
 1

Technology Guide

Cloud Native Data Plane (CNDP) -
Overview

Authors
Magnus Karlsson

Gary Loughnane

Elza Mathew

Paulina Osikoya

Jeff Shaw

Maryam Tahhan

Edwin Verplanke

Keith Wiles

1 Introduction
There is a fast-growing requirement for a data plane software development environment that
is better aligned with the cloud native paradigm. Virtualized packet processing applications
can be difficult to efficiently automate and orchestrate by a cloud native platform because of
their dedicated resource demands, complex software management models (driver, kernel,
software releases, and firmware), and difficulty to debug and monitor. These limitations are
orthogonal to cloud native design principles. As such, there is not a clear path for migration
from a virtual network function (VNF) to a cloud native network function (CNF), leading to
the creation of complex deployment and management models to run ported applications and
services. These legacy applications were not designed for the cloud native paradigm and are
being retroactively fit into this world.

A new cloud native centric data plane framework is needed to meet the needs of high-
performance, cloud native packet processing applications and the design principles of this
paradigm. This paper introduces such a framework called the Cloud Native Data Plane
(CNDP) and proposes an architecture to deploy it in a cloud native platform. CNDP provides
a framework to easily deploy packet processing applications across the comms ecosystem to
address composability, automatability, scalability, and performance requirements imposed
by communications workloads.

This document is part of the Network Transformation Experience Kits.

https://networkbuilders.intel.com/network-technologies/network-transformation-exp-kits

Technology Guide | Cloud Native Data Plane (CNDP) - Overview

 2

Table of Contents
1 Introduction .. 1

1.1 Terminology .. 3
1.2 Reference Documentation ...4

2 Overview ...4
2.1 Cloud Native Data Plane ..4
2.2 Challenges Addressed ... 5
2.3 Technology Description .. 6
2.4 AF_XDP Deep Dive .. 7

2.4.1 UMEM .. 7
2.4.2 Busy Poll .. 8
2.4.3 AF_XDP Abstraction .. 9

3 CNDP Deployment Model .. 9
3.1 Privileged AF_XDP Container ... 10
3.2 AF_XDP Device Plugin and CNDP CNI .. 11

3.2.1 Ethtool/Netfilter Solution... 11
3.2.2 Inability to Slice a PF into Smaller netdevs .. 11
3.2.3 ifindex Clashes Across Namespaces ... 11
3.2.4 Unloading eBPF Program ... 12
3.2.5 Device Plugin Sequence Flows ... 12

4 Summary .. 14

Figures
Figure 1: Cloud Native Data Plane Overview ... 5
Figure 2: CNDP 22.08 Release ... 6
Figure 3: AF_XDP Overview .. 8
Figure 4: CNDP Interface APIs.. 9
Figure 5. AF_XDP Deployment Model .. 10
Figure 6: Device Plugin Initialization .. 12
Figure 7: AF_XDP Device Plugin Interactions at Pod Creation Time .. 12
Figure 8: AF_XDP Socket Creation with CNDP .. 13
Figure 9: Pod Deletion Flow... 14

Tables
Table 1. Terminology ... 3
Table 2. Reference Documents .. 4
Table 3. Legacy App (Data Plane) Modernization versus CNDP .. 6

Document Revision History

Revision Date Description
001 January 2021 Initial release.

002 October 2021 Updated to include extended scope and a detailed description of the device plugin.

003 May 2022 Updated CNDP release to 22.04 and revised the document for public release to Intel® Network Builders.

004 October 2022 Updated CNDP release to 22.08. Refactored AF_XDP Deployment Model.

Technology Guide | Cloud Native Data Plane (CNDP) - Overview

 3

1.1 Terminology

Table 1. Terminology

Abbreviation Description
ACL Access Control List

AF_XDP Address Family eXpress Data Path

API Application Programming Interface

BPF Berkely Packet Filter

Chnl Channel

CLI Command Line Interface

CNCF Cloud Native Computing Foundation

CNDP Cloud Native Data Plane (CNDP)

CNET Cloud Network Stack

CNF Cloud Native Network Function

CNI Container Network Interface

CQ Completion Queue

DP Device Plugin

DPDK Data Plane Development Kit

eBPF extended Berkeley Packet Filter

FD File Descriptor

FIB Forwarding Information Base

FQ Fill Queue

IA Intel® architecture

Intel® AVX-512 Intel® Advanced Vector Extensions 512

Intel® DLB Intel® Dynamic Load Balancer

Intel® DSA Intel® Data Streaming Accelerator

IP/IPv4/IPv6 Internet Protocol Version 4/Version 6

JSON JavaScript Object Notation

K8s Kubernetes

HW Hardware

MBUF Memory Buffer

NIC Network Interface Card (Network Adapter)

PCI Peripheral Component Interconnect

PF Physical Function

PMD Poll Mode Driver

QUIC Quick UDP Internet Connection

REST REpresentational State Transfer

RIB Routing Information Base

RX Receive

SLA Service Level Agreement

SW Software

SR-IOV Single Root Input/Output Virtualization

TCP Transport Control Protocol

TX Transmit

UDP User Datagram Protocol

UDS UNIX Domain Socket

UMEM A region of virtual contiguous memory that is divided into frames of equal size

Technology Guide | Cloud Native Data Plane (CNDP) - Overview

 4

Abbreviation Description
VF Virtual Function

VNF Virtual Network Function

XDP eXpress Data Path

XSK AF_XDP Socket

1.2 Reference Documentation

Table 2. Reference Documents

Reference Source
AF_XDP Overview https://www.kernel.org/doc/html/latest/networking/af_xdp.html#af-xdp

Devlink enhancements for subfunctions management https://netdevconf.info/0x14/pub/papers/45/0x14-paper45-talk-paper.pdf

Subfunction management using devlink https://netdevconf.info/0x14/pub/slides/45/sf_mgmt_using_devlink_netdevconf_
0x14.pdf

Principles of container-based application design https://kubernetes.io/blog/2018/03/principles-of-container-app-design/

What is Legacy Application Modernization? https://www.sdxcentral.com/cloud/definitions/what-is-legacy-application-
modernization/

Interacting with eBPF Maps https://prototype-
kernel.readthedocs.io/en/latest/bpf/ebpf_maps.html#interacting-with-maps

Introduce preferred busy-polling https://lwn.net/Articles/837010/

2 Overview
2.1 Cloud Native Data Plane

CNDP is a data plane framework that uses standard Linux interfaces and operating system mechanisms with Intel® technologies
to allow applications to be built, deployed, and managed more efficiently by a cloud native platform while also providing
uncompromised performance. It provides a user with the following:

- User space libraries for packet processing microservices in the cloud native paradigm. These libraries take advantage of
Intel technologies where possible.

- The components needed to deploy a CNDP pod in Kubernetes (K8s), which include a device plugin and a container
network interface (CNI).

- A user space networking stack that can terminate traffic or allow you to build your application as part of the stack itself.

Figure 1 shows a high-level overview of CNDP and its scope. CNDP uses AF_XDP as its packet I/O layer, bypassing the kernel
network stack. It adds libraries for buffer management and other common packet processing functions like routing and flow
classification.

https://www.kernel.org/doc/html/latest/networking/af_xdp.html#af-xdp
https://netdevconf.info/0x14/pub/papers/45/0x14-paper45-talk-paper.pdf
https://netdevconf.info/0x14/pub/slides/45/sf_mgmt_using_devlink_netdevconf_0x14.pdf
https://netdevconf.info/0x14/pub/slides/45/sf_mgmt_using_devlink_netdevconf_0x14.pdf
https://www.sdxcentral.com/cloud/definitions/what-is-legacy-application-modernization/
https://www.sdxcentral.com/cloud/definitions/what-is-legacy-application-modernization/
https://prototype-kernel.readthedocs.io/en/latest/bpf/ebpf_maps.html#interacting-with-maps
https://prototype-kernel.readthedocs.io/en/latest/bpf/ebpf_maps.html#interacting-with-maps
https://lwn.net/Articles/837010/

Technology Guide | Cloud Native Data Plane (CNDP) - Overview

 5

Figure 1: Cloud Native Data Plane Overview

CNDP reuses many of the key learnings and optimizations from the Data Plane Development Kit (DPDK) and adheres to the
specification using the cloud native principles, including the following:

- Single Concern Principle (SCP) - every container should address a single concern and do it well.
- High Observability Principle (HOP) – the containerized application must provide APIs for the different kinds of health

checks - liveness and readiness.
- Lifecycle Conformance Principle (LCP) - provide APIs for the cloud native platform to read from.
- Image Immutability Principle (IIP) - prevent the creation of similar container images for different environments. One

image to rule them all.
- Process Disposability Principle (PDP) - containers need to be as ephemeral as possible and ready to be replaced by

another container instance at any point in time.
- Self-Containment Principle (S-CP) - a container should contain everything it needs at build time. It should only rely on

the presence of the Linux kernel and have any additional libraries added into it at the time the container is built.
- Runtime Confinement Principle (RCP) – containers should declare required resources (as well as their SLAs) and stick

to those SLAs.1

CNDP is an open-source, community driven project available at https://cndp.io.

2.2 Challenges Addressed

Similar to the hardware evolution seen with software-defined networking (SDN) and network function virtualization (NFV),
software is also evolving. “Legacy application modernization is when an outdated application is updated or rebuilt to effectively
work in modern runtime environments and with other applications.”2 The following table explains how CNDP differs from legacy
app modernization:

1 Paraphrased from “Principles of Container-Based Application Design,” Red Hat, Inc., last updated December 26, 2018,
https://kubernetes.io/blog/2018/03/principles-of-container-app-design/.
2 Connor Craven, “What Is Legacy Application Modernization?,” SDxCentral, LLC, May 28, 2020,
https://www.sdxcentral.com/cloud/definitions/what-is-legacy-application-modernization/.

https://cndp.io/

Technology Guide | Cloud Native Data Plane (CNDP) - Overview

 6

Table 3. Legacy App (Data Plane) Modernization versus CNDP3

Legacy App (Data Plane) Modernization Cloud Native Data Plane
 Monolithic apps
 Applications closely coupled with the infrastructure –

requires direct access to hardware - no abstraction
 Design principles orthogonal to cloud native

principles
o Designed to scale up, not scale out
o Specific hardware (HW) requirements – in some

cases requires federated zones and specific HW
and software (SW) recipes

o Observability, logging, and tracing not built in
o Portability through different environments is

difficult
o An update to one part means rolling out a whole

new app
 Difficult to deploy and manage

 Designed specifically to run in a cloud
 Disaggregates and decouples the application from the

infrastructure
 Adheres to cloud native principles
 Loosely coupled, individual, and modular microservices
 Have only the elements of an operating system (OS)

needed to run without external dependencies
 Observability, tracing, and logging built in
 Configuration through REST APIs
 Portable images through different environments
 Pure SW fallbacks for libraries enable the principle of

“running anywhere”
 Designed to scale out
 Integrate with CNCF projects from the beginning to

enable seamless integration with Kubernetes

2.3 Technology Description

The goal of CNDP is to provide a framework for packet processing microservices that is better aligned with Kubernetes (public
and private cloud) deployments. This includes providing the entities to provision, orchestrate, and manage the data plane (using
cutting-edge cloud native practices) and the data plane itself.

Figure 2: CNDP 22.08 Release

Figure 2 shows a snapshot of the latest CNDP release (v22.08). It provides:

- Core Libraries: Lightweight libraries that provide APIs for managing memory and networking interfaces.
- Application Libraries: Libraries that provide all the support needed to build an application on top of CNDP.
- Poll Mode Drivers: These are abstractions over networking interfaces like AF_XDP. It is important to note that CNDP

does not interact directly with any physical network devices.
- Network Stack: User space network stack (CNET) to accelerate transport layer processing.
- A test suite for functional testing.
- Sample applications, including a high throughput traffic generator (txgen).
- A Prometheus metrics agent for providing telemetry output.
- Rust language bindings, including a WireGuard implementation for CNDP.
- Kubernetes and Docker specs to build images and launch CNDP pods.

3 Workloads and configurations. Results may vary.

Technology Guide | Cloud Native Data Plane (CNDP) - Overview

 7

CNDP debunks the commonly held belief that in order to develop cloud native packet processing microservices you must
sacrifice performance (by relying on software to do everything) to gain flexibility and vice versa. With CNDP, we showcase that
packet processing microservices can still be performant on Intel® architecture (IA) without sacrificing cloud native principles.
This is accomplished with a combination of IA technologies and Kubernetes enablement.

 IA: Enable Intel technologies, such as Intel® Data Streaming Accelerator (Intel® DSA), Intel® Dynamic Load Balancer
(Intel® DLB), and Intel® Advanced Vector Extensions 512 (Intel® AVX-512), in CNDP to accelerate the various libraries
and algorithms used by packet processing applications. Note: There will always be a software fallback for enabled
features.

 Kubernetes: Create CNDP operators, device plugins, and CNIs in Kubernetes that can orchestrate (provision, advertise,
and manage) all the resources that can be used by CNDP applications as well as manage the application itself.

 Network Stack: Provides socket-like interface with multi-packet batching and zero-copy interface. Interface addresses,
routes, and neighbors managed by Linux and learned via Netlink. The latest CNDP release supports IPv4, UDP, and TCP
(experimental), with IPv6 to be added in future releases.

One of the networking interfaces supported by CNDP is AF_XDP. AF_XDP allows us to meet the performance needs for a cloud
native data plane.

2.4 AF_XDP Deep Dive

AF_XDP socket (XSK) is a new type of socket that is optimized for high performance packet processing. It takes advantage of an
in-kernel fast path called eXpress Data Path (XDP). XDP is an eBPF program that can redirect packets directly from the network
adapter to the user space application through an AF_XDP socket using the XDP_REDIRECT action. An AF_XDP socket is
created with the normal socket() syscall. Associated with each XSK are two rings: the receive (RX) ring and the transmit (TX)
ring. A socket receives packets on the RX ring and sends packets on the TX ring. An RX or TX descriptor ring points to a data
buffer in a memory area called a UMEM.4

For more information about AF_XDP, see AF_XDP Sockets – High Performance Networking for Cloud-Native Networking
Technology Guide and AF_XDP – In Kernel Fast Path Overview Training Video.

2.4.1 UMEM

The UMEM consists of several equally sized chunks (frames). A descriptor in one of the rings references a frame by its offset
within the entire UMEM region. The user space application allocates memory for this UMEM by whatever means it feels is most
appropriate, for example: malloc, mmap, or HugePages. It is mapped between kernel and user space to provide a zero-copy
interface.

4 Workloads and configurations. Results may vary.

https://networkbuilders.intel.com/solutionslibrary/af-xdp-sockets-high-performance-networking-for-cloud-native-networking-technology-guide
https://networkbuilders.intel.com/solutionslibrary/af-xdp-sockets-high-performance-networking-for-cloud-native-networking-technology-guide
https://networkbuilders.intel.com/af-xdp-in-kernel-fast-path-address-family-express-data-path

Technology Guide | Cloud Native Data Plane (CNDP) - Overview

 8

Figure 3: AF_XDP Overview

The UMEM also has two rings: the FILL queue (FQ) and the COMPLETION queue (CQ). The FILL queue is used by the
application to send addresses for the kernel to fill in with RX packet data. References to these frames appear in the RX ring after
each packet has been received. The COMPLETION queue contains frame addresses that the kernel has transmitted completely
and can be used again by user space, for either TX or RX. Thus, the frame addresses appearing in the COMPLETION queue are
addresses that were previously transmitted using the TX ring. In summary, the RX and FILL rings are used for the RX path and
the TX and COMPLETION rings are used for the TX path.

The socket is then finally bound with a bind() call to a device and a specific queue id on that device, and it is not until bind is
completed that traffic starts to flow. The XSK socket creation and loading of the XDP eBPF program is exposed to a user space
application through libbpf API.

2.4.2 Busy Poll

“AF_XDP can be interrupt driven or busy-poll based. With busy-poll, the driver is executed in process context by calling the poll()
syscall. The main advantage with this is that all processing occurs on a single core. This eliminates the core-to-core cache
transfers that occur between the application and the softirqd processing on another core that occurs without busy-poll. From a
systems point of view, it also provides an advantage that we do not have to provision extra cores in the system to handle
ksoftirqd/softirq processing, as all processing is done on the single core that executes the application. The drawback of busy-
poll is that max throughput seen from a single application will be lower (due to the syscall), but on a per core basis it will often be
higher as the normal mode runs on two cores and busy-poll on a single one.”5

Socket options need to be configured by a privileged entity. The CNDP K8s device plugin handles that programming. The
AF_XDP socket creation is handled by the CNDP application except for the configuration of busy polling on the socket and the
loading of the BPF program. Since the configuration of the busy polling and the loading of the BPF program are privileged
operations, the CNDP application relies on the K8s device plugin to perform these operations on behalf of the CNDP application.

The socket file descriptor is passed from the CNDP application to the K8s device plugin along with values for the busy_timeout
and the busy_budget that are used by the setsockopt() calls. A message is sent from the CNDP application to the K8s device
plugin, /config_busy_poll, $socket_fd, $busy_timeout, $busy_budget.

The K8s device plugin responds with a /config_busy_poll_ack message if the configuration of busy polling on the socket was
successful. On failure, the K8s device plugin responds with a /config_busy_poll_nak message.

5 Karlsson, Magnus. “busy poll support for AF_XDP sockets”. Netdev Mailing List.
https://patchwork.ozlabs.org/project/netdev/cover/1556786363-28743-1-git-send-email-magnus.karlsson@intel.com/

https://patchwork.ozlabs.org/project/netdev/cover/1556786363-28743-1-git-send-email-magnus.karlsson@intel.com/

Technology Guide | Cloud Native Data Plane (CNDP) - Overview

 9

2.4.3 AF_XDP Abstraction

CNDP provides two APIs to abstract the lower-level details of the XSK APIs: xskdev and pktdev (Figure 4). The xskdev API
provides a set of wrappers around the XSK APIs. The pktdev API is the highest level of abstraction. It provides an API to manage
multiple port types, including AF_XDP and ring-based ports. Memory pool and buffer management are built into this API.

Figure 4: CNDP Interface APIs

With CNDP, the application allocates the memory, from HugePages or somewhere else, and uses this area to create a mempool.
The mempool divides the memory area into equal size packet buffers (pktmbufs) that are eventually passed to the XSK APIs,
and mmap is used to register the memory (referred to as UMEM) with the kernel. This is shown in Figure 3.

3 CNDP Deployment Model
Figure 5 shows the CNDP solution for deploying a cloud native application based on AF_XDP.

Technology Guide | Cloud Native Data Plane (CNDP) - Overview

 10

Figure 5. AF_XDP Deployment Model

The CNDP deployment model includes a new device plugin6 and CNI that address the following issues with deploying AF_XDP
applications on Kubernetes.

 The AF_XDP container can run as an unprivileged container to create the AF_XDP socket, as privileged operations are
performed by the device plugin.

 The AF_XDP CNI does not rename devices and leaves the device in the UP state.
 The Ethtool/netfilter rules applied on a netdev that are used to direct packets to different hardware queues require

privilege to configure. This operation is performed by the CNI to allow the application pod to run without privilege. The
filters are removed when the pod is destroyed.

 With subfunctions or SR-IOV Virtual Functions (VFs), the network adapter can be efficiently partitioned with resources
allocated to multiple pods.

 The CNDP pod consists of two containers:
 An application container that runs the CNDP application.
 A sidecar container that runs auxiliary functionalities such as interfacing with Prometheus or the REST API interface

that allows for configuring/sending of control messages to the CNDP application.

The two containers communicate over a Unix Domain Socket (UDS). Using a sidecar pattern allows for the independent scaling
of CNDP data plane containers from the tools exporting telemetry, logging, and presenting REST APIs from/for those
containers.

Flannel is used to attach a vEth interface to the pod for cluster network probes.

The following sections describe the rationale for deploying AF_XDP applications on Kubernetes using the AF_XDP device
plugin and CNI.

3.1 Privileged AF_XDP Container

Privilege is the biggest challenge for any application that wants to use AF_XDP in a pod without privilege. Running pods in
privileged mode gives containers the same access as processing that is running on the host, which is generally not needed for
containerized applications and is less secure than running containers without privilege. The solution here involves three parts:

 Firstly, break up the AF_XDP socket creation into the loading of the eBPF program and then the creation of the
AF_XDP socket. Doing this enables the privileged functionality (loading the program) to be handled by an entity that
has root privileges outside of the pod itself and can do so as part of the pod deployment process.

 Secondly, during the process of creating an AF_XDP socket, retrieve the XSK_MAP file descriptor (FD) so that it can be
populated with the XSK (to inform the eBPF program where to redirect packets). If the eBPF program is loaded outside
of the pod, this file descriptor must be passed to the CNDP container by another live process.

 Thirdly, if the socket is a busy polling socket, then also rely on the device plugin to configure the busy-poll socket option
as this is a privileged operation. Device Plugin Sequence Flows shows how this interaction takes place.

It is also important to note that typically the eBPF MAP file descriptor can be passed from one process to another in one of two

6 “AF_XDP Plugins for Kubernetes.” https://github.com/intel/afxdp-plugins-for-kubernetes.

Technology Guide | Cloud Native Data Plane (CNDP) - Overview

 11

ways:

1. Through a UNIX Domain Socket (UDS). The process that passes the file descriptor needs to be active (alive) until the
transfer is complete. This means that an Init container cannot be used as it will terminate before all other containers in
the pod are started.

2. Export the map to a special eBPF filesystem (persistent eBPF maps). Note that this filesystem is located at
/sys/fs/bpf and mounting this location into an unprivileged pod requires that you relax the default pod security policy
for unprivileged pods.

For CNDP, a device plugin is used to load the eBPF program and pass the XSK_MAP FD to the CNDP container via UDS.
Modifications to break up the eBPF program loading from the XSK socket creation were also submitted to the kernel to enable
this.

Note: UDS communications can be secured by using projects such as Pod2Daemon. The UDS can be used to ensure pod
identity and, in the future, to request additional netfilter configurations for the parent netdev of a subfunction.

3.2 AF_XDP Device Plugin and CNDP CNI

The device plugin handles the task of loading the eBPF program and providing the XSK MAP FD to the CNDP container after the
pod has started. The device plugin is stateful and stays running after the pod has started. The AF_XDP CNI complements the
AF_XDP device plugin. It has the comparatively simple task of moving the netdev into the pod namespace, but, crucially, it can
do this dynamically based on the netdev name provided by the device plugin. It does not rename the netdev and the netdev
remains in the UP state. The CNI also has a role with setting the appropriate ethtool filters. It is also important to understand that
CNIs are stateless, invoked only during pod creation and deletion. If the CNI returns an error, then kubelet does not start the pod.

3.2.1 Ethtool/Netfilter Solution

The programming and clearing of the netfilters to redirect the desired traffic to the correct AF_XDP port is accomplished
through the CNI based on the destination IP address. If the application wishes to add additional filters, it needs to request the
device plugin to program the netfilters on the parent netdev.

Note: Until CNDP includes support for the subfunction API, you can use an init container to program the desired extended
netfilters on the netdev as it is in the pod namespace. The optimal solution involves the use of an operator that programs
extended filters for a pod on the parent netdev.

3.2.2 Inability to Slice a PF into Smaller netdevs

Proposed enhancements to the devlink API in the Linux kernel for subfunctions management will support the ability to create,
configure, and deploy a much more granular portion of a device from a network adapter7. That is, “a new light weight PCI
function and its associated class devices”8 – “aka as ‘slice’.”9 This API will enable the efficient slicing of a PF into netdev-queue
pairs that can be efficiently allocated to a pod. Until those enhancements are enabled, a virtual function can be used to slice up a
netdev to share among multiple pods.

3.2.3 ifindex Clashes Across Namespaces

The ifindex is used to load and unload the eBPF programs. As a netdev is moved in and out of different networking namespaces,
the ifindex that identifies it can change (if there is a clash with the ifindex of another netdev in that namespace). The proposed
solution uses the device plugin to provision and maintain unique interface names that are used in both the host and the pod. That
way the interface can be tracked even if the ifindex changes across namespaces. The correct ifindex can be retrieved in any
namespace by calling: if_nametoindex(ifname).

This goes hand in hand with modification to the kernel to overcome the issues when creating AF_XDP sockets. The subfunction
API is used to slice the network adapter into smaller resource sets (netdevs) that can be attached to pods separately. A device
plugin is used to load the eBPF program in the host namespace before the pod is launched. The CNI is used to program network
filters on the PF. After the CNDP pod is launched, the XSK_MAP FD is passed from the device plugin to the CNDP pod (over a
shared UNIX Domain Socket) so that it can create the AF_XDP sockets that it needs without the need for any extra privileges.
This model requires that the netdev name (ifname) is fixed across different networking namespaces so that there is a map of
consistent interfaces regardless of ifindex clashes.

7 Pandit, Parav, “Devlink enhancements for subfunctions management,” NetDev Society, accessed December 2020,
https://netdevconf.info/0x14/pub/papers/45/0x14-paper45-talk-paper.pdf.
8 Pandit, Parav, “subfunction management using devlink,” NetDev Society, August 18, 2020,
https://netdevconf.info/0x14/pub/slides/45/sf_mgmt_using_devlink_netdevconf_0x14.pdf.
9 Pandit, Parav, “subfunction management using devlink.”

https://github.com/projectcalico/pod2daemon

Technology Guide | Cloud Native Data Plane (CNDP) - Overview

 12

3.2.4 Unloading eBPF Program

When a pod is deleted, the CNI returns the netdev to the host network namespace and clears any netfilters. During pod creation
the device plugin is tasked with loading the eBPF program onto the netdev before the CNI moves it into the pod namespace.
During pod deletion, however, unloading of the eBPF program is the responsibility of the CNI. The CNI is chosen because it has
the advantage of being hooked into the Kubernetes lifecycle at this point. Also, the CNI has a delete function while the device
plugin can only be called upon during pod creation.

3.2.5 Device Plugin Sequence Flows

The following sections provide a deep dive into the sequence flows from device plugin initialization all the way through to pod
deletion.

Device Plugin Initialization:

Figure 6: Device Plugin Initialization

Pod Creation:

Figure 7: AF_XDP Device Plugin Interactions at Pod Creation Time

Technology Guide | Cloud Native Data Plane (CNDP) - Overview

 13

Pod Running:

Figure 8: AF_XDP Socket Creation with CNDP

1. The pod is started and the application launches.
 On application launch, a script runs that gathers local information (netdevs, cpus, …) and generates a jsonc

configuration file that is consumed by the CNDP application.
2. CNDP connects to the UDS (which is always in the same path from the container point of view) and initiates a

handshake. Note: The Hostpath10 configuration used to mount the UDS into the container is generated dynamically as
part of the pod deployment (see Figure 8).

3. The device plugin (DP) checks what resources (netdevs) are allocated to the pod. At this point, the DP is already aware
of what netdevs it is serving. It has the xsk_map FDs ready and waiting (which were retrieved at pod creation time).
However, it is not (yet) aware of what pod it is serving. The DP contacts the K8s pod resource’s API, which returns a
map of all pods and attached devices for the node.

4. The device plugin validates that the correct pod is connected to the UDS and the device plugin is requesting the
resource for an appropriate netdev using the map retrieved in step 3.

5. The device plugin acks and waits for the next request from CNDP.
6. When CNDP tries to create an AF_XDP socket, it realizes that it needs to retrieve the xsk_map_fd. The app requests the

xsk_map_fd for a specific interface from the device plugin.
7. The device plugin retrieves the xsk_map_fd for that interface.
8. The device plugin sends the file descriptor to the CNDP application.
9. If the CNDP application needs to configure busy polling for a socket, it sends that socket_fd to the device plugin.
10. The device plugin sets the appropriate sockopt to enable busy polling.
11. The device plugin acks the busy polling configuration.
12. CNDP sends a fin when it completes interacting with the device plugin.
13. The device plugin acks.

10 Kubernetes, Volumes. https://kubernetes.io/docs/concepts/storage/volumes/#hostpath

(1)

(2)

(3)

(4) (5)

(6)

(7)
(8)

(9)
(10)

(11)

(12)
(13)

https://kubernetes.io/docs/concepts/storage/volumes/#hostpath

Technology Guide | Cloud Native Data Plane (CNDP) - Overview

 14

Pod Deletion:

Figure 9: Pod Deletion Flow

4 Summary
Packet processing applications can be difficult for a cloud native platform to efficiently automate and orchestrate. CNDP is a
purpose-built cloud native data plane to help address and overcome these difficulties. It provides a framework for packet
processing microservices that is better aligned with Kubernetes (public and private cloud) deployments. This includes providing
the entities to provision, orchestrate, and manage the data plane using cutting-edge cloud native practices as well as the data
plane itself. CNDP is built on top of standard Linux libraries and takes advantage of Intel technologies to accelerate where
possible. CNDP is an open-source, community driven project available at https://cndp.io.

You can download CNDP from https://github.com/CloudNativeDataPlane/cndp.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for
configuration details. No product or component can be absolutely secure.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands
may be claimed as the property of others.

 1022/DN/WIPRO/PDF 634083-004US

https://cndp.io/
https://github.com/CloudNativeDataPlane/cndp
http://www.intel.com/PerformanceIndex

	1 Introduction
	1.1 Terminology
	1.2 Reference Documentation

	2 Overview
	2.1 Cloud Native Data Plane
	2.2 Challenges Addressed
	2.3 Technology Description
	2.4 AF_XDP Deep Dive
	2.4.1 UMEM
	2.4.2 Busy Poll
	2.4.3 AF_XDP Abstraction

	3 CNDP Deployment Model
	3.1 Privileged AF_XDP Container
	3.2 AF_XDP Device Plugin and CNDP CNI
	3.2.1 Ethtool/Netfilter Solution
	3.2.2 Inability to Slice a PF into Smaller netdevs
	3.2.3 ifindex Clashes Across Namespaces
	3.2.4 Unloading eBPF Program
	3.2.5 Device Plugin Sequence Flows

	4 Summary

