NSF_ENG- 85078 PB87162970 in **Th**iring in the second second

CIVIL ENGINEERING STUDY STRUCTURAL SERIES 85-30

ODRESB-3D USER'S MANUAL A COMPUTER PROGRAM FOR OPTIMUM DESIGN OF REINFORCED CONCRETE AND STEEL BUILDING SYSTEMS SUBJECTED TO 3-D GROUND MOTIONS AND ATC-03 PROVISIONS

by Kevin Z. Truman Graduate Assistant

Der-Shin Juang Graduate Assistant

Franklin Y. Cheng Professor

Department of Civil Engineering University of Missouri-Rolla Rolla, Missouri

Report Series Prepared for the National Science Foundation under grants NSF CEE 8213477 and NSF ECE 8403875

A Tuté and Substit User's Manual for a Computer Program ODESSA-30 Optimum Design of Reinforced Concrete and Steel Building Systems Subjected to 3-D Ground Motions and ATC-03 Provisions A. Aukots) Kevin Z. Truman. Der-Shin Juang, and Franklin Y. Cheng P. Derforming Organization Name and Address Civil Engineering Department University of Missouri-Rolla Rolla, MO 65401 12. Sponsering Organization Name and Address Rolland, MO 65401 13. Sponsering Organization Name and Address Rolland, MO 65401 14. 15. Supplementary Nates 14. 15. Su	BIBLIOGRAPHIC DATA SHEET 1. Report No. NSFENG. 8507 Structural Series 85-30	₽ 2.	3. Recipien	16297
Bystems Subjected to 3-D Ground Motions and ATC-03 Provisions Performing Organization Name and Address Performing Organization Name and Address Civil Engineering Department University of Missouri-Rolla Rolla, MO 65401 Cetter and Constraints of Name and Address Statical Science Foundation National Science Foundation Statical Multi-Component selsion and analysis of elastic building systems subjected to static and multi-component selsion and braces. The computer program has been developed for achieving efficiency in both computations and data preparation. The output of a problem solution can include: the static and/or dynamic floor Static and multis- Comparations, and araces. The computer program has been developed for achieving efficiency in both computations and data preparation. The output of a problem solution can include: the static and/or dynamic floor Static and output solutions, and a guide for program capacity modification. Reperit factores State and becument Analysis. The Descriptore Alt-3-06 State and output solutions, and a guide for program capacity modification. Reperit Concrete Sections State and becument Analysis. The Descriptore Alt-3-06 Buildings State and becument Analysis. The Descriptore Alt-3-06 <!--</td--><td>4. Title and Subtitle User's Manual for a Computer P</td><td>rogram ODRESB-</td><td>3D 5. Report D Decem</td><td>Date Iber 1985</td>	4. Title and Subtitle User's Manual for a Computer P	rogram ODRESB-	3D 5. Report D Decem	Date Iber 1985
7. Aubr(s) 8. Performing Organization Name and Address Seriorming Organization Name and Address No. Structural Ser C1v11 Engineering Department 10. Project/TaskTook Unit University of Missouri-Rolla 11. Contract/Grant No. Rolla, MO 65401 11. Contract/Grant No. National Science Foundation 11. Stype of Report & Perior Contract No. National Science Foundation 14. 15. Supplementary Notes 14. 16. Abstracts This report has been prepared as a user's guide of the computer program, Contract No. 14. 17. Aubretaits Wates 14. 18. Supplementary Notes 14. 19. Abstracts This report has been prepared as a user's guide of the computer program, Contract No. 14. 10. Report & Dettinum design and analysis of elastic building systems subjected to the static and/or dynamic floor 14. 10. Static and multi-component seismic loads based on response Spectra or AFC 30-6. The output of a problem solution can include: the static and/or dynamic floor 14. 11. Supplementary Notes 14. 14. 12. Spearent S, the member forces and stresses, the natural frequencies, the eigenment function values. The contract of a stresses, the natural for requencies, the eigenment function values. The ratio Response spectra or AFC 30-6. The output solutions, and a guide for program capacity modificati	Systems Subjected to 3-D Ground Motions and	ATC-03 Provisi	ons 6.	
Keving Cognization Names and Address 10. Project/Tack/Work Unit Civil Engineering Department 10. Project/Tack/Work Unit University of Missouri-Rolla 11. Contract/Gram No. Rolla, MO 65401 11. Contract/Gram No. National Science Foundation Nashington, D.C. 14. 14. 15. Supplementary Notes 14. 16. Abstracts This report has been prepared as a user's guide of the computer program, ODRESB-3D, for optimum design and analysis of elastic building systems subjected to static and multi-component seismic loads based on response spectra or AIC 3-06. To building systems of concrete flexural walls, flexural panels and shear walls, as well as steel beams, columns, and braces. The computer program has been developed for achieving efficiency in both computations and data preparation. The output of a problem solution can include: the static and/or dynamic floor displacements, the active constraints, the scaling factors, and the objective function values. The main features within this report are: a general description or program, statements, instructions for data preparation, sample in data and output solutions, and a guide for program capacity modification. 17. Key Words and Decument Analysis. 176. Descriptore AIC-3-06 Suildings Structures Valiais Its. Valiability Statement 18. Availability Statement 19. Security Class (This 21. No. of Pagnet) 19. Key Words and Decument Analysis. 19. Descriptore	7. Author(s)		8. Performi	ing Organization F
Civil Engineering Department University of Missouri-Rolla Rolla, MO 65401 1. Contract/Graw No. NSF CEE 8213477 ECE 8403875 12. Spensoring Organization Name and Address National Science Foundation Washington, D.C. 14. 15. Supplementary Notes 16. Abstracts This report has been prepared as a user's guide of the computer program, ODRESB-3D, for optimum design and analysis of elastic building systems subjected to static and multi-component seismic loads based on response spectra or ATC 3-06. The building systems may consist of concrete flexural walls, flexural panels and shear developed for achieving efficiency in both computations and data preparation. The output of a problem solution can include: the static and/or dynamic floor displacements, the member forces and stresses, the natural frequencies, the eigenmu the member sizes, the active constraints, the scaling factors, and the objective program, lists of program statements, instructions for data preparation, sample in data and output solutions, and a guide for program capacity modification. 17. Key Weds and Document Analysis. 17e. Descriptors ATC-3-06 Suildings Computer Concrete Eartinguake Optimization Reinforced Concrete Structures Walls 19. Meeniliers/Open-Ended Terms 11. Contract/Graup 19. Security Class (This 21. No. of Pag Proc. CASTI Field/Group 19. Security Class (This 21. No. of Pag Proc. Cast I Field/Group 19. Security Class (This 21. No. of Pag Proc. Cast I Field/Group 19. Security Class (This 21. No. of Pag Proc. Cast I Field/Group 19. Availability Statement 10. Cast I Field/Group 10. Availability Statement 11. Contract Statement 11. Contract Statement 12. Price	Kevin Z. Iruman, Der-Shin Juang, and Franklin P. Performing Organization Name and Address	n Y. Cheng	10. Project	<u>UCTURAL Ser</u> r/Task/Work Unit
University of Missouri-Kolla Rolla, MO 65401 E. Sponsoring Organization Name and Address National Science Foundation Washington, D.C. 14. 15. Supplementary Notes 16. Abstractic This report has been prepared as a user's guide of the computer program, ODRESB-3D, for optimum design and analysis of elastic building systems subjected to static and multi-component seismic loads based on response spectra or AIC 3-06. The building systems may consist of concrete flexural walls, flexural panels and shear ralls, as well as steel beams, columns, and braces. The computer program has been developed for achieving efficiency in both computations and data preparation. The output of a problem solution can include: the static and/or dynamic floor displacements, the main features within this report are: a general description of program, lists of program statements, instructions for data preparation, sample ing data and output solutions, and a guide for program capacity modification. 17. Key Words and Decument Analysis. 17e. Descriptors Structures Walls Structures Walls Structures Walls Vex CosATI Field/Group 18. Availability Statemeot 19. Security Class (This 21. No. of Pay 20. Security Class (This 21. No. of Pay 21. Security Class (This 21. No. of Pay 21. No. of Pay 22. Price 23. Security Class (This 23. No. of Pay 24. Availability Statemeot 24. Availability Statemeot 25. Security Class (This 21. No. of Pay 20. Security Class (This 21. No. of Pay 21. Security Class (This 22. Price 23. Availability Statemeot 24. Availability Statemeot 24. Price 25. Security Class (This 24. Price 25. Price 26. Security Class (This 21. No. of Pay 27. Security Class (This 21. No. of Pay 27. Security Class (This 21. No. of Pay 27. Security Class (This 21. Price 21. Pric	Civil Engineering Department			
12. Spacaring Organization Name and Address 13. Type of Report & Perio National Science Foundation 14. 14. Abstracts 14. 15. Supplementary Nores 14. 16. Abstracts This report has been prepared as a user's guide of the computer program. 0DRESB-3D, for optimum design and analysis of elastic building systems subjected to static and multi-component seismic loads based on response spectra or ATC 3-06. T building systems may consist of concrete flexural walls, flexural panels and shear walls, as well as steel beams, columns, and braces. The computer program has been developed for achieving efficiency in both computations and data preparation. The output of a problem solution can include: the static and/or dynamic floor displacements, the active constraints, the scaling factors, and the objective function values. The main features within this report are: a general description of program, lists of program statements, instructions for data preparation, sample in data and output solutions, and a guide for program capacity modification. 17. Key Weds and Decument Analysis. 17e. Descriptors National Science 18. Availability Statement // 19. Locatt Field/Group // 19. Availability Statement // 19. Availability Statement 21. No. of Par Report 19. Availability Statement 21. No. of Par Report 19. Availability Statement 21. No. of Par Statement 19. Availab	Rolla, MO 65401		NSF	CEE 8213477 ECE 8403875
National Science Foundation Washington, D.C. 14. 15. Supplementary Nores 16. Abstracts This report has been prepared as a user's guide of the computer program, ODRESB-3D, for optimum design and analysis of elastic building systems subjected to static and multi-component selsmic loads based on response spectra on TC 3-06. The building systems may consist of concrete flexural walls, flexural panels and shear developed for achieving efficiency in both computations and data preparation. The output of a problem solution can include: the static and/or dynamic floor displacements, the member forces and stresses, the natural frequencies, the eigenm the member sizes, the active constraints, the scaling factors, and the objective function values. The main features within this report are: a general description of program, lists of program statements, instructions for data preparation, sample in data and output solutions, and a guide for program capacity modification. 17. Key Words and Document Analysis. 17a. Descriptors ATC-3-06 Stuildings Computer Concrete Steel Structures Walls 17b. Identifiers/Open-Ended Terms 17c. COSATI Field/Group 17. CoSATI Field/Group 17d. CoSATI Field/Group 17d. Availability Statement 17d. Availability Statement 17d. Availability Statement 17d. Availability Statement 17d. Availability Statement 17d. CassFIED 17d. Cas	2. Sponsoring Organization Name and Address		13. Type of	f Report & Period
14. 15. Supplementary Notes 14. 15. Supplementary Notes 14. Abstracts This report has been prepared as a user's guide of the computer program, ODRESB-3D, for optimum design and analysis of elastic building systems subjected to static and multi-component seismic loads based on response spectra or ATC 3-06. T building systems may consist of concrete flexural walls, flexural panels and shear walls, as well as steel beams, columns, and braces. The computer program has been developed for achieving efficiency in both computations and data preparation. The output of a problem solution can include: the static and/or dynamic floor displacements, the member forces and stresses, the natural frequencies, the eigenm the member sizes, the active constraints, the scaling factors, and the objective function values. The main features within this report are: a general description of program, lists of program statements, instructions for data preparation, sample in data and output solutions, and a guide for program capacity modification. 17. Key Words and Document Analysis. 17a. Descriptors ATC-3-06 Buildings Computer Concrete Earthquake Optimization Reinforced Concrete Steel Structures Walls 19. Security Class (This Report) 20. Security Class (This Report) 20. Security Class (This 21. No. of Pag 21. More of Pag 22. More of Pag 22. More of Pag 23. More of Pag 24. More of Pag 24. More of Pag 24.	National Science Foundation Washington, D.C.			-
13. Supplementary Notes 14. Abstracts This report has been prepared as a user's guide of the computer program, ODRESB-3D, for optimum design and analysis of elastic building systems subjected to static and multi-component seismic loads based on response spectra or ATC 3-06. T building systems may consist of concrete flexural walls, flexural panels and shear walls, as well as steel beams, columns, and braces. The computer program has been developed for achieving efficiency in both computations and data preparation. The output of a problem solution can include: the static and/or dynamic floor displacements, the member forces and stresses, the natural frequencies, the eigenm the member sizes, the active constraints, the scaling factors, and the objective function values. The main features within this report are: a general description of program, lists of program statements, instructions for data preparation, sample in data and output solutions, and a guide for program capacity modification. 17. Key Words and Document Analysis. 17e. Descriptors ATC-3-06 Buildings Computer Concrete Earthquake Optimization Reinforced Concrete Steel Structures Walls 19. Security Class (This Report) / User Class (This // Cass (This // Cass (This // Cass (This // Ca			14.	
14. Abstracts This report has been prepared as a user's guide of the computer program, ODRESB-3D, for optimum design and analysis of elastic building systems subjected to static and multi-component seismic loads based on response spectra or ATC 3-06. T building systems may consist of concrete flexural walls, flexural panels and shear walls, as well as steel beams, columns, and braces. The computer program has been developed for achieving efficiency in both computations and data preparation. The output of a problem solution can include: the static and/or dynamic floor displacements, the member forces and stresses, the natural frequencies, the eigenmu the member sizes, the active constraints, the scaling factors, and the objective function values. The main features within this report are: a general description of program, lists of program statements, instructions for data preparation, sample in data and output solutions, and a guide for program capacity modification. 17. Key Words and Document Analysis. 17a. Descriptors ATC-3-06 Buildings Computer Concrete Earthquake Optimization Reinforced Concrete Structures Walls 17b. Identifiers/Open-Ended Terms	15. Supplementary Notes		l,	<u> </u>
DRESB-30. for optimum design and analysis of elastic building systems subjected to static and multi-component seismic loads based on response spectra or ATC 3-06. The building systems may consist of concrete flexural walls, flexural panels and shear walls, as well as steel beams, columns, and braces. The computer program has been developed for achieving efficiency in both computations and data preparation. The output of a problem solution can include: the static and/or dynamic floor displacements, the member forces and stresses, the natural frequencies, the eigenmuthe member sizes, the active constraints, the scaling factors, and the objective function values. The main features within this report are: a general description of program, lists of program statements, instructions for data preparation, sample in data and output solutions, and a guide for program capacity modification. 17. Key Words and Document Analysis. 170. Descriptors ATC-3-06 Buildings Computer Concrete Earthquake Optimization Reinforced Concrete Steel Structures Walls ITE. Listed/Group ITE. COSATI Field/Group ITE. COSATI Fiel	16. Abstracts This report has been propand as a	isen's auido a	f the computer	n nrogsam
Walls 17b. Identifiers/Open-Ended Terms 17b. COSATI Field/Group 17c. COSATI Field/Group 18. Availability Statement 19. Security Class (This 21. No. of Pag Report) UNCLASSIFIED 21/2 20. Security Class (This 22. Price Page UNCLASSIFIED UNCLASSIFIED	developed for achieving efficiency in both co	-	· · · · ·	
17b. Identifiers/Open-Ended Terms J. J. COSATI Field/Group 18. Availability Statement 19. Security Class (This 21. No. of Pag Report) UNCLASSIFIED 21. (c 20. Security Class (This 22. Price) Page UNCLASSIFIED	output of a problem solution can include: the displacements, the member forces and stresses the member sizes, the active constraints, the function values. The main features within the program, lists of program statements, instruc- data and output solutions, and a guide for pr 7. Key Words and Document Analysis. 170. Descriptors ATC-3-06 Buildings Computer Concrete Earthquake Optimization Reinforced Concrete Steel Structures	omputations and the static and/o s, the natural e scaling facto tis report are stions for data togram capacity	d data prepara or dynamic flo frequencies, ors, and the o : a general de a preparation y modification	ation. The oor the eigenmo objective escription o , sample inp n.
176. COSATI Field/Group 176. COSATI Field/Group 18. Availability Statement 19. Security Class (This 21. No. of Pag Report) UNCLASSIFIED 20. Security Class (This 22. Price Page UNCLASSIFIED	output of a problem solution can include: the displacements, the member forces and stresses the member sizes, the active constraints, the function values. The main features within the program, lists of program statements, instruc- data and output solutions, and a guide for pr 7. Key Words and Document Analysis. 170. Descriptors ATC-3-06 Buildings Computer Concrete Earthquake Optimization Reinforced Concrete Steel Structures Walls	omputations and he static and/o , the natural e scaling facto his report are tions for data ogram capacity	d data prepara or dynamic flo frequencies, ors, and the o : a general de a preparation y modification	ation. The oor the eigenmo objective escription o , sample inp n.
17t. COSATI Field/Group 17t. COSATI Field/Group 18. Availability Statement 19. Security Class (This 21. No. of Pag Report) 21/6 20. Security Class (This 22. Price Page UNCLASSIFIED	output of a problem solution can include: th displacements, the member forces and stresses the member sizes, the active constraints, the function values. The main features within th program, lists of program statements, instruct data and output solutions, and a guide for pr 7. Key Words and Document Analysis. 170. Descriptors ATC-3-06 Buildings Computer Concrete Earthquake Optimization Reinforced Concrete Steel Structures Walls 7b. Identifiers/Open-Ended Terms	omputations and the static and/o s, the natural e scaling facto tis report are stions for data togram capacity	d data prepara or dynamic flo frequencies, ors, and the o a general de a preparation y modification	ation. The oor the eigenmo objective escription o , sample inp n.
176. COSATI Field/Group 18. Availability Statement 18. Availability Statement 19. Security Class (This 21. No. of Pag Report) 21. No. of Pag No. of Pag 21. No. of Pag Page	output of a problem solution can include: th displacements, the member forces and stresses the member sizes, the active constraints, the function values. The main features within th program, lists of program statements, instruc- data and output solutions, and a guide for pr 17. Key Words and Document Analysis. 17a. Descriptors ATC-3-06 Buildings Computer Concrete Earthquake Optimization Reinforced Concrete Steel Structures Walls 7b. Identifiers/Open-Ended Terms	omputations and the static and/o s, the natural e scaling facto tis report are stions for data togram capacity	d data prepara or dynamic flo frequencies, ors, and the o : a general de a preparation y modification	ation. The oor the eigenmc objective escription c , sample inp n.
18. Availability Statement 19. Security Class (This Report) UNCLASSIFIED 20. Security Class (This Page UNCLASSIFIED UNCLASSIFIED	output of a problem solution can include: the displacements, the member forces and stresses the member sizes, the active constraints, the function values. The main features within the program, lists of program statements, instruct data and output solutions, and a guide for pr 7. Key Words and Document Analysis. 170. Descriptors ATC-3-06 Buildings Computer Concrete Earthquake Optimization Reinforced Concrete Steel Structures Walls 7b. Identifiers/Open-Ended Terms	omputations and the static and/o s, the natural e scaling factor tis report are stions for data togram capacity	d data prepara or dynamic flo frequencies, ors, and the o a general de a preparation y modification	ation. The oor the eigenmo objective escription o , sample inp n.
20. Security Class (This Page UNCLASSIFIED	Action of a problem solution can include: the displacements, the member forces and stresses the member sizes, the active constraints, the function values. The main features within the program, lists of program statements, instruc- data and output solutions, and a guide for pr 7. Key Words and Document Analysis. 17e. Descriptors ATC-3-06 Buildings Computer Concrete Earthquake Optimization Reinforced Concrete Steel Structures Walls 7b. Identifiers/Open-Ended Terms	poputations and the static and/o the natural the scaling factor tis report are tions for data togram capacity	d data prepara or dynamic flo frequencies, ors, and the o a general de a preparation y modification	ation. The oor the eigenmo objective escription o , sample inp n.
Page UNCLASSIFIED	<pre>deteropted for define ville effectively in obtained output of a problem solution can include: th displacements, the member forces and stresses the member sizes, the active constraints, the function values. The main features within th program, lists of program statements, instruct data and output solutions, and a guide for pr 17. Key Words and Document Analysis. 170. Descriptors ATC-3-06 Buildings Computer Concrete Earthquake Optimization Reinforced Concrete Steel Structures Walls 7b. Identifiers/Open-Ended Terms</pre>	/ / / / / / / / / / / / / / / / / / /	d data prepara or dynamic flo frequencies, ors, and the o a general de a preparation y modification	ation. The oor the eigenmo objective escription o , sample inp n. 21. No. of Pag
	Activity of a problem solution can include: the displacements, the member forces and stresses the member sizes, the active constraints, the function values. The main features within the program, lists of program statements, instruc- data and output solutions, and a guide for pr 7. Key Words and Document Analysis. 170. Descriptors ATC-3-06 Buildings Computer Concrete Earthquake Optimization Reinforced Concrete Steel Structures Walls 7b. Identifiers/Open-Ended Terms 	/ / / / / / / / / / / / / /	ricy Class (This mod mity Class (This modification rity Class (This modification rity Class (This	ation. The oor the eigenmc objective escription o , sample inp n. 21. No. of Pag 216 22. Price

ATTENTION

AS NOTED IN THE NTIS ANNOUNCEMENT, PORTIONS OF THIS REPORT ARE NOT LEGIBLE. HOWEVER, IT IS THE BEST REPRODUCTION AVAILABLE FROM THE COPY SENT TO NTIS.

ina

·

.

١

.

,

.

CIVIL ENGINEERING STUDY

STRUCTURAL SERIES 85-30

ODRESB-3D

USER'S MANUAL

A COMPUTER PROGRAM FOR OPTIMUM DESIGN

OF REINFORCED CONCRETE AND STEEL BUILDING SYSTEMS

SUBJECTED TO 3-D GROUND MOTIONS AND ATC-03 PROVISIONS

by

Kevin Z. Truman Graduate Assistant

Der-Shin Juang Graduate Assistant

Franklin Y. Cheng

Professor

Department of Civil Engineering University of Missouri-Rolla

Rolla, MO

Report Series

Prepared for the National Science Foundation under grants NSF CEE 8213477 and NSF ECE 8403875

1.6

. . .

·

ABSTRACT

This report has been prepared as a user's guide for the computer program, ODRESB-3D. The program uses the optimality criteria technique of structural optimization to design and analyze elastic building systems subjected to static and multi-component seismic loads.

The building systems may consist of concrete flexural walls, flexural panels and shear walls, as well as steel beams, columns, and braces. The multi-component seismic excitations can be represented through the use of three separate response spectra or through the use of the ATC 3-06 analysis provisions. Second-order effects are considered by using the string-geometric stiffness approach or the ATC 3-06 stability factors.

The computer program has been developed for achieving efficiency in both computations and data preparation. The output of each solution can include: the static and/or dynamic floor displacements, the member forces and stresses, the natural frequencies, and the eigenmodes, as determined from each structural analysis, as well as, the member sizes, the active constraints, the scaling factors, and the objective function value as determined from each cycle of optimization.

The main features within this report are: a general description of the program, instructions for data preparation, lists of typical output solutions, and a guide for program capacity modification.

ii

ACKNOWLEDGEMENTS

This study was conducted as a portion of a broad research program on the analysis and optimum design of building systems subjected to multicomponent seismic excitations and building code provisions. The authors would like to thank the Department of Civil Engineering at the University of Missouri-Rolla, the Department of Civil Engineerinfg at Washington University, and the National Science Foundation for providing facilities and financial support for this project. The report was prepared with partial support under the grants of NSF CEE 8213477 and NSF ECE 8403875. This support is gratefully acknowledged. Drs. Truman and Juang, former graduate assistants in Civil Engineering at the University of Missouri-Rolla, are the Civil Engineering faculty members of the Washington University in St. Louis and of the National Central University in Taiwan, respectively. Dr. Juang's collaboration on this project was at the phase of the computer program documentation.

TABLE OF CONTENTS

ABSTRACTii
CKNOWLEDGEMENTSiii
INTRODUCTION 1
I. STRUCTURAL MODEL, ANALYSIS, AND OPTIMIZATION 2
A. STRUCTURAL MODEL 2
1. Global Degrees of Freedom 2
2. Second-Order Effects 4
3. External Stiffness 4
4. Structural Mass 6
5. Steel Elements 8
6. Reinforced-Concrete Elements 10
7. Primary vs. Secondary Design Variables 15
a. Regular Cross-Sections 16
b. Steel Wide-Flange Sections 17
c. Reinforced Concrete Sections 18
B. ANALYSIS 19
1. Static Analysis 19
2. Natural Frequencies and Mode Shapes 23
3. Dynamic Analysis 24
a. Modal Analysis 24
b. ATC 3-06 Analysis 25
C. STRUCTURAL OPTIMIZATION 31
1. Objective Function 31
2. Constraints 31
3. Active Constratints 32
4. Scaling of the Design 33
5. Termination Criteria 36

	III. DISCUSSION OF ODRESB-3D 39
	A. NUMERICAL PROCEDURES 39
	B. REMARKS ON PROGRAM USE 47
	IV. DESCRIPTION OF SUBROUTINES 50
	V. DESCRIPTION OF INPUT DATA 59
	A. GENERAL INFORMATION 59
	B. CONTENTS OF THE INPUT 59
	C. PREPARATION OF INPUT DATA 60
	D. JOB CONTROL LANGUAGE 88
	E. COMPUTER PROGRAM LISTING 91
	VI. SAMPLE INPUT DATA AND OUTPUT SOLUTIONS 137
	A. EXAMPLE I: A TWO STORY STEEL STRUCTURE 137
	1. Description 137
	B. EXAMPLE II: A TWO STORY MIXED SETBACK STRUCTURE 140
	1. Description 140
	C. COMPUTER PRINTS OF EXAMPLES I AND II 145
	1. Input Data of Example I 145
	2. Output Data of Example I 146
	3. Input Data of Example II 155
	4. Output Data of Example II 158
	D. IDENTIFICATION OF POSITIVE MEMBER FORCES 188
	E. OUTPUT NOMENCLATURE 190
	VII. PROGRAM CAPACITY AND GUIDE FOR MODIFICATION 194
	A. PROGRAM CAPACITY 194
	B. GUIDE FOR MODIFICATION 195
,	BIOGRAPHY 206

.

v

I. INTRODUCTION

ODRESB-3D, Optimum Design of 3-Dimensional Reinforced-Concrete and Steel Building Systems, has been developed with the continuous support and encouragement from the University of Missouri-Rolla, Washington University, and the National Science Foundation engineerina along with various researchers and designers worldwide. This optimization program is an outgrowth of two computer programs, INRESB-3D (1) and INRESB-3D-II (2). These programs were used to study the elastic and inelastic response of building systems to multi-component seismic excitations. The current program, ODRESB-3D, has removed the inelastic analysis and the time dependent dynamic analysis and replaced them with a structural optimization technique, response spectra analysis, and ATC 3-06 analysis provisions (3). Therefore, this program can be used to produce and study the optimal design of three-dimensional structures subjected to static and dynamic loads.

This manual will be used to provide the information required for the correct use of the computer program ODRESB-3D. It will include a summary of the analytical procedures, a brief description of the computer program subroutines, the instructions for data preparation, the input, results and interpretation of two examples, an outline for program modification, and a listing of the complete program.

II. STRUCTURAL MODEL, ANALYSIS, AND OPTIMIZATION A. STRUCTURAL MODEL

The program was designed to analyze and optimize threedimensional systems. Each three-dimensional structure is required to have a plan which can be represented with straight lines, whereas the elevation can be irregular. Each floor must be horizontal, and the columns, panels, and walls must be vertical. The building systems can consist of any combination of steel columns, beams, and braces, and reinforced-concrete flexural walls and panels.

1. Global Degrees of Freedom. Each floor is assumed to be rigid in its own plane, while being flexible in the planes perpendicular to the slab. The rigid slab assumption allows every floor to be represented by two translational and one rotational degree of freedom in the horizontal plane. By allowing the floor to remain flexible with respect to the vertical planes, each structural node is allowed to displace vertically and to rotate about the two horizontal axes. These rotational degrees of freedom are eliminated through static condensation leaving each structure with a vertical degree of freedom at each structural node along with two translational and one rotational degree of freedom for each story as shown in Figure 1. Therefore the total number of global degrees of freedom is given by

D.O.F. = NC * NS + 3 * NS = NS * (NC+3) (2.1)

Figure 1. Global Degrees of Freedom per Floor After Condensation

.

where NC, is the number of column lines, and NS, is the number of stories. These assumptions along with the condensation cause a large reduction in the amount of computer space needed for the analysis.

2. Second-order Effects. Second-order (P-delta) effects are handled with two different approaches. The static and response spectrum analyses use a separate geometric stiffness matrix, while the ATC 3-06 analysis uses a stability factor in order to adjust the structural response.

The geometric stiffness is based upon the string stiffness technique, as shown in Figure 2. The string stiffness technique assumes that the given column with axial force, P', creates a second-order moment equivalent to the axial force multiplied by the drift, \triangle . In order to enforce equilibrium an additional shear of P'/L is required, where L is the length of the flexible portion of the column. This term of P'/L is used to reduce the lateral stiffness of structure, therefore increasing the lateral deflections and increasing the internal moments. Note that D_T and D_B are rigid zones at the top and bottom of the column respectively.

3. External Stiffness. The computer program also has the option of adding external or nonstructural stiffness to the structural stiffness. These externally applied stiffnesses can be added to any one or combination of the floor degrees of freedom which act in the horizontal planes

as shown in Figure 3. Therefore, the three-dimensional structures can be used to simulate two-dimensional structures by eliminating any rotational effects or by eliminating a translational component along with the rotational component of the structural response. These external stiffnesses are used when performing an ATC 3-06 seismic analysis.

4. Structural Mass. When a dynamic analysis is performed the structural mass matrix must be generated. A lumped mass system is used where there is mass associated with each of the global degrees of freedom. The analyses use both structural and nonstructural mass. The nonstructural mass must be part of the input data, but the structural mass is generated within the program.

The rotational mass inertia is dependent upon the distribution of the structural and nonstructural masses on each level. The structural mass is assumed to be lumped at each of the structural nodes. Therefore, the structural, rotatory mass inertia is calculated within the program with this formula

$$M_{sRi} = \sum_{k=1}^{q} M_{vk} (x_{k}^{2} + y_{k}^{2}) = \sum_{k=1}^{q} M_{vk} r_{k}^{2}$$
(2.2)

where M_{SRi} is the structural, rotatory mass inertia for level i, M_{vk} is the mass associated with node k, x_k and y_k ,

Figure 3. Allowable External Stiffnesses per Floor

are the distances from the global mass center along the global x and y axes for node k, and r_k is the magnitude of the position vector between the global mass center and node k. Therefore, the total rotatory inertia about the global mass center can be given as

$$M_{Ri} = M_{SRi} + M_{NRi}$$
(2.3)

where M_{Ri} , M_{SRi} , and M_{NRi} represent the total, structural, and nonstructural rotatory inertia for level i. There is no mass associated with the condensed rotational degrees of freedom, therefore the mass matrix becomes a diagonal matrix with an associated mass for each global degree of freedom.

5. Steel Elements. The steel element cross-sections can be regular shapes (rectangular, tubular, or circular) or irregular shapes such as I-sections. The wide-flange cross-sections are the most useful in structural design for beams and beam columns, whereas the braces can be considered as single or double angles or rods.

The beam-columns are allowed twelve local degrees of freedom. Each element has three translational and three rotational degrees of freedom at each node as shown in Figure 4. Therefore, the analysis requires each beam-column to be represented by six geometric, cross-sectional properties: the major-axis, minor-axis, and torsional moments of

Figure 4. Steel Elements with the Elemental Degrees of Freedom

inertia, major-axis and minor-axis section modulii, and the cross-sectional area.

The beams are allowed six elemental degrees of freedom. Each beam has one degree of translation and two degrees of rotation at each node as shown in Figure 4. Therefore, the analysis requires each beam to be represented by three geometric properties: the major-axis moment of inertia, section modulus, and the torsional moment of inertia.

The steel braces are allowed two degrees of freedom. Each element node is allowed to displace along the axis of the member as shown in Figure 4. Therefore, the crosssectional area is the only geometric property required to represent a brace.

6. Reinforced-Concrete Elements. The reinforced concrete elements used for the optimization are based upon the following assumptions. The elements must be rectangular (or square) with a fixed depth, h. The steel must be equally distributed along the major and minor axes with the amount of steel based upon the chosen value of ρ , the percentage of steel per the gross cross-sectional area. Also, the cracking depth is based upon the theory of working stress for bending about a single axis.

Both the concrete panels and beam-columns use the same working stress theory in order to determine their crosssectional properties (4). The panels are allowed six degrees of freedom while the beam-columns are allowed twelve

degrees of freedom as shown in Figure 5. Each corner of the panel is allowed to translate in the vertical direction, while the upper and lower faces of the panel are allowed to rigidly displace in the horizontal direction as shown in Figure 5. This requires each panel to be represented by three geometric properties: the major-axis moment of inertia, the major-axis section modulus, and the crosssectional area. The reinforced-concrete beam-columns have the same degrees of freedom as the steel beam-columns and require the same six geometric properties in order to represent the element.

The working stress model is based upon the transformed cross-sections shown in Figure 6. The transformed crosssectional properties can be derived as

$$I_{x} = \frac{1}{3} b(kd)^{3} + (n-1) A_{s}(kd-d')^{2} + n A_{s}(d-kd)^{2}$$
(2.4)

$$I_{y} = \frac{1}{3} h(kb')^{3} + (n-1) A_{s}(kb'-b'')^{2} + n A_{s}(b'-kb')^{2} (2.5)$$

$$A_t = b(kd) + (n-1) A_s + nA_s$$
 (2.6)

where

$$\mathbf{A}_{\mathbf{r}} = \rho \mathbf{b} \mathbf{d} \tag{2.7}$$

$$d = Ph$$
 (2.8)

$$d' = (1-P)h$$
 (2.9)

(a)

(b)

Figure 6. Transformed Concrete Elements with Respect to a) the Major-Axis and b) the Minor-Axis

$$k = \left(\frac{f_c}{f_c + f_s}\right)$$
(2.10)

$$n = E_s/E_c \tag{2.11}$$

in which E_s , is Young's modulus for steel, E_c , is Young's modulus for concrete, f_s , is the yield stress for steel and, f_c , is the yield stress for concrete which provides an equation in terms of ρ , the percentage of steel, P, the percentage of the depth to the lumped steel, k, the percentage of the effective depth for the cracked section based upon the position of the lumped steel, n, the modular ratio, b, the variable width, and h, the fixed depth as

$$I_{x} = bh^{3} \left[\frac{1}{3} (kP)^{3} + (n-1)\rho P(P(k+1)-1)^{2} + n\rho P^{3}(1-k)^{2} \right]$$
(2.12)

$$I_{\gamma} = hb^{3} \left[\frac{1}{3} (kP)^{3} + (n-1)\rho P(P(k+1)-1)^{2} + n\rho P^{3}(1-k)^{2} \right]$$
(2.13)

$$A_t = Pbh [k+2n\rho-\rho]$$
 (2.14)

Note that the terms in the brackets are independent of the dimensions of the cross-section, therefore greatly

simplifying the equations to a constant times the relationship between the depth and width. The assumptions required by this formulation are: 1) uniform distribution of steel with respect to the major and minor axes, 2) no interaction with respect to the bending about both axes, 3) fixed depth with a variable width, and 4) no tensile strength associated with the concrete. These assumptions are somewhat restrictive, but do not hamper the use of the elements within the optimization.

7. Primary vs. Secondary Design Variables. Pure mathematical optimization of a structural system would require each geometric property to be used as a design variable. Although this might be the most efficient system for the given objective function, the set of geometric properties most likely will not represent a cross-section which is realistic. Also, in the optimization process each design variable is an unknown quantity, and just as in a structural problem a slight increase in the number of unknowns (degrees of freedom) can cause a much larger computational efforts. Because of increase in these reasons, a model was developed for both the steel and concrete elements which would allow each element to be represented by one geometric property called the primary design variable. All other geometric properties other than the primary design variable are defined as secondary design variables. The model developed provides a continuous

relationship between the primary and the secondary design variables.

The model developed produces an exact relationship for regular shapes and the reinforced-concrete elements, while providing an approximate relationship for steel wide-flange sections. All element types except the braces use the major-axis moment of inertia as their primary design variables. Whereas, the brace uses its cross-sectional area. Each secondary design variable is represented in this form

$$S_{ij} \cdot = C_{1j} \delta_i + C_{3j}$$
 (2.15)

where S_{ij} is the jth secondary design variable for the ith element, C_{1j} , C_{2j} , and C_{3j} are the appropriate constants, and δ_i is the ith element primary design variable, (i.e., the major-axis moment of inertia, etc.).

a. Regular Cross-sections. Several different techniques can be used to determine the constants in Equation 2.15. For most regular cross-sections such as pipes, rectangular, and circular shapes these constants can be determined exactly. For example a rectangular crosssection with a fixed ratio of depth to width of R provides a set of equations for the minor-axis moment of inertia and the cross-sectional area as

$$I_{\gamma} = \frac{1}{R^2} I_{\chi}$$
 (2.16)

$$A = \left(\frac{12}{R}\right)^{1/2} I_{x}^{1/2}$$
(2.17)

b. Steel Wide-Flange Sections. The primary and secondary design variables associated with steel wideflange sections are of the psuedo-discrete variety. The actual values are discrete but are approximated with a continuous spectrum of sizes.

The constants to be used in Equation 2.15 can be determined in any manner which best suits the user. Several possibilities would be to choose the constants to give an upper bound, an average, or a best-fit for each of the secondary design variables. It is important to note that these equations do not provide a one to one correspondence for the primary and secondary design variables with respect to a specific wide-flange cross-section. In other words the final values for these primary and secondary design variables will not yield a specific wide-flange section as found in the American Institute of Steel Construction Manual (5). Reasonable judgement coupled with (AISCM) the optimization information must be used in order to select the appropriate wide-flange cross-section for each element.

c. Reinforced-Concrete Sections. The reinforcedconcrete element equations are based upon the working stress model and should be considered as a means of finding reasonable preliminary sizes. The form of the concrete equations is similar to that of Equation 2.15. The equations are based upon the theoretical derivation given in Equations 2.4 to 2.14 and are

$$I_{\gamma} = \frac{1}{h^8 D^2} I_{\chi}^3$$
 (2.18)

$$J = \frac{1}{h^8 D^2} I_x^3 + I_x$$
(2.19)

$$A = (P(k+2n\rho-\rho)/h^2D) I_{x}^{3}$$
 (2.20)

$$A_{N} = \frac{1}{h^{2}D} I_{X}^{3}$$
 (2.21)

where I_x is the major-axis moment of inertia, A_X , is the actual concrete area, h, is the depth of the cross-section, P, is the percentage of depth to the lumped tensile reinforcement, k, is the percentage of depth for the cracked cross-section, n, is the modular ratio, ρ , is the percentage of steel, and D is a constant based on the given properties. The equation for D is

$$D = (Pk)^{3} + \rho P(n-1) (P(k+1)-1)^{2} + nP^{3} \rho (1-k)^{2}$$
(2.22)

Equations 2.18 to 2.21 are derived by replacing the width b with its equivalent representation in terms of I_x as derived from Equation 2.12.

B. ANALYSIS

1. Static Analysis. The elastic, global stiffness is assembled through a sequence of transformations. First the local degrees of freedom are transformed to member-end deformations which include the rigid zones effects. Secondly the member-end deformations are transformed to frame displacements which are located at a reference point which is a specific column line. This column line and frame coordinate system must be located such that the mass center is located in the first quadrant of the frame coordinate system. The last transformation is used to relocate the frame coordinates to a global coordinate system located at the mass center of each floor, as was shown in Figure 1.

The frame to global transformation matrix is element independent and is shown in Figure 7 and is represented as

Figure 7. Transformation from Reference to Global Coordinates

where

$$[A]_{n} = \begin{bmatrix} \cos \beta & \sin \beta & (-\Delta y \cos \beta + \Delta x \sin \beta) \\ -\sin \beta & \cos \beta & (\Delta x \cos \beta + \Delta y \sin \beta) \\ 0 & 0 & 1 \end{bmatrix}_{n}$$
(2.24)

in which I is the identity matrix corresponding to the vertical displacements of the columns and $[A]_n$ is the nth level transformation with the first two rows corresponding to the x and y displacements, respectively and the third row corresponding to the rotational displacement. All transformations must be considered with respect to displacements, stiffness, loads, and gradients. This transformation was given since the input geometry of each structure is based upon the reference coordinate system.

The rotational degrees of freedom at the structural nodes are condensed for the purpose of increasing computational efficiency and decreasing storage requirements. The condensation is performed using a forward

elimination process on a story by story basis from the top to the bottom of the structure. Therefore, the joint rotations and ultimately the member-end forces are obtained by using backward substitution.

The static load combinations are comprised of two sets of independent lateral forces and four sets of vertical forces. The lateral loads consist of two orthogonal, concentrated loads for each level. The four sets of vertical forces are composed of one set of concentrated, vertical nodal loads and three sets of uniformly distributed loads. The vertical nodal loads have independent magnitudes, but must be located at a structural node producing axial loads on the columns. Each uniformly distributed load in a set has its own magnitude and can be applied to any combination of beams within a load combination. These uniformly distributed loads are considered to act along the length of the beams. A variety of load combinations can be formed by applying load factors to the various types of forces. The typical formula would be

$$L_{i} = \gamma_{1i}V_{1} + \gamma_{2i}V_{2} + \gamma_{3i}V_{3} + \gamma_{4i}V_{4} + \gamma_{5i}R_{5} + \gamma_{6i}R_{6}$$
(2.25)

where L_i , is the ith load combination, γ_{1i} , ..., γ_{6i} , are the appropriate load factors, V_1 , ..., V_4 , are the vertical forces, and R_5 and R_6 , are the lateral forces.

2. Natural Frequencies and Mode Shapes. The natural frequencies and mode shapes are needed in order to perform a modal analysis. Several points must be considered when determining which technique is to be used to find the frequencies and eigenmodes. The efficiency, the flexibility, the accuracy, and programmability of the technique need to be considered when choosing an eigenvalue solver.

The natural frequencies and modes of vibration are the eigenvalues and eigenvectors associated with the generalized eigenproblem. It is important to note that the static condensation has no effect on the eigenvalue solutions as long as no mass is associated with the condensed degrees of freedom.

Structural eigenvalue problems generally must be solved through an iterative technique, since the solution involves finding the roots of a polynomial of order equivalent to the order of the stiffness and mass. The iterative techniques can be grouped into five categories: poly-vector iteration methods, 2) transformation 1) methods, 3) polynomial iteration methods, 4) Sturm sequence property methods, and 5) combinations of the other four categories. A transformation method called the generalized Jacobi method was used (6). The advantages of this technique are 1) the eigenproblem need not be transformed to. the standard eigenproblem which is advantageous when the matrices are ill-conditioned, 2) all eigenvalues and

eigenvectors are determined, and 3) it is simple in theory and easily programmed. The ability to handle illconditioned matrices was the primary reason for choosing this technique, since this condition can arise when considering the ATC 3-06 applied loads.

3. Dynamic Analysis.

a. Modal Analysis. Response spectrum or spectral analyses have been used with considerable success with respect to earthquake excitations of structures and structural components (7,8). The advantage is clearly due to the removal of the time dependence of the motion equation. The disadvantage is due to the conservative nature of the solution.

As mentioned previously three separate response spectra can be used in the analysis; one for each direction of horizontal acceleration and one for the vertical acceleration. The rotational degrees of freedom for each floor are assumed to be free of the dynamic excitation.

The computer program requires acceleration spectra to be input as polynomials of the fourth degree or less. These polynomials are of the form

$$S_{a_{1}}(T)/a_{max} = C_{1}(T-C_{6})^{4} + C_{2}(T-C_{6})^{3} + C_{3}(T-C_{6})^{2}$$

$$+ C_4 (T-C_6) + C_5$$
 (2.26)

where $S_{a_{1}}(T)$, is the acceleration response at period T in
the k^{th} direction, a_{max} is the maximum ground acceleration, and C_1, \ldots, C_6 are appropriate constants. The equations for the acceleration response spectrum shown in Figure 8 are

$$(S_a/a_{max}) = -26.14T^2 + 13.94T + 0.935$$
 (2.27)

for $T \leq 0.4$ sec. and

$$(S_a/a_{max}) = 0.1606(T-0.4)^4 - 1.141(T-0.4)^3$$

+
$$2.996(T-0.4)^2$$
 - $3.618(T-0.4)$ + 2.229
(2.28)

for T > 0.4 sec. This form was chosen in order to provide an adequate numerical representation of the spectrum and to provide a simple technique for finding the slope of the acceleration spectrum at a given period, the slope is required within the optimization.

b. ATC 3-06 Analysis. The ATC 3-06 tentative provisions provide two options for determining the lateral forces to be used for finding the seismic structural. The two approaches are called the equivalent response. lateral force and modal analysis approaches. Both approaches assume the structures to be analyzed as two dimensional structures. This requires two analyses for each three-dimensional structure, one being in each of the two orthogonal directions. In order to simulate a two

Figure 8. Typical Acceleration Response Spectrum

dimensional system, a "large" external stiffness is applied with respect to the torsional and one translational degree of freedom at each level, while allowing translation in one direction along with the vertical displacements at each node. (This is done automatically within the program.) The ATC 3-06 also requires that the principal direction of excitation have a five percent (of the base dimension) "accidental" eccentricity from the mass center. The final design is based upon the principal direction forces (including the eccentricity) plus thirty percent of the orthogonal direction forces. These exceptions are handled automatically within the program.

The equivalent lateral force technique is based upon the weight distribution coupled with the story height. The base shear, V, and m^{th} level lateral force, F_m , are given as

$$V = C_{\rm s} W_{\rm T} \tag{2.29}$$

and

 $\mathbf{F}_{\mathrm{m}} = \mathbf{C}_{\mathrm{v}\,\mathrm{m}} \mathbf{V} \tag{2.30}$

where C_s , is the seismic design coefficient which depends on the soil conditions, building site, fundamental period, and response modification factors as given in the ATC 3-06 provisions, W_T , is the gravity load of the building, and C_{vm} , is the shear distribution factor for the mth level. C_{vm} is given by the formula

$$C_{vm} = \frac{w_{m}h_{m}^{k}}{\sum_{i=1}^{n} w_{i}h_{i}^{k}}$$
(2.31)

where w_m and w_i are the portion of the weight assigned to level m or i, h_m and h_i , are the respective heights above the base to level m or i, and k is an exponent related to the building period ($1 \le k \le 2$). The lateral forces given in Equation 2.30 are used to find the displacements which are used to determine the elastic member forces.

The ATC 3-06 modal analysis procedure is based upon the weight distribution and mode shapes of the system being considered. The base shear for mode j, V_j , and the mth level lateral force for mode j, F_{mj} , are given as

$$V_{j} = C_{sj} \overline{W}_{j}$$
(2.32)

and

$$\mathbf{F}_{mj} = \mathbf{C}_{\mathbf{v}mj}\mathbf{V}_{j} \tag{2.33}$$

where C_{sj} , is the modal seismic design coefficient which depends upon the soil conditions, building site, fundamental period and response modification factor, \overline{W}_j , is the effective modal gravity load determined as

$$\overline{W}_{j} = \frac{\begin{bmatrix} n \\ \Sigma & \omega_{i} \phi_{ij} \end{bmatrix}^{2}}{\begin{bmatrix} n \\ i=1 \end{bmatrix}^{2}}$$

$$(2.34)$$

$$\frac{n}{\sum_{i=1}^{\Sigma} \omega_{i} \phi_{ij}^{2}}$$

and C_{vmj} , is the jth mode shear distribution factor for the m^{th} level which is given by

$$C_{vmj} = \frac{W_m \phi_{mj}}{\sum_{i=1}^{n} W_i \phi_{ij}}$$
(2.35)

where ϕ_{mj} and ϕ_{ij} are the mth and ith level components of the jth eigenvector, and W_m and W_i are the portions of W_T assigned to level m or i. The final design values for base shear, story shears, and deflections are combined by using the square root of the sum of the squares of each modal value.

The ATC 3-06 provisions have their own method for including P-delta effects, called the stability coefficient, which is determined by using the formula

$$\theta = \frac{P_{x}\Delta}{V_{x}h_{sx}C_{d}}$$
(2.36)

where P_x , is the total gravity load above level x, Δ , is the story drift, V_x , is the seismic shear force acting between levels x and x-1, h_{sx} , is the story height below level x,

and, C_d , is the deflection amplication factor. If the stability coefficient is greater than one-tenth, the story drift is to be multiplied by the factor $(1+a_d)$ in order to take into account the second-order effects. The term a_d is found by using the formula

$$a_d = \theta/(1-\theta) \tag{2.37}$$

which produces a P-delta factor for the drift of the form

$$f_{1} = \left(1 + \frac{\theta}{1-\theta}\right) = 1/(1-\theta) \qquad (2.38)$$

The same factor is to be used for both ATC 3-06 analysis procedures.

The load combinations for seismic excitations include the static effects superimposed with the dynamic effects. The superposition is allowed since the building systems are assumed to remain in the elastic region. ATC 3-06 actually takes into account the inelastic effects through their deflection amplification factors and their response modification factors. The possible load combinations are the same as those for static analysis with the exception that the lateral force responses are replaced with the seismic responses. The only option this precludes is the case where wind or some other lateral force cannot be applied

simultaneously with a seismic load. This is a reasonable assumption as evidenced by most seismic codes.

C. STRUCTURAL OPTIMIZATION

1. Objective Function. The objective function is the actual function to be minimized such as cost or weight of the structures. The objective function used in the computer program takes the form

$$O(\delta) = \sum_{i=1}^{n} \gamma_i V_i \qquad (2.39)$$

where γ_i , is the appropriate constants of objective value per unit volume for element i, V_i , is the volume of element i which is a function of the primary design variable, and n, is the total number of structural elements. The volume is related to the primary design variables through Equation 2.15 giving the relationship

$$\nabla_{i}(\delta_{i}) = \hat{\chi}_{i}A_{i} = \hat{\chi}_{i}(C_{1A}\delta_{i} + C_{3A}) \qquad (2.40)$$

where $\hat{\gamma}_i$, is the length of element i, $C_{1\lambda}$, $C_{2\lambda}$, and $C_{3\lambda}$ are the appropriate constants for the area, A_i , of element i. The constant γ_i is most often used as the specific weight or the cost per unit volume.

2. Constraints. Constraints represent the restrictions that the structural designer would like to impose in order to produce the optimal structural system. These constraints can be of several different types such as equality, inequality, side or linking constraints. The equality constraints find very little use in building systems since they are generally used to enforce equilibrium and compatibility which are already enforced due to the stiffness formulation. The inequality constraints are used place limits on structural response to such as displacements, frequencies, and stresses. Side constraints are also inequality constraints but are generally not handled in the same mathematical manner as the structural responses. These side constraints are used to limit the size of the structural elements within a practical range. The linking constraints (called linking) are used to force a certain group of structural elements to have the same size. Linking is also handled in a different mathematical fashion than the inequality constraints. In theory any combination of these constraints can be applied to a structure, but numerically this can be difficult. This is one area in which state-of-art research is being applied.

3. Active Constraints. In order to save computational time, it is important to choose a reasonably accurate set of active constraints. The active constraints are considered to be any constraints which are "close" to the constraint surfaces. The algorithm checks these values and compares them to a specific acceptable range as designated

by the user. The choice of active constraints is based upon these equations

$$(1-P_1) \leq \frac{u_j}{u_i} \leq (1+P_2)$$
 (2.41)

for upper bound constraints and

$$(1-P_1) \leq \frac{\underline{u}_j}{\underline{u}_j} \leq (1+P_2)$$
 (2.42)

for lower bound constraints, where u_j is the actual structural response, $\overline{u_j}$ is the upper limit, and $\underline{u_j}$ is the lower limit. These equations allow the user the flexibility of establishing a region along the constraint surface which can be as large or as small as desired. The value $(1-P_1)$ provides the proportional thickness of the region on the feasible side of the constraint and the value $(1+P_2)$ provides the acceptable region of constraint violation, if any, for the nonfeasible side of the constraint surface.

<u>4. Scaling of the Design</u>. There must be a set of active constraints before the optimization algorithm can be used. Generally, a preliminary design will be either conservative (no active constraints) or nonconservative (a violation of one or more constraints). Therefore, some technique must be used to adjust these design variables such that a set of active constraints, as justified by Equations

2.41 and 2.42, will be satisfied. In the past, structures which were linear with respect to their design variables used a technique called scaling to adjust the designs. Scaling uses a factor to adjust the design variable which is the maximum value of either of these two values

$$f_j = \frac{u_j}{u_i}$$
 $j = 1, ..., \vartheta_1$ (2.43)

for upper limit constraints

$$f_{j} = \frac{u_{j}}{u_{j}}$$
 $j = 1, ..., \vartheta_{2}$ (2.44)

for lower limit constraints where l_1 and l_2 are the numbers of possible upper and lower limit constraints, respectively.

The use of scaling for the nonlinear (in terms of the primary design variable) stiffness and response becomes an iterative procedure. Once the primary design variable is scaled, the secondary design variables are scaled according to Equation 2.15 which gives

$$S_{ij} = C_{1j} (f \delta_i)^{C_{2j}} + C_{3j}$$
 (2.45)

Depending on which constraint is being scaled and the effect of the secondary element on that constraint, the scaling can take several cycles to reach an active value. The natural frequencies are also affected in a strange manner since both the stiffness and mass change when scaling is used. Thinking of the frequency in terms of the Rayleigh quotient it can be written as

$$\omega^{2} = \frac{\{\phi\}^{T} [K]_{f} \{\phi\}}{\{\phi\}^{T} [M]_{f} \{\phi\}}$$
(2.46)

where [K], and [M], represent the nonlinear scaling of the terms in the stiffness and mass. The effect of this is highly problem dependent. Scaling can also become divergent for steel structures if the system which provides an active constraint approaches the point of discontinuity of the secondary design variables with respect to the primary design variable. Despite this possible instability most problems can be adjusted to eliminate this problem by reorienting or resizing certain elements within the problem. Another alternative is to open the range for active constraints in order to force the constraints to become active at an earlier stage. Rarely does the divergent trend occur after the first cycle of optimization.

Scaling can be oscillatory when a combination of frequency and displacement constraints are used. This is due to the fact that the scaling factors become counterproductive. The displacements are affected by the inverse of the factor, whereas the frequencies, in most

cases, are affected in a greater sense by the direct multiplication of the factor. Therefore, an oscillation between potentially active constraints can take place where the structural system forces the displacements to become active while violating the frequencies, and this resulting violation causes the frequency to become active while violating the displacements in the next cycle of scaling. this oscillatory effect, frequency Because of and displacement constraint combinations are handled differentscaling is only allowed to ly. The affect the displacements; and the frequencies are forced to their active values through the use of a correction term applied within the optimization algorithm (Lagrange multiplier determination).

Scaling is important for two different operations during the optimization. The first is to find the initial set of active constraints by using the maximum factor to change the primary design variables which in turn changes the secondary design variables. The second is to force the design back within the region for active constraints as defined by Equations 2.41 and 2.42.

<u>5. Termination Criteria</u>. Due to the iterative techniques used for the nonlinear, structural optimization problem, termination criteria must be developed. The criteria have to be able to handle several distinct conditions. The primary condition is to check for

convergence or divergence of the objective function. Secondary conditions are to limit the amount of allowed computing time and to check for divergent or oscillatory scaling. These criteria must be flexible yet easily handled within the algorithm.

The secondary criteria are important since these are used to terminate an optimization sequence which is either diverging or converging at a very slow rate. Limiting the allowable number of optimization cycles and the allowable number of analyses will stop the procedure from using excessive computing resources due to a slowly converging or slowly diverging solution. (The slowly diverging system usually occurs near the optimal solution where there might be a slight constraint violation.)

Divergent scaling, on the other hand, can occur in two modes, the first being an ever increasing or decreasing set of factors or, most often, a generation of an oscillatory set of factors. These divergent scalings are also handled by limiting the number of optimizations and analyses. These secondary criteria are used to stop an excessive use of the computer resources.

The primary termination criteria are involved with the actual optimization of the structure. In the latter stages of optimization there are very small changes made to the structural elements which provide a very small change in the value of the objective function. Therefore, convergence is

considered by comparing the values for the objective function at successive optimization cycles to a specified percentage of change, P_4 , which can be written as

$$\frac{|O^{k-1} - O^k|}{O^k} \le P_4 \tag{2.47}$$

If Equation 2.47 is satisfied the algorithm is terminated.

Divergence of the algorithm must also be considered. After several cycles of optimization it is possible that a new set of constraints will be chosen which will cause a divergent trend. The algorithm will allow only two successive iterations in which the objective function increases in value. The algorithm will terminate after the second divergent cycle. The termination criteria must be carefully considered with respect to the condition of computing resources versus the closeness to an optimal solution. A good range for P_4 is 0.5% to 5%. A smaller percentage of change in the objective function requires more computing time but provides a near optimal solution, whereas a larger percentage saves computing time at the expense of optimization.

III. DISCUSSION OF ODRESB-3D

A. NUMERICAL PROCEDURES

ODRESB-3D is composed of a main program and 51 subroutines and is capable of analyzing and optimizing building systems subjected to static loads, multi-component seismic excitations, or a combined loading. The seismic loads can be applied through multiple response spectra or the ATC 3-06 provisions, and are directly superimposed with static loads. The numerical procedures will be explained as a series of steps.

<u>Step 1 - Read and Write Input Data</u>. The main program along with subroutines INFORM and ATCIF read the input data. MAIN and INFORM read all structural and optimization information while ATCIF reads the information required for an ATC 3-06 analysis. The input data is printed for a check of its correctness.

<u>Step 2 - Clear Arrays and Initializing Input Data</u>. Since the program is capable of solving multiple problems within each input, all numerical arrays must be cleared before each problem is processed. Subroutine INITIL is used to clear arrays and initialize the input data.

<u>Step 3 - Determination of Secondary Design Variables</u>. The user has the option of inputing the secondary design variables if a single analysis is to be performed or having the secondary design variables generated if an optimization is to be performed. Subroutines CONCR and STEEL determine

these secondary design variables based upon the user input specified relationships for the steel and the concrete element properties.

<u>Step 4 - Form the Stiffness Matrices</u>. The geometric stiffness is formulated in terms of the lumped masses acting on the vertical members and has to be reformulated after each optimization since the structural mass changes. Subroutine OJBECT is used to find the structural mass for the geometric stiffness, as well as the total weight of the structure.

The structural stiffness formulation starts at the top of the structure and progresses floor-by-floor to the ground level. The subroutines SHRWLL, PANEL, COLUMN, BEAM, and BRAC are used in conjunction with INECOF in order to develop the elemental local stiffnesses. REFCOR is then used to transform the element degrees of freedom to reference degree of freedoms. The individual stiffnesses are combined in FLOSTF to provide a total stiffness for that level. The rotational degrees of freedom are then eliminated by using the subroutine ELIMIN. This elimination process is floor-by-floor basis until performed on a the total reference coordinate stiffness matrix is formulated. At this point subroutine GLOCOR transforms the system stiffness to global coordinates.

<u>Step 5 - Solve for Static and Dynamic Displacements</u>. The static displacements are determined for each of the independent load sets by using Gaussian elimination.

Subroutine GAUSS is used to perform the elimination process. The final load combinations are then found by multiplying the load sets with the appropriate load factors and superimposing the results.

The dynamic displacements are dependent upon the method of analysis chosen. The user has three options: response spectra modal analysis, ATC 3-06 modal analysis approach, or ATC 3-06 equivalent lateral force approach. Each analysis requires the natural frequencies of the structure, and the two modal analysis approaches require the eigenvectors, as well. Subroutine JACOBI is used to find the eigenvectors and eigenvalues for the dynamic analyses. The response spectra modal analysis is performed within subroutine MODAL and its displacements are then assumed to replace the displacements for lateral load case B. The ATC 3-06 equivalent lateral force procedure uses subroutines: ATLINK, ATCCD, LAT1, and LAT2. Subroutine ATLINK and ATCCD compute all the necessary structural information required within the equivalent lateral force analysis; subroutine LAT1 determines the necessary equivalent lateral forces; and subroutine LAT2 provides the 5 percent required eccentricity for the loads and calls GAUSS3 to find the dynamic displacements. It also includes the P-delta effects through the use of ATC 3-06 stability factor, 0. The ATC 3-06 modal analysis procedures uses subroutines: ATCDD, ATLINK, MODALA, LAT2, ROOT1, ROOT2, and ROOT3.

Subroutines ATCDD and ATLINK compute all of the necessary structural data such as story height and mass per story. Subroutine MODALA finds the modal components of the applied forces, displacements and overturning moments. Subroutines ROOT1, ROOT2, and ROOT3 provide the root of the sum of the squares of these quantities, and subroutine LAT2 includes the P-delta effects.

Step 6 - Solve for the Internal Forces and Stresses. Once the displacements are determined the internal forces are determined by using backward substitution from the base of the structure to the top story. These displacements are first transformed into reference coordinates using the subroutine REFDSP. Subroutine FORCES is also used to regenerate the nodal rotational displacements in order to determine the internal forces and stresses from subroutine REFROT. The combinations of the forces are performed after each set of forces corresponding to the independent load sets are found. These combined forces are then used to produce the stresses determined in REFROT.

Step 7 - Determine the Set of Active Constraints. Subroutine SORT is used to check if any of the user defined constraints are within the region of $(1-P_1)$ and $(1+P_2)$ as previously defined. If the constraints are beyond $(1+P_2)$ they are violating one or more of the constraints of displacement, stress or frequency and must be scaled. Subroutine SCALE then resizes the primary design variable by

the ratio of actual to acceptable response. At this points the comptuer algorithm goes back to Step 2 and starts a reanalysis of the new structure. This process is continued until all constraints are below $(1+P_2)$.

Once all constraints are below the highest acceptable value of $(1+P_2)$, SORT chooses the set of active constraints. These constraints will be the ones considered within the structural optimization.

Step 8 - Check the Termination Criteria. The MAIN program checks the termination criteria. The program will not terminate if a scaling is required (constraint violation) unless the maximum allowable number of analyses has already been performed. If scaling is not required the main program checks the total number of analyses, the total number of optimization cycles, and the percentage change in weight between optimization cycles. It also checks for a divergent trend between cycles of optimization. If any of the termination criteria are satisfied, the program retrieves the optimal results with the help of subroutines REPLAC, REPORT, and PLOT. These subroutines provide the element stiffnesses, the displacements, the eigenvectors, the natural frequencies and the ATC 3-06 stability factors for the optimal solution. The structural weight and frequencies are also kept on a per optimization cycle basis and retrieved for plotting purposes by these subroutines. These subroutines require file storage space to accumulate

this data. At this point the program would terminate. If none of the termination criteria was satisfied the program would continue to Step 9.

Step 9 - Determine the Constraint Gradients. The static response gradients are found by using the virtual load technique (9). Subroutine PSEUDO is used to develop the virtual load vectors for the active static response gradients. The virtual displacements associated with these virtual loads are found using GAUSS4. Subroutine FORCES is then called and uses ROTDIS to find the virtual rotational displacements, and the matrix of the gradient of the stiffness times the actual static displacements. FORCES then calls REFROT to place the virtual displacements in the reference coordinate system and GRAD multiplies the matrix from FORCES with the virtual displacements in order to produce the value for the partial derivative of the static response with respect to a certain element. These last mentioned operations of calling REFROT and GRAD along with the matrix manipulations must be repeated for every element in order to generate the gradient of the response.

The frequency gradients are found through a direct numerical approach derived from the partial derivative of the generalized eigenvalue equation. This numerical approach requires the pre- and postmultiplication of the eigenvectors with the partial derivative of the stiffness and mass. The stiffness manipulations of this procedure are

performed in subroutines FORCES and GRAD, whereas, the mass manipulations are performed in subroutines EMAS and GRAD. This procedure must also be performed for each element.

The gradients of the dynamic responses use subroutines PSUEDO, FORCES, REFROT, INVERT, GAUSS2, EMAS, and GRAD. The dynamic response gradients use a pseudo load approach for finding the gradients. The virtual load vectors determined in PSUEDO are multiplied with the dynamic displacement These gradients are determined through the gradients. manipulations of the eigenvectors coupled with the partial derivations of the stiffness, mass, and frequencies and the manipulations of the stiffness, mass, and frequencies coupled with the gradients of the eigenvectors. FORCES, REFROT, and EMAS provide the necessary quantities including the partial derivatives of the stiffness, mass and frequencies, whereas INVERT, GAUSS2, and EMAS are used to find the eigenvector gradients. GRAD is used to manipulate the different matrices and find the final results for the gradients of the dynamic response.

Within these gradient calculations various fictitious loads are generated. Most of these fictitious loads were generated either at the local level or at the global level with respect to the coordinate systems. Therefore within these previously mentioned subroutines several transformations are used. The important transformation subroutines are ROTATE, REFDSP1, REFDSP3, ROTDIS, and GLOCOR. ROTATE

and ROTDIS provide the needed rotational displacements in reference coordinates, and REFDSP1 and REFDSP3 are used to transfer the displacements from the mass center to the reference coordinates. GLOCOR is used to transfer the reference coordinates to the mass center coordinates. These different transformations are very important and are used in the different gradient calculations as needed.

<u>Step 10 - Determine the LaGrange Multipliers.</u> The structural optimization is based upon a system which generates a set of simultaneous equations, using the response gradients, to find the LaGrange multipliers. equations are also used to enforce the side These constraints and linking constraints as previously mentioned. The LaGrange multipliers are also used to verify whether the active set of constraints chosen in Step 7 are truly an active set. Each constraint generates one LaGrange multiplier. If the LaGrange multiplier for a constraint is negative, it will be removed from the active set of constraints. This is based upon the Kuhn-Tucker conditions of optimality. Once this constraint is removed, a new set of equations must be generated without this constraint's gradients included. Subroutine LAGMU is used to generate these equations and GAUSS1 solves them by Gaussian elimination.

Step 11 - Determine the New Primary Design Variables. The LaGrange multipliers are then used to find the optimality criteria in subroutine CURSE, and it is used to resize the elements. As the optimal solution is approached, the optimality criteria for each active element should approach unity. If the element is passive (nonactive), this infers that the element is controlled by a side constraint (it wants to become the largest or smallest allowable size for that element). The optimality criteria is used in a linear recurrence relationship which is controlled by a convergence control parameter. A value of 2 for the convergence control parameter is usually sufficient. The larger the number the slower the convergence. If the linear recurrence relationship gives an element size which is smaller or larger than the allowable sizes, the LaGrange multipliers must be recalculated. Therefore, the program goes back to Step 10 and regenerates the equations and solves for the new LaGrange multipliers. This process is repeated until no more side constraints are required. This resizing of the primary design variables occurs in subroutine CURSE. Once the resizing is complete, the program transfers back to Step 2 in order to resize the secondary design variables and the next cycle of optimization begins.

B. REMARKS ON PROGRAM USE.

The following section provides some information which may be useful to the user.

1. The use of multiple constraint types is acceptable and generally performs well. When displacement and frequency constraints are used simultaneously, scaling is performed only with respect to the displacements. The frequency is manipulated through the LaGrange multiplier equations, therefore it is possible for the program to terminate prior to satisfying all of the displacement and frequency constraints simultaneously.

2. A set of extremely restrictive constraints can cause a non-monotonic convergence and in extreme cases can cause a nonconvergent problem. Generally, this situation can be avoided by relaxing or revising the constraints placed on the building system or to increase the acceptable bandwidth for active constraints.

3. A convergence control parameter of 2 is generally adequate for all problems. If excessive scaling is required between cycles of optimization a larger convergence control parameter should be used.

4. The objective function is based upon a per volume of steel and concrete system. Therefore, costs, weights or any other appropriate objective function must provide the coefficients for steel and concrete in a per unit volume fashion.

5. The ATC 3-06 stability and 5 percent eccentricity are considered within the program.

6. All column lines and bays must be represented with a column or beam property. Therefore, if a setback structure is optimized a fictitious set of columns and beams must be used to represent the missing elements.

7. Linking of columns or beams is accomplished by assigning the same property set to those columns or beams that are to maintain the same size.

IV. DESCRIPTION OF SUBROUTINES

Each of the subroutines' functions will be described in this section. The subroutines are presented in the order that they appear within the program.

1. MAIN. The main program is used to read and write the preliminary, non-elemental data of input codes I through VIII and XXI. In addition to providing the general flow by calling the different subroutines, the main program is responsible for checking the termination criteria.

2. Subroutine INFORM. This subroutine is used to read and print all of the input data except for input codes I through VIII, XXI, and XXII.

3. Subroutine GENERA. This subroutine is called from subroutine INFORM to generate the beams and columns for a group of elements having identical properties.

<u>4. Subroutine INITIL</u>. This subroutine is called from the MAIN program to clear arrays and to initialize data. The initialized arrays include member forces, stiffness coefficients, and masses.

5. Subroutine FORM. This subroutine is used to formulate the geometric stiffness and structural stiffness for the analysis procedures. It is also used to arrange the virtual load vectors used in the stress gradient calculations for beams and columns in order to eliminate the local rotational components.

<u>6. Subroutine COLUMN</u>. The subroutine FORM calls COLUMN in order to form the member geometric stiffnesses and

structural stiffnesses in reference coordinates for the steel columns and the concrete flexural walls.

7. Subroutine BEAM. The subroutine FORM calls BEAM in order to form the member stiffnesses in reference coordinates and to generate the fixed-end forces for the steel beams.

8. Subroutine PANEL. The subroutine FORM calls PANEL in order to form the member geometric and structural stiffnesses in reference coordinates for the concrete flexural panels.

<u>9. Subroutine BRAC</u>. The subroutine FORM calls BRAC in order to form the structural stiffnesses in reference coordinates for the bracing elements.

10. Subroutine REFCOR. This subroutine is called from the subroutines COLUMN, BEAM, PANEL, and BRAC in order to transform the matrices encountered from the elemental coordinate systems to the reference coordinate system.

<u>11. Subroutine FLOSTF</u>. This subroutine is called from subroutine FORM in order to place the member stiffnesses and the fixed-end forces (in reference coordinates) in the proper locations within the arrays representing a typical floor within the structural system. These different arrays are used to separate the degrees of freedom to be eliminated and those to be retained.

12. Subroutine ELIMIN. After FLOSTF has been executed for all elements on a specific level, subroutine ELIMIN is called to eliminate the nodal rotational degrees

of freedom and to add the other stiffness coefficients to those of the previous levels. This elimination is performed only on the structural stiffness.

13. Subroutine GLOCOR. This subroutine is used to transfer the geometric and structural stiffnesses from reference coordinates to the global coordinates at the mass center. The transformation of a typical floor includes the lateral and torsional floor stiffnesses which also includes their coupling and sway effects.

<u>14. Subroutine GAUSS</u>. This subroutine is used to perform a Gaussian elimination to find the static displacements.

15. Subroutine GAUSS1. This subroutine is used to perform a Gaussian elimination to find the Lagrange multipliers used within the optimality criteria.

<u>16. Subroutine GAUSS3</u>. This subroutine is used to perform a Gaussian elimination to find the ATC 3-06 pseudodynamic displacements.

<u>17.</u> Subroutine GAUSS4. This subroutine is used to perform a Gaussian elimination to find the virtual displacements used to determine the static and ATC 3-06 response gradients.

<u>18. Subroutine GAUSS2</u>. This subroutine is used to perform a Gaussian elimination to find the gradients of the eigenvectors used in a response spectrum modal analysis.

19. Subroutine REFDSP. This subroutine is used to transform the lateral and rotational displacements from

global to reference coordinates. This process is performed for a single level at a time.

20. Subroutine REFDSP1. This subroutine is used to transform the lateral and rotational virtual displacements used within the static gradient calculations from global to reference coordinates.

21. Subroutine REFDSP3. This subroutine is used to transform the lateral and rotational eigenvector gradient terms used within the dynamic gradient calculations from global to reference coordinate.

22. Subroutine FORCES. This subroutine is used to retrieve the correct static, dynamic, and virtual displacements for each level, to generate the elemental transformation matrices to change from floor level reference coordinates to local coordinates, to perform load combinations, and to print the displacements.

23. Subroutine REFROT. This subroutine is used to transform the local static, dynamic, and virtual displacements to local coordinates, to compute and print the member forces and stresses for all load combinations, to compute the gradients of the elemental stiffnesses, and to compute the matrix of stiffness gradients times the actual displacements.

24. Subroutine INECOF. This subroutine generates the stiffness coefficients for the steel members in local coordinates.

<u>25. Subroutine SHRWL1</u>. This subroutine generates the stiffness coefficients for the concrete members in local coordinates.

<u>26. Subroutine SCALE</u>. This subroutine scales each of the primary design variables in order to provide at least one active constraint.

27. Subroutine CONCR. This subroutine finds the values for the secondary design variables related to the concrete elements. The secondary design variables are given in Eqns. 2.18-2.21.

28. Subroutine STEEL. This subroutine determines the secondary design variables for the steel elements based on Eqn. 2.15.

<u>29. Subroutine PSUEDO</u>. This subroutine is used to generate the virtual load vectors for the static gradients and to place the eigenvectors within the virtual load vector for the dynamic gradients.

<u>30. Subroutine ROTDIS</u>. This subroutine is used to recoup the rotational portion of the virtual displacements and the eigenvectors for the gradient calculations.

<u>31. Subroutine GRAD</u>. This subroutine performs the final multiplication of matrices to give the static and dynamic constraint gradients and the eigenvector gradients.

<u>32. Subroutine SORT</u>. This subroutine checks all constraints to see if they are active, passive or violated. If one or more constraints are violated, or if all constraints are passive, a scaling factor is determined. If

there is no violation and one or more active constraints, these constraints are identified and used in the optimization algorithm. This subroutine also keeps the active set of constraints updated for each cycle of the optimization.

33. Subroutine OBJECT. This subroutine is used to calculate the concrete weight, the steel weight, and the objective function value. It is also used to generate the structural mass for each level.

34. Subroutine EMAS. This subroutine is used to calculate the gradient of the structural mass and its related terms for the dynamic displacement and frequency gradients.

<u>35. Subroutine JACOBI</u>. This subroutine uses the Jacobi iteration technique for finding the eigenvectors and eigenvalues.

<u>36.</u> Subroutine MODAL. This subroutine is used to perform the 3-D response spectra modal analysis. It is used to generate the dynamic displacements from the modal spectral accelerations.

<u>37. Subroutine INVERT</u>. This subroutine generates the reduced matrix used to find the eigenvector gradients and stores the inverse of this matrix for later calculations.

<u>38. Subroutine LAGMU</u>. This subroutine formulates and solves the simultaneous equations used to find the Lagrange Multiplers. It also checks for negative Lagrange

multipliers. If there is at least one negative Lagrange multiplier this constraint is removed and the equations are resolved. This subroutine is also used to check for passive elements. If a new passive element is found, the equations have to be regenerated and resolved until there are no negative Lagrange multipliers and no new passive elements.

<u>39. Subroutine CURSE</u>. This subroutine is used to calculate the new primary design variables using a linear recurrence relationship.

<u>40. Subroutine ROTATE</u>. This subroutine is used to calculate the rotational components of the eigenvector gradients.

<u>41. Subroutine ATCCD</u>. This subroutine is used to control the ATC 3-06 analysis. It directs the flow of the ATC 3-06 subroutines according to which method, Equivalent Lateral Force or Modal Analysis, is to be used for analysis.

<u>42. Subroutine LAT1</u>. This subroutine generates the ATC 3-06 Equivalent Lateral Forces. It determines the base shear and distributes this base shear to each of the individual levels.

<u>43. Subroutine LAT2</u>. This subroutine checks for violation of the ATC 3-06 P- Δ criteria. It checks for drift violation and computes the stability coefficient, θ . If the P- Δ criteria is violated, the drifts and displacements are increased.

<u>44. Subroutine MODALA</u>. This subroutine generates the modal forces and displacements for the ATC 3-06 Modal

Analysis Procedure. It also uses root-sum-of-the-squaresmethod to combine the modal effects.

45. Subroutine ROOT1. This subroutine is used to find the root-sum-of-the-squares of the modal base shears.

<u>46. Subroutine ROOT2</u>. This subroutine is used to find the root-sum-of-the-squares of the modal shear, the modal drift, and the modal displacement at each level.

<u>47. Subroutine ROOT3</u>. This subroutine is used to find the root-sum-of-the-squares of the modal overturning moment at the base.

<u>48. Subroutine ATCIF</u>. This subroutine is used to read and print the ATC 3-06 information.

<u>49. Subroutine PERFORM</u>. This subroutine determines the specific seismic data related to the map areas from the ATC 3-06 provisions.

50. Subroutine ATLINK. This subroutine calculates information needed for the ATC 3-06 analysis procedures such as the total gravity load above each level, the height of each level from the base, and the natural periods for the structural system.

<u>51. Subroutine REPLAC</u>. This subroutine catalogues the current optimal design during the optimization process. As a "better design" becomes available, this subroutine replaces the previous optimal design with the new design data.

52. Subroutine REPORT. This subroutine prints the data for the optimal design once the optimization algorithm has terminated.

53. Subroutine PLOT. This subroutine writes the plottable information onto tape or disk. This data can then be supplied to a graphics program which can plot the data.

V. DESCRIPTION OF INPUT DATA

A. GENERAL INFORMATION

The input data consists of 23 input codes (I through (XXIII). Throughout the various input codes, there are various options and omissions which must be followed. The input stream is exactly as outlined within Sections IV.B and C. All input is assumed to be read through Device 5, and the output is assumed to be printed through Device 6. In addition to these devices workspace or work files must be set as device numbers 73, 74, 75, 76, and 77. These workspaces are used to store data during the execution of the program. In addition to these workspaces, several files are used to store data for plotting. These files will be explained in input code XXII for plot control.

B. CONTENTS OF THE INPUT

The input data includes the following major topics of input. These topics will be outlined in this section and described in the next section. The major topics are:

- I. TYPE OF ANALYSIS AND OPTIMIZATION
- II. OPTIMIZATION INFORMATION
- III. STRUCTURAL INFORMATION
 - IV. STEEL DESIGN VARIABLE RELATIONSHIPS
 - V. STATIC DISPLACEMENT CONSTRAINT INFORMATION
 - VI. FREQUENCY CONSTRAINT INFORMATION
- VII. DYNAMIC DISPLACEMENT CONSTRAINT INFORMATION
- VIII. RESPONSE SPECTRA INFORMATION

- IX. STORY DATA AND STATIC LATERAL LOADS
- X. STATIC VERTICAL NODAL LOADS
- XI. LUMPED MASSES AT NODAL POINTS
- XII. COLUMN LINE COORDINATES
- XIII. COLUMN PROPERTIES
 - XIV. BEAM PROPERTIES
 - XV. FIXED-END BEAM LOADS
 - XVI. BEAM IDENTIFICATION
- XVII. COLUMN IDENTIFICATION
- XVIII. FLEXURAL PANEL ELEMENT IDENTIFICATION
 - XIX. BRACING ELEMENT IDENTIFICATION
 - XX. STATIC AND DYNAMIC LOAD COMBINATIONS
 - XXI. ATC 3-06 ANALYSIS INFORMATION
 - XXII. OUTPUT CONTROL
- XXIII. CONTROL OF THE NUMBER OF PROBLEMS
- C. PREPARATION OF INPUT DATA

Special instructions:

- All lengths must be in inches, since the program uses the acceleration due to gravity in in/sec².
- 2. The maximum ground acceleration must be input as in/s².
- 3. All force units must be the same.
- 4. All X and Y distances in the input are measured in the reference coordinate system, with the correct signs taken into account.
- 5. The reference point must be chosen such that the masscenter of each floor will be located in the first quadrant of the reference system.
- 6. Floor plans must be horizontal, columns, walls, and panels must be vertical.
- 7. Concrete columns and panels assume one cross-sectional dimension to be fixed while the other is free to change during the optimization. The user should be sure to choose the correct orientation to optimize the correct direction. The width b is considered as the free variable.

The detailed instructions for data preparation are as follows:

Ī	. TYPE OF	<u>AN</u>	ALYSIS AND OPTIMIZATION (215,F5.1,415)
COLUMN	ENTR	Y ·	
1-5	Eq.	0;	terminate program
	Eq.	1;	continue program
6-10	Eq.	0;	analysis only - The user must supply
			all geometric properties.
	Eq.	1;	static optimization with stress
			constraints
	Eq.	2;	static optimization with displacement
			and stress constraints
	Eq.	3;	static optimization with displacement
			constraints

- Eq. 4; static optimization with frequency constraints
- Eq. 5; dynamic analysis and optimization for all types of constraints
- 11-15 Optimization Convergence Control Factor; if 6-10 Eq. 0, this will be blank.
- 16-20 Number of steel column property sets
- 21-25 Eq. 0; response spectra analysis if 6-10, Eq. 5.
 - Eq. 1; ATC 3-06 equivalent lateral force analysis if 6-10 Eq. 5
 - Eq. 2; ATC 3-06 modal analysis if 6-10 Eq. 5
- 26-30 Eq. 1; X is the principle direction for the ATC 3-06 analysis
 - Eq. 2; Y is the principle direction for the ATC 3-06 analysis
- 31-35 Eq. 1; Y is the nonprinciple direction for the ATC 3-06 analysis

Eq. 2; X is the nonprinciple direction for

the ATC 3-06 analysis

<u>II. OPTIMIZATION INFORMATION</u> (215,5F10.6)

COLUMN ENTRY

1-5 Maximum allowable number of optimization

cycles

6-10	Maximum number of allowable structural
	analyses
11-15	Lowest allowable percentage change in the
	objective function for termination
16-20	Coefficient for the steel elements in the
	objective function (weight per unit
	volume of 2.84×10^{-4} kip/in ³ is the
	default)
21-25	Coefficient for the concrete element in the
	objective function. (weight per unit
	volume of 8.68×10^{-5} kip/in ³ is the
	default)
26-30	Lower limit for the active constraints as
	the maximum percentage deviation from
	the limiting constraint limit (i.e.,
	input .05 = 5% below the constraint
	limit; default = 0.10)
31-35	Upper limit for the active constraints as the
	maximum percentage deviation from the
	constraint limit (i.e. input .05 = 5%
	above the constraint limit; default =
	0.05)
<u>III. s</u>	RUCTURAL INFORMATION (815,10A4)
COLUMN	ENTRY
1-5	Number of stories in the structure (not
	including the ground level)
	C2
	. CO

•

- 6-10 Number of vertical column lines in the structure
- 11-15 Number of bays in the structure
- 16-20 Number of sets of different column properties (steel and concrete)
- 21-25 Number of sets of different beam properties
- 26-30 Number of sets of different fixed end moments and shears (not supplied by uniformly distributed loads)
- 31-35 Number of infill flexural panels in the structure

36-40Number of bracing elements in the structure41-80Structure identification information

IV. STEEL DESIGN_VARIABLE RELATIONSHIPS

(I5/2F10.3/8F10.0/7F10.0)

 $S_{ij} = C_{ij} I_i + C_{3j}$ for $Dl \le I_x < D2$

where S_{ij} = the jth secondary design variable for the ith element, C_{ij} , C_{2j} , and C_{3j} are the appropriate constants, and I_i is the moment of inertia for the ith steel beam or column

COLUMN ENTRY

1-5 Number of discontinuous curves to represent the spectrum of secondary design variables (i.e., 1^{st} curve for $0 \le I_x < 1500$ in⁴, 2^{nd} curve for $1500 \le I < 10,000$ in⁴, etc.)

Three cards for each set of discontinuous curves as designated above.

1-10	D1, lower limit for first equation
11-20	D2, upper limit for first equation
1-10	C_1 for the minor-axis moment of inertia, I_y
11-20	C_2 for the minor-axis moment of inertia, I_y
21-30	${\rm C}_{3}$ for the minor-axis moment of inertia, ${\rm I}_{\gamma}$
31-40	C_1 for the crossectional area, A
41-50	C_2 for the crossectional area, A
51-60	C_3 for the crossectional area, A
61-70	C_1 for the torsional moment of inertia, J
71-80	C_2 for the torsional moment of inertia, J
1-10	C_3 for the torsional moment of inertia, J
11-20	C_1 for the major-axis section moduli, S_x
21-30	C_2 for the major-axis section moduli, $S_{\rm x}$
31-40	C_3 for the major-axis section moduli, S_x
41-50	C_1 for the minor-axis section moduli, S_γ
51-60	C_2 for the minor-axis section moduli, S_γ
61-70	C_3 for the minor-axis section moduli, S_v

65

V. STATIC DISPLACEMENT CONSTRAINT INFORMATION

(15/215,F10.6)

Skip if static displacements constraints are not involved. See input I.

COLUMN ENTRY

1-5 Number of displacement constraints. Supply one card for each displacement constraint.

One card for each static displacement constraint. If the previous card Eq. 0, no additional cards are required. 1-5 Level number (roof = number of stories) 6-10 Eq. 1; global X-displacement constraint Eq. 2; global Y-displacement constraint Eq. 3; global rotational displacement constraint

11-20 Maximum allowable displacement for that direction. (Assumes the same for both the positive and negative direction.)

VI. FREQUENCY CONSTRAINT INFORMATION (15/2F10.3)

These are to be inserted for both a frequency constraint problem and the dynamic response constraint problems.

COLUMN ENTRY

1-5 Number of modes to be constrained or to be used within the response spectra or ATC 3-06 analyses

One card for each mode to be constrained or used within the modal analyses. If no frequencies are to be constrained insert blank cards. The cards should be ordered from the lowest natural frequency to the highest.

1-10 Lower limit constraint value for the squared natural frequency considered (limit is the square of the natural frequency)

11-20 Upper limit constraint value for the squared natural frequency considered (limit is the square of the natural frequency)

VII. DYNAMIC DISPLACEMENT CONSTRAINT INFORMATION (215/215,F10.6)

If option 5 in input I was not used skip this input. COLUMN ENTRY

1-5 Number of modes used in the modal analysis

6-10 Number of dynamic displacement constraints to be used.

One card for each dynamic displacement constraint.

- 6-10 Eq. 1; global X-displacement constraint Eq. 2; global Y-displacement constraint

Eq. 3; global rotational displacement constraint

11-20 Maximum allowable dynamic displacement constraint. (Assumes the same for both the positive and negative directions.)

VIII. RESPONSE SPECTRA INFORMATION

(3F10.3, I5/(2F10.3/6F10.0)

$$S_a/a_{max} = C_1 (T-C_6)^4 + C_2 (T-C_4)^3 + C_3 (T-C_6)^2$$

+ $C_4 (T-C_6) + C_5$

where C_1-C_6 are appropriate constants for the spectral acceleration normalized with respect to the maximum ground acceleration, a_{max} , and T is the period of the structure. COLUMN ENTRY

- 1-10 Maximum vertical ground acceleration
- 11-20 Maximum X-ground acceleration (global)
- 21-30 Maximum Y-ground acceleration (global)
- 31-35 Number of curves needed to represent the

spectrum

Two cards for each curve for each direction.

- 1-10 Lower limit for the first division of the vertical spectra
- 11-20 Upper limit for the first division of the vertical spectra

C₁ for the first division of the vertical 1-10 spectrum C, for the first division of the vertical 11-20 spectrum C₃ for the first division of the vertical 21-30 spectrum 31-40 C_4 for the first division of the vertical spectrum 41-50 C₅ for the first division of the vertical spectrum C₆ for the first division of the vertical 51-60 spectrum Repeat for the number of divisions. Lower limit for the first division of the 1-10 x-spectrum Upper limit for the first division of the 11-20 x-spectrum C, for the first division of the x-spectrum 1-10 C, for the first division of the x-spectrum 11-20 21-30 C3 for the first division of the x-spectrum 31-40 C4 for the first division of the x-spectrum 41-50 C₅ for the first division of the x-spectrum C₆ for the first division of the x-spectrum 51-60 Repeat for the number of divisions. Lower limit for the first division of the 1-10 y-spectrum

11-20	Jpper limit for the firs	t division of the
	y-spectrum	
1-10	C_1 for the first divisio	n of the y-spectrum
11-20	C_2 for the first divisio	n of the y-spectrum
21-30	C_3 for the first divisio	n of the y-spectrum
31-40	C_4 for the first divisio	n of the y-spectrum
41-50	C_5 for the first divisio	n of the y-spectrum
51-60	C_6 for the first divisio	n of the y-spectrum
	Repeat for the number of	divisions.

IX. STORY DATA AND STATIC LATERAL LOADS

(A5,5X,7F10.0/8F10.0/F10.0)

Prepare three cards for each level from top to base of the structure.

COLUMN EN	ITRY
-----------	------

1-5 Level identification to be used

6-10 Blank

- 11-20 Story height
- 21-30 Nonstructural translational mass

31-40 Nonstructural rotational mass inertia about

the vertical axis through the mass

of the floor.

41-50 X-distance from the reference point to the mass center

51-60 Y-distance from the reference point to the

mass center

61-70	External story stiffness in the X-direction
71-80	External story stiffness in the Y-direction
1-10	Static lateral load case A in the reference
	X-direction
11-20	Static lateral load case A in the reference
	Y-direction
21-30	X-distance from the reference point to the
*	static lateral load case A
31-40	Y-distance from the reference point to the
	static lateral load case A
41-50	Static lateral load case B in the reference
	X-direction .
51-60	Static lateral load case B in the reference
	Y-direction
61-70	X-distance from the reference point to the
	static lateral load case B
71-80	Y-distance from the reference point to the
	static lateral load case B.
1-10	External story stiffness in the θ -direction

X. STATIC VERTICAL LOAD AT NODAL POINTS (8F10.0)

Total number of cards to be supplied at this stage must be equal to the number of stories in the structure times the number of the vertical column lines in the structure and divided by 8. For a structure M columns and N levels, the input data cards should be arranged as follows:

COLUMN ENTRY Static vertical load at column line 1 level N 1-10 (top floor) Static vertical load at column line 2 level N 11-20 Static vertical load at column line · level N Static vertical load at column line M level N Static vertical load at column line 1 level N-1 Static vertical load at column line 2 level N-1 Static vertical load at column line • level N-1 Static vertical load at column line M level N-1 Static vertical load at column line 1 level · Static vertical load at column line 2 level · Static vertical load at column line · level · Static vertical load at column line M level · Static vertical load at column line 1 level 1 Static vertical load at column line 2 level 1 Static vertical load at column line · level 1 Static vertical load at column line M level 1 Note: Positive indicates the force is acting upward.

XI. NONSTRUCTURAL LUMPED MASSES AT NODAL POINTS

(8F10.0)

Two data sets of lumped masses at the structural nodal points are required. The first set is for the geometric stiffness formulation for which the lumped masses along each column line should be accumulated from the top of the structure to the first floor. The second set is for the mass matrix for which the lumped masses along each column line are based upon the masses distributed on the individual floors.

The input format for each set is the same as input Code X. Thus the total number of cards to be supplied should not exceed twice the total number of cards in input X.

	<u>XII</u>	VERTICAL COLUMN LINE COORDINATES (15,2F10.0)
COLUI	MN	ENTRY
1-5		Column line identification number, in
		sequential order (increasing by 1 as
		1, 2, 3,).
6 - 15		X-distance from reference point to the
		column line, (inch)
16-2	5	Y-distance from reference point to the
		column line, (inch)
	The	total number of cards is equal to the total number

of vertical column lines in the structure (see input III).

XIII. COLUMN PROPERTIES

(I5,F15.0,2F10.0,F15.0/8F10.0/3F10.0)

The properties of the steel columns must be read before the concrete columns and numbered sequentially from one to the number of steel columns as provided in input I. The properties of the concrete flexural walls are read directly after the steel columns.

a. Sets of Steel Column Property Groups. One set must be supplied for each group of different columns in the structure.

COLUMN ENTRY

1-5 Identification number (1 to the number of steel column properties, in sequential order) for this column property set.

6-20 Modulus of elasticity

21-30 Axial area

31-40 Blank

41-50 Blank

46-50 Torsional inertia

51-55 Flexural inertia for bending about the majoraxis

56-60 Flexural inertia for bending about the minoraxis

61-65 Rigid zone depth at the top of the column

66-80 Rigid zone depth at the bottom of the column

1-10 Depth of the (WF) crossection

- 11-20 Flange width
- 21-30 Flange thickness
- 31-40 Web thickness
- 41-50 Maximum allowable static tensile stress
- 51-60 Maximum allowable static compressive stress
- 61-70 Blank
- 71-80 Minimum allowable flexural inertia for bending about the major-axis
- 1-10 Maximum allowable flexural inertia for bending about the major-axis
- 11-20 Maximum allowable dynamic tensile stress

21-30 Maximum allowable dynamic compressive stress

b. Sets of Flexural Wall Property Groups. One set must be supplied for each group of different elements in the structure. I and J refer to the top and bottom of a member, respectively.

COLUMN ENTRY

1-5 Identification number (number of steel column properties plus one to the total number of column properties, in sequential order) for this property set
6-20 EI_x - modulus of elasticity times the major-

axis moment of inertia

21-30 EA - modulus of elasticity times the crosssectional arm .

- 31-40 EI_y modulus of elasticity times the minoraxis moment of inertia
- 41-45 K_{II} stiffness factors (for a prismatic member K_{II} = 4; for a nonprismatic member input the appropriate coefficient).

46-50
$$K_{JJ}$$
 - stiffness factor (same as K_{II} in columns 41-45)

51-55
$$K_{IJ}$$
 - stiffness factor (for a prismatic mem-
ber K_{IJ} = 2; for a nonprismatic mem-
ber input the appropriate coefficient)

56-60 Maximum allowable static, reinforcement

tensile stress

61-65 Maximum allowable static, concrete compressive stress

66-80 Blank

- 1-10 Modulus of elasticity of the concrete
- 11-20 Width perpendicular to the major-axis (depth)

(this value remains fixed throughout the optimization process)

21-30 Width perpendicular to the minor-axis (width) (this value changes during the optimization process)

31-40 Modulus of elasticity for the reinforcing steel

41-50 Percentage of steel based upon the gross area (input in decimal form 2.5% = 0.025)

51-60	GJ - shear modulus of elasticity times the
	torsional moment of inertia
61-70	Shear modulus for the concrete
71-80	Minimum size for the width perpendicular to
	the minor-axis
1-10	Maximum size for the width perpendicular to
	the minor-axis
11-20	Maximum allowable dynamic, reinforcement
	tensile stress
21-30	Maximum allowable dynamic, concrete compres-
	sive stress
XIV. B	EAM PROPERTIES
(I5,F15.0,F5.0,2F10.0,7F5.0/3F10.0
COLUMN	ENTRY
1-5	Identification number (in sequence) for this
	beam property set
6-20	Modulus of elasticity
21-25	Blank
26-35	Torsional inertia
36-45	Flexural inertia
46-50	K _{II} - stiffness factor (for a prismatic mem-
	ber $K_{II} = 4$; for a nonprismatic member
	input the appropriate coefficient)
51-55	K_{JJ} - stiffness factor (same as K_{II} in col.

46-50)

56-60 K_{IJ} - stiffness factor (for a prismatic member K_{IJ} = 2; for a nonprismatic member

input the appropriate coefficient)

- 61-65 Rigid zone at end I
- 66-70 Rigid zone at end J
- 71-75 Depth of the member
- 76-80 Maximum allowable static bending stress
- 1-10 Minimum allowable flexural inertia
- 11-20 Maximum allowable flexural inertia
- 21-30 Maximum allowable dynamic bending stress

XV. FIXED-END_BEAM_LOADS (215,5F10.0)

One card must be supplied for each different type of vertical loads on the beams. Input fixed-end moments and shears for nonuniform vertical loads or for directly applied end-moments or shears. The computer will generate the fixed-end moments and shears for uniform load case. Omit this input, if number of sets of different fixed-end moments equal 0 in column 26-30 of input Code II.

COLUMN ENTRY

1-5 Identification number for this vertical

loading set

Input code

6-10

- Eq. 0; fixed-end forces are applied at the column faces
- Eq. 1; fixed-end forces are applied at the column centerlines

11-20 Fixed-end moment at node I

21-30 Fixed-end shear at node I

31-40 Fixed-end moment at node J

41-50 Fixed-end shear at node J

51-60 Uniform load, per unit length, positive acting downward yields fixed-end forces

XVI. BEAM IDENTIFICATION (815)

One card per beam must be input from top to bottom and from bay to bay in the structure (unless the data generate option is used).

- COLUMN ENTRY
- 1-5 Bay identification number (in sequence) for this beam
- 6-10 Column line number at end I
- 11-15 Column line number at end J
- 16-20 Beam property set identification number for this beam (linking is accomplished by

using the same beam property set number

for each set of linked beams)

21-25 Number of beams in the sequence below to be generated that have the same proper-

ties and vertical loading as this beam

26-30 Vertical loading set identification number

for vertical load Case 1

31-35 Vertical loading set identification number for vertical load Case 2

36-40 Vertical loading set identification number for vertical load Case 3

XVII. COLUMN IDENTIFICATION (415)

One card per column must be input from top to bottom and the column line is used to define the minor axis of the cross section (unless the data generation option is used).

COLUMN ENTRY

1-5 Column line identification number for this column

6-10 Column property set identification number (linking is accomplished by assigning the same column property set number for

each set of linked columns)

- 11-15 Column line number defining direction of local weak axis (Y-direction) of this column
- 16-20 Number of columns in sequence below to be generated that have the same properties as this column

XVIII. PANEL ELEMENT IDENTIFICATION

(315,F15.0,F10.0,2F5.0,2F15.0/4F5.0,F15.0,

F5.0,4F10.0/8F10.0)

Omit this input if no panel elements are in the structure. Three cards per panel; no generation is allowed.

	COLUMN	ENTRY
	1-5	Level identification number at the top of
		this panel.
	6-10	Column line number at the L side of this
		panel
	11-15	Column line number at the R side of this
		panel
	16-30	EI-modulus of elasticity times the moment of
		inertia
	31-40	EA-modulus of elasticity times the cross-
		sectional area
	41-45	Modulus of elasticity of the element
	46-50	Depth of the flexural panel (fixed during the
		optimization)
	51-65	Width of the flexural panel (variable during
		the optimization)
	66-80	Modulus of elasticity of the reinforcement
	1-5	Maximum allowable static reinforcement
		tensile stress
	6-10	Maximum allowable static concrete compressive
·		stress
	11-15	Blank
1	16-20	Percentage of reinforcing based upon gross
		area
	21-35	GJ-shear modulus of elasticity times the
		torsional moment of inertia

.

36-40 Shear modulus for the concrete 41-50 Blank 51-60 Blank 61-70 Blank 71-80 Blank 1-10 Minimum width of the flexural panel Maximum width of the flexural panel 11-20 Maximum allowable dynamic reinforcement 21-30 tensile stress Maximum allowable dynamic compressive stress 31-40 XIX. BRACING ELEMENT IDENTIFICATION (3I5, 6F10.0/2F10.0)

Omit this input if no bracing elements are in the structure. Two cards per brace; no generation allowed.

COLUMN ENTRY

- 1-5 Floor level identification number at the top of this brace
- 6-10 Column line number at the upper end of this brace
- 11-15 Column line number at the lower end of this brace
- 16-25 Modulus of elasticity
- 26-35 Crossectional area
- 36-45 Maximum allowable static tensile stress
- 46-55 Maximum allowable static compressive stress
- 56-65 Minimum allowable crossectional area

66-75	Maximum	allowable	crossectional	area
00-75	Havrman	<i>attowabte</i>	CIOSSECCIONAL	area

1-10 Maximum allowable dynamic tensile stress

2-10 Maximum allowable dynamic compressive stress

XX. STATIC LOAD COMBINATIONS (215/(6F10.0))

COLUMN ENTRY

a. Types of Loads

|--|

6-10 Total number of load combinations (static plus dynamic)

b. Static Load Combinations

1-10	Multiplier for ve	ertical load case l
11-20	Multiplier for ve	ertical load case 2
21-30	Multiplier for ve	ertical laod case 3
31-40	Multiplier for la	ateral load case A
41-50	Multiplier for la	ateral load case B
51-60	Multiplier for ve	ertical nodal loads

Note lateral load cases A and B are used as dynamic loads for an ATC 3-06 response spectra modal analysis, therefore these cannot be used for static loads if dynamic loads are also being used.

c. Dynamic Load Combinations

1-10	Multiplier	for	static	vertical	load	case	1
11-20	Multiplier	for	static	vertical	load	case	2
21-30	Multiplier	for	static	vertical	load	case	3

- 31-40 Multiplier for static lateral load case A if response spectra analysis is used or for dynamic ATC 3-06 load with a positive five percent eccentricity
- 41-50 Multiplier for the dynamic modal load case if response spectra analysis is used or for dynamic ATC 3-06 load with a negative five percent eccentricity

51-60 Multiplier for the static vertical nodal load

<u>xxı.</u>	OUTPUT CON	NTROL (515/15/1615/15/1615)
COLUMN	ENTRY	
1-5	Eq. 0.	Do not print the elemental forces.
	Eq. l.	Do print the elemental forces.
6-10	Eq. 0.	Do not print the elemental stresses.
	Eq. 1.	Do print the elemental stresses.
11-15	Eq. 0.	Do not print the eigenvalues.
	Eq. 1.	Do print the eigenvalues.
16-20	Eq. 0.	Do not print the eigenmodes.
	Eq. 1.	Do print the eigenmodes.
21-25	Eq. 0.	Do not print the displacements.
	Eq. 1.	Do print the displacements.

1-5 The number of column line stiffness distributions to be plotted. Each column lines primary design variables are printed in a file from the top to bottom.

1-5 The number of the 1st column line distribution to be plotted.

75-80 The number of the 16th column line distribution to be plotted.

Use as may cards as needed for the number of column line distribution to be plotted.

1-5 The number of bay stiffness distribution to be plotted. Each bay's primary design variables are printed in a file from the top to bottom.

1-5 The number of the 1st bay distribution to be plotted.

75-80 The number of the 16th bay distribution to be plotted.

Use as many cards as needed for the number of bay distributions to be plotted.

XXII.	ATC 3-06 ANALYSIS INFORMATION (1115/4F10.0)
COLUMN	ENTRY
1-5	Map area for the effective peak acceleration,
	Aa
6-10	Map area for the effective peak velocity-
	related acceleration, A_v
11-15	Seismic hazard exposure group
16-20	Eq. 0 for a nonbrittle structure
	'Eq. 1 for a brittle structure
21-25	Eq. 0 if not near an active fault
	Eq. 1 if near an active fault
26-30	Soil type
31-35	Eq. 0 for an irregular plan
	Eq. 1 for a regular plan
36-40	Eq. 0 for a vertically irregular structure
	Eq. 1 for a vertically regular structure
41-45	Eq. 1 at all times (moment-resisting frame)
46-50	Eq. 0 for a concrete frame
	Eq. 1 for a steel frame
50-55	Eq. 1 for an equivalent lateral force
	analysis
	Eq. 2 for a modal analysis
1-10	Response modification factor

11-20 Deflection amplification factor

21-30 Length of the base of the building in the direction of the principal loading

31-40 Length of the base of the building in the direction perpendicular to the direction of the principal loading

XXIII. CONTROL OF THE NUMBER OF PROBLEMS

Stack the problems back to back and place a blank card at the end of the last data set in order to terminate the program. If optimization is to be used, it is advisable to run each problem separately due to the time involved per problem. D. JOB CONTROL LANGUAGE

JCL FOR RUNNING A BATCH JOB ON AN AMDAHL 470V/7 OR 470V/8

//JOBNAME JOB (XXXXRL,PSWD), 'NAME',MSGLEVEL=(1,1)

/*JOBPARM L=30,T=10,R=5120

/*ROUTE PRINT UMMVSA.R10

/*ROUTE XEQ IDLE

//S1 EXEC FRTVCLG,PARM.FORT='LANGLVL(66),NOSOURCE,NOSRCFLG,NOMAP',
// FVLNSPC='CYL,(1,1)'

//SYSIN DD *

source program

//LKED.SYSUT1 DD SPACE=(TRK, (30, 20, 5), RLSE)

//LKED.SYSLMOD DD SPACE=(TRK, (30, 20, 5), RLSE)

//GO.FT06F001 DD SYSOUT=(S,,TEXT)

//GO.FT07F001 DD DSN=&&FT07,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(20,5))
//GO.FT08F001 DD DSN=&&FT08,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(20,5))
//GO.FT09F001 DD DSN=&&FT09,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(20,5))
//GO.FT10F001 DD DSN=&&FT10,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(20,5))

//GO.FT11F001 DD DSN=&&FT11,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(20,5))

//GO.FT12F001 DD DSN=&&FT12,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(20,5))
//GO.FT13F001 DD DSN=&&FT13,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(20,5))
//GO.FT14F001 DD DSN=&&FT14,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(20,5))
//GO.FT15F001 DD DSN=&&FT15,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(20,5))
//GO.FT16F001 DD_DSN=&&FT16,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(20,5))
//G0.FT17F001 DD DSN=&&FT17,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(20,5))
//GO.FT18F001 DD DSN=&&FT18,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(20,5))
//GO.FT19F001 DD DSN=&&FT19,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=132,BLKSIZE=13200),SPACE=(TRK,(20,5))
//GO.FT73F001 DD DSN=&&FT73,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(20,5))
//G0.FT74F001 DD DSN=&&FT74,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(20,5))
//G0.FT75F001 DD DSN=&&FT75,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=132,BLKSIZE=13200),SPACE=(TRK,(20,5))
//GO.FT76F001 DD DSN=&&FT76,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=132,BLKSIZE=13200),SPACE=(TRK,(20,5))
//GO.FT77F001 DD DSN=&&FT77,DISP=(NEW,DELETE),UNIT=SYSDA,

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800),SPACE=(TRK,(20,5))
//GO.SYSIN DD *

input data

/*

.

.

Reproduced from best available copy.

Ε.

COMPUTER PROGRAM LISTING

16

Reproduced from best available copy.

O

.

92

2

Reproduced from

best available copy.

O

Reproduced from best available copy.

- 29	ĎÖŤ.		241	No	H
- 2	Xa E	FURNALLO,7***********************************		NA I	ł
- 5	ÖŬ 4	FORMATILISHOLEVEL	HA.	Nő.	ł
		A TALE 197 FACTOR POP PAULTA FLORE AN AUTORE AN AN ACHEL SH. AN AC	. <u>MA</u>	Nő,	u
3	. « שט	FURALLISSING ALLEVE CURSIANANTSS BAS AN TRESON LEVELSSA BRUCS	721	NA.	51
5	006	*FORNAT(2)H LARGEST SCALING FACTOR)	NA.	N6.	1
- 24	007		<u>M</u>	N6	6.
- 21	X12	FORMATION UTTO UTTO A CONTRACT PROPERTY CREEFICIENTS FOR TH RETWEEN-14-FI		NA:	59
		1.1.1X. AND 1X.F7.175+, 70H	ШĀ.	N6	2
		7.9H PROPERTY.3X.TORCORSTART 1.8X	MAL	N6	2
	ر ب ¹	35HPOWER, 3X, 10HEONSIANI 21 Engangili 11, 14, 15, 15, 15, 15, 15, 15, 14, 14, 26, 15, 47, 74, 14, 14, 26, 13, 47, 44, 1		NO.	19
2	u t * ,	1511.11.3413.4/.4X. 5/1.11.3F13.4/	MA	N6	1
5	020'	"FORMATISHORESPONSE"SPECYAUM" GOEFEIGIENTS_EOR.1X.A.1X.AGCELERATI	HA.	N6	
	- 1	[ON BETWEEN",12,FT.3,12,*AND",12,FT.3/"+",80H		N¢.	1
	1	ATT. ATT. TOBEON START 1.31. TOBE DESTART 2.37. TOBEORSTART 3. 1.1	1221	N6	1
	- 2	CONSTANT 4. JE. JOHCONSTANT 5. SH. I DHCONSTANT 43	MA	Nő.	i i
- 2	02 L	[08MA] (F9. 3. 37. 4(F10.4.3X)]	MAL	Nộ l	1
- 5		FURNATIOFICS DE COLUMN EN OFILME. PELLA PELANTORS 1.A. SUMAL 1.3V.SU		NO:	
-		MIN 1. 57. 2HDT. 67. 2HDR. TE. 140 .61. 2HAF .61. 2HTF. 67. 2HTM. 68. 2HTS. 68. 2H	ini l	NG.	i
		2C3,6X, 2H\$5/***,9H,0A,1A_7X,1H_13X,6H,6X,5H,5	(MA)	Nő 4	62
	1	<u>) , 5H</u> , <u>7X</u> , 2H6X, 2H, 7X, 3H_, 6X, 2H4X, 2H46X, 2H6X, 2H6	(MA J	N64	
2	ດດຈັ	**************************************	- 20 E	121	÷,
	· · ·	1 X . 3HK JJ. 5X . 3HK JJ. 5X . 2HDJ . 6X . 2HDJ . 7 K . 1HD . 6X . 2HNS/ *** . 9H	HAI	N6	i i
		<u>2%; 14, 48, 66,, 2%; 64,</u>	HA!	NA	17
•				N64	1
	uua,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		NA.	1
		23x . 2HC S. 5X . 2H SS . 4X . 3HR HO .6X . 2H4 J.6K . 146/*** . 13H	NA.	NA S	51
		₽₩ <u></u> ĸ9Xe2HeXx2HeXx2HeXx2HeFXe2HEXx2HeVXe2HeXx2HeXx2HeXx2H	1 AN	N6	24
-	nn 🤊	┑┲╖┇╩┇╛╝┙┯┯╕╘╝╡┥┟╗┲╓╒╽╩┍┊┆┍╖╡╽╝╡╽╝╞╱╔┟┇╡╸┟╻╱╡╽╺└╶╕┯╝╶╴╵╺┍╺╴╵╺╴╵╸	M 1	ND:	2
		A THE ATT AND LEVEL UP LEALAT THE TAX THAT THE TAX THAT TAX THE	SAA I	N6	ŝ
	-	27***.15H	MA	Ná	14
-			.#A	N÷ i	1
	D41,	- FURTA 1	HAL	102	Ľ
		- 41. JURN. 64. 7M3 - 54. 1M6/ + + + MA	1 1	27.2	
	1	34x, 3H	141	N64	Ť
		348, 3H48, 3H48, 3H58, 2H58, 2H48, 2H58, 2H	M	N64	j
ŧ	813	365 2 4		N60 N60 N60	
		365 2 54		N60 N60 N60 N60 N60	
2		45 g by		N60 N60 N60 N60 N60	
2		A . A	A A A A A A A A A A A A A A A A A A A	NG(NG(NG(NG(NG(NG(NG(NG(
	818 818	345 14		N61 N61 N61 N61 N61 N61 N61 D01	
2 2 5 5	2+0 2+1 010	A . A		N64 N64 N64 N64 N64 N64 D04 D04	
میر بر میر میر میر میر میر میر میر میر میر می	042 043 010	A A AND PAINT (MPUT DATA READ AND PAINT (MPUT DATA READ AND PAINT (MPUT DATA	NA NA NA NA NA NA	N64 N64 N64 N64 N64 D00 D00 D00 D00 D00	
	0.2 0.2 0.7 0 0 1 0	34. 34. 34. 34.24.		N60 N60 N60 N60 N60 D00 D00 D00 D00 D00 D00 D00 D00 D00 D	
	2 40 2 4 0 2 4 0 1 0	A . A . A . A . A . A . A . A . A . A .		NA444444444444444444444444444444444444	
	042 043 010	30 31		NA4444	
	042 043 010			N61 N61 N61 N61 N61 N61 D01 D01 D01 D01 D01 D01 D01 D01 D01 D0	
The second se	042	Au		N61 N61 N61 N61 N61 N61 N61 D00 D00 D00 D00 D00 D00 D00 D00 D00 D0	
مربع	2 2 0 0 0 1 0 1 0 1 0			N64 N64 N64 N64 N64 N64 N64 N64 N64 N64	
•••• 	2 2 0 0 2 3 0 7 0	Au		N44 N44 N44 N44 N44 N44 N44 N44 N44 N44	
and the second s		Au		NG4 NG4 NG4 NG6 NG6 NG6 NG6 NG6 NG6 NG6 NG6 NG6 NG6	
and the second s	2200 2200 2010	Au		N44 N44 N44 N44 N44 N44 N44 N44 N44 N44	
•••• ••••••••••••••••••••••••••••••••	042 043 045 045 045 045 045 045 045 045 045 045	Ass. Asy. Asy. Ass. Asy. Ass. Asy. Ass. Asy. Asy.		N64 N64 N64 N64 N64 N64 N64 N64 N64 N64	
	042 042 043 040 040	AB AB <td< td=""><td>1 1 1 1 1 1 1 1 1 1</td><td>N441 NA41 NA41 NA41 NA41 NA41 NA41 NA41</td><td></td></td<>	1 1 1 1 1 1 1 1 1 1	N441 NA41 NA41 NA41 NA41 NA41 NA41 NA41	
1	200 200 0 0 0 0 0 0 0 0 0	Au Au <td< td=""><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td><td>N44 N44 N44 N44 N44 N44 N44 N44 N44 N44</td><td></td></td<>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N44 N44 N44 N44 N44 N44 N44 N44 N44 N44	
***** 	0423 070		<u> </u>	N44 N44 N44 N44 N44 N44 N44 N44 N44 N44	
1	10		AAAAAAA ******************************		
111	2200 2010 2010 2010 2010	Auge	0.444.444.525555555555555555555555555555		
1	10	AB AB <td< td=""><td>AAAAAAA******************************</td><td></td><td></td></td<>	AAAAAAA ******************************		
	200 200 200 200 200 200 200 200 200 200	AND A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
.	10	AB AB <td< td=""><td></td><td></td><td></td></td<>			
	10	Big And State	5755775777777777777777777777777777777		
	2000 2000	AB AB <td< td=""><td>8784774********************************</td><td></td><td></td></td<>	8784774**** ****************************		
ىيەن	10	0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	3734374		
دين <u>مين</u> م	10	AB AB <td< td=""><td><u> </u></td><td></td><td></td></td<>	<u> </u>		
	10 200	Bin and and and and and and and and and an	373477422222222222222222222222222222222		
	10 2000		373434422222222222222222222222222222222		

Reprod

ailabi

ø copy

Reproduced from best available copy.

Millington Millington Millington M	C DD 120 1=WW.W 90 DD 100 11 90,120,90 100 A19144(13)-A(1.W)*A1W.J) 100 A191444(13)-A(1.W)*A1W.J)	130 20M 1 Mure 6 0 10 50 8 0 Ack substitution 1 2 0 1 4 4 5 0 0 60 10 150 0 1 4 1 4 5 0 10 150	00 [40]-mm/m 140 0m/1 - EM/L - 41M, JJ+84.J.LJ C 150 AETURN SUBARDTINE GAUSSIIA.M.B.M.J	5 SDLVE FOR LAGRANCE MULTIPLIERS 1000 Lagrance Multipliers 1000 Lagrance -44-44-45 1000 A1300,3001,461301 6 M=0	REDUCTION OF M TH EQUATION 50 M ML REVENT DIVIDE CHEEKS AND UNGERFLOW WHEN FINDING THE FEATURE DIVIDE CHEEKS AND UNGERFLOW WHEN FINDING THE FEATURE OF 0.0 - AND. ANN.M 1 1.06-401 APA.MP.OE-40 40 HAI.2141/APA.0.	20 00 40 Junit 101100 1410 BEALINE COMTIONS SUBSTITUTION (1410 BEALINE COMTIONS 00 01 101 1411 00.120.90 100 411 11-411 - 411.0104(N.J.)	120 CONTINUE 6 AACK SUBSTITUTION 120 Mm-M-1 140 DA 1-MM M.JI901J	C ISO RETURN SUBROUZINE GAUSSBIA.M.B.MLJ SOBROUZINE GAUSSBIA.M.B.MLJ SOLVE ATC-03 DISPLACEMENTS DIMENSION ATITO.1701.67170.21 C H-0	E EDUCTION OF M TH EQUATION 50 Manil 00 -001 00 00 -01 00 00 00 00 00 00 00 <t< th=""></t<>
A Mari Jana Jana Jana Jana Jana Jana Jana Jan		11+131+4541+151+151 00001+400 00001+400 00001+400 00001+400 00001+151+151+151 00001+300 000000 000000 000000 000000 000000			44944444444444444444444444444444444444				
	00-255 (1-1.13 00-255 1-1.46 217 11-13-0- 217 11-13-0- 217 11-13-13 217 11-13-13 217 11-13 217 1	00 - 200 + 1 + 1 + 2 1 + 200 + 1 + 1 + 2 1 + 2 + 2 + 2 + 2 2 + 2 + 2 + 2 + 2 + 2 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	FC01F1ME FC01F1ME-G0.L1 60 T0 400 00 10 1-041-11 01 10 0-14101 02 10 0-14101 03 20 0-14101 03 20 0-14101 04 0-12 00 0-11 -55 000011 0000 000000000000000	PG-320,4-1413,4-wcrs bg-320,4-1416,4-wcrs bg-31-14-82,4-4415,4- 54-14-16-14-1415,4-4-15,4-4-13,4-141,4-141,4-141,4-141,4-141,4-141,4 54-14-14-14-14-14-14-14-14-14-14-14-14-14	16(11-00M-60-11) AETUAN 00 410 1-1-N5KC 01 410 1-1-N5KC 01 420 1-1-N5KC 00 420 1-1-N5KC 0 TO 450 00 420 1-1-N5KC 0 TO 450	A 44 (1.0.1.44 (1.0.1.4.1.0.4.1.0.4.1.1.4.1.4.1.4.1.4.1.	50.45 57.11 13.74 44.44.44.44.5 50.420 1-14.5 50.420 1-14.5 51.44.5 51.	FORMARISETT. FORMARISETT.O. SUBROUTINE GAUSSIA.M.B.M.J. SOLVE STATIC DISPLACENENTS BOLISION ARLING. 1705.02170.01	H-O REDUCTION OF M TH EQUATION REDUCTION OF M TH EQUATION D MONTAL D MONTAL D MONTAL SUBSTITUTION INTO REMAINING EQUATIONS SUBSTITUTION INTO REMAINING EQUATIONS

6AU3021

<u>64439239</u>
GAU30230
GAU30240 GAU30270
64030260
ČĂŬ ĮŎ ĮÓŎ
GAU30320
GAU 30 3 30 GAU 30 3 40
GAU30350 GAU30360
GAUSOSTO
<u>ČĂŬ</u> ŠŎĔŬĂŎ
GAU30410
GAU30420 GAU40010
GAUGDOZO CAUGOZO
GAULDOLD
ÇÂŬ 400 40
GAU40080
6AU40090 6AU40100
GAUGOLIO
ÇAŬĜO 30
GAUTOISO
64040190
CAU40200
<u>Çîvîşa ta</u>
CAU40240
EAU 18318
GAU40270
64U40290 64U40290
64040310
ÇAU QA 30
GAU40350
GAU40370
6AU40380 6AU40390
GAU40400
CÂŬ SĂ SĂ
CAU20010
CAUZODSO
GAU20040 GAU20050
GAU20060 GAU20070
GAUZODÁO
GAU 201 00
GAUZOL ZO
GAU201 90 GAU201 90
GAU20150 GAU20160
64U20170 64U20180
GAUZOZIO
GAU20230
GAU20240 GAU20250

	190 100	66-1612-041-02 864962-0413-18-0613,M3-864Mala	GAU GAU GAU		
ç		GG TA SUBSTITUTION	ĞAU GAU ÇAU	2020	
Ľ	130	M-M-1 JF (M.60.0) 60 TO 150	GAU GAU GAU		
	140	DO 140 4=1,94 DO 140 1=99,94 BANAST 2519,1.13-4(N,J)+8(Jol)	GAU GAU	201	170
C	150	RETURN END	GAU GAU	20	
٤		SUBROUTINE REFOSPINLD, NES, NST, NS, NC, NCTS, IS, IB, O, A, RJ TRANSFER DISPLACEMENTS FROM MASS CENTER TO FRAME REF.	ŘEF REF RFF	P00 P00 P00	
C		INPLICIT REAL+BIA-M.O-73 COMMON/JUNK/JUK/62/AJ/8/.0).AJ/3.3).AR(3.3).AS(3.3).BJAV/3.2).SPAL	ÂËF REF AEF	PÖC PÖC PÖC	140
c		DIRENSION AF430.301.0410.1.21.441.65.8(170.6)	REF	P00 P00	
Ĕ		SET TRANSFORMATION PARAMETERS	REF		100
		80.33 (-1:3	AEF		130 140
¢	25	AI(L,J}=0. SF=A(1,L)	NEF REF	PO PO PO	150 148
			REF	P0	90
			Ì	PÖ	Į
_			REF	P0.	10
Ę		TRANSFER REF. FLOOR BY FLOOR	iii	0	
		MS=MST+1-NT NSNE-MS+NE NFR=N+0-3		20	
		00 300 H=HT, HST NH=1 H=HT 45 HCTS	ÄËF	PÔ	130
			REF	P0:	150
		DU 225 [1-1,3 DQ 225 [+1,4L0 Rfen[+1,1,6]-0.	AEF AEF	P01 P01 P01	170
	225	DD 225 KK=1,13 Kl=KK+15 BF (M) 01,1 A DEFAMIA (A,1) (AA7767,K3) (BUAMMAKK,1)	REF		
c	3 86		ÂĔF	P0 P0	130 190
-	310	00 310 K-LINFS R(MCPI+K,J)-RF(K,J)	REF		140
Ľ		RE TURN END	REF AEF AEF		180 190
٤		SUBROUTINE REFOSIINFS,MST,NS,NC,MCTS,IS,I3,O,A,R) TRANSFER DISPLACEMENTS FROM MASS CENTER TO FRAME REF.	REF		20
C		IMPLICIT REAL+BIA-H. 0-2) COMMON LUNKY	REF	Įŏċ	150
r	I	1113261 DIMENSION RF(301.D(10.1.2).A41.6).R(170)	REF	lõ	370
ž		SET TRANSFORMATION PARAMETERS	REF		100
			REF REF REF	10	120
¢	25	AF4L,J3=0. 16=A41.11	AEF AEF		150
			ŘĚF RĚF	lŏ	90
			acr		

00000000000000000000000000000000000000		
ПС - 1004 (11 ± 2001) 14 4 ± 2011) 14 4 ± 2011) 14 4 ± 2010 14 4 ± 2010 10 1 ± 2010 11 + 11 ± 1 ± 2010 11 + 11 ± 2010 12 + 7+201 + 4010 12 + 7+2010 12 + 7+2000 12 + 7+2000	й А 3 М, Ц Г 8 0, Ц 1 9 4 Ме в в с п в с с с с 5 Ме в в с п в с с с с 5 120 - Г с с о 1 3 - 1 3 9 6 120 - Г с о 1 4 - 1 0 1 2 - 40 1 1 - 1 4 - 1 0 1 - 1 4 2 4 3 1 1 - 1 4 - 1 0 1 - 1 4 2 4 3 1 1 - 1 4 - 1 0 1 - 1 4 2 4 3 4 5 4 4 4 5 4 4 4 5 4 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	
ниса Турру соны. 	22	J.ME.91 60 TO 6
00 ALTAF LOAD 94 ALTAF LOAD 70	16 10 10 10 10 10 10 10 10 10 10 10 10 10	60 10 3 60 10 30 61.41 60 10 30 60 10 5 60 10 5 60 10 5 746.8.4NU.4CDM11,1

Reproduced from Control Poest available copy

109

1	
•	
	1
1.	
÷.,	
• •	
3.5	
1	
,	
1.25	
2.1	
, ·	۰.

	 10000000000000000000000000000000000000			10000000000000000000000000000000000000
233 5001111- 233 5001111- 501 501111- 501 501110- 501 50110- 501 50110- 501 50110- 501 5010- 501 5000- 501 5000- 5000- 501 5000- 501 5000- 5000- 5000- 5000- 5000- 5000- 5000- 5000- 5000- 5000- 5000- 5000- 50	10 2001 11 15 <	LI FCGL FM: PILIT [MILLING FCC PILLINE FCC [15] - 0.0551 [15.00	10 2500 10 21 1 1 2 1 - 5 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<pre>2. [[[1]</pre>
COOCOUNT AND			4444444444444444 1999999999999999999999	
C BEAN FORCES 	 -##213;15;674;15 =#8213;11:11;f#213;11:f#313;11:f#313;11/#1#1085 = 2 =ee.to.eo.2.ee.10.eo.41 co To 444 AMEL FORCES	-тидев -соранізанісяніці. -сораміз.n.оғаціз.i -сорамізанісяніці. -сораміз.n.оғаціз.i ис ог Staffacs - Таме Осераськемт -1. со То-траз, собастра -1. со То-траз, собастра -1. со То-тал	2 -1-04-10-60.2.04-10.69.31 RETURN -266Fail.mj=Fnill.lj ve of stiffness = taue displacement -2.12.07.10.7702.mj	M OF STATIC LDAD CASE 2:33 Cb ⁰ 10 ⁻¹ ,71 1J.11 2. ¹¹ 2140-16 ⁰ 1211 60 fo 214

.

940 FF10, NE.4) GO TO 550 F1-112, M Mu-14-194C+K1 Mu-14-194C+K1 MO 343-134A-814-M	REF N950 DET-EI John DET-EI John DET-EI John Straud	
J-1-1-4-464 FFAKK-167-4041-00 FFAKK-167-4041-00 FFAKK-167-404-10-00 S4S CONTINU-21-1-50-4 D0-248-8-1-1-1-30-4	REFROID REFROI	
00-548-[64]41.16N2 00-548-[64]5 1215:2013:2222	REF 83090 CONVOUTON TAT VELY 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
IF R. E. S. S. M. S.	REFERENCE C Frinstein C Frinstein C Frinstein C Frinstein Frin Frinstein Frin <td></td>	
01 925 JTE TYN 924 Continue 1924 Continue		CALO2000
00 900 J-L P.W. 00 901 / 1. M. J. J. A. (J. 16 NI - J - 1) 200 17 11 - E. (J. 0. 10 - 10 - 10 - 10 - 10 - 10 - 10 -	NEFN2240 DO 20 20 20 20 20 20 20 DISE 60 00 DISE 60 00 <thdise 00<="" 60="" th=""> <thdise 00<="" 60="" th=""> <t< td=""><td></td></t<></thdise></thdise>	
CHECK FOR LTTVE CONSTRAINTS CHECK FOR LTTVE CONSTRAINTS CALLS 20071015-0-10.10-10-10-10-10-10-10-10-10-10-10-10-10-1	Life BEANS BEANS CALLO	
213 NE 1984 2005 Formatizia-Siyafia-41 2006 Formatizia-Siyafia-41		CAL0350 CAL0350 CAL0370 CAL0370
END Subroutime inecofiéntav.in.in.itor.an.schi. Star.schissen.schol Find Stiffness cofficients of steel element		
IMPL [C 1] R = 1 + 66 A = 4.0-23 R = 1 + 6 1 + 4 5 1 0A C D M O M / M = 7 2 4	MECOOSO 50 EUNINUE NECOOSO 51 EUNINUE NECOOSO 51 EUNINUE SCALO NECOOSO 5 EN ACES	CAL0450
CO TO 4359,350,360).IENTRY Gistyman streeves toseficients	MECOLOG MECOLO	CALOS DO
350 C=15-0070 300*021=LM/(6.0*6=1M) 56M2-2-070-3.0*021=LM/(6.0*E=1M) 56M2-2-070	INCECTO 50 INCECTO 50 ECONTINUE ENTRO INCECTO 70 SUBRUTIME COMCA (17.J) SUBRUTIME COMCA (17.J) CONCO	CALO550 DALO50
JEJIEWTAY.EQ.21 GD TO 392	NECOJOD - E FIND THE VALUES OF THE SECONDARY DESIGN VANTABLES CONCO NECOJOD - C Invligit Realeda-N, D-1) Leeforio	DNC 00 50 DNC 00 50
AAINE STATES CURRENT CONTRACTOR	NECO330 DBM.ON / DAMIN	ONCODED ONCODED
JF11EWTRY.EQ.3J RETURN Torstomat stiffmess coefficients	INÉROŽGČ C P3-64-65 CENTAGE UP DEPTA TO LUMPED MENN-UNCENENT (DECIMAL 3) CONCO NECO290 F II-LICO INCOTE 200406 CONCO	
392 SEM8-Gelidalim		ONCOL 30
RETURN Subroutine Simmeliafii.gfjj.gfjj.scm24,5cm4X,5cm3X)	#EC0120 #EC0120 #EC01000 #EC01000 #E000000 #E000000 #E00000 #E00000 #E0000	ONCO1 50 ONCO1 50 ONCO1 70
FIND STIFFNESS COEFFICIENTS OF CONCRETE ELEMENT		ONCO 200 ONCO 200
MPLLLT REALFOLA-71,0-17 F1-0621 F1-0621	Concession Cpt [12,1] + Cpt [22,1] + Cpt [21,1] + Dpt [2	ONC 02 20 ONC 02 30 ONC 02 30

-

	29 <u>2</u> 29 E			
<u>.</u>				
4				
žų.				
				2 2
				11
				<u> </u>
24				3.3
21			N	<u> </u>
			2	
			-	<u> </u>
			ū –	
			3	
			1 o	
			2	
			2	
2			- Joo -	N# N#6 2 11
				** *** *
		•		
		-		
		* 	2	
		U IO IN N		
	3 1999	Contro Trans	* ZZ · ZNUUUO	
	> 3 - 33-832N222		SHUUZZ IGwwa w	
HAN BELLEVEL UZYZE		1000000111		
2		2		a 0.0
س ب	JU			

-5144.11+5A48.11+5A410.11 [2.1]+5446.1]+5Af10.1) 1.11+5a15,1)+5a19,1) 3.41+5A{7.61.5A49.1J 1:41.0.03 co TO 724 1.41-11-9.01 60 10 738 50-10-732 1.41-4-0-01 60 10 728 GO TO 760 121.0.01 CD TO TIO 7.K1.GT.0.01 CD K0 722 134 736 60 70 740 60 TO 742 CO TO 746 GU TO 748 GO TO 752 60 TO 754 1.5. LT-0.01 GO TO 758

C

Reproduced from best available copy

MT110.4	Felder-1, 20-2, 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	110).FA2T4-161.XML114.[0)	10 201 201 201 201 201 201 201 201 201 2	504 (0) 30 504 (0) 40	00-10-16-71 co 10 102 10-16-71 co 10 102 10-16-71 co 10			Out Milling Mi	64.(************************************	CW. (N. N. + ; 4)/26/23/24 { CW. (N. N. + ; 4)/26/23/24 { CW. (N. N. + ; 4)/26/23/24 { CW. (N. N. + ; 4)/26/23/24 2007 [0.2000] { CW. (N. 2007 [0.2000] 2007 [0.2000] { CW. (N. 20	01 10-10-1 501 102 502 102 502 502 102 502 502 102 502 502 502 502 502 502 502 502 502 5	0. 0. 10. 16. 7) 60 TO 103	112.1111111111111111111111111111111111	01 10-10-7		0-10-16:10 ¹ C0 T0 110 501 (010 50 50 50 50 50 50 50 50 50 50 50 50 50
ND Subroutime Sortijo,n Shecks and determine	Control of a fair fair fair fair fair fair fair f	JEMENSION 55110),FA2 1f 1 GT. NLDOD 17 1		COLUNN STAESS	F [0.0 WE & A DAND - [0. WE F (. 6) - 8] EEL] CO F (. 6) - 8] EEL] CO F (0. 6) - 8] EEL]	F (10. F0. 1) 1-7 F (10. E0. J) 1-7	F 5 5 6 6 4 9 4 5 6 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5111-048515500494.04	[[]]] 0 00 00 [[]]] 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	161-0485(500 (N.N.	[40] [0] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1	[[]] 0- ME - 2 - 4 NO- 0- NG	5419-645515848."."	[[[]]	ANEL STRESS	F410.Nt.3.4ND.1D.NE F41.51.Nt.0001 10-10 F410.69.30 K-20 F410.69.103 K-20
		- 	1	_	201	::		\$ 5	9 5 20			102			•	6
0 000			•		•						90				ŝ	

4356491 £ DIAGONAL MASS MATRIX 40 140 1414(1) 51 141 441 461 55 51 4 MAZ421 51 141 451 55 51 4 MAZ421 51 141 4 MAZ421 1 50 1.4 1 4 MAZ411 51 141 4 MAZ421 1 50 1.4 1 4 MAZ411 51 141 4 MAZ421 1 50 1.4 20 1.4 20 4 MAZ411 51 141 4 MAZ421 1 20 1 4 MAZ411 1 50 1.4 20 4 MAZ411 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	KEEP PAEVLOUS EIGENVECTOR NSTS-MCIS+JONS NSTS-MCIS+JONS NSTS-MCIS+JONS NSTS-MCIS+JONS NSTS-MCIS+JONS NSTS-MCIS+JONS NSTS-MCIS+JONS NSTS-NSTS-MCIS+ NSTS-NSTS-NSTS- NSTS-NSTS- NSTS-NSTS- NSTS-NSTS-	INTTALIZE ELGENVALUES AND ELGENVECTORS Definitions	Set 1	INTITUTE SUEEP COUNTER AND REGIN ITERATION MENEP-0 Meneparterial (Counter and Regin Iteration	FACE I TARGETION AND AND AND AND AND AND AND AND AND AN	AAK-A55.51 2014.61 - 81.5.50 - 81.5.50 - 81.50 - 81.500-	К 446 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00 14 1-2 1409-190 100 14 1-2 1409-190 14 1-4-14 15 141-14 190,100 15 141-14 190,100 10 170-14 190,100 10 10 100 10 100 100
		່ມມູ່ມ	•	بت بين	ىن بو	U I	ىد	 -

	[[[K]] NE_] .AND.KI.NE.83 60 TO 599	LAGHOSOO
	TEINC. CI. NSTEELS GO TO 598	LAGNO610
	JF JR 1 - EN: AS R 12-14	LAGHOA 30 LAGHOA 40
	Ĵŧ(CÔNĴĴ).LT.0.0) 60 TO 597 1 11-888+120412.HC3-CONTJ})	LAGNO450
597	GD 10 609 A(J)=(1,1=ARR+(CON(J)+CP(K13,MC))	LAGNOS 70 LAGNOS BO
598	GO 10 409 IFCRI_E0.13 K12=7	LAGN0690 LAGN0700
	1F(K)_E0_85_K12=24 K13=K1201	LAGN0710 LAGN0720
	1F(CON(J).LT.0.0) GQ TQ 596 A(J)=RARA(CFIR12,MC)-CON(J))	LAGNOTAO
596	CO TO 609 R { J} = {] . = RRR = { CON { J} = CP { K 3 , MC } }	LAGN0750
599	[[[[[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	LAGNOTRO
][[K]:[d:d]_K]]:[d	LACHORIO
	RU-LDI M. MI J J RIJJ-RRAN DPIKI2. MBJ-CONIJI)	LAGNORZO
600	ETTT 004	LAGHORSO
	14 [k] : [d] : [d] : k12-20	LAGNOS 60
		LAGNOBBO
	F (CON(1), 1, 0, 0) GO TO 606	LAGNO900
404	CO 10 409 61 13 - 4 1 - 1 - 868 - 4 CON (J) + PP 4 K 3 3 . M3 J	LAGN0920
604	GO TO 409 IF4CON1J1.LT.Q.01 GO TO 603	LAGHO940 LAGHO950
	60 10 409	LAGM0940 LAGM0970
603	E[J]=[1_]+RRA+(CON(J)+PP4K14,M1)) 50 TO 609	LAGN0980
605	1F4K1.NE.4.AND.K1.NE.11J GO TO 608 1F4K1.E9.41 K12=3	FVENJETO
	177K1.E4.E11 K12*B	14931939
	1, 12 - 14 - 14 - 21 2, HIJ - CONTIN	t azalojo
407	L[]=(].]+RRR+(CON(J)+TP(K13,M1))	LAGNIO70
608	IF(K] ME.S) 60 10 700	LĂČHLO 90
	AIJI-RARAIDISINI,KKI-CONTJI) Go to 409	LAGHI 120
610	E[]]=(]];#AR#(CON(J)+D1S(N7,KK)) GD 10 609	EAGNE130 LAGNE140
700	FIR1.HE_61 G0 T0 701	LAGHI 50
	IF (L CON(3, 3), EQ. 1) GO TO 650 AL JA-BREAL-VAL (KK)+CON(J) 3	LAGHILAO
650	ALJERRAL-CONIJS+UVALIKKSS	LAGHLAND
701	FIRE.NE.7) GO TO 609	LAGH1220
	AIJI-ARA+IDDISINT, KK)-CON(J))	LAGHIZIO
102	1 J = (] = (ARR = (CON (J) + DD I S(N7, KK)) CO PO 609	LAGHIZTO
609	CONTINUE DO 100 N=1,NST	LAGH1280 LAGH1290
	00 101 N-1 NC K-LC(N,M,1)	LAGHIJOO LAGHIJIO
	IFIK.GT.ASTEELI GO TO 102 IFICPASSI NI-EQ-1-1 GO TO 300	LAGMI320
	1 1 1 PASSIANI + 44.2.3 GU 10 400 Al (J.) • RI (J) • I 2 (N. N. J) • CP 16 . K)	LAGHIJSO
300	HI 13=RI (J)=TZ(N, H, J) ΦRRA#ICP(2L,K)=CP(6,K)) Co To J	LAGNI 370
900	#1(J)=#1(J)=T2(N,H,J)+RRR+(CP(23,K)=CP(6,K))	LAGHI 190
102	TE (CPASSIANI - EQ. 1-) GO TO 301	LAGHIALD
	ái lji=kí ljí+lžtň, ň, stocěti, kl/cello.kl	LAGNIA30 LAGNIA40
301	ĀĒLĪŠEĀĒĪJIETZIN.N.JIORAROICPLZL.KI-CPLLZ.KIIOCPLLL.KIOO3OCPILY.KI GD TO 101	LAGH1450 LAGH1460

221		HAGUI	1418
101		LACE	480
	00 103 H-1.NB	TAGN	300
	K=LB{N,N,3}	LAGH	510
	151854351151-59-1-1 59 19 393	LAGHI	520
		1220	124X
		LAGN	550
302	₩I4JT=#ITJ)=T34N,N,J)+DQR+(8P412,K)=BP(4,K))	EAGH	560
		LAGN	510
28 S	N1(J]=K1(J]=T3(A,A,J)=KKKF18F11+,K]=8F1+,K]	LAGHI	1180
-43	TEANDAN, FO. OI GO TO 33	1 AVR	600
	DO 104 R-IANDAN	LĂĞŇI	610
	NP=N\$T=EP41=N1+1	LAGN	620
	IFINPINEINE GO COLLON VO DOD	1490	630
		LAGHI	1230
	41 JJ)=RI I JI + TEIN, M. JJ+PP4 L. AJ /PP43. NJ	LAGN	1660
	60 10 105	LAGH	670
303	<u>N1(J)=N1(J)=J+(N,N,J)+RRR+(PP[18,N)=PP[5,M]+PP[5,M]++3+PP[15,M]</u>	LAGH	1600
60.2	GU 10 107 61/11-81/11-74/W.M. (LAPPP/AD/10.ML-PD/6.ML)ADD/4.MLAA3AD0/16.ML	1282	1722
iŏš	Continue	LAGHI	1710
- 53	IF(N\$RU.EQ.0) GD TO 100	LAGH	720
	DE 192 MELINERU.	LAGN	1110
	NFIN34-LILLANIAI	1100	1428
	IFIYPASSIMI.EQ.I., 60 TO 304	LAGN	táŏ
	JF(TPASSIN)_EG.2.) GO 10 904	LAGH	110
	#[1]]=R]{J)=R]{J}=F5{N_N,J}=T5{N_N,J}=T5{Z=N}	LAGH	180
304	GU 10 105 01/18/01/18/18/18/18/18/00/00/10/5/00/10/2/00/2	LAU	1400
304		LAGHI	aĭŏ
904	ÃĨ (Ĵ]=ŔĴ [Ĵ]−I 5(N, N, J) +RR + (I P (7, N) - T P (2, N))	LAGH	820
105	CONTINUE	LAGN	130
100	CONTINUE	LAGN	122
	FILVOULT IT FOR A THOM TO THE STATE AT A STA	TACH	840
	IFILCONII.JJ.EQ.61 GO VO 696	LAGN	870
	161608641-61-0-01-01-01-01-0141	LAGNI	640
	JEICONETTEROOD MATI-WATI-WATI	LAGH	220
070		LAGN	910
	20 199 K-1.LIM	LACH	ŏ2ŏ
		LAGN	0.0
	IF [CON(K] - GT - 0:0] SITZ=1.0	LAGN	240
	IF (LLUNII) EI EV-0. AND. (LUNI) KI.EV.UF SII2-1.V	12201	1222
	Sfr. []=0.0	LAGNI	470
	<u>[Ē([ÇDŅ[],[]=ĒQ.Ģ.ĀŅD_LCŪŅ[3,[]-ĒQ.O) GO TO 57</u>	LAGN	980
	161co#(11-61*0-0) eo to 20	LAGNI	88Q
21	21 4 7 5 6	TACH	1010
50	ŠI I+L_045112	LAGR	io żo
- 56	00 39 N2-1, NCP	LAGN	2030
	IFICPASSIENZI-NE.O.) GO TO 39	LAGH	söðð.
		1 AGE	NAN.
	WAIT-0.0	LAGN	2070
	D0 200 N-1-NST	LAGN	tăðð.
	D0 201 N-1 NC	LAGH	2020
		1 ACH	1111
	SKY-SKY+TZIN.M.IT	LÄĞH	212ŏ
	<u>SKYK-SKYK-12(N,N,K)</u>	LAGH	5130
	<u>1</u> E11.61.WZ1EEF1.60 10 505	LAGH	E120
	D0 808 11-16-018022	LACES	5128
808	CONTINUE	LÄGHA	2170
	CJ-C111(4+18)	LAGH	5180
		1121	STAN.
	CA TA 201	LACH	2210
202		LĂĞĤ	2220
+	ĎK-ČĠŧ18+11	LAGH	230
		LACH	5522
	P3-U742U734 WATTAWATTAWECNOSOEN, 23/4CPELL, 33002, 0011	LAGHS	5260
201	CONTINUE	LAGH	2270
žŏò		LAGH	ZŽÓ
		LAGH	53.90
	45142×04×0345554 348454=368411=56654821=3844=3848=311/18811=6641041	LACH	2316
39	ČÁŇTINUE	LAGH	2320
	IF(NO.EQ.01 GO TO 38	LAGH	2330
	DD 40 NZ+1,NBP	LAGH	Z340

•

. .

O

1051	EBANAT4/.5%4% [HEJA:*15/48/*570AY NO.*.5%. Formate13.5%15%15%15%15%15%15%15%15%15%15%15%15%15	10 CC	WIINUE MADALANA AND ANALANA ANALANA ANALANA ANALANA ANALANA ANALANA
1010	FDMMA17/(51,51, GATERAL FORCESI'.//.0X.'STORT NO.'.5K.'VALUE'./.041421250 1410-1414 1410-1414		MUNICARSIONITICS OVERTOWNERS WUNCHT AT BASE UF MAN TOBLANSTORY Y MAN LAKADAM
	\$UBRDUTINE MDRALATENTY MYSTORY 31484564 75.554575 55757 1227 100100 10 1.888704,2465,488304,8437,48342,843,413,483,541223 143424 142424 142424 142424 142424 142424 142424 142424 1424		море (พริ (Ор.)
	AYC-DJ NDDAL AMALYSIS METHOD Nodlogio	: ک 2	
	Lan. 16, 16, 06 (10, 16, 16, 16, 16, 16, 16, 16, 16, 17, 10, 16, 10, 16, 10, 16, 10, 10, 10, 10, 10, 10, 10, 10 Loundwick (10, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16		DOP 11132 DATE OF DUPLY MAY 2015 LTTL 1 DATET OF 1-1 H FLOOR REGUE CNECKING OMMINISTOVERTURING NONENT OF 1-1 H STORY OF MODAL A
	ן לאחר האולים לו כן לסין לאיני היא באבור באולים לאירי באונייאי, איאאיאי, איאאיאי, איאאיאי איא אייני אייני באול איא הנכת האיל לל אלי דעי דמלובי אלי באלי האיאי באואאיא, איאאיאי, איאאיאי איש אייני איי איש מסונים דס נעד הנכת האיל לל אלי דעי דמלובי לי לי באלי דאט באלי באט באלי בער באיב באולי איי איי איש מסונים דסיי איש איידי אי	, ,	LL_R00111YM0DAL,IREQDM.VTM0DL) 1.6.00121YM0DAS 1.6.00121YM0DAS 1.1.555121001660,186004.5555,11
	САЦЬ 5 АДТ 4 Т 4 2008 5.55. С5. КМ2.00.1. АКК. М57 СМУ. 1 Г ВАЗЕ. F F F , ККАРА. АНР. 6 СС.) МООТ 01 0 10 1 5 АДТ 4 Т 4 2009 20 Мер 1 1 4 - 6 11 1 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	2222%	LICT 25512
	CF MARK R - 0. MODI 0210 MARK R - 0. MODI 0210 MARK R - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	83 2 5 ? ,	2.1.4.001436490055,186008,5555,1) 1914.111145555 1111400
Ä	Sunks 24) - Sunks 1 H = Sunks 1 + H = H = H =	- <u>-8</u> 23	1154000, CE27845E1 60 TO 110 1025-148857179004
1 000	Cont Nuc PP 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5002 6	LTTT25574156m102 Dentro15540441156m102
	(5 NI NI ST. 2014) ST. THE JY NY OOT 2. / 3. /) 15 Na 15 The 3 St. 17 (2010) 10 (200) 10 (2010) 10 (2010) 10 (2010) 10 (2010) 10 (2010) 10 (2010) 10 (2010) 10 (2010) 10 (2010) 10 (2010) 10 (2010) 10 (2010) 10 (2010) 10 (2010) 10 (2010) 10 (2010) 10 (2010) 10 (2010) 10 (2010)		HAT 2015
	ĔĔĸiŇĿĨĨ. • ĸves/kaeftkusekt./3.1) JELESALLSEUIZANGAANET EZAKAL22.34.4.4.	1 1 1 1	#113-4133-414-13 #4. \$\$\$\$\$100.017.07.645.65.10.001.638.664444.0653[64.4444
100	IF [F M M]. EE.J. 3540/AJJ CSM(MJ-2-014/A Configure (C2) 540/AJJ CSM(MJ-2-014/A	13 13 10	
	FOLLOWING MEANS RETURN TO SOIL-STRUCTURAL INTERACTION AFTER NODLOGGO Genanning Cantis. Modios: 1.	: 8 	JOARTORSOUTSETTEONNEYAANTOELLAAKENLUNGUUNUNUNUUUUUUUUUUUUUUUUUUUUUUUUUUU
5	И ПОРАТ ДИТ: ИОРАТ ВАТЕ ЗНЕАВ ОF М-ГН МООЕ ИОРАО АНТ ДАТЕОЛО У ПОРАТ ДАТ ЛА И ПОРАТИИ ОТ ВАТИ И МООЕ		ION IS 435 B. STORY ION 13 435 B. STORY ION 13 5 4 MONTONY (J)+6FF (1)+6HF (1)+HF (J) b
(FRODALLA, WANI MODAL FORCE OF 1-TH STORY OF M-TH MODEL 1. MWW MODEL POLICE OF 1-TH STORY OF M-DIAL		1 1 1 - 1 - 1 NSTORY 3 - 1139-F4 1 1 9H511 1-00 96H3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
2000	CONTINUE 00 40 1-1 145 COV 00 40 1-1 145 COV	ي، مورد مورد	INTINUE
3	FNORT AN ANALY AN ANALY ANA Berean analy an Bana analy		1 80 14 14 kš rc 14 14 12 -00-
	USIMG DELYEMAI-MEDORIAIN DELXIAIJ UMICH IS DISPLACEMENT OF MODIODAD Model anisystered for display story of M-IM wode Matematicalismed Safet of 1-24 story of M-IM wode		124.1534812481248124812 241.14244251515482087+4-41
	00 42 1-1.1845004 100 41 -2.1855004 12-1 -1		1.41. 1.1.1.256.551371.536.056an.4
••	DALFN0{[]-DAB53/BELXEN([N]-DELXEN4.2.NJ) DALFN0{[]-DAB53/BELXEN([N]-DELXEN4.2.NJ) NODI 0720 NODI 0720	: 9	1 400 Jei mSfC 1 400 Jei mSfSC 1 1 Jei SST 1 J
		387223 2	4 0 1 1,455 1 46015 46055=546 +0015,J+0075)+306.4*5641,J) 11.600353158.685=646 +0015,J+0075)+306.4*5641,J)
4	VANUE 44.4. PYANUUUT 3. ATTANUAL 1. ATTANUAL 1. ATTANUA AMMODE 13.4 N. AMMODE 13.4 N. AFMUDAL 1. ATTANUAL 1. ATTANUA	در	THE NEXT THREE SUBRGUTINES ARE USED IN

VENSING BE H-TH MODE S I S A THINK K122) 104 LAF2 RCES

333333

393

Reproduced from best available copy

	DACKI = 014602 MC = 014602 L = MC = 014602 MOMENT = 134, L = 02 MOMENT = 134, L = 02		HBUT - MAIL, TI, REDI KEPUS KEPUS KEPUS MEDI			
Bakiti bati 1: 1967-1 211416 - 1922 - 1987-1 211416 - 1922 - 1987 - 5223 - 622 - 524 - 512 - 512 - 642 - 512 - 512 - 1985 - 1044 - 512 - 512	Г 001 БИСКИ ТОР 0 201 БОТ МОКЕМ ТОР 0 201 LOAD 1045 LOAD 1045 LOAD 1045 LOAD 1045 LOAD 114, 114, 114, 114, 114, 114, 114, 114,		ак. 7Х. 7НТ ОР-И I И. 7Х. b Co. P. MC Г S. 1 ОР Г. МS Г. Co. E M. BN I N. X99. F I NA	1191.641.81.86651111.		
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	FDACE TOP MONEN M END MONENTS/ATM EL, LUADARA 17 MEL, LUADARA 17 MEL, LUADARA 17 MEL, LEANENTS/1211	TIC CODE CONTANTO TIC CODE CONTANTO TIC CODE CONTANTO TIC CODE CONTANTO TIC TO TIC	NEL 10.40.25% (HIDP-) 156480 466 1006.14% (HIDP-) 466 1006.14% (HIDP-) 1408.4 PERIOD.12, WHL 14 A FORM TO BE PLO	841-140-24 841-140-24 841-144-24 841-1445-1740-148 841-144-14 841-144-14 841-144-14 841-144-14 841-144-14 841-144-144 841-144-144 841-144-144 841-144-144 841-144-144 841-144-144 841-144-144 841-144-144 841-144-144 841-144-144 8414 841	12 - 008-151 12 - 008-151 13 -	14 IN FILES 10-12 11 11 14 14 16 16 16 10 10 10 10 10 10 10 10 10 10 10 10 10
2007 60 4 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2002 FOBALAT CARA 2002 FOBALAT CARA 2003 FOBALAT CARA 2003 FOBALAT LET PAN 2005 FOBALAT LET PAN 2005 FOBALAT LET CARE 2005 FOBALAT LET CARE		4003 FURNAL (248 44 44 44 44 44 44 44 44 44 44 44 44 4	PAINT OBJECTIVE FU		
-			1191		ECTORS'] 	
رد من 1:13:12:13:13:13:13	60 10 317 10 316 KittstEff]	נוב מו :גַאַ:נַגַעַ :גַאַ:נַגַעַ	LEN ACCHENTS PP		ENVALUES AND ELGENV 1.5%241.4.73 1.2%241.4.73 1.2%249.4113 1.2%2429.4113 1.2%242.49 1.2%242.49 1.2%242.49 1.2%242.49 1.2%242.49 1.2%24.47 1.2%24.47 1.2%24.47 1.2%24.47 1.2%24.47 1.2%24.47 1.2%24.47 1.2%24.47 1.2%24.47 1.2%24.47 1.2%24.47 1.2%24.47 1.2%24.47 1.2%24.47 1.2%24.47 1.2%24.47 1.2%24.47 1.3%24.47 1.3%24.47 1.3%24.47 1.3%24.47 1.3%24.47 1.3%24.47 1.3%24.47 1.3%24.47 1.3%24.47 1.3%24.47 1.3%24.47 1.3%24.47 1.3%24.47 1.4%24.	Construction 10, 11, 12, 12, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15
				ME 16 H		

135

¢

-

.

X. ZHA EGENO LABEL 15 LOAD. MOMENTS OF INERTIA FOR COLS. AND BEANS (126.10.10.11), 64.546:13.14, 0414 VALUES 15'1 TO TO THE TOTAL TO TALL TO THE TOTAL TOTAL TO THE TOTAL TO THE TOTAL TOTA į. 400 LGATAGASTI MAITEL9+K+4000) F PAINT PEALODS IN FILE 13 9-01 60 80 502 EQ.01 GO TO 507 16(10.11.41 GO TO 500 00(199.11.41 GO TO 500 18116(13.10001 K.K Reproduced from best available copy. (31000) JAFE COLUMNS IN FILE 74 r:r |ŏŏŏ]:\$ Hill unite BEANS IN FILE 73 000 PM - 1 - 000 1000 FINBPL-222 000 NAT 000000000 200 200

VI. SAMPLE INPUT DATA AND OUTPUT SOLUTIONS A. EXAMPLE I: A TWO STORY STEEL STRUCTURE

1. Description. The two story, steel structure shown in Figure 9 is used to illustrate the use of the response spectrum modal analysis coupled with the structural optimization. The response spectrum shown in Figure 8 is used for each of the principle directions with maximum ground accelerations of 0.0g in the vertical direction and 0.3g in both the x and the y directions. The modal analysis is performed using the first four nodes, and a translational mass of 0.77 k-s²/in (1385.8 kg-s²/m) and a rotational mass of 745.3 k-s² in (8586.7 kq-m-s) for each level. The Pdelta effects are not included in this example. No static displacement, frequency or dynamic stress constraints are considered, but dynamic displacement and static stress constraints are considered. The dynamic displacement constraints are 0.60 in (1.52 cm) for the first level and 0.90 in (2.29 cm) for the second level for both the x and y directions. The static stress constraints are 30 ksi (21 kN/cm^2) the columns. The beam static stress was set at 70 ksi (48.3 kN/cm²). The dynamic stress constraints were set at 9999 ksi (6900 kN/cm²) in order to keep them from becoming active. The optimization was to be terminated if more than 20 analyses or 15 cycles were required or if the weight changes less than one percent within concurrent cycles. The convergence control parameter was chosen as 2.0. The primary and secondary design variable relationships were

Figure 9. Two Story Steel Structure

determined from the AISCM. One loading condition was considered. This load condition uses a load factor of 1.0 for lateral load Case B since this represents the response from the spectral analysis. The static loads were ignored but could have been included by using other load combinations with the appropriate factors. Therefore, although the static stress constraints were input they were not considered since there was not a purely static load case.

B. EXAMPLE II: A TWO STORY MIXED SETBACK STRUCTURE

1. <u>Description</u>. A two story setback structure, shown in Figure 10, consisting of steel beams, columns, and braces, as well as, concrete columns is analyzed and optimized with respect to the ATC 3-06 provisions. The structure is assumed to be within map area 7 for both the effective peak acceleration, A, and the effective peak velocity-related acceleration, A_v. It was considered to be within seismic hazard exposure group 3. The soil condition was chosen as soft or soil condition 3. The ATC 3-06 equivalent lateral force approach was used for the analysis with a response modification factor, R, of 8.0 and a deflection amplification factor of 6.5. The primary direction of excitation was the x-direction. The first level had a translational mass of 0.906 k-s²/in (159 Mg) and a rotational mass of 40490 k-s²-in $(4.58\times10^7 \text{ Mg-cm}^2)$. The second level had a translational mass of 0.408 k-s²/in (71.5 Mg) and a rotational mass of 10390 $k-s^2-in$ (1.17x10⁷ Mgcm²). The ATC 3-06 provisions require a 5% eccentricity in the load which is included within the program. By calling for 3 modes to be used within the analysis, the first 3 modes with be printed for inspection. The equivalent lateral force method uses only the first natural frequency in its calculations, but in many cases it is useful to see the first few modes. This input of 3 modes would indeed cause 3 modes to be printed and used if the ATC 3-06 modal analysis were specified.

Figure 10. Two Story Mixed Setback Structure

The constraints considered were static and dynamic displacement and stress. The displacement constraints are based upon the ATC 3-06 allowable drift divided by the deflection amplification factor. The constraint limit was 0.22 in (0.56 cm) per level for both the static and dynamic analyses. The static and dynamic stress constraints for the steel elements were 36.0 ksi (24.8 kN/cm²). The concrete elements had a reinforcement tensile stress constraint of 50 ksi (34.5 kN/cm^2) and a concrete compressive stress of 3.0 kN/cm^2). No (2.1 frequency constraints ksi were considered, therefore three blank lines were inserted in the input data.

All of the steel elements with the exception of the braces are considered as wide flange elements. The primary and secondary design variables are represented by curves which were determined from the AISC Manual. The steel columns have side constraints which require their major-axis moments of inertia to be between 7.00 in⁴ (291 cm⁴) and 20,000 in^4 (832.400 cm⁴). The missing columns and beams on the second level must be represented by "small" fictitious elements. In addition to having "small" geometric properties, the stress constraints values for these fictitious elements have been increased to insure that these elements will not provide any active constraints. In addition the side constraints require these elements to have major-axis moments of inertia between 0.001 in⁴ (.042 cm⁴) and 1.00 in^4 (41.6 cm^4).

The concrete elements are based upon Equations 2.12 to 2.14. The percentage of steel to gross area was 2.5, and the modular ratio was 10. Each concrete column had a fixed crossectional height of 120 in. (305 cm) and a beginning width of 20 in. (51 cm). The width had side constraints which keep the width between 5.0 in. (12.7 cm) and 20 in. (51 cm).

The analysis considered three loading conditions. The first load case is a static load case. (Notice that the lateral loads are not included in this case since both lateral load cases must be used to represent the ATC 3-06 loads. Lateral load case A has a 5% eccentricity in the positive y-direction, and lateral load case B has a 5% eccentricity in the negative y-direction. Both load cases include 100% of the x-direction load with 30% of the ydirection loads.) Load cases 2 and 3 are seismic load cases including the ATC 3-06 lateral loads. Each of the load cases include vertical nodal loads of 5 kips (22 kN) per node and there are three different uniformly distributed loads to be used to represent the beam loads. These are assigned to each beam's respective vertical load case which is then assigned to the global load cases.

The optimization must be controlled by a set of input parameters, also. The optimization was to be terminated after 10 analyses, 10 optimization cycles, or 2% weight change. The objective function was based upon cost factors of 300 %/ft³ for steel (.174 %/in³, 0.010 %/cm³) and 80 %/ft³

 $(0.45 \ \text{\$/in^3}, .003 \ \text{\$/cm^3})$ for concrete. The convergence control parameter was 3.0, and the constraints were considered active if they are within the range of 10% below and 5% above the constraint limit.

C. COMPUTER PRINTS OF EXAMPLES I AND II

I. Input Data of Example I

5 20 4 2 0.0 0 0.0 8.0 1 15 2 3 1 .20 .10 OTHO STORY BLDG. ۱. 4 8 3 10.0 0.0389 0.0 1550.0 0.02651 0.0 12100. 0.05182 0.0 0 4 1550.0 0.925 0.4530 12100.0 1.0 0.04615 29000. 1.0 0.05200 0.0 .7740 .50080 0.0 .48716 0.0423 0.0 .7319 0.0221 . 95816 0.48716 0.00412 20.47 1.0 .50080 78.462 0.0 0.0124215 . 90516 159.08 .50080 56.0 0.48716 0.00755 0.0 0.012421**5** 1.0 0.566 0.90516

21	0.90	•			
22	0.90				
1 1	0.60				
1 2	0.60				
000.00 3	115.92	115.92			
0:0	0.4				
0.0	0.0	-26.14194	13.93676	0.935163	0.0
8.4	3.0				
.160600	-1.14094	2.99606	-3.61867	2.22972	0.0
3.0	100.0				
0.0	0.0	0.0	0.0	0.36	0.0
D, G	0.4				
9.0	0.0	-26.14194	13.93676	0.935163	0.0
0.4	3.0				
. 160600	-1.14094	2.99686	-3.61867	2.22972	0.0
3.0	100.0				
0.0	0.0	0.0	0.0	0.36	0.0
0.0	0.4				
0.0	0.0	-26.14194	13.93676	0.935163	0.0
0.4	3.0				
.160600	-1.19099	2.99606	-3.61867	2.22972	0.0
3.0	100.0				
0.0	0.0	9.0	¢.0	0.36	0.0
FIRST	144.	0.07764	745.3	128.	120.
20.	20.	120.	120.		
52010	144.	0.07764	745.3	120.	120.
20.	20.	120.	129.		

ļ

2	:	240.	ο.								
- 1	L .	240.	240.								
4	•	٥.	240.								
1		30000.	5.0112		- 1	47090	00.7.	. 969			
	8.	.5	.5	.5		30.		38.	24		10.
2	0000.	9999.	9999.	9999 .							
2		30000.	5.4112		. 1	47090	60.7	. 444			
			.5	.5		30.		10.	24		10.
2	0000.	9999	9999.	9999.							
- 1		30000.	5.0112		. 1	47090	00.7	444			
		.5	.5	.5		30.		30.	24		10.
2	0000.	9999.	9999	9999.							
-		10000.	5.0112		. 1	47090	00.7	444			
			.5	.5		30.		30.	24		10.
	0000	9999	9999	9999.							
- 6		\$0000.	5.0112		-1	47898	00.7	. 444			
	· •	5	.5	.5		30.		30.	24	÷.	10.
,	0000	9999	9999	9999.							
- 2		30000	5.0112		. 1	47090	60.7	. 444			
		.5	.5	.5		30.		30.	24		10.
	20000	9680	9999	99999							
- 3	,	30000	5.0112		. 1	47090	00.7	.444			
'		. 5	.5	.5		30.		30.	24	.	10.
	20000	9999	9999.	9999.				-			
2	1	30000	5.0112		. 1	47090	00.7	.444			
	, s	50000		. 5		30.		30.	24	.	10.
		0000	9999.	9999.		••••					
î		30000.	11.80	1.12 9	000.	4.	4.	2.			70.
	• .n	20000	9999.					-			
	,	30000.	11.60	1.12 9	000.	4.	4.	2.			70.
•	. 10	20000.	9999.								
,		30000.	11.80	1.12 9	000.	4.	4.	2.			70.
	, ve	20000	9999.								
		35600.	11 60	1.12 9	000.	4.	4.	2.			70.
		20000.	9999.					-			
		30000	11.60	1.12 9	000.	4.	4.	2.			70.
	, in	20000.	9999.								
		30000.	11.80	1.12 9	000.	4.	4.	2.			70.
	, 1 P	20000.	9999.								
	,	30000.	11.60	1.12 9	000.	4.	4 .	2.			70.
		20000.	9999.						,		
,		30000.	11.60	1.12 9	000.	4.	4.	Ζ.			78.
`	- 1 n .	20000.	9999.		-						
,	1 1	2 1									
	: :	2 2									
		ĩ	i o o								
	2 4	3 4	i i i								
-	i i	4									
-	i i	4 6									
	-										

2 2 1 2 3 4 5 6 7 8 1 0.0 1 3 3 4 8 0 441122334440 2 Ī 0.0 1 C.D 0.0 1.0 0.0 L 1 1 4 1 4 1 2 3 4 2 3

Output Solution of Example I 2.

DYNAMIC ANALYSIS MITH DISPLACEMENT CONSTRAINTS THO STORY BLDG. KINDER OF STORY LEVELS---- 2 NUTBER OF STORY LEVELS---- 4 NUTBER OF DIFF. CDL. PRDP- 5 NUTBER OF DIFF. CDL. PRDP- 5 NUTBER OF DIFF. FEF----- D NUTBER OF DIFF. FEF----- D NUTBER OF PANEL ELEMENTS-0 NUTBER OF STEEL CDL. PROP- 8 NUTBER OF STEEL CDL PROP- 8 NUTBER STEEL CDL PROP 8 NUTBER STEEL STEE

STEEL MEMBER PROPERTY COEFFICIENTS FOR IX BETHEEN _ 10.0 AND _ 1550.0

PROPERTY	CONSTANT	POWER	CONSTANT 2
IY	0.038900	0.925000	0.000000
	0.500800	0.487160	0.000006
J	0.022100	0.958160	0.00000
sx	0.453000	0.774000	0.000000
\$Y	0.042300	0.731900	0.00000

STEEL HEMBER PROPERTY COEFFICIENTS FOR IX BETHEEN 1550.0 AND 12100.0

PROPERTY	CONSTANT	POWER	CONSTANT 2
IT	0.026510	1.000000	20.470000
	0.500800	0.487160	0.000000
J	0.012422	0.905160	0.000000
SX	0.046150	1.000000	78.462000
SY	0.004120	1.000000	7.640000

STEEL MEMBER PROPERTY COEFFICIENTS FOR IX BETWEEN 12100.0 AND 20000.0

PERTY	CONSTANT 1	PONER	CONSTANT 2
IY	0.051820	1.00000	159.080000
	0.500800	0.487160	0.000800
J	0.012422	0.905160	0.000000
5X	0.052000	1.000000	56.000000
SY	0.007550	1.000000	9.566000
	CONSTRAINTS		

PRECUENCY_CONSTRAINES

PRI

0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000

DINAMIC DISPLACEMENT_CONST

(EVE)	DTRECTION	WALLE
2	X	0.90000
2	Y	0.90000
1	×	0.60000
1	Y	0.60000

2	X	0.900000
2	Y	0.900000
1	×	0.600000
1	Y	0.600000

Y	0.900000
×	0.600000
Y	0.600000

	0.900000
Y	0.900000
×	0.600000
T	0.600000

<u>^</u>	4.700000
Y	0.900000
×	0.600000
T	0.600000

0.900000	
0.900000	
0.600000	
0.600000	

0.600000	
0.600000	

g-900000	
TRUM COEFFICIENTS FOR	Z_ACCEL

Y	0.900000
×	0.600000
T	0.600000

Y	0.900000	
×	0.600000	
Y	0.600000	

0.600000	
TUN COEFFICIENTS FOR	Z_ACCELERA

ICIENTS FOR	Z_ACCELERAT	QN
CONSTANT 2 0.0000	CONSTANT 3 -26.1419	C

RESPONSE 5 00 AMD 0.400 ISTANT 5 0.9352 CONSTANT 6 0.000D

RESPONSE SP	ECTRUM COLFE	CIENTS FOR	Z_ACCELERAT	ION BETWEEN	0.00
MAX. ACC. 0.000	CONSTANT I	CONSTANT 2 0.0000	CONSTANT 3 -26.1419	CONSTANT 4 13.9368	CON

RESPONSE SPECTPUN COFFFICIENTS FOR Z ACCELERATION BETWEEN 0,400 AND 3,000 MAX. ACC. CONSTANT 1 CONSTANT 2 CONSTANT 3 CONSTANT 4 CONSTANT 5 CONSTANT 5 0.000 0.1606 -1.1909 2.9961 -3.6187 2.2297 0.0000 RESPONSE SPECTRUM COEFFICIENTS FOR Z ACCELERATION BETHEEN 3.000 AND 100.000 MAX. ACC. CONSTANT 1 CONSTANT 2 CONSTANT 3 CONSTANT 4 CONSTANT 5 CONSTANT 6 0.000 0.0000 0.0000 0.0000 0.0000 0.3600 0.0000

Y	0.6000		
PECTRUM	COLFFICIENTS	FOR	Z_ACCEL

PAINTS			
116			

RESPONSE SPECTRUM COEFFICIENTS FOR X ACCELERATION BETWEEN 0.000 AND 0.400 MAX. ACE. CONSTANT I CONSTANT 2 CONSTANT 3 CONSTANT 4 CONSTANT 5 CONSTANT 6 115.920 0.000D 0.000D -26.1419 13.9368 0.9352 0.0000 RESPONSE SPECTRUM COEFFICIENTS FOR X ACCELEPATION BETWEEN 0.400 AND 3.000 CONSTANT 1 CONSTANT 2 CONSTANT 3 CONSTANT 4 CONSTANT 5 CONSTANT 6 0.1606 -1.1409 2.9961 -3.6187 2.2297 0.0000 MAX. ACC. 115.920 RESPONSE SPECTRUM COEFFICIENTS FOR X ACCELERATION BETHEEN 3.000 AND 100.000 MAX. ACC. 115.920 CONSTANT 2 CONSTANT 3 CONSTANT 4 0.0000 0.0008 0.0000 CONSTANT 5 CONSTANT 6 0.3600 0.0000 CONSTANT 1 0.0000 RESPONSE SPECTRUM COEFFICIENTS FOR Y ACCELERATION BETWEEN 0.000 AND 0.400 CONSTANT 1 CONSTANT 2 CONSTANT 3 CONSTANT 4 0.0000 0.0000 -26.1419 13.9368 CONSTANT 5 CONSTANT 6 0.9352 0.0000 MAX. ACC. 115.920 Y ACCELERATION BETWEEN RESPONSE SPECTRUM COEFFICIENTS FOR 0.400 AND 3.000 HAX. ACC. 115.920 CONSTANT 1 CONSTANT 2 CONSTANT 3 CONSTANT 4 0.1606 -1.1409 2.9961 -3.6187 CONSTANT 5 CONSTANT 6 2.2297 0.0000 RESPONSE SPECTRUM COEFFICIENTS FOR Y ACCELERATION BETWEEN _ 3.000 AND 100.000 MAX. ACC. CONSTANT 1 CONSTANT 2 CONSTANT 3 CONSTANT 4 CONSTANT 5 CONSTANT 6 115.920 0.0000 0.0000 0.0000 0.0000 0.3600 0.0000

STORY_DATA

<u>LEVEL NO.</u> 2 1	<u>ID</u> FIRST SECND	<u>He IGH</u> 144 . 01 144 . 01	<u>T</u> 0	MASS(M) 0.08 0.03	745. 745.	2 30 30	<u>X(M)</u> 120.09 120.09	121 121 121	(<u>H)</u> 0.90 0.90	<u>K-X</u> 0.00 0.00		<u>K-Y</u> 0.00 0.00		
STATIC LAT	TERAL_LOADS	CASES	<u>A ANO 8</u>											
LEVEL ND. 2 1	<u>7X-4</u> 20.00 20.00	4	<u>77-8</u> 20.00 20.00	1011-A D.GC D.GC		7X-8 0.00 0.00	<u>77</u> 0. 0.	-9	0.00 0.00 0.00	<u>KA</u> 120.0 120.0	1 120 120 120	A 2	19)).0 ()).0 ()	0.0 0.0
STATIC VER	TICAL NODA	L. 1040.												
510RY 2 1	COL 1 0.09 0.09	<u>COL 2</u> 0.00 0.00	<u>CDL 3</u> 0.00 0.00	<u>COL</u> 5.0 5.0	0									
	FOR SECTION	RIC STIFF	**E55											
2 2 1	<u>COL 1</u> 0.0000 0.0000	<u>COL 2</u> 0.0000 0.0000	<u>CDL_3</u> C.0000 C.0000	0.000 0.000	410 D									
COLUMN LIN	E COOPOINA	TES												
LINE	5 0.5	0	I 0.00											
2 3 4	240.0 240.0 9.0	0 0	240.00 240.00 240.00											
<u>COLLADN ID</u> I Z 3 4 5 6 7 8	50000.00 30000.00 30000.00 30000.00 30000.00 30000.00 30000.00	<u>A</u> 42.27 42.27 42.27 42.27 42.27 42.27 42.27	<u>1025 1</u> 47.14 47.14 47.14 47.14 47.14 47.14 47.14 47.14	<u>HAJ I</u> 9000.00 9000.00 9000.00 9000.00 9000.00 9000.00 9000.00	<u>HIN. I</u> 259.06 259.06 259.06 259.06 259.06 259.06 259.06 259.06	DT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	<u>78</u> 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	0 36.45 36.45 36.45 36.45 36.45 36.45 36.45 36.45	BF 11.59 11.59 11.59 11.59 11.59 11.59 11.59 11.59	TF 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	15 30.00 30.00 30.00 30.00 30.00 30.00 30.00	<u>CS</u> 30.00 30.00 30.00 30.00 30.00 30.00	<u>55</u> 24.00 24.00 24.00 24.00 24.00 24.00 24.00 24.00
	155 AND 51	DE_CONSTR	AINT INFO	REATION										
COLUPEN ID 1 2 3 4 5 6 7 7 8	<u>S</u> 30 . 30 . 30 . 30 . 30 . 30 . 30 .	75 20 20 20 20 20 20 20 20 20	<u>505</u> 30.00 30.00 30.00 30.00 30.00 30.00 30.00	9999.(9999.(9999.(9999.(9999.(9999.(9999.(230 9999.00 9999.00 9999.00 9999.00 9999.00 9999.00 9999.00	<u>TTN,</u> 10 10 10 10 10 10		MAX. IX 20000.00 20000.00 20000.00 20000.00 20000.00 20000.00 20000.00					
BEAM 20	1 30000.0	10R\$ 47.14	I FLEX :	KII 4.00	<u>к</u>	1 <u>Kij</u> 2.00	01 0.00	0.00	D 36.45	<u>NS</u> 78.00				

COLUMN PP	OPEPTIES													
COLUMN L	<u>HE NO. 1</u>							_						
2	30000.00	42.27	47.14	9000.00	259.06	0.00	0.00	36.45	<u>85</u> 11.59	0.50	0.50	<u>15</u> 39.00	<u>C5</u> 30.00	26.00
ī	30000.00	42.27	47.14	9000.00	259.06	0.00	0.00	36.45	11.59	0.50	0.50	30.00	30.00	24.00

BAY NUM	1_938												
LEVEL	1	TOPS I	<u>FLEX I</u>	KII	X.11	<u>KIJ</u>	DI	<u>0</u> .	Q	<u>N5</u>	VLC1	<u>VLC2</u>	<u>VLC3</u>
z	30000.00	47.14	9000.00	4.00	4.00	2.00	0.00	D.CC	36.45	70.00	0	0	¢
1	30000.00	47.14	9000.00	4.00	4.00	2.00	0.00	0.00	36.45	70.00	ð	D	٥
BAY HUM	BER Z												
LEVEL	E	TOPS I	FLEX I	KII	K J J	KIJ	01	01	0	MS	VLCI	VLC2	YLC3
2	30000.00	47.14	9000.00	4.00	4.00	2.00	0.00	0.00	36.45	70.00	0	D	C
1	30000.00	47.14	9000.00	4.00	4.00	2.00	0.00	0.00	36.45	70.00	8	0	¢
BAY NUM	8 <u>69 3</u>												
LEVEL	2	<u>T099 I</u>	FLEX I	KII	<u>K11</u>	KI.	01	<u> 민</u>	D	<u>N5</u>	ALC I	VLCZ	VLC3
2	30000.00	47.14	9000.00	4.00	9.00	Z.00	0.00	0.00	36.45	70,00	0	Q	Q
1	30000.00	47.14	9000.00	4.00	4.00	2.00	0.00	0.00	36.45	70.00	0	e	٥
BAT_NUM	BER _4												
LEVEL	I	TOPS I	FLEX I	KII	KJJ	KI.	DI	p,	D.	MS	VICI	VLCZ	VLC3
2	30000.50	47.14	9000.00	4.00	4.00	2.00	0.00	0.00	36.45	70.00	0	•	0
1	30000.00	47.14	9000.00	4.00	4.00	2.00	0.00	0.00	36.45	70.00	0	0	0

BEAM PROPERTIES AND LOAD SET MUMBERS

<u>COLUPA</u>	FROPERT	Y SET ID	MABER	
<u>STORY</u> 2 1	<u>COL 1</u> 1 2	<u>COL 2</u> 3	<u>001_3</u>	<u>CDL 4</u>

LINE 1 1	LEVEL 2 1	<u>c to</u> 1 2	HOIR	GEN O	
2 2	2 1	3 4	3	9 0	
3 3	2 1	5 6	2 2	0 0	
*	2	7	1	0	

<u>STOPT BAY 1 BAY 2 BAY 3 BAY 4</u> 2 1 3 5 7 1 2 4 6 8

COLUMN LOCATIONS

.

BEAM PROPERTY SET ID MARBER

i	i	i	ž	ż	ō	ō	ō	ō
2	2 1	4	3 3	3	0 0	0 5	0 0	a c
3 3	2 1	1 1	4	5 6	0 0	0	0 0	0 0
4 4	2 1	z	3	7 8	c c	0	0 0	e e

BAY LEVEL IC JE BID BEN YLCI YLCZ YLCZ

BEAM ID	<u>585</u>	085	MIN. I	MAX. I
1	70.00	9999.00	10.00	20000.00
2	70.00	9999.00	10.00	20000.00
3	70.00	9999.00	10.00	20000.00
4	70.00	9999.00	10.00	20000.00
5	70.00	9999.00	10.00	20000.00
6	70.00	9999.00	14.00	20000.00
7	70.00	9999.00	10.00	20000.00
8	70.90	9999.00	10.00	20000.00

 30000.00
 47.1e
 9000.00
 47.1e
 9000.00
 30000.00
 47.1e
 90

2345678

BEAM LOCATIONS

0.00 0.00 0.00 0.00 0.00 0.00

36.45 36.45 36.45 36.45 36.45 36.45 36.45

70.00 70.00 70.00 70.00 70.00 70.00 70.00

BEAM STRESS AND SIDE CONSTRAINT INFORMATION <u>585</u> 70.00 MIN. I 28<u>0</u> 9999.00

4.00 4.00 4.00 4.00 4.00 4.00

4.00 4.00 4.00 4.00 4.00 4.00

2.00 2.00 2.00 2.00 2.00 2.00 2.00

9.93 0.00 0.00 0.00 0.00 0.00

	C5 55
LEVEL E A TORS I MAJ I MIN I DI DR D BE IT IN IS	
2 30000,00 42.27 47.14 9000.06 259.06 0.00 0.00 36.45 11.59 0.50 0.50 30.00	30.00 24.00
1 30000.00 42.27 47.14 9000.00 259.04 0.00 0.00 34.45 11.59 0.30 0.50 30.00	30.08 24.08
COLUMN LINE NO. 3	
LEVEL E A TOPS I MAJI HIN I DI DB D BF TF TH TS	<u>ÇS 55</u>
2 30000.00 42.27 47.14 9000.00 259.06 0.00 0.00 36.45 11.59 0.50 0.50 30.00	30.00 24.00
1 30000.00 42.27 47.14 9000.00 259.06 0.00 0.00 36.45 11.59 0.50 0.50 30.00	30.00 24.00
COLUMN LINE NO. 9	
LEVEL E A TORS I MAJI MINI DI DB D BF TF TW TS	<u>CS 55</u>
2 30000.00 42.27 47.14 9000.00 259.04 0.00 0.00 36.45 11.59 0.50 0.50 30.00	30.00 24.00
1 30000.00 42.27 47.14 9000.00 259.06 0.00 0.00 36.45 11.59 0.50 0.50 30.00	30.00 24.00

DYNAMIC LOAD COMBINATION (HULTIPLIER)

VIC1 VIC2 VIC3 LAT1 LAT2 MOD1 0.0 0.0 0.0 0.0 1.0 0.0

THE EIGENSOLUTIONS ARE:

FREQ. 1 IS 19.50

THE EIGENMODE IS:

0.870419302828E-82 -0.878419302836E-82 -0.870419302828E-82 0.870419302836E-82 0.680045960618E-82 -0.688465960624E-82 -0.688405960618E-82 0.688465968624E-82 0.247571549358E+81 -0.113106546263E-15 -0.163353747869E-18 0.151312363323E+81 -0.106772578165E-13 -0.872659582477E-19

FREQ. 2 15 51.07

THE EIGENMODE IS:

-0.195489025862E-01 0.195489025862E-01 0.195489025866E-01 -0.195489025866E-01 -0.113105038006E-01 0.113105038006E-01 0.113105038006E-01 0.113105038006E-01 -0.113105038009E-01 -0.157002934562E+01 -0.200987708516E-14 0.249314049756E-15 0.238580770746E+01 -0.908429358984E-15 -0.259769184516E-15

FREQ. 3 15 72.46

THE EIGENHODE 15:

-0.102992774995E+00 0.102992774995E+00 -0.102992774995E+00 0.102992774995E+00 -0.737127534161E-01 0.737127534162E-01 -0.737127534162E-01 0.737127534161E-01 0.415087456688E-16 -0.390988390826E-13 0.207834873310E-01 -0.163305282336E-16 -0.692148132385E-13 0.958531603752E-02

FREQ. . IS 73.56

THE EIGENMODE IS:

0.122676520215E+00 0.122676520215E+00 -0.122676520215E+00 -0.122676520215E+00 0.875900670464E-01 0.875900670464E-01 -0.875900670464E-01 -0.875900670464E-01 0.509500460094E-14 0.265118647121E+01 0.779490712125E-15 0.565060134751E-14 0.119688660478E+01 -0.398318113058E-15

LOAD CORBINATIONS ----- MEMBER FORCES----- LEVEL NO. 1

COLUMN FORCES

LINE LOAD	TORSIONAL		AXIS	AXIAL	MINOR	AXIS	HAJOR	MINDR
1 1	HOMENT 0.0098	TOP HOMENT 560.3377	BOT MOMENT 1168.5196	FORCE 27.8509	TOP MOMENT -1279.1362	BOT HOHENT - 1311.9867	SHEAR 12.0060	SHEAR -17.9939

ſ

Ł	1	9.0000	560.3377	1168.5196	27.8509	-1279.1362	-1311.9867	12.0060	-17.9939
3	1	0.0000	560.3377	1168.51%	27.8509	-1279-1362	-1311-9867	12.0060	-17.9939
4	1	0.0000	560.3377	1168.5196	27.8509	-1279.1362	-1311.9867	12.0060	-17,9939
COLUMN	STRESSES								
LINE	LOAD	TOP-MAX	TOP-MIN	BOT-HAX	BOT-HIN	SHEAR-MAJ	SHEAR-HIN		
1	1	30.3969	-29.0790	32.3650	-31.0452	0.2840	-0.4257		
2	1	30.3969	-29.0790	32 . 36 30	-31.0452	đ.2840	-0.4257		
3	2	30.3969	-29.0790	32.3630	-31.0452	9.2846	-0.4257		
4	1	30.3969	-29.0790	32.3630	-31.0452	0.2840	-9.4257		
BEAM F	OPCES								
BAY 1		TORSIONAL MOHENT	CENTERLIN I MOMENT	E NOMENTS	BEAM END I MOMENT	J MOMENTS			
		0.0000	-2054.2607	-2054.2607	-2054.2607	-2054.2607			
2	1	0.0000	-2054.2607	-2054.2607	-2054.2607	-2054.2607 -2054.2607			
2 3	1	0.0000 0.0000 0.0000	-2054.2607 -2054.2607 -1094.7275	-2054.2607 -2054.2607 -1094.7275	-2054.2607 -2054.2607 -1094.7275	-2054.2607 -2054.2607 -1094.7275			
2 3 4	1 2 1	0.0000 0.0000 0.0000	-2054.2607 -2054.2607 -1094.7275 -1094.7275	-2054.2607 -2054.2607 -1094.7275 -1094.7275	-2054.2607 -2054.2607 -1094.7275 -1094.7275	-2054.2607 -2054.2607 -1094.7275 -1094.7275			
2 3 4 BEAM 3	I I I STRESSES	0.0000 0.0000 0.0000	-2054.2807 -2054.2607 -1094.7275 -1094.7275	-2054.2607 -2054.2607 -1094.7275 -1094.7275	-2054.2607 -2054.2607 -1094.7275 -1094.7275	-2054.2607 -2054.2607 -1094.7275 -1094.7275			
2 3 4 BEAM 1 BAY	1 1 STRESSES	0.000 0.000 0.000 0.000	-2054.2807 -2054.2607 -1094.7275 -1094.7275 J HORMAL	-2054.2607 -2054.2607 -1094.7275 -1094.7275	-2054.2807 -2054.2607 -1094.7275 -1094.7275	-2054.2607 -2054.2607 -1094.7275 -1094.7275			

2	ı	9.1600	4.1600
3	1	2.2169	2.2169
4	1	2.2169	2.2169

-

LOAD COMBINATIONS----- MEMBER FORCES-----LEVEL NO. 2

•

				-					
COLUMN	FORCES								
LINE	LOAD	TORSIONAL	NAJOR . TOP HEMENT	AXIS BOT MENENT	AXIAL	HINDR TOP HOMENT	AXIS BOT HOMENT	MAJOR	HINDR
ı	1	0.0000	734.5104	534.3898	8.7694	-795.2576	-775.1244	8.8118	-10.9054
ź	1	0.000	734.5104	534.3898	8.7694	-795.2576	-775.1244	8.8118	-10.9054
3	1	0.0000	734.5104	\$34.3898	8.7694	-795.2576	-775.1244	8.8115	-10.9054
4	1	0.000	734.5104	534.3898	8.7694	-795.2576	-775.1244	8.8118	-10.9054
COLUMN	STRESSES								
LINE	LOAD	TOP-MAX	TOP-MIN	BOT-MAX	BOT-MIN	SHEAR-MAJ	SHEAR-MIN		-
1	1	19.4779	-19.0630	18.6225	-18.2075	0.2085	-0.2580		
2	1	19.4779	-19.0630	18.6225	-18.2075	0.2085	-0.2580		
3	1	19.4779	-19.0630	18.6225	-18.2075	0.2085	-0.2580		
4	1	19,4779	-19.0630	18.6225	-18.2075	0.2085	-0.2585		
BEAM F	ORCES								
		TOPSTONAL	CENTERL IN	F PERFITS	BEAM END	TTTEFNTS			
BAT	LOAD	HOMENT	I HOMENT	J HOMENT	I NOMENT	HOMENT			
1	1	6,000	-795.2576	-795.2576	-795.2576	-795.2576			
2	i	0.0000	-795-2576	-795.2576	-795.2576	-795.2576			
3	1	0.000	-734.5104	-734.5104	-734.5104	-734.5104			
4	ı	0.0000	-734.5104	-734.5104	-734.5104	-734.5104			
BEAM	STRESSES						-		
BAY	LOAD	I NORMAL	J NORMAL						
1	1	1.6104	1.6104						

-

2	1	1.6154	1.6104
3	1	1.4874	1.4874
4	1	I.4874	1.4874

STATIC AND OTNATIC LOAD CONDINATION ----- LATERAL AND BOTATIONAL M. C. DISPLACEMENTS

56
46
00
54
18
00

.

THE STEEL WEIGHT IS 36.8202 THE CONCRETE WEIGHT IS 0.0000 THE OBJECTIVE VALUE IS 36.8202

ACTIVE CONSTRAINTS

TYPE	LEVEL	LOCATION	LOAD	IDENT	VALUE
D.DIS	2	0	1	1	0.97759
0.015	1	0	1	1	0.59803

THE END OF OPTIMIZATION CYCLE ... 0 .

THE START OF OPTIMIZATION CYCLE 1.

COLUMN ID	5		TOPS I	HAJ I	FIN I	<u>01</u>	28		BF	ш	ᅖ	13	52	53
1	50000.00	34.05	60.04 70	540.90	223.24	0.00	8.00	35.46	11.49	0.50	0.50	30.00	30.00	24.00
2	30000.00	45.89	54.92 100	53.29	302.89	C.00	0.05	37.37	11.76	0.50	0.50	30.00	30.00	24.00
3	30000.00	39.04	40.66 76	544.06	223.11	0.00	9.00	35.45	11 48	0.50	0.50	30.00	30.00	24.00
4	30000.00	45.78	54.69 106	604.55	301.60	0.00	0.00	37.35	11.75	0.50	0.50	36.00	30.00	24.00
5	30000.00	39.05	40.69 76	48.98	223.24	0.00	0,00	35.46	11.40	0.50	0.50	30.00	30,00	24.00
6	30000.00	45.89	54.92 106	53.29	302.89	0.00	0.00	37.37	11.76	0.50	0.50	30.00	30.00	24.00
7	30000.00	39.04	40.66 76	44 . 26	223.11	0.00	0.00	35.45	11.40	0.50	0.50	38.00	30.00	24.00
8	30000.00	45.76	54.69 106	04.55	361.60	0.00	0.00	37.35	11.75	0.50	0.50	30.00	30.00	24.00
							-	,						
BEAH ID	E	TORS]	FLEX I	<u>K11</u>	KJJ	. KIJ	<u>21</u>	50	Q	MS				
1	30000.00	23.19	4092.56	4.00	4.00	2.00	8.05	0.00	30.62	70.00				
z	30008.00	25.64	4791.36	9.00	4.00	2.00	8.00	0.00	31.99	70.00				
3	30000.00	23.10	4092.56	4.00	4.00	Z.00	0.00	0.00	30.62	70.00				
4	30000.00	25.64	4791.36	9.00	9.00	Z.09	D.00	9.00	31.99	76.00				
5	30000 00	77 67	1979 71	4.00	6 00	2 05	0 60	8 ns	30 34	70.00				
-	30000 00	27 64	6198 77	6 66	0.00	2 00	0.00	0.00	30 85	70 00				
ž	10000.00	22 52	1070 23	A 66	6.00	3 00	0.00	0.00	10 14	70 00				
1	30000.00	46.36	41114			2.00	0.00	5.04	30.30	70.00				
	20000.00	57.00	4140.77	4,00	4.00	2.00	0.00	0.00	30.85	/0.00				

THE EIGENSOLUTIONS ARE:

PREQ. 1 IS 20.49

THE EIGENHODE IS:

0.891637384258E-02 -0.893187682823E-02 -0.891637384255E-02 0.893187682820E-02 D.665768873881E-02 -0.667249274348E-02 -0.665766873878E-02 0.667249274346E-02 D.269154945822E+01 -0.109524691125E-04 -0.538285531579E-14 0.140873690117E+01 -0.333092315253E-05 -0.212242934901E-14

FREQ. 2 IS 51.36

THE EIGENMODE IS:

-0.148667286265E-01 0.148864138929E-01 0.148867286265E-01 -0.148864138929E-01 -0.722042908854E-02 0.723728838285E-02 0.722042908856E-02 -0.723728838287E-02 -0.147843456606E+01 0.293819469589E-04 -0.599701436520E-15 0.256455694403E+01 D.102061568314E-04 0.127636420565E-14

FREQ. 3 IS 65.24

THE EIGENMODE IS:

0.774368112126E=01 D.775637490004E=01 =0.774368112126E=01 =0.775637490004E=01 0.506401532383E=01 0.507554082226E=01 =0.506401532383E=01 =0.507554082226E=01 0.260407736320E=04 0.284395526195E+01 =0.214690466296E=15 =0.212390576749E=04 0.110032987374E+01 =0.841725630297E=16

FREQ. 4 IS 67.65

THE EIGENMODE IS:

-0.6457511349108-01 0.6468009293988-01 -0.6457511349088-01 0.646800929396E-01 -0.419342956755E-01 0.420306245481E-01 -0.4193429567588-01 0.4203062454858-01 0.624045719438E-12 0.262775089393E-13 0.232061180657E-01 0.326541266515E-12 0.102101237674E-13 0.417091681091E-02

LOAD COMBINATIONS ----- MEMBER FORCES ----- LEVEL NO. 1

COLUMN	FORCES								
LIME	LOAD	TORSIONAL	MAJOR TOP ROMENT	AXIS BOT MOHENT	AXIAL FORCE	MINOR TOP MOMENT	AXIS AOT MOMENT	MAJOR SHEAR	MINOR
1	1	0.0000	248.9221	1337.3682	24.6404	-1137.9263	-1203.5785	11.0159	-16.2604
2	L	0.0000	248.5042	1331.6098	24.6404	-1133.8806	-1198.8484	10.9730	-16.1995
3	1	0.000.	248.5710	1337.3426	24.6404	-1137.9157	-1203.5732	11.0154	-16.2603
4	1	0.0000	248.5552	1331.6353	24.4404	-1133.8701	-1198.6431	10,9735	-16.1994
COLUMN	STRESSES								
LINE	LOAD	TOP-MAX	TOP-MIN	BOT-MAX	90T-MIN	SHEAR-MAJ	SHEAR-MIN		
1	1	23.0557	-21.9818	26.2389	-25.1650	0.2401	-0.3544		
Z	1	23.0655	-21.9891	26.2385	-25.1621	0.2397	-0.3538		
3	1	23.0554	-21.9815	26.2388	-25,1648	0.2401	-0.3544		
٩	ı	23.0654	-21.9895	26 - 2384	-25.1621	0.2397	-0.3538		
BEAR F	ORCES			-					
		TORSIONAL	CENTERLIN	E HOHENTS	BEAM END	HOMENTS			
BAT	LOAD	MOMENT	I MOMENT	J MORENT	I MOMENT	J HOMENT			
I	1	0.0001	-1865.6129	-1861.7582	-1865.6129	-1861.7582			
2	1	-0.0001	-1861.7356	-1865.5902	-1861.7356	-1865.5902			
3	1	-0.0038	-772.1616	-772.0699	-772.1616	- 772 . 0699			
4	1	0.0039	-771.9369	- 772 . 0286	- 771 . 936 9	-772,0286			
BEAM	STRESSES								
BAY	LOAD	I NORMAL	J NORMAL						
2	ı	6.2274	6.2145						
ź	1	6.2144	6.2273						
3	1	2.8354	2.6369						

LOAD COMBINATIONS ----- MEMBER FORCES----- LEVEL NO. 2

2.8356

2.8359

1

COLUMN	FORCES								
LINE	LOAD	TURSIONAL	HAJOR TOR DOMENT	AXIS BOT MOMENT	AXIAL FORCE.	HINOR	AXIS BOT MOMENT	MAJOR	MINOR
1	1	0.0000	630.9762	523.2396	8.0631	-753.2510	-727.6904	8.0154	-10.2843
z	1	0_0000	630.8500	523.4325	8.9632	-753.1312	-727.8738	8.0159	-10.2248
3	1	0.0000	630.8674	523.1577	8.0631	-753.2385	-727.6783	8.0141	-10.2641
4	2	0.0000	630.9588	523.5145	8.0632	-753.1187	-727.8617	8.0172	-10.2846

COLUMN STRESSES

LINE		TOP-MAX	TOP-HIN	BOT-HAX	BOT-MIN	SHEAR-MAJ	SKEAR-MIN
1	1	20.9072	-20.4942	20.0046	-19.5916	0.2053	-0.2634
2	ı	20:9146	-20.5015	20.0201	-19.6070	0.2053	-0.2635
3	L	20.9066	-20.4936	20.0041	-19.5912	0.2052	-0.2634
4	1	20.9146	-20.5014	20.0200	-19.6069	0.2054	-0.2635
BEAM F	ORCES						
		TORSIONAL	CENTERLIN	E MOMENTS	BEAM END	MOMENTS	
BAY	LOAD	HOMENT	I HOHENT	J ROMENT	I MOMENT	J HOMENT	
1	1	0.0000	-753.2509	-753.1314	-753.2509	-753.1314	
2	1	0.0000	-753.1187	-753,2383	-753.1187	-753.2383	
3	1	-0.0001	-630.9762	-630,9589	-630.9762	-630.9589	
4	1	0.0002	-630.8500	-630.8673	-630.8500	-630.8673	

BEAM STRESSES

BAY	LOAD	I NORMAL	J NORMAL
1	1	2.5176	2.8172
2	1	z.8171	2.8176
3	1	2.4074	2.4073
4	1	2.4069	2.4069

STATIC AND DYNAMIC LOAD COMBINATION-----LATERAL AND ROTATIONAL H. C. DISPLACEMENTS

.

. -

LEVEL	DIRECTION	1	
2	x	0.9199636	
2	Υ.	8.0677994	
2	ROTH	9.000000	
1	x	0.4627363	
1	۲	0.0262317	
1	ROTN	0.000000	
THE. STE	EL WEIGHT IS	29.8463	
THE CON	CRETE WEIGHT IS	0.0000	
THE OB.	ECTIVE VALUE IS	29.8483	

ACTIVE CONSTRAINTS

.

TYPE	LEVEL	LOCATION	LDAO	IDENT	VALUE
0.015	2	0	1	1	0.91996
D.DIS	1	0	1	1	0.48274

THE END OF OPTIMIZATION CYCLE 1 . THE STAPT OF OPTIMIZATION CYCLE 2 .

THE END OF OPTIMIZATION CYCLE 6. THE START OF OPTIMIZATION CYCLE 9.

Reproduced from best available copy. **T** •

THE FINAL OPTIMAL RESULTS ARE:

COLUMN_ID	E	٨	TORS I	<u>tan I</u>	MIN I	DI	<u>DB</u>	P	<u>8F</u>	TP	<u>11</u>	15	CS .	55
1	30000.00	19.06	10.73	1754.63	66,99	0.00	0.00	22.01	9.01	0.50	0.50	30.00	30.00	24.00
2	30800.00	37.42	37.58	7006.95	206.22	0.00	0.00	34.87	11.30	0.50	0.50	30.00	30.00	24.00
3	30000.00	19.85	11.58	1907.65	71.05	0.00	0.00	22.92	9.17	0.50	0.50	30.00	30.00	24.00
4	30000.00	25.95	19.04	3305.33	105.09	0.00	0.00	28.62	10.17	0.50	0.50	30.00	30.00	24.00
S	30800.00	19.40	11.09	1819.12	68.69	0.00	0.00	22.40	9.08	0.50	0.50	30.00	30.00	24.00
6	30000.00	25.52	18.46	3193.68	105.13	0.00	0.00	28.28	10.11	8.5D	0.50	30.00	30.00	24.00
7	30000.00	19.33	10.99	1802.12	68.24	0.00	0.00	22.30	9.06	0.50	0.50	30.00	30.00	24.00
8	30000.00	25.45	18.37	3177.61	L04.71	0.00	0.00	28.23	10.10	0.50	0.50	30.00	30.00	24.00
BEAM ID	50000.00	<u>1085 1</u> 3.61	<u>FLEX I</u> 204.09	<u>KII</u> 4.00	<u>K.J.J</u>	<u>KIJ</u> 2.00	<u>91</u> 9.95	<u>0</u> . 0.40	D 14.49	<u>MS</u> 70_00				
ž	30000.00	12.42	741.22	4.00	4.00	2.00	0.00	0.00	19.66	70.00				
3	30000.00	3.52	199.01	4.80	4.00	2.00	0.00	0.00	16.60	70.00				
4	30000.00	10.57	626.22	4.00	4.00	2.00	8.00	0.00	18.92	70.00				
5	30000.00	0.30	15.35	4.00	4.00	2.00	0.00	0.00	8.18	70.00				
6	30000.00	0.51	26.26	4.00	4.00	2.00	0.00	0.00	9.24	70.00				
7	30000.00	0.31	15.58	4.00	4,00	2.00	0.00	0.00	8.21	70.00				
8	30000.00	0.50	26.D6	4.00	4.00	2.00	0.00	0.00	9.22	70.00				

۰.

EIGENVALUES AND EIGENVECTORS

0.160489113947E+03	0.447428079880E-02	-0.5706048002408-02	-0.536909596101E-02	0.5395791124685-02	0.290071926717E-02
-0.419089808628E-02	-0.379417561046E-02	0.381008288758E-02	0.317422567347E+01	-0.166022664703E-01	-0.470291366208E-03
0.125285029271E+01	-0.6201833818128-02	-0.1911739341148-03			
0.577748944478E+03	0.218699319209E-02	-0.5346362991998-03	0.798908975281E-04	-0.229667739362E-02	0.124104114236E-02
-0.470491658327E-03	0.1915004010812-03	-0.1539301865968-02	0.526088755678E-01	0.317444185824E+01	0.797852181680E-02
-0.428167145761E-01	0.9063515973482+00	0.2722243911732-02			
0.100969827649E+04	0.597437469504E-02	-0.7630097909202-02	0.192924929505E-02	-0.133033092984E-02	0.2677308536338-02
-0.420410150184E-02	0.2193397410352-02	-0.1858025765408-02	0.650852291961E+00	-0.810083259345E+00	0.262938966843E-01
-0.1399614006352+01	-0.167518564680E+00	0.752486556357E-02			
0.1071353491728+04	-0.217770524447E-02	0.149574958500E-02	D.812295869640E-02	-0.788147572521E-02	0.674135510432E-03
-0.112348085759E-02	0.381558013830E-02	-0.367388453168E-D2	-0.113895120206E+0L	-0.362351575624€+00	0.140970888527E-01
0.268982906760E • 01	-D. 716034401920E-01	0.385517465293E-02			

STATIC LOAD COMBINATION-----HEMBER FORCES-----LEVEL NO. 1

COLUMN	FORCES								
LINE	LOAD	TORSIONAL	MAJOR TOP HOMENT	AXIS BOT HOHENT	AXIAL Force	MINOR TOP HOMENT	AXIS BOT HOMENT	MAJOR Skear	MINOR
1	1	2.0889	-824.1856	2621-6795	6.8810	-531.1919	-676.3302	12.4825	-6.3856
2	1	1.0582	-1315.6553	3069.7034	6.6554	- 344 . 8037	-387.6917	12.1609	-5.0868
3	1	1.0258	-1258.5435	2972.3562	5.8925	-206.3345	-239.5181	11.9015	-3.0962
4	1	1.0211	-704.7716	1023.4085	6.1063	-205.9569	-238.7767	2.2128	-3.0864
COLUMN	STRESSES	•							
LINE	LOAD	TOP-MAX	TOP-MIN	BOT - MAX	80T-RIN	SHEAR-MAJ	SHEAR-MIN		
1	L	16.7847	-16.4169	25.2334	-24.8656	0.3336	-0.2241		
2	L.	22.1719	-21.6589	31.7826	-31 . 26 96	0.4695	-0.1960		
3	1	15.7243	-15.2624	24.9081	-24.4462	9.4664	-0.1213		•
4	1	13.3051	-12.8253	16.3036	-15.8238	0.0569	-0.1213		
BEAM P	ORCES								
BAY	LOAD	TORSIONAL	CENTERLIN I MOMENT	NE MOMENTS J MOMENT	BEAN END I MOTIENT	HOMENTS J HOMENT			
I	1	-1.2449	-803.2554	-666.7121	0.0000	0.0000			
z	1	- 0.9906	- 154 . 0454	- 354 . 8682	a.0000	6.0000			•
_ 3	1	-0.0237	-24.0854	-24.9060	0.0000	9.0000			
4	ı	-0.0049	-62.1952	-62.1641	0.0000	a.coso			
BEAM	STRESSES								
BAT	LOAD	I NORMAL	J NORMAL						
1	1	10.6516	8.8410						
2	1	5.3493	5.3617						
3	1	4.2380	4.3824						
4	1	LL.0075	11.0020						

STATIC LOAD COMBINATION-----MEMBER FORCES-----LEVEL NO. 2

Υ

COLUMN	FORCES								
LINE	LOAD	TORSIONAL	MAJOR TOP HOMENT	AXIS BOT HOHENT	AXIAL Force	MINOR TOP MOMENT	AXIS BUT HOHENT	MAJOR SHEAR	HINOR Shear
1	1	1.2750	25.8315	847.0261	2.0343	-272.7681	-272.0872	6.0615	-3.7837
2	1	1.3753	\$7.0806	1379.0954	1.9091	-290.5239	-321.9133	9.9734	-4.2530
3	1	1.3173	\$7.0831	1321.6983	1.8901	-142.7534	-148.5289	9.5749	-2.0228
4	1	I.3061	25.5940	728.6870	1.9855	-142.3890	-148.0648	5.2381	-2.0170
COLUMN	STRESSES								
LINE	LOAD	TOP-HAX	TOP-MIN	BOT-MAX	BOT-MIN	SHEAR-MAJ	SHEAR-MIN		
1	1	18.6134	-18.3999	23.7181	-23.5047	0.3160	-0.1985		
2	1	19.1820	-18.9897	29.1467	-28.9544	0.5024	-0.2142		
3	1	9.8811	-9.6862	18.0490	-17.8541	0.4936	-0.1043		
4	1	9.7130	-9.5073	14.4398	-14.2341	0.2713	-0.1045		
BEAM F	ORCES								
BAY	LCAD	TORSIONAL	CENTERLIN I HOMENT	E MORENTS J HOMENT	BEAM END	HOMENTS J MOMENT			
1	1	-0.4592	-272.7573	-290.5077	0.0308	0.0000			
2	1	-0.4593	-142.3998	-142.7695	4.0000	0.0000			
3	1	-0.0108	-26.2907	-26.0532	0.0000	0.0000			
4	1	-0.0162	-56.6214	-56.6239	4.0009	0.0000			
BEAM	STRESSES								
BAT	LOAD	I NORMAL	J NORHAL						
1	1	9.8145	10.4532						
2	ĩ	5.2249	5.2385						
3	L	7.0096	6.9463						
4	1	14.9255	14.9261						
314175	AND STRUCTLE LE								
LÉVEL	DIRECTION	1							
z	×	0.9177651							
2	ROTN	0.6303476 0.0025926							
ı	x	0.3768472							
1	ROTH	0.1797925 0.0006670							
THE ST	EL WEIGHT IS	10.97	26						
THE CON	CRETE NEIGHT I	S 0.00	00						
THE TOT	AL NEIGHT IS	10.97	26						

3. Input Data of Example II

.

•

I 5 3. 16 I I 2 IO IG 2. 0.1719 0.0451 .10 .03 2 IG 11 20 22 3 0 2THO STORY MIXED STRUCTURE 3 00.0 1550.0 0.0389 0.925 0.0 0.5006 .46716 0.0 0.0221 .95816 0.0 0.4530 .7740 0.0 0.0423 .7319

15	50.0	12100.0						
0.0	2651	1.0	20.47	0.5008	0.48716	0.0 0.	0124215	.90516
	0.0	0.04615	1.0	78.462	0.00412	1.0	7.64	
12	100.	20000.						
0.0	5182	1.0	159.08	0.5006	0.48716	0.0 0.	0124215	0.90516
	0.0	0.05200	1.0	56.0	0.00755	1.0	0.566	
	•••							
. i	1	. 22						
	;							
;	- 7							
;	- i							
	•							
3	4	.22						
ī	;							
ż	ī	. 66						
	;	44						
3500	-	144	6076	10101 8	620	218		
	400	670	005	10373-0				
		400.						
FIRST		144.	. 9058	40489.3	300.	210.		
	450.	450.	080.	000.				
	э.	٥.	٥.	٥.	5.	5.	5.	5.
	3.	5.	5.	5.	5.	5.	10.	10.
	10.	10	10.	10	-	-		

٧

1	۰.	o.						
2	٥.	120.						
3	0.	300.						
•	٥.	420.						
5	290.	Q.						
6	290.	210.						
7	240.	420.						
	600.	0.						
	600.	210.						
16	000.	420.						
	50000.	5.01			. 197	200. 7.44		
20020	3.23				30.00	39.9	YYYY.	/.0
20000.	30.	30.	****.					
·	50000.	5.01				200. 7.44		
1000	3.63	. 390	. 6 3		30.00	30.0	4444.	/.0
20000.	100.	30. E A1	****.		147			
· · · ·	50000.	3.01	• 7		34 . 00	294. 7.44		
80000	9.23	. 300	6000		30.00	36 .9		7.0
20000.	100.00	20. 1 al	****.		147			
· · · ·		3.41			34 88	14.4		
******	34	14						
5	10000	5 01			147	200. 7 84		
. A.A	5 25	106	*1		34 00	14.0	4990	7 6
20000.	¥.,	14.	9999					
6	30000	5.01	,,,,,		. 147	200. 7.86		
- A.O	5.25	. 308	. 23		36.00	36.0	9999.	7.0
20000.	36.	36.	9999					
7	30000	5.01			.147	200. 7.44		
8.0	5.25	. 308	.23		36.00	36.0	9999	7.0
20060.	36.	36.	9999.					
a	38000.	5.01			.147	200. 7.44		
8.0	5.25	. 308	.23		36.00	36.0	9999	7.0
20000.	36.	36.	9999.					
9	30000.	5.01			.147	200. 7.44		
a.e	5.25	. 308	. 23		36.00	36.9	9999.	7.0
20000.	36.	36.	9999.					
10	30000.	5.01			147	200. 7.44		
8.0	5.25	. 308	.23		36.90	36.0	9999.	7.0
20000.	36.	36.	9999.					
	30000.	5.01			-147	200. 7.44		• •
a.u	5.25	. 308	.23		30.00	36.0	4444.	7.9
20000.	30.	30.	4444 .		147			
12	30000.	2.01				200. 7.44		
20000	7.62	. 340	9000		30.00	30.0	****.	/
13	30.00	005	****		081	002 002		
1.0	30000.		1.		100	100	100.0	.001
1.0	0000	0000	9999					
14	30000.	.005			. 003	.002 .002		
1.0	1.	1.	1.		100.	100.	100.0	.001
1.0	9999	9999	9999					
15	30000.	. 005			. 001	200. 200.		
1.0	1.	1.	1.		100.	100.	100.0	. 001
1.0	9999.	9999.	9999.					
16	30000.	.005			. 001	200. 200.		
1.0	1.	1.	1.		100.	100.	180.0	. 00 1
1.0	9999.	9999.	9999.					
17 3	456000000.	2880000.	4000.	4.	6 .	Z. 50.	3.0	1.0
3000.	120.	20.	30000.		.025	1600.	1150.	5.0
20.	50.	3.	9999.			•	• •	
10 3	•56000000.	2860000.	9000.	۹.		ε. 50.	3.9	1.0
3000.	120.	20.	30000.		. 025	1000.	1150.	5.9
19 20.	.UC	3.	400-		4	, t-	1.0	1.0
17 7	- 120	2000000	30000.		125	2, 30.	1150	5.0
5000.	120. Kn		30000. 0000		- 763	1000.		5.4
20 1	45A000027	2688888	6000			2 50	3.0	1.0
3009	120.	20.	30000	4.	.024	1600	1150.	5.0
20.	50.	3.	9999.					
1	30000.	11.8	1.12	400.	۵.	4. Z.		8.2536.00
5.	20000.	36.0						
2	30000.	11.8	1.12	400.		4. Z.		8.2536.00
5.	20000.	36.0						

156

,

,

Reproduced from best available copy.

4. Output Solution of Example II

DYNAMIC ANALYSIS MITH DISPLACEMENT CONSTRAINTS THO STORY HIXED STRUCTURE MUMBER OF STORY LEVELS---- 2 NUMBER OF DIFN. LINES---- 10 NUMBER OF DIFN. COL. PROP- 20 NUMBER OF DIFN. COL. PROP- 20 NUMBER OF DIFN. FEF------ 3 NUMBER OF DIFN. FEF------ 3 NUMBER OF DIFN. FEF------ 3 NUMBER OF DALL LEMENTS-- 0 NUMBER OF SIEL COL. PROP- 16 NUMBER OF SIEL COL. PROP- 16 NUMBER OF SIEL COL. PROP- 16 NUMBER OF OF SIEL COL. PROP- 10 PERCENTAGE FOR TERNINATION 2.0 PERCENTAGE FOR TERNINATION 2.0 PER. OF CONSTRAINT-UPPER--0.10 PER. OF CONSTRAINT-UPPER--0.25 CONVERGENCE CONTOR PARA. 3.0 OBJECTIVE FACTOR-STEEL--- 0.22+00 OBJECTIVE FACTOR-CONCRETE- 0.5E-01 STEEL HEMBER PROPERTY COEFFICIENTS FOR IX BETWEEN 0.0 AND 1550.0 CONSTANT 1 0.038960 0.500800 0.022100 0.453000 PROPERTY POWER CONSTANT 2 POWER 0.925000 0.487160 0.958160 0.774000 0.731900 0000000.0 0000000.0 0000000.0 I٧ A J 5X SY 0.042300 0.000000 STEEL MEMBER PROPERTY COEFFICIENTS FOF IX BETWEEN 1550.0 AND 12100.0 POHER 1.000000 0.467160 0.905160 1.000000 1.000000 PROPERTY CONSTANT I CONSTANT 2 0.026510 0.500800 0.012422 0.046150 0.004120 20.470000 0.0000000 0.0000000 78.462000 78.462000 IY A J SX ST STEEL MEMBER PROPERTY COEFFICIENTS FOR IX BETWEEN 12100.0 AND 20000.0 CONSTANT 1 0.051820 0.500800 POWER 1.000000 0.487160 0.905160 CONSTANT 2 159.080000 0.000000 0.000000 PROPERTY IT Å 0.012422 0.052000 1.000000 5X 5Y 56.000000 0.566000 STATIC DISPLACEMENT CONSTRAINTS <u>VALUE</u> 0.220060 0.220000 0.440000 0.440000 LEVEL DIRECTION X Y X X 2 FPEQUENCY CONSTRAINTS 0.000 0.000 0.000 0.000 0.000 0.000 DINARIC DISPLACEMENT CONSTRAINTS YALUE 0.220000 0.220000 0.440000 0.440000 LEVEL DIRECTION X Y X 2 2 STORY DATA LEVEL NO. ID 2 SECNO 1 FIRST <u>HEIGHT</u> 144.00 144.00 MASS(M) 0.41 0.91 <u>119++2</u> 10393.60 40489.30 <u>X(M)</u> 420.00 300.00 <u>Y(M)</u> 210.00 210.00 STATIC LATERAL LOADS ... CASES A. AND B <u>LEVEL NO.</u> 2 1 <u>FX-A</u> 400.0D 450.00 <u>FY-A</u> 400.00 450.00 0.00 0.00 <u>FY-B</u> 0.00 0,00 0.00 0.00 0.00 <u>fx-B</u> 0.00 0.00 STATIC VERTICAL HODAL LOAD <u>COL 1</u> 0.00 5.00 <u>COL 2</u> 0.00 5.00 STORY <u>CQL 3</u> 0.00 5.00 <u>COL 4</u> 0.00 5.00 <u>COL 5</u> 5.00 10.00 <u>CDL 6</u> 5.00 10.00 <u>COL 7</u> 5.00 10.00 <u>COL 8</u> 5.00 10.00 2 LAMP HASS FOR GEOMETRIC STIFFNESS

STORY	COL 1	COL 2	COL 3	<u>COL 9</u>	<u>çol 5</u>	<u>COL 6</u>	<u>COL 7</u>	<u>col a</u>	<u>COL 9</u>	<u>COL 10</u>
2	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0009	0.0000	0.0000
L	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0900

<u>×-×</u> 0.00 0.00

> <u>XA</u> 0.0

<u>CDL 9</u> 5.00 10.00 <u>K-Y</u> 0.00 0.00

<u>YA</u> 0.0

<u>COL 10</u> 5.00 10.00 <u>×78</u> 0.0 0.0 YE 0.0 COLUMN LINE COOPDINATES

LINE	x	ĭ
<u> </u>	0.00	0.00
2	0.00	120.00
3	0.00	300.00
	0.00	420.00
5	240.00	0.00
6	240.00	210.00
7	240.00	420.00
8	600.00	0.00
9	600.05	210.00
10	600.00	420.00

COLUMN ID	1	8	IGRS_I	HAJ_I	<u>HTH I</u>	DI	<u>05</u>	2	<u>bf</u>	ш	DH 13	C3	55	
1	30000.00	6.62	3.54	200.00	5.23	0.00	8.00	14.62	5.iz	0.31	0.23 36.00	36.00	9999.00	
2	30000.00	6.62	3.54	200.00	5.23	0.00	9.00	14.62	5.12	0.31	0.23 36.00	36.00	9999.00	
3	30000.00	6.62	3.54	200.00	5.23	0.00	0.00	14.62	5.12	0.31	0.23 36.00	3é.00	9999.00	
4	30000.00	6.62	3.54	200.00	5.23	0.00	0.00	19.62	5.iz	0.31	0.23 36.00	36.00	9999.00	
5	38600.00	6.62	3.54	200.00	5.23	0.00	0.00	14.62	5.12	0.31	0.23 36.00	36.00	9999.00	
6	30000.00	6.52	3.54	200.00	5.23	0.00	0.00	19.62	5.12	0.31	0.23 36.00	36.00	\$999.00	
7	30000.00	6.62	3.54	200.00	5.23	0.00	0.00	14.62	5.12	0.31	0.23 36.00	36.00	9999.00	
8	30000.00	6.62	3.54	290.00	5.23	0.00	0.00	14.62	5.12	0.31	0.23 36.00	36.00	9999.00	
9	30000.00	6.62	3.54	200.00	5.23	0.00	0.00	14.62	5.12	0.31	9.23 36.00	36.00	9999.00	
10	30000.00	6.52	3.54	200.00	5.23	0.00	0.00	16.62	5.12	0.31	0.23 36.00	36.00	9999.00	
11	30000.00	6.62	3.54	200.00	5.23	0.00	0.00	19.62	5.12	0.31	0.23 36.00	36.00	9999.00	
12	30000.00	6.62	3.54	299.00	5.23	0.00	0.00	14.62	5.12	0.31	0.23 36.00	36.00	9999.00	
13	30000.00	0.02	0.00	0.00	0.00	0.00	0.00	1.08	0.55	1.00	1.00 100.00	100.00	100.00	
14	30000.00	0.02	0.00	0.00	0.00	0.00	0.00	1.08	0.55	1.00	1.00 100.00	100.00	100.00	
15	30000.00	0.02	0.00	0.00	0.00	0.00	0.00	1.08	¢.55	1.00	1.00 100.00	160.00	100.00	
16	30000.00	0.0Z	0.00	0.00	0.00	0.90	0.00	1.98	0.55	1.00	1.00 100.00	100.00	100.00	
COLUMN ID	X		۸ .	1 <u>1 KII</u>	<u>K 1 1</u>	KIJ	15	çs	<u>55 EC</u>	و :		<u>P0</u>	L.	ĝ
17	2633972.	1	734. 73	166. 9.9	4.0	2.0	50.0	3.0	1.0 3000.	0 120.0	29.030000.0	0.0252	707138.	1150.
18	2633972.	1	734. 73	166. 4.9	4.0	2.0	50.0	3.0	1.0 3000.	.0 120.0	20.030000.0	0.0252	707138.	1150.
19	2633972.	1	734. 73	166. 4.0	4.0	2.0	\$0.0	3.0	L.O 3000.	a 120.0	28.030000.0	0.0252	707138.	1150.
20	2633972.	1	734. 73	166. 9.0	4.0	2.0	50.0	3.0	1.0 3000.	0.021 0.	20.030000.0	0.0252	707138.	1150.

COLUMN STRE	SS AND SIDE	CONSTRA	INT INFOR	HATION						
COLUMN ID	SIS		SCS	013		DCS	HTN.	IX	MAX. IX	
1	36.00	:	56.00	36.90		36.00	7.	.00	20000.00	
z	36.00	1	36.00	36.00		36.00	7.	.00	20000.00	
3	36.00	1	56.00	36.00		36.00	7.	00	20000.00	
4	36.00	:	36.98	36.00		36.00	7.	00	20000.00	
5	36.00	:	56.00	36.09		36.00	7.	.00	20000.00	
6	36.00	1	56.DQ	36.00		36.00	7.	00	20000.00	
7	36.00		56.00	36.00		36.00	7.	.00	20000.00	
8	36.00		56.90	36.00		36.00	7.	.00	20000.00	
9	36.00	1	56.00	36.00		36.00	7.	00	20000.00	
10	36.00		36.00	36.00		36.99	7.	00	20000.00	
11.	36.00	:	56.09	36.00		36.00	7.	00	20000.00	
12	36.00		16.00	36.00		36.00	7.	00	20000.00	
13	100.00	10	10.00	9999.00	9	999.00	٥.	00	1.00	
14	100.00	10	10.00	9999.00	9	999.00	0.	00	L.00	
15	100.00	11	0.00	9999.00	. 9	999.00	0.	00	1.00	
16	100.00	10	20.00	9999.00	. 9	999.00	0.	90	1.90	
COLUMN TO	ST 5		SÉS	213		065	MIN.		MAX. H	
17	50.00		3.00	\$0.00		3.00	5.	.00	20.00	
16	50.00		3.00	50.00		3.00	5.	00	20.00	
19	50.00		3.00	50.00		3.00	5.	00	20.00	
20	50.00		3.00	50.00		3.00	5.	00	20.00	
BEAM ID	1	<u>tors I</u>	<u>FLEX I</u>	<u>KII</u>	<u>K J J</u>	<u>Kij</u>	<u>01</u>	0.1	0	10
1	30000.00	6.88	400.00	4.00	4.00	2.00	0.00	0.00	17.10	36.00
2	30000.00	6.88	400.00	4.00	4.00	2.00	0.00	e.oo	17.10	36.00
3	30000.00	6.88	400.00	4.00	4.00	2.00	0.00	4.90	17.10	36.00
*	30000.00	6.88	400.00	4.00	4.00	2.00	0.00	4.00	17.10	36.00
5	30000.00	6.68	400.08	4.00	4.00	2.00	0.00	0.00	17.10	36.00
6	30000.00	6.88	400.00	4.00	4.00	2.00	0.00	6.00	17.10	36.00
7	30000.00	6.88	409.00	4.00	4.00	2.00	0.00	6.00	17.10	36.00
8	30000.00	6.88	400.00	- 4.00	4.00	2.00	0.00	0.00	17.10	36.00
9	30000.00	6.88	400.00	4.00	4.00	2.00	0.00	6.00	17.18	36.00
10	30000.00	6.88	400.00	4.00	4,00	2.00	60.00	0.00	17.10	36.00
11	30000.00	6.88	400.00	4.00	4.00	2.00	60.00	0,00	17.10	36.00
12	30000.00	6.88	400.00	4.00	4.00	2.00	60.00	0.00	17.19	36.00
13	30000.00	6.68	400.00	4.00	9.80	2.00	59.00	0.00	17.10	36.00
19	30000.00	6.86	400.00	4.00	4.00	2.00	60.00	6.00	17.10	36.00
15	30000.00	6.68	400.00	4.00	4.00	2.00	60.00	0.00	17.10	36.00
16	30000.00	6.88	,400.00	4.00	4.00	2.00	60.00	0.00	17 10	36.00
17	30000.00	6.88	400.00	4.00	4.00	2.00	68.00	0.00	17.10	36.00
18	30000.00	0.00	0.00	4.00	4.00	2.00	0.00	0.00	1.27	99.99
19	30000.00	0.00	q.oq	4.00	4.00	2.00	0.00	0.00	1.27	99.99
20	30000.00	0.00	9.00	4.00	4.00	2.00	0.00	0.00	1.27	99.99
21	30009.00	0.00	c.00	4.00	4.00	2.00	0.00	0.00	1.27	99.99
22	30000.00	0.00	0.00	4.00	4.00	2.00	0.00	0.00	1.27	99.99

BEAM STRESS AND SIDE CONSTRAINT INFORMATION

BEAM ID	585	DES	<u>HIN, I</u>	<u>Max. 1</u>
1	36.00	36.00	5.00	20000.00
2 1	36.00	36.00	5.00	20000.00
3	36.00	36.00	5.00	20000.00
4	36.00	36.00	5.00	20000.00
5	36.00	36.00	5.00	20000.00
6	36.00	35.00	5.00	20000.00
7	36.00	35.00	5.00	20000.00

8	36.00	36.00		5.00	20000.0	a	
9	36.00	36.00		5.00	20000.0	đ	
10	36.00	36.00		5.00	20000.0	0	
11	36.00	36 00		5 00	20000 0	0	
12	36.00	36.00		5 00	20000.0		
13	34 00	36.00		5.00	20000.0		
16	36.00	36.00		5.00	20000.0		
16	36.00	30.00		3.00	20000.0		
	30.00	30.00		5.00	20000.0		
10	36.00	36.00		5.00	20000.0	0	
17	36.00	36.00		5.00	20000.0	ti i	
18	99.99	1000.00		9.00	1.0	10	
19	99.99	1000.00		0.00	1.0	đ	
20	99.99	1000.00		0.00	1		
21	99.99	1000.00		0.00			
27	99 99	1000.00				~	
PEF ID	<u>2005</u> 1	11 9.000	<u>VL</u> 0.000		192 0. 200	<u>VR</u> 0.000	H 8.020
z	ĩ	0.000	0.000		0 000	0 000	0.050
i	· :	0.000	0.000		A 000	0.000	0.030
•	•		4.464			e.040	0.020

BEAH LOCATIONS

BAT	<u>LEVEL</u> 2	<u>10</u> 1	2	8 <u>10</u> 18	<u>5EM</u> 0	<u>vici</u> 0	<u>VLC2</u> 0	<u>YLC3</u>
1	L	1	z	1	\$	1	0	3
2	2	4	5	10	۵	1	0	3
ž	ī	6	5	11	ō	ĩ	ž	p.
	•	•			•		•	
1	1			14		-		
•	•	•	•	• •	•	•	•	v
4	2	2	3	19	0	Ð	۵	0
4	Î.	ź	3	2	Ó	1	٥	3
_		_						
5	2	3		20	0	•	0	0
5	1	3	. 4	3	0	1	0	3
6	2	6	7	14	D	1	0	3
6	ī	6	7	15	ō	i	ż	ò
7	2	ę	10	16	0	1	0	3
7	1	۰	10	17	0	1	2	0
	•							•
2	÷		2	4				
•	1	I.		4	0	1	U,	3
	2	4	7	22	0	6	0	c
9	ī	4	ż	5	ó	ĩ	0	3
				-		-		
10	z	5	6	6	0	L	0	3
10	1	5	•	7	0	1	2	0
		-						
41	2	-	10					· ·
44	1		10		0		٤	v .

BEAM PROPERTY SET ID HUMBER

51091 2	847_1	BAY 2	BAY 3	BAY_4	BAY 5	BAY 6	BAY 7	8AY 0	BAY 9	<u>BAY 10</u>	<u>BAY 11</u>
ĩ	ĩ	ii ii	13	2	3	15	17	4	5	7	9

.

GENERATED BEAM LDADS ... LOAD CASE 1

STORY	BAY_1	BAY 2	BAT 3	BAY 4	BAT 5	BAY 6	<u>RAY 7</u>	BAY 6	BAY 9	BAY_10	BAY 11
z	0	1	1	¢	a	1	1	0	•	1	1
1	1	1	1	1	1	1	1	1	1	1.	1

GENERATED BEAM LOADS ... LOAD CASE 2

STORY	BAY_1	BAY 2	BAY_3	BAY 4	<u>847.5</u>	BAY 6	BAY 7	BAT 8	<u> 547 9</u>	BAY 10	BAY 11
2	0	٥	٥	0	0	0	0	0	0	0	0
1	0	ź	Z	0	D	2	2	0	0	z	2

GENERATED BEAM LOADS ... LOAD CASE 5

STORY	BAY 1	BAY 2	BAY 3	BAT 4	BAY 5	BAY 6	BAT 7	BAY B	BAY 9	01 TA6	BAY 11
z	0	3	3	0	đ	3	3	•	D	3	3
1	3	0	0	3	3	٥	٥	3	3	0	Û

COLUMN LOCATIONS

LINE	LEVEL	CID	HD IP	GEN	
1	2	13	- 5	0	
1	1	1	5	0	
2	z	14	3	0	
2	1	z	3	0	
3	2	15	4	0	
3	1	3	4	0	

.

Dest available copy

191

20000100 9789 20000100 9789 1000110 9789 1000110 9789 2 T 0 I 2017 ATCT 11.10 26.00 17.10 26.00 N Q 0010 0010 10 00.0 5-00 5-00 KIN 00-00% 00-00% 1 x314 51A 00.4 00.4 00'9 00'9 <u>11x</u> <u>דבאבר</u> 1973 אר 2 2 2 2 2 1 2 ם גביצא ו <u>ו</u> גרבז 00 ' 92 00 ' 92 NZ 01'21 01'21 0010 0010 70 00.0 00.0 5'00 5'00 KIN * 00 * 00 * 00 K 11 00'* 00'* 11x <u>1 6401</u> 68.6 68.6 1 00-00% 00.00002 00-00% I X313 3 00001 2 16721 16721 16721 16721 20000-00 99'9 00'00 00'00 20000-00 00'0 00'00 20000-00 00'99 00'00 507A 00 . 00 66 . 66 26 . 00 01'21 22'1 0 10 00.0 10 00.0 5'00 5'00 KIN 00'9 *'00 K) 00'9 00'9 11× ארכז ארכז ļ 2 AFC3 1 2001 0010 88.0 <u>е 1307-100-100</u> 2 20000,00 2 30000,00 2 30000,00 ז 0 <u>הרכז</u> 00.004 00.0 1 X311 0 0 AFCS 60.4 4.00 4.00 00 195 66 166 5N 01'21 22'1 0 00-00 00-00 00-00 00 0 00 0 10 \$100 \$100 \$100 00'9 *'00 KII 2 8772 00.4 00.4 KII 4.00 4.00 1 X314 00'005 20000.00 e.e.e 20000.00 e.e.e 66.e 5 AFC5 ן 1 גרכז 00192 00192 58 01'21 D1'21 0 0010 0010 0010 00.09 00.09 10 2100 2100 KIT ; ा 20000°00 € 999 5 20000°00 € 999 हरूर स्टब्स्ट € 1042 I ז 5 ז 0 ארכז ארכז 20:00 20:00 NZ 01'41 01'41 00.0 00.0 00-09 00-09 IO 2.00 2.00 2.00 00.4 00.4 60.4 4.00 4.00 00-00+ 00-00+ 1 X314 1 3 0 1023 1 0 121 00.4 4.00 4.00 00.00 ♦.00 KII 00.00* 00.00* I 20000-00 0.20 5 20000-00 0.20 6vy winder 5 7009.20 - L 0 0 AFC5 00195 66166 5N 01.71 75.1 01.00 01.00 01.00 00-0 00-0 IQ 5-00 5-00 KI1 1 20000:00 0.00 5 20000:00 0.00 0.00 16/11 1 1000 0.00 0.00 17/11 1000 0.00 5 515 0 2016 10 00"9E 66 66 EN 00-0 00-0 IO 00'2 00'2 113 00'+ 00'5 01°41 42°1 8 00.00 0.00 0.00 00.4 00.4 41.00 4.00 ₩11 • • 00 • • 00 00 007 00 007 1 x314 I 20000.00 0.00 0.00 5 20000.00 0.00 YEAET E LOGE I BYA HANGES] ې ۲۵۶۰ ז s ז 0 ארכז ארכז 00 91 00 91 5H 01-21 01-21 0 00°0 00°0 00-09 00-09 IO 5.00 2.00 111 20000100 0.00 5 2000000 0 0.00 674 Minuber 5 10837 0 २ २ 29100 29100 NZ 01-71 01-71 0 00.09 00.09 IC 2°00 2°00 111 00"* 00"* 00"* 00 . 4 00 . 4 11× 00'007 00'007 1 X314 0010 0010 70 2512 1 5 5 7 7 00.♦ •.00 1 20000-00 5 20000-00 674 MUREE E איבז ן אוכו 00 95 66 66 58 01°21 22°1 0 0010 0010 00'0 00'0 10 00'2 00'2 00.9 00.9 R 11 00,004 0.00 0.00 00'0 1 5401 2438404 135 0401 ONA 2311434044 MA38 215 00000 - 95 00000 - 95 00000102 0000011 00000.43 00000195 00000-+2 50000°92 00200 43 00000'9E 00000 02 00000"1 V HIH NOTITHEORNE INTATION STOR CONSTRAINT INCOMPANY 00000'6 00000'6 54-00000 54-00000 54-00000 60000.96 60000.96 20000.0000E BRACING ELEMENT INFORMALION

3384 PM 01 135 11434044 M40100

COLUMN PROPERTIES

COLUMN L LEVEL 2 1	<u>INE NO. 1</u> <u>E</u> 30000.0 30000.0	₫ 0 0.02 0 6.62	<u>TOPS 1</u> 0.00 3.54	<u>Haj I</u> 0.00 200.00	<u>min i</u> 0.00 5.23	01 0.00 0.00	0 0.00 0.00	1.08 14.62	85 0.55 5.12	1.00 0.31	<u>TH</u> 1.00 9.23	<u>15</u> 108.00 36.00	<u>CS 55</u> 100.00 100.00 36.00 9999.00	
COLUMN L LEVEL 2 1	<u>INE ND, 2</u> 30000.0 30000.0	4 0.02 0.6-0	<u>TORS I</u> 0.00 3.54	<u>Maj I</u> 0.00 200.00	<u>HIN I</u> 0.00 5.23	0.00 0.00	0.00 0.00 0.00	0 1.08 14.62	<u>BF</u> 0.55 5.12	<u>TF</u> 1.00 0.31	1.00 9.23	<u>TS</u> 100.00 36.00	<u>CS SS</u> 100.00 100.00 36.00 99 99.00	
COLUMN L LEVEL 2 1	<u>INE NO. 3</u> <u>8</u> 30000.0 30000.0	0 0.02 0 6.62	<u>TORS 1</u> 0.00 3.54	<u>1 LAH</u> 00.0 00.005	<u>HIN I</u> 0.00 5.23	0.00 0.00	면 20.0 20.0	0 1.08 14.62	<u>BF</u> 0.55 5.12	<u>1</u> 1.00 0.31	<u>IN</u> 1.00 0.23	<u>TS</u> 100.00 36.00	<u>CS SS</u> 100.00 100.00 36.00 9999.00	
COLUMN L LEVEL 2 1	<u>INE NO. 4</u> 30000.0 30000.0	≜ 0.02 0.62	<u>TOPS 1</u> 0.00 3.54	<u>EAJ I</u> 0.00 200.00	<u>MIN I</u> 0.00 5.23	0.00 0.00	0 <u>0</u> 8 0.00 0.00	D 1.08 14.62	<u>BF</u> 0.55 5.12	<u>TF</u> 1.00 0.31	<u>TN</u> 1.00 0.23	<u>TS</u> 100.00 36.00	<u>55 55</u> 100.00 100.00 36.00 9999.00	
COLUMN L LEVEL 2 I	<u>INE NO, 5</u> <u>E</u> 30000.0 30000.0	<u>ام</u> 6.62 0 5.62 0	<u>TORS_1</u> 3.54 3.54	<u>Maj I</u> 200.00 200.00	<u>MIN I</u> 5.23 5.23	<u>DT</u> 0.00 0.00	0 <u>0</u> 8 0.00 0.00	<u>B</u> 14.62 14.62	<u>BF</u> 5.12 5.12	<u>TF</u> 0.31 0.32	<u>TN</u> 0.23 0.23	<u>79</u> 36.00 36.00	<u>75 55</u> 36.00 9999.00 36.00 9999.00	
<u>COLUMN L</u> LEVEL Z I	<u>INE NO. 6</u> <u>I</u> 263397 263397	X 2. 17 2. 17	≜ 34. 731 34. 731	<u>17 KII</u> 56. 4.0 56. 4.0	<u>KJJ</u> 4.0 4.0	<u>KI</u>] 2.0 2.0	<u>73</u> 50.0 50.0	<u>C5</u> 3.0 3.0	<u>55 EC</u> 1.0 3000.0 1.0 3000.0	 120.0 120.0	<u>_</u> 20.0 20.0	<u>ES</u> 30000. 30000.	RO j G 0.0252707136.1150. 0.0252707136.1150.	0
COLUMN_L LEVEL I	<u>INE NO. 7</u> <u>E</u> 30000.0 30000.0	<u>م</u> 6.62 6.62 0	<u>10RS_1</u> 3.54 3.54	<u>I LAH</u> 00.005 00.005	<u>min i</u> 5.23 5.23	0.00 0.00 0.00	0.00 0.00	14.62 14.62	<u>BF</u> 5.12 5.12	TF 0.31 0.31	<u>∏</u> ₩ 0.23 0.23	<u>TS</u> 36.00 36.00	<u>CS SS</u> 36.00 9999.00 36.00 9999.00	
COLUMN L LEVEL I	<u>INE NO, 6</u> <u>E</u> 30005.0 30000.0	A 6.62 6.62 8	<u>TOR\$_1</u> 3.54 3.54	<u>Máj I</u> 200.00 200.00	<u>min i</u> 5.23 5.23	<u>70</u> 0.00 0.00	0 <u>0</u> 8 0.00 0.00	<u>0</u> 14.62 19.62	<u>BF</u> 5.12 5.12	<u>TF</u> 0.31 0.31	<u>TN</u> 0.23 0.23	<u>TS</u> 36.00 36.00	<u>55 55</u> 36.00 9999.00 36.00 9999.00	
COLUIN L LEVEL 2 J	<u>INE ND, 9</u> <u>I</u> 263397, 263397;	ž. 17 ž. 17	≜) 34. 7316 34. 7316	<u>LT KII</u> 56. 4.0 56. 4.0	4.0 4.0	<u>KI</u> J 2.0 2.0	<u>15</u> 50.0 50.0	<u>C5</u> 3.0 3.0	<u>53 EC</u> 1.0 3000.0 1.0 3000.0	 120.0 120.0	 20.0 20.0	<u>ES</u> 10000. 30000.	<u>FQ</u> <u>J</u> <u>G</u> 0.0252707138, 1150, 0.0252707138, 1150,	0
<u>COLUMN L</u> LEVEL 2 1	<u>INE NO. 10</u> 30000.0 30000.0	≜ 0 6.62 0 6.62	<u>TOPS I</u> 3.54 3.54	<u>I LAM</u> 00.005 00.005	<u>MIH I</u> 5.23 5.23	0.00 0.00 0.00	08 0.00 5.00	14.62	<u>BF</u> 5.12 5.12	<u>1</u> # 0.31 0.31	<u>™</u> 0.23 0.23	<u>15</u> 36.00 36.00	<u>CS 55</u> 36.00 9999.00 36.00 9999.00	
STATIC L	OAD COMBINA	TION (HELLT	IPLIER)											
<u>VLC1</u> 1.0	<u>VLC2</u> 0.0	<u>YLC3</u> 9.0	<u>LAT1</u> 0.0	<u>LAT2</u> 0.0	HCD1 1.0		`							
DYNAHIC_	LOAD CONBIN	ATION (MUL	TIPLIER)											
<u>vici</u> 1.2 1.2	<u>VLC2</u> 1.0 1.0	<u>V1C3</u> 1.0 1.0	LAT1 1.0 0.0	<u>LAT2</u> 0.0 1.0	<u>NGD1</u> 1.9 1.9								1.	
ATE - 3	SEISHIC PR	OVISIONS												
GENER	AL INFORMAT A MAP MUMBER	IDN : R FOR AA -					,							
ARE SEI SEI SEI SEI	A MAP MUHEEI Shic Coeffi Shic Index Shic Mazard Shic Perfor	EXPOSURE	(T) (T) GROUP (T) GORY (T)	LBLE 1-8) LBLE 1-A) LBLE 1-A) LBLE 1-A)		0.4	7 60 4 3 D	SEISHIC	COEFFICIENT	AA	(T/	ABLE 1-8) 0.400	
RES DEF SOI STR	FONSE HODIF: LECTION AMPI L TYPE UCTURAL TYPE EQ. 1: MOMEN	ICATION FA LICATION F E T-RESISTI	CTOR (T) ACTOR (T) 	1812 3-8) 1812 3-8) Ture		e. •	00 50 3	OVERALL	LENGTH AT B	ASE (IN)		600.00	
EG. 1: MOMENT-RESISTING STRUCTURE EG. 0: NON-MOMENT-RESISTING STRUCTURE Material of the structure Eg. 1: Stelf Frame Eg. 0: Concrete Frame Structural Concrete Frame							1							
P V	LAN CONFIGUR Ertical con Eq. 1: Regui	RATION FIGURATION LAR					1 0							
\$01	L PROFILE C	DEFFICIENT	(1)	BLE 3-A)	•••••	1.5	00					,		

.

0) Reproduced from best available copy.

ALLOWABLE DRIFT ACCOPOING TO TABLE 3-C

.

FLOOR NO. ALLOWABLE VALUE (IN) 1 1.44000 2 1.44000

```
THE EIGENSOLUTIONS ARE:
```

FREQ. 1 IS 11.73

THE EIGENMODE IS:

0.332853865507E-02 0.196533478378E-04 0.196535478352E-04 0.332853865507E-02 0.432107790980E-02 0.651771222227E-05 0.432107790979E-02 -0.757991832991E-02 -0.127248646703E-04 -0.757991832978E-02 0.331256190822E-02 0.195623119321E-04 0.195623119319E-04 0.331256190822E-02 0.171480067575E-02 0.383204570725E-05 0.171480067574E-02 -0.499958467614E-02 -0.800229703474E-05 -0.499958467606E-02 0.127090797541E+01 -0.104535755622E-21 -0.257113689661E-17 0.429329751777E+00 -0.265706951226E-21 0.634441821437E-18

FREQ. 2 18 50.14

THE EIGENMODE IS:

D.270355459477E-02 0.164624716429E-04 0.169624716411E-04 0.270355459975E-02 -0.144424107574E-01 -0.241543093059E-04 -0.144424107573E-01 0.117218708276E-01 0.189149639727E-09 0.117218708273E-01 0.272840626420E-02 0.163492508207E-04 0.163492508202E-09 0.272840626420E-02 -0.90289962815E-02 -0.150944464604E-09 -0.90289962813E-02 0.629649347203E-02 0.115699324125E-04 0.629649347165E-02 -0.634305318612E+00 0.322670255702E-21 -0.333832434089E-17 0.860211888566E+00 0.39346627643aE-21 -0.112846293756E-17

FREQ. 3 IS 471.99

THE EIGENMODE IS: -

 0.543148601605E-01
 0.163212546192E-03
 0.163212546406E-03
 0.543148601808E-01
 0.118470045685E+02
 0.113924022530E+00

 0.118470045684E+02
 0.435349817478E+00
 0.391331543416E-02
 0.435349817477E+00
 0.402994007202E-01
 0.125674719441E-03

 0.125674719340E-03
 0.402994007201E+01
 0.795634107085E+01
 0.786214548046E+01
 0.795634107083E+01
 0.280360762074E+00

 0.2649743258663E-02
 0.20360762073E+00
 -0.108944009924E+02
 -0.140923884983E+18
 -0.347558777506E+14
 0.869463321653E+03

 0.617075977200E+18
 -0.832802104352E+15
 -0.832802104352E+15
 -0.347558777506E+14
 0.869463321653E+03

THE PERIOD USED IN THE CALCULATIONS IS 0.45542

THE EIGENSOLUTIONS ARE:

FREQ. 1 IS 60.00

THE EIGENMODE IS:

0.422611293646E-02 0.127090214112E+00 -0.127090214112E+00 -0.422611293646E-02 0.308947474118E-01 -0.219823609220E-12 -0.308947474121E-01 0.309066830838E-01 -0.117667721144E-13,-0.309066830838E-01 0.419107588114E-02 0.126648801144E+00 -0.126648801144E+00 -0.419107588314E-02 0.19962944500E-01 -0.156802770622E-12 -0.19962944503E-01 0.199630155663E-01 -0.630962081618E+14 -0.199630155663E-01 -0.175444118874E-21 0.127949327118E+01 0.904509020027E-08 0.302650817049E-21 8.417394814489E+00 0.130831747830E-06

FREQ. 2 IS 274.21

THE EIGENMODE 15:

0.127745137369E-01 0.39602668957E+00 -0.39602668957E+00 -0.127745137369E-01 -0.721945703024E-01 -0.843283134357E-16 0.721945703024E-01 -0.605174496308E-01 -0.170722136724E-17 0.605174496308E-01 0.116746040915E-01 0.36885563895E+00 -0.368865563895E+00 -0.116746040915E-01 -0.383312178244E-01 0.612008236705E-16 0.383312178244E-01 -0.325704101634E-01 -0.509319772762E-18 0.325704101634E-01 -0.352303592745E-23 -0.604234478366E+00 -0.75779053540E-04 0.462308725775E-23 D.846180078024E+00 -D.897387463394E-03

FREQ. 3 15 471.99

THE EIGENMODE IS:

 D.543109521037E-01
 0.163181931515E-03
 0.163181931349E-03
 D.543109521036E-01
 0.118470188143E+02
 0.113923378741E+00

 D.118470188143E+02
 0.435192266782E+00
 D.391180733566E-02
 0.435192266781E+00
 0.402964641291E-01
 0.125651035224E-03

 D.125651035051E-03
 0.402964641290E-01
 D.795634929315E+01
 0.786209986741E-01
 0.795634929314E+01
 0.280262138756E-00

 D.266939354491E-02
 0.280262138749E+00
 0.119364273366E-07
 0.344548531589E-13
 -0.171333699344E-15
 -0.206893326361E-07

 -0.179388901838E-13
 -0.72669822967E-15
 5
 5
 5

,

•

THE PERIOD USED IN THE CALCULATIONS IS 8.10472

LATERAL FORCES: STORY ND. VALUE 1 D.318106E+02 2 D.291464E+02 DRIFT: STORY NO. VALUE 1 D.394738E-01 2 D.763741E-01

LOAD CONSINATIONS-----HEMBER FORCES-----LEVEL NO. 1

.

COLUMN FORCES

LINE	LOAD	TOPSIONAL	ROLAH	AXIS	AXIAL	HINOR	AXIS	HAJOR	HINOR
		HOMENT	TOP MOMENT	BOT HOMENT	FORCE	TOP MOMENT	BOT MOMENT	SHEAR	SHEAR
1	1	0.0000	-42.7174	-22.7785	2.1317	-0.2238	-0-1119	-0.4548	-0.0023
1	z	0.0006	113.8751	191.5480	0.8774	-0.4507	-0.2033	2.1210	-0.0045
1	3	-0.0008	112.6668	190.0545	0.8926	-0.3230	-0.0960	2.1022	-0.0029
2	1	9.0000	-5.4782	-2.7391	1.2267	0.1523	0.1133	-0.0571	8104.0
2	2	8.0006	-11.1356	-4.7257	-1.3993	-0.4056	-3.7164	-0.1101	-0.0286
2	3	-0.0008	-8.6571	-1.8223	-0.6008	-0.4020	-3.7046	-0,0728	-0.0265
3	1	8.0000	5.4782	2,7391	1.2267	0.1523	0.1133	0.0571	0.0018
3	2	0.0006	13.6359	7.5601	-2.2078	-0.4023	-3.7062	0.1479	-0.0285
3	3	-9.0008	16.1144	10.5635	-3.0062	-0.4059	-3.7180	0.1853	-0.0286
4	1	0.0000	-42.7174	-22,7785	2.1317	0.2238	0.1119	-0.4548	0.0003
4	2	0.0006	112.7710	190.2363	0.8411	0.5793	0.3117	2.1042	0.00-1
4	3	-0.0008	113.9792	191.7299	0.8258	0.7070	0.4190	2.1233	0.0076
5	1	0.0000	-11.6925	-7.2661	2.0932	-1.0266	-0.5133	-0.1317	-0.0107
5	2	0.0006	5.7429	137.4819	-20.0966	-2.8528	-1.3930	0.9946	-0.0295
5	3	-0.D008	4.8789	136.1605	-20.0536	-2.7796	-1.3395	0.9794	-0.0286
	1	0.0000	0.0000	0.0000	3.8046	-37.5741	33.1544	0.0000	-0.0307
6	2	45.0449	+427.3361	1467.0529	-18.9234	1039.1665	-4390.9690	7.2203	-23.2764
é	3	-60.4366	-719.1752	2174.1046	-18.9234	1039.1665	-4390.9698	10.1037	-23,2764
7	1	0.0000	-11.6926	-7.2661	2.0932	1.0266	0.5133	-0.1317	0.0107
7	2	0.0006	5.0067	136.3542	-20.2834	3.1351	1.6009	0.9817	0.¢329
7	3	-0.0008	5.6707	137.6756	-20.3264	3.2083	1.5544	0.9968	0.0338
8	1	0.0000	54.6231	25.8917	5.0879	-1.1187	-0.5594	0.5591	-0.0117
8	2	9.0006	301.5478	285.3844	-16.0932	-2.9028	-1.4010	4.0759	-0.0299
8	3	-0,0008	301.3197	284.3809	-16.1382	-3.0002	-1.4726	4.0674	-0.0311
۰,	1	0.0000	0.0000	0.0000	3.9028	-37.2881	33.2973	0,0000	-0.8277
9	2	45.0449	-735.1920	2170.6191	-18.8391	1039.1277	-4390.9884	9.9682	-23.2768
9	3	-60.4366	-448.7605	1158.8144	-18.8391	1039.1277	-4390.9884	4,9309	-23.2768
10	1	5.0000	54.6231	25.8917	5.0879	1.1167	0.5594	0.5591	0.0117
10	2	0.0005	301.4072	284.5544	-16.3596	3.3331	1.7170	4.0692	0.0351
10	3	-0.0008	301.6352	285.5579	-16.3146	3.2358	1.5453	4.0777	0.0339

COLUMN S	STRESSES

LINE	LOAD	TOP-MAX	TOP-MIN	SOT-MAK	BOT-HIN	SHEAR-MAJ	SHEAR-MIN
1	1	1.9931	-1.3487	1.2095	-0.5652	-0.0687	-0.0004
1	ż	4.5154	-4.2502	7.2134	-6.9682	0.3206	-0.0007
1	3	s.4111	-4.1413	7.1266	-6.8588	0.3177	-0.0004
z	i	0.460L	-0.0893	9.3409	9.0299	-0.9986	0.0003
2	Ł	0.3940	-0.6170	1.7795	-2.2025	-0.0166	-0.0043
Ł	3	0.4223	-0.6039	3.7883	-1,9699	-0.0110	-0.0043
3	L	0.4601	-0.0893	3.3409	P. 8299	0.0086	0.0003
ŝ	2	0.3616	-1.0259	1.7596	-2.4269	0.0224	-0.0043
3	3	0.3355	-1.2420	1.7508	-2.6595	0.0280	-0.0043
4	1	1.9931	-1.3487	1.2095	-0.5652	-0.0687	0,0004
۹.	ż	4.5325	-4.2765	7.2330	-6.9788	0.3180	0.0009
4	3	4.6368	-4.3872	7.3378	-7.0682	0.3209	2100-0
5	1	1.2460	-0.6135	0.6331	-0,2004	-0,0199	-0.0016
5	2	-1.4317	-9.6430	2.6694	-6.7440	0.1503	-0.5545
5	3	-1.4926	-4.5691	5.0014	-8,6630	0.1460	-0,0043
	L	0.1292	-0.0033	0.1227	-0.0029	0.0000	0.0000
6	z	1.5034	-0.0109	6.6224	-0.0109	0.004Z	-0.0134
6	3	1.5740	-0.0104	6.7935	-0.0109	6.0058	-0.0134
7	1	1.2460	-0.6133	0.8331	-0.2004	-0.0199	0.0036
7	ž	-1.3467	-4.7824	2.7016	-8.8327	0.1464	0.0050
7	3	-1.2878	-4.8563	2.7596	-8.9137	0.1507	0.0051
5	1 L	3. 3129	-1.7749	1.9890	-0.4511	0.0845	-9.0018
6	ž	10.0100	-14.4744	5.6844	-13.5489	0.6160	-0.0045
8	3	10.0425	-14.9206	8.6760	-13.5541	B.6147	-0.0047
9	1	0,1307	-0.0032	0.1249	-9.0029	0.0000	0.0000
9	z	1.5783	-0-0109	4.7932	-0.0109	0.0057	-0.0134
9	3	1.5090	-0.0109	6.5483	-0.0159	0.0028	-0.0134
19	1	3.3129	-1.7749	1.9690	-0.4511	0.0845	0.0018
10	ż	10.1751	-15.1201	6.7684	-13.7134	0.6150	0.0053
20	3	10.1426	-15.0748	8.7768	-13.7083	0.6163	0.0051
BEAM FO	DRCES						
BAY	LÓLD	HEMENT	I NONENT	J HOMENT	I HOMENT	J MOHENT	
1	1	-0.1523	0.1605	1392	0.1605	-44.1392	
1	2	0.4042	0.2593	-98.0172	0.2593	-96,0172	
•	,	V.444V	0.1313	-101.0307	•		
2	1	-0.0420	148.2585	-2.6329	16.6725	-2.6329	
2	2 1	0.1103	603-5584	-6.4909	99,9617	-6.4909	
•		•••••					
3	1	0.1770	141.2342	-2.5089	13.1127	-2.8089	
3	ĩ	1.0871	595.7414	-0.3620	94:4258	-0.5520	
-							
	I	0.0000	49.6175	-49.6175	49.6175	-49.6175	
4	ŝ	8.9020	109.6681	-108.0947	[07.6801	-148.0947	
	•						
5	1	0.1323	44,1392	-0.1605	64.1392 86 9919	-0.1505	
5	3	-0,4040	91.98D1	-9.5071	91,9691	-0.5071	
	_						
5		0.0420	140.2003	-2-6329	16.6725	-2.6.529	
	ŝ	-0.1098	562.3075	-7.4942	85.0751	-7.4942	
7	ļ	-0.1779	575.7714	-1.5776	AD. 3966	-7.5774	
7	5	-1.0865	501.5130	-7.3026	84.4543	-7.3926	
			40 0400		43 86.00	-116 5167	
	2	-0.1914	-114.2824	-601.5617	-114.2824	-601.5617	
5	3	-0.1915	-113.0740	-000.1467	-113.0740	-600.1467	
		6 64 74	47 64 99	.138 \$157	47 8464	-110 5157	
9	ż	0.2000	-113.1779	-600.2365	-113.1779	-000.2315	
9	3	0.1999	-114.3863	-601.6514	-114.3863	-601.6514	
10	,	-0.0064	238 4958	-176.7779	730 6954	-176 7779	
10	ž	-8.9344	599.7349	-680.3432	579.7349	- 809 . 34 32	
10	3	-0.0092	601-1224	-678.7012	601.1224	-478.7012	
	•	6 6644	230 4958	-174.7779	230.6958	-174.7779	
ü	ž	0.0066	600.9448	-878.8950	650.9448	-878.8959	
11	3	0.0039	599.5572	-880.5370	599.5572	-680.5370	
BEAM S	STRESSES						

ø

BAY	פניס	I NORMAL	J NORMAL
1	1	0.0034	0.9435
1	2	0.0035	2.0951
1	3	8500.0	2.1595
z	1	0.3564	0.0563
z	z	2.1364	0.1367
z	3	z.2034	0.1342

3	1	0.2803	0.0600
3	2	2.1051	0.1360
3	3	2.0184	0.1419
4	1	1.0606	1.0606
4	2	2.3331	2.3220
4	3	2.3446	2.3105
	,	0 9635	0 0034
		0.7455	0.0081
2	-	2.0303	0.0001
5	3	1.9601	0.0108
5	1	0.3564	0.0563
6	2	1.8651	0.1556
6	3	1.8185	0.1602
•	-		
7	L	0.2803	0.0600
7	z	1.7164	0.1620
7	3	1.8952	0.1561
		0 9161	7 7896
	:		1
2		6.4466	12.0304
•	,	6.41/0	10.0002
•	1	0.9163	2.7898
,	z	2.4192	12.4301
9	3	2.4450	12.8603
10	1	4.0311	3 7350
10	,	12 4194	18 8174
10	:	13 84.00	18 7823
	•	12.0470	10.7623
11	1	4.9311	3.7359
11	2	12.8452	18.7864
11	3	12.8155	18.8215

BRACING ELEMENTS

BRACE	LOAD	AXIAL-FORCE
1	1	0.6512
1	2	-0.2846
1	3	1.0450
2	L	0.6512
2	2	-1.6301
2	3	-2.9596

BRACE STRESSES

BRACE	LOAD	AXIAL
1	1	0.0724
1	2	-0.0316
1	3	0.1161
2	1	0.0724
2	2	-0.1811
2	3	-0.3288

LOAD CONDINATIONS----- HEMBER FORCES----- LEVEL NO. 2

COLUMN	FORCES

LINE	LOAD	TORSIDHAL	HAJOR	AXIS	AXIAL	HINOR	AXIS	RAJOR	MINCR
		HOMENT	TOP HOHENT	BOT HOHENT	FORCE	TOP HOHENT	BOT MOMENT	SHEAR	SHEAR
1	1	0.0000	0.0002	-0.0002	0.0000	0.0000	0.0000	0.0000	0.0000
1	z	0.0000	0.0035	0.0031	0.0000	0.0000	6.0000	0.0000	0.0000
1	3	0.0000	0.0035	0.0031	0.0000	0.0000	0.0000	0.0000	0.0000
z	1	0.0000	0.0000	-0.0001	0.0000	8.0000	0.0000	0.0000	0.0000
z	z	0.0000	0.0008	-0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
z	3	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	1	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
3	2	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0,0000
3	3	5.0000	0.0001	0.0002	0.0000	0.0000	0.0000	9.0000	0.0000
4	1	0.0000	0.0002	-0.0002	0.0000	D.0000	0.0000	0.0000	0.0000
4	2	0.0000	0.0035	0.0031	0.0000	0.0000	0.0000	0.0000	0.0000
4	3	0.0000	0.0035	0.0031	0.0000	0.0000	0.0000	0.0000	0.0000
5	ı	0.0000	-155.7806	-88.4460	0.0201	-1.5559	-1.5479	-1.6960	-0.0216
5	ź	0.0013	-116.6038	-4.0263	-4.3665	-2.6530	-3.4511	-0.8377	-0.0424
5	3	-0.0016	-118.2875	-5.9680	-4.3483	-2.5099	-3.3144	-0.8629	-0.0404
6	1	0.0000	0.0000	0.0000	-0.6082	0.9867	37.6581	0.0000	0.2684
6	2	96.0414	19.9665	444 . 1393	-7.7809	0.8866	-1039.3896	3.2230	-7.2118
6	3	-115.7622	31.1411	744.8737	-7.7669	0.8866	-1039.3896	5.3890	-7.2118
7	1	0.0000	-155.7806	-58.4460	0.0201	1.5559	1.5479	-1.6960	0.0216
7	2	0.0013	-118.1423	-5.8279	-4.4724	3.1738	3.9532	-0.8609	0.0495
7	3	-0.0016	-116-4586	-3.6663	-4.4906	3.3170	4.0899	-0.8357	0.0514
a	1	0.0000	161.5932	119.9777	-0.0361	-1.6927	-1.6854	1.9554	-0.0235
8	2	0.0013	603.1581	577,7083	-7.0579	-2.6070	-3.4548	8.2005	-0.0421
a	3	-0.0016	601.5659	576.2893	-7.0824	-2.7860	-3.6274	8.1795	-0.0445
9	1	0.0000	0.0050	0.0000	-0.5598	-0.8901	36.9341	0.0000	0.2503
	2	96.0414	31.3957	761.0055	-7.7595	-2.8890	-1041.3065	5.5028	-7.2514
9	3	-115.7622	17.6487	462.9869	-7.7995	-2.8890	-1041.3065	3.3377	-7.2514

10 10 10	1 2 3	0.0000 0.0013 -0.0016	161.5932 601.7053 603.2975	119.9777 576.3962 577.6152	-0.0361 -7.2030 -7.1784	1.6927 3.4200 3.2410	1.6 854 4.2356 4.0630	1.9554 8.1813 8.2022	0.0235 0.0532 0.0547
COLUMN	STRESSES								
LINE	LOAD	TOP-MAX	TOP-MIN	807-HAX	BOT-MIN	SHEAR-MAJ	SHEAR-HIN		
1 1 1	1 2 3	0.0728 0.9749 0.9562	-0.0722 -0.9716 -0.9529	0.0724 0.6726 0.6532	-0.0718 -0.8693 -0.8499	0.0000 0.0019 0.0019	0.0000 0.0000 0.0000		
2	I	0.0124	-0.0124	0.0202	-0.0202	0.0000	8.0000 8.0000		
t	3	8.0446	-0.046	0.1178	-0.1178	0.0000	0.0000		
3 3 3	1 2 3	0.0124 9.0632 0.0768	-0.0124 -0.0632 -0.0767	0.0202 0.1449 0.1595	-0.0202 -0.1448 -0.1595	6.0000 6.0001 6.0001	0.0000 0.0000 0.0000		
4 9 9	1 2 3	0.0728 0.9810 0.9997	-0.0722 -0.9778 -0.9965	0.0724 0.8780 0.8973	-0.0718 -0.8748 -0.8941	0.0000 0.0019 0.0019	0.0000 0.0000 0.0000		
5 5 5	1 2 3	6.4583 4.9001 4.8944	-6.4522 -6.2200 -6.2067	3.9932 1.1757 1.1826	-3,9871 -2,4956 -2,4969	-0.2563 -0.1266 -0.1304	-0.0033 -0.0064 -0.0061		
6 6 6	1 2 3	-0.0021 -0.0386 -0.0366	-0.0004 -0.0045 -0.0045	0.0512 1.5720 1.6448	-0.0004 -0.0045 -0.0045	0.0000 0.0019 0.0031	0.0002 -0.0042 -0.0042		
7	1	6.4583	-6.4522	3.9932	-3.9871 -2 8231	-0.2563 -0.1301	0.0033		
;	3	5.2009	-6.5583	1.4644	-2.6217	-0.1263	0.0078		
6	1 2 3	6.7292 22.2351 22.2308	-24.3885 -24.4216	5.2045 21.7397 21.7665	-5.2154 -23.8730 -23.9093	1.2394	-0.0035 -0.0064 -0.0067		
9 9	1 2	-0.0019 -0.0330	-0.0003	0.0504	-0.0003	C.0000 0.0032	0.000I -0.0042		
9 10	3	-0.0363 6.7292	-0.0043	5.2045	-5.2154	0.2955	0.0035		
10	2 3 .	22.5779 22.5 522	-24.7351 -84.7220	22.0518 22.0229	-24.2290 -84.1928	1.2365	0,0080 0.0077		
BEAM FI	OPCES								
BEAN FI	LOAD	TORSIONAL MOHENT	CENTERLING	L HOMENTS	BEAN END	HOMENTS			
BEAR F(BAY 1 1 1	LOAD 1 2 3	TORSIONAL MCHENT 6.0000 6.0000 8.0000	CENTERLINI I MOMENT 0.9000 0.0000 0.0000	E MOMENTS J MOMENT 0.0000 0.0000 0.0000	BEAN END MONENT D.0000 0.0000 D.0000	HOHENTS J HOHENT 0.000 0.000 0.000			
BEAM F(BAY 1 1 1 2 2	LOAD 1 2 3 1 2	TOR SIDNAL MOMENT 8.0000 8.0000 8.0000 -0.4934 -0.4934	CENTERLINA I MOMENT 0.9000 0.0000 0.0000 149.4079 344 6454	E MOMENTS J HOMENT 0.0000 0.0000 -0.0000 -1.5511 -2.4539	BEAM END 1 HOMENT 0.0000 0.0000 17.1631 77.5335	HOHENTS J HOHENT 0.0000 0.0000 -1.5511 -2.6539			
BEAR F(BAY 1 1 1 2 2 2	LOAD 1 2 3 1 2 3	TORSIDHAL MCHENT 0.0000 0.0000 0.0000 -0.4936 -0.4935 -0.4455 -0.4407	CENTERLINA I MOMENT 0.0000 0.0000 1.0000 149.4079 364.6854 390.2727	L HOMENTS J HOMENT 0.0000 0.0000 0.0000 -1.5511 -2.6539 -2.5045	BEAM END D. GOGO D. GOGO D. GOGO D. GOGO 17.1631 77.5335 61.4616	HOMENTS J MOMENT 0.0000 0.0000 0.0000 -1.5511 -2.6539 -2.5045			
BEAR F(BAY 1 1 2 2 2 3 3 3 3	CRCES LOAD 1 2 3 1 2 3 1 2 3	TORSIONAL HOHENT 0.0000 0.0000 0.0000 -0.4936 -0.4935 -0.4455 1.4457 1.4457	CENTERLINI I MOMENT 0.0000 0.0000 149.4079 364.6854 390.2727 144.4808 388.2565 381.850	I HOMENTS J HOMENT 0.0000 0.0000 -1.5511 -2.6539 -2.5045 -1.6975 -2.6061 -2.7915	BEAN END I HONENT 0.0000 0.0000 17.1631 77.5335 61.4618 13.6655 90.0707 75.2139	HOHENTS J HOHENT 0.000B 0.000B -1.5511 -2.6539 -2.5045 -1.6975 -2.6061 -2.7913	·		
BEAR F(BAY 1 1 2 2 2 3 3 3 4	CRCES LOAD 1 2 3 1 2 3 1 2 3 1 2 3 1	TORSIDNAL HOHENT 0.0000 0.0000 0.0000 -0.4936 -0.4935 -0.4457 0.4450 1.4457 1.4467 0.0000	CENTERLINI I MONENT 0.0000 0.0000 L49.4079 364.6854 390.2727 144.4005 362.2565 361.3830 0.0000	L HOMENTS J HOMENT 0.0000 0.0000 -1.5511 -2.6539 -2.5045 -1.6475 -2.6475 -2.6475 -2.7913 0.0000	BEAM END 1 MOMENT 0.0000 0.0000 17.1631 77.5335 61.4618 13.6655 80.0707 75.2139 0.0000	HOHENTS J HOHENT 0.000B 0.000B -1.5511 -2.6539 -2.5045 -1.6975 -2.6061 -2.7913 0.000B			
BEAR F(BAY 1 1 2 2 2 3 3 3 3 4 4 4	10000 12 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3	TORSIONAL HOMENT 0.0000 0.0000 0.0000 0.0000 -0.4934 -0.4935 -0.4935 0.4450 1.4457 1.4467 0.0000 0.0000	CENTERLINI I MOTENT 0.0000 0.0000 149.4079 364.6854 370.2727 144.4008 366.2565 361.3030 0.0000 0.0000	L HOMENTS J HOMENT 0.0000 0.0000 -1.5511 -2.6539 -2.5045 -1.6975 -2.6061 -2.7915 0.0000 0.0000 0.0000	BEAN END I MONENT 0.0000 0.0000 17.1631 77.5335 81.4818 13.6855 90.0707 75.2139 0.0000 0.0000 0.0000	HOHENTS J HOTENT 0.000 0.000 0.000 0.000 0.000 1.3511 -2.6539 -2.6539 -1.6975 -2.7913 0.0000 0.0000 0.0000			
BEAR F(BAY 1 1 2 2 2 3 3 3 3 3 3 5 5	COLO LO	TORSIDNAL HOMENT 0.0000 0.0000 0.0000 0.0000 0.0000 0.4450 1.4450 1.4457 1.4467 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	CENTERLINI I MONENT 0.0000 149.4079 364.6854 370.2727 144.4005 362.2565 381.3830 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	L HOMENTS J HOMENT 0.0000 0.0000 -1.5511 -2.6539 -8.5045 -1.6975 -2.6061 -2.7913 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	BEAN END I MONENT 0.0000 0.0000 17.1631 77.5335 81.4818 13.6855 90.0707 75.2139 0.0000 0.0000 0.0000 0.0000 0.0001 -0.0001	HOHENTS J HOTENT 0.000 0.000 0.000 0.000 0.000 1.3511 -2.6539 -2.6539 -2.6515 -2.7913 0.6000 0.0000 0.0000 0.0000 0.0000 0.0000			
BEAR FI BAY 1 1 2 2 2 3 3 3 3 4 4 4 5 5 5 5 6 6	CRCES LOAD 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 3 1 2 3 2 3	TORSIONAL HOMENT 0.0000 0.0000 0.0000 -0.4936 -0.4935 -0.4455 1.4457 0.4457 0.4457 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4934 0.4411	CENTERLINI I MONENT 0.0000 0.0000 149.4079 364.6854 390.2727 144.4805 362.4805 361.3830 0.0000 0.0000 0.0000 -0.0001 -0.0001 -0.0001 140.4879 364.7889	L HOMENTS J HOMENT 0.0000 0.0000 -1.5511 -2.6539 -2.5045 -1.6475 -2.6061 -2.7913 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000	BEAR END I MORENT 0.0000 0.0000 17.1631 77.5335 61.4618 13.6655 80.0707 75.2139 0.0000 0.0000 0.0000 0.0000 -0.0001 17.1631 63.4109	HOHENTS J HOHENT 0.000B 0.000D -1.5511 -2.6539 -2.5045 -1.6975 -2.6061 -2.7913 0.000D 0.000D 0.000D 0.000D 0.000D 0.000D 0.000D 0.000D 0.000D 0.000D 0.000D			
BEAR FI BAY 1 1 2 2 2 3 3 3 3 4 4 4 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	COLO 1 2 3 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3	TORSIDNAL HOHENT 0.0000 0.0000 -0.4934 -0.4455 -0.4455 1.4457 1.4467 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4934 0.4459	CENTERLINI I MOTENT 0.0000 0.0000 149.4079 384.6854 390.2727 144.4008 380.2565 381.3830 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.000000	1 HOMENTS J HOMENT 0.0000 0.0000 0.0000 -1.5511 -2.6539 -2.5045 -1.6475 -2.6061 -2.7913 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000	BEAN END I MONENT 0.0000 0.0000 17.1631 77.5335 61.4818 13.6655 60.0707 75.2139 0.0000 0.0000 0.0000 0.0000 0.0000 17.1631 63.4169 59.4707 13.4455	HOHENTS J HOHENT 0.0000 0.0000 -1.5511 -2.6539 -2.5045 -1.6975 -2.6061 -2.7913 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000			
BEAN PI BAY 1 1 2 2 2 2 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5	CRCES LOAD 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 3 1 2 3 3 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 3 2 3 2	TORSIDNAL HOHENT 0.0000 0.0000 0.0000 -0.4934 -0.4455 -0.4457 1.4467 0.000000	CENTERLINI I MOTENT 0.0000 0.0000 149.4079 344.6854 390.2727 144.4008 380.2565 381.3830 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 140.4079 344.7189 359.1316	L HOMENTS J HOMENT 0.0000 0.0000 -1.5511 -2.6539 -2.5045 -1.6475 -2.6061 -2.7913 0.0000 0.3.3163 -3.4240 -3.2397	BEAN END I MONENT 0.0000 0.0000 17.1631 77.5335 61.4818 13.6655 60.0707 75.2139 0.0000 0.0000 0.0000 0.0000 0.0000 17.1631 63.4169 59.4707 13.6655 57.8791 62.7358	HOHENTS J MCHINT 0.000 0.000 0.000 -1.5511 -2.6539 -2.5045 -1.6975 -2.6061 -2.7913 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000			
BEAN PI BAY 1 1 2 2 2 2 3 3 3 3 4 4 4 9 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	GBCES LOAD 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 2 3 3 1 2 3 2 3	TORSIDNAL HOHENT 0.0000 0.0000 0.0000 0.0000 0.0435 0.4455 1.4457 1.4467 0.6000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4434 0.4411 0.4459 -0.4450 -1.4463 -1.4463	CENTERLINI I MOTENT 0.0000 0.0000 149.4079 344.6854 390.2727 144.4008 360.2727 144.4008 360.2727 144.4008 360.2727 144.4008 360.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 140.4079 364.7189 355.6600 363.7343 -0.0002 -0.0036 -0.0035	L HOMENTS J HOMENT 0.0000 0.0000 0.0000 -1.5511 -2.6539 -2.5045 -1.6475 -2.6061 -2.7913 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0000 0.0001 0.00000 0.00000 0.00000 0.0001 0.00000 0.00000	BEAN END I MONENT 0.0000 0.0000 17.1631 77.5335 81.4818 13.6855 60.0707 75.2139 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 17.1631 63.4189 59.4707 13.6855 57.8791 62.7359 -0.0035	HOMENTS J MOTENT 0.000 0.000 0.000 -1.5511 -2.6539 -2.5045 -1.6975 -2.6061 -2.7913 0.0000 0.0001			
BEAN FI BAY 1 1 2 2 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5	GBCES LOAD 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 2 3	TORSIDNAL HOMENT 0.0000 0.0000 0.0000 0.0000 0.04350 1.4450 1.4457 1.4467 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4450 0.4451 0.4457 0.4457 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	CENTERLINI I MOTENT 0.0000 0.0000 149.4079 364.6854 370.2727 144.4005 362.2565 381.3830 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 140.4079 364.7189 354.7189 354.7189 355.6806 355.7343 -0.0002 -0.0035 -0.0035 -0.0035 -0.0036	<pre>L HOMENTS J HOMENTS 0.0000 0.0000 -1.5511 -2.6539 -2.5045 -1.6975 -2.6061 -2.7913 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.33163 -1.6975 -3.4249 -3.2397 -0.0014 -0.0060 -0.0061 -0.0061</pre>	BEAN END I MONENT 0.0000 0.0000 17.1631 77.5335 81.4818 13.6655 90.0707 73.2139 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 17.1631 63.4189 59.4707 13.6655 57.6791 62.7356 -0.0035	HOMENTS J MOTENT 0.0000 0.0000 0.0000 -1.5511 -2.6539 -2.6519 -2.7913 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000000			
BEAR F. BAY 1 1 1 2 2 2 2 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 8 8 8 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	GBCES LOAD 1 2 3 3 1 2 3 1 2 3 1 2 3 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 1 2 3 3 3 1 2 3 1 2 3 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 2 3 3 1 2 3 3 3 1 2 3 3 3 3	TORSIDNAL HOMENT 0.0000 0.0000 0.0000 0.0000 0.0000 1.4450 1.4457 1.4467 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4459 -1.4453 0.4459 -0.4450 -1.4453 0.4459 -0.4450 -1.4453 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	CENTERLINI I MONENT 0.0000 0.0000 149.4079 364.6854 370.2727 144.4005 380.2727 144.4005 380.2727 144.4005 380.2855 381.3830 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 149.4079 364.7189 359.1316 144.4008 355.6608 363.7343 -0.0002 -0.0035 -0.0035 -0.0035 156.2754 117.0554 118.7343	<pre>L HOMENTS J HOMENTS 0.0000 0.0000 0.0000 -1.5511 -2.6539 -8.5045 -1.64775 -2.6061 -2.7913 0.00000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000</pre>	BEAN END I MONENT 0.0000 0.0000 17.1631 77.5335 81.4818 13.6855 90.0707 75.2139 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 17.1631 63.4109 59.4707 13.6855 57.6791 62.7358 -0.0025 -0.0025 -0.0035 -0.0055 -0.0055 -0.0055 -0.0055 -0.0055 -0.0055 -0.0055 -0.0055	HOMENTS J MOTENT 0.000 0.000 0.000 0.000 0.000 0.000 1.5511 -2.6539 -2.6545 -1.4975 -2.6061 -2.7913 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000			
BEAR F. BAY 1 1 1 2 2 2 3 3 3 3 4 4 4 4 4 4 5 5 5 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7	GRCES LOAD 1 2 3 3 1 2 3 1 2 3 1 2 3 3 3 1 2 3 3 3 3	TORSIDNAL HOMENT 0.0000 0.0000 0.0000 0.0000 0.0000 1.4455 1.4457 1.4467 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000	CENTERLINI I MONENT 0.0000 0.0000 149.4079 364.6854 370.2727 144.4008 382.2865 381.3830 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 149.4079 354.7349 354.4008 355.6600 355.7343 -0.0035 -0.005 -	<pre>E HOMENTS J HOMENTS 0.0000 0.0000 0.0000 0.0000 0.0000 -1.5511 -2.6539 -2.6061 -2.7913 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000</pre>	BEAN END I MONENT 0.0000 0.0000 17.1631 77.5335 81.4818 13.6855 90.0707 75.2139 0.0000 0.0000 0.0000 0.0000 0.0000 17.1631 63.4169 59.4707 13.6655 57.6791 62.7359 -0.0035 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.005 -0.	HOMENTS J MOTENT 0.000 0.000 0.000 0.000 0.000 1.5511 -2.6539 -2.6539 -2.6539 -2.6539 -2.601 0.000 0.00000 0.0000 0.0000 0.0000 0.00000 0.00000 0.			

BAY	LOAD	I NORMAL	J NORMAL
1	1	0.0006	0.0036
1	z	0.0009	0.0059
1	3	0.0000	0.0008

.

•

.

.

2	1	0.3669	0,0332
2	2	1.6573	0.0567
2	3	1.7417	0.0535
3	1	0.2925	9,0363
3	ź	1.7115	D.0557
3	3	1.6077	0.0597
4	1	0.0003	0.0003
4	2	1000.0	0.0007
4	3	0.0013	0.0020
5	t	0.0036	0.0006
5	2	0.0123	0.0018
5	3	C.0189	0.0027
6	1	0.3669	0.0332
6	5	1.3556	0.0677
6	3	1.2712	0.0709
7	ı	0.2925	0.0363
7	z	1.2372	0.0732
7	3	1.3410	8.0692
	1	0.0382	0.2238
	z	0.5645	0.9609
ē	3	0.5610	0.9571
		0.0367	0.2238
	i	0.5611	0,9571
٠	3	0.5645	0.9609
10	1	3.3404	3.4636
10	z	2.5021	12.9234
10	3	2.5360	12.8894
11	1	3.3404	3.4636
11	ż	2.5349	12.8924
11	3	2.4998	12,9264

STATIC AND DYNAMIC LOAD COMBINATION-----LATERAL AND ROTATIONAL H. C. DISPLACEMENTS

	L 0	IRECTION		1	2	3
	z	x		-0.0061468	0.4438713	0.4438713
	2	7		0.0000000	0.0055102	0.0051835
	2	ROTH		0.0000000	0.000065	-0.000081
	1	x		-0.0016356	0.1546337	0.1546337
	L	Ŧ		0.0000000	0.0015952	0.0020486
	1	ROTH		0.000000	0.000021	~0.000028
THE	STEEL	WEIGHT IS		13.7411		
THE	CONCRI	ETE WEIGHT	15	120.0000		•
THE	08JEC	TIVE VALUE	IS	70676.2542		

ACTIVE CONSTRAINTS

TYPE	LEVEL	LOCATION	LOAD	IDENT	VALUE
D.015	2	0	2	1	0.44387
D.019	2	٥	3	1	0.44387

THE END OF OPTIMIZATION CYCLE 0.

THE START OF OPTIMIZATION CYCLE 1.

COLUMN ID	£	٨	TORS I	<u>I LAM</u>	<u>HTH I</u>	<u>DT</u>	28	5	BF	TF	<u>TH 15</u>	<u>cs</u>	59	
1	30000.00	7.44	4.45	254.14	\$.53	0.00	0.00	15.43	5.36	0.31	0.23 36.00	36.00	9999.00	
2	30000.00	5.46	2.43	134.93	3.63	0.00	0.00	13.38	4.74	0.31	0.23 36.00	36.00	9999.00	
3	30000.00	5.46	2.43	134.94	3.63	0.00	6.00	13.38	4.74	0.31	0.23 36.00	36.00	9999.00	
4	30000.00	7.44	4.46	254.15	6.53	0.00	0.00	15.43	5.36	0.31	0.23 36.00	36.00	9999.00	
5	30000.00	4.30	1.51	62 . 38	2.30	0.00	0.00	11.96	4.31	0.31	0.23 36.00	36.00	9999.00	
6	30000.00	6.55	3.47	196.08	5.13	0.00	0.00	14.56	5.10	0.31	0.23 36.00	36.00	9999.00	
7	30000.00	4.29	1.51	82.33	2.30	0.00	0.00	11.96	4.31	0.31	0.23 36.00	36.00	9999.00	
8	30000.00	6.55	3.47	196.08	5.13	0.00	0.00	14.56	5.10	0.31	0.23 36.00	36.00	9999.00	
9	30000.00	11.76	L0.9e	651.60	15.59	0.00	0.00	19.09	6.43	0.31	0.23 36.00	36.00	9999.00	
10	30000.00	6.95	3.90	221.25	5.74	0.00	0.00	14.96	5.22	0.31	0.23 36.00	36.00	9999.00	
11	30000.00	11.76	10.98	65).60	15.59	0.00	0.00	19.09	6.43	0.31	0.23 36.00	36.00	9999.00	
12	30000.00	6.95	3.90	221.38	5.74	0.00	0.00	14.96	5.22	0.31	0.23 36.00	36.00	9999,00	
13	30000.80	0.02	0.00	0.00	0.00	0.00	0.08	0.99	0.51	1.00	1.00 100.00	100.00	100.00	
14	30000.00	0.02	D.00	0.00	0.00	0.00	0.00	0.99	0.51	1.00	1.00 100.00	100.00	100.00	
15	30000.00	0.02	0.00	0,00	0.00	0.00	9.00	0.99	0.51	1.00	1.00 100.00	100.00	100.00	
16	30000.00	0.02	Q. 00	0.00	0.00	0.00	0.00	0,99	0.51	1.00	1.00 100.00	100.00	100.00	
COLUMN ID	IX		4		KJJ	KIJ	<u>T5</u>	<u>cs</u>	<u>35 E</u>	<u>e</u> 2	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	20	2	ē
17	1794783.	1	182. 23	148. 4.0	4.0	Z.0	50.0	3.0	1.0 3000	.0 120.0	13.630000.0	0.0251	817931.	1150
16	2260469.	1	488. 46	246. 4.0	4.0	2.0	50.0	3.0	1.0 3000	.0 120.0	17,230000.0	0.0252	306715.	1150
19	1794778.	1	182. 23	148. 4.0	4.0	2.0	50.0	3.0	1.0 3000	.0 120.0	13.630000.0	0.0251	817925.	1150
20	2260478.	1	488. 46	246. 4.0	4.0	2.0	50.0	3.0	1.0 3000	.0 120.0	17.230000.0	0.0252	306724.	1150

BEAM ID	5	TORS I	<u>FLEX I</u>	KII	KJJ	KIJ	<u>01</u>	<u>D.</u>	2	NS
1	30000.00	4.67	266.87	4.00	4.00	2.00	0.00	0.00	15.61	36.00
2	30000.00	4.67	266.72	4.00	4.00	2.90	5.00	0.00	15.60	36.00
3	30000.00	4.67	266.89	4.00	4.00	2.00	0.00	0.00	15.61	36.00
4	30000.00	7.84	458.38	4.00	4.00	2.00	D.00	0.00	17.63	36.00
5	30000.00	7.84	458.37	4.00	4.00	2.00	3.00	0.00	17.63	36.00
6	30000.00	7.47	436.06	4.00	4.00	2.00	0.00	0.00	17.44	36.00
7	30000.00	5.90	341.00	4.00	4.00	2.00	D.00	0.00	16.49	36.00
8	30000.00	7.47	436.06	4.00	4.00	2.00	0.00	0.00	17.44	36.00
9	30000.00	5.90	341.03	4.00	4.00	2.00	D.00	0.00	16.49	36.00
10	30000.00	4.64	265.29	4.00	4.00	2.00	60.00	0.00	15.58	36.00
11	30000.00	4.66	266.07	4.00	4.00	2.00	60.00	8.80	15.59	36.00
12	30000.00	4.71	269.59	4.00	4.00	2.00	60.00	8.00	15.64	36.00
13	30000.00	4.70	268.62	4.00	4.00	Z.00	60.00	0.00	15.63	36.90
14	30000.00	4.64	265.47	4.00	4.00	Z.00	60.00	0.00	15.59	36.00
15	30000.00	4.66	266.14	4.00	4.00	Z.00	60.00	0.00	15.60	36.00
16	30000.00	4.71	269.29	4.00	4.00	2.00	60.00	0.00	15.64	36.90
17	30000.00	4.70	268.46	4.00	4.00	z.co	60.00	0.00	15.63	36.00
18	30000.00	05.0	9.00	4.00	4.00	Z.00	0.00	D.00	1.16	99.99
19	30000.00	0.00	0.00	4.00	4.00	Z.00	0.00	D.00	1.16	99.99
20	30000.00	0.00	0.00	4.00	4.00	2.00	0.08	D.00	1.16	99.99
21	30000.00	0.00	0.00	4.00	4.00	2.00	0.00	D.00	1.16	99.99
22	30000.00	0.00	0.00	4.00	4.00	2.00	0.00	0.00	1.16	99.99

BRACING ELEMENT INFORMATION

LEVEL	US.	ᄕ	Ľ	A	13	53
1	3	2	30000.00000	6.0001	36.00000	24.00000
1	2	3	30000.00000	5.99995	36.00000	24.00000

THE EIGENSOLUTIONS ARE:

FREQ. 1 15 10.23

THE EIGENTODE IS:

0.2918000497854E-02 0.152349276865E-04 0.152429497586E-04 0.291764963375E-02 0.584832301302E-02 0.713199630432E-05 0.564045746898E-02 -0.620753302102E-02 -0.109010794269E-04 -0.620563445906E-02 0.290838285476E-02 0.151699256626E-04 0.151779643988E-04 0.290802952338E-02 0.169607486265E-02 0.364687486122E-05 0.169587334694E-02 -0.469621221930E-02 -0.643665305272E-05 -0.469655938087E-02 0.131751853974E+01 -0.503519320477E-14 -0.500231768520E-10 0.418501937463E+00 -7.264537431632E-13 0.746731169815E-10

FREQ. 2 15 36.95

THE EIGENMODE IS:

0.432125913330E-02 0.231190575736E-04 0.231632606609E-04 0.432172142476E-02 0.195214674955E-01 -0.269272311694E-04 -0.195212279514E-01 0.921337111432E-02 0.158463819708E-04 0.920998136174E-02 0.433407467350E-02 0.229951932826E-04 0.230393206582E-04 0.433453239078E-02 -0.115790365778E-01 -0.152371806528E-04 -0.115779088824E-01 0.62965634940E-02 0.921010873165E-05 0.629363210495E-02 -0.623443084970E+00 0.901698551682E-13 0.523987880719E-11 0.884414111421E+00 -0.202786253057E-12 0.240365903953E-09

FREQ. 3 IS 463.29

THE EIGENMODE IS:

 0.536595807619E-02
 -0.142138118693E-02
 0.139795745393E-02
 0.650874674935E-01
 0.153557053475E+01
 0.438255899447E-01

 0.187466904652E+02
 0.228466843019E-01
 0.740676049918E-03
 0.279522674982E+00
 0.403084324265E-02
 -0.111758966120E-02

 0.109769540565E-02
 0.468918509012E-01
 0.841837243505E+00
 0.27373039719E-01
 0.162703911918E+02
 0.174360896201E-01

 0.475096456796E-03
 0.213186576666E+00
 -0.107550355298E-02
 -0.266506670083E-07
 0.478603067917E-05
 0.869700036204E-03

 0.206632896706E-07
 0.940018913104E-05
 -0.107550355298E-02
 -0.266506670083E-07
 0.478603067917E-05
 0.869700036204E-03

THE PERIOD USED IN THE CALCULATIONS IS 0.45542

```
LATERAL FORCES:

STORY NO. VALUE

0.3079596+02

0.277537E+02

DRIFT:

STORY NO. VALUE

1 0.132904E+01

2 0.68569E+01

THETA:

STORY NO. VALUE

1 0.141991E-01

2 0.340150E-02
```

THE EIGENSOLUTIONS ARE:

FREQ. 1 15 55.92

THE EIGENMODE IS:

0.2425303559046-02 0.108712627483E+0B -0.108710520877E+00 -0.242542924721E-02 0.253596779482E-01 D.524569225934E-06 -0.2537563D1198E-01 0.208477737732E-01 -0.976499652141E-06 -0.208279071877E-01 0.240275081695E-02 D.108363589452E+00 -0.108381489440E+00 -0.240287575716E-02 0.137021076114E-01 0.260635979959E-06 -0.137077780287E-01 0.157209003766E-01 -0.511376908763E-06 -0.157057423021E-01 -0.211659920528E-13 0.131708518005E+01 -0.310895249704E-06 D.236645016631E-13 0.419064576240E+00 -0.20879692922E-05

FREQ. 2 IS 247.12

THE EISENMODE IS:

0.626172571477E-02 0.318898904133E+00 -0.318892481305E+00 -0.628188787224E-02 -0.573210224626E-01 -0.137563444902E-05 0.573724475782E-01 -0.352991619099E-01 0.200052405203E+05 0.352583001238E-01 0.584695209291E-02 0.299578871949E+00 -0.299572843755E+00 -0.584710393603E-02 -0.224396804403E-01 -0.631142153912E-06 0.224571580219E-01 -0.232034604990E-01 0.931230374232E-06 0.231746092923E-01 0.757517053554E-13 -0.616850357576E+00 -0.435467315171E-04 -0.294734463486E-12 0.873220688544E+00 -0.708865273190E-03

FREQ. 3 13 463.29

THE EISENMODE IS:

 0.1006556408571E-01
 -0.250230998665E-02
 0.247737649569E-02
 0.464518149231E-01
 0.269783413738E+01
 0.44417265755E-01

 0.185667355178E+02
 0.434258266698E-01
 0.784237354182E-03
 0.276727191766E+00
 0.756090340760E+02
 -0.196815146625E-02

 0.1996698306258E-02
 0.464619506778E-01
 0.786270540391E+01
 0.289920207417E-01
 0.101817032959E+02
 0.331284747652E-01

 0.503037283561E-03
 0.211061465142E+00
 0.116605380066E-07
 0.267670962300E-02
 0.478461712170E-05
 -0.209846252223E-07

 -0.118855057395E-02
 0.139801566633E-04
 0.126770962300E-02
 0.478461712170E-05
 -0.209846252223E-07

THE PERIOD USED IN THE CALCULATIONS IS 0.11236

.

LATERAL FORCES: STORY NO. VALUE 1 0.3079595*D2 0.2775375*02 DRIFT: STORY NO. VALUE 1 0.4532645*D1 2 0.8669305*01 LOAD COMBINATIONS-----HEMBER FORCES-----LEVEL NO. 1

.

LINE LOAD	TORSIONAL	HAJOR	AXIS	AXIAL	MINOR	AXIS	MAJOR	HINDR
	HOHENT	TOP HOMENT	BOT HOHENT	FORCE	TOP MOMENT	BOT MOMENT	SHEAR	SHEAR -0.0039
	6.007D 6.0008	-52.1198 175.1212	-36.0255	2.0974	-0.8474	-0.3916	3.1888	-0.0086
i i	-0.0013	173.5069	281.9187	1.3472	-0.6639	-0.2343	3.1627	-0.0062
,		-E 1879	-2.5915	1.2853	D.0995	0.1923	-0.0540	0.0020
2 2	0.0005	-11.3453	-5.0087	-1.5617	-0.3343	-2.9724	-0.1136	-0.0230
23	-0.0007	-9.2936	-2.6270	-0.8839	-0.3316	-2.9629	-0.0828	-0.0229
3 1	6.0080	5.1829	2.5914	1.2854	D.0995	0.1923	0.0540	0.0020
i i	0.0005	13.3493	7.3367	-2.226D	-0.3321	-2.9652	0.1437	-0.0229
3 3	-0.0007	15.4012	9.7206	-2.9038	-0.3348	-2.9747	0.1/45	-0.0230
• I	0,0000	-52.1189	- 36 - 0266	2.0974	0.3736	0.1868	-0.6121	0.0039
4 2	0.0008	173.8051	282.3838	1.3095	1.0265	0.5454	3.1680	0.0109
4 3	-0.0013	175.4193	284.5380	1.3022	1.2101	4.7027	3.1741	0.0133
5 1	0.0000	-27.2925	-21.3109	2.4471	-1.4959	-0.7489	-0.3372	-0.0156
5 2	0.0006	57.4643	180.3486	-19.3334	-4.5688	-2.2971	1.6515	-0.04/3
, ,	-0,0010	30.0027	1/0.000	-17.2770				
6 1	8.0026	0.0264	-0.0147	3.7856	-172.8517	94.9403	0.0001	-0.5411
6 2	41.3269	-401.4183	2192-1532	-10.6913	294.0124	-3419.5101	10.3556	-21.7048
• •								
7 1	0.0000	-27.2512	-21-3155	2.4472	1.4957	0.7478	-9.3373	0.0156
7 3	-0.0010	57.7550	180.7507	-19.5119	4,9736	2.5445	1.6565	0.0522
						-0.0010	0 0110	-0.0147
8 1	0.0007	45.2839	244.9131	-17.8304	-4.7561	-2.3163	2.7262	-0.0491
8 3	-0.0012	148.0434	243.9349	-17.8706	-4.8703	-2.4026	2.7221	-0.0305
• •	6 0874	-0.0178	0 0174	4 7437	+172.6232	95.0566	0.0000	-0.5387
9 2	41.3271	-714.4028	2075.7530	-18.1195	294.1628	-3419.4753	9.4538	-21,7036
9 3	-65.8907	-422.6753	1069.7033	-18.1195	299.1631	-3419.4752	4.4933	-21.7036
10 1	0.0000	45.3005	13.9683	4.7114	1,6054	0.8027	0.4116	0.0167
10 2	0.0007	148.1920	244.3708	-18.0753	5.2459	2.6848	2.7261	0.0551
10 3	-0.0012	147.8027	245.3496	-18.0352	5.1316	2.5984	2.7302	0.0537
COLUMN STRESSES								
LINE LOAD	TOP-MAX	TOP-MIN	BOT-HAX	BOT-MIN	SHEAR-MAJ	SHEAR-MIN		
1 1	2.0181	-1.4540	1.4527	-0.8586	-0.0823	-0.0005		
1 2	5.8458	-5.4854	8.9670	-8.5066	0.4289	-0.0012		
1 3	5.7229	-5.3800	6.8360	40.4/20	4.4633	-0.0008		
2 1	0.5572	-9.0865	0-9892	-0.0186	-9.0099	6.0004		
2 2	0.4946	-1.0664	1,9020	-2,4739	-0.0205	-0.0042		
2 3	4.5156	-4.0305						
3 1	0.5571	-0.0865	0.4892	-0.0186	9.0099	0.0004		
3 3	0.4502	-1.5134	1.8913	-2.9545	8,0319	-0.0042		
	2.0180 5.8751	-1.4539	1.9527	-0.5655	-0.0823	0.0005		
4 3	5.9985	-5.6482	9.1035	-6.7532	0.4296	0.0018		
. .	A 1.499	-1 1403	1 5367	-0 7889	-0.0515	-0.0074		
5 2	1.4505	-7.3511	4.8591	-10.7597	0.2520	-0.0072		
5 3	1.3596	-7.2497	4.7675	-10.6576	0.2487	-0.0071		
6 1	0.4273	-0.9204	0.2737	-0.0112	0.0000	-0.0004		
6 2	0.5673	1.4908	7.0228	6.6099	0.0048	-0.0146		
6 3	0.6518	1.5614	7.2349	6.7810	0.0070	-0.0146		
7 1	2.1273	-1-3804	1.5358	-0.7889	-0.0515	0.0024		
7 2	1.5451	-7.4896	4.9027	-10.8472	0.2495	0.0078		
, ,	1.0301	-7.3711		-10.7472				
8 1	2.9374	-1.5816	1.5143	-0.1586	0.0592	-0,0024		
8 2	9.5069	-9.7886	6.7653	-11.9087	0.3916	-0.0073		
9 1	0.4327	-0.0204	0.2798 7 2058	-0.0112	0.0000	-0.0004		
9 3	0.5774	1.4968	6.9221	6.5362	0.0030	-0.0146		
	1 4175	-1 5841	1 5147	-0 1550	A 4502	8 8894		
10 2	4.7900	-9.9899	6.8764	-12.0764	0.3921	0.0079		
10 3	4.7307	-9.9191	6.8760	-12-0644	0.3927	0.0077		
BEAM FORCES								
, s	*				MONENTE			
BAY LOAD	HOMENT	I HOMENT	J HOHENT	I HOHENT	J HOMENT			
1 1	-0.0995	0.2635	-44.7191	0.2635	-44.7191			
1 2	0.3332	0.4877 0.304A	-100-0345	0.4877	-97.7828			
2 1	-0.0768	148.9718 589 1745	-2.6266	17.1589 89 9810	-2.6266			
2 3	0.1591	592.8231	-7.3165	92.5355	-7.3165			
							•	

•

3 3 3	1 2 3	0.0755 0.3278 0.3334	140.6675 575.4915 570.4159	-8.1674 -20.5507 -21.2459	12.8103 83.9370 80.5102	-8.1674 -20.5507 -21.2459
4	1 2 3	0.0000 -0.0011 0.0013	49.9020 109.1283 109.3282	-49.9024 -108.9472 -108.7473	49.9020 109.1283 109.3262	-49.9024 -108.9472 -108.7473
5 5 5	1 2 3	0.0995 -0.3332 -0.3330	44.7195 95.5977 93.3458	-0.2635 -0.6552 -0.8382	44.7195 95.5977 93.3458	-0.2635 -0.6552 -0.8382
\$ \$	1 2 3	0.0788 -0.1588 -0.1572	148.9727 \$76.4659 \$72.8206	-2.6254 -8.0679 -8.2387	17.1592 81.0665 78.5114	-2.6254 -8.0679 -8.2367
7 7 7	1 2 3	-0.0 75 4 -0.3322 -0.3267	140.66 55 553.6994 558.7726	-8.1730 -23.5693 -22.8741	12.8105 69.2337 72.6587	-8.1730 -23.5693 -22.8741
8 8	1 2 3	-0.110) -0.3597 -0.3591	52.2196 -175.4565 -173.8424	-130.6842 -652.3134 +650.8087	52.2196 -175.4565 -173.8424	-130.6842 -652.3134 -650.8087
9 9 9	1 2 3	0.1101 0.3713 0.3719	52.2187 -174.1404 -175.7545	-130.6927 -651.0390 -652.5434	52.2187 -174.1464 -175.7545	-130.6927 -651.0390 -652.5434
19 10 19	1 2 3	0.0028 0.0129 0.0084	226.3630 567.3961 568.7351	-182.2028 -1005.4779 -1003.5315	226.3630 567.3961 568.7351	+182.2028 -1005.4779 -1003.5315
13 17 11	1 2 3	-0.0028 -0.0107 -0.0152	226.3565 568.9651 567.1261	-182.2071 -1003.8895 -1005.8359	226.3565 568.4651 567.1261	-182.2071 -1003.8895 -1005.8359
BEAN	STRESSES					
5 A7	LOAD	I NORMAL	J NORMAL			
1 1 1	1 2 3	6.0377 6.0143 6.0089	1.3075 2.8590 2.9248			
2 2 2	1 2 3	0.5029 2.6369 2.7118	0.0770 0.2194 0.2144			
3 3 3	1 2 3	0.3727 2.4418 2.3421	0.2376 0.5978 0.6181			
4 4 4	1 2 3	1.4597 3.1921 3.1979	1.4597 3.1868 3.1809			
5 5 5	1 2 3	1.3074 2.7949 2.7291	0.0077 0.0192 0.0245			
6 6	1 2 3	0.5028 2.3753 2.3004	0.0769 0.2364 0.2414			
7777	1 2 3	0.3728 2.0150 2.1147	0.2379 0.6860 0.6657			
8 8 8	1 2 3	1.0045 3.3751 3.3440	2.5138 12.5479 12.5189			
9 9 9	1 2 3	1.8845 3.3498 3.3609	2.5141 12.5236 12.5526			
10 10 10	1 2 3	5.4746 13.7225 13.7549	4.4066 24.3176 24.2705			
11 11 11	1 2 3	5.4741 13.7474 13.7151	9.9064 24.2775 24.3246			
BRACIN	G ELEMEN	πs				
BRACE	LOAD	AXIAL-FORCE 0.5509				
1	3	0.8582				
2 2 2	1 2 3	0.5510 -1.3608 -2.4818				
BRACE	STRESSES	ł				
BRACE	LOAD	AXIAL				
1 - 1	1 2 3	0.0918 -0.0438 0.1430				

•

¢

2 2 2 1 2 3 0.0918 -0.2268 -0.4136

COLUMN FORCES

I THE	1740	TORSTONAL	ROLAN	AXIS	AXTAL	MINOR	AXIS	HAJOR	MINOR
		HOHENT	TOP HOHENT	BOT HOMENT	FORCE	TOP HOMENT	BOT HOHENT	SHEAR	SHEAR
1	1	0.0000	9.0000	-0.0003	0.0000	0.0000	0.0000	0.0000	0.0000
1	2	0.0000	0.0024	0.0021	0.0000	0.0000	0.0000	0.0000	0.0000
1	3	0.0000	0.0024	0.0021	0.0000	0.0000	0.0000	0.0000	0.0000
٤	3	0.0000	6.0000	0.0000	0.0000	0.0000	6.0000	0.0000	0.0000
2	2	0.0000	0.0000	-0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
z	3	0.0000	0.0000	-0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
3	1	0.0008	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	9.0000
3	z	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
3	3	0.0000	0.0001	0.0002	0.0000	0.0000	0.0000	0.5000	0,0000
۵	1	0.0000	0.0005	-0.0003	0.0000	0.0000	0.0000	0.0000	0.0000
4	ž	0.0000	0.0024	0.0021	0.0000	0.0000	0.0000	0.0000	0.0000
4	3	0.0000	0.0024	0.0021	0.0000	0.0000	0.0000	0.0000	0.0000
E	1	5 0000	-107.6514	-68.3575	0.2996	-1.0293	-1.0177	-1.1876	-0.0142
ś	ż	0.0007	-10.7061	27.2955	-3.5012	-2.0356	-2.5459	0.1152	-0.6318
5	3	-0.0009	-12.2022	25.8516	-3.4888	-1.9545	-2.4693	0.0948	-0.0307
					-7 6786	1 0101	171 0001	-0.0002	1 2086
2	2	74 - 86 90	15 5020	414 1289	-7.6747	0.2804	-294.3287	2.9835	-2.0420
ĕ	3	-100.9440	25.0333	720.9487	-7.6747	0.2804	-294.3290	5.1804	-2.0420
7	1	0.0000	-102.6189	-68.3336	0.2999	2.0203	2 8014	0 0976	0.0142
4	3	-0.0009	-10.4838	27.4751	-3.5978	2.3840	2.8780	0.1180	0.0355
•	-								
8	1	0.0000	207.2874	136.8435	-0.3420	-6.5988	-6.5663	2.3898	-0.0914
	2	0.0047	032.6789 A30 2000	657.9757 AEC 1867	-0.1001	-12.4392	-15.00/5	11.7045	-0.2044
	,	-0.0004	030.6770	000.1047	-0.10//	-10.0400			
9	1	0.0069	-0.0006	0.0199	-0.4949	-0.2120	172.4723	0.0001	1.1953
2	2	74.8687	27.4147	736.1948	-7.4125	-0.8232	-294.8228	5.3028	-2.0531
,	,	4100.9430	14.7073	414.3100	-7.4125	-0.0052	-174,0030	2.1202	
10	1	0.0000	207.2997	136.8312	-9.3422	6.6039	6.5704	2.3898	0.0915
10	Z	0.0847	830.6489	855.3653	-8.3082	15.1083	18.3341	11.7084	0.2322
10	3.	-0.0064	833.9Z88	857.7066	-8.2/85	19.5028	17.7578	11.7412	0.2240
	STRESSES		1110- F TN	BOT-HAX	BOT-NIN	SHEAR-HAL	SHEAR-MIN		
CTHE	LUND	TUP-TIAK	10P-Man		601-112N				
1	1	0.0239	-0.0254	0.1337	-0.1333	-0.0001	0.0000		
1	2	0.8921	-0.8896	0.0146	-0.8125	0.0015	0.0000		
•	,			••••••	•••••				
2	1	0.0074	-9.0074	0.0495	-0.0495	0.0000	0.0000		
2	2	0.0145	-0.0145	0.1002	-0.1002	0.0000	0.0000		
z	3	0.0011	-0.0011	0.0832	-0.0632	5.0000	0.0000		
3	1	0.0074	-0.0074	0.0495	-0.0495	0.0000	0.0000		
3	2	0.0277	-0.0277	0.1136	-0.1135	0.0001	0.0000		
,	3	0.9434	-0.0433	0.1306	-0.1305	5.0001	0.0000		
4	1	0.0259	-0.9255	0.1337	-0.1332	-0.0001	6.6000		
9	2	0.8994	-0.8969	0.8210	-0.8185	0.0015	0.0000		
9	3	0.9192	-0.9168	0.8418	-0.8394	0.0010	0.0000		
5	1	8.4884	-8.3488	5.9871	-5.8475	-0.2765	-0.0033		
s	2	1.8686	-3.4989	3.5512	-5.1815	D.0268	-0.0074		
5	3	1.9042	-3.5288	3.3774	-5.0020	0.0221	-0.0072		
6	1	-0.0820	-0.0026	0.5359	0.0507	0.0000	0.0010		
6	ż	-0.0586	-0.0452	1.0027	1.5655	0.0025	-0.0017		
6	3	-0.0552	-0.0425	1.1117	1.6383	0.0044	-0.0017		
7	1	8-4884	-8.3487	5.9870	-5.8473	-0.2765	0.0033		
7	ż	2.1928	-3.8527	3.6807	-5.3506	0.0227	0.0083		
7	3	2.1571	-3.8329	3.8544	-5.5301	0.0275	0.0685		
	1	4 3681	-4.4763	3. 1791	-3.3875	9.2032	~0,007B		
ě	ż	14.0697	-15.4581	15.1276	-16.5160	9.9978	-0.0167		
6	3	14.1579	-15.5500	15.2102	-16.6924	0.9950	-0.0174		
	,	-0.0035	-8.0874	0.5353	9.0500	0.0000	0.0010		
,	ż	-0.0504	-0.0392	1.1209	1.6453	0.0045	-0.0017		
9	3	-0.0546	-0.0426	1.0136	1.5732	0.0026	-0.0017		
14	,	4 1401	-0 6275	1.1796	-3, 38A1	0.2032	9,0078		
10	2	14.5787	-15.9899	15.6056	-17.0168	0.9953	0.0197		
10	3	14.4905	-15.8980	15.5229	-16.9305	0.9981	0.0190		

BEAM FOR	CES	*				
		TORSIONAL	CENTERLINE	HOMENTS	BEAM END	MOMENTS
BAT	LCAD	MOHENT	I MUMENT	J MOHENT	I HOHENT	J MOMENT
1	1	0.0000	0.000	0.0000	0.0000	0.0000
1	2	4.0000	0.0000	0.0000	0.0000	0.0000
1	3	¢.0000	0.000	0.0000	0.0000	0.0000
2	1	-0.5158	150.1950	-1.0346	17.5778	-1.0346
2	2	-0.1406	370.5708	-2.0485	67.2787	-2.0485
2	3	-0.1396	375.3349	-1.9595	70.6562	-1.9595
3	1	0.1061	142.5621	-6.5934	13.7139	-6.5934
3	z	0.4094	360.5825	-12.4263	63.1093	-12.4263
3	3	0.4150	359.3667	-13.0404	58.8449	-13.0404
4	1	0.0000	0.0000	0.000	0.0000	5.0000
	2	0.0000	0.0000	0.0000	0.0000	0.0000
4	ŝ	0.0000	0.0000	0.0000	9.0000	0.0000
5	,	0,0000	0.0000	0.0000	0.0000	0.0000
ŝ	2	0.0000	-0.0001	0.0000	-0.0001	0.0000
5	3	0.0000	-0.0001	0.0000	-9.0001	0.0000
		9.5163	150.1993	-1.0335	17.5769	-1.0335
Ā	;	0.1398	355.0668	-2.3106	56.2807	-2.3196
, i	j	0.1408	350.3016	-2.3996	52.9010	-2.3996
,	1	-0 1060	142 8427	-4 8987	13 7158	-4 1987
÷		-0.4138	333 1476	-16 1012	66 7016	-16 1012
÷	÷.	-0.4130	339.1070	-14 4672	AR 5514	-10 0872
•	•	-0.4002		-14.4071	4015518	-14.4076
8	1	0.0000	0.0000	-0.0011	0.0000	-0.0011
8	2	a.0000	-0.0024	-0.0037	-0.0024	-0.0037
•	3	0.0000	-0.0024	-0.0037	-0.0024	-0.0037
9	1	0.0000	0.000	-0.0011	0.0000	-0.0011
	2	0.0000	-0.0024	-0,0037	-0.0024	-0.0037
4	3	0.0000	-0.0024	-0.0037	-0.0024	-0.0037
10	1	0.0054	103.1683	-207.3935	103.1683	-207.3935
10	2	0.0129	10.8505	-833.0864	10.8505	-833.0864
10	3	9.0049	12.3456	-830.7139	12.3456	-830.7139
. 11	1	-0.0052	103.1343	-207.4057	103.1343	-207.4057
11	2	-0.0076	12.1231	-831.0626	12.1231	-831.0626
11	3	-0.0156	10.6284	-833.4350	10.6284	-833.4350
BEAM 31	RESSES					
BAY 1	.CAD	I NORMAL	J NORMAL			,
1	1	9.0006	0.0033			
1	2	0.0014	0.0085			
i	3	0.0003	0.0014			
2	1	0.5163	8.0304			
Z	2	1.9762	0.0é02	•		
2	3	2.0754	0.0576			
,		d 1978	0 1913			
ί	;	1 8307	0 3605			
-	•					

1	1	0.0006	0.0033
1	2	0.0014	0.0085
ī	3	0.0003	0.0014
-	-		
2	1	0.5163	8.0304
ž	2	1.9762	0.0602
;		2.0754	0.0576
-	-	•••••	
٩.	1	d 1978	6 1913
. (;	1 8307	0 3605
ĩ	i	1 7070	0.3763
	•		0.0.00
4	1	0 0010	8 0010
Ā	;	0.0000	0 0014
2	÷.	0.0000	6.0014
-	2	0.0020	4.0033
			0 0004
Ě	:	0.0033	8 0021
2	-	0.0140	0.0023
~	\$	0.0019	0.0035
4		5 5160	6 0303
ž	;	1 4573	0.0678
4		1.0923	0.0010
•	,	1.3330	0.0704
7		0.3982	0.1916
,	;	1.7860	0.4385
	i	4097	8 4255
•			0.4000
	1 -	0.0102	8.2385
Å	; -	0 5118	0 4057
Ă	i	0 5085	8.8035
•	•	*	
•	,	0.0107	0.2144
á	;	0 5087	0 0015
á	;	0.5007	0 4057
•		4.3164	A. 6431
10	1	2 0627	9.1445
10	2	0.2169	16.6564
10	i	0 2668	16 6089
	•		10.0007
11	1	2.0620	4.1468
11	2	0.2424	16.6160
ii	1	0 2125	26.6639
	-		

STATIC AND DYNAMIC LOAD COMBINATION-----LATERAL AND ROTATIONAL H. C. DISPLACEMENTS

LEVEL	DIRECTION	1	2	3
2	X	-0.0462172	0.4845132	0.4845133
2	¥	0.0000000	0.0063410	0.0060298
2	ROTH	0.0000000	0.0000074	-0.0000105

1	x	-0.0090358	0.1776870	0.1776870
1	۲	0.0000000	0.0018068	0.0023773
1	ROTIN	0.000000	0.000022	-0.0000036

12.8383 THE STEEL WEIGHT IS THE CONCRETE NEIGHT IS 92.3758

THE OBJECTIVE VALUE IS LARGEST SCALING FACTOR 55776.7649

LEVEL	z
0.015	0
LOAD CASE	- 3

FACTOR_____ 1.1012

COLUMN ID	1	8	TOPS I	HAJ I	<u>HIN I</u>	21	08	0	_ <u>B£</u>	<u> </u>	ᅖ	15	<u>C5</u>	32	
1	30000.00	7.79	4.89	279.85	7.13	0.00	0.00	15.77	5.46	0.31	0.23	36.00	36.00	9999.00	
Ž	30000.00	5.72	2,66	198.50	3.97	0.00	0.00	13.07	4.03	0.31	0.23	36.00	14 00	6666 00	
3	30000.00	7.75	2,00	40.27	3.97	0.00	0.00	15.77	5.66	0.31	0.23	36.00	36.00	9999.00	
1	30000.00	4 50	1 66	Sm 71	2 52	0.00	0.00	12.23	9.39	0.31	0.23	36.00	36.00	9999.00	
	30000.00	6.87	1.61 2	15.91	5.61	0.00	0.00	14.88	5.19	0.31	0.23	36.00	36.00	9999.00	
7	30000.00	4.50	1.66	90.66	Z.52	0.00	0.00	12.23	4.39	0.31	0.23	36.00	36.00	9999.00	
8	30000.00	6.87	3.61 2	15.92	5.61	0.00	4.00	14.88	5.19	0.31	0.23	36.00	36.00	9999.00	
9	30000.00	12.33	12.04	17.52	17.04	0.00	Q.DD	19.51	6.55	0.31	0.23	36.00	36.00	9999.00	
10	30000.00	7.2B	4.28	43.64	6.28	0.00	0.00	15.29	5.32	0.31	0.23	36.00	36.00	9999.00	
11	30000.00	12.33	12.04	17.52	17.05	0.00	0.00	19.51	B.55	0.31	0.23	36.00	36.00	9999.00	
12	30000.00	7.29	9.28 8	:43.77	6.20	0.00	0.00	12.54	3.32	1.00	1 00	100.00	100.00	100.001	
13	30000.00	0.02	0.00	0.00	0.00	0.00	6 00	1.01	0.52	1.00	1.00	100.00	100.00	100.00	
15	30000.00	0.02	0.00	0.00	9.00	0.00	0.00	1.01	0.52	1.00	1.00	100.00	100.00	100.00	
16	30000.00	0.02	0.00	9.00	9.00	8.00	0.00	1.01	0.52	1.09	1.00	100.00	150.00	100.00	
	57			***		***		~							<i>.</i>
17	1074 166	13		L 4.0	<u> </u>	2.0	50.0	10	1 0 3000	0 120 0		030008 0	0.0252	007243	1150
ia	2489153.	16	39. 61749	. 4.0	4.0	2.0	50.0	3.0	1.0 3000	0 120.0	18.	930000.0	0:0252	550902.	1150.
19	1976349.	13	01. 30908	. 4.0	4.0	2.0	50.0	3.0	1.0 3000	.0 120.0	15.	030000.0	0.0252	007257.	1150.
20	2489162.	16	39. 61750). 4.0	4.0	2.0	50.0	3.0	1.0 3000	.0 120.0	18.	930000.0	0.0252	556912.	1150.
BEAM ID	I	TOPS I	FLEX I	<u>K11</u>	<u>KJJ</u>	<u>kij</u>	01	ല	Đ	15					
1	30000.00	5.12	293.87	4.00	4.00	2.00	0.00	0.00	15.95	36.00					
2	30000.00	5.12	293.70	4.00	4.00	2.00	4.00	0.00	15.95	36.00					
3	30000.00	5.12	293.89	4.00	4:00	2.00	0.00	0.00	15:95	36.00					
÷	30000.00	8.60	504.75	4.00	4.00	2.00	0.00	0.00	18.02	30.00					
Å	30000.00	8.20	480.18	6.03	9.00	2.00	6.00	0.00	17.42	36.00					
7	30000.00	6.46	375.50	4.00-	4.00	2.00	0.00	0.00	16.86	36.00					
à	30000.00	8.20	480.18	4,00	4.00	2.00	0.00	0.00	17.82	36.00					
9	30000.00	6.48	375.53	4.00	4.00	2.00	9,00	0.00	16.86	36.00					
10	30000.00	5.09	292.12	4.00	4.00	2.00	60.00	0.00	15.93	36.00					
11	30000.00	5.11	292.99	4.00	4.00	2.00	60.00	0.00	15.94	36.00					
12	30000.00	5.17	296.87	4.00	4.00	Z.00	60.00	0.00	15.99	36.00					
13	30000.00	5.15	295.79	4.00	4.00	2.00	60.00	0.00	15.97	36.00					
	30000.00	5.07	272,36	4.00	4.00	2.00	60.00	0.00	19.73	36.00					
14	30000.00	B 14	204 61	4 00	4.00	2 00	40.00	0.00	15 08	36.00					
17	30000.00	5.15	295.62	4.00	4.08	2.00	40.00	6.00	15.97	36.00					
18	30000.00	0.00	0.00	4.00	4.00	z.00	0.00	0.00	1.18	99,99					
19	30000.00	0.00	0.00	4.00	4.00	2.00	0.00	0.00	1.16	99.99					
20	30000.00	0.00	0,00	4.00	4.00	2.00	D,00	0.00	1.10	99.99					
21	30000.00	0.00	0.00	4.00	4.00	2.00	0.00	0.00	1.18	99.99					
22	30000.00	0.00	0.00	4.00	4.00	2.00	0.00	0.00	1.18	99.99					
BRACING ELE	MENT INFORM	ATION													
TEAST AC	<u>LE</u> 2 3001		6.	60701	36.0	<u>19</u>	Z4.0	<u>23</u> 0000							
1 2	3 300	00.00000	6,	60595	36.0	00000	24.0	0000							

THE EIGENSOLUTIONS ARE:

FREQ. 1 IS 11.26

THE EIGENMODE IS:

0.3029070760655-42 0.164265855784E-44 0.164354095413E-04 0.302869798105E-02 0.617790419623E-02 0.754350829698E-05 0.617801979355E-02 -0.651279215666E-02 -0.114211409892E-04 -0.651080259171E-02 0.301887192733E-02 0.163554246554E-04 0.1636426678918-04 0.3018501274158-02 0.1813972875978-02 0.3862561356108-05 0.1813757217588-02 -0.4924493146538-02 -0.674270656267E-05 -0.492276016614E-02 0.131176291467E+01 -0.571185358794E-14 -0.543391675304E-10 0.412565048663E+00 -0.309434655522E-13 0.789053094015E-10

```
FREQ. 2 15 40.65
```

```
THE EIGENMODE IS:
```

```
0.452272551178E-02 0.251420639903E-04 0.251911269884E-04 0.452320752066E-02 -0.203678288441E-01 -0.281182360460E-04
-0.203675715710E-01 0.959712116448E-02 0.165015759396E-04 0.959359214338E-02 0.453426148436E-02 0.249975224166E-04
0.250464883514E-04 0.453473822730E-02 -0.120866251083E-01 -0.159134856594E-04 -0.120854447813E-01 0.655702024731E-02
0.959089673274E-05 0.655387082984E-02 -0.614629729226E+00 0.105162461632E-12 0.670158622473E-11 0.880505610031E+00
-0.230114538256E-12 0.257931500928E-09
```

FREQ. 3 18 463.55

```
THE EIGENMODE IS:
```

```
        0.559033217175E-02
        -0.153340593305E-02
        0.1534099210766E-02
        0.667081178059E-01
        0.152278772847E+01
        0.428388729731E-01

        0.183116923146E+02
        0.238097300132E-01
        0.766670526873E-03
        9.286952293583E+00
        0.419787616129E-02
        -0.120531467357E-02

        0.120497757632E-02
        0.501509703562E-01
        0.834315672402E+00
        0.267598580058E-01
        0.100304570326E+02
        0.1817125127272E-01

        0.491628604886E-03
        0.218850239591E+00
        -0.114274056998E-02
        -0.285099625694E-07
        0.520015593069E-05
        0.966278408631E-03

        0.217814525203E-07
        0.976259954836E-05
        0.976259954836E-05
        0.976259954836E-05
        0.976259954836E-05
```

THE PERIOD USED IN THE CALCULATIONS IS 0.45542

```
LATERAL FORCES:
  STORY NO.
                  VALUE
                 0.311817E+02
0.280986E+02
      ÷
DRIFT:
  STORY NO.
                  VALUE
                 0.108652E+01
      z
                 0.223128E+01
THETA:
  STORY NO.
                  VALUE
                 0.1160818-01
      ź
                 0.781073E-02
```

THE EIGENSOLUTIONS ARE:

FREQ. 1 15 54.31

THE EIGENMODE IS:

0.258625522705E-02 0.112292404357E+00 -0.112290248979E+00 -0.258638631280E-02 0.264774973354E-01 0.520822325892E-06 -0.264941413536E-01 0.217459933187E-01 -0.969955349484E-06 -0.217252664515E-01 0.256151925578E-02 0.111922585718E+00 -0.111920537677E+00 -0.256165129603E-02 0.143056693710E-01 0.258229388808E-06 -0.143115842872E-01 0.16375068015E-01 -0.507711590576E-06 -0.163816925295E-01 -0.243038654906E-13 0.150892359025E+01 -0.356829956497E-06 0.271103295803E-13 0.416550134925E+00 -0.237038425315E-05

FREQ. 2 15 256.60

THE EIGENHODE IS:

0.684824360360E-02 0.338432632344E+00 -0.338425856722E+00 -0.684840873096E-02 -0.611676241259E-01 -0.138484471144E-05 0.612230231933E-01 +0.371292018565E-01 0.19770239444E-05 0.370860866564E-01 0.633585869217E-02 0.316322950836E+00 -0.316316624143E+0D -0.638601250143E-02 -0.240734925673E-01 -0.638794134425E-06 0.240925117436E-01 -0.245132025736E+01 0.926178087913E-06 0.244826207766E-01 0.898267026378E-13 -0.611625334446E+00 -0.526730250285E-04 +0.352727945218E-12 0.665486618440E+00 -0.773970727129E-03

FREQ. 3 15 463.55

THE EIGENMODE IS:

 0.110610406141E-01
 -0.273444346758E-02
 0.273599204312E-02
 0.661189458561E-01
 0.303179099773E+01
 0.45685651131E-01

 0.181230104597E+02
 0.477521054184E-01
 0.817415406626E-03
 0.283577050536E+00
 0.830564296742E-02
 -0.215012267426E-02

 0.214965094987E-02
 0.49646455422E-01
 0.166098775161E+01
 0.285402819277E-01
 0.992702918797E+01
 0.364255982760E-01

 0.524169811929E-03
 0.216283478941E+00
 0.124150297795E-07
 0.260918564233E-02
 0.518940333743E-05
 -0.227398491584E-07

 -0.124979141184E-02
 0.19517237351E-04

THE PERIOD USED IN THE CALCULATIONS IS 0.10776

LATERAL PORCES:

STORY ND.	VALUE
1	0.311817E+02
2	0.280986E+02
DRIFT:	57
STORY NO.	VALUE
1	0.417214E-01
2	0.615575E-01

LOAD CONDINATIONS-----HENBER FORCES-----LEVEL NO. 1

COLUMN FORCES

LINE	1.040	TOPSTONAL	HAJOR	AXTS	AXTAL	HINOR	AXTS	RAJOR	HINDR
		PICHENT	TOP HOMENT	BOT HOMENT	FORCE	TOP HOHENT	BOT HORSHT	SHFAR	SHELP
1	1	0.0000	-51.0334	-14.6736	2.1070	-0.3727	-0.1843	-0.5952	-0.0039
ī	;	0.0008	151.1494	252.0783	1.1524	-0.4362	-0 3847	2 6002	-0 0045
		-0.0013	140 5175	260 8060	1 1602	-0 4517	-0 2275	7 7717	-0.0041
•	-								
2	1	0.0000	-5.1969	-2.5985	1.2719	0.0970	0.1785	-0.0541	0.0019
2	2	0.0005	-11.3241	-4.9879	-1.5407	-0.2872	-2.6446	-0.1133	-0.0204
;	i	-0.0007	-9.7491	-2.5753	-0.8613	-0.2645	-2.6150	-0.0821	-0.0203
•	•								
3	1	0.0000	5.1969	2.5984	1.2719	0.0970	0.1785	0.0541	0.0019
3	ź	0.0005	13.3526	7.3505	-2.2072	-0.2850	-2.6373	0.1438	-0.0203
3	3	-0.0007	15.4278	9.7632	-2.8866	-0.2877	-2.6470	0.1749	-0.0204
	1	0.0000	-51.0326	-34.6737	Z.1071	0.3726	0.1863	-0.5952	0.0039
•	ž	0.0008	149.5186	250.3710	1.1212	1.0204	0.5425	2.7791	0.0109
•	3	-0.0013	151.4544	252.5545	1.1134	1.2068	0.7018	2.8056	0.0133
5	1	0.0000	-26.6652	-20.3975	2 44 14	-1 4898	-0.7449	-0.3268	-0.0155
Ę	;	0.0007	34.7932	153.5756	-19 3266	-4 5056	.2 2153	1 3021	-0.0467
ě	i	-0.0010	33, 3723	151.4116	-19 2917	-4 4160	-2 1499	1 2860	-0.0456
-	-								-0.0420
6	3	0.0025	0.0260	-0.0143	3.7888	-185.7138	109.1942	0.0001	-0.5314
6	ź	41,9040	-406.4588	1459.4555	-18.7189	382.1382	-3691.9641	7.3125	-22.9649
6	3	-67.1560	-709.2381	2223.6444	-18.7189	382.1386	-3691.9641	10.5167	-22.9849
_									
7	1	0.0000	-26.6736	-20.4020	2.4636	1.4895	0.7447	-0.3269	0.0155
7	2	0.0007	33.6976	152.2220	-19,4724	4.5232	2.4491	1.2911	0.0505
7	3	-0.0010	35.1108	153.9862	-19.5073	4.9129	2.5146	1.3132	0.0516
	1	0.000	43.1123	13.5641	4.6623	-1.5996	-0.7998	0.3937	-0.0167
à	ź	0.0007	141.9929	224.6626	-17.6211	-4.7019	-2.2858	2.5462	-0.0485
ā	3	-0.0012	142.3854	223.6700	-17.6616	-4.5167	-2.3757	2.5421	-0.0499
9	1	0.0025	-0.0178	0.0123	4.0463	-185.4829	109.3119	0.0000	-0.5290
9	2	41,9342	-723.3564	2301.0314	-18.1438	382.2580	-3691.9482	9.5672	-22.9240
9	3	-67.1562	-428.4193	1081.9432	+18.1438	382.2584	-3691.9481	4.5384	-22.98-0
	,	0.0000	43 1281	13 5475	6 6471	1 4017	0 8004	1 1619	0 0147
	;	0.0000	147 5118	224 1034	-17 6445	E 1641	2 4592	5 5441	0.05.5
10	÷	-0.0012	142.3535	224.1030	-17 8281	E 1791	2 5773	2 5501	0.0545
10	3	-0.0012	146.1411	223.0407	-17.0201	3.0/42	6.3763	2.3343	0.0331
COLUMN	STRESSES								
LINE	LOAD	TOP-MAX	TOP-MIN	BOT-HAX	BOT-MIN	SHEAR-MAJ	SHEAR-MIN		
,	,	1 4519	-1 1166	1 3180	-0 7785	-0 0744	-0 0005		
	;	4 7284	-1.3145	7 4002	-7 1864	6 3501	-0.0003		
1	÷	4 4125	-4.31/7	7 2787	-6 2803	0.3575	-0.0001		
•	,	4.0120	-4.3140	1.6101	-0, 4004	*****	-0.0000		
Z	1	0.5203	-0.0759	0.4503	-0.0059	-0.0095	0.0003		
2	z	0.4265	-0.9647	1.5686	-2.1069	-0.0198	-0.0036		
t	3	0.4481	-0.7490	1.5704	-1.8713	-0.0143	-0.0035		
-				0 4500	-0.0050				
	1	0.5202	-0.0794	1 6647	-2 3074	0.0075	-6 0035		
3	2	0.4020	-1.1/31	1.3303	-0.5405	0.0231	-0.0035		
3	2	V-3004	-1.3000	1.3343	-1.3017	0,0300	-0.0030		

Reproduced from best available copy.

4	1	1.8511	-1.3104	1.3188	-0.7781	-0.0764	0.0005
4	2	4.7564	-4.4687	7.4074	-7.1197	0.3566	0.0014
4	3	4.8729	-4.5872	7.5289	-7.2431	0.3600	0.0017
=		1 0444	-1 2491	1 4055	-0 4886	-0 0474	-0 0023
	2	1.9004	-6.0969	3.5013	-9.1293	0.1905	-0.0068
ŝ	3	0.3835	-0.0014	3.4153	-9.0332	0.1872	-0.0066
6	1	0.3806	-0.0181	0.2562	-0.0107	0.0000	-0.0003
5	2	0.6112	0.5559	6.2629	7.0114	0.0045	-0.0140
5	د	9.5668	0.9404	0.450/	/.2235	0.0064	-0.0140
7	1	1.9666	-1.2492	1.4060	-0.6886	-0.0476	0.0023
. 7	2	D.5568	-6.2272	3.5415	-9.2118	0.1880	0.0074
7	3	0.6421	-6.3227	3.6274	-9.3080	0.1912	0.0075
	1	2.6727	-1.30/2	5.5986	-0.1221	0.0541	-0.0023
š	5	9.0822	-8.9314	5.5987	-10.4479	0.3490	-0.0069
_	-						
9	1	0.3856	-0.0181	0.2517	-0.0107	0.0000	-0.0003
9	2	0.6961	0.5486	6.4307	7.1968	0.0055	-0.0190
*	5	0.0200	9.3864	D-1041	0.9114	0.0028	-0.0140
10	1	7.6728	-1.3876	1.4076	-0.1229	0,0541	0.0023
10	ż	4.2161	-9.1208	5.7011	-10.6058	0.3494	0.0075
10	3	4.1607	-9.0543	5.7010	-10.5946	0.3500	0.0073
BEAR FO	RCES						
		TORS I CHAL	CENTERLINE	MOHENTS	BEAM END	MOMENTS	
BAY	LOAD	TOTENT	I HOMENT	J HONENT	I HOHENT	J HOHENT	
1	2	-0.0970	0.2627	-44.6940	0.2627	-44.6940	
ļ	z	0.2861	0.4825	-97.8391	0.4825	-97.8391	
1	3	0.2664	V.2965	-100.1714	0.2965	+100.1714	
,	1	-0.0753	148.8293	-2.6162	17.0541	-2.6162	
ž	ż	0.1075	590.4411	-7.3773	90.8515	-7.3773	
2	3	0.1090	594.1348	-7.2955	93.4407	-7.2055	
1	1	0.0727	140.4765	-8.1447	12.6674	-8.1447	
3	2	0.3170	571.471A	-20.2003	84.0004 Al 1986	-20 9874	
-	•	0.3220	20114/10	- 201 /0/4	0111700		
4	1	0.0000	49.8909	-49.8913	49.8909	-49.8913	
4	2	-0.0011	109.1633	-108.9264	169.1633	-108.9264	
4	3	0.0018	109.4205	-108.6692	109.4295	-198.6692	
5	1	0 0970		-0.2627	44 4944	-0.2627	
5	2	-0.2862	95.5737	-0.6531	95.5737	-0.6531	
5	3	-0.2859	93.2412	-0.8390	93.2412	-0.8390	
6	1	0.0753	148.8302	-2.6150	17.0544	-2.6150	
•	z	-0.1087	577.5715	-7.9612	61.625/	-7.9612	
•	3	-0.1071	5/3.8/71	-0.1330	79.2359	-0.1330	
7	1	-0.0726	140.4747	-6.1503	12.6677	-8.1503	
7	ž	-0.3215	554.5804	-23.3222	69.7923	-23.3222	
7	3	-0.3159	559.7096	-22-6233	73.2563	-22.6233	
_	-						
	1	-0.1100	51.1307	-131.9561	51.1307	-131.9561	
ŝ	÷	-9.3337	-131,43/3	-429 4889	-151.43/5	-931.2232	
		-0.0001			-14710010		
,	1	0.1100	51.1299	-131.9642	51.1299	-131.9642	
2	2	0.3673	-150.1067	-629-9363	-150.1067	-629.9363	
9	3	0.3678	-151.74Z3	-631.4604	-151.74Z3	-631.4604	
10	1	0.0027	224 . 7724	-184.6636	224.7726	-189.6636	
10	ż	0.0122	581.9832	- 984 . 7502	581.9832	-984.7502	
10	3	0.0077	583.3411	-982.7772	583.3411	-982.7772	
11	1 7	-0.0027	224.7660	-184.6578	224,7560	-159.5578	
ii	3	-0.0145	581.7059	-985.1161	581.7059	-985.1161	
BEAN S	TRESSE	5					
BAY	LOAD	I NORMAL	J NORMAL				
1	1	0.0071	1.2128				
1	ş	0.0131	2.6550				
	3	0.0000	2.7103				
2	1	0.4639	0.0712				
2	2	2.4711	0.2007				
2	3	2.5415	0.1960				
		. 1417	0 2100				
3	ź	2.2857	0,5478				
3	3	2.1921	0.5667				
4	1	1,3545	1.3545				
4	2	2,9035	6.4572				
•	3	2.7/00	6.7346				
5	1	1.2128	0.0071				
5	2	2.5934	0.0177				
5	3	2.5301	0.0228				•
6	1	0.4638	0.0711				
6	2	2.2252	0.2165				
6	3	2.1548	0.2212				

178

-

1	0.3422	0.2202
2	1.8852	0.6300
3	1.9788	0.6111
1	0.9129	2.3559
2	2.7037	11.2695
ī	£.6745	11.2422
1	8.9129	2.3561
z	2.6800	11.2467
3	2.7092	11.2739
1	5.0454	4.1451
2	13.0636	22.1095
3	13.0941	22.0602
1	5.0449	4.1449
2	13.0870	22.0669
3	13.0565	22.1112
	123 123 123 123 123	1 0.3422 2 1.8652 3 1.9788 1 0.9129 2 2.7037 3 2.7037 1 8.9129 2 2.66400 3 2.7092 1 5.0454 2 13.0654 3 13.0341 1 5.0459 2 13.0655

BRACING ELEMENTS BRACE LOAD

LOAD	AXIAL-FORCE
1	0.5728
2	-0.2922
3	0.8336
1	0.5729
Ż	-1.3958
3	-2.5215
	LOAD 1 2 3 1 2 3

BRACE STRESSES

BRACE	LOAD	AXIAL
	1 2 3	0.0867 -0.0442 0.1262
2 2 2	1 2 3	0.0857 -0.2113 -0.3816

LOAD COMBINATIONS-----HENSER FORCES-----LEVEL NO. 2

COLUMN FORCES

LINE	LOAD	TORSIONAL	MAJOR	AXIS .	AXIAL	HINDR	AXIS	ROLAM	MINOR
		TIMENT	TOP HOMENT	BOT MOMENT	FORCE	TOP HOMENT	BOT MOMENT	SHEAR	SHEAR
1	I	0.0000	0.0001	-0.0003	0.0000	0.0000	0.0000	0.0000	0.0000
1	2	0.0000	D.0022	D.0020	0.0000	0.0000	0.0000	0.0000	0.0000
1	3	0.0000	0.0022	9.0019	0.0000	0.0000	0.0000	0.0000	0.0000
2	1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2	2	0.0000	0.0000	-0.0001	0.0000	0.0000	0.0000	D. 0000	0.0000
2	3	0.0000	0.0000	-0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
3	1	9.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3	2	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000
3	3	0.0000	0.0001	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000
4	ı	D.0000	0.0001	-0.0003	0.0000	0.0000	0.0000	0.0000	0.0000
4	2	0.0000	0.0022	0.0020	0,0000	0.0000	9.0000	0.0000	0.0000
4	3	0.0000	0.0022	0.0020	0.0000	0.0000	0.0000	0.0000	0.0000
5	3	6.0000	-100.3746	-66.0757	0.3154	-1.0256	-1.0137	-1.1559	-0.0142
5	2	0.0007	-24.3950	14.3393	-3.5948	-1.9939	-2.5037	-0.0695	-0.0312
5	3	-0.0009	-25.9111	12.8765	-3.5763	-1.9124	-2.4266	-0.0905	-0.0301
6	1	0.0068	0.0009	-0.0269	-0.6167	1.0056	185.8644	-0.0002	1.2977
6	2	75.8697	15.6887	419.3285	-7.6900	Q.3776	-382.3544	3.0210	-2.6526
6	3	-102.7006	25.3412	729.4959	-7.6899	0.3776	-382.3547	5.2419	-2.6526
7	1	0.0000	-100.3411	-66.0529	0.3155	1.0246	L.0129	-1.1555	0.6141
7	2	0.0007	+25.6778	13.0663	-3.6760	2.2627	2.7607	-0.0876	0.0349
7	3	-0.0009	-24.1621	14.5286	-3.6685	2.3442	2.6378	-0.0669	0.0360
	1	0.0000	210.9386	141.4786	-0.3593	-6.5790	-6.5478	2.4473	-0.0912
8	z	0.0047	611.2526	842.4404	-8.0615	-12.2440	-15.5989	11.4840	-0.1934
8	3	-0.0064	808.8427	840.0691	-8.0834	-12.8532	-16.1784	11.4508	-0.2016
9	1	6.0068	-0.0009	0.0196	-0.4935	-0.2187	185.3376	0.0001	1.2855
9	z	75.8695	27.7153	745.3797	-7.4249	-0.7998	-382.8965	5.3687	-2.6646
9	3	-102.7003	15.1532	440.1816	-7.4249	-0.7998	-382.8969	3.1620	-2.6646
10	1	0.0000	210.9506	141.4671	-0.3594	6.5841	6.5518	2.4473	0.0912
10	z	0.0047	809.2045	840.2876	-8.1970	14.9267	18.1381	11.4548	0.2296
10	3	-0.0064	511-6142	842.6592	-8.1750	14.3176	17.5586	11.4880	0.2214

. •

COLUMN	STRESSES
--------	----------

.

LINE	1010	TOP-MAX	TOP-MIN	BOT-MAX	SOT-MIN	SHEAR-MAJ	SHEAR-MIN
1	1	0.0326	-0.0322	0.1131	-0.1126	-0.0001	0.0500
ī	ż	0.7786	-0.7763	0.7046	-0.7023	0.0014	0.0000
1	3	0.7598	-0.7575	0.6849	-0.6826	0.0014	0.0000
2	1	0.0069	-0.0069	0.0430	-0.0430	6.0000	0.000
2	2	0.0134	-0.0133	0.0935	-0.0935	9.0000	0.0000
2	3	0.0013	-0.0013	0.0775	-0.0775	0.0000	0.0000
3	1	0.0067	-0.0069	0.0430	-0.0430	0.0000	0.0000
3	ž	0.0258	-0.0257	0.1060	-0.1060	0.0001	0.0000
3	3	0.0404	-0.0404	0.1220	-0.1219	0.0001	0.0000
4	1	0.0327	-0.0322	0.1131	-0.1126	-0.0001	0.0000
4	2	0.7855	-0.7832	0.7105	-0.7682	0.0014	0.0000
•	,	0.8042	-0.6019	0.7301	•0.7274	0.0014	0.0000
5	1	7.7305	-7.5904	5.4084	-5.2683	-0.2568	-0.0031
5	2	2.5866	-4.1820	2.3538	-3.9491	-0.0155	-0.0069
,	,	6.0604		E. 1701	-3.7003	-0.0291	-0.000/
6	1	-0.0022	-0.0025	0.4747	0.5354	0.0000	0.0010
6	2	-0.0531	-0.2645	1.0629	0,9968	0.0023	-0.0020
•	•						
2	1	7.7305	-7.5903	5.4083	-5.2681	-0.2568	0.0031
÷	2	2.8900	-4.4953	2.4/44	-4.2767	-0.0149	9.0078
	•						
5	1	4.1030	-4.1613	3.1524	-3.2107	0.1985	-0.0074
e i	3	12.6121	-14.1235	13.8755	-15.1868	0,9288	-0.015/
	•						
\$	1	-0.0032	-0,0039	0.4743	0.5349	0.000	0.0010
9	3	-0.0501	-0.0605	1.0726	1.0079	0.6624	-0.0020
10	1	4.1041	-4.1624	3.1530	-3.2113	9.1985	0.0074
10	3	13.1236	-14.4498	14.1662	-15.4944	0.9318	0.0180
BEAN FO	RCES						
		TORSIONAL	CENTERLIN	E MOMENTS	BEAM END	MOMENTS	
BAY	LOAD	HOHENT	I HOMENT	J MOMENT	I HOHENT	J HORENT	
1	2	0.0000	0.0000	0.0000	0.0400	0.0000	
ī	3	0.0000	0.0000	0.0000	0.0000	0.0000	
	1		100 0014	-1 0700	13 4197	-1 0100	
ż	ż	-0.1892	372.2271	-2.0056	68.4495	-2.0056	
z	3	-0.1882	377.0518	1.9160	71.8702	-1.9160	
۰,	3	n 1096	142 3891	-4 5737	13 5567	-6 5737	
ŝ	z	0.3977	361.8466	-12.2323	63.9568	-12.2323	
3	3	0.4033	355.5625	-12.8495	59.6445	-12.8495	
4	1	8.0000	8.0000	0.0000	0.0000	8.8000	
4	z	0.0000	0.0000	0.0000	0.0000	0.0000	
٩	3	0.0000	0.0000	9.0000	5.6000	9.0000	
5	ι	0.0000	0.0000	7.0000	0.0000	0.0000	
Š	ż	0.0000	-D.000I	0.0000	-0.0001	0.0000	
5	3	0.0000	-0.0001	0.0000	-0.0001	5.0000	
6	1	0.5035	149.9925	-1.0298	17.4317	-1.0298	
6	ε	0.1884	356.5385	-2.2690	57.3186	-2.2690	
	3	9.1894	351.7196	-8.3566	53.8956	-2.3586	
7	3	-0.1093	142.3900	-6.5789	13.5669	-6.5789	
7	2	-0.4021	534.1315	-14.9204	44.9282	-14.9264	
7	3	-0.3965	340.4092	-14.3032	49.2361	-14.3032	
8	1	0.0000	1000.0-	-0.0011	-0.0001	-0.0011	
8	2	0.0000	-0.0022	-0.0036	-0.0022	-0.0036	
8	3	0.0000	-0.0022	-0.0036	-0.0022	-0.0036	
9	1	0.0000	-0.0001	-0.0011	-0.0001	-0.0011	
2	2	0.0000	-0.0022	-0.0036	-0.0022	-0.0036	
9	3	0.0000	-0.0022	-0.0036	-0.0022	-0.0036	
10	1	0.0053	100.8790	-211.0480	100.8790	-211.0480	
10	2	0.0117	24.5875	-811.6503	24.5878	-811.6503	•
10	3	0.0036	20.1029	-809.2460	26.1029	-809.2460	
11	1	-0.0052	100.8457	-211.0599	100.8457	-211.0599	
11	2	-0.0064	25.8698	-809.6065	25.8698	-809.6065	
11	3	-0.0144	24.3552	-012.0107	24.3552	-012.0107	
BEAT S	TRESSES						

BAY I	.040	I NORMAL	J NORMAL
ı	1	0.0006	0.0032
1	2	0.0012	0.0077
1	3	0.0003	0.0010
2	1	0.4752	0.0281
z	2	1.5661	0.0547
2	i	1 9561	0 0522

3	1	0.3658	0.1770
3	2	1.7220	0.3293
3	3	1.6059	0.3460
4	1	0.0009	8.0089
4	2	0.0001	6.0013
4	3	0.0017	0.0031
5	I	0.0032	0.0005
5	2	0.0138	0.0021
5	3	D.0205	0.0031
6	1	0.4750	0.0201
6	z	1.5618	0.0618
6	3	1.4685	0.0643
7	1	0.3661	8.1773
7	2	1.2107	0.4021
7	3	1.3268	D. 3854
8	1	0.0145	0.2246
8	2	0.4461	9.7267
8	2	0.4430	0.7247
9	1	0.0145	0.2246
9	2	0.4433	0.7247
9	3	8.4464	9.7267
10	1	1.6720	3.9163
10	2	0.4563	15.0614
10	3	0.4844	15.0168
11	1	1.6714	3.9165
11	2	0.4871	15.0235
11	3	0.4519	15.0681

,

STATIC AND DYNAMIC LOAD COMBINATION-----LATERAL AND ROTATIONAL M. C. DISPLACEMENTS

.

LEVEL	DIRECTION	1	z	3
. 2	X	-0.0378621	0.4014228	0.4014229
2	۲	0.0000000	0.0058316	0.0055477
2	ROTN	8.0000000	0.0000068	-0.0000097
1	×	-0.0075390	0.1448851	0.1448851
1	T	0.0000000	0.0015624	0.0021887
1	ROTH	0.0000000	0.0000021	-0.0000033
THE STI	EEL WEIGHT IS	13.4971		

THE	CONCRETE HEIGHT	19	101.7211
THE	OBJECTIVE VALUE	IS	61031.4946

ACTIVE CONSTRAINTS

.

TTPE	LEVEL	LOCATION	LOAD	IDENT	VALUE
D.BI5	Z	0	z	1	0.40142
0.015	z	6	3	1	0.40142

THE END OF OPTIMIZATION CYCLE 1 . The start of optimization cycle 2 .

THE END OF OPTIMIZATION CYCLE 6 . THE START OF OPTIMIZATION CYCLE 7 .

THE FINAL OPTIMAL RESULTS ARE:

.

.

COLUMN ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	E 30000.00 30000.00 30000.00 30000.00 30000.00 30000.00 30000.00 30000.00 30000.00 30000.00 30000.00 30000.00 30000.00	A TOPS 17.05 22. 2.68 0. 17.05 22. 3.64 1. 12.78 12. 3.64 1. 12.78 12. 14.61 21. 4.60 21. 4.60 20. 0.02 0. 0.02 0. 0.02 0. 0.02 0.	I HAJ I 79 1396.00 31.31 60 31.32 78 1395.41 10 58.76 72.16 10 92 771.88 64 1322.89 64 1322.89 103.55 64 122.76 64 164.03 0 0.00 0 00 0.00 0.00 0 0.00	HIN I DT 31.55 0.00 0.94 0.00 1.55 0.02 1.68 0.00 1.68 0.00 1.68 0.00 1.68 0.00 2.64 0.00 1.65 0.00 2.64 0.00 2.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	DB 0.00 0.	9 22.66 9.62 9.62 22.66 11.09 19.84 11.09 19.84 22.41 12.60 22.41 12.61 0.93 0.93 0.93 0.93	BF 7.45 3.56 3.56 4.04 6.04 6.04 6.37 4.51 7.351 0.48 0.48 0.48	TF 1 0.31 0 0.31 0 0.31 0 0.31 0 0.31 0 0.31 0 0.31 0 0.31 0 0.31 0 0.31 0 0.31 0 0.31 0 0.31 0 0.31 0 0.31 0 0.31 0 1.00 1 1.00 1 1.00 1	13 13 23 36.00 23 36.00 23 36.00 23 36.00 23 36.00 23 36.00 23 36.00 23 36.00 23 36.00 23 36.00 23 36.00 23 36.00 23 36.00 23 36.00 23 36.00 00 100.00 00 100.00 00 100.00 00 100.00	C2 55 36.00 999.00 30.00 100.00 30.00 100.00
<u>COLUMN ID</u> 17 18	<u>IX</u> 658493. 658493.	434. 434.	<u>IY KII</u> 1143. 4.0 1143. 4.0	<u>KJJ KIJ</u> 4.0 2.0 4.0 2.0	<u>TS</u> 50.0 50.0	<u>C9</u> 3.0 3.0	<u>55 EC</u> 1.8 3000.0 1.9 3000.4	<u>_D</u> 120.0 120.0	<u>H</u> <u>ES</u> 5.030000.0 5.030000.0	<u>PC</u> <u>J</u> <u>G</u> 0.025 65%36.1150 0.025 65%36.1150
19 20	658493. 658493.	434. 434.	1143. 4.0 1143. 4.0	4.0 2.0 4.0 2.0	50.0 50.0	3.0 3.0	1.0 3000.0 1.0 3000.0	120.0 120.0	5.030000.0 5.030000.0	0.025 659636. 1150 0.025 659636. 1150
<u>етам ID</u> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 16 17 18 20 21 22 22 22	E 30000.00 300000.00 300000.00 30000000000	TOPS I FL 1.12 6 1.12 6 1.12 6 1.54 81 10.82 64 7.10 41 10.82 64 7.10 41 1.063 51 1.17 6 1.065 51 1.17 6 1.065 51 1.16 51 0.05 0.05 0.05 0.00 0.00 0.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	K_J_J KT_J 4.00 2.00	DI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	LU: LU: LU: LU: LU: LU: LU: LU:	D 11.14 11.14 11.14 20.06 19.03 17.22 17.23 17.23 17.23 17.25 11.05 11.26 11.26 11.26 11.21 11.25 11.26 11.23 11.25 0.93 0.93 0.93 0.93	NS 36.00 99.99 99.99		
LEVEL UC	2 3000	5	Å 1.34878 1.34870	13 36.00000	24.00	53 000				
	5 5000		1.54010	30.00000						
EIGENVALUES 0.89758432 0.62249193 0.14458867 -0.10205750 0.31221555	AND EIGENVE 56052+02 0. 97702-05 0. 96122-04 0. 32602-01 +0. 87532+00 0.	CTORS 25992266652 76082246769 14395153463 18780944028 23813356495	1E-02 0.14493 8E-02 -0.11778 8E-04 0.25932 9E-04 -0.10184 5E-12 -0.71546	5315112E-04 0 17046901E-01 -0 4175450E-02 0 6261205E-01 0 1376673E-09	. 144298070 . 285325244 . 395783718 . 144001941	324 8-04 416 8-04 8578-03 2538+01	0.259869 -0.117579 0.327948 -0.138559	0849458E-02 0793397E-01 531640E-05 0174227E-12	0.76055891 0.25937696 0.39767426 0.21779101	12775E-02 31037E-02 398482-03 18540E-09
0.47326728 +0.27854694 0.43681943 0.98344151 0.96985825	01668+03 0. 74518-04 -0. 79068-04 0. 56848-02 0. 30688+00 -0.	77124206968 23969487349 43770061184 18784824626 42942150243	9E-02 0.43798 7E-01 0.12016 3E-04 0.77173 7E-04 0.98120 7E-12 0.14464	0770618E-04 0 0139817E-01 0 12529429E-02 -0 17635002E-02 -0 8196528E-08	.438861844 .287535114 .140103821 .463565118	493E-04 106E-04 617E-01 886E+00	0.771081 0.119943 -0.185376 0.217954	244643E-02 910805E-01 873146E-04 438342E+12	-0.23989597 0.77191236 -0.14063090 -0.92687039	760995-01 190355-02 147385-01 1903605-09
0.18030124 0.52898441 0.23117323 0.12806403 -0.51382491	26918+06 -0. 92808-04 0. 38908-03 -0. 67958+02 0. 04228+03 -0.	.37842905761 .15744692530 .25949482161 .38186857685 .10476164778	0E-02 0.26902 8E-02 0.14809 5E-03 -0.22553 3E-01 0.10657 5E-07 -0.55999	6358351E-03 -0 98716024E+02 0 94603022E-04 0 77737974E+00 9 92559228E-05	.302052334 .555525984 .676164382 .151635319	0:9F-D3 358E-01 323E-01 122E-02	-0.271601 0.123283 0.390655 0.135466	220724E-04 247304E+00 565150E-04 585119E-07	0.18890960 -0.31463038 0.55784059 -0.10227122	12877E+00 16694E-02 17495E-03 16860E-06
0.10067463 0.30725094 0.58241956 0.98963793 0.73642131	0589E+04 0. 2133E-05 -0. 4855E-01 -0. 6921E-02 -0. 0467E-13 0.	49282393360 54486029373 58236794522 50057218608 44561433069	1E-03 0.58255 2E-02 0.11407 0E-01 -0.48449 7E-05 -0.98294 2E+00 -0.10004	9583181E-01 -0 5952658E-01 -0 98420453E-03 D 91398583E-02 -0 8271512E-05	.582818023 .810556025 .213989833 .735401018	764E-01 904E-05 443E-02 323E-13	-0.492965 -0.113326 0.165336 0.136043	523669E-03 154476E-01 995801E-05 393647E+01	0.54260892 0.48435719 -0.21457284 -0.26584441	13583E-02 7018E-03 15261E-02 12834E-06
0.22516734 -0.75378464 0.13193070 -0.15422918 -0.45524090	5220E+05 0. 9170E-05 0. 2607E+00 -0. 6996E-01 0. 9208E-12 0.	68143248032 94952175770 13191879896 82772331220 91505211280	0E-03 0.13431 7E-02 -0.18851 3E•00 -0.67823 3E•05 0.15306 4E•00 -0.24244	69610748+00 -0 56288598-01 0 56589038-03 -0 64902468-01 0 57359628-03	.134304841 .151399086 .134640721 .341789095	409E+00 652E-04 565 E-02 238 E- 12	-0.681699 0.187162 -0.385295 -0.660796	057803E-03 117223E-01 635912E-05 063787E+00	-0.94373323 0.67797345 0.13597334 -0.44662646	36125E-02 38534E-03 45062E-02 44789E-05

0.1803013377642+06 -0.3770597046582-02 0.457502576609E-03 -0.490479969832E-03 -0.266345848612E-04 0.185799263673E+00 0.527143309686E-04 0.180030354678E-02 0.145096711643E+02 0.556301728444E+01 0.144405462530E+00 -0.3142333472E7E+02 0.353399465439E+03 -0.42137401876E+03 -0.220712678753E+04 0.47581052367E+01 0.389479495785E+04 0.633653460326E+03 0.128062308796+02 0.382401851958E+01 0.12483560135E+00 -0.119812007921E+07 -0.181469449602E+02 -0.12484444442424E+06 0.3990434167809E+08 0.727825455257E+03 -0.653853557037E+05

Reproduced from best available copy.

STATIC LOAD CONSINATION ----- HEMBER FORCES------LEVEL HD. I

۰.

.

-

COLUMN FORCES

LINE	LOAD	TORSIONAL	MAJOR	AXIS
		MONENT	TOP HOHENT	BOT HOHENT
1	1	0.000	-58.0058	-23.8248
1	2	0.0116	653.4818	1540.1466
1	3	-0.0207	640.0168	1511.7802
z	1	0.0000	-5.5686	-2.7842
z	2	0.0003	-12.5090	-5.7151
2	3	-0.0005	-10.9147	-3.9900
3	1	0.0000	5.5696	2.7849
3	2	0.0003	14.3571	7.7182
3	3	-0.0005	15.9518	9.4437
	1	0.0000	-57.9997	-23.8126
4	2	0.0116	643.4147	1519.0317
4	3	-0,0207	656.8780	1547.3941
5	1	0.0000	-36.2235	-16-2476
5	2	0.0056	477.2569	909.8098
5	3	-9.0117	463.4832	690.9555
6	1	-0.0235	-0.1461	-0.1236
5	2	32.2443	-383.0395	1362.8360
6	3	-57.3357	-632.6366	2023.1490
7	1	0.0000	-38.2135	-16.2374
7	2	6.0065	467.0767	895.8431
7	3	-0.0117	480.8521	914.6959

0.0000 0.0010 -0.0017

a 1 a 2 a 3

1 1 1 2 1 3

١

61.0202 85.5176 86.1862 30.8942 132.7680 131.4975

9	1	-0.0235	0.5112	-0.2536	4,9987	-29.1666	-15.0078
9	ż	32.2943	-633.1172	1667.5708	-14.9625	-16.1222	-106.7919
9	3	-57.3357	- 399. 9582	1019.6462	-14.9621	-16.1225	-106.7924
			41 3737	11 0774	4 4174	ICALE	A 9877
19	-	0.0000	01.6/3/	32.0230	-20 0400	7 6020	1 6407
10	č,	-0.0017	CD.033/	173 4441	-20.0440	7 6007	1 4511
10	3	-0.001/	63.7030	133.0061	- { 9 . 646 *	7.0001	3.0333
COLUMN	STRESSES						
LINE	LOAD	TOP-MAX	TOP-MIN	807-HAX	BOT-HIN	SHEAR-HAJ	SHEAR-MIN
1	1	1.1989	-0.9498	9.6137	-0.3725	-0.0333	-0.0031
ī	2	7.0497	-6.4806	13.4605	-12.8914	0.6935	-0.0073
1	3	6.7462	-6.1862	13.0204	-12.4604	0.6764	-0.0060
2	ı	1.4188	-0.3097	0.95%)	0.1250	-0.0216	0.0000
2	ż	1.3682	-2.5619	1.8215	-3.1352	-0.0472	-0.0023
2	3	1.3070	-2.2498	1.7293	-2.6729	-0.0386	-0.0023
3	1	1.4186	-0.3098	0.9840	9.1249	0.0216	0.0000
3	ż	1.9343	-3.1796	1.9036	-3.6492	0.0572	-0.0023
3	3	1.4954	-3.6118	1.9960	-4.1124	0.0658	-0.0023
4	1	1.1909	-0.9498	0.6136	-0.3725	-0.0333	D.0031
9	z	7.1833	-6.6268	13.5249	-12.9684	0.8809	0.0089
4	3	7.4868	-6.9212	13.9651	-13.3995	0.8980	0.4103
5	1	3.7426	-3.4490	1.9079	-1.6143	-0.02%	-0.0139
5	2	15.4395	-19.1104	15.3464	-19.0173	0.7539	-0.0497
5	3	15.1392	-18.7993	15.0057	-18.6657	0.7361	-0.0490
6	1	1.0022	-0.0407	0.6731	-0.0209	0.0000	-0.0007
6	2	4.3559	0.4043	3.4112	3.4312	0.0157	-0.0020
6	3	0.5976	9.6476	4.0505	3.9847	0.0223	-0.0020
7	1	3.7405	-3.4468	1.9068	-1.6131	-0.0296	0.0139
7	2	15.7974	-19,4859	15.5663	-19.2548	0,7409	0.0524
.7	3	16.0977	-19.7972	15.9071	-19.6065	0.7586	0.0531
8	1	6.2391	-4.3086	3.6255	-1.6951	0.1329	-0.0043
8	2	6.8143	-15.8465	6.7502	-14.9824	0.3157	-0.0156
8	3 •	6.9256	-15.1598	6.7415	-14.9747	0.3148	-0.0158
9	1	1.0702	-0.0407	0.7410	-9.0209	0.0000	-0.0007
9	2	0.6424	0.6733	3.9442	4.0265	0.0198	-9.0920
9	3	0.4167	0.4508	3.1233	3.2334	0.0099	-0.0020
10	1	6.2437	-4.3184	3.6266	-1.7013	0.1332	0.0043
10	2	7.1589	-15.4915	6.9822	-15.3148	0.3164	0.0168
10	3	7.0467	-15.3784	6.9911	-15.3228	0.3173	0.0165
BEAM FO	RCES						
		TORSIONAL	CENTERLIN	HOMENTS	BEAM END	HOHENTS	
BAY	LOA0	THISHOM	I HOMENT	J MOHENT	I MOHENT	J HOHENT	

-0.0049 4.4482 -44.1610 0.0000 0.0541 9.9223 -95.9779 0.0000 0.0553 8.3352 -97.5644 0.0000

183

0.0000 0.0000 0.0000

AXIAL FORCE

2.0556 4.8513 4.7738

1.4868 -1.7611 -1.2638

1,4866 -2,3401 -2,8374

2.0556 4.7433 4.8207

1.8758 -23.4529 -23.3828

4.1331 -16.8826 -16.8825

l.8761 -23.5602 -23.6304

4.6345 -19.7633 -19.7658 HINOR AXIS TOP HOMENT SOT HOMENT

-5.0770 -12.3410 -10.7351

0.0048 -0.0549 -0.0539

0.0049 -0.0542 -0.0552

5.0745 14.2005 15.8062

-17.0565 -61.2166 -69.5115

-29.1745 -16.1193 -16.1196

17.0396 63.9236 64.6307

-1.9715 -7.2315 -7.3226 -2.5384 -5.6270 -3.8891

-0.0011 -0.8921 -0.8354

-0.0011 -0.8375 -0.8442

2.5374 7.6436 9.3810

-8.5283 -30.1787 -29.6076

-15.0118 -106.7905 -106.7909

8.5198 32.3923 32.9632

-0,9858 -3,5214 -3,6086 MAJOR

-0.5683 15.2335 14.9430

-0.0580 -0.1266 -0.1035

0.0580 0.1533 0.1764

-0.5681 15.0170 15.3074

-0.3783 9.6324 9.4058

-0.0019 6.8041 9.6563

-0.3781 9.4647 9.6913

0.6383 1.5159 1.5117

0.0018 8.5726 4.3034

0.6410 1.5225 1.5267 HINOR SHEAR

-0.0529 -0.1248 -0.1016

0.0000 -0.0052 -0.0062

0.0000 -0.0052 -0.0062

0.0529 0.1517 0.1749

-0.1777 -0.6347 -0.6258

-0.3068 -0.8535 -0.8535

0.1775 0.6689 0.6777

-0.0205 -0.0747 -0.0759

-0.3068 -0.8536 -0.8536

0.0207 0.0603 0.0795

,

,

2	1	-0.0323	131.8296	-20.3986	0.0000	0.0000
,	,	0.0494	499.0320	-71.6404	0.0000	0.0000
ž	3	0.0508	502.2914	-70.7715	0.0000	0.0000
3	1	0.0376	115.9720	-33.5768	0.0000	0.0000
3	ž	8.0758	474.5430	-99.7366	0.0000	0.0000
š	3	0.6800	469.3979	-101.7570	0.0000	0.0000
4	1	0.0000	49.7298	-49.7324	0.0000	0.0000
4	z	-0.0008	108.4872	-108.5193	0.0000	0.000
4	3	0.0014	108.9794	-108.5273	0.0000	0.0000
5	1	0.0049	44.1627	-4.4464	0.0000	0.0000
5	2	-0.0550	94.1617	-11.7299	0.0000	0.0000
5	3	-0.0537	92.5749	-13.3167	0.0000	0.0000
6	1	0.0323	131.8569	-20.3735	6.0000	6.0000
	t	-0.0505	486.5787	-74.9052	8.0000	0.0000
6	3	-0.0491	463.3167	-75_7742	0.0000	0.0000
7	1	-0.0374	115.8706	-33.6837	8.0000	0.0000
7	ž	-0.0787	450.3279	-109.5332	0.0000	0.0000
7	3	-0.0745	455.4519	-107.5160	0.0000	0.000
6	1	-0.6288	58.0113	-135.9224	0.0000	0.0000
8	z	-2.4188	-653-5364	-1039.4594	0.0000	0.0000
8	3	-2.3999	-640.0726	-1027.9889	0.0000	0.0000
٠	L	5854.0	58.0052	-135.9252	0.0000	0.0000
•	2	2.4707	-643.4701	-1030.8490	0.0000	0.0000
•	3	2.4896	-656.9323	-1042.3176	0.0000	0.0000
10	L	0.0666	252.4085	-126.8227	0.0000	0.0000
10	2	0.2254	544.9870	-1036.2497	0.0000	0.0000
10	3	9.2284	550.2707	-1628.9588	8,0000	0.0008
u.	1	-0.0680	252.4010	-126.8344	0.0000	0.0000
11	z	-0.2361	549.0049	-1030.5657	0.0000	0.0000
11	3	-0.2411	543.7200	-1037.8575	0.0000	0.0000

.

BEAM STRESSES

BAT	LOAD	I NORMAL	J NORMAL
L	1	0.4129	4.0990
1	2	0_9210	6.9085
I	3	0.7737	9.0558
ź	I.	0.9360	1.9108
z	z	4.1141	6.7107
2	3	4.3089	6.6293
3	Ŀ	0.2170	2.9974
3	2	3.0758	8.9035
3	3	2.7993	9.0838
4	1	4.6151	4.6153
	ŝ	10.0674	10.0704
•	3	10.0672	10.0716
5	1	4.0981	0.4126
5	2	8.7378	1.0885
5	3	6.5905	1.2357
	1	0.9363	1.9068
6	2	3.3653	7.0105
6	3	3.1705	7.0918
7	1	0.2141	3.0195
7	z	1./691	4.9166
7	3	2.9655	7.6381
	1	0.7176	1.6614
8	ł	8.0846	12.8587
8	3	7.9180	12.7168
•	3	D. 7178	1.6620
9	1	7.9623	12.7558
9	3	8.1289	12.8977
10	1	5.2628	2.6443
10	2	11.3631	51.6061
10	3	11.4733	21.4541
11	1	5.2614	2.6439
11	č.	11.444	21.0029
11	3	11.3340	21.0344
BRACIN	G ELEMENTS		
BRACE	LOAD	AXIAL-FORCE	

BRACE	COND	ANIAL-FUNC
1	ı	8.2919
1	z	0.0648
1	3	0.9231
z	1	6.2918
2	2	-0.8698
ź	3	-1.7281

.

BRACE STRESSES

BRACE	LOAD	AXIAL
1	1	0.2164
1	2	0.0528
1	3	0.6844
2	1	0.2163
2	2	-0.6597
2	3	-1.2813

STATIC LOAD CONBINATION-----HENDER FORCES-----LEVEL ND. 2

COLUMN FORCES

LINE	1040	TORSIONAL HOMENT	HAJOR TOP HOMENT	AXIS BOT HOMENT	AXIAL Force	HINDR /	DAT HOMENT	MAJOR	HINOR SHEAR
,	,	0.0000	-0.0007	-0.0006	0.000	0.0000	0.0000	8.9800	8.0000
;		0 0000	0.0008	0.0005	0.0000	0.0000	0.0000	8.0000	0.0000
i	3	D.0000	0.0008	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000
2	1	0.0000	0.0000	-0.0002	8.0005	0.0070	0.0000	8.0000	0.000
;	;	0.0000	-0.0001	-0.0003	D.0004	0.0000	0.0000	0.0000	0.0200
ž	3	0.0000	D.0000	-0.0003	0.0400	0.0000	0.0000	0.0000	0.0000
3	1	0.0000	9.0000	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000
j	ž	0.0000	0.0002	0.0004	0.0020	0.0000	0.0000	0.0000	0.0000
3	3	9.0000	0.0003	0.0005	0.0000	0.0000	0.0005	0.0000	0.0000
4	ı.	0.0000	-0.0002	-0.0006	0.0000	0.0000	0.0000	0.0000	0.0000
4	2	0.0000	0.0005	0.0005	0.0000	8.0000	0.0000	0.0000	0.0000
4	3	0.8000	0.0008	0.0005	0.0000	0.0000	a.0000	0.0000	0.0000
5	1	0.0000	-99.7130	-76.2303	0.1167	-2.9274	-2.6445	-1.2357	-0.0347
ŝ	ž	0.0012	8.2760	17.1641	-3.4286	-7.1132	-7.7776	0.1767	-0.1034
3	3	-0.0019	4.7769	14.1841	-3.4471	-6.9589	-7,6397	0.1317	-0.1014
	1 -	-0.0908	-0.0165	0.1189	-0.6054	0.3201	29.2391	0.0007	9.2053
6	2	70.9553	11.1525	395.4929	-7.3470	0.0246	16.0194	2.8239	0.1114
6	3	-107.0766	17.3021	651.6113	-7.3469	0.0246	16.0197	4.6452	0.1114
7	1	0.0000	-99.7122	-78.2290	0.1167	2.9152	2.6377	-1.2357	0.0385
7	2	0.0012	5.4418	14.7170	-3.5119	7.6609	6.2749	0.1400	0.1107
7	3	-0.0019	8.9405	17.6964	-3.4935	7.8162	8.4128	0.1850	0.1127
	1	9.0000	141.6451	65.7649	-0.4067	-32.1381	-31.6739	1.4403	-0,4431
8	2	0.0243	902.4978	950.6563	-9.0935	-72.0083	-92.7305	12.8691	-1.1440
8	3	-0.0367	893.7596	942.6926	-9.0968	-74.0383	-94.6548	12.7531	-1.1715
9	1	-0.0908	0.1136	-0.4097	-0.0175	0.0133	59.0919	-0.0021	0.2021
?	2	70.9553	27.5669	657.3323	-6.0148	-8.0746	15.9676	4.7562	0.1104
9	3	-107.0766	16.0373	413.4042	-6.0146	-0.0/46	15.9079	2.4057	0.1104
10	I I	0.0000	141.6169	65.5234	-0.4077	32.2574	31.7673	1.4365	0.4446
10	2	0.0243	895.4337	\$\$3.8333	-9.2442	81.8973	102.0773	12.7727	1.2770
10	3	-0.0367	904.1714	951.7992	-9.2411	/4.8/3/	100.1903	12.8007	1.2302
COLUMN	STRESSES								
LINE	LOAD	TOP-MAX	TOP-MIN	BOT-MAX	- BOT-MIN	SHEAR - HAJ	SHEAR-MIN		
L	1	0.1070	-0.1070	0.3037	-0.3037	-0.0003	0.0000		
1	ž	0.4210	-0.9202	0.3310	-0.3302	0.0005	0.0000		
1	3	0.3796	-0.3788	0.2905	-0.2896	0.0005	0.0000		
z	2	0.021Z	-0.0211	0.1813	-0.1813	-0.0001	0.0000		
t	2	0.0454	-0.0453	D.2074	-0.2073	-0.0002	0.0000		
5	3	9.8691	-0.0090	0.1655	-0.1653	-0.0001	0.0000		
3	1	0.0212	-0.0212	0.1813	-0.1813	0.0001	0.0005		
3	2	0.0835	-0.0634	0.2533	-0.2531	0.0002	0.0050		
3	3	D.1197	-0,1196	0,2952	-0.2951	0.0003	0.0000		
4	1	0.1070	-0.1070	0.3037	-0.3037	-0.0003	0.0000		
4	2	0.4489	-0.4461	0.3524	-0.3517	0.0005	0,0000		
4	3	0.4902	-0,4696	0.3454	-0.3422	0.0005	0.0000		
5	1	12.9489	-12.8637	10.5632	-10.5161	-0.3392	-0.0106		
5	2	8.3695	-10.2517	10.0046	-11.8668	0,0485	-0.0204		
5	3	7.5482	-4./400	v. 55 51	-11.4433	4.4301	-0.0270		
6	1	-0.0065	-0.0062	0.6655	0.5362	8,0000	0.0005		
6	2	-0.1581	-0.1718	0.5856	0.6693	0.4065	0,0003		
•	3	-0,1522	-0.1030	a.0326	0.9204	0.0107	0.0003		

7	1	12.9342	-12.8691	10.5750	-10.5098	-9.3392	0.0106
,	2	8.7361	-10.6641	10.3474	-12,2753	0.0384	0.0304
7	3	9.2574	-11.1752	10.7988	-12.7166	0.0508	0.0309
	1	5,1200	-5.1690	4.4204	-4.4694	0.0867	-0.9267
8	2	15.9348	-17.0298	18.8863	-19,9813	9.7748	-0.0689
8	3	16.1098	-17.2052	19.0549	-20.1503	0.7678	-0.0705
9	1	B. 6000	-0.0028	0.6759	0.5447	0.0000	0.0005
9	2	-0.1103	-0.1207	0.8586	0.9351	0.0110	0.0003
9	3	-0.1215	-0.1357	0.6330	0.6992	0.0069	0.0003
10	1	5.1347	-5.1838	4.4300	-4.4791	0.0866	0.0268
10	2	17.0809	-18,1941	19.9680	-21.0812	0.7690	9.0769
10	3	16.9067	-18.0195	19.8001	-20.9130	0.7760	0.0753
BEAM FO	RCES						
		TURSIONAL	CENTERLIN	E HOMENTS	BEAM END	HOMENTS	
BAT	LOAD	NOMENT	I MOMENT	J MOMENT	I MOMENT	J HOMENT	
1	1	0.0000	0.0000	0.0000	0.0000	0.0000	
1	z	0.0000	0.0000	0.0001	0.0000	0.0000	
1	3	0.0000	0.0500	0.0000	0.0000	0.00D0	
2	1	-0.1596	150.7176	-3.1640	0.0000	0.0000	
2	2	-0.0121	339.8120	-7.7129	0.0000	0.0000	
2	3	-0.0125	342.8794	-7.5380	0.0000	0.0000	
3	1	-0.0067	117.8626	-31.9015	0.0000	0.0080	
3	z	0.0358	276.480Z	-71.4056	0.0000	0.0000	
3	3	0.0399	270.6977	-73.4583	0.0000	0.0000	
4	1	0.0000	9.0000	0.0008	0.0000	0.0000	
4	2	0.0000	0.0000	0.0000	8.0000	0.0000	
4	3	5.0000	9.0000	-0.0001	0.0000	0.0000	
5	1	0.0000	0.0000	0.000	0.0000	0.0000	
-							

1

.

.

4	3	5.0000	9.0000	-0.0001	0.0000	0.0000
5	1	0.0000	0.0000	0.000	0.0000	0.0000
5	2	0.0000	-0.0001	0.0000	0.0000	0.0005
5	3	0.0000	-0.0002	0.0000	0.0000	0.0000
6	1	D. 1605	150.7341	-3.1474	0.0000	0,0000
6	2	0.0125	325.6603	-8.2871	8.0000	6.0000
6	3	0.0120	325.5773	-8.4620	8.0000	8.0000
7	1	0.0066	117.7493	- 32 . 0252	8.0000	6.0000
7	2	-0.0385	248.9132	-81.2711	. 0.0000	8.0000
7	3	-0.0348	254.6604	-79,2279	0.0000	0.0000
8	1	0.0000	0.0002	-9.0003	0.0000	9.0000
5	2	0.0000	-0.0008	-0.0010	0.0000	0.0006
8	3	0.0000	-0.0008	-0.0010	0.0000	0.0000
9	1	0.0000	0.0002	-0.0003	0.0000	0.0000
9	2	0.0000	-0.0008	-0.0010	0.0000	0.0000
٠	3	0.0000	-0.0008	-0.0010	0.0000	0.0000
10	3	0.2366	99.8729	-141.6384	0.0000	0.0000
10	2	0.5997	-8.2630	-902.5337	0.0000	0.0000
10	3	0.5801	-4.7633	-693.7995	0.0000	0.0000
11	1	-0.2322	99.8730	-141.6103	0.0000	0.0000
11	2	-0.6262	-5.4283	-895.4725	0.0000	0.0000
11	3	-0.6458	-8.9275	-904.2062	0.0000	0.0000

BEAM STRESSES

.

.

BAY	LOAD	I NORMAL	J NORMAL
1	1	0.0023	0.0131
1	2	0.0064	9.0396
1	3	0.0023	0.0194
z	1	1.7725	0.3022
2	2	4.4816	0.7366
2	3	4.5860	0.7199
3	1	0.2962	2.8614
3	2	1.7839	6.4049
3	3	1.4659	6.5888
4	1	0.0080	0.0080
6	2	0.0057	0.0223
4	3	0.0103	0.0384
5	1	0.0132	0.0023
5	2	0.0611	0.0108
5	3	0.0813	0.0149
6	1	1.7653	0.2993
6	2	3.7200	0.7879
6	3	3.5153	0.8046
7	1	0.2939	2.8905
7	Z	0.2722	7.3353
7	3	0.5900	7.1509
۵	1	0.0865	0.1203
8	5	0.3690	0.4705
8	3	0.3606	0.4673

186

.

.

9	1	0.0655	0.1203
	2	0.3620	0.4677
9	3	0.3704	0.4710
10	1	1.4811	2.1005
10	2	0.1225	13.3843
10	3	0.0706	13.2548
11	I.	1.4610	2.0999
- 1Ì	2	0.0805	13.2787
11	3	0.1324	13.4083

AXIAL-FORCE

BRACING ELEMENTS BRACE LOAD

ł

BRACE STRESSES

BRACE LOAD AXIAL

STATIC AND DYNAMIC LOAD COMBINATION ----- LATERAL AND ROTATIONAL M. C. DISPLACEMENTS

LEVI	(L 0	IRECTION	Ţ	Z	3
	2 2 2	X Y Rotn	-0.1005641 -0.0000035 0.0000000	0.4408221 0.0194920 0.0000196	0.4408222 0.0187559 -0.0000312
	1 1 1	X Y ROTN	0,0008555 -0,0000009 0,0000000	0.1989788 0.0058058 0.000061	0.1989793 0.0075325 -0.0000189
THE	STEEL	WEIGHT IS	12.6700		
THE	CONCR	ETE KEIGHT	IS 30.0000		
THE	TOTAL	WEIGHT IS	23267.2318		

D. IDENTIFICATION OF POSITIVE MEMBER FORCES

The positive direction of moments is in the same direction as the local axes of the members. The positive local axes can be identified by using the following methods:

1. Start from the column at the origin of the reference coordinates. The positive weak axis of this column must coincide with one of the positive reference coordinates. The positive strong axis of the member can be located by using the right-hand-screw rule, which states that the index finger points at the weak axis and the thumb to the strong axis.

2. The positive local axes of the other columns, flexural walls, and panels can be located by rotating the column at the origin of the reference coordinates in a counterclockwise direction, if necessary, such that the positive weak axis of the member being studied.

3. The positive major axes of a beam are always oriented such that when facing the beam with end i to your left and end j to your right, the positive major axis at each end points out toward you.

4. The positive axial force is assumed to be in tension, and the positive torsion is based on the righthand-rule, which states that the thumb in representing the torsional vector points away from the member axis.

As an illustration, the positive axes of the vertical members of Example II are shown in Figure 11. The origin of the reference coordinates is located at column 1 whose

Figure 11. Positive Axes for the Vertical Members of Example II

·

positive weak axis coincides with the x-axis of the reference coordinates. Use of the right-hand-screw rule yields the strong axis as sketched in the figure. For the shear wall, which is identified as column 6, the positive weak axis must be in the direction shown, because the counterclockwise rotation of column 1 sets the weak axis of the column in that direction. The positive major axes of the beam in bay 1 are in the y-direction at column 1 and in the x-direction at column 2. The internal forces of a few typical members in Example II for load case 2 are shown in Figure 12, in which the arrows signify the positive load directions.

E. OUTPUT NOMENCLATURE

This section will be used to define different terms found within the output:

STS = static tensile stress

SCS = static compressive stress

DTS = dynamic tensile stress

DCS = dynamic compressive stress

TS = tensile stress

CS = compressive stress

SBS = static bending stress

DBS = dynamic bending stress

In the sections defined as active constraints and the largest scaling factor, there are several types, locations, and identifiers.

Types:

C	OLUMN	=	static column stress
	BEAM	=	static beam stress
	PANEL	=	static panel stress
	BRACE	=	static brace stress
	DISP.	=	static displacement
	FREQ.	-	natural frequency
	D.DIS	=	dynamic displacement
	D.COL	=	dynamic column stress
	D.BM	=	dynamic beam stress
	D.PAN	=	dynamic panel stress
	D.BRE	=	dynamic brace stress

Locations:

COLUMNS = column line BEAMS = bay PANELS = panel number BRACE = brace number

Ident:

DISPLACEMENTS

x = 1 y = 2 z = 3COLUMN STRESS TOP-MAX = 1 TOP-MIN = 2 BOT-MAX = 3 BOT-MIN = 4

BEAM STRESS

I NORMAL = 1

J NORMAL = 2

PANEL STRESSES

TOP-MAX = 1

TOP-MIN = 2

BOT-MAX = 3

BOT-MIN = 4

FREQUENCY

1ST FREQ = 1

2ND FREQ = 2

All other terms are explained within the input procedures.

VII. PROGRAM CAPACITY AND GUIDE FOR MODIFICATION A. PROGRAM CAPACITY

The computer program is written in FORTRAN IV with fixed commons and dimensions. The capacity of the program is limited by the following constraints:

- The number of floor levels in the structure is not more than 10.
- The number of bays in the structure is not more than 15.
- The number of column lines in the structure is not more than 14.
- The number of panel elements in the structure is not more than 20.
- The number of braced elements in the structure is not more than 40.
- The number of sets of different fixed-end moments and shears for the beams is not more than 10.
- The different column properties are not more than 45.
- The different beam properties are not more than 45.
- The total number of load combinations is not more than 10.
- The total number of active constraints is not more than 30.

 The total number of modes to be used for a modal analysis is not more than 5. The dimensions are set for 10 modes, but COMMON/INV/ along with subroutine INVERT allow only 5 modes in the optimization.

B. GUIDE FOR MODIFICATION

The modification of the program capacity can be achieved by changing the numbers for appropriate variables in the following common and dimension statements: COMMON/DATA1/CLN(NC,2), CP(26,NCP), BP(15,NBP),

FEF(5,NFEF), LB(NST,NB,3), LDB(NST,NB,3),

LCC(NST,NC,2), LP(3,NPAN), IFEF(NFEF), PP(22,NPAN), LT(3,NTRU), TP(9,NTRU), LIM, ID, GST, GCO, NSTEEL, NSTEE2, NATC, NLDDD, NTOT1

COMMON/DATA2/QQ(4,NB,NST)

COMMON/DATA5/COCOL(9,NC,NST), COBM(5,NB,NST),

COPAN(5,NPAN), CODIA(2,NTRU)

COMMON/DATA7/PLOAD(NST*NC), A(NST,15), AMA(2*NST*NC), IF, IFC, X1, Y1

COMMON/FORM1/S(LS), C(MM,MM), SB(LS), EF(MN6,NAD1), PF(NAD2,LIM+N9)

COMMON/FORM2/KH(NNL), SD(MM), E(MM,NE), EB(MM,NE)

COMMON/FORM3/SL(LSL), NC, NSNC, N, NFR, NF, NL, KLAT, LLAT, MLAT

COMMON/F04/SF4(LS,NST), CF4(MM,MM,NST), EF4(MM,NE,NST), KH4(NNL,NST), RF4(MM,3,NST), RF5(MM,LIM,NST), RF6(MM,1,NST)

COMMON/STIF1/SS(NSTC,NSTC), SG(NSS,NSS), STIFFF(NSTC,NSTC)

COMMON/TRAN1/D(NST, 1, 2), AA(1, 6), RR(NSTC, 6), U2(NSTC, 6)

COMMON/GEN/NST, NDF, NTF, NTOT, NAT, NFQ, NSD, IDUM, BHED(NST), NSS, JDUM, T(6), RLAB(3), IS, I3

COMMON/JUNK/JK(3), MMJ, MNJ, JUK(57), SPAC13(368)

COMMON/STIF/STF(N2)

COMMON/MAT/E1, G

COMMON/NEW/R66(NN,NLD), R(NN,N9+6), XM(6,NLD), FM(8)

COMMON/STRES/SCOL(NST, NC, 6, 6), SBM(NST, NB, 6, 2),

SPAN(NPAN, 6, 5), SDIA(NTRU, 6, 1), F2, CON(LIM), P1, P2, DIS(NST, 3), LCON(5, LIM), L6, L7, L8, L9, CONCO(8, LIM)

COMMON/EIGNV/EIGV(NSTC), EIVEC(NSTC,NSTC), VAL(N9), N10, N9, C1(N9), L2(N9), XMAS(N9), XMAS1(N9), ISMN, L3(N9), L4(N9), MODE, PHIM(N9), DPHI(N9), PHIL1(NSTC,N9), DPHIM(N9), PHI(N9), UVAL(N9) COMMON/GRAB/T2(NST,NC,LIM), T3(NST,NB,LIM),

T4 (NST, NPAN, LIM), T5 (NST, NTRU, LIM), RRR

COMMON/PASS/PPASS(NPAN), TPASS(NTRU), IPASS, IPASS1

COMMON/DYNAM/VMA(NSTC), FMA(NSTC), DDIS(NST,3),

X2(NSTC,N9), PQ(N9), ETA(3,N9), VM1(NSTC), SAA(3,N9), PHII(N9), VN(NSTC,N9)

COMMON/INV/PHIL(NSTC,N9)

COMMON/JUNK2/MN6, NAD1, NAD2, LSL, ISEC

COMMON/JUNK3/PSID2(NSTC,LDLIM)

COMMON/RESP/Cll(3), C22(3), C33,(3), C44(3), C55(3), C66(3), C77(3)

COMMON/CODE1/HT(NST), WTT(1), WWW(NST,1)

COMMON/ATCl/U(NST,N9), V(NST), DDDIS(NST), DELT(NST), RM(NST), CV(NST), SUMWFl(N9), SUMWF2(N9), WBARM(N9), CSM(N9), RMOMNT(NST+1), CVXM(NST,N9), FMODAL(NST,N9), DELXEM(NST,N9), VMMODE(NST,N9), RMMODE(NST+1,N9), DRIFMO(NST,N9), VMODAL(N9), TETA(NST), PPl(NST)

COMMON/ATCI/IACTIV, ISOIL, MR, ISF, NANALS, NNNNN, MMMMM, NBRITL, ISH, NPREGR, NVREGR, ISI, NH, AAI, AV, S888, R888, CD, RL, RL1, P11, P12, DELA(NST), IKE

COMMON/STEP/Clll(15,NUM22), DIX(2,NUM22), NUM22

COMMON/SPEC/ DD11(2,NDIV,3), CC11(6,NDIV,3), NDIV COMMON/PLOTT/IPRF, IPRS, IPRE, IPREM, IPRD COMMON/JUN3/ISPA(16), SPA(208)

- DIMENSION RLAB3(11), PDIS1(NSTC,LIM), AMA2(NST*NC), AMA4(NST), AMA5(NST), P6(12,LIM), RKAPPA(NST), TT(N9), FS(NSTC,2), FFF(NST), VAL1(N9), VM2(NSTC), VM11(NSTC,2), VM12(NSTC,2), FM2(8,N9+6), OBJ(NOC), OBJS(NOC), OBJC(NOC), PERIOD(NOC,N9), VM3(NSTC), NCPL1(NC), NBPL1(NB), COLIN(NCP), BMIN(NBP), X99(NSTC,N9), FINA(NSTC,6), ... in MAIN
- DIMENSION PA(NST,2), PB(NST,2), AJAV(NC) ... in subroutine INFORM
- DIMENSION BJAV(NC OR NB, whichever is larger), ... in subroutine GENERA
- DIMENSION AMA2(NST*NC), AMA4(NST), AMA5(NST), ... in subroutine INITIL
- DIMENSION PDIS(NSTC,LIM), LCON(5,LIM), NTP1(LIM) ... in subroutine FORM

DIMENSION NTP1(LIM) ... in subroutine ELIMIN

DIMENSION A(NSTC, NSTC), B(NSTC, 6) ... in subroutine GAUSS DIMENSION A(LIM, LIM), B(LIM) ... in subroutine GAUSS1 DIMENSION A(NSTC,NSTC), B(NSTC,2) ... in subroutine GAUSS3 DIMENSION A(NSTC,NSTC), B(NSTC,LIM) ... in subroutine GAUSS4

DIMENSION A(NSTC,NSTC), B(NSTC,NSTC) ... in subroutine GAUSS2

DIMENSION RF(NSS,LIM), D(NST,1,2), R(NSTC,6) ... in subroutine REFDSP

DIMENSION RF(NSS), D(NST,1,2), R(NSTC) in subroutine REFDSP1

DIMENSION RF(NSS,LIM), D(NST,1,2), R(NSTC,LIM) ... in subroutine REFDSP3

DIMENSION PDIS(NSTC,LIM), FM2(8,N9+6), PDIS1(NSTC,LIM), AMA2(NST*NC), AMA4(NST), AMA5(NST), FM4(12,N9), P6(12,LIM) ... in subroutine FORCES

DIMENSION FM1(8,N9+6), FM2(8,N9+6), PDIS(NSTC,LIM), FM4(12,N9), LCON1(5,N9), PDIS3(NSTC,N9) ... in subroutine REFROT

DIMENSION PDIS(NSTC,LIM), PDIS1(NSTC,LIM), PF(NAD2,LIM), AMA2(NST*NC), AMA4(NST), AMA5(NST), P6(12,LIM) ... in subroutine PSEUDO

DIMENSION PDIS1(NSTC,LIM), PDIS(NSTC,LIM), LCON(5,LIM) ...

in subroutine ROTDIS

DIMENSION PDIS(NSTC,LIM), T(8,LIM), FM2(8,N9+6),

XM(6,NLD), LCON(5,LIM), AMA2(NST*NC), AMA4(NST), AMA5(NST), Q1(N9), T6(NSTC), PPE(NSTC,N9), DPHI2(N9), DPHIM2(N9), T7(NSTC), P6(12,LIM), LB(NST,NB,3), PD(NSTC), CONCO(8,LIM) ... in subroutine GRAD

DIMENSION CS(N9), FM2(8,N9+6), XMll(6,NLD) ... in subroutine SORT

DIMENSION AMA2(NST*NC), AMA4(NST), AMA5(NST) ... in subroutine OBJECT

DIMENSION LCON(5,LIM), AMA6(NSTC), AMA2(NST*NC), AMA4(NST), AMA5(NST), ... in subroutine EMAS

DIMENSION A(NSTC, NSTC), B(NSTC, NSTC), D(NSTC),

FM2(8,N9+6), XM12(6,NLD), AMA2(NST*NC), AMA4(NST), AMA5(NST), X2L(NSTC,N9) ... in subroutine JACOBI

DIMENSION B(NSTC), AMA2(NST*NC), AMA4(NST), AMA5(NST), FN(NSTC,N9), ... in subroutine MODAL

DIMENSION AMA2(NST*NC), AMA4(NST), AMA5(NST),

X3(NSTC,NSTC) ... in subroutine INVERT

DIMENSION R(LIM), R1(LIM), S(LIM,LIM), S5(LIM,LIM), CPASS1(NCP), BPASS1(NBP) ... in subroutine LAGMU DIMENSION R(LIM), CON(LIM), LCON(5,LIM), CPASS1(NCP), BPASS1(NBP) ... in subroutine CURSE

DIMENSION T6(NSTC), PD(NSTC), ... in subroutine ROTATE DIMENSION DM(NSTC,NSTC), TT(N9), FS(NSTC,2) L2(N9), FFF(NST), RKAPPA(NST), TTT(N9), SS(NSTC,NSTC),

SG(NSS,NSS) ... in subroutine ATCCD

DIMENSION FFF(NST), RKAPPA(NST) ... in subroutine LAT1

DIMENSION SK(NSTC,NSTC), SS(NSTC,NSTC), SG(NSS,NSS),
FS(NSTC,2), FFF(NST), RKAPPA(NST) ... in subroutine
LAT2

DIMENSION TT(N9), SK(NSTC,NSTC), SS(NSTC,NSTC), SG(NSS,NSS), FS(NSTC,2), FFF(NST), RKAPPA(NST) ... in subroutine MODALA

DIMENSION X(N9) ... in subroutine ROOT1

DIMENSION X(NST, N9) ... in subroutine ROOT2

DIMENSION X(NST+1,N9) ... in subroutine ROOT3

DIMENSION RKAPA(NST) ... in subroutine ATCIF

DIMENSION SD(NST,15), Cl(N9), AMA4(NST), TT(N9), VAL(N9) ... in subroutine ATLINK

- DIMENSION X(NSTC), LP(3,NPAN), LT(3,NTRU), COLIN(NCP), BMIN(NBP), X9(NSTC,N9), FINA(NSTC,6), U2(NSTC,6), VM3(NSTC) ... in subroutine REPLAC
- DIMENSION CC(16), X(NSTC), LP(3,NPAN), LT(3,NTRU) ... in subroutine REPORT
- DIMENSION OBJ(NOC), PERIOD(NOC,N9), L2(N9), XM(6,NLD), OBJS(NOC), OBJC(NOC), LC(NST,NC,2), LB(NST,NB,3), COLIN(NCP), BMIN(NBP), X99(NSTC,N9), FINA(NSTC,6), NCPL1(NC), NBPL1(NB) ... in subroutine PLOT

The following commons serve several purposes throughout the program and should be modified accordingly in the various subroutines: FORM2, JUNK, STIF, and JUN3.

The variables in the COMMON and DIMENSION statements are listed as follows in which the numbers in parentheses represent the program capacity in the present form:

- NC = Number of vertical column lines in the structure (14).
- NCP = Number of sets of different column properties (45).
- NBP = Number of sets of different beam properties (45).
- NFEF = Number of sets of different fixed-end moments and shears due to vertical loads acting on the beams (10).

NST = Number of stories in the structure (10).

NB = Number of bays in the structure (15).

NPAN = Number of flexural panels in the structure (20). NTRU = Number of bracing elements in the structure (40). NLD = Total of static and/or dynamic load combinations

N9 = Number of modes used in a modal analysis and/or frequency constraint problem (10). (Optimization during a response spectra analysis allows only 5 modes.)

NDIV = Number of subdivisions for the polynomial representation of the acceleration response spectra (4).

LIM = Number of constraints (30).

```
LDLIM = Number of allowable dynamic displacement
```

constraints (20).

MM = 2 * NC

(10).

MN = 2 * MM

NN = MN + NC * NST + 3 * NST + 3 + NC

MN6 = MM + MN + 6

LS = (MM * (MM+1))/2

LC = MM * MM

NE = NC * NST + 3 * NST + 6 + NC

NNM = NN - MN

As mentioned previously the number of modes allowed during the optimization of a response spectra modal analysis problem is limited to 5 due to both program statements and commons. Therefore, if more modes are required, these changes must be made:

- 1. A new two dimensional array must be added to COMMON/INV/ for each additional mode (i.e., X9(NSTC,NSTC), X10(NSTC,NSTC) for modes 6 and 7, respectively).
- 2. A new line for each new mode must be added to subroutine GRAD after line 4912. These lines would be similar to lines 4908 to 4912, with the new arrays being substituted for the correct mode.
- 3. Three new lines for each new mode must be added to subroutine INVERT after line 6284. These lines would be similar to lines 6273 to 6275 with
the new arrays and mode numbers being substituted within the new lines.

BIBLIOGRAPHY

- Cheng, F. Y. and P. Kitipitayangkul, "INRESB-3D, A Computer Program for Inelastic Analysis of Reinforced-Concrete Steel Buildings Subjected to 3-Dimensional Ground Motions", Report No. 2, Civil Engineering Study Structural Series 79-11, University of Missouri-Rolla, Rolla, MO, August 1979.
- Cheng, F. Y. and J. A. Volker, "INRESB-3D-II, User's Manual, A Computer Program for Inelastic Analysis of Reinforced-Concrete Steel Buildings Subjected to 3-Dimensional Ground Motions", Civil Engineering Study Structural Series 82-10, University of Missouri-Rolla, Rolla, MO, June 1982.
- 3. ATC 3-06, <u>Tentative Provisions for the Development of</u> <u>Seismic Regulations for Buildings</u>, prepared by the Applied Technology Council, National Science Foundation and National Bureau of Standards, NBS Special Publication 510, NSF Publication 78-8, June 1978.
- 4. Wang, C. K. and C. G. Salmon, <u>Reinforced Concrete</u> <u>Design</u>, New York, Harper & Row Publishers, 1979.
- 5. <u>American Institute of Steel Construction Manual</u>, Seventh and Eighth Editions, Chicago, American - Institute of Steel Construction, 1973 and 1980.

- 6. Bathe, K. J. and E. L. Wilson, <u>Numerical Methods in</u> <u>Finite Element Analysis</u>, Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1976.
- 7. Gould, P. L. and S. H. Abu-Sitta, <u>Dynamic Response of</u> <u>Structures to Wind and Earthquake Loading</u>, New York, John Wiley and Sons, 1980.
- Newmark, N. M. and W. J. Hall, <u>Earthquake Spectra and</u> <u>Design</u>, Berkeley, Earthquake Engineering Research Institute, 1982.
- Morris, A. J., <u>Foundations of Structural Optimization:</u>
 <u>A Unified Approach</u>, New York, John Wiley and Sons, 1982.
- 10. Cheng, F.Y. and Truman, K.Z., <u>Optimum Design of</u> <u>Reinforced Concrete and Steel 3-D Static and Seismic</u> <u>Building Systems with Assessment of ATC-03</u>, Report Series 85-10 for the National Science Foundation, 1985.

Υ