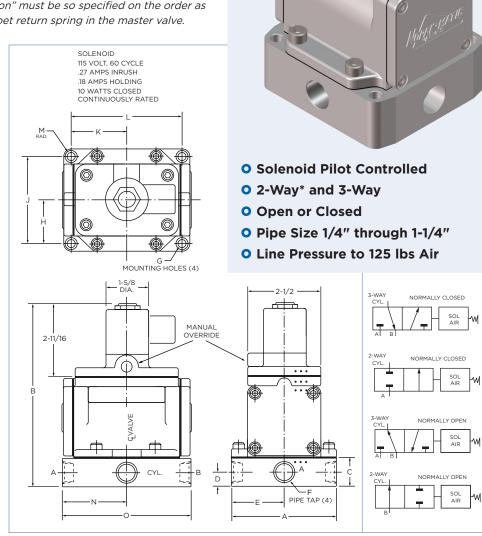



 Table 1
 Dimension and Installation Data

| SIZE | MODEL     |        |        |        |        |         | DII   | MENSION | IS IN INC | IES    |         |         |      |        |        |
|------|-----------|--------|--------|--------|--------|---------|-------|---------|-----------|--------|---------|---------|------|--------|--------|
| SIZE | NUMBER    | Α      | В      | С      | D      | E       | F     | G       | Н         | J      | K       | L       | М    | N      | 0      |
| 1/4  | 310PP     | 3-9/16 | 6-5/8  | 1-1/8  | 9/16   | 1-25/32 | 1/4   | 17/64   | 1-17/32   | 3-1/16 | 1-29/32 | 3-13/16 | 1/4  | 2-5/32 | 4-5/16 |
| 3/8  | 311PP     | 3-9/16 | 6-5/8  | 1-1/8  | 9/16   | 1-25/32 | 3/8   | 17/64   | 1-17/32   | 3-1/16 | 1-29/32 | 3-13/16 | 1/4  | 2-5/32 | 4-5/16 |
| 1/2• | 311-1/2PP | 3-9/16 | 6-5/8  | 1-1/8  | 9/16   | 1-25/32 | 1/2   | 17/64   | 1-17/32   | 3-1/16 | 1-29/32 | 3-13/16 | 1/4  | 2-5/32 | 4-5/16 |
| 1/2  | 312PP     | 4      | 7-3/16 | 1-1/2  | 3/4    | 2       | 1/2   | 21/64   | 1-11/16   | 3-3/8  | 1-3/4   | 3-1/2   | 5/16 | 2-5/32 | 4-5/16 |
| 3/4  | 313PP     | 4      | 7-3/16 | 1-1/2  | 3/4    | 2       | 3/4   | 21/64   | 1-11/16   | 3-3/8  | 1-3/4   | 3-1/2   | 5/16 | 2-5/32 | 4-5/16 |
| 1    | 314PP     | 4-1/4  | 8-1/4  | 2-9/16 | 1-3/16 | 2-1/8   | 1     | 11/32   | 1-11/16   | 3-3/8  | 2-15/16 | 5-7/8   | 3/8  | 3-5/16 | 6-5/8  |
| 1-14 | 315PP     | 4-1/4  | 8-1/4  | 2-9/16 | 1-3/16 | 2-1/8   | 1-1/4 | 11/32   | 1-11/16   | 3-3/8  | 2-15/16 | 5-7/8   | 3/8  | 3-5/16 | 6-5/8  |

 $<sup>\</sup>bullet$  = Model 311-1/2PP is the standard 311PP valve with 1/2" pipe taps.



# SINGLE SOLENOID VALVES

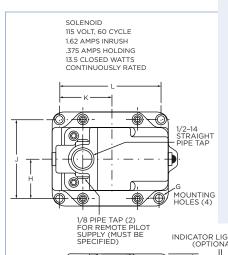
# **OPERATION**

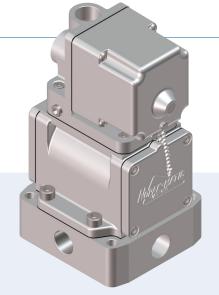
**NORMALLY CLOSED OPERATION** — Supply connected to Port "A", "CYL" Port closed to pressure, Port "B" exhaust.

**NORMALLY OPEN OPERATION** — Supply connected to Port "B", "CYL" Port open to pressure, Port "A" exhaust.

\*2-WAY OPERATION — "For 2-Way Operation" must be so specified on the order as valve must be modified by insertion of poppet return spring in the master valve.

**PLUG EXHAUST PORT** — "B" for Normally Closed operation, "A" for Normally Open operation. Note that two cylinder ports are provided for simplification of piping. A sealing plug is provided for the unused port. Also, on all valves with pilot heads, a remote supply must be


provided to operate properly.


# **OPTIONAL FEATURES**

- Indicator light: a neon pilot light can be provided to indicate the solenoid energizing.
- Solenoids for 115/50, 115/60, 230/50, 230/60, 460/50, 460/60, and 550/60 volt A.C. and 12, 16, 24, 32, 50, 90, 125, and 250 volt D.C. are in stock. Special coils, also heavy-duty and oil-immersed solenoids available on inquiry.
- Series 310 valves can be modified for lower pressures, vacuum operation or service other than air. See Engineering Section.

# **INSTALLATION DATA**

- Valves must have ADEQUATE SUPPLY (VOLUME) and UNRESTRICTED EXHAUST. Supply or exhaust lines should not be reduced more than one pipe size. Speed control valves or other restrictions can be placed in the cylinder supply lines.
- Unless otherwise specified, Flow-Director in pilot head is set for Normally Closed operation. See OPERATION above. For Normally Open operation, setting must be reversed. – Flow-Director.
- If valve must be mounted with solenoid in a vertical position, then valve should be mounted so plunger and pilot stem climb when solenoid is energized. They are returned by spring and gravity.
- These valves should be operated with a remote pilot supply when used for service other than air, or for vacuum operation. See Engineering Section.





- Solenoid Pilot Controlled
- 2-Way\* and 3-Way
- Normally Open or Normally Closed
- 1/4", 3/8", 1/2", 3/4", 1", 1-1/4" Pipe Sizes
- Pressures 15 to 125 lbs Air

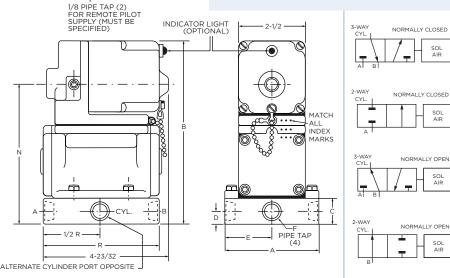



Table 1 Dimension and Installation Data

D.C. solenoids are longer than A.C. shown here. See Engineering Section for D.C. dimensions.

| SIZE  | MODEL   |        | DIMENSIONS IN INCHES |        |        |         |       |       |         |        |         |         |        |        |
|-------|---------|--------|----------------------|--------|--------|---------|-------|-------|---------|--------|---------|---------|--------|--------|
| SIZE  | NUMBER  | Α      | В                    | С      | D      | E       | F     | G     | Н       | J      | K       | L       | N      | R      |
| 1/4   | 310     | 3-9/16 | 7-1/4                | 1-1/8  | 9/16   | 1-25/32 | 1/4   | 17/64 | 1-17/32 | 3-1/16 | 1-29/32 | 3-13/16 | 5-1/2  | 4-5/16 |
| 3/8   | 311     | 3-9/16 | 7-1/4                | 1-1/8  | 9/16   | 1-25/32 | 3/8   | 17/64 | 1-17/32 | 3-1/16 | 1-29/32 | 3-13/16 | 5-1/2  | 4-5/16 |
| 1/2•  | 311-1/2 | 3-9/16 | 7-1/4                | 1-1/8  | 9/16   | 1-25/32 | 1/2   | 17/64 | 1-17/32 | 3-1/16 | 1-29/32 | 3-13/16 | 5-1/2  | 4-5/16 |
| 1/2   | 312     | 4      | 7-25/32              | 1-1/2  | 3/4    | 2       | 1/2   | 21/64 | 1-11/16 | 3-3/8  | 1-3/4   | 3-1/2   | 6-1/16 | 4-5/16 |
| 3/4   | 313     | 4      | 7-25/32              | 1-1/2  | 3/4    | 2       | 3/4   | 21/64 | 1-11/16 | 3-3/8  | 1-3/4   | 3-1/2   | 6-1/16 | 4-5/16 |
| 1     | 314     | 4-1/4  | 8-3/4                | 2-9/16 | 1-3/16 | 2-1/8   | 1     | 21/64 | 1-11/16 | 3-3/8  | 2-15/16 | 5-7/8   | 7-1/4  | 6-5/8  |
| 1-1/4 | 315     | 4-1/4  | 8-3/4                | 2-9/16 | 1-3/16 | 2-1/8   | 1-1/4 | 21/64 | 1-11/16 | 3-3/8  | 2-15/16 | 5-7/8   | 7-1/4  | 6-5/8  |

<sup>• =</sup> Model 311-1/2 is the standard 311 valve with 1/2" pipe taps.

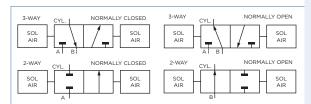
# **DOUBLE SOLENOID VALVES**

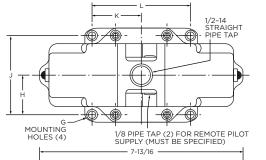
#### **OPERATION**

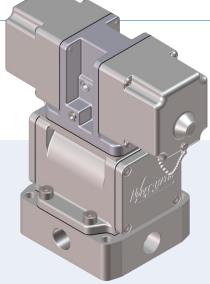
**NORMALLY CLOSED OPERATION** — Supply connected to Port "A", "CYL" Port closed to pressure, Port "B" exhaust.

**NORMALLY OPEN OPERATION** — Supply connected to Port "B", "CYL" Port open to pressure, Port "A" exhaust.

\*2-WAY OPERATION — "For 2-Way Operation" must be so specified on the order as valve must be modified by insertion of poppet return spring in the master valve.


**PLUG EXHAUST PORT** — "B" for Normally Closed operation, "A" for Normally Open operation. Note that two cylinder ports are provided for simplification of piping. A sealing plug is provided for the unused port. Also, on all valves with pilot heads, a remote supply must be provided to operate properly.


# **OPTIONAL FEATURES**


- Indicator light: a neon pilot light can be provided to indicate the solenoid energizing.
- Solenoids for 115/50, 115/60, 230/50, 230/60, 460/50, 460/60, and 550/60 volt A.C. and 12, 16, 24, 32, 50, 90, 125, and 250 volt D.C. are in stock. Heavy-duty 115 volt 60 cycle and oil immersed 115 volt 60 cycle are also in stock. Special coils, also heavy-duty and oil immersed solenoids, available on inquiry.
- Series 320 valves can be modified for lower pressures, vacuum operation or service other than air. See Engineering Section.

#### **INSTALLATION DATA**

- Valves must have ADEQUATE SUPPLY (VOLUME) and UNRESTRICTED EXHAUST. Supply or exhaust lines should not be reduced more than one pipe size. Speed control valves or other restrictions can be placed in the cylinder supply lines.
- Unless otherwise specified, Flow-Director in pilot head is set for Normally Closed operation. See OPERATION above. For Normally Open operation, setting must be reversed. See Engineering Section – Flow-Director.
- Valves will operate mounted in any position that results in the solenoids being placed in a horizontal position.
- These valves should be operated with a remote pilot supply when used for service other than air, or for vacuum operation.
   See Engineering Section.







- Solenoid Pilot Controlled
- O Momentary Contact Type
- 2-Way\* and 3-Way
- Normally Open or Normally Closed
- 1/4", 3/8", 1/2", 3/4", 1", 1-1/4" Pipe Sizes
- O Pressures 15 to 150 lbs Air

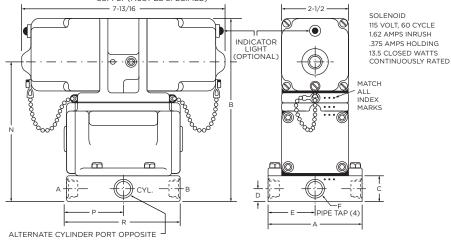



Table 1 Dimension and Installation Data

D.C. solenoids are longer than A.C. shown here. See Engineering Section for D.C. dimensions.

| 0177  | MODEL   |        | DIMENSIONS IN INCHES |        |        |         |       |       |         |        |         |         |        |        |        |
|-------|---------|--------|----------------------|--------|--------|---------|-------|-------|---------|--------|---------|---------|--------|--------|--------|
| SIZE  | NUMBER  | Α      | В                    | С      | D      | E       | F     | G     | Н       | J      | K       | L       | N      | Р      | R      |
| 1/4   | 320     | 3-9/16 | 7-1/4                | 1-1/8  | 9/16   | 1-25/32 | 1/4   | 17/64 | 1-17/32 | 3-1/16 | 1-29/32 | 3-13/16 | 5-1/2  | 2-5/32 | 4-5/16 |
| 3/8   | 321     | 3-9/16 | 7-1/4                | 1-1/8  | 9/16   | 1-25/32 | 3/8   | 17/64 | 1-17/32 | 3-1/16 | 1-29/32 | 3-13/16 | 5-1/2  | 2-5/32 | 4-5/16 |
| 1/2•  | 321-1/2 | 3-9/16 | 7-1/4                | 1-1/8  | 9/16   | 1-25/32 | 1/2   | 17/64 | 1-17/32 | 3-1/16 | 1-29/32 | 3-13/16 | 5-1/2  | 2-5/32 | 4-5/16 |
| 1/2   | 322     | 4      | 7-25/32              | 1-1/2  | 3/4    | 2       | 1/2   | 21/64 | 1-11/16 | 3-3/8  | 1-3/4   | 3-1/2   | 6-1/16 | 2-5/32 | 4-5/16 |
| 3/4   | 323     | 4      | 7-25/32              | 1-1/2  | 3/4    | 2       | 3/4   | 21/64 | 1-11/16 | 3-3/8  | 1-3/4   | 3-1/2   | 6-1/16 | 2-5/32 | 4-5/16 |
| 1     | 324     | 4-1/4  | 8-3/4                | 2-9/16 | 1-3/16 | 2-1/8   | 1     | 21/64 | 1-11/16 | 3-3/8  | 2-15/16 | 5-7/8   | 7-1/4  | 3-5/16 | 6-5/8  |
| 1-1/4 | 325     | 4-1/4  | 8-3/4                | 2-9/16 | 1-3/16 | 2-1/8   | 1-1/4 | 21/64 | 1-11/16 | 3-3/8  | 2-15/16 | 5-7/8   | 7-1/4  | 3-5/16 | 6-5/8  |

• = Model 321-1/2 is the standard 321 valve with 1/2" pipe taps.



# **MASTER VALVES**

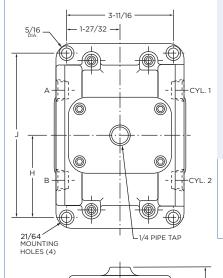
#### **OPERATION**

**Port "A" INLET** — Supply connected to Port "A", "CYL 2" Port open to pressure, "CYL 1" Port open to exhaust through Port "B".

**Port "B" INLET —** Supply connected to Port "B", "CYL 1" Port open to pressure, "CYL 2" Port open to exhaust through Port "A".

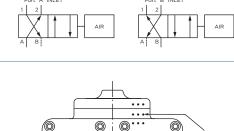
**PILOT PRESSURE** — Should equal or exceed pressure in valve body.

**ACTUATION** — Master valves can be actuated by any


3-way valve.

#### **OPTIONAL FEATURES**

 Series 400 valves can be modified for lower pressures, vacuum operation or service other than air. See Engineering Section.


# **INSTALLATION DATA**

- Valves must have ADEQUATE SUPPLY (VOLUME) and UNRESTRICTED EXHAUST. Supply or exhaust lines should not be reduced more than one pipe size. Speed control valves or other restrictions can be placed in the cylinder supply lines.
- These valves can be piped with either Port "A" or Port "B" as inlet. See OPERATION above.
- Valves will operate mounted in any position.





- 4-Way
- 1/4", 3/8", 1/2", 3/4", 1", 1-1/4" Pipe Sizes
- O Pressures 15 to 150 lbs Air



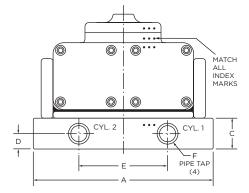



Table 1 Dimension and Installation Data

| SIZE  | MODEL   |       | DIMENSIONS IN INCHES |        |     |         |       |        |       |         |        |        |
|-------|---------|-------|----------------------|--------|-----|---------|-------|--------|-------|---------|--------|--------|
| SIZE  | NUMBER  | Α     | В                    | С      | D   | E       | F     | Н      | J     | K       | L      | М      |
| 1/4   | 400     | 6-1/8 | 4-11/16              | 1-1/8  | 1/2 | 2-9/16  | 1/4   | 2-3/4  | 5-1/2 | 2-5/32  | 4-5/16 | 2-5/32 |
| 3/8   | 401     | 6-1/8 | 4-11/16              | 1-1/8  | 1/2 | 2-9/16  | 3/8   | 2-3/4  | 5-1/2 | 2-5/32  | 4-5/16 | 2-5/32 |
| 1/2•  | 401-1/2 | 6-1/8 | 4-11/16              | 1-1/8  | 1/2 | 2-9/16  | 1/2   | 2-3/4  | 5-1/2 | 2-5/32  | 4-5/16 | 2-5/32 |
| 1/2   | 402     | 7     | 5-13/16              | 1-7/16 | 3/4 | 3       | 1/2   | 3-3/16 | 6-3/8 | 2-5/32  | 4-5/16 | 2-5/32 |
| 3/4   | 403     | 7     | 5-13/16              | 1-7/16 | 3/4 | 3       | 3/4   | 3-3/16 | 6-3/8 | 2-5/32  | 4-5/16 | 2-5/32 |
| 1     | 404     | 7-1/4 | 6-7/8                | 2      | 1   | 2-15/16 | 1     | 3-3/16 | 6-3/8 | 2-27/32 | 5      | 2-5/32 |
| 1-1/4 | 405     | 7-1/4 | 6-7/8                | 2      | 1   | 2-15/16 | 1-1/4 | 3-3/16 | 6-3/8 | 2-27/32 | 5      | 2-5/32 |

<sup>• =</sup> Model 401-1/2 is the standard 401 valve with 1/2" pipe taps.

# SPECIAL PURPOSE SINGLE SOLENOID VALVES

# **FEATURES**

Simple pilot head operator, tolerant to dry, unlubricated air and dusty environment. Ideal for heavy-duty batching plant, construction, excavating and foundry applications. Instantaneous valve response even after long periods of energization or de-energization. Pilot with manual override. Available for 115, 230, 460 volt A.C.; also D.C.

# **INSTALLATION DATA**

 410PP valves are assembled as standard with Port "A" as pressure port. Energizing the solenoid pressurizes "CYL" Port 1 with "CYL" Port 2 open to exhaust. When the solenoid is de-energized, the cycle is reversed.

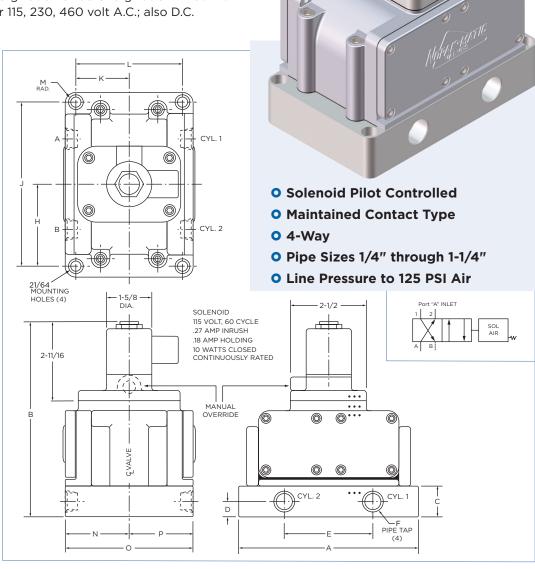



 Table 1
 Dimension and Installation Data

| SIZE  | MODEL     |       | DIMENSIONS IN INCHES |        |     |         |       |        |       |         |         |      |         |        |        |
|-------|-----------|-------|----------------------|--------|-----|---------|-------|--------|-------|---------|---------|------|---------|--------|--------|
| SIZE  | NUMBER    | Α     | В                    | С      | D   | E       | F     | н      | J     | K       | L       | M    | N       | 0      | P      |
| 1/4   | 410PP     | 6-1/8 | 6-13/16              | 1-1/8  | 1/2 | 2-9/16  | 1/4   | 2-3/4  | 5-1/2 | 1-27/32 | 3-11/16 | 1/4  | 2-5/32  | 4-5/16 | 2-5/32 |
| 3/8   | 411PP     | 6-1/8 | 6-13/16              | 1-1/8  | 1/2 | 2-9/16  | 3/8   | 2-3/4  | 5-1/2 | 1-27/32 | 3-11/16 | 1/4  | 2-5/32  | 4-5/16 | 2-5/32 |
| 1/2•  | 411-1/2PP | 6-1/8 | 6-13/16              | 1-1/8  | 1/2 | 2-9/16  | 1/2   | 2-3/4  | 5-1/2 | 1-27/32 | 3-11/16 | 1/4  | 2-5/32  | 4-5/16 | 2-5/32 |
| 1/2   | 412PP     | 7     | 7-15/16              | 1-7/16 | 3/4 | 3       | 1/2   | 3-3/16 | 6-3/8 | 1-3/4   | 3-1/2   | 5/16 | 2-5/32  | 4-5/16 | 2-5/32 |
| 3/4   | 413PP     | 7     | 7-15/16              | 1-7/16 | 3/4 | 3       | 3/4   | 3-3/16 | 6-3/8 | 1-3/4   | 3-1/2   | 5/16 | 2-5/32  | 4-5/16 | 2-5/32 |
| 1     | 414PP     | 7-1/4 | 9                    | 2      | 1   | 2-15/16 | 1     | 3-3/16 | 6-3/8 | 2-15/16 | 5-7/8   | 3/8  | 2-27/32 | 5      | 2-5/32 |
| 1-1/4 | 415PP     | 7-1/4 | 9                    | 2      | 1   | 2-15/16 | 1-1/4 | 3-3/16 | 6-3/8 | 2-15/16 | 5-7/8   | 3/8  | 2-27/32 | 5      | 2-5/32 |

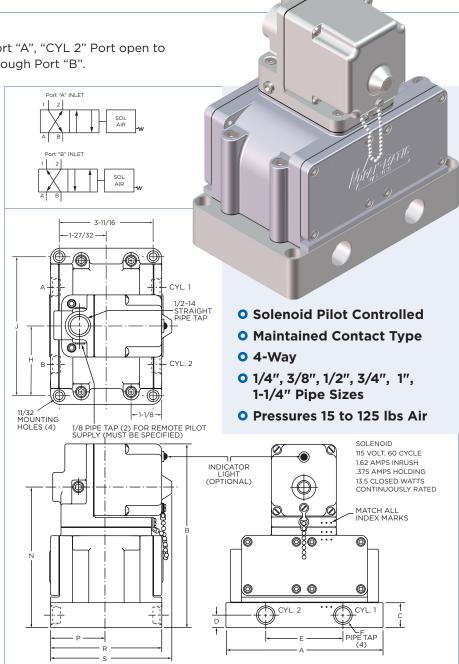
<sup>• =</sup> Model 411-1/22PP is the standard 411PP with 1/2" ports.



# SINGLE SOLENOID VALVES

# **OPERATION**

**Port "A" INLET —** Supply connected to Port "A", "CYL 2" Port open to pressure, "CYL 1" Port open to exhaust through Port "B".


**Port "B" INLET** — Supply connected to Port "B", "CYL 1" Port open to pressure, "CYL 2" Port open to exhaust through Port "A".

# **OPTIONAL FEATURES**

- Indicator light: a neon pilot light can be provided to indicate the solenoid energizing.
- Solenoids for 115/50, 115/60, 230/50, 230/60, 460/50, 460/60, and 550/60 volt A.C. and 12, 16, 24, 32, 50, 90, 125, and 250 volt D.C. are in stock. Heavy-duty 115 volt 60 cycle and oil immersed 115 volt 60 cycle are also in stock. Special coils, also heavy-duty and oil immersed solenoids, available on inquiry.
- Series 410 valves can be modified for lower pressures, vacuum operation or service other than air. See Engineering Section.

#### **INSTALLATION DATA**

- Valves must have ADEQUATE SUPPLY (VOLUME) and UNRESTRICTED EXHAUST.
   Supply or exhaust lines should not be reduced more than one pipe size. Speed control valves or other restrictions can be placed in the cylinder supply lines.
- Unless otherwise specified, Flow-Director in pilot head is set for Port "A" inlet. See OPERATION above. For Port "B" inlet, setting must be reversed. See Engineering Section – Flow-Director.
- If valve must be mounted with solenoid in a vertical position, then valve should be mounted so plunger and pilot stem climb when solenoid is energized.
   They are returned by spring and gravity.
- These valves should be operated with a remote pilot supply when used for service other than air, or for vacuum operation. See Engineering Section.



**Table 1** Dimension and Installation Data

D.C. solenoids are longer than A.C. shown here. See Engineering Section for D.C. dimensions.

| SIZE  | MODEL   |       |         |        |     |         | IMENSI | ONS IN IN | CHES  |       |         |        |         |
|-------|---------|-------|---------|--------|-----|---------|--------|-----------|-------|-------|---------|--------|---------|
| SIZE  | NUMBER  | Α     | В       | С      | D   | E       | F      | Н         | J     | N     | P       | R      | S       |
| 1/4   | 410     | 6-1/8 | 7-7/16  | 1-1/8  | 1/2 | 2-9/16  | 1/4    | 2-3/4     | 5-1/2 | 5-3/4 | 2-5/32  | 4-5/16 | 4-23/32 |
| 3/8   | 411     | 6-1/8 | 7-7/16  | 1-1/8  | 1/2 | 2-9/16  | 3/8    | 2-3/4     | 5-1/2 | 5-3/4 | 2-5/32  | 4-5/16 | 4-23/32 |
| 1/2•  | 411-1/2 | 6-1/8 | 7-7/16  | 1-1/8  | 1/2 | 2-9/16  | 1/2    | 2-3/4     | 5-1/2 | 5-3/4 | 2-5/32  | 4-5/16 | 4-23/32 |
| 1/2   | 412     | 7     | 7-15/16 | 1-7/16 | 3/4 | 3       | 1/2    | 3-3/16    | 6-3/8 | 6-1/4 | 2-5/32  | 4-5/16 | 4-23/32 |
| 3/4   | 413     | 7     | 7-15/16 | 1-7/16 | 3/4 | 3       | 3/4    | 3-3/16    | 6-3/8 | 6-1/4 | 2-5/32  | 4-5/16 | 4-23/32 |
| 1     | 414     | 7-1/4 | 8-7/16  | 2      | 1   | 2-15/16 | 1      | 3-3/16    | 6-3/8 | 6-3/4 | 2-11/16 | 5      | 5-9/32  |
| 1-1/4 | 415     | 7-1/4 | 8-7/16  | 2      | 1   | 2-15/16 | 1-1/4  | 3-3/16    | 6-3/8 | 6-3/4 | 2-11/16 | 5      | 5-9/32  |

<sup>• =</sup> Model 411-1/2 is the standard 411 valve with 1/2" pipe taps.

# **DOUBLE SOLENOID VALVES**

#### **OPERATION**

**Port "A" INLET —** Supply connected to Port "A", "CYL 2" Port open to pressure, "CYL 1" Port open to exhaust through Port "B".

**Port "B" INLET** — Supply connected to Port "B", "CYL 1" Port open to pressure, "CYL 2" Port open to exhaust through Port "A".

# **OPTIONAL FEATURES**

- Indicator light: a neon pilot light can be provided to indicate the solenoid energizing.
- Solenoids for 115/50, 115/60, 230/50, 230/60, 460/50, 460/60, and 550/60 volt A.C. and 12, 16, 24, 32, 50, 90, 125, and 250 volt D.C. are in stock. Heavy-duty 115 volt 60 cycle and oil immersed 115 volt 60 cycle are also in stock. Special coils, also heavy-duty and oil immersed solenoids, available on inquiry.
- 1" and 1-1/4" valves can be modified for lower pressures, vacuum operation or service other than air. See Engineering Section.

# **INSTALLATION DATA**

- Valves must have ADEQUATE SUPPLY (VOLUME) and UNRESTRICTED EXHAUST.
   Supply or exhaust lines should not be reduced more than one pipe size. Speed control valves or other restrictions can be placed in the cylinder supply lines.
- Unless otherwise specified, Flow-Director in pilot head is set for Port "A" inlet. See OPERATION above. For Port "B" inlet, setting must be reversed. See Engineering Section - Flow-Director.
- Valves will operate mounted in any position that results in the solenoids being placed in a horizontal position.
- These valves should be operated with a remote pilot supply when used for service other than air, or for vacuum operation. See Engineering Section.

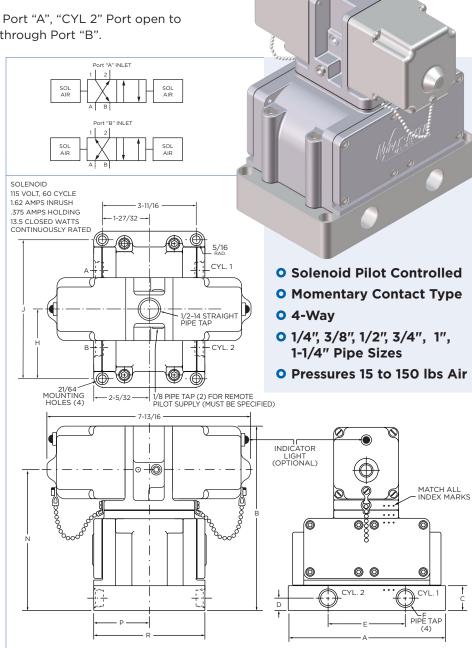
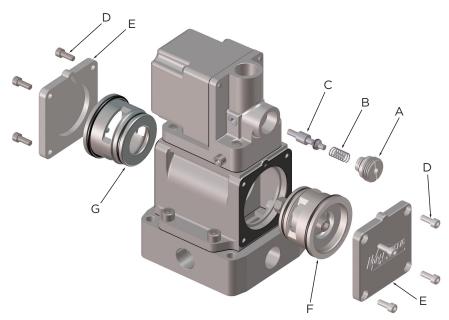



Table 1 Dimension and Installation Data


D.C. solenoids are longer than A.C. shown here. See Engineering Section for D.C. dimensions.

| SIZE  | MODEL   | DIMENSIONS IN INCHES |         |        |     |         |       |        |       |       |         |        |
|-------|---------|----------------------|---------|--------|-----|---------|-------|--------|-------|-------|---------|--------|
| SIZE  | NUMBER  | Α                    | В       | С      | D   | E       | F     | Н      | J     | N     | Р       | R      |
| 1/4   | 420     | 6-1/8                | 7-7/16  | 1-1/8  | 1/2 | 2-9/16  | 1/4   | 2-3/4  | 5-1/2 | 5-3/4 | 2-5/32  | 4-5/16 |
| 3/8   | 421     | 6-1/8                | 7-7/16  | 1-1/8  | 1/2 | 2-9/16  | 3/8   | 2-3/4  | 5-1/2 | 5-3/4 | 2-5/32  | 4-5/16 |
| 1/2•  | 421-1/2 | 6-1/8                | 7-7/16  | 1-1/8  | 1/2 | 2-9/16  | 1/2   | 2-3/4  | 5-1/2 | 5-3/4 | 2-5/32  | 4-5/16 |
| 1/2   | 422     | 7                    | 7-15/16 | 1-7/16 | 3/4 | 3       | 1/2   | 3-3/16 | 6-3/8 | 6-1/4 | 2-5/32  | 4-5/16 |
| 3/4   | 423     | 7                    | 7-15/16 | 1-7/16 | 3/4 | 3       | 3/4   | 3-3/16 | 6-3/8 | 6-1/4 | 2-5/32  | 4-5/16 |
| 1     | 424     | 7-1/4                | 8-7/16  | 2      | 1   | 2-15/16 | 1     | 3-3/16 | 6-3/8 | 6-3/4 | 2-11/16 | 5      |
| 1-1/4 | 425     | 7-1/4                | 8-7/16  | 2      | 1   | 2-15/16 | 1-1/4 | 3-3/16 | 6-3/8 | 6-3/4 | 2-11/16 | 5      |

 $<sup>\</sup>bullet$  = Model 421-1/2 is the standard 421 valve with 1/2" pipe taps.



# **DISASSEMBLY**



REMOTE PILOT SUPPLY

All NOPAK-Matic 2-, 3- and 4-way solenoid operated valves can be adapted for low pressure (below 15 PSI) vacuum service.

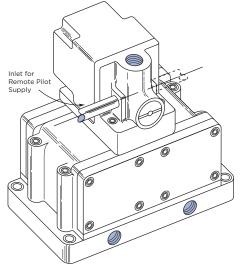
To accomplish this it is necessary to remotely supply the pilot section with at least 15 PSI air in order to shift the main poppets. Two special 1/8" NPT inlets are tapped into the pilot section, as shown below right, to bring the pilot air supply into either pilot inlet port. One inlet is sufficient, but two are supplied for convenience of piping. Unused port is plugged. Both pilot selector screws must be fully closed to ensure isolation of pilot section from master section of valve.

When using other media (oil for example), even at standard operating pressures, it is still necessary to bring air pressure to the pilot section, via the remote pilot supply feature. **Pilot pressure must meet or exceed main inlet pressure.** When ordering, please specify "Remote Pilot Supply." Also indicate:

- 1 Vacuum: specify maximum vacuum in HQ or equivalent. Special return spring will be furnished in piston-poppet assembly (see above).
- 2 Low pressure (below 15 PSI): special return spring furnished in piston-poppet assembly (see above).
- 3 Other media
  - A Type, description and specifications.
  - **B** Pressure.
  - C Temperature.
- 4 Voltage and cycle.

**CAUTION!** Always shut off electrical and pressure supply and bleed all lines before any disassembly.

# **REMOVAL OF PILOT STEM**


- 1 Unscrew pilot stem spring retainer nut A.
- 2 Remove spring B.
- **3** Push manual operating button. Then carefully pull out exposed pilot stem C.

# REMOVAL OF PISTON-POPPET ASSEMBLIES

- 1 Remove socket head cap screws D on both sides of valve.
- 2 Drop valve body cover plates E.
- **3** Push out poppet assembly cartridge F by nudging with wooden dowel inserted through hole in valve seat cartridge G. Then push out cartridge G by inserting dowel into opening exposed by removal of cartridge F. (A wooden dowel should be used to prevent damage to sealing surfaces.)

# **ASSEMBLY**

- 1 All parts should be carefully cleaned so that foreign particles are removed. Be sure to also check pilot head filter screen.
- 2 Moving parts must be lightly oiled with recommended lubricant; see list on page 166.
- **3** Damaged gaskets should be replaced.
- **4** Assemble parts in reverse order of disassembly.
- **5** Tighten all screws systematically to obtain an even pull-down. Do not overtighten.



# **MAKE-UP BLEED**

NOPAK-Matic Master 3-Way or 4-Way Valves, supplied with a "make-up bleed" feature, eliminate the need of maintaining constant pilot pressure to hold the master valve in the energized position.

Normally, a 3-way valve is required to pilot the NOPAK-Matic master valve. With "make-up bleed," two

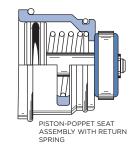
head to atmosphere.

valve. With "make-up bleed," two
2-way Normally Closed pilot valves can be used as follows: the first directs pressure into pilot head, the second exhausts pilot

As shown in the sketch to the right, a small orifice is drilled in the master valve body connecting the center chamber to the master valve head. When the valve is de-energized, the center chamber as well as the master valve head is exhausted.

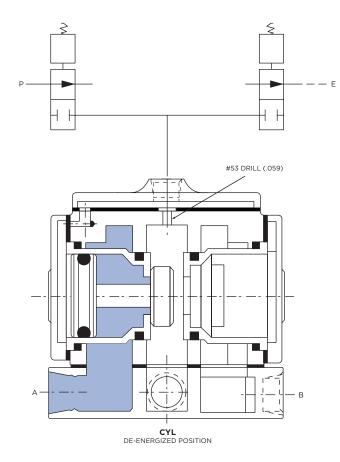
A momentary actuation of the first 2-way pilot valve puts an impulse of air into the master valve head and moves the piston-poppet(s) over to the energized position. This pressurizes the center chamber and make-up bleed continues to supply pressure to master valve head to compensate for any leakage through fittings, elbows, pipes, etc., after the first 2-way pilot valve has been closed. When the second 2-way pilot head is momentarily actuated, air from the master valve head exhausts faster than the make-up bleed orifice can replenish the supply, resulting in the piston-poppet(s) shifting back to the de-energized position.

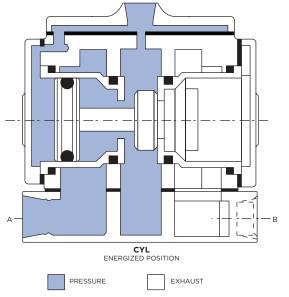
Customer must specify "make-up bleed" when ordering this valve.


# NOPAK-MATIC VALVES FOR LOW PRESSURE OR VACUUM OPERATION

NOPAK-Matic valves can be adapted to low-pressure (below 15 PSI) or vacuum operation by the addition of a spring(s) in the piston-poppet seat assembly.

High pressure from the pilot head shifts the piston-poppet in one direction, spring pressure returns it to seat. Supply pressure from the pilot head must be 15 PSI or more.


When ordering, specify modification desired: "M2 Low Pressure" or "M2 Vacuum".


See bottom of page 164 for remote pilot supply operation.



# **ENGINEERING**

- Make-Up Bleed
- Spring Loaded Piston-Poppet
- Flow-Director
- Proper Lubricants

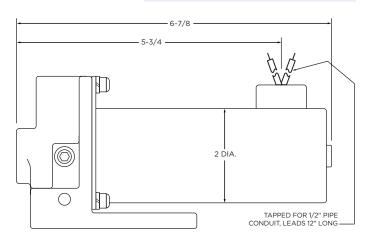




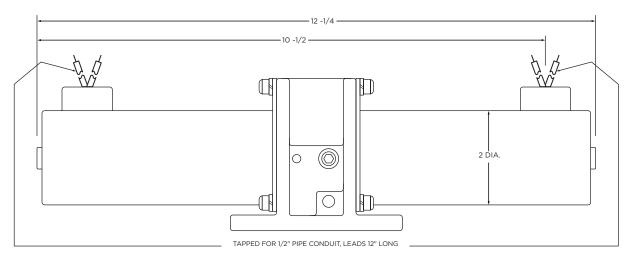


# **DIRECT CURRENT SOLENOIDS**

# **DIRECT CURRENT SOLENOIDS**


Drawings on this page give dimensions of D.C. solenoids mounted on standard NOPAK-Matic pilot heads. All other valve dimensions are the same as shown on each catalog sheet. Solenoids for 12, 16, 24, 32, 50, 90, 125 and 250 D.C. are in stock. Other voltages are available on request. For complete cost data, see price sheet.

**NOTE:** Both single and double solenoid valves use No. 24-80 solenoids with coils No. 9-27 (watts = 36) inrush amps = holding amps then for 25 volts D.C., A = 36/24 = 1.5 amps


**AMBIENT TEMPERATURES** — NOPAK-Matic valves with solenoids will function trouble-free in temperatures to 140°F. Check with NOPAK for special solenoids for temperatures in excess of 140°F.

#### **ENGINEERING**

- O Direct Current Solenoids
- Ambient Temperatures
- O Pressure Drop vs. Air Flow



SINGLE SOLENOID PILOT HEAD FOR SERIES 310 AND 410 VALVES



**DOUBLE SOLENOID PILOT HEAD FOR SERIES 320 AND 420 VALVES** 

# **USE AIR LINE FILTER, PROPER LUBRICANTS**

TO ENSURE maximum performance, NOPAK-Matic Valves should be supplied with CLEAN LUBRICATED air. We recommend use of an air line filter and lubricator, BOTH OF AMPLE FLOW CAPACITY, installed as close as possible ahead of the valve and cylinder. DO NOT USE oils having any detergent additives. Following is a representative list of oil refiners and their particular brands.

**NOTE:** Chemical composition may vary somewhat due to geographical areas in which these lubricants are produced.

| Cities Service Oil Co     | North Star #2                |
|---------------------------|------------------------------|
| Esso Standard Oil         | Teresso #43 or Teresstic #43 |
| Gulf Oil Co               | Harmony #44 or Security #44  |
| N.Y. & N.J. Lubricant Co. | A-#88/HNR                    |
| Shell Oil Co              | Tellus #27 or Turbo #27      |
| Sinclair Refining Co      | Rubilene-Extra Light         |
| Sacony-Mobile Oil Co      | D.T.E. Light                 |
| Standard Oil of Calif     | Chevron GST Oil #32          |
| Texaco                    | Regal A.R. & O.              |
| Union Oil of Calif        | Red Line Turbine Oil #150    |

# C<sub>v</sub> FACTORS FOR NOPAK-MATIC VALVES

To assist in the selection of NOPAK-Matic valves, the following flow coefficients of the various models and pipe sizes have been determined in accordance with the standard air flow equation:

$$C_v = \frac{Q \times 60}{1360} \sqrt{\frac{G \times Tu}{AP \times Pu}}$$

in which

 $C_v$  = flow coefficient

Q = air flow in standard units, scfm (14.7 PSI, 68°F)

G = specific gravity, air @ 68°F Tu = absolute temp. (deg. F + 460)

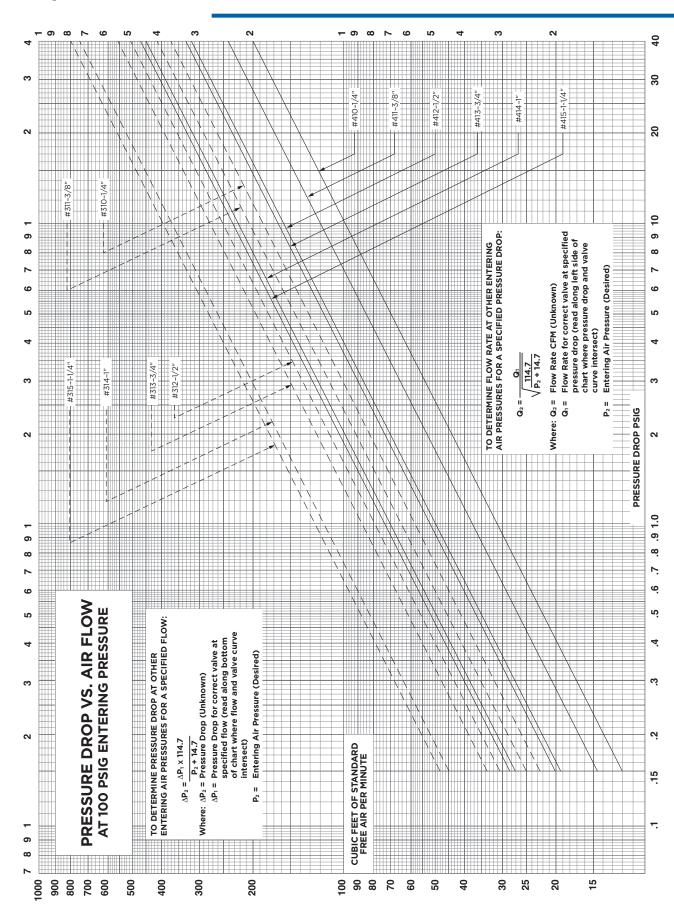
 $\Delta P$  = pressure drop, PSI

Pu = pressure in absolute units (subscript "u" = upstream)

then

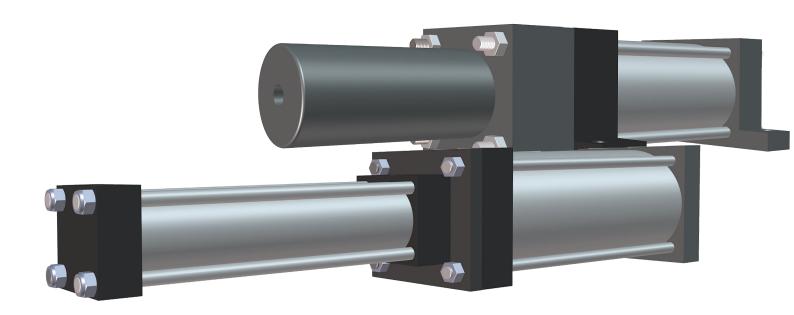
$$C_v = \frac{Q \times 60}{1360} \sqrt{\frac{.932 \times (68 + 460)}{\Delta P \times (100 + 14.7)}}$$

For values of  $C_v$  and pressure drops at 100 PSI entering air pressure.


For our NOPAK-Matic valves the following  $C_v$  factors apply:

|         | 3-\       | WAY            |          |  |  |  |  |  |  |
|---------|-----------|----------------|----------|--|--|--|--|--|--|
| MODEL   | NPTF SIZE | c <sub>v</sub> |          |  |  |  |  |  |  |
| MODEL   | NPIF 312E | ∆P = .15       | ΔP = .40 |  |  |  |  |  |  |
| 300     | 1/4       | 5.66           | 5.13     |  |  |  |  |  |  |
| 310     | 1/4       | 5.66           | 5.13     |  |  |  |  |  |  |
| 320     | 1/4       | 5.66           | 5.13     |  |  |  |  |  |  |
| 301     | 3/8       | 6.28           | 5.63     |  |  |  |  |  |  |
| 311     | 3/8       | 6.28           | 5.63     |  |  |  |  |  |  |
| 321     | 3/8       | 6.28           | 5.63     |  |  |  |  |  |  |
| 301-1/2 | 1/2       | 7.37           | 6.60     |  |  |  |  |  |  |
| 311-1/2 | 1/2       | 7.37           | 6.60     |  |  |  |  |  |  |
| 321-1/2 | 1/2       | 7.37           | 6.60     |  |  |  |  |  |  |
| 302     | 1/2       | 7.74           | 6.93     |  |  |  |  |  |  |
| 312     | 1/2       | 7.74           | 6.93     |  |  |  |  |  |  |
| 322     | 1/2       | 7.74           | 6.93     |  |  |  |  |  |  |
| 303     | 3/4       | 8.33           | 7.58     |  |  |  |  |  |  |
| 313     | 3/4       | 8.33           | 7.58     |  |  |  |  |  |  |
| 323     | 3/4       | 8.33           | 7.58     |  |  |  |  |  |  |
| 304     | 1         | 11.3           | 10.1     |  |  |  |  |  |  |
| 314     | 1         | 11.3           | 10.1     |  |  |  |  |  |  |
| 324     | 1         | 11.3           | 10.1     |  |  |  |  |  |  |
| 305     | 1-1/4     | 12.0           | 10.8     |  |  |  |  |  |  |
| 315     | 1-1/4     | 12.0           | 10.8     |  |  |  |  |  |  |
| 325     | 1-1/4     | 12.0           | 10.8     |  |  |  |  |  |  |

|         | 4-V       | VAY      |          |
|---------|-----------|----------|----------|
| MODEL   | NPTF SIZE | C        | v        |
| MODEL   | NPIF 31ZE | ∆P = .15 | ∆P = .40 |
| 400     | 1/4       | 2.83     | 2.74     |
| 410     | 1/4       | 2.83     | 2.74     |
| 420     | 1/4       | 2.83     | 2.74     |
| 401     | 3/8       | 3.42     | 3.32     |
| 411     | 3/8       | 3.42     | 3.32     |
| 421     | 3/8       | 3.42     | 3.32     |
| 401-1/2 | 1/2       | 4.21     | 4.13     |
| 411-1/2 | 1/2       | 4.21     | 4.13     |
| 421-1/2 | 1/2       | 4.21     | 4.13     |
| 402     | 1/2       | 4.48     | 4.41     |
| 412     | 1/2       | 4.48     | 4.41     |
| 422     | 1/2       | 4.48     | 4.41     |
| 403     | 3/4       | 4.72     | 4.62     |
| 413     | 3/4       | 4.72     | 4.62     |
| 423     | 3/4       | 4.72     | 4.62     |
| 404     | 1         | 6.42     | 6.28     |
| 414     | 1         | 6.42     | 6.28     |
| 424     | 1         | 6.42     | 6.28     |
| 405     | 1-1/4     | 6.72     | 6.50     |
| 415     | 1-1/4     | 6.72     | 6.50     |
| 425     | 1-1/4     | 6.72     | 6.50     |


To determine the  $C_v$  factor for supply pressure at other than 100 PSIG, calculate  $\Delta P$  and Q in accordance with the information given in the Pressure Drop vs. Air Flow graph on the next page and then substitute these new values in the above equation.

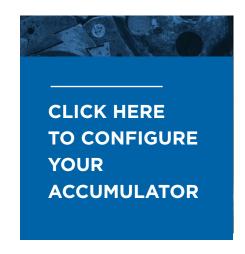
# PRESSURE DROP VS. AIR FLOW GRAPH



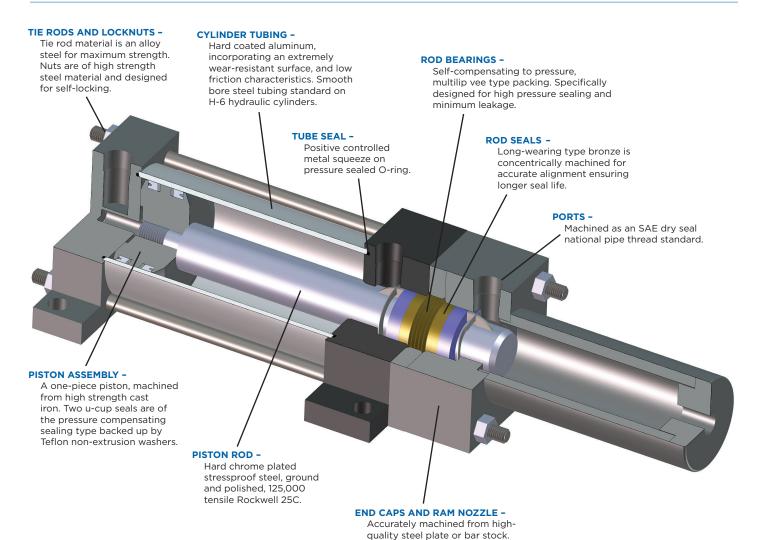
# **Boosters, Intensifiers** and Air/Oil Tanks

Ram and Piston Type








# **TABLE OF CONTENTS**

| Standard Features                                                                   |
|-------------------------------------------------------------------------------------|
| Index of Selections                                                                 |
| Ordering Information                                                                |
| How To Select The Most Efficient Booster 177                                        |
| NBS-5 Single Pressure Ram Type Booster 178                                          |
| NBD-5 Dual Pressure Ram Type Booster 179                                            |
| NBS-5 Models                                                                        |
| NBD-5 Models                                                                        |
| NB3 Boosters and Accumulators 184                                                   |
| Booster Selection Chart Single Pressure NBS-5 and Dual Pressure NBD-5 (5000 PSI)186 |
| Booster Selection Chart<br>NB-3 (3000 PSI)                                          |
| Air-Oil Tanks                                                                       |



# **CUTAWAY VIEW**



# **RAM-TYPE BOOSTERS**

A Booster is a device used to convert low pressure shop air to an intensified hydraulic pressure. This is accomplished by applying low pressure air to the full piston area of the low pressure side of the booster. This intensified force is transferred by means of a ram to the high pressure side of the booster. Intensification of pressure is based on the ratio in square inches between the low pressure piston and the high pressure ram.

This method of intensification eliminates costly hydraulic pumps or power pack units. It must be stated that a booster intensifier total output power is limited so that rapid cycling of a booster-cylinder combination is not feasible. Only applications where intermittent high pressure hydraulics required for a limited operation can be achieved with the booster intensifier. The unlimited bore-ram ratios makes the booster a versatile customized device. Whether your requirements are in the low, medium or high pressure range, there is a NOPAK booster available for your application.

# **PISTON TYPE BOOSTERS**

This type of booster can also be used as an accumulator depending on its location in the circuit. The operating principle is the same as the ram type booster except that intensification in the output cylinder is transmitted to the full area of a piston instead of the ram. The basic assembly consists of two cylinders connected as a unit using a common ram to transfer thrust from the input side of the booster. Parts for both cylinders are standard inventory for NOPAK's Class 6 air or medium pressure hydraulic cylinder. The output cylinder is a NOPAK Class 3 high pressure hydraulic cylinder. Connection of both cylinders is accomplished by means of an adapter plate. The availability and standardization of adaptable parts makes the NB-3 booster economically priced with faster delivery time. Our engineering personnel can aid and advise you with your booster selection or special applications.

# **BOOSTERS WITH AIR-OIL TANK COMBINATIONS**

The assembly of the air-oil tank to the booster as an integral unit will benefit users with less space required in the circuit and a savings on installation time. Tanks are mounted on the booster with a common plate and tie rods. Tanks are selected with the same diameter bore as the booster. The mounting of the booster must be in a vertical position because of the air over oil function of the tank. Ordering of this unit requires adding "T" (for tank) to booster code combinations. Examples of NOPAK standard boosters are NBT-3, NBST-5 and NBDT-5.

See page 184 and page 185 for air-oil tanks mounted separately in booster circuit.

# NOPAK NBS-5 SINGLE PRESSURE RAM TYPE BOOSTERS - 5000 PSI

Single pressure boosters are used in applications where an intensified high pressure output is required throughout the full stroke of the work cylinder. Because of the singular ram seal, this type of booster is not self-bleeding or self-filling. Special care must be taken to bleed out air when filling or installing. The NBS-5 booster has an output pressure limitation of 5000 PSI maximum.

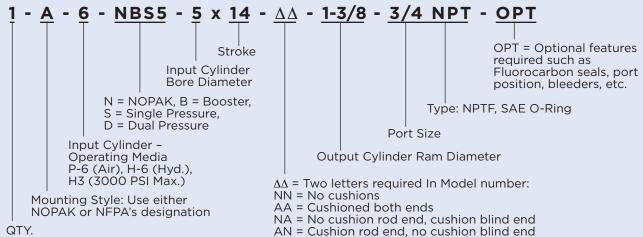
# NOPAK NBD-5 DUAL PRESSURE RAM TYPE BOOSTERS - 5000 PSI

Dual pressure boosters are used in applications where low pressure is adequate for the approach stroke of the work cylinder and high pressure for the remainder of the stroke. The booster ram is only effective after entering the secondary seal of the high pressure side of booster. Therefore, a smaller dual booster can be used to do the job that normally it would take for a larger single booster. This type of booster is self-bleeding and self-filling. No external bleed valving is required in inlet line. The NBD-5 booster has an output pressure limitation of 5000 PSI maximum.

# NOPAK NB-3 PISTON TYPE BOOSTER AND ACCUMULATOR - 3000 PSI

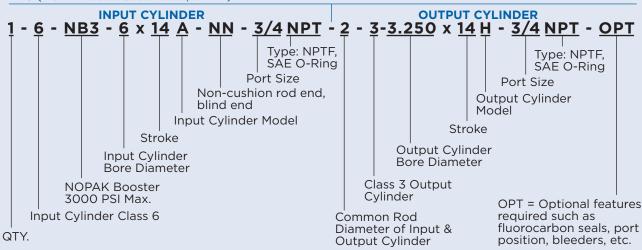
Single-acting pressure boosters are used in applications where an intensified high pressure output is required throughout the full stroke of the work cylinder. Piston type boosters can be used in double-acting circuits as well. Intensification is accomplished by use of a piston instead of a ram in the output cylinder of the booster. This then makes the intensification area of the piston a factor in output computations. This type of unit can be used either as a booster or an accumulator, dependent on how it is located in the hydraulic circuit. The fact that it is assembled from stock inventory of available Class 3 and Class 6 components makes the booster economically priced. Modification of two components adapts the high pressure Class 3 to the low pressure Class 6 cylinder as a booster assembly. When applied as a booster, the unit is not self-bleeding, so provisions for this function must be made elsewhere in the hydraulic circuit. Use of stock parts makes the NB-3 booster pressure limitation at 3000 PSI maximum.

# **AIR-OIL TANKS**

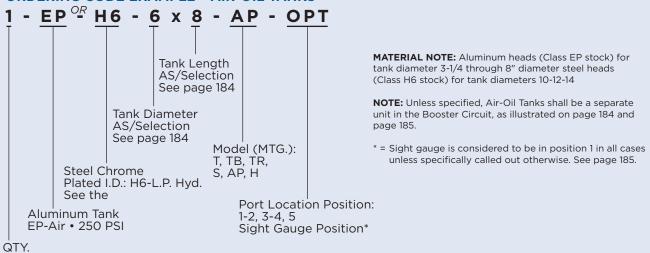

Air-Oil Tanks offer a means of smooth hydraulic speed control of a cylinder from an air line source. In addition they may be used to prefill a circuit or for low pressure advance of a work cylinder.

# ORDERING INFORMATION

# **HOW TO ORDER**


# **ORDERING CODE EXAMPLE - RAM TYPE BOOSTER**

NBS-5 (NOPAK Booster Single pressure 5000 PSI output max.) / NBD-5 (NOPAK Booster Dual pressure 5000 PSI output max.)




# **ORDERING CODE EXAMPLE - PISTON TYPE BOOSTER**

NB3 (NOPAK Booster 3000 PSI output max.)



#### ORDERING CODE EXAMPLE - AIR-OIL TANKS



# **HOW TO SELECT THE MOST EFFICIENT BOOSTER**

# STEP 1. SELECTING A SINGLE PRESSURE BOOSTER

Preliminary information needed:

- A Thrust force or load required from work cylinder for application.
- **B** Bore diameter of work cylinder and stroke length required to do the job (select a force greater than that required as a margin of safety).
- C Input PSI pressure of work cylinder needed to obtain force selected.
- Available input PSI pressure to operate booster.
- **E** Booster ratio.

#### **EXAMPLE:**

Your application requires a thrust or force of 4,400 lbs. for 4" length.

From Class 3 Section Table C "Thrust Force and Displacement" you read 4,909 lbs. for a 2-1/2" diameter cylinder which requires an input pressure of 1,000 PSI to obtain this force. This allows a 500# force margin of safety.

Your available input pressure at site is 80 PSI shop air. Booster ratio can now be determined.

ratio = 
$$\frac{\text{output pressure}}{\text{input pressure}} = \frac{1,000}{80} = 12.5$$

You have now established that:

A Work cylinder force = 4,900 lbs.
 B Work cylinder diameter Work cylinder stroke = 4" length
 C Booster output pressure = 1,000 PSI
 D Available input pressure = 80 PSI shop air

E Booster ratio = 12.5

# STEP 2. SELECT BOOSTER BORE AND RAM SIZE

Using ratio from above Item E, select from Booster Selection Chart, page 182, the bore and ram size that reads closest to ratio. If exact ratio is not shown, then select next larger ratio. Next check if input PSI corresponds to application availability Item D above.

Read down input PSI column to output PSI that is equal or greater than Item C above. If table output is larger than needed then the ratio can be recalculated.

Now with your recalculated ratio, input pressure and closest output pressure, you can now read the booster bore diameter and ram size needed.

# STEP 3. DETERMINE BOOSTER STROKE

Calculate the booster stroke using formula

$$S = \frac{V + VcL}{Ra}$$

S = Booster stroke

V = Volume cubic inch of 2-1/2" bore work cylinder times 4" stroke or 19.6 cu. in.

VcL = Volume cubic inch plus oil volume cu. in. in circuit lines (20 cu. in. FOR THIS EXAMPLE) TIMES 1% PER 1,000 PSI OR .01

Ra = Area of 1-3/8" diameter ram or 1.485 sq. in.

**NOTE:** Substitute Pa (piston area) for Ra (ram area) in the above formula when calculating a piston type booster or accumulator.

$$S = \frac{19.6 + (19.6 + 20).01}{1.485}$$

$$S = \frac{19.996}{1.485} = 13.46 \text{ or } 14'' \text{ stroke}$$

NOTE: To account for leakage (hydraulic slip) or any other uncertainties, a factor of safety of 20% should be added.

From the following determining selection you would then order:

A 5" diameter single pressure NBS-5 booster with a 17" stroke using a 1-3/8 diameter ram. With an input pressure of 80 PSI air to be intensified to 1,058 PSI for full 4" stroke of 2-1/2" bore work cylinder with a recalculated ratio of 13.22.

# **SELECTING A DUAL PRESSURE BOOSTER**

Steps No. 1 and 2 are the same as a single pressure booster. Proceed with step No. 3.

# STEP 3. DETERMINE BOOSTER STROKE

Calculate the booster stroke using formula.

$$S = \frac{V + VcL}{Ra} + 2$$
 inch stroke required to close H.P. Seal

**NOTE:** For larger boosters with 3" diameter rod and over, use 3" plus calculated booster stroke.

S = Booster stroke

V = Volume cubic inch of 2-1/2" bore work cylinder times H.P. stroke length or 4.9 sq. in. x 1" = 4.9 cu. in. of H.P. stroke

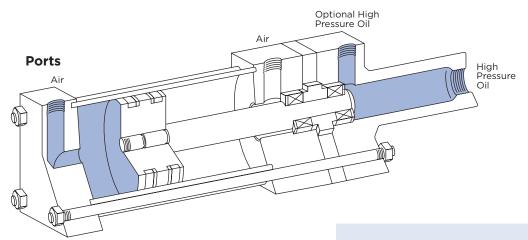
VcL= Volume cu. in. plus oil volume cu. in. in circuit lines or 20 cu. in. times 1% per 1,000 PSI or .01

Ra = Area of 1-3/8" diameter ram or 1.485 sq. in.

**NOTE:** Substitute Pa (piston area) for Ra (ram area) in the above formula when calculating a piston type booster or accumulator.

$$S = \frac{4.9 + (19.6 + 20).01}{1.485} + 2$$

$$S = \frac{5.30}{1.485} + 2$$


S = 5.56 or 6" Booster stroke

 $S = 6 \times 1.20 = 7.2 \text{ or } 8'' \text{ stroke (see note above)}.$ 

From the following determining selection you would then order: A 5" diameter dual pressure NBD-5 booster with an 8" stroke using a 1-3/8" diameter ram. With an input pressure of 80 PSI air to be intensified to 1,058 PSI for last 1" stroke of 2-1/2" bore work cylinder with recalculated ratio of 13.22.

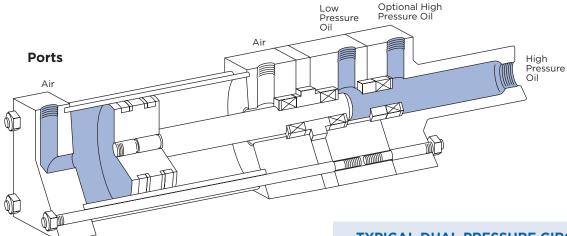


# **NBS-5 SINGLE PRESSURE RAM TYPE BOOSTER**



This type booster has a single ram seal so the entire stroke is of intensified high pressure.

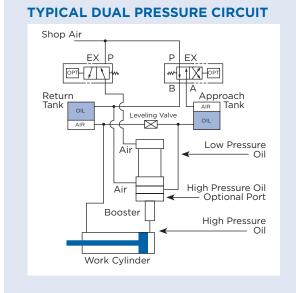
Low pressure air is directed to the booster input cylinder port to the cylinder chamber. Making contact with the larger surface of the retracted piston forces the piston with ram, forward, to begin the cylinder stroke. Low pressure oil is intensified in the nozzle chamber by the ram end force created by the larger air piston pushing. The high pressure oil is forced out of the nozzle port into the work cylinder for a high pressure continuous stroke. Oil flows out and back in through the nozzle port or can be piped in through the optional port located in the nozzle head. Makeup oil is provided from an external replenishing valve. The booster ratio of input and output pressure rated values are charted on page 182.

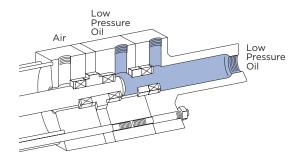

Booster Series NBS is similar to the dual pressure Series NBD except the center head which contains the port and seal for low pressure oil has been eliminated. Therefore, the primary purpose of this design is to provide high pressure oil to the work cylinder during its entire stroke.

Since the booster is neither self-filling or self-venting, provisions should be made to perform these operations in the external circuit.

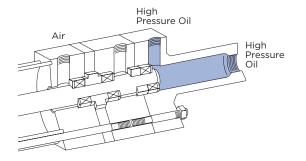
See Booster Selection Chart, page 182 and "How To Select The Most Efficient Booster" on page 173.

# Shop Air Shop Air Air-Oil Tank Replenish Valve High Pressure Oil Work Cylinder


# **NBD-5 DUAL PRESSURE RAM TYPE BOOSTER**



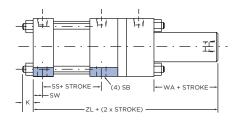

The dual pressure booster is used where the work cylinder is required to travel a short distance at high pressure after a substantial low pressure advance stroke. Because the booster ram operates only during the high pressure portion of the work stroke, a shorter booster stroke is required. In the fully retracted position, the ram is withdrawn from the high pressure ram seal allowing low pressure "approach stroke" oil to pass through to the work cylinder. This design makes the booster both self-filling and self-bleeding.

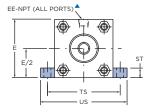

See Booster Selection Chart, page 182 and "How To Select The Most Efficient Booster" on page 173.

Low pressure air is directed to the Booster input cylinder port into the cylinder chamber. Making contact with the large surface of the retracted piston forces the piston with ram forward to start the cylinder stroke.

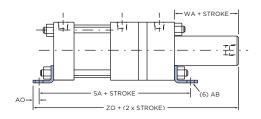


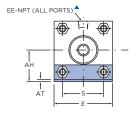



Low pressure oil is flowing through the low pressure port into and through the high pressure bearing I.D. and seal. It continues through the nozzle chamber and out the port to the work cylinder. The ram is traveling under the same pressure as the input air. The low pressure oil reaching the work cylinder forces the rod forward which is called "the approach stroke."



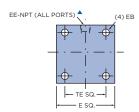

The booster ram traveling forward now enters the high pressure bearing and seal cutting off the low pressure oil supply. The ram end force created by the large air piston now greatly intensifies the oil pressure contained in the nozzle chamber and is pushed out of the high pressure port to the work cylinder. This short stroke of the work cylinder is called the "high pressure stroke" of the work cycle. The booster ratio of input and output pressure rated values are charted on page 182. The input cylinder segment of NBD-5 boosters can be operated either with air or low pressure hydraulics. See the pressure limitations shown on page 182.

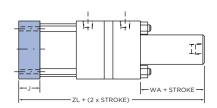




# MODEL A (NFPA STD. MS2)

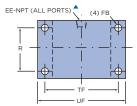





# **MODEL AP (NFPA STD. STYLE MS1)**

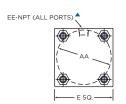


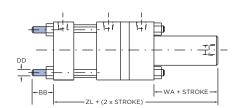




For 2-1/2" diameter through 5" diameter bore, this model is available for small ram diameter only.

# MODEL CJ (NFPA STD. STYLE ME4) 8" THROUGH 14" DIA.







# MODEL C (NFPA STD. STYLE MF2) 2-1/2" THROUGH 6" DIA.





# MODEL TB (NFPA STD. STYLE MX2)



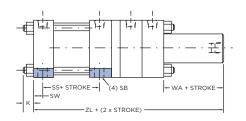


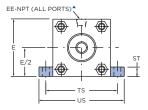
 = Large unrestricted ports conforming to NFPA standards are provided. They can be rotated to any 90° position in relation to each other and the booster mounting.

# Table 1

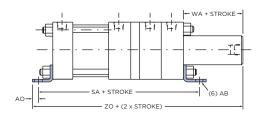
• = Dimension refers to bolt diameter.

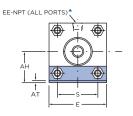
| BORE  |     | PUT<br>DER PSI |        |     |      |      |        | мои   | NTING E | DIMENSIC | NS     |      |         |         |     |       |
|-------|-----|----------------|--------|-----|------|------|--------|-------|---------|----------|--------|------|---------|---------|-----|-------|
| DIA.  | AIR | HYD.           | E      | F   | K    | R    | S      | AA    | AB•     | AH       | AO     | AT   | ВВ      | DD      | EB• | EE    |
| 2-1/2 | 250 | 1100           | 3      | 3/8 | 5/16 | 2.19 | 2-1/4  | 3.10  | 3/8     | 1-5/8    | 3/8    | 1/8  | 1-1/8   | 5/16-24 | _   | 3/8   |
| 3-1/4 | 250 | 1350           | 3-3/4  | 5/8 | 7/16 | 2.76 | 2-3/4  | 4.00  | 1/2     | 2        | 1/2    | 1/8  | 1-3/8   | 7/16-20 | -   | 1/2   |
| 4     | 250 | 950            | 4-1/2  | 5/8 | 7/16 | 3.32 | 3-1/2  | 4.75  | 1/2     | 2-1/4    | 1/2    | 1/8  | 1-3/8   | 7/16-20 | _   | 1/2   |
| 5     | 250 | 900            | 5-1/2  | 5/8 | 1/2  | 4.10 | 4-1/4  | 5.80  | 5/8     | 2-3/4    | 5/8    | 3/16 | 1-3/4   | 1/2-20  | -   | 1/2   |
| 6     | 200 | 750            | 6-1/2  | 3/4 | 9/16 | 4.88 | 5-1/4  | 6.90  | 3/4     | 3-1/4    | 5/8    | 3/16 | 1-3/4   | 9/16-18 | -   | 3/4   |
| 8     | 200 | 500            | 8-1/2  | 3/4 | 5/8  | -    | 7-1/8  | 9.10  | 3/4     | 4-1/4    | 11/16  | 1/4  | 2-1/4   | 5/8-18  | 5/8 | 3/4   |
| 10    | 200 | 400            | 10-5/8 | 3/4 | 3/4  | -    | 8-7/8  | 11.31 | 1       | 5-5/16   | 7/8    | 1/4  | 2-5/8   | 3/4-16  | 3/4 | 1     |
| 12    | 200 | 400            | 12-3/4 | 3/4 | 3/4  | -    | 11     | 13.30 | 1       | 6-3/8    | 7/8    | 3/8  | 2-11/16 | 3/4-16  | 3/4 | 1     |
| 14    | 200 | 400            | 14-3/4 | 3/4 | 7/8  | -    | 12-5/8 | 15.40 | 1-1/4   | 7-3/8    | 1-1/16 | 3/8  | 3-3/16  | 7/8-14  | 7/8 | 1-1/4 |


# Table 2


• = Dimension refers to bolt diameter.

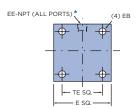
| BORE  |     | PUT<br>DER PSI |      |        |       |       |       | мои   | NTING DIM | ENSIONS |       |        |       |        |        |
|-------|-----|----------------|------|--------|-------|-------|-------|-------|-----------|---------|-------|--------|-------|--------|--------|
| DIA.  | AIR | HYD.           | FB•  | SA     | SB•   | SS    | ST    | TE    | TF        | TS      | UF    | US     | WA    | ZL     | zo     |
| 2-1/2 | 250 | 1100           | 5/16 | 7-5/8  | 3/8   | 3     | 1/2   | _     | 3-7/8     | 3-3/4   | 4-5/8 | 4-1/2  | 5/8   | 6-1/4  | 7-1/4  |
| 3-1/4 | 250 | 1350           | 3/8  | 9-1/8  | 1/2   | 3-1/4 | 3/4   | _     | 4-11/16   | 4-3/4   | 5-1/2 | 5-3/4  | 5/8   | 7-1/4  | 9      |
| 4     | 250 | 950            | 3/8  | 9-1/8  | 1/2   | 3-1/4 | 3/4   | -     | 5-7/16    | 5-1/2   | 6-1/4 | 6-1/2  | 5/8   | 7-1/4  | 9      |
| 5     | 250 | 900            | 1/2  | 9-5/8  | 3/4   | 3-1/8 | 1     | -     | 6-5/8     | 6-7/8   | 7-5/8 | 8-1/4  | 5/8   | 7-1/2  | 9-1/2  |
| 6     | 200 | 750            | 1/2  | 10-1/2 | 3/4   | 3-5/8 | 1     | -     | 7-5/8     | 7-7/8   | 8-5/8 | 9-1/4  | 7/8   | 8-5/8  | 10-5/8 |
| 8     | 200 | 500            | -    | 11-1/2 | 3/4   | 3-3/4 | 1     | 7.57  | -         | 9-7/8   | -     | 11-1/4 | 7/8   | 8-3/4  | 11-1/4 |
| 10    | 200 | 400            | -    | 13-5/8 | 1     | 4-5/8 | 1-1/4 | 9.40  | -         | 12-3/8  | -     | 14-1/8 | 1-1/8 | 10-1/2 | 13-1/2 |
| 12    | 200 | 400            | -    | 14-1/8 | 1     | 5-1/8 | 1-1/4 | 11.10 | -         | 14-1/2  | -     | 16-1/4 | 1-1/8 | 11     | 14     |
| 14    | 200 | 400            | -    | 16-1/2 | 1-1/4 | 5-7/8 | 1-1/2 | 12.87 | -         | 17      | -     | 19-1/4 | 1-5/8 | 13-1/4 | 16-3/4 |

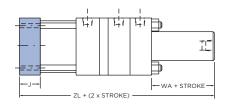




# MODEL A (NFPA STD. MS2)

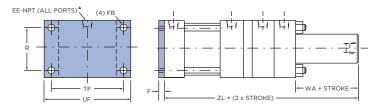




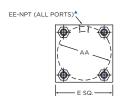

# **MODEL AP (NFPA STD. STYLE MS1)**

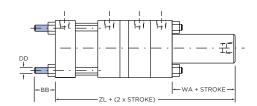






For 2-1/2" diameter through 5" diameter bore, this model is available for small ram diameter only.

# MODEL CJ (NFPA STD. STYLE ME4) 8" THROUGH 14" DIA.




# MODEL C (NFPA STD. STYLE MF2) 2-1/2" THROUGH 6" DIA.



# MODEL TB (NFPA STD. STYLE MX2)





 = Large unrestricted ports conforming to NFPA standards are provided. They can be rotated to any 90° position in relation to each other and the booster mounting.

# Table 1

• = Dimension refers to bolt diameter.

| BORE<br>DIA. |     | PUT<br>DER PSI |        |     |       |      |      |        | моинт | ING DI | MENSION | s      |      |         |         |     |       |
|--------------|-----|----------------|--------|-----|-------|------|------|--------|-------|--------|---------|--------|------|---------|---------|-----|-------|
| DIA.         | AIR | HYD.           | E      | F   | J     | K    | R    | S      | AA    | AB•    | AH      | AO     | AT   | ВВ      | DD      | EB• | EE    |
| 2-1/2        | 250 | 1100           | 3      | 3/8 | 1-1/8 | 5/16 | 2.19 | 2-1/4  | 3.10  | 3/8    | 1-5/8   | 3/8    | 1/8  | 1-1/8   | 5/16-24 | _   | 3/8   |
| 3-1/4        | 250 | 1350           | 3-3/4  | 5/8 | 1-1/4 | 7/16 | 2.76 | 2-3/4  | 4.00  | 1/2    | 2       | 1/2    | 1/8  | 1-3/8   | 7/16-20 | -   | 1/2   |
| 4            | 250 | 950            | 4-1/2  | 5/8 | 1-1/4 | 7/16 | 3.32 | 3-1/2  | 4.75  | 1/2    | 2-1/4   | 1/2    | 1/8  | 1-3/8   | 7/16-20 | -   | 1/2   |
| 5            | 250 | 900            | 5-1/2  | 5/8 | 1-1/4 | 1/2  | 4.10 | 4-1/4  | 5.80  | 5/8    | 2-3/4   | 5/8    | 3/16 | 1-3/4   | 1/2-20  | -   | 1/2   |
| 6            | 200 | 750            | 6-1/2  | 3/4 | 1-1/2 | 9/16 | 4.88 | 5-1/4  | 6.90  | 3/4    | 3-1/4   | 5/8    | 3/16 | 1-3/4   | 9/16-18 | -   | 3/4   |
| 8            | 200 | 500            | 8-1/2  | 3/4 | 1-1/2 | 5/8  | -    | 7-1/8  | 9.10  | 3/4    | 4-1/4   | 11/16  | 1/4  | 2-1/4   | 5/8-18  | 5/8 | 3/4   |
| 10           | 200 | 400            | 10-5/8 | 3/4 | 2     | 3/4  | -    | 8-7/8  | 11.31 | 1      | 5-5/16  | 7/8    | 1/4  | 2-5/8   | 3/4-16  | 3/4 | 1     |
| 12           | 200 | 400            | 12-3/4 | 3/4 | 2     | 3/4  | -    | 11     | 13.30 | 1      | 6-3/8   | 7/8    | 3/8  | 2-11/16 | 3/4-16  | 3/4 | 1     |
| 14           | 200 | 400            | 14-3/4 | 3/4 | 2-1/4 | 7/8  | -    | 12-5/8 | 15.40 | 1-1/4  | 7-3/8   | 1-1/16 | 3/8  | 3-3/16  | 7/8-14  | 7/8 | 1-1/4 |

# Table 2

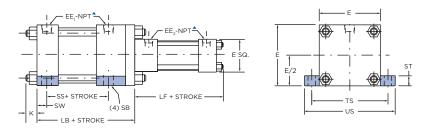
• = Dimension refers to bolt diameter.

| BORE  |     | PUT<br>DER PSI |      |        |       |       |       |       | моинті | NG DIMEN | ISIONS |       |        |       |        |        |
|-------|-----|----------------|------|--------|-------|-------|-------|-------|--------|----------|--------|-------|--------|-------|--------|--------|
| DIA.  | AIR | HYD.           | FB•  | SA     | SB•   | SS    | ST    | sw    | TE     | TF       | TS     | UF    | US     | WA    | ZL     | ZO     |
| 2-1/2 | 250 | 1100           | 5/16 | 9-1/8  | 3/8   | 3     | 1/2   | 3/8   | _      | 3-7/8    | 3-3/4  | 4-5/8 | 4-1/2  | 5/8   | 7-3/4  | 9-1/8  |
| 3-1/4 | 250 | 1350           | 3/8  | 10-7/8 | 1/2   | 3-1/4 | 3/4   | 1/2   | -      | 4-11/16  | 4-3/4  | 5-1/2 | 5-3/4  | 5/8   | 9      | 10-3/4 |
| 4     | 250 | 950            | 3/8  | 10-7/8 | 1/2   | 3-1/4 | 3/4   | 1/2   | _      | 5-7/16   | 5-1/2  | 6-1/4 | 6-1/2  | 5/8   | 9      | 10-3/4 |
| 5     | 250 | 900            | 1/2  | 11-3/8 | 3/4   | 3-1/8 | 1     | 11/16 | -      | 6-5/8    | 6-7/8  | 7-5/8 | 8-1/4  | 5/8   | 9-1/4  | 11-1/4 |
| 6     | 200 | 750            | 1/2  | 12-1/2 | 3/4   | 3-5/8 | 1     | 11/16 | _      | 7-5/8    | 7-7/8  | 8-5/8 | 9-1/4  | 7/8   | 10-5/8 | 12-5/8 |
| 8     | 200 | 500            | -    | 13-1/2 | 3/4   | 3-3/4 | 1     | 11/16 | 7.57   | -        | 9-7/8  | -     | 11-1/4 | 7/8   | 10-3/4 | 13-1/4 |
| 10    | 200 | 400            | -    | 15-7/8 | 1     | 4-5/8 | 1-1/4 | 7/8   | 9.40   | _        | 12-3/8 | -     | 14-1/8 | 1-1/8 | 12-3/4 | 15-3/4 |
| 12    | 200 | 400            | -    | 16-3/8 | 1     | 5-1/8 | 1-1/4 | 7/8   | 11.10  | _        | 14-1/2 | -     | 16-1/4 | 1-1/8 | 13-1/4 | 16-1/4 |
| 14    | 200 | 400            | -    | 19-1/4 | 1-1/4 | 5-7/8 | 1-1/2 | 1-1/8 | 12.87  | _        | 17     | -     | 19-1/4 | 1-5/8 | 16     | 19-1/2 |

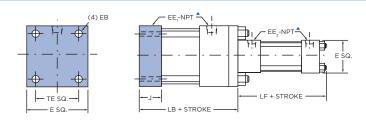


# PISTON TYPE BOOSTERS AND ACCUMULATORS NB3

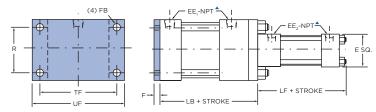
# Ports Air Optional Port Oil TYPICAL ACCUMULATOR CIRCUIT


# PISTON TYPE BOOSTERS AND ACCUMULATORS NB3

Piston type boosters and accumulators consist of two cylinders with a common ram, joined together as an integral unit. This unit may be used as a booster or accumulator depending on how it is located in hydraulic circuit. When used as a booster, it is not self-bleeding so provisions must be made in the external circuit to bleed the system after each operation and before prefilling.


See Booster Selection Chart, page 182 and "How To Select The Most Efficient Booster" on page 173.

# Output Pressure Input Air Pressure

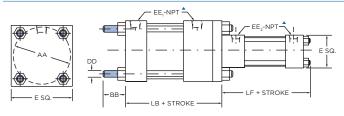

# MODEL A (NFPA STD. MS2)



# MODEL CJ (NFPA STD. STYLE ME4) 8" THROUGH 14" DIA.



# MODEL C (NFPA STD. STYLE MF2) 2-1/2" THROUGH 6" DIA.




 = Large unrestricted ports conforming to NFPA standards are provided. They can be rotated to any 90° position in relation to each other and the booster mounting.

# **NB3 BOOSTERS AND ACCUMULATORS**

**OUTPUT PRESSURE UP TO 3000 PSI** 

# **MODEL TB** (NFPA STD. STYLE MX2)



# Table 1

|     |          |         |         | INPUT CY | LINDER I | DIMENSIO | NS A/L• |        |         |        |
|-----|----------|---------|---------|----------|----------|----------|---------|--------|---------|--------|
| ВО  | RE       | 2-1/2   | 3-1/4   | 4        | 5        | 6        | 8       | 10     | 12      | 14     |
| DCI | A•       | 250     | 250     | 250      | 250      | 200      | 200     | 200    | 200     | 200    |
| PSI | L•       | 1100    | 1350    | 950      | 900      | 750      | 500     | 400    | 400     | 400    |
| Е   |          | 3       | 3-3/4   | 4-1/2    | 5-1/2    | 6-1/2    | 8-1/2   | 10-5/8 | 12-3/4  | 14-3/4 |
| F   | •        | 3/8     | 5/8     | 5/8      | 5/8      | 3/4      | 3/4     | 3/4    | 3/4     | 3/4    |
|     | ı        | 1-1/8   | 1-1/4   | 1-1/4    | 1-1/4    | 1-1/2    | 1-1/2   | 2      | 2       | 2-1/4  |
| k   | (        | 5/16    | 7/16    | 7/16     | 1/2      | 9/16     | 5/8     | 3/4    | 3/4     | 7/8    |
| F   | ₹        | 2.19    | 2.76    | 3.32     | 4.10     | 4.88     | -       | -      | -       | -      |
| Α   | Α        | 3.10    | 4.00    | 4.75     | 5.80     | 6.90     | 9.10    | 11.31  | 13.30   | 15.40  |
| В   | В        | 5/16-24 | 1-3/8   | 1-3/8    | 1-3/4    | 1-3/4    | 2-1/4   | 2-5/8  | 2-11/16 | 3-3/16 |
| D   | D        | -       | 7/16-20 | 7/16-20  | 1/2-20   | 9/16-18  | 5/8-18  | 3/4-16 | 3/4-16  | 7/8-14 |
| E   | 3•       | 3/8     | -       | -        | -        | -        | 5/8     | 3/4    | 3/4     | 7/8    |
| EE  | <b>ا</b> | 5/16    | 1/2     | 1/2      | 1/2      | 3/4      | 3/4     | 1      | 1       | 1-1/4  |
| FE  | 3•       | 4-1/8   | 3/8     | 3/8      | 1/2      | 1/2      | -       | -      | -       | -      |
| L   | В        | 3/8     | 4-7/8   | 4-7/8    | 5-1/8    | 5-3/4    | 5-7/8   | 7-1/8  | 7-5/8   | 8-7/8  |
| SE  | 3•       | 3       | 1/2     | 1/2      | 3/4      | 3/4      | 3/4     | 1      | 1       | 1-1/4  |
| S   | S        | 1/2     | 3-1/4   | 3-1/4    | 3-1/8    | 3-5/8    | 3-3/4   | 4-5/8  | 5-1/8   | 5-7/8  |
| S   | Т        | 3/8     | 3/4     | 3/4      | 1        | 1        | 1       | 1-1/4  | 1-1/4   | 1-1/2  |
| S١  | N        | -       | 1/2     | 1/2      | 11/16    | 11/16    | 11/16   | 7/8    | 7/8     | 1-1/8  |
| Т   | E        | 3-7/8   | -       | -        | -        | -        | 7.57    | 9.40   | 11.10   | 12.87  |
| Т   | F        | 3-3/4   | 4-11/16 | 5-7/16   | 6-5/8    | 7-5/8    | -       | -      | -       | -      |
| T   | S        | 4-5/8   | 4-3/4   | 5-1/2    | 6-7/8    | 7-7/8    | 9-7/8   | 12-3/8 | 14-1/2  | 17     |
| U   | F        | 4-1/2   | 5-1/2   | 6-1/4    | 7-5/8    | 8-5/8    | -       | -      | -       | -      |
| U   | S        | 4-1/2   | 5-3/4   | 6-1/2    | 8-1/4    | 9-1/4    | 11-1/4  | 14-1/8 | 16-1/4  | 19-1/4 |

# Table 2

|     |    |       | OU     | TPUT CYLI | NDER DIME | NSIONS A | /L•   |        |       |
|-----|----|-------|--------|-----------|-----------|----------|-------|--------|-------|
| ВО  | RE | 1-1/2 | 2      | 2-1/2     | 3-1/4     | 4        | 5     | 6      | 8     |
| PSI | A• | 250   | 250    | 250       | 250       | 250      | 250   | 200    | 200   |
| P31 | L• | 1500  | 1500   | 1100      | 1350      | 950      | 900   | 750    | 500   |
| Е   |    | 2     | 2-1/2  | 3         | 3-3/4     | 4-1/2    | 5-1/2 | 6-1/2  | 8-1/2 |
| EE  | 2  | 3/8   | 3/8    | 3/8       | 1/2       | 1/2      | 1/2   | 3/4    | 3/4   |
| LI  | F  | 3-7/8 | 4-1/16 | 4-1/16    | 4-11/16   | 4-11/16  | 5     | 5-9/16 | 5-3/4 |

# Table 3

|     |    |       | Ol    | JTPUT CYL | INDER DIM | ENSIONS F | •     |       |        |
|-----|----|-------|-------|-----------|-----------|-----------|-------|-------|--------|
| ВС  | RE | 1-1/2 | 2     | 2-1/2     | 3-1/4     | 4         | 5     | 6     | 8      |
| PSI | н• | 3000  | 3000  | 3000      | 3000      | 3000      | 3000  | 3000  | 3000   |
| I   | E  | 2-1/2 | 3     | 3-1/2     | 4-1/2     | 5         | 6-1/2 | 7-1/2 | 9-1/2  |
| E   |    | 1/2   | 1/2   | 1/2       | 3/4       | 3/4       | 3/4   | 1     | 1-1/2  |
| L   | .F | 5-1/8 | 5-1/8 | 5-3/8     | 6-1/4     | 6-1/2     | 7-1/4 | 8-1/2 | 10-7/8 |

- = Dimension refers to bolt diameter.
- A = Air
- L = L.P. Hydraulics
- H = H.P. Hydraulics 3000 PSI
- → = Large unrestricted ports conforming to NFPA standards are provided.

  They can be rotated to any 90° position in relation to each other and the booster mounting.



# **BOOSTER SELECTION CHART**

SINGLE PRESSURE NBS-5 AND DUAL PRESSURE NBD-5 (5000 PSI)

|       | VING<br>INDER | PRESSURE<br>RATING | OUTP            | UT RAM          | BOOSTER        |              | IN           | TENSIFII     | ED OUTP      | UT HYD       | RAULIC        | PRESSUI      | RE (PSI)     | AT INPU      | T PRESS      | URE          |              |
|-------|---------------|--------------------|-----------------|-----------------|----------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|
| BORE  | AREA          | AIR<br>HYD.        | DIA.            | AREA            | RATIO•         | 60           | 80           | 100          | 200          | 250          | 400           | 500          | 750          | 900          | 950          | 1100         | 1350         |
|       |               |                    | 0.625           | 0.307           | 16.00          | 960          | 1280         | 1600         | 3200         | 4000         | 6401          | 8001         | 12001        | 14401        | 15201        | 17601        | -            |
| 2-1/2 | 4.909         | 250                | 1               | 0.785           | 6.25           | 375          | 500          | 625          | 1250         | 1563         | 2500          | 3125         | 4688         | 5625         | 5938         | 6876         | -            |
| 2-1/2 | 4.909         | 1100               | 1.375           | 1.485           | 3.31           | 198          | 264          | 331          | 661          | 827          | 1322          | 1653         | 2480         | 2975         | 3141         | 3637         | -            |
|       |               |                    | 1.75            | 2.405           | 2.04           | 122          | 163          | 204          | 408          | 510          | 816           | 1020         | 1531         | 1837         | 1939         | 2245         | -            |
|       |               | 250                | 1 775           | 0.785           | 10.56          | 634          | 845          | 1056         | 2113         | 2641         | 4225          | 5282         | 7922         | 9507         | 10035        | 11619        | 14260        |
| 3-1/4 | 8.296         |                    | 1.375<br>1.75   | 1.485<br>2.405  | 5.59<br>3.45   | 335<br>207   | 447<br>276   | 559<br>345   | 1117<br>690  | 1397<br>862  | 2235<br>1380  | 2794<br>1725 | 4190<br>2587 | 5028<br>3104 | 5308<br>3277 | 6146<br>3794 | 7543<br>4656 |
|       |               | 1350               | 2               | 3.142           | 2.64           | 158          | 211          | 264          | 528          | 660          | 1056          | 1320         | 1981         | 2377         | 2509         | 2905         | 3565         |
|       |               |                    | 1               | 0.785           | 16.00          | 960          | 1280         | 1600         | 3200         | 4000         | 6400          | 8000         | 12000        | 14400        | 15200        | -            | -            |
|       |               | 250                | 1.375           | 1.485           | 8.46           | 508          | 677          | 846          | 1693         | 2116         | 3385          | 4231         | 6347         | 7617         | 8040         | -            | -            |
| 4     | 12.566        |                    | 1.75            | 2.405           | 5.22           | 313          | 418          | 522          | 1045         | 1306         | 2090          | 2612         | 3918         | 4702         | 4963         | -            | -            |
|       |               | 950                | 2               | 3.142           | 4.00           | 240          | 320          | 400          | 800          | 1000         | 1600          | 2000         | 3000         | 3600         | 3800         | -            | -            |
|       |               |                    | 2.5             | 4.909           | 2.56           | 154          | 205          | 256          | 512          | 640          | 1024          | 1280         | 1920         | 2304         | 2432         | -            | -            |
|       |               |                    | 1               | 0.785           | 25.00          | 1500         | 2000         | 2500         | 5000         | 6250         | 10000         | 12500        | 18750        | 22500        | -            | -            | -            |
|       |               |                    | 1.375           | 1.485           | 13.22          | 793          | 1058         | 1322         | 2645         | 3306         | 5289          | 6611         | 9917         | 11901        | -            | -            | -            |
| _     | 10.07.4       | 250                | 1.75            | 2.405           | 8.16           | 490          | 653          | 816          | 1633         | 2041         | 3265          | 4082         | 6122         | 7347         | -            | -            | -            |
| 5     | 19.634        | 900                | 2.5             | 3.142           | 6.25<br>4.00   | 375<br>240   | 500<br>320   | 625<br>400   | 1250<br>800  | 1562<br>1000 | 2500          | 3125         | 4687<br>3000 | 5625<br>3600 | -            | _            | -            |
|       |               | 300                | <u>2.5</u><br>3 | 4.909<br>7.068  | 2.78           | 167          | 222          | 278          | 556          | 694          | 1600<br>1111  | 2000<br>1389 | 2083         | 2500         | _            | _            | _            |
|       |               |                    | 3.5             | 9.621           | 2.04           | 122          | 163          | 204          | 408          | 510          | 816           | 1020         | 1531         | 1837         | _            |              | _            |
|       |               |                    | 1.375           | 1.485           | 19.04          | 1142         | 1523         | 1904         | 3808         | 4760         | 7617          | 9521         | 14281        | -            | _            | _            | _            |
|       |               |                    | 1.75            | 2.405           | 11.76          | 705          | 940          | 1176         | 2351         | 2939         | 4702          | 5878         | 8816         | _            | _            | _            | _            |
|       |               | 200                | 2               | 3.142           | 9.00           | 540          | 720          | 900          | 1800         | 2250         | 3600          | 4500         | 6750         | -            | -            | -            | -            |
| 6     | 28.274        |                    | 2.5             | 4.909           | 5.76           | 346          | 461          | 576          | 1152         | 1440         | 2304          | 2880         | 4320         | -            | -            | -            | -            |
|       |               | 750                | 3               | 7.068           | 4.00           | 240          | 320          | 400          | 800          | 1000         | 1600          | 2000         | 3000         | -            | -            | -            | -            |
|       |               |                    | 3.5             | 9.621           | 2.94           | 176          | 235          | 294          | 588          | 735          | 1176          | 1469         | 2204         | -            | -            | -            | -            |
|       |               |                    | 4               | 12.566          | 2.25           | 135          | 180          | 225          | 450          | 563          | 900           | 1125         | 1688         | -            | -            | -            | -            |
|       |               |                    | 1.375           | 1.485           | 33.85          | 2031<br>1254 | 2708         | 3385         | 6770         | 8463<br>5224 | 13540<br>8359 | 16926        | -            | -            | -            | _            | _            |
|       |               |                    | 1.75<br>2       | 2.405<br>3.142  | 20.90<br>16.00 | 960          | 1672<br>1280 | 2090<br>1600 | 4180<br>3200 | 4000         | 6400          | 8000         | -            | _            | _            | _            | _            |
|       |               |                    | 2.5             | 4.909           | 10.24          | 614          | 819          | 1024         | 2048         | 2560         | 4096          | 5120         | _            | _            | _            | _            | _            |
| _     |               | 200                | 3               | 7.068           | 7.11           | 427          | 569          | 711          | 1422         | 1778         | 2844          | 3556         | _            | _            | _            | _            | _            |
| 8     | 50.264        | 500                | 3.5             | 9.621           | 5.22           | 313          | 418          | 522          | 1045         | 1306         | 2090          | 2612         | -            | -            | -            | -            | -            |
|       |               | 300                | 4               | 12.566          | 4.00           | 240          | 320          | 400          | 800          | 1000         | 1600          | 2000         | -            | -            | -            | -            | -            |
|       |               |                    | 4.5             | 15.904          | 3.16           | 190          | 253          | 316          | 632          | 790          | 1264          | 1580         | -            | -            | -            | -            | -            |
|       |               |                    | 5               | 19.634          | 2.56           | 154          | 205          | 256          | 512          | 640          | 1024          | 1280         | -            | -            | -            | -            | -            |
|       |               |                    | 5.5             | 23.758          | 2.12           | 127          | 169          | 212          | 423          | 529          | 846           | 1058         | -            | -            | -            | -            | -            |
|       |               |                    | 1.75<br>2       | 2.405           | 32.65          | 1959         | 2612         | 3265         | 6531         | 8163         | 13061         | -            | -            | -            | -            | _            | -            |
|       |               |                    | 2.5             | 3.142<br>4.909  | 25.00<br>16.00 | 1500<br>960  | 1280         | 2500<br>1600 | 5000<br>3200 | 6250<br>4000 | 6400          | _            | -            | _            | -            | _            | _            |
|       |               | 200                | 3               | 7.068           | 11.11          | 667          | 889          | 1111         | 2222         | 2778         | 4444          | _            | _            | _            | _            | _            | _            |
| 10    | 78.538        | 200                | 3.5             | 9.621           | 8.16           | 490          | 653          | 816          | 1633         | 2041         | 3265          | _            | _            | _            | _            | _            | _            |
|       |               | 400                | 4               | 12.566          | 6.25           | 375          | 500          | 625          | 1250         | 1563         | 2500          | _            | -            | _            | _            | _            | _            |
|       |               |                    | 4.5             | 15.904          | 4.94           | 296          | 395          | 494          | 988          | 1235         | 1975          | -            | -            | -            | -            | -            | -            |
|       |               |                    | 5               | 19.634          | 4.00           | 240          | 320          | 400          | 800          | 1000         | 1600          | -            | -            | -            | -            | -            | -            |
|       |               |                    | 5.5             | 23.758          | 3.31           | 198          | 264          | 331          | 661          | 826          | 1322          | -            | -            | -            | -            | -            | -            |
|       |               |                    | 2               | 3.142           | 36.00          | 2160         | 2880         | 3600         | 7200         |              | 14400         | -            | -            | -            | -            | -            | -            |
|       |               |                    | 2.5             | 4.909           | 23.04          | 1382         | 1843         | 2304         | 4608         | 5760         | 9216          | -            | -            | -            | -            | -            | -            |
|       |               | 200                | 3               | 7.068           | 16.00          | 960          | 1280         | 1600         | 3200         | 4000         | 6400          | -            | -            | -            | -            | -            | -            |
| 12    | 113.094       |                    | 3.5<br>4        | 9.621<br>12.566 | 9.00           | 705<br>540   | 940<br>720   | 1176<br>900  | 2351<br>1800 | 2939<br>2250 | 4702<br>3600  | -            | _            | _            | -            | -            | -            |
|       |               | 400                | 4.5             | 15.904          | 7.11           | 427          | 569          | 711          | 1422         | 1778         | 2844          | _            | _            | _            | _            | _            | _            |
|       |               |                    | 5               | 19.634          | 5.76           | 346          | 461          | 576          | 1152         | 1440         | 2304          | _            | _            | _            | _            | _            | _            |
|       |               |                    | 5.5             | 23.758          | 4.76           | 286          | 381          | 476          | 952          | 1190         | 1904          | -            | -            | -            | _            | _            | _            |
|       |               |                    | 2.5             | 4.909           | 31.36          | 1882         | 2509         | 3136         | 6272         | 7840         | 12544         | -            | -            | -            | -            | -            | -            |
|       |               |                    | 3               | 7.068           | 21.78          | 1307         | 1742         | 2178         | 4356         | 5444         | 8711          | -            | -            | -            | -            | -            | -            |
|       |               | 200                | 3.5             | 9.621           | 16.00          | 960          | 1280         | 1600         | 3200         | 4000         | 6400          | -            | -            | -            | -            | -            | -            |
| 14    | 153.934       |                    | 4               | 12.566          | 12.25          | 735          | 980          | 1225         | 2450         | 3063         | 4900          | -            | -            | -            | -            | -            | -            |
|       |               | 400                | 4.5             | 15.904          | 9.68           | 581          | 774          | 968          | 1936         | 2420         | 3872          | -            | -            | -            | -            | -            | -            |
|       |               |                    | 5               | 19.634          | 7.84           | 470          | 627          | 784          | 1568         | 1960         | 3136          | -            | -            | -            | -            | -            | -            |
|       |               |                    | 5.5             | 23.758          | 6.48           | 389          | 518          | 648          | 1296         | 1620         | 2592          | -            | -            | -            | -            | -            | _            |

**NOTE:** When output pressures are in the gray shaded area, the output pressure has exceeded the rating for the output cylinder and then Boosters NBS-5 THROUGH NBD-5 should not be used. For output pressures greater than 5000 PSI, please consult the factory.

**NOTE:** When output pressures are not shown, either output pressure has exceeded rating of output cylinder or input pressure has exceeded rating of input cylinder.

• = CL3 series not shown in this ratio combination.

# **BOOSTER SELECTION CHART**

NB-3 (3000 PSI)

| 11    | IPUT CYL | INDER | 2                   |       | OUTPL  | JT CYLI | NDER              |      |                  |     |      |       |       |        |         |       |       |        |      |      |
|-------|----------|-------|---------------------|-------|--------|---------|-------------------|------|------------------|-----|------|-------|-------|--------|---------|-------|-------|--------|------|------|
| BORE  | AREA     |       | IMUM<br>PUT<br>SURE | BORE  | AREA   |         | MUM OL<br>SSURE U |      | BOOSTER<br>RATIO |     | c    | UTPUT | PRESS | URE (F | PSI) AT | INPUT | PRESS | URE OI | F    |      |
|       |          | Α     | L                   |       |        | Α       | L                 | Н    |                  | 60  | 80   | 100   | 200   | 250    | 400     | 500   | 750   | 900    | 950  | 1100 |
| 2-1/2 | 4.909    | 250   | 1100                | 1-1/2 | 1.767  | 250     | 1500              | 3000 | 2.78             | 167 | 222  | 278   | 556   | 695    | 1111    | 1389  | 2084  | 2500   | 2639 | -    |
| 7 1/4 | 8.296    | 250   | 1350                | 1-1/2 | 1.767  | 250     | 1500              | 3000 | 4.69             | 282 | 376  | 469   | 939   | 1174   | 1878    | 2347  | -     | -      | -    | -    |
| 3-1/4 | 0.296    | 250   | 1330                | 2     | 3.142  | 250     | 1500              | 3000 | 2.64             | 158 | 211  | 264   | 528   | 660    | 1056    | 1320  | 1980  | 2376   | 2508 | -    |
|       |          |       |                     | 1-1/2 | 1.767  | 250     | 1500              | 3000 | 7.11             | 427 | 569  | 711   | 1422  | 1778   | 2845    | -     | -     | -      | -    | -    |
| 4     | 12.566   | 250   | 950                 | 2     | 3.142  | 250     | 1500              | 3000 | 4.00             | 240 | 320  | 400   | 800   | 1000   | 1600    | 2000  | 3000  | -      | -    | -    |
|       |          |       |                     | 2-1/2 | 4.909  | 250     | 1100              | 3000 | 2.56             | 154 | 205  | 256   | 512   | 640    | 1024    | 1280  | 1920  | 2304   | 2432 | -    |
|       |          |       |                     | 1-1/2 | 1.767  | 250     | 1500              | 3000 | 11.11            | 667 | 889  | 1111  | 2222  | 2778   | -       | -     | -     | -      | -    | -    |
| 5     | 19.634   | 250   | 900                 | 2     | 3.142  | 250     | 1500              | 3000 | 6.25             | 375 | 500  | 625   | 1250  | 1562   | 2500    | -     | -     | -      | -    | -    |
| 5     | 19.634   | 250   | 900                 | 2-1/2 | 4.909  | 250     | 1100              | 3000 | 4.00             | 240 | 320  | 400   | 800   | 1000   | 1600    | 2000  | 3000  | -      | -    | -    |
|       |          |       |                     | 3-1/4 | 8.296  | 250     | 1350              | 3000 | 2.37             | 142 | 189  | 237   | 473   | 592    | 947     | 1183  | 1775  | 2130   | -    | -    |
|       |          |       |                     | 2     | 3.142  | 250     | 1500              | 3000 | 9.00             | 540 | 720  | 900   | 1800  | 2250   | -       | -     | -     | -      | -    | -    |
|       | 20.274   | 200   | 750                 | 2-1/2 | 4.909  | 250     | 1100              | 3000 | 5.76             | 346 | 461  | 576   | 1152  | 1440   | 2304    | 2880  | -     | -      | -    | -    |
| 6     | 28.274   | 200   | 750                 | 3-1/4 | 8.296  | 250     | 1350              | 3000 | 3.41             | 204 | 273  | 341   | 682   | 852    | 1363    | 1704  | 2556  | -      | -    | -    |
|       |          |       |                     | 4     | 12.566 | 250     | 950               | 3000 | 2.25             | 135 | 180  | 225   | 450   | 563    | 900     | 1125  | 1688  | -      | -    | -    |
|       |          |       |                     | 2     | 3.142  | 250     | 1500              | 3000 | 16.00            | 960 | 1280 | 1600  | -     | -      | -       | -     | -     | -      | -    | -    |
|       |          |       |                     | 2-1/2 | 4.909  | 250     | 1100              | 3000 | 10.24            | 614 | 819  | 1024  | 2048  | 2560   | -       | -     | -     | -      | -    | -    |
| 8     | 50.264   | 200   | 500                 | 3-1/4 | 8.296  | 250     | 1350              | 3000 | 6.06             | 364 | 485  | 606   | 1212  | 1515   | 2424    | -     | -     | -      | -    | -    |
|       |          |       |                     | 4     | 12.566 | 250     | 950               | 3000 | 4.00             | 240 | 320  | 400   | 800   | 1000   | 1600    | 2000  | -     | -      | -    | -    |
|       |          |       |                     | 5     | 19.634 | 250     | 900               | 3000 | 2.56             | 154 | 205  | 256   | 512   | 640    | 1024    | 1280  | -     | -      | -    | -    |
|       |          |       |                     | 2-1/2 | 4.909  | 250     | 1100              | 3000 | 16.00            | 960 | 1280 | 1600  | -     | -      | -       | -     | -     | -      | -    | -    |
|       |          |       |                     | 3-1/4 | 8.296  | 250     | 1350              | 3000 | 9.47             | 568 | 757  | 947   | 1893  | 2367   | -       | -     | -     | -      | -    | -    |
| 10    | 78.538   | 200   | 400                 | 4     | 12.566 | 250     | 950               | 3000 | 6.25             | 375 | 500  | 625   | 1250  | 1563   | 2500    | -     | -     | -      | -    | -    |
|       |          |       |                     | 5     | 19.634 | 250     | 900               | 3000 | 4.00             | 240 | 320  | 400   | 800   | 1000   | 1600    | -     | -     | -      | -    | -    |
|       |          |       |                     | 6     | 28.274 | 250     | 750               | 3000 | 2.78             | 167 | 222  | 278   | 556   | 694    | 1111    | -     | -     | -      | -    | -    |
|       |          |       |                     | 3-1/4 | 8.296  | 250     | 1350              | 3000 | 13.63            | 818 | 1091 | 1363  | 2726  | -      | -       | -     | -     | -      | -    | -    |
|       |          |       |                     | 4     | 12.566 | 250     | 950               | 3000 | 9.00             | 540 | 720  | 900   | 1800  | 2250   | -       | -     | -     | -      | -    | _    |
| 12    | 113.094  | 200   | 400                 | 5     | 19.634 | 250     | 900               | 3000 | 5.76             | 346 | 461  | 576   | 1152  | 1440   | 2304    | -     | -     | _      | _    | -    |
|       |          |       |                     | 6     | 28.274 | 250     | 750               | 3000 | 4.00             | 240 | 320  | 400   | 800   | 1000   | 1600    | -     | -     | -      | -    | -    |
|       |          |       |                     | 8     | 50.264 | 250     | 500               | 3000 | 2.25             | 135 | 180  | 225   | 450   | 563    | 900     | -     | -     | -      | -    | _    |
|       |          |       |                     | 4     | 12.566 | 250     | 950               | 3000 | 12.25            | 735 | 980  | 1225  | 2450  | -      | -       | -     | -     | -      | -    | _    |
| 1.4   | 157.074  | 200   | 100                 | 5     | 19.634 | 250     | 900               | 3000 | 7.84             | 470 | 627  | 784   | 1568  | 1960   | -       | -     | -     | -      | -    | _    |
| 14    | 153.934  | 200   | 400                 | 6     | 28.274 | 250     | 750               | 3000 | 5.44             | 327 | 436  | 544   | 1089  | 1361   | 2178    | -     | -     | -      | -    | _    |
|       |          |       |                     | 8     | 50.264 | 250     | 500               | 3000 | 3.06             | 184 | 245  | 306   | 613   | 766    | 1225    | -     | -     | -      | -    | _    |

**NOTE:** When output pressures are not shown, either output pressure has exceeded rating of 3000 PSI at output cylinder or input pressure has exceeded rating of input cylinder.

A = AIR

L = LOW PRESSURE HYDRAULIC

H = HIGH PRESSURE HYDRAULIC



# **GENERAL INFORMATION**

NOPAK air-oil tanks are used as a simple economical method to supply a make up source of oil to any hydraulic circuit. Mounting the tank in a vertical position above the circuit that is being supplied, automatically bleeds the entire circuit system. The air supply to the air over oil tank is supplied by the same shop air source that provides low pressure power to the booster. In addition, air-oil tanks offer a means of smooth hydraulic speed control.

# **DESIGN FEATURES:**

- Baffles on either end of the tank to reduce turbulence caused by rapid intake of air and discharge of oil causing aeration, whirlpooling and foaming.
- Replaceable sight gauge mounted in heads on the tank side. The transparent plastic sight tube clearly shows oil levels in the tank and is compatible with most hydraulic fluids.
- Large pipe ports enable the quick filling or draining of the tank. Aluminum heads are standard for tank diameters of 3-1/4" through 8". Otherwise steel Class 6 inventoried stock of 3-1/4" diameter through 14" diameters modified for added ports plus aluminum tubes are standard stock.

#### NOTE:

Tanks are also available with glass wound filament fiberglass tubing. Because it is translucent, it provides a visual oil level indication. This eliminates the use of a sight gauge. Fiberglass tubing has the highest strength to weight ratio commercially available. It has a higher resistance for high impact and dents than brass or aluminum tubing. Corrosion resistant to a wide range of chemicals, acids, high moisture and other severe conditions make for a trouble-free operation in most environments. NOPAK can economically supply you with either tank depending on your choice preference or specification.

#### HOW TO SELECT THE CORRECT SIZED AIR-OIL TANK

- Determine the bore diameter and stroke of the work cylinder.
- 2 Calculate the cubic inch oil displacement of work cylinder by multiplying the piston square inch area times the stroke in inches. (Use Class 6 Section, page 135, "TABLE B VOLUME OF OIL PER 12" OF STROKE" for piston square inch area for ready reference.) Your determination will result in the cubic inch displacement volume requirement needed to select an air-oil tank.

#### **EXAMPLE:**

Work cylinder has a 4" diameter bore with 15" long stroke. From the Class 6 Section, page 135:

12.56 sq. in. area 4" bore x 15" stroke length

188.4 cu. in. displacement volume needed.

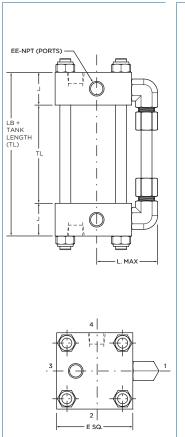
See the tank selector chart below to select proper choice. Select a bore-height combination that has a capacity closest to, but larger than 188.4 cu. in. Your options are the 4" diameter bore with a 21" long tank length or the 5" bore with a 14" tank length or a 6" bore with an 11" tank length.

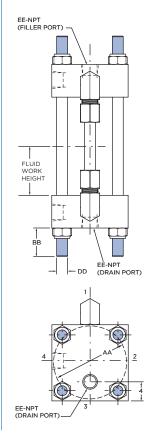
Economics recommends that your selection be the smaller 4" diameter bore with the 21" long tank length. This of course is predicated on available space. The smaller bore tanks are generally less costly than larger bores. Exceptions to this are the booster-tank combination, which then makes your selection to be that the tank diameter be the same diameter as the booster. Next selection would be the type of mount applicable to your requirements. See the chart on opposite page for selection and dimensions. NOPAK offers Models H, S, T, TB, and AP as a standard. However, other mounting styles can be selected from the Class 6 Section. When boosters and air-oil tanks are ordered, specify whether air-oil tanks should be separate or integral. It is assumed that air-oil tanks are to be separate unless specified.

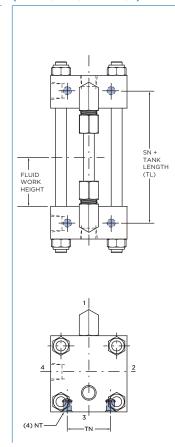
Please consult the NOPAK Sales office or your nearest NOPAK representative for additional information.

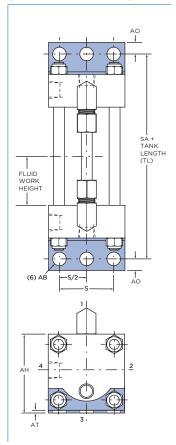
# TANK SELECTOR CHART

|                                |       |     |       |       |       |       |      | TANK | VOLU   | ME IN ( | CUBIC      | INCHE   | S          |        |      |      |        |            |            |        |        |
|--------------------------------|-------|-----|-------|-------|-------|-------|------|------|--------|---------|------------|---------|------------|--------|------|------|--------|------------|------------|--------|--------|
| TANK                           |       |     |       |       |       |       |      |      | TL - 1 | TANK L  | ENGTI      | H IN IN | CHES       |        |      |      |        |            |            |        |        |
| BORE (INCHES)                  | 5     | 6   | 7     | 8     | 9     | 10    | 11   | 12   | 13     | 14      | 15         | 16      | 17         | 18     | 19   | 20   | 21     | 22         | 23         | 24     | 25     |
| 3-1/4                          | 21    | 25  | 32    | 35    | 44    | 51    | 58   | 66   | 73     | 80      | 88         | 95      | 102        | 109    | 116  | 124  | 131    | 139        | 146        | 153    | 160    |
| 4                              | 31    | 38  | 48    | 56    | 67    | 78    | 88   | 100  | 111    | 122     | 133        | 144     | 155        | 166    | 176  | 188  | 199    | 210        | 221        | 232    | 242    |
| 5                              | 49    | 59  | 76    | 88    | 105   | 122   | 137  | 157  | 174    | 191     | 208        | 225     | 243        | 260    | 273  | 294  | 311    | 328        | 346        | 363    | 378    |
| 6                              | 70    | 85  | 109   | 127   | 152   | 176   | 198  | 226  | 250    | 275     | 300        | 325     | 349        | 374    | 396  | 424  | 448    | 473        | 498        | 523    | 544    |
| 8                              | 126   | 151 | 195   | 226   | 270   | 314   | 352  | 402  | 446    | 490     | 534        | 578     | 622        | 666    | 704  | 754  | 798    | 841        | 885        | 929    | 968    |
| 10                             | 196   | 236 | 304   | 353   | 422   | 490   | 550  | 628  | 697    | 765     | 834        | 903     | 971        | 1040   | 1100 | 1178 | 1246   | 1315       | 1384       | 1453   | 1512   |
| 12                             | 283   | 339 | 438   | 509   | 607   | 706   | 792  | 904  | 1003   | 1102    | 1201       | 1300    | 1399       | 1498   | 1583 | 1696 | 1795   | 1894       | 1993       | 2092   | 2177   |
| 14                             | 385   | 462 | 597   | 692   | 827   | 962   | 1078 | 1231 | 1366   | 1500    | 1635       | 1770    | 1905       | 2039   | 2155 | 2309 | 2443   | 2578       | 2713       | 2847   | 2963   |
| Fluid<br>Working<br>Height In. | 2-1/2 | 3   | 3-7/8 | 4-1/2 | 5-3/8 | 6-1/4 | 7    | 8    | 8-7/8  | 9-3/4   | 10-<br>3/8 | 11-1/2  | 12-<br>3/8 | 13-1/4 | 14   | 15   | 15-7/8 | 16-<br>3/4 | 17-<br>5/8 | 18-1/2 | 19-1/4 |


# **MODEL H**


# **MODEL T-TB**


(NFPA STD. STYLE MX1 & MX2)


MODEL S (NFPA STD. STYLE MS4)

MODEL AP (NFPA STD. STYLE MS1)









# Table 1

• = Dimension refers to bolt diameter.

| TANK<br>BORE<br>(INCHES) | E      | J     | U     | S      | L     | AA    | АВ•   | AT     | АН     | АО   | ВВ      | DD      | EE    | LB    | NT      | SA    | SN    | TN      |
|--------------------------|--------|-------|-------|--------|-------|-------|-------|--------|--------|------|---------|---------|-------|-------|---------|-------|-------|---------|
| 3-1/4                    | 3-3/4  | 1-1/4 | 1-3/8 | 2-3/4  | 3-1/4 | 4.00  | 1/2   | 2      | 1/2    | 1/8  | 1-3/8   | 7/16-20 | 1/2   | 2-1/2 | 1/2-13  | 5     | 1-3/8 | 1-1/2   |
| 4                        | 4-1/2  | 1-1/4 | 1-5/8 | 3-1/2  | 3-5/8 | 4.75  | 1/2   | 2-1/4  | 1/2    | 1/8  | 1-3/8   | 7/16-20 | 1/2   | 2-1/2 | 1/2-13  | 5     | 1-3/8 | 2-1/16  |
| 5                        | 5-1/2  | 1-1/4 | 2     | 4-1/4  | 4-1/8 | 5.80  | 5/8   | 2-3/4  | 5/8    | 3/16 | 1-3/4   | 1/2-20  | 1/2   | 2-1/2 | 5/8-11  | 5-1/4 | 1-3/8 | 2-11/16 |
| 6                        | 6-1/2  | 1-1/2 | 2-1/4 | 5-1/4  | 4-5/8 | 6.90  | 3/4   | 3-1/4  | 5/8    | 3/16 | 1-3/4   | 9/16-18 | 3/4   | 3     | 3/4-10  | 5-3/4 | 1-5/8 | 3-1/4   |
| 8                        | 8-1/2  | 1-1/2 | 3     | 7-1/8  | 5-5/8 | 9.10  | 3/4   | 4-1/4  | 11/16  | 1/4  | 2-1/4   | 5/8-18  | 3/4   | 3     | 3/4-10  | 6-5/8 | 1-5/8 | 4-1/2   |
| 10                       | 10-5/8 | 2     | 3-1/4 | 8-7/8  | 6-3/4 | 11.30 | 1     | 5-5/16 | 7/8    | 1/4  | 2-5/8   | 3/4-16  | 1     | 4     | 1-8     | 8-1/4 | 2     | 5-1/2   |
| 12                       | 12-3/4 | 2     | 3-3/4 | 11     | 7-3/4 | 13.31 | 1     | 6-3/8  | 7/8    | 3/8  | 2-11/16 | 3/4-16  | 1     | 4     | 1-8     | 8-1/4 | 2     | 7-1/4   |
| 14                       | 14-3/4 | 2-1/4 | 3-7/8 | 12-5/8 | 8-3/4 | 15.40 | 1-1/4 | 7-3/8  | 1-1/16 | 3/8  | 3-3/16  | 7/8-14  | 1-1/4 | 4-1/2 | 1-1/4-7 | 9-3/8 | 2-3/8 | 8-3/8   |



# **Terms and Conditions of Sale**





# **TERMS AND CONDITIONS OF SALE**

Effective January 1, 2015

These Galland Henning NOPAK, Inc. ("Seller") Terms and Conditions of Sale shall govern all sales and all orders placed by buyer ("Buyer") for goods or products (collectively, "Products") from Seller.

- ACCEPTANCE; CONTRARY TERMS; ENTIRE AGREEMENT. All orders for Products are subject to acceptance by Seller at its offices in Franklin, Wisconsin. Seller's written price quotation, if any ("Seller's Quotation") and these Terms and Conditions of Sale are intended by the parties to be the complete and exclusive agreement of the parties with respect to the subject matter hereof and supersede all prior understandings, representations. warranties or agreements between the parties, whether written or oral. BUYER'S ORDERS ARE ACCEPTED ONLY ON THE TERMS AND CONDITIONS CONTAINED HEREIN AND THE PROVISIONS OF ANY PURCHASE ORDER OR OTHER WRITING WHICH ARE INCONSISTENT HEREWITH SHALL NOT CONSTITUTE PART OF THESE TERMS AND CONDITIONS OF SALE. SELLER'S ACCEPTANCE OF BUYER'S ORDER IS SUBJECT TO AND CONDITIONED ON BUYER'S ASSENT TO THESE TERMS AND CONDITIONS OF SALE.
- 2 PRICE AND DELIVERY: Prices shall be as set forth on Seller's Quotations, provided however, that prices may be adjusted by Seller without notice to conform to prices in effect at the time of shipment. Unless otherwise specified by Seller in writing, all prices are F.O.B. Seller's plant. All Seller's Quotations automatically expire thirty (30) calendar days from date of issuance unless communicated otherwise by Seller. Unless otherwise specified by Seller in writing, prices stated on Seller's Quotations do not include any sales, use or value-added taxes, or any other taxes, charges or duties applicable to the sale of Products, which taxes, charges and duties (including any interest and penalties) shall be the sole responsibility of Buyer. Buyer shall provide Seller with tax exemption certificates if requested by Seller. Unless otherwise agreed to by the parties in writing, all Products are shipped F.O.B Seller's plant. Risk of loss shall pass to Buyer at the time the Products are delivered to a carrier at Seller's plant and Buyer shall be solely responsible for procuring commercially reasonable insurance coverage for the Products after such delivery for the benefit of Seller and Buver. Title to the Products will remain with Seller until full payment (including deferred payments) is received by Seller. All freight, storage, insurance or other fees or charges (including, without limitation, any sales, use or value-added taxes and import duties on the Products, if any) shall be paid by Buyer and if advanced by Seller, shall be added to Seller's invoice and payable together with payment for the Products purchased. Seller will package the Products in a commercially reasonable manner acceptable to commercial carriers. All risk of loss relating to any goods or products not manufactured by Seller which are delivered by Buyer to Seller shall at all times remain the sole and exclusive responsibility of Buyer.
- 3 **DELAYS; PERFORMANCE:** Seller does not guarantee arrival of shipment(s) at a particular time or date under any circumstances. Seller shall have no liability whatsoever for any failure or delay in shipment or other nonperformance if shipment or performance is rendered impossible, impracticable or unreasonably burdensome by any event, whether or not forseen or forseeable, brought about by any cause other than the willful conduct of Seller, including, without limitation, accidents; breakdowns; riots; war; terrorism; interruptions in or failures of sources or subcontractors to supply materials or equipment; failures in manufacturing processes or equipment; strikes, labor or transportation problems; fires, explosions or other acts of God; or orders, contracts, priorities, directives, requisitions or requests of the federal or state governments, whether or not voluntarily assumed. In the event of any such failure or delay in shipment or other nonperformance,

- Seller may, at its option and without liability, cancel all or any portion of Buyer's order and/or extend any date upon which any performance hereunder is due.
- PAYMENT TERMS: Unless otherwise agreed to in writing by the parties, all invoices for Products shall be paid net 30 days and shall be payable in U.S. Dollars. If all Product(s) from an order are not shipped on the same date, pro rata invoices shall be rendered for such partial shipments. If shipment of any Product(s) (and/or materials or parts thereof) is delayed, either directly or indirectly by the Buyer, the date of completion of the Product(s) shall be deemed as the date of shipment and invoice. No orders by Buyer can be cancelled or returned without the written consent of Seller (in which case Buyer shall reimburse Seller for its reasonable costs associated with such cancelled or returned Products). OUTSTANDING BALANCES NOT PAID WHEN DUE SHALL BE SUBJECT TO A DELINQUENCY CHARGE ACCRUING AT THE RATE OF THE LOWER OF 1.5% PER MONTH OR THE MAXIMUM INTEREST RATE ALLOWABLE UNDER LAW. Buyer shall also pay Seller any collection fees and reasonable attorneys' fees incurred by Seller in collecting payment of the purchase prices or any other amounts for which Buyer is liable under the terms and conditions hereof. Seller shall have the right to cancel all or any portion of Buyer's order in the event Buyer has outstanding balances which are delinquent by 15 days or more.
- **EXCLUSIVE WARRANTY:** Seller warrants to the Buyer that the Products sold are to be free from defects in material and workmanship for (i) with respect to Products that contain perishable elastomers (e.g. rubber), a period of six (6) months from the date of shipment, (ii) with respect to the paint and finish of any Products, a period of six (6) months from the date of shipment and (iii) for all other Products (excluding paint and finish of Products), a period of five (5) years from the date of shipment, subject to the terms and limitations of the exclusive warranty and remedies described herein. THIS FOREGOING WARRANTY IS EXCLUSIVE AND IN LIEU OF ANY OTHER WARRANTY, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. SELLER NEITHER ASSUMES (NOR HAS AUTHORIZED ANY PERSON TO ASSUME) ANY OTHER WARRANTY OR LIABILITY IN CONNECTION WITH SELLER'S PRODUCTS. IF BUYER'S ORDER IS FOR PRODUCTS WHICH CONTAIN COMPONENTS MANUFACTURED BY A PARTY OTHER THAN SELLER, BUYER ACKNOWLEDGES THAT SELLER IS NOT THE MANUFACTURER OF SUCH COMPONENTS AND AGREES THAT ALL SUCH COMPONENTS ARE NOT COVERED BY THE WARRANTY PROVIDED HEREIN AND ARE WARRANTED ONLY TO THE EXTENT OF THE MANUFACTURER'S EXPRESS WARRANTIES TO SELLER, WHICH SELLER SHALL PROVIDE TO BUYER AT BUYER'S REQUEST. SELLER'S WARRANTIES CONTAINED IN THESE TERMS AND CONDITIONS SHALL AUTOMATICALLY BECOME NULL AND VOID IN THE EVENT OF (I) INSTALLATION OF ANY PARTS NOT SUPPLIED OR AUTHORIZED IN WRITING BY SELLER, (II) MODIFICATION OF A PRODUCT, OR (III) IMPROPER OR UNAUTHORIZED REPAIRS ARE MADE TO A PRODUCT. THE FAILURE OF BUYER TO PAY THE FULL PURCHASE PRICE FOR ANY PRODUCT ACCORDING TO THESE TERMS AND CONDITIONS OF SALE OR ANY OTHER OUTSTANDING BALANCE DUE FOR A PRIOR, CURRENT OR FUTURE OBLIGATION OWED TO SELLER SHALL AUTOMATICALLY VOID ANY OF SELLER'S WARRANTY OBLIGATIONS CONTAINED HEREIN.
- 6 LIMITATION OF REMEDIES AND DAMAGES: Buyer shall provide Seller with written notice of any alleged defects in material or workmanship that arise under proper and normal use of the Products during the warranty period set forth in Section 5, above.

Seller shall arrange for inspection of such Products within fifteen (15) days of its receipt of such notice. Before the end of such fifteen (15) day period, Seller shall advise Buyer whether Seller will, at its sole option, repair or replace Products found to be defective or credit Buyer for the same. Seller shall not be liable for damage to any Product resulting from (i) improper installation or operation, (ii) installation of any parts not supplied or authorized by Seller, (iii) modification of such Product, (iv) improper or unauthorized repairs, (v) improper storage or handling of such Product, (vi) negligent or willful misconduct of Buyer or (vii) Buyer's designs, change orders or changes in specifications. No Products shall be returned to Seller without its prior written consent. EXCEPT AS OTHERWISE EXPRESSLY PROVIDED HEREIN, SELLER WILL NOT BE LIABLE TO BUYER OR ANY THIRD PARTY FOR ANY CONSEQUENTIAL, INCIDENTAL, INDIRECT, PUNITIVE, OR SPECIAL DAMAGES ARISING OUT OF OR RELATING TO THESE TERMS AND CONDITIONS OF SALE OR THE PERFORMANCE OR BREACH HEREOF, INCLUDING, BUT NOT LIMITED TO, LABOR COSTS, LOSS OF USE, LOST REVENUES, LOST PROFITS, DAMAGE TO ASSOCIATED EQUIPMENT OR FACILITIES, COSTS OF REPLACEMENT POWER, COSTS ASSOCIATED WITH DOWNTIME, AND ANY SIMILAR LOSSES, COSTS OR DAMAGES, AND REGARDLESS OF HOWEVER CAUSED, WHETHER BASED ON CONTRACT, TORT, OR ANY OTHER LEGAL THEORY AND IN NO EVENT SHALL SELLER'S LIABILITY WITH RESPECT TO A BREACH OF THE LIMITED WARRANTY PROVIDED BY THESE TERMS AND CONDITIONS EXCEED THE PURCHASE PRICE PAID BY BUYER FOR THE PRODUCT(S) IN QUESTION.

- 7 **INTELLECTUAL PROPERTY:** Buyer represents and warrants that Buyer has all right, title and interest to and in, or has been granted a license to use, any patent, trademark and/or other intellectual property that Buyer has or will request Seller to affix to, or use in the production of an any Product supplied hereunder. Buyer further represents and warrants that the use or omission of any designs, devices, or words, including any wording required by any Federal, State or local laws or ordinances which Buyer may from time to time order incorporated in or imprinted or placed on the Products is in conformance with all applicable laws and does not infringe on any third party's intellectual property rights (regardless of whether or not Seller consulted thereon or performed design work or other special services in connection therewith).
- 8 CLAIMS AND MODIFICATIONS: Buyer shall have ten (10) days after receipt of the Products to inspect and make any claims for error in design and specifications. Failure to make such a claim and reject Products within such period shall constitute an irrevocable acceptance of the Products and an admission that the Products fully comply with design and specifications. Seller reserves the right to accept or reject any such claim in whole or part. Replacement of defective Products or repayment of the purchase price for nonconforming Products shall be made only upon return thereof after inspection by Seller and Buyer's compliance with written shipping instructions from Seller. Any claims for loss or damage during transit must be prosecuted by Buyer solely against the carrier and/or insurer. Buyer may not make any changes to Buyer's order without the prior written consent of Seller. Any price variation from any such changes shall become effective immediately upon the acceptance of such changes by Seller.
- 9 **INDEMNIFICATION:** Buyer shall indemnify and hold Seller and each of its officers, directors, employees, shareholders, affiliates, agents, representatives, successors and assigns harmless from and against any and all claims, actions, demands, legal proceedings, judgments, settlements, sums, costs, liabilities, losses, obligations, damages, penalties, fines, costs and other expenses (including, but

not limited to, reasonable attorneys' fees) relating to, arising out of or resulting from (i) Buyer's use of any Product, including, without limitation, any third party claims for personal injury or property damage resulting from Buyer's negligence or willful misconduct, (ii) any act by Buyer or its employees, agents or representatives, which causes the warranties contained in these terms and conditions to be null and void, (iii) any infringement or claim of infringement of any proprietary right of a third party by reason of Buyer's plans, specifications or the production, use or sale of any Product purchased by Buyer and (iv) Buyer's violation or alleged violation of any Federal, state, county or local laws or regulations, including, without limitation, the laws and regulations governing product safety, labeling, packaging and labor practices. If any claim should be asserted or action commenced against Seller for which Seller is entitled to indemnification hereunder, Buyer shall, upon Seller's demand, promptly undertake the defense of such claim or action, employing counsel satisfactory to Seller or, alternatively, Seller may elect to defend the same on its own behalf. In either case, Buyer will, upon demand, pay all reasonable attorney's fees and other costs or expenses incurred by Seller in connection with such defense, including, but not limited to, any judgment or award resulting from any such claim or action and any settlement paid by Seller with Buyer's consent.

- 10 ASSIGNMENT: Buyer may not assign any of its rights, duties or obligations under these Terms and Conditions of Sale without Seller's prior written consent. Any attempted assignment without Seller's written consent, even if by operation of law, shall be null and void.
- 11 CONTROLLING LAW; VENUE: These Terms and Conditions of Sale and the interpretation, construction and enforcement thereof and all provisions, suits and special proceedings thereunder shall be governed by the internal laws of the State of Wisconsin, without regard to rules of construction concerning the drafter thereof and without regard to conflicts of law principles. Buyer (i) consents to submit to the exclusive jurisdiction of the state and federal courts located in Milwaukee County, Wisconsin for the resolution of any dispute between the parties concerning any Products or these Terms and Conditions of Sale; (ii) agrees not to commence any such proceeding except in such courts; and (iii) waives any objection to the laying of venue of any such proceeding in the state or federal courts located in Milwaukee County, Wisconsin.
- 12 **INVALIDITY; UNENFORCEABILITY:** In the event that any provision of these Terms and Conditions of Sale is found invalid or unenforceable, whether in whole or in part, for any reason, such provision shall be changed and interpreted so as to best accomplish the objectives of such provision within the limits of applicable law or applicable court decisions. The invalidity or unenforceability of any such provision or part of such provision will not affect the validity or enforceability of the remaining terms and conditions hereof.
- 13 WAIVER: The failure of Seller or Buyer, at any time, to require the performance of any obligation or to assert a right contained herein will not affect either party's right to require such performance or assert such right at any time thereafter; nor shall the waiver of any right or obligation be construed in any way as a waiver of any succeeding breach.

