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ABSTRACT

The substructure method is adapted and generalized for response
analysis of arch dams subjected to upstream-downstream, cross—-stream
and vertical components of ground motion. The arch dam is assumed to
be a segment of a circuiar cylinder, bounded by vertical, radial banks
of the river valley encleosing a central angle of 90°. The arch dam and
impounded water are treated as two substructures of the total system
and displacements of the dam are represented as a linear combination of
the first few natural modes of vibration of the dam alone. For this
simple geometry of the arch dam and fluid domain, mathematical solutions .
of the wave equation are presented to determine the hydrodynamic terms
in the finite element equations for the dam. Responses to arbitrary
ground motion can be obtained by Fourier synthesis procedures applied
to the complex frequency response functions determined by the analysis
procedures developed in this report.

Numerical results are presented for the complex frequency response
functions for hydrodynamic pressures on rigid dams due to each of the
three ground motion components. The variation of these pressures with
excitation frequency, depth below the free surface of water and cir-
cunferential location on the upstream face of the dam is studied, and
compared with the hydrodynamic pressures on straight gravity dams.

The responses of three arch dams, with different radius to
height ratios, are analysed for three conditiong: the dam alone with-
out water, and the dam with full reservoir, considering water to be
compressible in one case and neglecting water compressibility in the

other case. The complex freguency response functions for accelerations
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at the dam crest due to the three components of ground motion --
upstream-downstream component, cross-stream component and wvertical
component —- are presented. These response results lead to the
following conclusions.

In general, hydrodynamic effects and water compressibility should
be considered in analyzing the dynamic response of arch dams.

Water in the reservoir causes a decrease in the rescnant fre-
quencies of the dam; as much as 30 percent reduction was cbserved in
in the cases analyzed. The decrease in a resconant frequency depends
on the depth of water, mode number, whether the mode is symmetric or
anti-symmetric and the radius to height ratio of the dam. Greater
reductions are observed for dams with higher radius to height ratios
and in the lower modes of vibration.

For all three components of ground motion, water compressibility
hag little influence on the response of the dam at excitation fre-

quencies w much smaller than ® the fundamental resonant frequency of

r
1:
r

the fluid domain. At excitation frequencies w > ml

the response to
upstream~downstream and vertical components of ground motion is reduced
by water compressibility effects. However, these effects may lead to
an increase or decrease in the response to cross-stream ground motion,
depending on the excitation frequency.

Dam-water interaction, considering water compressibility, affects
the radial acceleration response of dams to upstream-downstream and
cross—stream ground motions to a similar degree. However, the response
to wvertical ground motion is greatly increased by these effects. Just
as in the case of gravity damsg, vertical ground motion causes significant

hydrodynamic pressures, which act in the horizontal plane on a

cylindrical dam face, thus causing significant additional response.
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The additional hydrodynamic forces caused by bank motions in the
upstream-downstream or cross-stream directions may significantly affect
the dynamic response of arch dams at some excitation fréquencies.
However, these effects of bank motions are generally smaller than the
effects of dam-water interaction or of watery compressibility. The
effects of bank motion on dam response are roughly similar in magnitude
for the two howizontal components of ground motion. In the case of
vertical ground motion, the motion of the vertical banks produces no
additional hydrodynamic forces and hence has no influence on the dam

response.
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1. INTRODUCTION

1.1 OCbjectives

The dynamic response behavior of concrete arch dams is complicated
because of their three dimensional geometry and the effects of impounded
water. Improved understanding of the effects of the impounded water on
the dynamics of concrete arch dams is essential to develop reliable
procedures for computing the dynamic deformations and stresses in a dam
subjected to prescribed ground motion. The objective of this work is
to study the dynamic structural behavior and response of arch dams to
ground motion, with special emphasis on identifying hydrodynamic effects

in the response behavior.

1.2 Review of Past Work

During the past 25 vears the finite element method has become
the standard procedure for analysis of all types of complex civil
engineering structures. Employing three-dimensional solid elements and
thick shell elements, computer programs for finite element analysis of
earthquake response of arch dams have been developed [1]. The principal
limitation of computer programs presently available lies in the treat-
ment of the dynamic effects of the impounded water; they have either
been ignored or simplified teo an extent that the results may be
unreliable.

Early results of Westergaard’s and Zangar's analyses of earth-
quake induced hydrodynamic pressures on rigid, straight dams with
vertical upstream face [2] and sloping upstream face [3] provided a
basis for added mass representation of hydrodynamic effects in analysis

of dams. Because corresponding results for arch dams have not been



available in appropriate form, the results for straight gravity dams
have been extrapolated and adapted in analyses of arch dams [4].

Under the assumption that the arch dam is a segment of a rigid
cylinder -- thus having a constant radius -~ bounded by wvertical,
radial banks of the river valley encleosing a central angle of 90°, the
wave equation governing the hydrodynamic pressures was solved mathemat-
ically for prescribed harmeonic motions of the boundaries [5]. This
result along with Fourier Transform procedures permitted evaluation of
hydrodynamic pressures due to arbitrary earthguake motions {6].
Although the dam was assumed to be rigid and only one direction of
ground motion was considered in thege gstudies, it was shown that water
compressibility as well as curvature of the arch dam in plan has
significant influence on hydrodynamic pressures.

Electrical analogue [7] and finite difference [8,9] procedures
have been employed to model arbitrary, three-dimensional geometry of
the reservior and dam. Neglecting water compressibility, hydrodynamic
pressures due to prescribed accelerations of rigid dams [8] or flexible
dams [9] were determined by these procedures.

The assumption of a vigid dam in the above mentioned analyses of
hydrodynamic pregsures omits fundamental features of the problem. The
ground motion and the deformations of the upstream face of the dam will
cause hydrodynamic pressures, and the structural deformations in turn
will be affected by the hydrodynamic pressures on the upstream face of
the dam. To break this closed cycle of cause and effect, the problem
formulation must recognize the dynamic interaction between the dam and
water.

A finite element or finite difference analysis of the complete

dam-water system can account for the interaction effects [10,11,12].



However, these approaches appear to require prohibitive computational
effort for problems of practical size, In other approaches to include
hydrodynamic interaction effects, the equations of motion for the dam
are numerically solwved in the time domain with the hydrodynamic terms
determined from finite difference solutions of the fluid domain [8].
Methods recently developed for analysis of gravity dams
ineluding hydrodynamic interaction contain two key ideas [13}. Firstly,
the dam and the fluid domain are treated as two substructures of the
total system, with the effects of the fluid expressed as frequency-
dependent terms in the governing equations for the dam. Secondly,
these equations are transformed in terms of the first few modes of
vibration of the dam, thus enabling drastic reduction in the number of
unknowns leading to highly efficient solutions. The hydrodynamic terms
in the structural egquations are determined as solutions of the wave
equation over the fluid domain for appropriate motions of the boundary.
In analysis of gravity dam monoliths, two dimensional solutions for the
wave equation had to be cobtained. Explicit mathematical solutions were
possible under the assumpticn that the upstream face is vertical and
the reservoir extends to infinity in the upstream direction [13,14].
The earliest analyses [14,15] of response of gravity dams
including hydrodynamic effects, a special case of the general procedure
developed later [13], considered only the fundamental mode of vibration
of the dam. Following identical steps, the correspondiné one-mode
anaiysis for arch déms subjeéfeé to uﬁstream—dowﬁstféém ground motion
has been dé#eloped'{lél. In this anaiysis explicit mathematical
solutions for the fluid doﬁain withvthe idealizéd'géometff mentioned’
earlier were employed; Résulté of this anaiysis'iﬁdicatéd £hat the

earthquake response of afch dams with full reservoir is much lafger than



the response with no water; and that water compressibility has
significant influence on the hydrodynamic effects in response of dams.
The analysis procedure presented here is a generalization of the
work mentioned above [16], being capable of including any number of
modes of vibration of the dam thus making it possible to obtain results
to any desired degree of accuracy; and considering the responses to all
three —-- upstream-downstream, cross-stream and vertical -- components
of ground motion. The substructure method for formulating the govern-
ing eguations in the frequency domain and their transformation to modal
coordinates, which has proven to be an effective approach in two-
dimensional analysis of concrete gravity dams, is adapted and

generalized for three dimensional analysis of arch dams.

1.3 Scope

The ground motion assumptions and description of the idealized
gecmetry of the arch dam and reservoir are described in Chapter 2.

Chapter 3 presents the equations of motlion governing the dam
including fluid interaction. These equations are transformed to the
undamped modal coordinates of the dam. Equations of motion governing
the hydrodynamiclpressure in the fluid are alsc presented.

In Chapters 4, 5 and 6 the equations governing the hydrodynamic
pressures on the dam are solved for upstream-downstream, cross-—stream
and vertical components of ground motion, respectively. Results are
presented and discussed for the special case of hydrodynamic pressures
on rigid arch dams. In each of these chapters the hydrodynamic terms
are then incorporated into the modal equations of motion of the dam.
Versions of these equations are presented for the cases of no fluid,

incompressible fluid and compressible fluid in the reservoir.



Using the analysis procedures of Chapters 3 thru 6, nondimensional
numerical results for the harmonic reéponse of arch dams having three
different sets of geometric properties are presented in Chapter 7.
Effects of hydrodynamic interaction, compressibility of water and bank
motion on dam response are identified.

The more important conclusions of this investigation are

summarized in Chapter 8.
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2. BSYSTEM AND GROUND MOTION

The arch dam-water system investigated is shown in Fig. 2.1.
The upstream face of the arch dam is a segment of a circular cylinder,

radius R and height H contained within radially extending banks

a’
enclosing a central angle of 90°. 1In addition, the geometry and the
mass, stiffness and damping properties of the dam are all assumed to

be symmetrical about the x-z (0 = 0) élane. Except for these restric-
tions, the geometry and these properties of the arch dam are arbitrary.
The reservoir, which has a horizontal bottom, is filled to a height H
with water extending to infinity in the x (upstream) direction. The
dam is presumed to be fixed at the base and at the banks.

In analyzing the earthquake response of the system, the dam
material is considered to be linearly elastic and the deformation of
the dam small, resulting in linear force-deformation relations for the
dam. Water isc considered to be compressible and inviscid, and only
linear effects are included.

The earthquake ground motion is defined by the upstream-—
downstream (x), cross-stream (v} and vertical (z) transiational com-
ponents or ground motion; the first two are horizontal and thc latter
is vertical. The upstream-downstream component of ground motion is
along the plane of symmetry of the dam. The cross-strcam ({y) component
is perpendicular to the plane of symmetry (Fig. 2.1). At any instant

of time, the ground motion is identical throughout the reservoir bottom

and banks, but the motion varies with time.
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FIG. 2.1 ARCH DAM-RESERVOIR SYSTEM



3. EQUATIONS OF MOTION

3.1 PFinite Element Idealization

A finite element idealization for an arch dam must reproduce the
three-dimensional structural behavior of the dam. Many different types
of finite elements have been proposed for analysis of three-dimensional
structures. For arbitrary solids the eight-node isoparametric brick
element with intexnal incompatible modes has proven to be very
efficient - it provides a good approximation of the stress distribution
with a minimum number of degrees of freedom (DOF). However, for an
arch dam, significantly better performance can be obtained for a given
cost of computation by modeling the dam with higher order elements that
can better represent the complex geometric shape and can more closely
approximate the thick shell structural behavior of the dam. In this
study, the dam is idealized as an assemblage of curved thick shell
elements - 16 node iscparametric brick elements with internal incompatible
medes to improve bending behavior, see Appendix B. This element was
selected from available element types used in ADAP {Arch Dam Analysis

Program) [1].

3.2 Equationg of Motion: Dam

The equations of motion for an arch dam, idealized as a thick-
shell finite element system and subjected to earthquake ground motion,

including hydrodynamic effects, are:

g
1<
+
19)
14
+
1%
[
I
I
13
o
4
=

-mel $e - me” Vo) -9 (3.

In this eqguation, v is the vector of nodal point displacement relative

to the ground, and
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T X zZ X Yy Z X z X Y Z
v = < v vy v \ v VeteeessV vy V peeae,V A v, >
- LTI L Yo ot Yoo "'n" 'n’ 'n’ NN N

[

where v:, vi, and v; are, reséectively, the x-, y-, and z-components of
the displacement of nodal point "n" (Fig. 3.1) and N is the nuﬁber of
unrestrained nodal points, those above the base and not on the banks,
in the finite element idealization. The nodal point velocity and
acceleration vectors are dencted by i and i and the consistent mass,
damping, and stiffness matrices for the finite element system by m, ¢,
and k, respectively. WNeglected in the effective load terms of Eg. 3.1
is the mass matrix @g coupling DOF of the restrained nodal points,
those on the base or on the banks, with the POF of the unrestrained

y

. .. X
nodal peints [17]. The pseudo-static influence vectoxrs e , ¢, and gz,

associated with three components of ground motion, are defined by:

{e*}" = <1,0,0,1,0,0,....1,0,0,....1,0,0 >

1T = <0,1,0,0,1,0,....0,1,0,....0,1,0 >
T

{} = <0,0,1,0,0,1,....0,0,1,....0,0,1 >

The x-, y-, and z-components of earthguake ground acceleration are
denoted by V;(t), vg(t), and vg(t), respectively.

In Eg. 3.1 9(t) is the vector of nodal point loads associated
with hydrodynamic pressures. As these pressures act only on the up-
stream face of the dam, the elements in Q(t) corresponding to nodal
points not on the upstream face are zero. The subvector of Q(t)
associated with the DOF of the nodal points on the upstream face, in
contact with the water, is denoted by Qf(t). Because the hydrodynamic

pressures act normal to the upstream face, which is a segment of a
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segment of a circular cylinder, the elements of Qf asgociated with the
vertical (z) DOF will be zero.

Standard procedures are available to evaluate the mass and stiff-
ness properties of the finite element assemblage [18-20], which need
not be described here; moreover the damping properties are best expressed
in terms of the damping ratios, as will be described later, so that
there is no need to evaluate the damping matrix.

Following procedures presented earlier for analysis of gravity
dams [13] and axisymmetric towers [21], the displacements of the axch
dam, including hydrodynamic interaction effects, are expressed ag a

linear combination of the natural modes of vibration ¢j of the dam

{(without water) :

<
3
i

[ | o]

Yj(t) @j (3.2)

. . . . . . .th
in which Yj(t) is the generalized displacement in the jJ mode. These
natural vibration modes are the solutions of the following eigenvalue

problem

(3.3)

=

1
]
t=

N
=1
re-

where mj denotes the jth natural frequency of vibration of the dam. The
expansion given in Eg. 3.2 is complete if J is equal to 3N, the total
number of DOF of the finite element system, because the vectors @j are
linearly independent and span the space of dimension 3N. All modes
contributing significantly to the response should be included in Eg. 3.2.
Generally, the number of modes necessary is a small fraction of the

total number of DOF.
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Substituting Eq. 3.2 in Eq. 3.1 and utilizing the orthogonality

properties of mode shapes, the equation governing the generalized

displacement Yj in the jth mode 1is

M, Y. (t)
J 3

in which

£
The vector Qj

+

il

C. Y. (£) + K, Y (t) = P.(£) 9 =1,2,3,.0.. 3.4
: j( ) 5 ]() j() j 123, ) ( )

T

@j m @j is the generalized mass

T . . .
@j c éj = 2€j wj Mj is the generalized damping

the damping ratio for the jth natural mode of vibration
of the dam (without water)

@? k @j = w? Mj is the generalized stiffnesgs
% X YV oy Z .7

- ¢.me v (t) - ¢, me’ V(L) - ¢, me” v {t)
@J -=- g @] - - 9 @] - = g

fi T .
- {¢j} gf(t) is the generalized load

. T .
is a sub-vector of the j h mode shape Qj containing

elements associated with the DOF on the upstream face of the dam. Two

i .
sub-vectors of @j are introduced for use in section 4.3: @j

xt and @?f'

containing elements associated respectively with the x and y DOF of the

nodal points on the upstreamn face.

3.3 Eguations of Motion: Fluid Domain

Assuming water to be linearly compressible and inviscid, the

pressures associated with small amplitude irrotational motion are

governed by the wave equation in cylindrical coordinates (Fig. 2.1)

@
o]

+
H =

(o3}
Rk

2 2 2
s SR XL
v a8 oz c” 3t

ge

|

[\
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in which P (r,9,z,t) is the hydrodynamic pressure {in excess of
hydrostatic pressure) and C is the velocity of sound in water. The
following expressions relate the hydrodynamic pressure and displacements

of any particle of watex

wiv - ap

g gtz ar

wal 1 (3.6)
g 8t2 r 36

y}Bzvz — dp

g at2 3z

where vr, va, and vZ are, respectively, the radial, tangential, and
vertical components of water particle displacement; w is the unit
welght of water, and g is the acceleration due to gravity.

Equation 3.5 together with appropriate boundary conditions at
the reservoir boundaries -- the upstream face of the dam, the reservoir
bottom, the free surface of the water, and the reservoir banks --
defines the problem for the fluid domain.

The nodal force vector Qf(t) is the static eqguivalent of the
hydrodynamic pressures on the upstream face pc(e,z,t) = p(R,0,z,t).
it may be computed from the pressures using the principle of virtual
work wherein the wvariation of displacements between the nodal points is
defined by the finite element interpolation functions. Appropriate
coordinate transformations are necessary in carrying out these
computations because the pressures are defined in the cylindrical

coordinate system whereas the nodal loads are in the cartesian

coordinate system.
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4. ANALYSTS OF DAM RESPONSE TO HARMONIC
UPSTREAM-DOWNSTREAM GROUND MOTION

4.1 Equations of Motion

The normal modes of vibration of arch dams with mass, stiffness,
damping and geometric properties symmetric about the x-z (0 = 0) plane
fall into two categories: symmetric and antisymmetric relative to the
same plane. Only the symmetric modes will be excited by the upstream~
downstream component of ground motion. For this excitation, the

equations of motion are a special case of Eq. 3.4:

-.x ox x as f T f
M, Y. , Y. (t K., Y. (t) = - - .
5 50+ cy 3( ) + ; ]( ) . me vg(t) {¢3} 0" (k)

J=1,2,3,...,3 (4.1)

in which Y?(t) is the generalized displacement associated with the jth

symmetric mode of vibration.

4.2 Fluid Domain: Boundary Conditions

As defined in Section 3.2, gf(t) in Eg. 4.1 is the wvector of
nodal forces associated with hydrodynamic pressures on the‘upstream
face of the dam. These pressures, acting in the radial direction
(normal to the upstream face which is a segment of a circular c¢ylinder)
are governed by the wave equation (Eg. 3.5) together with the following

boundary conditions:

»+ The radial component of fluid motion at the upstream face
of the dam (boundary r = R} is the same as the radial motion

of the upstream face of the dam.

* fthe fluid motion normal to the banks (boundaries § = + 1/4)

ig the same as the normal component of motion of the banks.
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* There is no vertical motion of the fluid at the bottom of

the reservoir.

* FPFluid pressure at the free surface is zero. This implies
that the effects of waves at the free surface are ignored;

the associated errors are known to be small {6,22,23]7.

* Since the system, symmetrical about the x-z (8 = 0) plane, is
excited by the x-component of ground motion, the hydrodynamic

pressures must be symmetric about the same plane.

* The radiation boundary condition not permitting any reflected

waves applies at the upstream end (r = «) of the reservoir.

4.3 Complex Frequency Responses

It is a property of linear time invariant systems that when the
excitation is simple harmonic motion, the steady state response is also
simple harmonic motion at the same frequency. The complex frequency
response function ;(m) describes the frequency dependence of the
amplitude and phase of the response r(t). It has the property that

wt

when the excitation is the real part of et , the response is the real

part of r(w) eth.

Tn studying the effects of structure-fluid interaction on the
dynamics of arch dams, it is most appropriate and convenient to consider
harmonic ground motion and to develop procedures to determine the com-
plex frequency response functions for various response quantities of
interest.

Thelresponse to harmonic ground acceleration in the x-direction,

. i
V;(t) =g wt, can be expressed as follows:
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Where ¢§‘(8,z) and‘¢?“(6;zy'are the continucug’ function analsogues.: for
x£ vyt . e R i PN e ate § e

the vectors @j and @j , defined in- Saé¢tion ‘3,27 "+ Theseé functions are

obtained from the vectors and the finite element interpolation functions

‘(see Appendix D).

4.3.1 Boundary Conditions

Using Egs. 3.6 and 4.2, the boundary conditions of Section 4.2
can be expressed analytically as” follews:
9 | wv‘ 7 xf . o éxﬂ o “gﬁ zu‘iw£
—E(R,G,z,t) = —‘—{0056 + Z $7(0,2) cosb + ¢¥ (0,2) sinDlYy (w)e™
or g jop L3 O TR S T
ere-x.{4.33)

z, t) = Y sin E-elwt (4.3b)
g 4

p
3

(r,8,0,£) = O (4.3c)
p (r,6,H,t) =0 .. ... . . b el aemee e e e _ (4.349)

%%’@ (r,0,z,t) =0 B S
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In addition to these boundary conditions, no wave reflections are
permitted at the upstream end of the reservoir (xr = ®).

Because the governing wave equation as well as the boundary
conditions are linear, the principle of superposition applies. The
complex frequency response function for the hydrodynamic pressures on

the dam face §C(B,Z,t) can therefore be expressed as:

J
- I =% e -x
PC(O,z,w) = pOD(G,z,w) + pOB(O,z,m) + jzl Yj(m) pj{G,z.w) (4.4)

The complex frequency response functions igD’ ESB' and ﬁ? in Bg. 4.4
Wt

ﬁgD(O,z,w) e ig the solution

il

are defined as follows. pgD(S,z,t)

If

of the wave equation (Eg. 3.5) at r R (upstream face of the dam) for

the following boundary conditions:

aE—(R,G,z,t) = =~ 2 cosh eimt (4.5a)
ar g

) (4.5b)
rof £t *

s - iwt
and those specified by Egs. 4.3c¢ to 4.3e. pr(G,z,t) = pr(S,z,w) e

is the solution of the wave equation at r = R for the following

boundaxy conditions:

9P _
. (r,0,z,t) =0 (4.6a)
p_ oW (4.6b)

X -X 1wt
and those specified by Egs. 4.3c to 4.3e. pj(e,z,t) = pj(e,z,w) e

is the solution of the wave equation at r = R for the following

boundary conditions:
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2 f i
9 (r,0,z,t) = - 2 [9*5(0,2) cos8 + 6YF(0,2) sine] LWt (4.7a)
ar g L] ]
9
Pe (r, 41 z, t) =0 {4.7b}
and those specified by Egs. 4.3c to 4.3e.
The complex frequency response functions égD(S,z,w), ﬁéB(@,z,w),

—X .
and pj(G,z,w) are for the hydrodynamic pressures on the upstream face
of the dam for the following three excitations, respectively: (1)
Acceleration of rigid dam in the x-direction but the reservoir banks
remain stationary, (ii) Acceleration of only the reservoir banks in the
. . s . nX - . .th .
x-direction, (iii) Acceleration Yj(w) = 1 in the j symmetrical natural

mode of vibration of the dam (without water) but there is no motion of

the dam base or reservoir banks.

4.3.2 Hydrodynamic Pressures: Analytical Results

The seolutions of the wave equation for the three sets of boundary
conditions presented in Section 4.3.1 are derived in Appendix C. The

final expressions for §§D(8,Z,m), ﬁgB(Q,z,m), and é?(@,z,m) are as

follows:
0
-X l6¢r-wR (- m 6 = 1)
. (8,z,w) = 2: 2: e [ i
optdezs —“————g- C (A R} + iD (A _R)| cos4nd cosa
gﬂ =l =0 (2 l) 1-16n<){ ™' m n'm O50n®
...... (4.8)
5 (G,z,0) = W—R zco: [ (A R F 1y 8 g
ns e = J.Fm( mR) coso z + - mgl nZ::U e [Umn(/\mR) + ivmn(ka) cos4nb cosumz’
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(e o] [en] .
E%(@,z,m) - _ LowR 5: e 1’ {C (A R + iD (A R)|cosd4nb cosa =z
3 g 3 nmni n m n- m m
=1 n=0
....... (4.10)
where
R = radius of the upstream face of the dam
H = depth of water in the reservoir
C = velocity of sound in water (4720 ft/sec)
w = excitation frequency
1 n=20
En =
2 n#£0
Jn(x) = Bessel function of the first kind of order n
Yn(x) = Bessel function of the second kind of order n
Kn(x) = modified Bessel function of the second kind of order n
r Tc . ;
wl = 55 = the first resonant frequency of the water in the
reservoir
(2m-1)m
_ 4.
am T, (4.11a)
2w TR / 2 w2
AR =R ](xm - =5 sn ViemnS-07) (4.11p)
c w
1
T/4 H
j _ _J; xf yf i .
Imn * o J J Bﬁ (0,z) cosB + ¢j (8,z) sinf|cos4nt cosamz dzdb
oo e ees {(4.11c)
my = the largest integer "m" gsatisfyving the inequality 2; > (2m=1)
0
1

Expressions for functions ¢ , D, E , F , U , and V differ depending
n n m m mn mn

on whether m is smaller or larger than mg - For m f.mg they are as

follows:
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& (AR J, (AR +B (AR Y, (AR]
Cn(A R) = n m 4n 2m n 2m 4n''m (4.11d)
m AR [A“(AR) +B (A RI
m n m n m

[B (AR J, (AR) ~ A& (AR Y, (A R]
D (A R) = n ' m 4n 2m n 2m idn''m (4.11e)
nom AR [A°(A R + B°(A R)]
m n m n m

_ __¢=n" . o T . .
Em(ka) = TG VR {51n[ka s:.n(4 9yy] + 81n[ka,51n(4 + 6)]}
oo (4.11F)
(-l)m T m
Fm(AmR) = TE;jETX—E {cos[AmR 51n(z-— M1 + cos[KmR 31n(z-+ 6)1}
T (4.11g)
m n
o (-1) (-1) m
Umn(AmR) = omm1) {Tn(AmR) cn(AmR) + A An(AmRJ Dn(AmR)}
........ (4.11n)
_=nten® 4
vmn(AmR) = -755:17--{Tn(AmR) Dn(AmRJ -3 An(ka) cn(AmRJ}
........ (4.111)
where :
AR =3, (AR -J, (AR (4.113)
Bn(AmR) = Y4n_l(AmR) - Y4n+l(AmR) (4.11k)

(16n°+4k>=1)

(l6n2-4k2-4k—l)(l6n2—4k2+4k+l)
........ {4.119)

m

T (R = E;O €y Ty (A_R)

For m ~» my the above listed functions are as follows:
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- K4n(AmR)

C (AR = (4.11m)
n''m KmR [K4n_l(AmR) + K4n+l(XmR)]

Dn(}\mR) = 0. (4.11n)
m
= (=1 -AgR sin(n/4-9) -AmR sin(ﬂ/4+6J
Em(AmR) T 2m-)A R [? te
m e (4.110)
Fm(AmR) = 0. (4.11p)
- (-n"
Umn(me) = Gl Gn(AmR) Cn()\mR) (4.1Lq)
an(AmR) = 0. (4.11x)
where:
m/4
Gn(?\mR) = [[sin(-g -8) e—}\mRSln(ﬂ/4_e)+ sin(%+6) e—AmRSlnm/4+e)]cos4nG as
o ... (4.11s)

In the above equations the Bessel functions are grouped so that
the expressions for Cn(AmR) and Dn(AmR), Egs. 4.11d,e and m, are well
behaved functions (Appendix D).

The above solutions of the wave equation for the three sets of
boundary conditions presented in Section 4.3.1 are for fluid domains
described by Fig. 2.1. The fluid is bounded by the upstream face of
the dam, which is a segment of a circular cylinder of radius R, and by
radially extending banks enclosing a central angle of 90°, For
arbitrary central angles standard analytical procedures are able to
provide solutions of the wave equation for ﬁgD(e,z,w) but not for

-¥X
pOB(e,z,LU) [5].
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As the central angle approaches 180° and R > ®©, representing a
straight dam in the limit, §§D(9,z,w} approaches the previously
obtained [22] two-dimensional solution of the wave equation for a
straight gravity dam (Appendix E).

an eigen-frequency of the wave eguation in the particular fluid
domain under consideration corresponds to each pair of functions
cos4nf, n =0, 1, 2,...... and cosamz, m=1, 2, 3,...... The hydro-
dynamic pressures ﬁgD(G,z,w), ﬁgB(e,z,m), and 5?(e,z,m) are unbounded
at the eigen-frequencies corresponding to n = 0 withwm =1, 2, 3,......
At all the other eigen-frequencies, the pressures are bounded and, as

will be seen later, do not resonate. The resonant frequencies, the

elgen-frequencies corresponding ton =0 and m= 1, 2, 3,...... are
r .
w, = (2m-1) TC/2H. They are the same as the resonant freguencies

obtained for two-dimensional fluid domains [22].

4.3.3 Hydrodynamic Pressures and Forces on Rigid Dams: Numerical
Results

The complex valued frequency regponse functions EED(B,z,w) and
§§B(9,z,w) are for the hydrodynamic pressures on a rigid dam due to
separate accelerations of the dam and of the banks, respectively, in
the upstream-downstream direction. The response function for the total
pressure ﬁgT(G,z,w) is the sum of the two functions. Numerical results
for the absolute value (or modulus) of these frequency response functions
are presented for the arch dam-water system of Fig. 2.1 with R/H = 1.5.
For several values of the normalized excitation frequency, these
functions are plotted over the upstream face at the base of the dam and
over the depth valiable z at two selected values of the angular

coordinate 8 = 0 {(crown) and € = 45° (bank). Because the pressures are
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symmetric about the x-z (8 = 0) plane, pressures over only half of the
base arch are presented. Each of Figs. 4.1 - 4.3 contains results for
a particular normalized excitation frequency.

The complex-valued frequency response functions for hydrodynamic
forces, acting in the radial direction, per unit length of circumference

are:
H
= =X
FOQ(B,w) = J poz(e,z,m) dz . £ = Dn,B,T (4.12)
0

Variation of the absolute value (or modulus} of the complex-valued
hydrodynamic forces (Eqg. 4.12) with excitation frequency is presented
in Fig. 4.4 for the arch dam-water system with R/H = 1.5 at 0 = 0°
{crown), O = 22%° and 6 = 45° (banks).

In Figs. 4.1 to 4.4 hydrodynamic pressures and forces have been
normalized with respect to hydrostatic pressure at the base of the dam
and hydrostatic force per unit of circumferential length FS = WH2/2,
respectively. The excitation fregquency is normalized with respect to

r

1 When

the fundamental resonant frequency of the fluid domain, ®
presented in this form, the results apply to all arch dam-fluid systems
with the particular value of R/H; in this case R/H = 1.5.

Figures 4.1 to 4.4 also show the complex freguency response
functions for hydrodynamic forces and pressures on rigid straight
gravity dams due to ground motion acceleration transverse to the dam
axis. These results were obtained for gravity dams with vertical
upstream face [22].

The hydrodynamic forces (and pressures) on arch dams depend

strongly on the excitation frequency: they increase as the excitation

r
frequency approaches from above or below a resonant fregquency Wy of the
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fluid domain. The forces are unbounded at these resonant frequencies.
The response amplification becomes increasingly sharp and narrow banded
at higher resonant frequencies. But for these very localized
amplifications at the higher resonant freguencies, the response tends
to decrease as the excitation frequency increases beyond the funda-
mental resonant frequency.

By comparing with results for straight gravity dams, it is
apparent that the resonant frequencies are the same (see Section 4.3.2)
but the hydrodynamic forces due to motion of the dam alone are
influenced by the curvature of the dam. The forces are reduced at most
excitation frequencies in a manner that the variation of forces with
excitation frequency are affected little by curvature, at least for
dams with R/H = 1.5.

The motion of banks modifies the hydrodynamic forces, increasing
them for some excitation frequencies, decreasing them for others. The
curvature of the dam influences the total -- due to motion of the dam
and banks -- hydrodynamic force, resulting in larger forces at most
excitation frequencies. At some freguencies, however, the forces are
greatly reduced.

The variation of hydrodynamic pressures with depth and position
along the arch depends on the excitation frequency (Figs. 4.1 to 4.3).
The following observations are based on thesge results for arch dam-water
systems shown in Fig. 2.1 with R/H = 1.5.

The hydrodynamic pressures due to motion of the dam alone vary
little with 0, decreasing slightly from the crown to the banks. However,
the pressures duc to motion of the dam and banks vary significantly with
6, increasing from crown to banks for smaller excitation frequencies but

decreasing for the higher frequencies.
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At the crown and banks of arch dams, the pressures due to
motion of the dam alone, and motion of both dam and banks at smaller
excitation freguencies (m/mf < 1.2), vary with depth in a manner
similar to the pressure-depth curve for straight gravity dams. The
pressures on arch dams due to motion of the dam alone vary with depth
similarly to pressures on straight dams even at higher excitation
frequencies (w/wf > 1.2). At higher excitation freguencies (m/w; > 2Y,
the pressures at all depths on the crown due to motion of the dam only
are wvirtually ildentical to those on straight gravity dams.

At excitation freguencies w < wi, the contributions of the
motion of the banks lead to increases in hydrodynamic pressures on the
dam. However, at w > wi, there is no apparent systematic trend in the
contribution of the motion of the banks to the hydrodynamic pressures.
For a particular excitation frequency, and fizxed €, the pressures may
increase at some depths and decrease at others; for a fixed depth
below the water surface, the pressures may increase for some 6 values

and decrease for others.

4.3.4 Dam Response

As mentioned earlier Qf(t) is the vector of loads at the nodal
points on the upstream face of the dam asscciated with hydrodynamic
pressures pc(e,z,t). These hydrodynamic loads due to harmonic ground

. £ ~f iwt
acceleration are of the form Q (t) = Q (w) e . The complex frequency
response function for this load vector can, from Eqg. 4.4, be expressed
as:

J -—
(W + 95w + ] Fiw O w) (4.13)
k=1
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=X - - . .
where the force vectors 90 (W), QgB(w), and Qi(w) are static eguivalents

D
of the corresponding pressure functions ﬁzD(ﬁ,z,w), ﬁgB(e,z,m), and
ﬁi(e,z,w) and may be computed by applying the principle of virtual
work, wherein the finite element interpolation functions describe the
variation of displacement between nodal points. In Eq. 4.14 the hydro-
dynamic ferces on the dam have been expressed in termé of the unknown
generalized coordinate responses ?E(m).

For excitation Gz(t) = eiwt, Eqg. 4.1, aftcer substitution of

Eg. 4.13, becomes:

J
{—w2mj+iwcj+1<j]§g{(w): - q_a?_ e —{gbg}T{@xD(w)@gB(w) w? Z

=X =X
o Yk(w)gk(un}

k=1
..... L. (4.14)
This set of eguations may be expressed in matrix form as:
g V(o) e
Sll(m) 812(w) ..... SlJ(m) Yl(m) Ll(m)
=X X
Szl(m) ng(w) ..... SzJ(m) < Yz(m) < Lz(w)
) ) ? : > (4.15a)
Y“- T (w)
L_ESJ:L(w) STU () B SJJ(wlJ L J(gy \fJLUVJ
oxr
S(w) w = 5w (4.15b)

where,
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\
2 £f.F =x, o
@) = - {cbj} Q w5 3k
_ 2 , 2 T =x
S5 = = WM, +dec, v x, - w” (6] gj(w)> (4.16)
3 =1,2,3,...,3
pie _ T X £1T ;-x ~x _
Ly =~ ¢, we {@j} {ggp@ + ot} |k =1,2,3,...,9

S

The frequency dependent matrix S(w) in Eg. 4.15 relates the generalized
displacement vector gx(m) to the corresponding generalized loads Ex{w).
Unlike in classical modal analysis the matrix §(w) is not diagonal
because the vectors @j are not the normal modes of the dam-fluid
system; they are the modes of the dam alone (without water}). It can be
shown that S{w) is a symmetric matrix (see Appendix F).

Solutions of Eg. 4.15 for a range of valu§s of the excitation
frequency w would provide the complex frequency response functions for
all the generalized displacements ??(m), j=11,2,....,3. The fregquency

responses for generalized accelerations may be obtained from:

%é;‘(w) - - Wt §§((ux) (4.17)

The complex frequency responses for acceleration at the nodal points of

the dam are

Vi = ) ¥l w) (4.18)

. . .th . .
The contribution of the 7 vibration mode of the dam to these

accelerations is

Vi) = s'zj(w) 9, (4.19)
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4.4 gSingularities of the Solution

The hydrodynamic pressure functions igD(e,z,w), ééB(e,z,w), and
-% x r
pj(Q,z,m) are unbounded at w = W . where w = (2m-1)wC/24,

. th . . .
m=1,2,3,.... is the m resonant frequency of the fluid contained in
the reservoir. Consequently, the elements of S{w) and LX(w) defined
in Eg. 4.16 are unbounded at these freguencies.

When J = 1, 1.e. only the first vibraticn mode 1s included in
the analysis, Eg. 4.16 reduces to one equation and the response at a
resonant frequency can be obtained through a limiting process. If the
excitation is only the motion of the base of the dam and the banks are
. . =X =X
stationary (i.e. pOB(O,z,w) = 0 and QOB(w) = 0), the result of the

limiting process is (see Appendix E)

_ m
him ¥ = 2 WD (4.20)
r 1

[RagV T(2m—-1) Il
m mO

where I;O was defined in Section 4.3.2. However, the limiting process
leads to unbounded response when the excitation includes the
simultaneous motion of the dam base and reservoir banks,

When more than one vibration mode is included in the analysis,
the limiting process leads to a system of equations such that S{w) is
singular -- in particular all the J equations become identical -~ and
no solution can be obtained at frequencies w;. However, numerical
solutions to the equations can be obtained for values of w arbitrarily
near these frequencies.

The set of governing eguations, corresponding to Bg. 4.15, for

concrete gravity dams were also singular at the resonant freguencies

of the undamped fluid domain [13]. Ag discussed therein, such
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singularities are characteristic of the results from a substructure
method of analysis applied to a system with no damping in one of the

substructures, in this case the fluid domain.

4.5 BAnalysis Neglecting Compressibility of Waterx

Only the hydrodynamic terms are altered in Eg. 4.15 1f water
1s assumed as incompressible. In this case the hydrodynamic pressure
. =X -X -X . ~
functions pOD(S,z,w), pOB(G,z,m) and pj(e,z,w) are independent of
frequency and they may be obtained by taking limits of thegse functiongs

(Eg. 4.8 - 4.10) as C > « or as values of these functions at w = 0:

n
o oo m £ {(-1)
- 1 -
PED(G,Z,O) = *éfgéﬂﬁ 2 Z §2i11) - 5 C {0,_R) cosdnb cosO 2
gt m=1 n=0 (1-16n")
....... (4.21)
2/2wr | T 8 v
b (8,2,0) = =2 ) E (0 Rlcosa .z += ) ) e U_ (0 R)cosdnl coso_z
0B i) m m ™ T e.onmn o m m
m=1 m=1 n=0
....... (4.22}
16WR ¢ v :
550,2,00 = - 22B V7 ¢ 17 ¢ (g R)cosdnd coso z (4.23)
J g me]l n=p DM n om m

where all guantities except the following are defined in Section 4.3.2:

- K, (o R)
c (o R) = dn _m (4.24a)
Opf Ry (R + Ky (R ]
m
= (=1 ~OpR sin(n/4 -0) -OpR sin(w/4-H%J
Em(amR) = ?EE:ITa;E [e + e (4.24b)
- (-n"
Umn((lmg) = m Gn(()LmR) Cn(OLmR) (4.24¢)
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-0,R sin(m/4 -0) ~0ypR sin(m/4 +Bﬂ

/4
G, (o B = J &ﬂn(%—e}e %—sin(%+6)e
0

In general, the functions @?D, px

-X
OB and pj are complex valued

and depend on the excitation frequency (Eqs. 4.8, 4.9 and 4.10), but
they are real valued and independent of frequency if compressibility

of water is neglected. Fguaticn 4.15 then becomes

- mz(@ + ya) gx(m) + 1wC gx(w) + g,gk(m) =L + L (4.25)

where M, C and K are generalized mass, generalized damping and

generalized stiffness matrices respectively; each is a diagonal matrix.

%Ox = - @gg gx @a is an "added mass" matrix defined by
a F2T =x : B
M = {¢j} 9. (0 5 3k =1,2,3,....,7 (4.26a)

1.2* is an "added load" vector defined by

ax fiT p=x = .
Lo = - {¢j} {Qppl0) + Qg (@} 3 =1,2,....,3 (4.26b)

When water is assumed to be incompressible, the hydrodynamic
effects are thus equivalent to frequency independent added mass and
load terms. Consequently, unlike the case including water com-
pressibility and involving hydrocdynamic terms that depend on frequency
(Fgs. 4.15 - 4.16), Eg. 4.25 can be written directly in the time domain

as:

M+ MO¥(E) + CY (£) + XY () = (L7 +1L ){i;(t) (4.27)

cosdnf 4b
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4.6 Dam With Empty Reservolir

Egquations for complex frequency responses of the dam with no

water in the reservoir may be obtained as a special case from Egs. 4.16

and 4.17 simply by setting to zero the hydrodynamic loads égD' §§B'
and @?. The coefficients of Eg. 4.15 will then be:
Sjk(w) =0 3 #4k
2 .
S..(w) = - w M, 4+ iwC. + K. (4.28)
13 J J J
Lo = - ¢T me” = Lgx(m)
] =l - - 3

The matrix S(w) is now diagonal since the natural modes of
vibration of the dam, in terms of which Bg. 4.16 is developed, are also
the natural modes of the system considered. Comparing Egs. 4.16 and
4.28, it is apparent that the presence of water introduces added load
terms in gx(w) and modifies $(w). The diagonal terms in S(w) are
modified by an additive quantity and off-diagonal terms appear.

Because the natural modes of vibration of the dam are not the normal
coordinates of the dam-fluid system, the equations in terms of Y?

(Eg. 4.15) are coupled.

4.7 Computer Program

Based on the analytical proceduresg described in this Chapter and
Chapters 5 and 6, a computer program (Appendices H and I) has been
written in FORTRAN IV to numerically evaluate the response of arch dams
including reservoir interaction effects to horizontal and vertical
components of harmonic ground motion. As the program is capable of

including any number of modes of vibration of the dam, results can be
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cbtained to any desired degree of accuracy. Analysis with compressibility
of water neglected or with the reservoir water absent are included in the
program as special cases. This program generated the results in

Chapter 7.
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5. ANALYSIS OF DAM RESPONSE TO HARMONTIC CROSS-STREAM
GROUND MOTION

5.1 Equations of Motion

The analytical procedures and results developed in this Chapter
for response of the dam to the cross-stream component cf ground motion
closely parallel those of Chapter 4. At the expense of somé duplication,
the presentation in this Chapter is self-contained.

Only the antisymmetric natural modes of vibration of the dam
{see Section 4.1) will be excited by the y-component of ground motion.
For this excitation, the equations of motion are a special case of

Eq. 3.4:

M. (e + o, e + R, YRR = - ¢
3] 33 i3 .

= 1,2,3,....,3 (5.1)
th

in which Yg(t) is the generalized displacement associated with the j

antisymmetric mode of vibration.

5.2 Fluid Domain: Boundary Conditions

As defined in Section 3.2, Qf(t) in BEg. 5.1 is the wvector of
nodal forces associated with hydrodynamic pressures on the upstream
face of the dam. These pressures, acting in the radial direction
{normal to the upstream face) are governed by the wave equation

(Eg. 3.5) together with the following boundary conditions.

*  The radial component of fluid motion at the upstream face of
the dam {(boundary r = R) is the same as the radial motion of

the upstream face of the dam.
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* The fluid motion normal to the banks (boundaries 0 = + m/4)

is the same as the normal component of motion of the banks.

*+ There is no vertical motion of the fluid at the bottom of the

reservoiv.
* Fluid pressure at the free surface is zero.

* Since the system, symmetrical about the x - z (8 = 0) plane,
is excited by the y-component of ground moticon, the hydro-

dynamic pressures must be antisymmetric about the same plane.

* The radiation boundary condition not permitting any reflected

wave applies at the upstream end (r = w) of the reservoir.

5.3 Complex Frequency Response

The response to harmonic ground acceleration in the y-direction,
i
g(t) = e wt, can be expressed as follows:

* Hydrodynamic pressures on the dam face,

p (8,z,t) = p (0,z,t) et {5.2a)
C C
* Generalized accelerations,
oy o iwt
Yo () = Yi(w) e {5.2b)
] J
* Radial accelerations of the upstream face of the dam,
¥ J xf f pre iwt
V (R,0,z,t) = %sin@ + ) @j (0,z) cosO + ¢§ (0,2) siné]??(w) se
=eee T (5.2¢)

xf f
where ¢j {(6,2z) and ¢§ (0,2) are the continuous function analogues

(Section 4.2) for the vectors ¢ff and ¢§f defined in Section 3.2,
25 b4
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5.3.1 Boundary Conditions

Using BEgs. 3.6 and 5.2, the boundary conditions of Section 5.2

can be expressed analytically as follows:

J .
%%(R,G,z,t) = - ¥lsing + [¢’?f(e,z) cos® + ¢ (0,z) sine]?¥(w)fel“t
g 55 U3 3 3

....... (5.3a)
ap s _ W m,o dwt
;55(1' 30 2 t) = = cos(4) e (5.3b)
ap
§E{I,S,O,t) = 0 {5.3c)
p(r,9,H,t) = 0 (5.3d)
plr,0,z,t) =0 (5. 3e)}

In addition to these boundary conditions, no wave reflections at the
upstream end of the reservoir (r = ®) are permitted.

Because the governing wave equation as well as the boundary
conditions are linear, the principle of superposition applies. The
complex frequency response function for the hydrodynamic pressures on

the dam face pc(e,z,t) can therefore be expressed as:

J
= _ Y ~y Y -y
pc(e.z,w) = pOD(G,z,w) + pOB(G.Z.w) +3£1Yj(w) pj(B,z,M) (5.4)

-y

The complex frequency response functions §gD’ Pogp

, and ﬁj in Eg. 5.4

I

are defined as follows. pgD(e,z,t) EgD(G,z,w) elwt is the solution

It

of the wave equation (Eg. 3.5) at r R {upstream face of the dam) for

the following boundary conditions:
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a .

LR, 0,z,0)= -2 sind WF (5.5a)

ar g

Ip W _

rae(r. Zr Zr £) =0 (5.5b)
and those specified by Egs. 5.3c to 5.3e. pr(G,z,t) = §éB(8,z,w) elwt

is the solution of the wave equation at r = R for the following boundary

conditions:

—;(R,B,z,t) =0 (5.6a)
e (5.6b)
and those gpecified by Egs. 5.3c to 5.3e. The solution of the wave

equation at v = R is pi(@,z,t) = gg(e,z,w) elwt for the following

boundary conditions:

%%(R,S,z,t) = - %~[§?f(6,z) cosb + ¢§f(6,z) sin@] eth (5.7a)
B iy, I t) = 0 (5.7b)
0 g F YT :

and those specified by Fgs. 5.3c to 5.3e.

The complex frequency response functions égD(Q,z,w), EgB(B,z,w),
and Eg(e,z,w) are for the hydrodynamic pressures on the upstream face
of the dam for the following three excitations, respectively: (i)
accelerations of the rigid dam in the y-direction but the banks remain
stationary, (i1} acceleration of only the reservoir banks in the
y-diregtion, (iii) acceleration ??(w) = 1 in the jth antisymmetric
natural mode of vibration of the dam (without water) but there is no

motion of the dam base or reservoir banks.
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5.3.2 Hydrodynamic Pressures: Analytical Results

The solution of the wave equation for the three sets of boundary
conditions presented in Section 5.3.1 are derived in Appendix C. The
final expression for égD(S,z,w), ﬁgB(e,z,w) and ig(e,z,w) are as
follows:

oo

' _ 32v2 wR — -1 m -
B0z, = 2ZVR ST S D) (D)

gr’  mel n=0 PME) (2,
n

n

[C (AmR) + iDn(AmR)] sinune cosa z

v (5.8)

0 &0 o0
—y 2v/2 wR ! . 16
8, - == =0 : : .
pOE( y B, W) e IZ, [Em(f\mR) + lFm(AmR)]cosumz Al m2=] n2=0 [Umn(/\mR) + iV ()\mR)]_sJ.nunO cost, z

sereea(5.9)
2 (¢ o] [o.¢] .
-y . _ 32wR J . .
pj(ﬁ,z,w) = o Zl nZO EmlE%ﬁAmR) + an(AmRﬂ 51nun@ cosd, 2z
pELA=ye =T (5.10)
where:
R = radius of the upstream face of the dam
H = depth of water in the reservoir
C = wvelocity of sound in water (4720 ft/sec)
w = excitation freguency
c 1 k=0
2k
2 kK #O0
J (x) = Bessel function of the first kind of order Un
un
¥ (x) = Bessel function of the second find of order Un
pn
K {(x) = modified Bessel functicn of the second kind of order un
My
r mc . . .
wy = 5y = the first eigen-freguency of the water in the

reservoir
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_ Zm=1)m
®n T T 2m (5.11a)
2
- 2
AR=R /iu - 9-{ = Iz ‘/|(2m—1)2 T E (5.11b)
m 2 2B r
C w
1
T/4 H
j _ 1 xf vE . .
Imn =5 J J [?j (8,2) cosB + ¢j (6,2) 51n6] 51nun8 cost z dzdb
oo i e e (5.11¢c)
no= 4n + 2 (5.11d)

L
It

the largest integer "m" satisfying the inequality g;‘> (2m-1)

ol

Expressions for functions C , D, E , F , U , and v__ differ depending
n n m m mn mn

on whether m is smaller or larger than My« For m < my they are as

follows:
[An(AmR) Jun()\mR) + Bn(AmR) ¥ (}\mR)]
c (AR = 5 5 2 (5.11e)
)\R[A (A R) + B (?\R)]
m n m- n m
[Bn(lmR) Jun(AmR) - An(ka) Yun(}\mR)]
Dn(AmR) = ) 5 (5.11f%)
?\R[A (A R) + B (AR)]
m n m n m
' (-—1)m T T
Em(KmR) = -1V R %s:.n [)\mR s:Ln(Z + )] - sln[?\mR sin(4-— - 8)1
. 4 (5.11q)
=" T T
Fm(ka) = G-l R %cos[)\mR Sin(z + 81 - cos[}\mR sa.n(z - 9)]}
me LA (5.11h)
m n
_ (1) (=1} o ‘
Umn(AmR} = (2m=1) %Tn()\mR) cn()\mR) + 3 An()\mR) Dn(AmR)f» {5.111}
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-(-1)"(-1" m
vmn(AmR) = TSR {Tn()\n'lR) Dn(AmR) - ZAn()\mR) cn(AmR)} (5.113)
where:
An(}\mR) = Jun_l()\mR) - Jun+l()\mR) | (5.11k)
Bn(me) = Yun_l(xmm - Yun+l(>\mR) | (5.118)
og (ui+4k2—l)
T (AR = £ J.. (A R (5.11m)
nm k=o 2K 2k'm (ui—4k2—4k—l)(Ui—4k2+4k—l)

For m > my the above listed functions are as follows:

- K (A_R)
w,oom
Cn(AmR) = (5.11n)

AmR [K“n— ] ()\mR) + Kun " ()\mR)]

Dn(KmR) = 0. (5.110)

m
_ ={-1) -ApR =in(T/4+8) -AmR sin{m/4-96)
Em(AmR) B (2m—l)XmR [é - ]
....... (5.11p)
F (A RrR) =0,
m m
(5.11qg)
U (AR = —1)” G (AR C (AR
mn m (Zm-1) n m n m
Vv (AR = 0. (5.11r)
mn ' m
where:
T/4
G (A R) = “:sin(E+B) e—)\mR51n(Tr/4+8) —sin(E—G) e_)\mR Sln(ﬁ/é{me)]sinu 8 a6
n o m 4 4 n
0
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For ground motion in the "y" direction and for the particular
fiuid domain under consideration an eigen-frequency of the wave
equation éorresponds to each pair of functions sinune, n=:0,1,2,3,....,
and cosamz, m=1,2,3,....,. The hydrodynamic pressures EgDQS,z,m),
ﬁgB(e,z,w), and 5?(6,2,@) are bounded at all eigen-frequencies. This
contrasts with the results for ground motion in the "x" direction in
which case the pressure functions are unbounded at eigen-frequencies
corresponding ton = 0, m = 1,2,3,..-.,.

The eigenfunctions cosdn@ and cosqmz define the distribution of
hydrodynamic pressures on the face of the dam due to the x-component of
ground motion. For n =0 and m = 1,2,3,...., the pressures are
unbounded and independent of angular coordinate. The eigenfunctions
sinune defines the angular distribution of pressures due to the
y—component of ground moticn. Because this antisymmetric excitation
produces antisymmetric eigenfunctions there are no eigenfunctions that
are independent of angular coordinate and resonance (unbounded response)
does not occur at any eigen-frequency. Furthermore, the antisymmetric
excitation of the banks causes a canceling of pressures due to motion
of the banks § = + 7/4 with the pressures due tc motion of the bank
8 = - /4. “Because of this canceling effect §y (8,z,w) remains bounded

0B

at all eigen-frequencies.

5.3.3 Hydrodynamic Preggures and Forceg on Rigid Dams: Numerical Results

The complex frequency response functions for hydrodynamic
pressures and forces on rigid arch dams with R/H = 1.5 due to cross-
stream (y) acceleration of the dam alone as well as of dam and banks
are presented in Figs. 5.1 - 5.4. These results are presented in a
manner parallel to those for the upstream-downstream motion {Section

4.3.3 and Figs. 4.1 - 4.4). The pressuresg are now antisymmetric about
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the x-z (8 = 0) plane, being zero on that plane. The pressures on
straight gravity dams due to cross-stream motion are alsq Zero.

The hydrodynamic forces (and pressures) associated with cross-
stream motion depend significantly on the excitation frequency. How-
ever, in contrast to the results for upstream-downstream motion, the
hydrodynamic forces due to cross-stream motion are bounded at all

. . . . . r
excitation frequencies with maximum response at or near w/w, = 1.0.

1
The forces due to cross-stream motion are considerably smaller than
those due to upstream-downstream motion. The motion of banks modifies
the hydrodynamic forces -- increasing them for some 2xcitation fre-
quencies, decreasing them for others.

The hydrodynamic pressures at the base of the dam due to motion
of the dam alone increase from zero at the crown to a maximum value at
the banks. The pressures due to motion of the dam and banks also attain
their maximum value at the banks for smaller excitation fregquencies but
close to the mid-angle between the crown and the banks for the higher
frequencies.

. ) . r . . .
At excitation freguencies o < w, the contributions of the motion

of the banks lead to reduction in hydrodynamic pressures on the dam.

r

However, at w > wl

there is no apparent systematic trend in the con-
tribution of the bank motion to the hydrodynamic pressures. For a
particular excitation frequency and fixed 8, the pressures may increase
at some depths and decrease at others. For a fixed depth below the

water surface, the pressures may increase for some 0 values and

decrease for others.

5.3.4 Dam Response

sl
The vector of nodal point locads @ (t) on the upstream face of

the dam are associated with the hydrodynamic pressure pC(G,z,t). These
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hydrodynamic loads due to harmonic ground acceleration are of the form

£ - i . ,
0 (t) = Qf(w) elwt. The complex frequency response function for this

load vector can, from Eg. 5.4, be expressed as:

J
5y = oY 5y 5Yn oY
Q (W) = Qi (W) + O tw) + kzl T (w) g (w) (5.12)

where the force vectors égD(w), égB(w), and éi(w) are static equivalents
(see Section 4.3.4) of the corresponding pressure functions ﬁgD(e,z,m),
igB(G.z,w), and §i(S.Z.w).

For excitation QZ(t) = elwt, Eg. 5.1, after substitution of
Eg. 5.12, becomes
J

2 Wone o 4T Y _ By Thy -y 2y Ty, =Y }
[0 M, +iwC +R 1YL (W)= - gyme —-{¢j} {QOD(m)+QOB(wl w” ) Y W g (w)

k=1
....... (5.13}
This set of equations may be expressed in matrix form as
stw) ¥ (w) = LY () (5.14)
where:
_ 2 LT =y X . ™
Sy (W) = - w {¢j} 0, (w) ; i#k
2 . 2 £4T =y
S,.(w) = - WM. + inC. + K. -~ w . . (w > 5.15}
13 ) ] ] J {¢3} 93( ) (
j=1,2,3,....,30
Y - T b4 EyTr=y =Y .
. = - 0. - . k=1,2,3,....,J
L () oy me {‘PJ} fg ) + QOB(&J)}J 1

The frequency dependent matrix §(m) in Eg. 5.14 relates the generalized
displacement vector iy(m) to the corresponding generalized load vector
gy(m). For reasons mentioned in Section 4.3.4 the matrix S{(w) is not
diagonal. It can be shown that §(w) ig a symmetric matrix (see

Appendix F).



Solutions of Eq. 5.14 for a range of values of the excitation
frequency, w, would provide the complex frequency response functions
for all the generalized displacements §§(w), 1 =1,2,3,....,J. The

frequency responses for generalized accelerations may be obtained from

§§(w) = - m2‘§§(m) (5.16)

The complex freguency responses for acceleration at the nodal points

of the dam are

, g
v = ] v (5.17)

where the contribution of the jEE-vibration mode of the dam to the

acceleration is

Eg(w) = ??(w) b, (5.18)

5.4 Analysis Neglecting Compressibility of Water

Only the hydrodynamic terms are altered in Eg. 5.14 and 5.15 if

water is assumed as incompressible. In this case, the hydrodynamic

Y

pressure functions §OD

(6,z,w), 5%B(8,z,m) and ﬁg(e,z,m) are independent
of frequency and they may be obtained by taking limits of these

functions (Egs. 5.8 - 5.10) as C =+ ® or as thege functions at w = 0.

SV (g 0y - A2/2 wR ? 7D DT L i 6 cosa s
pOD 12 = ﬂz Lot om-1) ( 2_1) Q, s1nun cos -
g med n= L (5.19)

If

5’ (9,z,0) EXE;EE; ? E (& _R)cosu z + 1o § ? U (o R)siny 8 coso_z
Pog'vr2r gT m m ™ i mn o m n ™

m=1 m=1 n=0
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o0 o]

32wR
2R 7

52(@,2.0) = - IJ C (0 R} siny B coso z (5.21)
3 m noom n m

m=1 n=0

where all quantities except the following are defined in Section 5.3.2

- K (0 R)
L m
c (a0 R = n (5.22a)
In m

o R [Kun-l (o R) + K”n 41 (@ R) ]

m
(=D ~OpR Sin(m/4+8)  -ogR sin(ﬂ/4—8j
E (0 R = Dok [e e (5.22b)
- -(-n"
Umn(amR) = o1y Gn(dmR) Cn(@mR) (5.22¢c)
where:
/4
G (o RY = [[?in(juﬁﬂ e—@mR sin(n/4 +0) Sin(ﬂ;—ﬁ)e‘&mR Sln(ﬁ/4-_eﬂsinu 8 ao
n 4 4 n
O e, (5.22d)

In general, the functions 5

—y‘ -
op’ pOB and pj are conplex valued

and depend on the excitation frequency {(Egs. 5.8, 5.9 and 5.10), but
they are real valued and independent of freguency if compressibility

of water is neglected. Equation 5.16 then becomes

Oy

w0t e v i P sk P = o o« (5.23)

where M, C, and K are generalized mass, generalized damping and
generalized stiffness matrices respectively; each is a diagonal matrix.

0 . .
Y= o ®? M gy. @a is an "added mass" matrix defined by

a 8.7 =y .
= ; = ey .2
M {¢j} Q. (9 ; ik =1,2,3, J (5.24a)
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Y

and Ea is an "added load" vector defined by

ay _ _ £.Trzy -y i s
Lyt = {¢j} {0pp(0 + gp®} i 3 =1,2,3,....,7 (5.24b)

When water is assumed to be incompressible the hydrodynamic
effects are thus eguivalent to fregquency independent added mass and load
terms. Consequently, unlike the case including water compressibility
and involving hydrodynamic terms that depend on freguency (Egs. 5.14 and

5.15), Eg. 5.23 can be written directly in the time domain as

o+ 18 )+ e Y +x ) = Yo+ L1 () (5.25)
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6. ANALYSIS OF DAM RESPONSE TO HARMONIC VERTICAL
GROUND MOTION

6.1 Eguations of Motion

The analytical procedures and result; developed in this chapter
for response of the dam to the vertical (z-~) component of ground motion
closely parallel those of Chapters 4 and 5. Although at the expense of
‘some repetition, the presentation in this chapter is self-contained.

Only the symmetric natural modes of vibration of the dam (see
Section 4.1) will be excited by the z-component of ground motion. For

this excitation, the equation of motion (Eg. 3.4) specializes to:

wZ *z zZ Z W7 fi.T £
M, ¥(t) + C. Y (8) + K, Y. () = - ) - ) £) ;
5 Y0 5 Y58 5 Y408 gy me Y (E) {¢3}9()

j=131,2,3,....,3 {6.1)

where Y?(t} is the generalized displacement associated with the jth

symuetric mode of wvibration.

6.2 Fluid Domain: Boundary Conditions

In Eg. 6.1 gf(t) is the vector of nodal forces associated with
hydrcdynamic pregssures on the upstream face of the dam. These pressures
acting in the radial direction are governed by the wave equation (Eqg. 3.5)

together with the following boundary conditions:

* The radial component of fluid motion at the upstream face of
the dam {(boundary r = R) is the same as the radial motion of

the upstream face of the dam.

* There is no fluid motion normal to the banks (boundaries

6 =+ 7/4)
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* The vertical motion of the fluid at the bottom of the
reservoir (boundary z = 0) is prescribed by the vertical

component of ground acceleration.
* Fluid pressure at the free surface is zero.

*  Since the system, symmetrical about the x-z (0 = 0) plane, is
excited by the z-component of ground motion the hydrodynamic

pressures must be symmetric about § = 0.

* The radiation boundary condition not permitting any reflected

waves applies at the upstream end (r = <) of the reservoir.

6.3 Complex Freguency Response

The response to harmonic ground acceleration in the vertical

it

direction, G;(t) = e , can be expressed as follows:

* Hydrodynamilc pressures at the dam face,

1wt

pc(erzlt) = i)c(erzrw) e {6.2a)
* Generalized accelerations,
P = §jz.(w) o1t (6.2b)
* Radial accelerations on the upstream face of the dam
x 2 x£ £ =z iwt
VO (R,0,z,t) =4 } [637(8,2) cos® + qg (6,2) sind] Y. ()¢ e (6.2¢)
3=1

£ .
where ¢§f(9,z) and ¢§ (0,2) are the continuous analogue functions (see

Section 4.2) for the vectors @?f and @?f defined in Section 3.2.
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6.3.1 Boundary Conditions

Using Egs. 3.6 and €.2; the boundary conditions of Section 6.2

can be expressed analytically as follows:

J _ .
%B(R,e,z,t) = - 2L Y (6% (8,2) cosb + ¢YT(8,2) sind] F(w)l ot (6.3a)
r 9l521 j 3
9 m
SEstr, 4oz, ) =0 (6.3b)

9 w iwt

ﬁ(rlelolt) = - E e ) (6.30)
p(r,8,H,t) =0 » (6.3d4)
%%g(r,O,z,t) =0 (6.3e)

In addition to these boundary conditions, no wave reflections at the
upstream end of the reservoir (r = %) are permitted.

Because the governing wave equation as well as the boundary
conditions are linear, the principle of superposition applies. The
complex frequency response function for the hydrodynamic pressures on
the dam face pc(e,z,t) can therefore be expressed as:

J_
B(8,2,t) = B (8,2,t) + | Y?(m) éi(e,z,w) (6.4)
=1
The complex frequency response functions §O and 5j in Eg. 6.4 are

defined as follows. The solution of the wave equation (Eg. 3.5) at

= Lt
r = R {upstream face of the dam) is pg(e,z,t) = pg(e,z,t) et for the
following boundary conditions:
op
'_"—(Rlelzrt) =0 (6'5)

ar
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and those specified by Bgs. 6.3b to 6.3e. The solution of the wave
equation at ¥ = R is p?(@,z,t) = ﬁ?(@,z,t) elwt for the following
boundary conditions:

EB(r,e,o,t) = 0 (6.6)
dz

and those specified by Egs. 6.3a, 6.3b, 6.3d and 6.3e.
. -z -z
The complex frequency response functions pO(O,z,m) and pj(G,z,w)
are for hydrodynamic pressures on the upstream face of the dam due to
. . -2z . -
two excitations, pO(G,z,w) corresponds to vertical, rigid-body
accelerations of dam, the reservoir bottom and the banks. Because the
banks and the upstream face of the dam are vertical, these pressures
result only from excitation of the reservoir bottom. 5?(e,z,w)
]
. =z . .th .
corresponds to acceleration Yj(w) = 1 in the 7 gsymmetric mode of

vibration of the dam (without watexr) but there is no motion of the dam

base, banks or reservoir bottom.

6.3.2 Hydrodynamic Pressures: Analytical Results

The boundary conditions in Section 6.3.1 for which éi(e,z,w) is
the soluticon of the wave equation also arose in the analysis for the
x-component of ground motion (Section 4.3.1). The solution has been
presented in Eq. 4.10.

The solution of the wave equation for the first set of boundary
conditions in Section 6.3.1 is derived in Appendix C. The final

expression for Eg(e,z,w) is:

X
Be(6,2,0) = - 1[ (6.7)
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This result for ﬁg(@,z,m) was obtained with the assumption that
the reservoir bottom is rigid, resulting in complete reflection of the
hydrodynamic waves at that boundary. This result is identical to the
two-dimensional solution obtained for hydrodynamic pressures on gravity

dams due to vertical ground motion {22,24].  The hydrodynamic pressures

are unbounded at freguencies w = m;, m= 1,2,3,.... where
r e
Ll)m = (2m-1) 5-1:{— .

Analytical studies [22,24] indicated that the hydrodynamic
pressures on rigid gravity dams due to earthquake motions when computed
using Eg. 6.7 are unrealistically large. Thus Eqg. 6.7 was modified to
account for the deformability of the reservoir bottom and the partial
reflection and refraction of the hydrodynamic waves at that boundary.
The modification to ﬁg(e,z,w) was accomplished by solving a one-
dimensional problem in which the rock under the reservoir was assumed
to be an elastic, isotropic homogeneous half space [25]. The resulting

complex frequency response function for the pressure is:

. 'W [y z
(1+0) sin 5 ]Tév ﬁ)

w
- H
p2(8,2,0) = ¥ _— (6.8)
0 T 2 (1+0) cos E-i£'+ i{1-a)si Ia
g (wr) 2 wr sin 2 mr
1 1] 1

where ¢ is a reflection constant given by o = {k-1)/(k+1l), where

kK = Crwr/cw with W being the unit weight of rock and Cr the P-wave
velocity in rock. For the case of rigid rock at the reservoir bottom

o = L and Eg. 6.8 reduces to the earlier result (Eq. 6.7). In contrast
to Eq. 6.7, the pressures given by Eg. 6.8 are bounded at all excitation
frequencies. This investigation employs Eg. 6.8, thereby accounting

for the influence of deformability of the foundation rock on the hydro-

dynamic pressures.
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The solutions given in Egs. 6.7 and 6.8 are independent of the
angular coordinate, 0, and of the upstream radius of the dam, R. For
a particular excitation frequenecy, the hydrodynamic pressures thus vary

only with the z (depth) coordinate.

6.3.3 Hydrodynamic Pressures and Forces on Rigid Dams: Numerical Results

The complex valued frequency response function ég(ﬁ,z,w) is for
the hydrodynamic pressures on a rigid dam due to vertical ground motion.
The hydrodynamic force, EO' acting per unit length of circumference is
the integral of Eg over the depth of water. As noted ecarlier, 53 is
independent of the angular coordinate € and the radius X of the upstream
face of the dam. Hence, ﬁO also is independent of 8 and R. Thus the
results shown in Figs. 6.1 and 6.2 apply to.all values of & and all
dam~-water systems of Fig. 2.1, The results have been appropriately
normalized so that they also apply to all arch dam-water systems
independent of water depth H. The pressures and forces of Figs. 6.1 and
6.2 were computed from Eg. 6.8 with o = 0.85, an appropriate value for
the reflection constant.

The hydrodynamic forces (and pressures) depend strongly on the
excitation frequency. Starting with the hydrodynamic value at very low
excitation frequencies, the forece is amplified several times at the
fundamental resonant frequency. Because the partial refraction of
hydrodynamic waves at the bottom of the reservoir has been considered,
resonant response ig finite. The hydrodynamic force at higher resonant
frequencies is also finite, and much smaller than at the fundamental
regonant frequency. Except for the local amplification near the higher
resonant frequencies, the hyvdrodynamic force decreases as the excitation

frequency increases beyond the fundamental resonant frequency.
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The variation of hydrodynamic pressure over depth depends
strongly on the excitation frequency. At zero excitation frequency the
hydrostatic pressure distribution is a straight line varving from zero
at the free surface to a maximum value at the reservoir bottom. Starting
with this straight line variation at zero frequency, the pressure
distribution becomes increasingly complex with increasing excitation

frequency.

6.3.4 Dam Response

. £
The vector of nodal point loads, Q (t), on the upstream face of
the dam are associated with the hydrodynamic pressures pc(ﬁ,z,t).
These hydrodynamic loads due to harmonic ground acceleration are of the
£ —£ iwt " .
form 9 (t) = Q () e . The complex frequency response function for

this load vector can, from Eg. 6.4, by expressed as:

J
—f ~z o2 -2
0" (w) = 0 () + [ Y (w) O (w) (6.9)
k=1
where the force vectors Qz(m) and éi(w) are static equivalents (see
Section 4.3.4) of the corresponding pressure functions §§(z,w) and
-z
P, (U,z,w).

elwt, Eg. 6.1, after substitution of

il

. , o2
For excitation vg(t)

Fg. 6.9, becomes:

2 . SZ o Sz =z
[- w™, + duc, + K IV = - ¢ v (w9 (W}
cevee. s (6.10)

This set of equations can be expressed in matrix form as:

sw W = 1w (6.11)
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where:
_ 2 1T =z . ™
Si(w = - w {qu} QW i JFKk
2 . 2 T =2 :
.. = - w'M, . . - X ) .
Sjj(w) W 5 + mcj + kj w {d>j} Qj(m) > (6.12)
=1,2,3,....,0
z T z fiT ==z
Litw) = - ¢y me” - {(bj} 0y (w) Jk=12,3,...00

This coefficient matrix §(w) is identical to the matrix in Eg. 4.16 for
the x-component of ground motion but different than the matrix in
Eg. 5.15 for the y-component of ground motion.

The frequency dependent matrix 5(w) in Eg. 6.12 relates the
generalized displacement vector ?Z(m) to the corresponding generalized
iloads Ez(m). For reasons mentioned in Section 4.3.4, §(w) is not
diagonal. It can be shown that S(w) is a symmetric matrix (Appendix F).

Solutions of Eg. ©.11 for a range of values of the excitation
frequency, w, would provide the complex frequency response function for
all the generalized displacements ??(w}, j=1,2,3,....,3. The frequency

responses for generalized accelerations may be obtained from:

??(w) = - 2 §§(w) (6.13)

The complex frequency responses for acceleration at the nodal points of

the dam are

J
Vi = ) Vow) (6.14)

where the contribution cf the jth vibration mode of the dam to the

acceleration is

Vi w = ??(m) 0. (6.15)
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6.4 Analysis Neglecting Compregsibility of Water

Cnly the hydrodynamic terms are altered in Egs. 6.11 and 6.12 if
water is assumed to be incompressible. In this case, the hydrodynamic
pressure functions are cobtained by taking the limits of ﬁg(z,m) and
E?(G,z,w) as C > @ or as these functions at w = 0:

=4
0

- wH z
p,(z,0) = - (L - 2 (6.16)
and 5?(6,2,0} is given by Eg. 4.23.

In general, the functions ﬁg{z,m) and B?(G,z,w) are complex
valued and depend on the excitation frequency, but they are real valued

and independent of frequency if compressibility of water is neglected.

Fgquation .11 them becomes:

- w2 M+ MY ) +iw ¥ + K I = goz + 1% (6.17)

where M, C, and K are generalized mass, generalized damping and

generalized stiffness matrices respectively; each is a diagonal matrix.

0z . T me”. M is an "added mags" matrix defined by:

f}T

a
ML = {¢j

J éi(o) ; 3lk = 112;3,....“]' (6.188.)

1.2% is an "added load" vector defined by:

L?Z = - {¢§}T 0gto) i 3 =1,2,3,....,0  (6.18p)

When water is assumed to be incompressible the hydrodynamic
effects are thus eguivalent to freguency independent added mass and load
terms. Consequently, Eq. 6.17 can be written directly in the time domain as:

(M + uH¥E(e) +c YD) ¢k YR = (07 4 SEAUN (6.19)
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7. HYDRODYNAMIC INTERACTION EFFECTS

7.1 Scope of Chapter

Using the analysis procedures developed in Chapters 3 - 6,
numerical results for response of three arch dams with different radius
to height ratios are presented in this chapter. Acceleration responses
to harmonic ground motion applied separatelv in the x (upstream-down-
stream), y (cross-stream), and z (vertical) directions are pregented.
Based on these results, the effects of hydrodynamic interaction, com-

pressibility of water and bank motion on dam response are identified.

7.2 Fundamental Parameters

The analysis procedure developed in Chapters 4 - 6 is for the
idealized arch dams desgscribed in Chapter 2. The upstream face of the
arch dam is a segment of a circular cylinder, radius R and height Hd'
contained within radially extending banks enclosing a central angle of
90°. 1In addition, the geometry as well as mass, stiffness, and damping
properties of the dam are all assumed to be symmetrical about the x-~z
(6=0) plane. But for these restrictions, the geometric and material
properties of the arch dam ére arbitrary. Results presented in this
chapter are for arch dams with trapezoidal radial section, the radial
thickness varying linearly from Bl at the crest to B2 at the base.

As shown in Appendix G the frequency wj and mode shape ?j of the
jth natural mode of wvibration of the dam without water and the complex

. . PR .th
frequency response for generalized acceleration Yj in the j mode can

be expressed in terms of dimensionless parameters as follows:
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w, = /B fy, 2, 2 X (7.1)
s T o [ Ry -
j Hy Wa H.' H' Hy
B B
z r 1 2 R
SN O S 7.2
da d d d d
r
B B w
o o w 1 2 R W 1 H
=Y, ¢ Vy Ty T T g-l_l —y T O (7.3)
;o (“’1 By Hy Hy 737wy w0 Hy
where
£ = gymbol for "a function of"
Bl = radial thickness of dam at the crest
B2 = radial thickness of dam at the base
B = modulus of elasticity of the dam concrete
g = acceleration of gravity
H = depth of water
Hd = height of the dam
R = radius of upstream face of the dam
r,8,z = cylindrical coordinates of points on the dam
Y4 = unit weight of dam concrete
w = unit weight of water
o = reflection constant at reservoir bottom for hydroedynamic
pressure waves defined in Section 6.3.2; pertinent only for
vertical ground motion
v = Poisson's ratio
. . .th . .
ij = damping ratio foxr the j node of vibration of the dam
) = excitation frequency
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&
i

fundamental frequency of the dam

£
)

fundamental eigen-frequency of the fluid domain

Unlike gravity dams [131, the fundamental mode of vibration for
thin avch dams does not necessarily provide the most significant
response. Thus when studying thin arch dam response, several vibration
modes that contribute significantly to the response should be considered.

This combined response is

r
J B B w
= n = {w z r L 2 R W 1 H
Y = Z Yj'@j = Y a)-__’ vy H 4 8! “H-l ?! E—_r H_I g~l W_ (_U—“Mr Fl o (7-4)
j=1 1 d a a4 "a a 3 Va1 Pa
The parameters of Egs. 7.3 and 7.4 —-- not all are mutually
independent -- are selected to be useful for interpreting response

. . r
results and hydrodynamic interaction effects. For example, wl/wl can

ke expressed in terms of other parameters as

— = — £\, =/ — T (7.5)
1

wE
1 d d 1 2 R
w

7.3 BSystems Analyzed

7.3.1 System Properties

The results presented in this chapter are obtained from specific
numerical values of the parameters given in Section 7.2. Based on a
survey of geometry of thin arch dams, the crest and base widths are
fixed at Bl/Hd = (0.035 and Bz/Hd = 0.200 but three different values of
R/Hd = (0.5, 1.5, and 2.5 are selected. The properties chosen for mass
concrete of the dam are E = 5 x 106 psi, v = 0.17, and Wd = 150 pcf.

For water in the reservoir, C = 4720 fps and w = 62.5 pcf. The damping
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ratio Ej for all normal modes of vibration of the dam are assumed to

be the same and equal to 0.05. In the analysis of response to vertical
ground motion, the reflection constant o = 0.85. Results are presented
for two values of the height parameter; for a full reservoir H/Hd = 1.0,
for an empty reservoir H/Hd = 0.0. The normalized excitation frequency
w/wl ig wvaried from 0.0 to 4.0.

Because the dam properties are symmetrical about the x-z (6=0)
plane, only one-half of the dam with appropriate boundary conditions on
the plane of symmetry is considered in the analysis. Half of the dam
is idealized as an assemblage of 36 three-dimensional elements as shown
in Fig. 7.1. Every element has a height of Hd/6' and an included angle
of 7.5° which extends throughout the thickness of the dam. The finite
element system is analyzed by the procedures presented in Chapters 4 - 6

including 10 natural modes of vibration of the dam.

7.3.2 Natural Frequencies and Mode Shapes of Vibration

Because the geometry and materiai properties of the dam are
symmetric about the x-z (8=0} plane, the natural modes of vibration can
be separated into two categories: symmetric or antisymwetric about the
same plane. As mentioned earlier, the symmetric modes are excited by
ground motions in the upstream-downstream and vertical directions:
whereas the antisymmetric modes are excited by cross stream ground
motion. The first six symmetric and first six antisymmetric mode shapes
and natural frequencies of vibration for the three dams -- R/Hd = 0.5,
1.5, and 2.5 -- under consideration are presented in Figs. f.2 - 7.7.
These are vibration properties of the dam without water.

In Figs. 7.2 to 7.7, mode shapes are plotted along the upstream

face of the dam at the crest (Z/Hd = 1.0) and the radial component is
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plotted over the depth at the particular value of 0§ where the mode shape
attains its maximum value. Because the mode shapes are either symmetric
or antisymmetric about the x-z (0=0) plane, they are displayed over
only half the dam. Similar to Eg. 7.1, the natural freguencies
associated with each mode are shown in dimensionless form. The mode
shapes apply to a dam of any height, modulus of elasticity and density,
provided it hag the same idealized geowmetry, same value of R/Hd’ and
same Poisson's ratio for which the results have bheen presented.

It is seen from Figs. 7.2 - 7.7 that the vibration frequencies
and mode shapes change significantly with R/Hd' In particular, the
fundamental frequency decreases as R/Hd increases. The vibration mode
shapes may be visualized as a combination of vibration modes of the
crest arch and of vertical cantilevers fixed at the base of the dam.

For example, the sixth symmetric mode for dams with R./Hd = 0.5 (Fig. 7.2)
can be described as a combination of the first arch mode and the fourth
cantilever mode.

Dams with the smallest R/Hd are relatively stiff in the arch
direction compared to the cantilever direction. Thusg, the first arch
mode combines with three cantilever modes to produce the first three
vibration modes of the dam (Figs. 7.2 and 7.5). In contrast, dams with
the largest R./Hd are relatively flexible in the arch direction compared
to the cantilever direction. As a result, the first cantilever mode
combines with three arch modes to produce the first three vibration

modes of the dam (Figs. 7.4 and 7.7).

7.4 Presentation of Regponse Results

In order to identify the effects of the impounded water on the

dyvnamic response of dams, each of the three dams (Section 7.3.1) is
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analyzed for three conditions: the dam alone without water (H/Hd = 0),
and the dam with water at a depth equal to the dam height (H/Hd = 1)
considering water as compressible in one case and neglecting water
compressibility effects in another case. The response of the dam to
the three components of ¢ground motion —- upstream-downstream component,
cross—stream component, and vertical component ~- was analyzed by the
procedures of Chapters 4, 5, and 6, respectively.

For the syrmetric dam-reservoir systems considered in this work,
the natural modes of symmetric vibration of the dam are excited by
ground motions in the upstream-downstream and vertical directions;
whereas the antisymmetric modes are excited by cross stream ground
motion. Considering the first ten natural modes of vibration, symmetric
or antisymmetric as appropriate, the response of the three arch dams
described in Section 7.3.1 to harmonic ground acceleration in each of
the three directions, applied individually, was computed.

The acceleration response at selected locations on the crest of
the three dams are presented in Figs. 7.8 to 7.31. The responses to
upstream-downstream ground motion are presented in Figs. 7.8 to 7.16,
to cross-stream ground motion in Figs. 7.17 to 7.25, and to vertical
ground motion in Figs. 7.26 to 7.31. 1In each figure, the absolute value
or modulus of the complex frequency response function for crest accelera-
tion is plotted against the excitation freguency normalized relative to
the fundamental natural fregquency of the dam, in symmetric or anti-
symmetric vibration as appropriate. When presented in this form, the
plots apply to dams of any height with the properties specified in
Section 7.3.1. Furthermore, the response results excluding hydrodynamic

effects or neglecting compressibility of water are independent of the
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FIG. 7.10 COMPLEX FREQUENCY RESPONSES IN MODAI, COORDINATES DUE TO

UPSTREAM-DOWNSTREAM GROUND MOTION. RESULTS ARE FOR ARCH
DAMS WITH R/Hg = 2.5
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FIG. 7.11 COMPLgX FRE UENC% RESPOgSES gOR RADTAL %CCELERATION AT
=0, 7.57, 157, 22.5, 30", AND 37.5 ALONG CREST OF
THE DAM DUE 'TO UPSTREAM~DOWNSTREAM GROUND MOTION. RESULTS
ARE FOR ARCH DAMS WITH R/Hd = 0.5
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FIG. 7.13 COMPLgX FREgUENCY RESPOgSES gOR RADTAL ACCELERATION AT
=0, 7.5 15, 22.5 30 AND 375 ALONG CREST OF
THE DAM DUE TO UPSTREAM—DOWNSTREAM GROUND MOTION. RESULTS
ARE FOR ARCH DAMS WITH R/Hd = 2.5
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FIG. 7.14 COMPLEX FREQUENCY RESPONSES FOR RADTAL ACCELERATION AT
o =0, 7.5°, 15°, 22.5°, 30°, anp 37.5° ALONG CREST OF
THE DAM, EXCITATIONS ARE (1) UPSTREAM-DOWNSTREAM GROUND
MOTION ONLY, AND (2) UPSTREAM-DOWNSTREAM MOTTONS OF GROUND
AND BANKS., RESULTS ARE FOR ARCH DAMS WITH R/H, = 0.5
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FIG. 7.15 COMPLEX FREgU’ENCY RESPONSES FOR RADIAL ACCELERATION AT

o =10, 7.5°, 15°, 22.5°, 30°, anD 37.5° ALONG CREST OF
THE DAM. EXCITATTONS ARE (1) UPSTREAM-DOWNSTREAM GROUND
MOTION ONLY, AND (2) UPSTREAM-DOWNSTREAM MOTIONS OF GROUND
AND BANKS. RESULTS ARE FOR ARCH DAMS WITH R/H, = 1.5
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FIG. 7.16 COMPLEX FRE%UENCY RESPONSES FOR RADIAL ACCELERATION AT
o = 0%, 7.5, 15°, 22.5°, 30°, amD 37.5° ATONG CREST OF
THE DAM. EXCITATIONS ARE (1) UPSTREAM-DOWNSTREAM GROUND
MOTION ONLY, AND (2) UPSTREAM-DOWNSTREAM MOTIONS OF GROUND
AND BANKS. RESULTS ARE FOR ARCH DAMS WITH R/H, = 2.5
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FIG. 7.17 COMPLEX FREQUENCY RESPONSES IN MODAL COORDINATES DUE TO
CROSS-STREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS
WITH R/Hg = 0.5
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FIG. 7.18 COMPLEX FREQUENCY RESPONSES IN MODAL COORDINATES DUE TO
CROSS—STREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS
WITH R/H, = 1.5
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FIG. 7.19 COMPLEX FREQUENCY RESPONSES IN MODAL COORDINATES DUE TO

CROSS-STREAM GROUND MOTION. RESULTS ARE FOR ARCH DAMS
WITH R/H, = 2.5
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FIG. 7.21 COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT
o = 7.5°, 152, 22.5°, 30%, anD 37.5° ALONG CREST OF THE
DAM DUE TO CROSS—STREAM GROUND MOTION. RESULTS ARE FOR
ARCH DAMS WITH R/H, = 1.5
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COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT
0 = 7.5°, 15°%, 22.5°, 30°, amp 37.5° ALONG CREST OF THE
DAM DUE TO CROSS~STREAM GROUND MOTICN. RESULTS ARE FOR
ARCH DAMS WITH R/Hd = 2.5
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COMPLEX FREQUENCY RESPONSES FOR RADIAT, ACCELERATION AT

0 = 7.5°, 15°, 22.5°, 30%, anp 37.5° ALONG CREST OF THE
DAM. EXCITATIONS ARE (1) CROSS-STREAM GROUND MOTION ONLY,
AND {2) CROSS-STREAM MOTIONS OF GROUND AND BANKS. RESULTS
ARE FOR ARCH DAMS WITH R/Hd = 1.5
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COMPLEX FREQUENCY RESPONSES FOR RADIAL ACCELERATION AT
o = 7.5°, 15°, 22.5°, 30°, anp 37.5° ALONG CREST OF THE
DAM. EXCITATIONS ARE (1) CROSS—STREAM GROUND MOTION ONLY,
AND (2) CROSS-STREAM MOTTONS OF GROUND AND BANKS. RESULTS
ARE FOR ARCH DAMS WITH R/H, = 2.5
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VERTICAL GROUND MOTION. RESULTS ARE FOR ARCH DAMS WITH
R/Hd = 2.5
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ARCH DAMS WITH R/Hd = 0.5
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FIG, 7.30 COMPLEX FREgUENCY RESPONSES FOR RADIAL ACCELERATION AT
=0, 7.5 15 22.5 30 AND 37, 59 ALONG CREST OF
THE DAM DUE TO VERTICAL GROUND MOTICN. RESULTS ARE FOR
ARCH DAMS WITH R/Hd-= 1.5
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FIG. 7.31 COMPLEX FREgUENCY RESPONSES FOR RADIAT, ACCELERATION AT
o =0, 7.5, 15°, 22.5%, 30, awD 37.5° ALONG CREST OF
THE DAM DUE TO VERTICAL GROUND MOTION. RESULTS ARE FOR
ARCH DAMS WITH R/H, = 2.5
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modulus of elasticity of mass concrete of the dam. Also included to
assist in interpretation of the results are two additional frequency
scales, one identifying the natural freqguencies of the vibration modes,
symmetric or antisymmetric as appropriate, of the dam alone; the other
locating the resonant freguencies of the fluid domain.

The absolute value or modulus of the complex frequency response
functions in the modal (generalized) coordinates (Egs. 4.17, 5.16 and
6.13) for the first six (j = 1, 2,...., 6) of the ten modes included in
the analysis is plotted against normalized excitation frequency. Such
plots are presented in Figs, 7.8, 7.9, and 7.10 for dams with R/Hd = 0.5,
1.5, and 2.5, respectively, subjected to upstream-downstream ground
motion. Similar plots corresponding to cross-stream ground motion are
presented in Figs. 7.17 to 7.20, those associated with vertical ground
motion in Figs. 7.26 to 7.28. The modal coordinate is defined at the
location on the dam where the radial component of the mode shape attains
its maximum value. For all of the dams investigated, this maximum mode
shape value occurs at the crest of the dam at a location defined by the
value of 6 given in Figs. 7.2 to 7.4 for the symmetric modes and in
Figs. 7.5 to 7.7 fer the antisymmetric modes. Thus, the various modal
regponges are not defined at the same location on the crest and there-
fore are not directly comparable. However, the response at any location
associated with any particular mode is simply the product of the medal
coordinate and the value of the normalized mode shape -- maximum value
of the radial component of the normalized mode shape is unity -- at that
location (Eqs. 4.18, 5.17 and 6.14).

The complex frequency response functions for the accelerations

at any nodal point on the dam can be determined from the corresponding
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functions for the generalized modal accelerations ??(m), %?(w) or %?(m)
and Eqs. 4.19, 5.18 or 6.15, regpectively. The radial component of
acceleration at several locations around the circumference -- § = Q°,
7.5°, 15°, 22.5°, 30°, and 37.5° measured from the crown -- of the up-
stream edge of the crest of the dam were computed by combining the
contributions of the first 10 modes. The responses due to upstream-
downstream ground motion are presented in Figs. 7.11 to 7.13 and those
due to vertical ground motion in Fig. 7.29 to 7.3l1. In both cases, the
response is symmetric about the x-z (0=0) plane. The responses due to

cross-stream ground motion, which are antisymmetric anout the x-z plane,

are presented in Pigs. 7.20 to 7.22.

7.5 Discussion of Regponse Results

7.5.1 Modal Responses

The modal responses of the dam without water (H/Hd = 0} are
representative of a multidegree of freedom system with constant mass,
stiffness, and damping parameters. Each modal response curve 1is
similar to the response behavior of a single-degree-of-freedom (SDOF)
system, with resonance at the natural vibration frequency (the effect of
damping, Cj = 0.05, on the resonant frequency is negligible) of the
particular mode.

Whereas the responses in the natural modes of vibration of the
dam are uncoupled when effects of water on the response of the dam are
excluded, the modal responses become coupled when hydrodynamic effects
are included (see Sections 4.3.4, 5.3.4 and 6.3.4). Such coupling is
apparent in both cases -- with or without water compressibility -- from
the response curve for any mode, wherein the primary response is at the

resonant frequency of that mode but secondary, smaller peaks appear at
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the resonant frequencies of the other modes (Figs. 7.8 to 7.10, 7.17 to
7.19, 7.26 to 7.28).

Similar to many structures, the response of arch dams to earth-
guake ground motion indicates some tendency for larger response in the
lower modes of vibration. The peak modal response of arch dams with
R/Hd = 0.5 and 1.5 to upstream-downstream ground motion {Figs. 7.8 and
7.9) generally decreases with mode number; however, the response of the
more flexible arch dams with R/Hd = 2,5 (Fig. 7.10) without water or
including hydrodynamic effects but ignoring water compressibility, is
especially significant in the fifth vibration mcde. In the case of
cross-stream ground motion, the peak modal responses of arch dams with
R/Hd = 0.5 and 2.5 generally decrease, although not monotonically, with
mode number; howevexr, the response of arch dams with R./Hd = 1.5 is
rather large in the fifth and sixth modes of wvibration (Figs. 7.17 to
7.19). The peak modal responses of arch dams, including hydrodynamic
effects and water compressibility, to vertical ground motion similarly
do not display any simple trends. For dams with R/Hd = (0.5, the peak
response in the fifth mode is almost as large as in the first mode; for
dams with R/Hd = 1.5, the response in the second moede is larger than in
the first mode; and for dams with R/Hd = 2.5, the response in the fifth
mode is much larger than in any other mode (Figs 7.26 to 7.28). That
the largest modal response does not appear until the fifth or sixth mode
in some cases illustrates the complicated response behavior of arch dams.
Thus, although only the first few modes -— compared to the total nunber
of DOF -- will generally suffice for predicting the regponse, the
analysis must include all the modes having significant contributions to
the response. In general, many more modes need to be included in pre-

dicting the response of arch dams compared to concrete gravity dams ox
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multistory buildings. The number of modes that need to be included
depends on the response quantity of interest. Typically, fewer modes
suffice for displacements, more modes are generally necessary for
accelerations and for stresses.

Since the total response at any nodal point on the dam (Figs. 7.11
to 7.13, 7.20 to 7.22, 7.29 to 7.31) is a linear combination of the
responses §j(m) in the first ten modes of vibration, it exhibits many
characteristics of the individual modal responses. For example, the
first two resonant peaks in the response, including hydrodynamic and
water compressibility effects at the crown, 6 = 0° (Fig. 7.12), arise
from the contributions of the first and second modes (Fig. 7.9),
respectively. The response, including hydrodynamic and water com-
pressibility effects at the fundamental resonant frequency, which is
dominated by the first mode, can be seen to vary around the crest-arch
{Fig. 7.12) similar to the first mode shape (Fig. 7.3). This variation
depends on the excitation frequency. At any other excitation frequency
this variation is more complicated, depending on the contributions of
the various modes to the respomse at that frequency. Because the modal
contributions vary with € and each modal contribution varies differently,
when they are all combined the distribution of acceleration around the

arch is rather irregular, varying strongly with 9.

7.5.2 Hydrodynamic Effects

When water compressibility is neglected the e¢ffects of structure-
fluid interaction are frequency-independent and are equivalent to an
added mass matrix and an added load vector in the modal eguations
{Egs. 4.27, 5.25 and 6.19). Because of the added mass effects, the

resonant frequencies of arch dams are reduced (Tables 7.1 and 7.2) and



TABLE 7.1:

REDUCTION IN RESONANT FREQUENCIES OF SYMMETRIC VIBRATION MODES DUE
TO HYDRODYNAMIC EFFECTS

R/Hd 0.5 R/Hd = 1.5 R/Hd = 2.5
MODE
3 PERCENT REDUCTION PERCENT REDUCTION PERCENT REDUCTION
wj/wl ] mj/wl W ,/u)l .
Incompressible [Compressible Incompressible |Compressible Incompressible |Compressible
Water wWater Water Water Water Water
1 |1.00 24 25 1.00 30 30 1.00 30 31
2 ]1.299 23 26 1.272 28 31 1.125 31 31
3 1.660 17 16 1.848 24 26 1.506 26 27
4 {1.765 16 17 2,069 21 22 2.245 24 24
5 {L1L.857 1 1 2.324 20 22 2.270 25 38
3] 2,220 14 13 3.302 17 18 2.506 22 27

0TI



TABLE 7.2: REDUCTION IN RESONANT FREQUENCIES OF ANTISYMMETRIC VIBRATION MODES DUE

TO HYDRODYNAMIC EFFECTS

R/Hd=0.5 R/Hd=l.5 R/Hd= 2.5
MODE
j FERCENT REDUCTION PERCENT REDUCTION PERCENT REDUCTION
wj/wl - wj/wl — wj/wl
Incompressible | Compressible Incompressible | Compressible Incompressible |Compressible

Water Water Water Water Water Water
1 |1.000 18 18 1.000 28 28 1.000 30 30
2 |1.669 15 13 1.861 23 25 1.338 27 29
3 11.816 1 0 2,318 21 23 1.989 24 21
4 2.193 12 20 3.132 19 19 2.530 24 34
5 12.584 9 12 3.352 o 0 2.935 22 22
6 |2.755 8 15 3.539 5 6 2.972 22 25

1T
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the apparent "damping ratios are also reduced. Similar results were
obtained earlier for concrete gravity dams [14,15,261. The added loads
are associated with hydrodynamic pressures in the radial direction on
the cylindrical upstream face of the dam due to rigid body motion of
the dam and banks. Motions in the upstream-downstream direction and
the vertical direction cause large presgsures compared to those due to
cross stream motions (compare the pressures in Figs. 4.1, 5.1 and 6.1
at W = 0). As a result, when water compressibility is neglected, the
resonant response to upstream-downstream oxr vertical ground motion is
increased considerably (Figs. 7.8 - 7.10 and 7.26 - 7.28) whereas the
resonant response to cross-stream ground motion is influenced little by
hydrodynamic effects (Figs. 7.17 - 7.19).

When the compressibility of water is included, dam-water inter-
action introduces frequency-dependent terms in the equations of motion
of the dam (Sections 4.3.4, 5.3.4 and 6.3.4). This frequency dependence
accounts for the complicated shape of the response curves compared to
the curves in which the hydrodynamic effects have been neglected ox
water is assumed to be incompressible. The behavior of the response to
upstream-downstream ground motion is especially complicated at
excitation freguencies in the neighborhood of w;, where the hydrodynamic
terms become unbounded. This, in contrast to gravity dams [26], results
in unbounded response at these frequencies {(see Section 4.4 and
Appendix E). This response amplification is detectable over only an
extremely narrow bandwidth in the neighborhood of m; (Figs. 7.8 to 7.13}.
In contrast, the hydrodynamic forces due to cross-stream and vertical
ground motions are bounded at the eigen-frequencies m; of the fluid
domain (Sections 5.3.3 and 6.3.3), resulting in bounded response at

these excitation frequencies (Figs. 7.17 to 7.22 and 7.26 to 7.31).
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Dam-water interaction reduces the jth resonant frequency of the
dam from mj to &j. The following observations can be made from the
percentage decrease in resonant freguencies summarized in Tables 7.1
and 7.2. The decrease in a resonant fregquency depends on the mode
number, whether the mode is symmetric or antisymmetric, and the R/Hd
value for the dam. Greater reductions are cbserved for dams with higher
R/Hd values and in the lower modes of vibration. But for a few excep-
tions, the reduction in resonant freguency is about the same whether
compressibility 1s considered or not.

The resonant response in any vibration mode is influenced by
whether &j, the resonant frequency of that mode including the effects
of compressible water, is legs than or greater than wi, the fundamental
resonant frequency of the fluid domain. At excitation frequencies
w < wi the freguency dependent terms in the eguations of motion for
upstream~downstream and cross—-stream ground motions are real valued;
the effect of water is egquivalent to an added mass and load with their
magnitude depending on the excitation frequency. In the equations of
motion for vertical ground motion, the added mass term is real valued
but the added load term is complex valued for o # 1. This added mass,
in addition to reducing the fundamental resonant frequency of the dam,
has the indirect effect of reducing the apparent damping ratio. The
reduced damping and added load results in narrower bandwidth and larger
response at resonance. Such are the characteristics of response to
upstream-downstream or vertical ground motions exhibited by those
vibration modes of an arch dam with resonant frequency &j < m; (modes 1

and 2 in Figs. 7.9 and 7.27; modes 1, 2, and 3 in Figs. 7.10 and 7.28).

The total responses display similar behavior at freguencies where these
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modes have the more important contributions (Figs., 7.12, 7.13, 7.30

and 7.31). In the case of cross stream ground motion, the added mass
reduces the resonant freguency. However, the added load is relatively
small compared to the case of upstream-downstream ground motion (compare
Figs. 4.1 to 4.3 with 5.1 to 5.3), leading to hardly any increase in
resonant response over the value for the dam alone. Such is the response

characteristic exhibited by those antisymmetric vibration modes cf an

r

1 (mode 1 in Fig. 7.18 and modes

arch dam with resonant frequency ﬁj < W
1 and 2 in Fig. 7.19). The total responses display similar behavior at
frequencies where these modes have the more important contributions
(Figs. 7.21 and 7.22).

At excitation frequencies w > wi the additional hydrodynamic
terms in the equations of motion of the dam are complex valued for each
of the three components of ground motion (Sections 4.3.2, 5.3.2 and
6.3.2). Thus, the effect of water is equivalent to freguency dependent
additional mass, damping and locad. The added mass is relatively small,
and therefore the higher resonant frequencies are not reduced as much
as the lower resonant frequencies (Tables 7.1, 7.2). In the case of
upstream-downstream ground motion, the added damping is however
significant, resulting in decreased resonant response for dams with
R/Hd = 0.5 and 1.5 in those modes with resonant frequencies ﬁj > mi
(all modes in Fig. 7.8, modes 3-6 in Fig. 7.9). Thus, the
total respouse is also reduced in the freguency range including the
higher reseonant frequencies (Figs., 7.11, 7.12). The trends are not
clear for arch dams with R/Hd = 2.5 but the influence of additional lecad
appears to dominate the effect of additional damping, resulting in

slightly increased resonant response {(Fig. 7.10). The two competing

effects of hydrodynamic interaction, additional damping and load, are
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also present in the case of cross-stream or vertical ground motions.
In the response of some modes to cross-stream ground motions the
additional load effect is more significant resulting in lérger resonant
response (mode 1 in Fig, 7.17; modes 2 and & in Fig. 7.18; modes 3 and
4 in Fig. 7.19). For other modes the additional damping effect is
dominant resulting in smaller resonant response {(modes 2, 4, 5 and © in
Fig. 7.17; modes 3, 4 and 5 in Fig., 7.18; modes 5 and © in Fig. 7.19).
The additional load effect is dominant in the response of most vibration
modes to vertical ground motion (Figs. 7.26 to 7.28).

The effects of compressibility of water on the dynamic response

of an arch dam are also controlled by the values of &j' the resonant

r

frequencies of the dam, relative to wl, the fundamental resonant fre-

quency of the flulid domain. At excitation fregquencies W much smaller

than mf, the compressibility of water has little influence on the hydro-

dynamic terms in the equations of motion (Section 4.5, 5.4 and 6.4) and
thus also on the response of the dam (Figs. 7.8 to 7.13, 7.17 to 7.22

and 7.26 to 7.31). TIf the resonant frequency of any mode &j << wi,

water compressibllity will have little influence on the response in that

r

1 (modes 1 and 2 in Fig. 7.10,

mode, except in the neighborhood of w
mode 1 in Fig. 7.18, modes 1 and 2 in Fig. 7.19).

The effect of water is eqguivalent to an added mass and load,
independent of excitation frequency, when water compressibility is
ignored (Section 4.5, 5.4 and 6.4). However, when water compressibility
is included, this effect is equivalent to a fregquency dependent added

r ba

mass and load for w < wy but to added mass, load and damping at w > ml

. . . . r
with damping increasing with w. Thus, at excitation freguencies w - wl,

the response is reduced when water compressibility is included (Figs.

: . . r
7.8 to 7.132). At excitation frequencies beyond a certain w » Wy s except



116

in the neighborhood of m;, the hydrodynamic forces on rigid dams due to
upstream-downstream and vertical ground motion (Figs. 4.4 and 6.2), and
hence added lcads in the equations of motions, are smaller than their
values at w = 0, i.e. values corresponding to incompressible water. At
these excitation frequencies, the combined effect of reduced load and in-
creased damping associated with water compressibility effects reduces the
response of the dam (Figs. 7.8 to 7.13 and 7.26 to 7.31). The response
at these excitations frequencies is thus overestimated if water com~
pressibility is neglected. At the above-mentioned excitation fre-
quencies, the hydrodynamic forces due to cross-stream ground motion may
be larger or smaller than the forces at w = 0, which also corresponds

to incompressible water, depending on the value of € and excitation fre-
gquency (Figs., 5.1 to 5.4). Thus, water compressibility may lead to an
increase or decrease in the response at a particular 1bcati0n depending

on the exeitation frequency (Figs. 7.17 to 7.22).

7.5.3 Cbmparison of Response to Varilous Ground Motion Components

The relative significance of the three components of ground
motion in the response of arch dams can be studied by comparing Figs.
7.11, 7.20 and 7.29 for dams with R/Hd = 0.5; Figs. 7.12, 7.21 and 7.30
for dams with R/Hd = 1.5; and Figs. 7.13, 7.22 and 7.31 for dams with
R/Hd = 2.5. The radial acceleration response of dams without water is
largest due to upstream-downstream ground motion, smaller due to cross-
stream ground motion and smallest due to vertical ground motion. Dam-
water interaction and water compressibility similarly affect dam response
to upstream-downstream and cross-stream ground motions. However, the
response to vertical ground motion is greatly increased by these effects,

becoming larger than the response to upstream~downstream ground motion
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for some parameter values. Just as in the case of gravity dams [24],
vertical ground motion causes significant hydrodynamic pressures acting
in the horizontal plane on a cylindrical dam face, thus causing

significant additional response.

7.5.4 Effects of Bank Motion

In all the preceding results, the excitation was simultaneous,
identical motions of the ground and reservoir banks. Because it may not
be reasonable to assume that the motion of ground and banks is identical,
it is of interest to examine the influence of bank motions on the
response. The response of arch dams with three different values of
R/Hd = 0.5, 1.5, and 2.5, computed from two gseparate analyses are
presented. The hydrodynamic effects included are due to motion of the
ground only in one case, but due to motion of ground and banks in the
other case. Ten modes of vibration and effects of water compressibility
were included in the analysis. Results of response due to upstream-
downstream ground motion are presented in Figs. 7.14 to 7.16 and those
due to cross-gstream ground motion in Figs. 7.23 to 7.25.

The hydrodynamic forces due to bank motions may cause an increase
or decrease in the response at a particular location on the dam,
depending on the direction of ground motion, the excitation fregquency w

and the R/Hd value for the dam. At w < wr the response at all locations

1’
on the dam increases in the case of upstream-downstream ground motion
but decreases for cross-stream ground motion. At w > mi no systematic
trend 1s apparent; depending on the excitation frequency the response of
the dam at a particular location may lncrease or decrease. Even for a

particular excitation frequency, the response may decrease at some

locations and increase at others. The above-observed effects of bank
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motions on dam response are clogely related to the influence of the
bank motions on hydrodynamic pressures and forceg on rigid dams (Figs.
4.1 to 4.4 and 5.1 to 5.4). The response to upstream—-downstream ground
motion at excitation freguencies w = wi is infinite 1f the effects of
bank motions are included bhut finite otherwise. This is consistent with
the analytical resuits of Sectiocon 4.4.

Although the effects of bank motion may be significant on the
response at some excitation frequencies, they are generally smaller than
the effects of dam-water interaction or of water compressihility. The
effects of bank motion on dam response are roughly similar in magnitude
for the two horizontal components of ground motion, and they increase
as R/Hd increases.

In the case of vertical ground motion, the motion of the vertical
banks produces no additilonal hydrodynemic pressures and hence no

influence on the dam response (see Section 6.3.1).
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8. CONCLUSIONS

The substructure method has been adapted and generalized for
response analysis of arch dams subjected to upstream-downstream, Ccross-—
stream and vertical components of ground motion. The arch dam and
impounded water are treated as two substructures of the total system and
displacements of the dam are represented as a linear combination of the
first few natural modes of vibration ¢f the dam alone. Responses to
arbitrary ground motion can be obtained by Fourier synthesis procedures
applied to the complex frequency response functions determined by the
analysis procedures presented in this paper.

Structure-fluid interaction introduces additional terms -- which
depend on excitation frequency when water compressibility ig considered
but are frequency-independent if water is assumed to be incompressible --
in the eqguatiocons of motion for a finite element idealization of the dam.
These hydrodynamic terms in the structural equations are determined as
solutions of the wave equation over the fluid domain for appropriate
motions of the boundary. Mathematical solutions were possible for the
simple geometry of the arch dam and fluid domain assumed in this paper.
For pratical problems, numerical sclutions of the wave equation would be
necegssary and are being developed [27].

The analysis procedure presented in this report permits the effects
of structure-fluid interaction to be included raticnally in dynamic
response of arch dams. The simple geometry assumed for the arch dam and
fluid domain would not bhe éppropriate for analysis of practical problems
but is useful in developing basic understanding of the hydrodynamic
effects in the dynamic response of arch dams. The following conclusions

are based on the response results presented in Chapter 7.
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In general, hydrodynamic effects and water compressibility should
be considered in analyzing the dynamic response of arch dams.

Water in the reservoir causes a decrease in the resonant frequencies
of the dam; as much as 30 percent reduction was observed in the cases
analyzed. The decrease in a resonant frequency depends on the depth of
water, wode number, whether the mode is symmetric or anti-symmetric, and
the radius to height ratio of the dam. Greater reductions are observed
for dams with higher radius to height ratios and in the lower modes of
vibration.

When water compressibility is considered, the hydrodynamic terms
in the equations of motion are functions of w, the excitation freguency.
At w < wi, the fundamental resonant frequency of the fluid domain, these
hydrodynamic terms are real valued for upstream—downstream and Cross-—
stream ground motions, and the effect of water is equivalent to an added
mass and load; for vertical ground motion, the added mass term is real
valued but the added load term is complex valued if the reflection con-
stant ¢ # 1. At @ > mi the hydrod?namic terms are complex valued for
each of the three components of motion, and the effect of water is
equivalent to frequency-dependent additional mass, damping and load. As
a result, the hydrodynamic effects in dam response depenﬂ on whether w
is less than or greater than wi, and on the ground motion component.
These effects were discussed in some detail in Chapter 7.

For all three components of ground motion, water compressibility
has little influence on the response of the dam at excitation fregquencies
w much smaller than m;. At excitation frequencies w > mi the response
to upstream—-downstream and vertical components of ground motion is

reduced if water compressibility is included. However, water compress-—

ibility effects may lead to an increase or decrease in the response to
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cross-stream ground motion, depending on the excitation fregquency.
Dam~water interaction, considering water compressibility, affects
the radial acceleration response of dams to upstream-downstream and
cross—stream ground motions to a similar degree. However, the response
to vertical ground motion is greatly increased by these effects. Just
as in the case of gravity dams, vertical ground motion causes significant
hydrodynamic pressures. These pressures act in the horizontal plane on
a cylindrical dam face, thus causing significant additional response.
The additicnal hydrodynamic forces caused by bank motions in the
upstream-downstream or cross-stream directions may significantly affect
the dynamic response of arch dams at some excitation frequencies. How-
ever, these effects of bank motions are generally smaller than the
effects of dam-water interaction or of water compressibility. The
effects of bank motion con dam response are roughly similar in magnitude
for the two horizontal compontents of ground motion. In the case of
vertical ground motion, the motion ¢of the vertical banks produces no
additional hydrodynamic forces and hence has nc influence on the dam

response.
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APPENDIX A - NOTATION

A ,B ,C
n’ n’n
D ,E ,F_,C = quantities defined in Eq. 4.11 for upstream-downstream
n'm m'n . .
: ground motion or in Eg. 5.11 for cross stream ground
Iin’Tn'Um’vm motion
Bl = rzradial thickness of the dam at the crest
52 = radial thickness of the dam at the base
c = damping matrix for the dam
C =  velocity of sound in watexr
) \ : .th . .
cj = generalized damping in the j mode of vibration of
the dam (without water)
Cr = P-ywave velocity in rock
E = modulus of elasticity for dam material
%y T
{e } = < 1,0,0’1,0'0-anl'OiO,'.v.l'OIO >
III
{7} - <0,1,0,0,1,0....0,1,0,....0,1,0 >
2+ T
{e”} = < 0,0,1,0,0,1....0,0,1,....0,0,1 >
FO = hydrodynamic force acting per unit circumferential
length corresponding to PO
EO = complex frequency response function for FO
FOR = hydrodynamic force per unit circumferential length
acting in the radial direction on the upstream face
of the dam as defined in Eg. 4.12
502 = complex freqguency response function fox FOR
FS = hydrostatic force per unit circumferential length at

the base of the dam
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acceleration of gravity

depth of water in the reservoir

height of the dam

/ST

integer counters in summations

number of generalized DOF included in an analysis
Bessel function of the first kind of order n
stiffness matrix for the dam

Crwr/C w

. - ..t . .
generalized stiffness in j n mode of vibration of the
dam (without water)

modified Bessel function of the second kind of order n

generalized load vector defined by Eg. 4.15 and 4.16
generalized load vector defined by Eg. 5.14 and 5.15
generalized load vectcr defined by Eq. 6.11 and 6.12

generalized "added load" vector for incompressible
water due teo upstream-downstream ground motion

generalized "added load" vector for incompressible
water due to cross stream ground motion

generalized "added load" vector for incompressible
water due to vertical ground motion

generalized load vector associated with the mass of
the dam due to upstream-downstream ground motion

generalized load vector associated with the mass of
the dam due to cross-stream ground motion
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generalized load vector associated with the mass of
the dam due to vertical ground motion

consistent mass matrix for the dam

the largest integer "m" satisfying the inequality

w/wi > (2m~1), m = 1,2,3,....

generalized "added mass" for incompressible water

generalized mass for the jth natural mode of vibration
of the dam (without water)

number of nodal points on the dam
hydrodynamic pressure in excess of hydrostatic
hydrodynamic pressure on the upstream face of the dam

complex frequency response function for P

hydrodynamic pressure on the upstream face of the dam
due to acceleration of the dam in its jth natural mode
of vibration

complex frequence response function for pj

hydrodynamic pressure on the upstream face of the dam
due to vertical, rigid-body accelerations of the dam,
reservoir bottom and the banks

complex frequency response function for pz

hydrodynamic pressure on the upstream face of the dam
due to acceleration of only the reservoir banks in the
upstream-downstream direction.

. X
complex frequency response function for Pog

hydrodynamic pressure on the upstream face of the dam
due to acceleration of only the reservoir banks in the
cross-stream direction

Y

complex frequency response function for Pon
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hydrodynamic pressure on the upstream face of the dam
due to acceleration of the rigid dam in the upstream-
downstream direction but the banks remain stationary

complex frequency response function for pzD

hydrodynamic pressure on the upstream face of the dam
due to acceleration of the rigid dam in the cross-—
stream direction but the banks remain stationary.

complex fregquency response function for PgD

hydrodynamic pressure on the upstream face of the dam
due to acceleration of the rigid dam and reservoir

banks (pOB + pOD)
complex frequency response function for Por

vector of nodal point loads associated with hydro-
dynamic pressuresg

complex frequency response function for Q

subvector of Q(t) associated with the DOF of the nodal
points, on the upstream face of the dam, in contact
with the water

) £
complex frequency response function for Q

hydrodynamic load vector defined as the static

equivalent of the pressure function B, §¥, or §Z

respectively ] J J

hydrodynamic load vector defined as the static

equivalent of the pressure function
respectively

oY pOB

hydrodynamic load vector defined as the static

Y

or §OD

equivalent of the pressure function
respectively

radial coordinate of reservoir - dam system (see
Fig. 2.1)
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radius of upstream face of the dam

coefficient matrix given in Eq. 4.16 for upstream-
downstream ground motion or by Eg. 5.15 for cross
stream ground motion

time variable

vector of nodal point displacements relative to the
ground

complex frequency response vector for total acceleration
of the dam due to upstream-downstream ground motion
(Bg. 4.19)

complex frequency response vector for total acceleration
of the dam due to cross-stream ground motion (Eq. 5.18)

complex frequency response vector for total acceleration
of the dam due to vertical ground motion (Eg. 6.15)

upstream-downstream component of earthquake ground
accelerxation

cross-stream component of earthguake ground acceleration
vectical component of earthquake ground acceleration

complex frequency response vector for acceleration of
the dam in the jth symmetric mode due to upstream-—
downstream ground motion (Bg. 4.18)

complex frequencz response vector for acceleration of
the dam in the j h antisymmetric mode due to cross-—
stream ground motion (Eg. 5.17)

complex frequenC{ response vector for acceleration of
the dam in the j h symmetric mode of vibration of the
dam due to vertical ground motion (Eg. ©.14)

the radial component of water partical displacements
the tangential component of water partical displacements

the vertical component of water partical displacements
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x- component of the displacement of nodal point "n"
{(Fig. 3.1)

y—- compcnent of the displacement of nodal point "n"
(Fig. 3.1)

z- component of the displacement of nodal point "n"
(Fig. 3.1)

unit weight of water
unit weight of ground rock
orthogonal cartesian coordinates (Fig. 2.1)

jth generalized displacement of the dam
complex fregquency response of Yj
Bessel function of the second kind of order n

generalized displacement of the dam associated with the
jth symmetric mode of vibration due to upstream-
downstream ground motion

generalized displacement of the dam associated with the
Jth atisymmetric mode of vibration due to cross-stream
ground motion

generalized displacement of the dam associated with the
jth symmetric mode of vibration due to vertical ground
motion

complex frequency response for Y?
complex frequency response for Y?

zZ
complex freguency response for Yj

reflection constant for the reservoir bottom associlated
with wertical ground motion a = {(k - 1)/(k + 1)

quantity defined in Eg. 4.l1lla or 5.1l1la
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viscous damping ratio for the jth natural mode of
vibration of the dam {without water)

numerical multiplier equal to 1 when n = 0 but equal
to 2 when n # O

quantity defined in Eg. 4.11b or 5.11b

Poisson's ratio

continuocus function analogue of @j

jth mode shape vector of the dam (without water in the
reservolr)

.th s
sub-vector of the j mode shape @j containing elements
assocliatiated with the DOF on the upstream face of the
dam

£ s . .
sub-vector of ¢35 containing elements associated with
the x~ DOF of the nodal points on the upstream face of
the dam

£ .. . .
sub-vector of ¢; containing elements associated with
the y~ DOF of the nodal points on the upstream face of
the dam

angular coordinate of reservoir-dam system (Fig. 2.1)

circular frequency of harmonic ground motion

jth natural frequency of vibration of the dam (without

water in the reservoir)

jik® th
Eﬁ'(2m -1l) ,m=1,2,3,.... ; them

eigen~frequency of the water in the reservoir

summation index defined in Eg. 5.1l
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APPENDIX B - FINITE ELEMENT PROPERTIES

B.l Introduction

A general form of the stiffness matrix k for any finite element

is given by

k = f ET c a dv (B.1)
Vol

where a is the strain—displacement relationship and c is the stress-

strain law, i.e.

e=a

|

(B.2)

og=c¢t (B.3)

where v is the nodal displacements, € and ¢ are the element strains and

corresponding stresses respectively.

B.2 Coordinate System

The shell-element used to descritize the dam is a 16-node curved
solid element (see Fig. Bl). The locations of the nodes are defined by
the right-handed rectangular Cartesian coordinate system (x, v, z) which
is referred tc as a global system. Within each element a local coordin-
ate system (&£, N, L) 1s defined such that ¢, N and ¢ vary from -1 to
l; (0,0,0) is located at the centroid of the element (see Fig. Bl).

The global coordinates are given in terms of the local coordinate sys-

tem by
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where the interpolation functions hi

N =~é~(1+f;)(1+m(1+

1
hz‘g(l—g)(l+n)(l+

1
h3—§(l-£)(l-ﬂ)(l+
h,o= (14 E)(L - (L +
48 N
h —}-(l+€)(l+ Yy (1 -
573 N

h, = (1 - E)(L+ mil -

hy=2Q-8Q-ma -

-1
h —8(1+£)(l

m -

are given by

DIE + 1 - 1)

Y (=& + 1 - 1)

Z) (= - n - 1)
Y(E -n - 1)
gy(g +n -1

(=& +n - 1)

LY (€ - n - 1)

DIE-n-1

10

11

h =%<1-g‘2)(1+m<1+(:)

@ -1+ Q)

E (L - Mm@+ Q)

(B.4)
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h, =31+ Q-0+
h, =7l -EHa+ma-o
h, =5 -0 -0 -0
ho= s -EHa-ma -0
hy, =51+ &L -1)U -0

B.3 Strain-Displacement Eguations

The x, v and z components of displacements within an element

(Vx, vy, VZ) are assumed to be of the following form:

16
p.e X X
voo= E hivi + hl7ocl + h18a2

16
Y o Y Yy b
v o= Z hivi + }11706l + h.lSOi2
i=1

z Z z Z
v ~Z hivi + hl7o¢l + h18u2 + h

i=1
where
h, o= £ - E9
g = (- n?)
I
h,, = &n(l - cz)
h, = nE( - n°)

21

X e
+ h._0

(B.5)

(B.®6)

(B.7)
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Z . . .
vi, vi and Vi are the x, v and z displacements of nodal point i. The

. X
fifteen degrees of freedom ui' a{

and ai, i = 1,5, are introduced in
the element in addition to the nodal point displacements to impart bet-
ter bending characteristics.® These additional degrees of freedom will

be condensed out at the element level.

The strain-displacement equations are

| <

S
EXX:L=<h>
ax =X e

|L

Y
Y v
e¥Y - I =<h >
dy ~r Y
z
z v
S27 v =<h > —
oz =7 { z

= Y
Xy v vy _ {E- [ z
& :5_-+§;__<E > x +<E>>
Y r o 3/ g;yj
X [ z
xz, e v Y v
€ ==+ 5—=(h +¢h
dz ox =12/ X — X Z

¥ z 4 v
SRS RS O I T CI @9

*£.L. Wilson, R.L. Taylor, W. Doherty, and J. Ghaboussi, "Incompatible
Displacement Models," Numerical and Computer Methods in Structural Mechanics
(S.J. Fenves, N. Perrone, J. Robinson, and W.C. Schnobrich, eds.), Academic
Press, Inc., New Yoxrk, 1973, pp. 43=57.
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where
hoo= <hllx By o e h21,x>
h = {h h e h
Y <lry 2,¥ 2l,y>
h o= <hl'Z by, e h21'2> (B.9)
T
v = <%X v v
- 1 2 e i6
Y * y b Yy
{X} - <V1 Vo o oce V16>
T
{VZ = <vz v vz (B.10)
— 1 2 o 16 .
T
O(,X} = O(.x O{.X O&X Cf,x Oi.x
— 1 2 3 4 5
Y * y y Y v Y
{%} = <3°1 %2 %3 Y% 0‘5>
Z T z z z z z
{%} = <Ol.l O{.Z Oﬂ3 064 065> (B.11)
The "," denotes partial derivative. Eguation B.8 can be written in
matrix form as
v
| v
£ = B.12
e= v a] b (5-12)
where
T T
(IR E AR T
¥ o=\l¥ P Y r ¥
T T T 2 T
R E O
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&, and a are matrices in terms of the derivatives of the interpolation
functions. The sizes of a, and 2y are 6 x 48 and 6 x 15 respectively.
Since the functions hi are in terms of &, 1 and  the chain rule

is applied in order to compute the derivatives with respect to the x,

vy, z system,

= h + + h,
hlrx i,§ Erx hl:ﬂ nlx i,C Crx
h = h, + h. h,
1.,¥Y i, & 7,y i,n n:y i,C E'y
= + h. + h., BR.14
hirz hi,C E'Z hlrn nrz hllc Crz ( )

3 B ] 9\ 9

gg Xrg Y’E ng ax ax

é— = X z -§~ = |J g“

an - N Y M 3y [ ] oy

) ) ]

3 o Y Z,cJ 3z 3z (B.15)

The matrix [J] is known as the Jaccbian matrix. The elements of the
Jacobian matrix can easily be found using Eg. B.4. The derivatives

required in Eg. B.l5 are obtained using the inverse of Eg. B.16 as

hi,x hi,i

h, - [J]'l h, (B.16)
L,y S 1,.n

hl,z hi,C

For glven numerical values of §, n and { the derivatives of the interpo-
lation function can be computed. Then from Eg. B.1l7 and B.16, all deriv-
atives required for the numerical evaluation of the strain-displacement

matrix, Eq. B.l3, can be obtained.
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B.4 Static Condensation

The standard static condensation procedure is applied to condense
out the additional degrees of freedom @i.
From Eg. B.13 and B.1l, the element stiffness matrix can be written

as

T
a
v [l av (8.17
X = RO 17)
Vol | a
o
In partitioned form
m N
Y kvv Eva
k = " . (B.18)
Kk k
v —
where
0
k = aT c a_ dav
—=rv - = v
Vol
n AV T
k =k = a ¢ a_dv
—C -0V - —
Vol
y
K = faT G a_ av (B.19)
=0 -0 = o
Vol
Nodal forces Qv and Q& are related to the nodal displacements as
o\ o,
Q k k v
=57 —VV -0 —
A =4 " o (B.20)
Q X X <
=0 Zov =00 -
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The work done by the nodal forces in deforming the element is

Q
1/ or\ | Y
w=5(v,a ---
%
1 T T N 1 T
= — + —
2L By Yta K Tt ge ke (8.21)

- = = - =0 i=1,2,3,4,5 (B.22)
oo, sy .
i i
leads to
o -1 "
= - —v —
Therefore
n, u A" -1
0 =[k - K [k ] k ]v (B.24)
=7 -~V —70L | 00, —Ov

The condensed stiffness matrix of the element with respect to the nodal

displacement amplitudes v is

o "] \ -
k=% -% [k ] Yy (B.25)
= v a|-oa|  =ov

Similarly the condensed form of the strain-displacement transformation

matrix is

a, J- n,
a=a - a Ik ] t k (B.26)
= =y =gf—oao —0wv
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B.5 Numerical Integration of Element Stiffness Matrix

The element stiffness is given by Eq. B,.26, The numecrical inte-
. N . . . .
gration necessary to form kvv is briefly discussed. Similar computa-
tions are involved in obtaining other matrices in Eg. B.26.

a,
The expression for k in the local coordinate system (&, 1N, T)

1 1 i
K = * ak dn a
v T a,ca,Jddsdndg (B.27)
-1 4-1 Y1 :

where J is the determinant of the Jacokian matrix (Eg. B.16). The di-

is

rect application of one-dimensional integration formulas yields

3 3 2
" ) T
K, = ZZZ WoW.W, J(Ei,nj,Cm) _a_v(ii,nj,im)] <

i=1 =1 m=1

where (éi,nj,Cm) are the integration peints and Wi , Wj ; Wm are approx—

imate weight functions.

B.6 Consistent Mass Matrix

The mass matrix formulation for any element is based on the came

displacement assumptions as those used to formulate the element stiff-

ness matrix (Eg. B.©¢)}). The element disgsplacements can be written is the
form
- 1
X
v
< vy » = lH]{¥}- (B.29)
z
v
. v
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where v is defined in Eq. B.14 and H is a matrix of interpolation func-

ticons. The mass matrix for the element m, is

m = fpg_Tg_dv (B.30)

The volume integration is carried out analogous to the integration des-

cribed for the stiffness matrix (Sec. B.5).
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APPENDIX C - DERIVATIONS OF THE COMPLEX FREQUENCY RESPONSE
FUNCTIONS FOR HYDRODYNAMIC PRESSURE

Preliminaries

Ground Motion In Upstream-Downstream Direction
C.2.1 Derivation of §§D(6,z,w)

C.2.2 Derivation of égB(B,z,w)

C.2.3 Derivation of é?(@,z,w)

Greund Motion In Cross-stream Direction

C.3.1 Derivation of égD(e,z,w)

C.3.2 Derivation of igB(B,z,w)

C.3.3 Derivation of ﬁg(@,z,w)

Vertical Ground Motion

C.4.1 Derivation of §S(z,w)
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C.1 Preliminaries

Appendix C presents the solution of the wave eguation for the
complex frequency response function for hydrodynamic pregsures acting
on the upstream face of the idealized arch dam. In cylindrical coor-

dinates the governing equation for hydrodynamic pressure p is

2 2 2
9p, 13,
or

8r2

[3S]

Q>
e
Q@
g,
%
ye;

(C.1)

+

i
] |H
[\
Q@
D
™
Qo

™

N

I

(’)‘r—*

N
Q0
o

[

where C is the velocity of sound in water, t is time and r, § and z
are the radial, angular and depth coordinates respectively (see Fig. 2.1).
iwt

For harmonic ground acceleration Vg(t) = & ; the hydrodynamic pressures

p(r,0,z,t) can be expressed as

Wt

p(r,6,z,t) = E(I,G,Z)ei (C.2)

where w is the excitation freguency and p{r,0,z) is the complex freguency
response function for hydrodynamic pressure. In terms of p the govern~

ing equation bhecomes

2 — 2 2 2
p 129 1 9°p T —
dr r~ 96 dz C
Letting T = p)0(0)yg{z), Eq. C.3 separates into three equations as
follows
2
g"{z) + a’g(z) =0 (C.4a)
2
E"0) + 1O =0 (C.4b)
2 2
" 1. w2 M -
p"(r) + ;P {r) + > - o ) p{r) =0 {(C.4c)
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where ( )' and ( )" signify the first and second derivative of { ) with
respect to its independent variable. ¢ and U are separation constants
that will be determined from boundary conditions.

The following sections of Appendix C determine expressions for
T on the upstream face of the dam (r = R) by solving Eg. C.4a to C.4c
for boundary conditions associated with horizontal ground motion in the
upstream-downstream direction (Sec. C.2), horizontal ground motion in
the cross-stream direction (Sec. C.3) and vertical ground motion

(sec. C.4).

C.2 Ground Motion In Upstream-Downstream Direction

C.2.1 Derivation of ﬁgD(e,z,m)

X

Pap is the complex frequency response function for the hydrody-

namic pressures on the upstream face of the dam when the excitation is
the acceleration of the rigid dam in the x direction but the banks re-
main stationary. From Chapter 4, Eg. 4.3 and 4.5 the boundary conditions

for the governing equation (Eg. C.3) are

3 v

N (R,0,2z) = 5 cos B (C.5a)
p_ (x,m/4,2) =0 (C.5b
rop (EM/4.2) = -5b)
E.E-(r 8,0) =0 (C.5¢)
az ree -
plx,8,H) =0 (C.5d)
9p _

— (r,0,z) =0 (C.5e)
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where w is the unit weight of water and ¢ is the acceleration due to
gravity. In addition to these boundary conditions, no wave reflections
at the upstream end of the reservoir {r = B) are permitted.

The solution of Eg. C.4a together with the boundary conditions

given in Eg. C.5c and C.5d yield

= A o = S .
r{z) " cos mz m 1,2, (C.6a)
where um is the wvalue of (@ satisfying
 (Zm=1)W
am = > (C.6b)

and Am are constants.
The solution of Eg. C.4b together with the boundary conditions

given in Eg. C.5b and C.5e result in
@(8) = Bn cos une n = Olllzlgl"' (C.7a)

where un is the wvalue of u satisfying

u, = 4n (C.7b)

and Bn are constants.

Recognizing Eq. C.4c as a form of Bessel's equation, the solution

2 2

involves the relationship between ui and 95». If EE is greater than ai ;

C C
Hankel functions of the first and second kind of oxder Un’ Hél)(kmr) and

n
H(z)(Km;), characterize the solution
pn
2
plr} =C H(l)(l r) + D HK )(X ) (C.8a)
mn m mn M m

n n
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where

2 w2
CC — —

(C.8b)
m C2

1

and C and D are constants. H(
mn mn M,

(%mr) is associated with a con-

verging wave traveling toward the dam, which can be regarded as a wave
reflected from an upstream boundary. Since there is no upstream boun-

dary and thus no reflected waves permitted Cmn = 0. Therefore, Eq. C.Ba

becomes
2
2
p(r) =D H( )(K r) for L < o2 {(C.9)
mn U m 2 m
n c
wz 2
If —§-> am , modified Bessel functions of the first and second
C

kind of order u , I (A r) and K (A _r), characterize the sclution
n’ Tpom B

plry = Emn Iun{kmr) + an Kun(kmr) (C.10)

where E o and Fon are coefficients determined by the boundary conditions.

IU (Amr) becomes infinite as r approaches infinity, thus setting Emn =0

n

eliminates Iu (Rmr) from the solution, Thus,
n

2
w 2 .
plx) = F Kun(xmr) for ;§-> o (c.11)
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Combining Eg. C.6a, C.7a, C.7b, C.8b, C.9b and C.ll, the expression for

> becomes
Pob

M
N {r,0,z,w) = D H(z)(A r) cos 4nf cos ¢ =z
Poptt ¥rzs _ZE m an Vmt € n S Oy

m=1 n=0

E E 4 (A r) cos 4nf cos o z (C.12)
Il m m

=m +1 n=0

where ry ig the largest integer "m" satisfying the inequality E-> um.
The constants D and F are determined such that"p'X satisfies
mr mn oD

the boundary condition given in Eg. C.b5a.

E : d .2
Dmn R [ (A R{] cos 4nd cos amz

E E mn dR [K4n(km3i] cos 4n0 cos oz

= -2 cos 8 (C.13)
g

Because the set of eigenfunctions cos 4nf cos amz, n=0,1, 2,...,
m=1, 2, 3,... are an orthogonal set of functions on the interval
(0 O m/4) (0% z< H), Dmn and an can be found by c¢lassical eigen-

function expansion techniques as
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T/4 H
-z f cos 8 cos 4nf a6 f cos ¢ 2 dz
g m
. o) o
mn /4 H
a (2) 2 2
aw [:Héln ()\mR):] f cos  4nb ab f cos” oz dz
@] O
n/4 H
- Y j cos O cos 4n0 4 f cos o 7z dz
g ™
o o
an - /4 H
4 2 2
aR [Kéln()\mR)] f cos” 4n@ 4o f cos” oz dz
o o

Evaluation of the integrals in Eg. C€.14 and C.15 yields

(“l)m+l
I cos ocmz dz :——?—-—— m=1,2,3,...
o mn

1,2,3,...

li

052 oz dz = B m
m 2

(1—l6n2)

cos2 anB a6 T

If

n==0,1,2,...

H
f c
o
1/4 .
f cos U cos 4n8 4db = !E (=1) n=20,1,2,...
a
/4
'l;

where

(C.14)

(C.15)

(C.lca)

(C.1l6b)

(C.16c)

(C.1lbd)

(C.1lbe)
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The Hankel function can be expressed in terms of Bessel functions J

4n

and Y4n and differentiated to obtain

d (2) km

Ty [ (A R)] =5 [An(AmR) - 1Bn(AmR)] (C.17a)
where i = V-—l and

A AR =3, AR -T, (AR (C.17b)

Bn(}\mR) = Y4n_l()\mR) - Y, +1(;\mR) (C.17¢)
The derivative of the Modified Bessel function K4n(AmR) can be ex-—-
pressed as

d Km

'&E [K4n(;\mR)] = - T [K4 _l(}\ R) + K +l(}LmR)] (C.18)
The expressions for Dmn and an can be rewritten by substituting
Eq. C.16 and C.17 into Eq. C.14 for Dmn and Eq. C.16 and C.18 into
Eg. C.15 for an. After some simplification,

s8V2 we (-1 (—1)Jerl [ (A_R) + iB_(A_R)
n noom noom
Dmn = - - 5 3 5 (C.1%9a)
gmH({l-16n") o A AT(A R} + B (A R)
moom | noom noom
8V2 w an(-1>n (™t r 1
an = + > (C.19b)
. gTH{1-16n") oem Am 4n 1(9\ R} + 1<4 L1 ()\mR)
b

The complex frequency response function for pressure on the upstream

face {(r = R) of the dam, pOD(B,z,w), is obtained by substituting the

above expressions for Dmn and an into Eg. C.12. Noting that
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(2}

H4n

(er) =J n()\mr) - iY4n(Kmr) (c.20)

4

and rearranging terms, Eg. C.12 becomes

X _16V2 wR (-n™
pOD(B.z,m) = --;;;—-:§:: Ome1)
El m=1 n=0
e (-1
n .
. — [f (AmR) + an(AmRi] cos 4nb cos o z (C.21)
(1~16n%) m

Expressions for Cn and Dn differ depending on whether m is smaller or

larger than m . For m £ My they are as follows

[An(ka) J4n(?\mR) + Bn()\mR) Y4n(AmR):|

Cn(KmR) = (C.22a)

A R[Az(k R) + B2(>\ R)]
m In m n m

[B OR) 3, AR -A (LR ¥ (AR)]
B n m dn " m n m dn " m
Dn(ka) = 2

> 5 (C.22b)
AR[A (A R) + B (AR)]
m n m n m

where An(AmR) and Bn(AmR) are given in Eg. C.17bh and C.l7c¢, respectively.
For m > mz the above listed functions are as follows:

K ™ (AmR)

- {C.22¢)
ka[K4n—1(ka) + K4n+l(kaq

cn ()\mR)

(C.224)

Il
@]

Dn (ka)

Kotsubo [5] obtained the pressure on the face of rigid arch dams
for excitation G:(t) = -0g sin wt. Taking the imaginary part of the
pressure {(Eg. C.2, C.21, and C.22) and multiplying by -0g, the result

. X C oo
given for Pop speclalizes to Kotsubo's.
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C.2.2 Derivation of ﬁzB(e,z,w)

@éB(G,z,w) is the complex frequency response function for the
hydrodynamic pressures on the upstream face of the dam when the excita-
tion is the acceleration of the reservoir banks in the upstream-
downstream direction but the dam remains stationary. From Chapter 4,
Eq. 4.3c to 4.3e, 4.6a and 4.6b, the boundary conditions for the govern

ing equation (Eg. C.3) are

L (%,6,2) =0 (c.23a)
i%@ (c,T/4,z) = %g (C.23b)
%g (r,8,0) =0 (C.23c)
plr,0,H) =0 (C.234)
B (r,0,2) =0 (C.23e)

In addition to these boundary conditions, no wave reflections at the
upstream end of the reservoir {(r = ®) are permitted.

Because the governing equation as well as the boundary conditions
are linear, the principle of superposition applies. The complex fre-

quency response function,'ﬁéB, can therefore be expressed as:
.. =D._ +D {C.24)

=x1 X2 . . x1 . .
Pog and Pog 10 Eg. €.24 are defined as follows. Bop 18 the solution

of Eg. C.3 for motion of the banks with the dam removed. Thus, boundary
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conditions C.23b to C.23e are satisfied but the boundary condition on
. . . —_x2
the upstream face of the dam, Eg. C.23a, is not satisfied. péB is the

solution of Eqg. C.3 for the following boundary conditions:

wpxl
v . 3 OB .
N {R,0,2) = - 5 (R,0,2) {(C.25a)
9P
(r,mi/4,2z}) =0 (C.25k)
rab

and those specified in Eg. C.23c to C.Z23e.
The complex frequency response function for hydrodynamic pres-
. . -x1 .
sure due to motion of the banks with the dam removed pr can be obtained

by superposing the response due to excitation of each of the two banks

acting separately
(C.26)

Consider the rectangular coordinate system X, V¥, 2z where X is directed
along the bank 6 = -m/4, V along the bank € = /4 and = is the vertical
coordinate (see Fig. 2.1). The X and v coordinates are rotated 45° from
the x and y coordinates shown in Fig. 2.1. Expressed in the rectangular
coordinates X, ¥, z, the pressure function'ﬁéB associated with excita-
tion of only the bank ¥ =0 is governed by the two-dimensional equivalent
of the equation of motion, Eg. C.3, and the boundary conditions given in

Eg. C.23b to €.23d.

2~ 2~
5% 0Z c
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9B 1w

5% (©0r2) V3 ¢ (C.28a)
g%l(i}o) = 0 (C.28b)
P(X/H} = 0 (C.28c)

In addition to these boundary conditions, noc wave reflections at the
upstream end of the reservoir are permitted.
The application of standard separation of variable techniques

yvields the following expression

m

L s~
S2o_2Vew ) N aen™ 0 Y
Por = " g7 (2m-1) A m> ©
m
m=1
> +1 A
m ~-A X
(~1) m
+ .
(2m—l)km cos umz e {(C.29)
m=m£+l

where Am and my have been defined previously.

The complex frequency response for hydrodynamic pressure'@éB due
to similar excitation of oniy the bank ¥ = 0 is obtained by exchanging
Y for X in the above equations (Eg. C.27 to C.29). Transforming ¥ and
v into the cylindrical coordinates, r and 8, the pressure function 53;
due to excitation of both banks (without dam) is obtained from Eq. C.26

as
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m

2
— . m+1
T e.6.2) = ARDN i(-1)
OB gT (2Zm-1) A
m=1 n
—ikmr sin(m/4-6) -id r sin(m/446)
® COS amz e + e m

. (_l)m+l s o s [e—Amr sin(m/4-6)
(2m-1) A
m=m2+l
—?tmr sin(ﬂ/4+9)]
+ e (C.30)

X2 . .

péB is obtained from the solution of Eq. C.3 and the boundary
conditions given by Eqg. C.23c to C,23e and C.25a to C.25b. The general
form of the solution for §SD given in Eq. C.12 also applies to §X2 since

all boundary conditions except C.25a are satisfied by Eg. C.12.

(r O,z,w E E mn (A r) cos 4nf cos @ z

m=1 n=0

K4 (A r) cog 4nf cos o = (C.31)
EE: EE:' noom ™

m—m +1 n=0

The complete sclution for'@éé is obtained when the coefficients
Dmn and an are determined so that the remaining boundary condition
{(Eg. C.25a) is satisfied. Using Eg. C.l7a to C.1l7¢, C.18, C.30 and C.31,

the boundary condition given in Eg. C.25a becomes
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m
2 =)
DA
ZE —n—m——n}“[}\ (A R) - iB (?\R)] cos 4nd cos o =z
2 n m n m m

m=1 n=0

mn
) Z Z [4n AR K ()\mR)jl cos 4n8 cos o 2z

m—m +1 n=0

m
L
m+l -iA R sin(w/4-6)
= é%gijﬁ z %gi%iy——cos @mz [sin(ﬂ/4—6) e m
m=1

b m+1
. Z (-1)
(2m-1)

m=m2+l

+

—ika sin (m/4+8)
sin(m/4+8) e

~A_R sin(m/4+8)
® cos amz sin{m/4-8) e

+ sin(m/4+0) e m -

-A R sin(n/4+8)
' (C.32)

Because the set of eigenfunctions cos 4nff, n =0, 1, 2, 3,... form an

orthogonal set of functions on the interval 0 < 6 < 1/4, Dmn and an can

be found by standard eigenfunction expansion technigues.

16WZ w (-1t En[An()\mR) + iBn()\mR)]

L (A_R) {C.33)
an noom

ﬂzg(Zm—l)Am[Ai(KmR) + Bi(lmRﬂ

16 V2 w (-1)™t
Foo= - n G (A R) (C.34)
i m g(zm-l)%nﬁg4n_l(k R+ K, O Rﬂ
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where

m/4 “A R sin(m/4-8)
sin(1/4-8) e ™

o]

G (AR) =
n m

—KmR sin(ﬂ/4+61

+ sin(m/4+6) e cos 4nf dB (C.35)
/4 ~il R sin(m/4-0)
L (A R) = f [sin(w//;—e) e T
n m
o]

+ gin(m/448) e

—i\ R sin(m/4+8)
i cos 4nb ae (C.36)

A simplified form for the integral Ln(AmR) is obtained by expressing the

exponential terms of Eg. C.36 as a series of Bessgel functions and eval-

uating the resulting integrals. Ln(XmR) becomes
A .
Ln(AmR) = (-1} i An{AmR) - E €ox JZk(AmR)

. (160t ax® ~ 1]
[160? - ax® - ax - 100160” - ax® ¢ ax - 1]

(C.37)

Thus,'ﬁgé is given by Eg. C.31 with coefficients Dmn and an defined in
Eg. C.33 to €.35 and C.37.

The complex frequency response function for hydrodynamic pressures
on the upstream face of the dam {(r = R) when the excitation is the accel-
eration of the reservoir banks in the‘upstream—downstream direction but
the dam remains stationary,'ﬁgB(e,z,w), is obtained by superposing —--

see Eg. C.24 -- the expressions for'ﬁgé (Bg. C.30) and'ﬁg; (Eq. C.31,
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C.33 to C.35 and C.37). After rearranging terms, the expression for
?éB becomes
@
?}SB(G,z,w) = —%—%—R— E [Em(}\mR) + iFm(?\mR)] cos O 2
m=1

oo

£ EJ (A R) + 1iv (A R{l cos 4n6 cos o z (C.38)
:E: nl mn ' m mn ' m m
m=1 n=0

+

SHR

where mm, Am and En are given by Eg. C.6h, C.8b and C.lb6e respectively.
Expressions for functions E , P , U , and V differ depending on
m" m’ Tmn mn

whether m is smaller or larger than mei My is the largest integer "m"

satisfying the ineguality %-> am. For m < my they are as follows:

1"
Em()\mR) = -(—Z—mm—R {s:.n[?\mR s:.n('r(/lk—e)]

+ sin[}\mR sin(Tr/4+8)] {C.39a)
F (AR) = -*l:llT;—- cos|A R sin(ﬂ/4—eﬂ
m m (2m—l)AmB m
+ cos[ﬁ;isin(ﬂ/4+6ﬂ (C.39b)
m n
_ =17 (=D
Umn(AmR) - (2m-1) Tn(ka) Cn(KmR)

+ T A {A R D {(AR) (C.3%9c)
4 n m n m
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_en™en®
I

T
- Z—An(AmR) Cn(AmR4 (C.394)
where

o0

Tn(AmR) = } : EZk J2k(ka)
=0

(l6n2 + 4k2 - 1}

2

5 5 5 (C.39%e)
{l6n” - 4k - 4k - 1) {len - 4k" + 4k - 1)

C (AR, D (AR, A (AR) and B {A R) are defined in Eq. C.22a, C.22b,
n n n m n m n m
C.17a and C.17b respectively. For m > m the above listed functions are

as follows:

™ [ -\ R sin(r/4-)

Em(AmR) - 2Cm-1)A R
m
—KmR sin{ﬂ/4+eﬂ
+ e {C.391%)
Fm(AmR) =0 (C.39)
-(-n"

Umn()\mR) = m Cn{ka) Gn(AmR) (C.39nh)
vmn(AmR) =0 (. 391)

where Cn(ka) and Gn(ka) are defined in Eg. C.22c¢ and C.35 respectively.
Taking the imaginary part of the pressure (Eg. C.2, C.38 and C.39)
and multiplying by -~0g, the result given for pr specializes to results

obtained by Kotsubo [5] for excitation Vé(t} = -0g sin wt.
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C.2.3 Derivation of i?(G,z,w)

X . .

pj is the complex fregquency response function for the hydrodynamic
pressures on the upstream face of the dam when the excitation is the ac-

. =X . .th .
celeration Yj(w) = 1 (see Chapter 4, Eg. 4.4) in the j— symmetric nat-
ural mode of vibration of the dam (without water). From Chapter 4,
Eq. 4.3 and 4.7, the boundary conditions for the governing equation

(Eq. C.3) are

gg (R,0,2z) = - g{%?f(e.Z) cos B + ¢§f(6,z) sin é] (C.40a)
B (y,m/a,z) = 0 (C.40b)
I_Be I ’ -
a—i’_(reo)—o (C.40¢)
oz re .
Pplr,0,H) =0 (C.404)
§§’-—(r02)=0 (C.40e)
rof e .

f . .
where ¢§ and ¢§f are the x and y compenents, respectively, of the jEE

mode shape evaluated on the upstream face of the dam. In addition to
these boundary conditions, no wave reflections are permitted at the up-
stream end of the reservoir {r = ®),

The general form of the solution for'ﬁgD given in Eg. C.12 also
applies to ﬁ? since all boundary conditions except Eqg. C.40a are satisfied

by Eq. C.12. Thus,



165

oo

o

¥ (r, 6 - (2) (5 4n

pj(r, )7 W) —Z Dmn H4n ( mr) cos 4nf cos Ocmz
m=1 0

[se] [=+]
+ E F K, (Ar) cos 4nb cos a =z (C.41)
mn  4n m m

m:m£+l n=_0

The complete solution for §§ is obtained when the coefficients
Dmn and an are determined so that the remaining boundary condition
{(Bg. C.40a) is satisfied. Using Eg. C.1l7a to C.1l7¢, C.18 and C.41, the

boundary condition becomes

D A
E :2 SRLLUERL [A (A R) - iB_(A R)] cos 4nb cos o z
2 n o m no m m

[oa]

2. 2, m
2 [K4n—l(AmR)

m=m,-+1 n=0

)

- K4n+l(AmR{] cos 4nf cos oz

f .
E—[@%f(e,z) cos O + ¢¥ (8,2) sin @] (C.42)
g J 3
Since the set of eigenfunctions cos 4nf cos umz, n=0,1,2, 3,...,
m=1, 2, 3... form an orthogonal set of functions on the interval

(0 8 1/4) {0 <€ =z £ H), Dmn and an can be found by standard eigenfunc-

tion expansion techniques.

16 we A (A R) + iB (A R)
n n m

nom 3
D = - T (C.43a)
2
mn g A20m) + BP0 R
Il m n m
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16 w & I]
F = L C (C.43b)
ma ﬂglm[K4n—l(AmR) * K4n+l(meﬂ
where
/4 H
i _1 xf ‘ v
T = H f f [(1)3 (6,2) cos & + d)j sin 9}
O o]
e cos 4nf cos amz dz db (C.43c)

Thus, §§ is given by Eg. C.41 with coefficients Dmn and an defined in

Eg. C.43a and C.43b. After rearranging terms, the expression for'@g

becomes:
fes) 0
.5%(6,Z,w) = - ;EL;%EE E:n = n(AmR)
J g m=1 n=0
+ iD (A Rﬂ cos 4nb cos O =z (C.44)
n'm m

where o A, € r and I%n are given by Eg. C.6b, C.8b, C.l6e and C.43c

m
respectively. Ixpressions for functions Cn(KmR) and Dn(RmR) differ de-
pending on whether m is smaller or larger than mg . For m < my they are

given by Eq. C.22a and C.22b. For m - my Cn(AmR) is given by Eg. C.22c¢

and D (A R) = 0.
nm

C.3 Ground Motion In Crogss-Stream Direction

C.3.1 Derivation of §gD(8,z,w)

Y

?OD is the complex frequency response function for the hydrodynamic
pressures on the upstream face of the dam when the excitation is the accel-

eration of the rigid dam in the v direction (cross-stream, Fig. 2.1} but
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the banks remain stationary. From Chapter 5, Eg. 5.3c to 5.3e, 5.5a and

5.5k, the boundary conditions for the governing equation (Eg. C.3) are

a——p- (Rlelz) = = z sin O (C.45a)
or g

B (r,m/4,2) =0 (C.45p)
36 :

3p g

E {r, ,O) = 0 (C.4SC)
Plx,0,H) =0 (C.454)
plr,o0,z) =0 (C.45e)

In addition to these boundary conditions, no wave reflections are per-
mitted at the upstream end of the reservoir (r = ).

The expression characterizing FgD 1s obtained by following the
same steps gilven in Section C.2.1 for determining ﬁgp' The general form

of ﬁgD satisfying all boundary conditions except C.45a is

o
ﬁy (r,0,z) = E D (2)(K r} sin U 8 cos u z
0b mn U
m=1 n=0

K (K r) sin 1 6 cos o =z (C.46a)
2{: }E: m n ™

=m +l n=0

_ (2m-L)T (C.46b)

m 21
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4n + 2 (C.46c)

T
Il

(C.46a)

and my is the largest integer "m" satisfying the inequality w/C > um,
The coefficients D and F are determined such that py satisfies the
mr mn oD

boundary condition given in Eg. C.45a. Substituting Eg. C.46 into

Eg. C.45a, the boundary condition becomes

m/Q oo

§ : EE; a [.(2) .
D 3R [H“n (?\mR)] sin une cos oz

m=1 n=0

:E:: :E:: a [ (2 ,
+ an R Fﬂﬂlika% sﬂm.une cos amz

m:m£+l n=0

- ¥ gin 6 (C.47)
g

The set of eigenfunctions sin unﬁ cos @z, n = 0, 1, 2,..., m=1, 2,
3,... form an orthogonal set of functions on the intervals (0 6 w/4),
(0 z < H). Thus, Dmn and an can be found by classical eigenfunction

expansion techniques as

16 VT w (_l)erl(_l)n An(AmR) + iBn(hmR)
D = - 2 2 2 (C-48a)
gTrH(un - 1) ocm }\m An(AmR) + Bn(AmR)
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16V2 w (-1)™n? 1
¥ = (C.48b)
ﬂH(pz - 1) o A K —l()\mR) - K +l(>\mR)
g n m m LI1’1 un
where
An(AmR} = Jun"leR) - Jun+l()\mR) {C.48c)
B (AR = Yun_l()\mR) - YunﬂumR) (C.484d)

After substituting the above expressions for Dmn and an into Eg. C.46a
and rearranging terms, the pressure on the upstream face (r = R) of the

dam, §gD(9,Z,w), becomes:

co o0

5 (0,2 - 2 V2w R E :2 ; (-1 -1
op (2m-1) (12-1)

m=1l n=0
c[cn(AmR) +~1Dn(AmRU sin une cos umz (C.4%9)

where o B and Km are given by Eg. C.46b to C.46d respectively. Ex-
pressions for Cn(AmR) and Dn(AmR) differ depending on whether m is

smaller or larger than "mﬁ . Form< my they are as follows:

[An(?\mR) Jpn(ka) +B_(AR) Yun(me)]

C {A R = {C.50a)
nom by R{AZ(J\ R} + B-(A R)]
m n m n m
[Bn(?me) 3, AR -2 (AR Y, (}\mR):I
D (A R) = & n
I m

5 5 (C.50b)
}\R[A (AR) + B (AR)]
m n m n m
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dB (AR i Eg. C.4 d C.484, >
where An(XmR) an n( - ) are given by Eg. C.48c and C.484 For m mg

the above functions are as follows:

Kun(XmR)

AmR[Fu _l(AmR) + KU +l(lqu
n I

il

(C.50¢)

cn(ka)

(C.504)

]
[}

D (A R)

Kotsubo [5] obtained the pressure on the face of rigid arch dams
for excitation V;(t) = —0g sin wt. Taking the imaginary part of the
pressure {(Eg. C.2, C.49 and C.50) and multiplying by -0g, the result

. % -
given for Pop specializes to Kotsubo's.

C.3.2 Derivation of ﬁgB(e,z,m)

ﬁgB(e,z,w) is the complex frequency response function for hydro-
dynamic pressures on the upstream face of the dam when the excitation
is the acceleratioh of the reservoir banks in the cross-stream direction
but the dam remains stationary. From Chapter 5, Eg. 5.3c to 5.3e, 5.6a
and 5.6b the boundary conditions for the governing equation (Eg. C.3)

are

%Ei(gle,z) = 0 {C.51a)

Y

oD 1 w

- (r,n/4, == — — C.51b
rae (r TT/ Z) V"2_ g ( )
B _

e (r,0,0) =0 (C.51¢)
zZ

Plr,0,H) =0 (C.514d)

plr,0,2} =0 (C.51e)
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In addition to these boundary conditions, no wave reflections are per-
mitted at the upstream end of the reservoir (r = ®).

Following the procedure of Section C.2.2,'§y is expressed acs

OB
the superposition of two functions
=Y . 24 ‘
= +
Por = Pog ™ Pom (C.52)
. =yl _v2 . vyl . .
The functions pOB and Bog are defined as follows. Pop 1s the solution

of Eq. C.3 for motion of the banks in the c¢cross-stream direction with
the dam removed. Thus, boundary conditions C.51lb to C.5le are satisfied
but the boundary condition on the upstream face of the dam, Egq. C.5la,

. s y2 \
is not satisfied. py is the soluticn of Eg. C.3 for the following boun-

OB
dary conditionsg:
Vi
Yy Fon
5;‘(R,9,Z) = - “55“-(R,5,Z) (C.53a)
8P _
;56'(r,ﬂ/4,2) =0 (C.53b)

and those specified in Eg. C.5lc to C.5le.

vl
py

op CAR be obtained by combining the response due to excitation

of each of the banks acting independently (with the dam removed). As
. s . -1 -2
in Appendix C.2.2, define Pop and Pop as the complex frequency response

functions for excitation of the banks ¥ = 0 and ¥ = 0 respectively (¥

and ¥ are defined in Appendix C.2.2). For cross—-stream excitation
vl 1 _2 54
Pog = Pos ~ Fos (C.54)

—_ . . =2 . . . ~ ~
where PéB is given by Eg. C.29. pOB 1s obtained by exchanging y for x

in Eq. C.29. Transforming X and v into cylindrical coordinates r and 0,
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the pressure function Eyl

OB due to excitation of both banks {with dam re-

moved) is obtained from Eg. C.54 and C.29 as

Ry

. m+1
=yl - 2V2 w _ 2 : i(-1)
pOB(I,e:pr) o (2m—l))\m

=1

-id r sin(m/4-8) -id r sin(mw/4+8)
® cos 0 zle m - W

=~}

(1™ [ -\ r sin(n/4-8)
+ E ——_—_(2]:!1“'1) )\m CosS OﬂmZ e

m=m,+1

L

_ e (C.55)

—Amr sin(ﬂ/4+ej

ﬁg; is obtained from the solution of Eq. C.3 and the boundary con-

ditions given by Eg. C.5lc to C.5le, C.53a and C.53b. The genral form

v2

of the solution for ﬁgD given in Eg. C.46 also applies to ﬁbB since all

boundary except C.53a are satisfied by Eq. C.46,

Z E (2)
POB(r 8,2z,w) Do (X r) sin B 8 cos o z

m=1 n=0

§
(s} o]
2 : E :an Kun(Kmr) sin Unﬁ cos ocmz (C.56)

m=m£+l n=0

The complete solution for Eg; is obtained when the coefficients
Dmn and an are determined gso that the remaining boundary condition
(Eq. C.53a) is satisfied. Substituting Eq. C.55 and C.56 into Eg. C.53a,

the boundary condition becomes
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DA
n m . .
Z Z —5— [An (?\mR) - J.Bn(?\mR)] sin une cos oz

Qa0

o) v \
_ Z Z: “H%J [Kli _l()\mR) + KU +l(>\mR)] sin une cos Otmz
m=m,+1 n=0 n n
g
)
-1y™* ~iA R sin(m/4-0)
N 2\5 - Ezri)-l) cos Oz [Sin(ﬂ/zl—e) e °
=1
-iX R sin(ﬂ/4+e)] * 1
i “‘ (-1)
- sin(n/4+8) e + —
m=m£+l

-A R sin(m/4-0)
& COs @mz sin(n/4-0) ¢

- sin{m/4+8) e

—AmR sin(7/4+8)
(C.57)

where Eg. C.46c, C.48¢c and €.48d define 4 , B (A R) and B (A R). Be-
n’” "nm nom

cause the set of eigenfunctions sin pne, n=2=0,1, 2,... form an ortho-

gonal set of functions on the interval 0< 68« m/4, Dmn and an can be

found by standard eigenfunction expansion techniques as

m+l .
32Vz2 w (-1) [An(J\mR) + an(,AmR)]

L (A R} (C.58)
ma 1T2g(2m-l) [Arzl()\mR) + Bi(AmR)] nom

1
F =~ 32 V2 w (=1) G (A R) (C.59)

2 n
T g (2m-1) [Kpn_l(AmR) + Kun+l(>\mR)]
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where

m/4 -\ R sin(n/4+0)
Gn(}\mR) = f sin(n/4+6) e

[o]

~ sin(w/4-0) e

-AmR sin(w/4-9)
sin une de (C.60)

-iA R sin{m/4+8)
sin(m/4+8) e

-iA R sin(mw/4-6)
- sin(w/4-8) e m

sin une ae {C.61)

A simplified form for the integral Ln(AmR) is obtained by expressing
the exponential terms as a series of Bessel functions and evaluating

the resulting integrals. Ln(AmR) becomes

[e5]

_ 130
Ln()\mR) = (-1) Z 52k JZk(}\mR)
k=0

2 2
(un + 4k7 - )

2 2 2 2
(“n - 4x° - 4k - %)(pn - 4k° + 4k - q

_ T 0w (C.62)
I m

where

e = (C.63)
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v2

Thus, Pop 18 given by Eg. C.56 with coefficients Dmn and an defined in

Eg. C.58 to C.00 and C.62.

§gB is obtained by superposing -~ see Eq. C.52 -- the expressions

— —v2
for pgé (Egq. C.55} and pr (Egq. €.58 to C.60 and C.62). After rearranging

terms, the expression for'ﬁgB(G,z,m) on the upstream face of the dam

{(r = R) becocmes

o>
—y - 2V2 w R 2 : . ]
pOB(B,z,w) mr—a%f*- [Em()mR) + 1Fm(AmR) cos amz
m=1

oo [oe]

+£ZZ [U (A R) + iV (A R)
i mn m mn m

m=1L n-0

sin L 0 cos O =z
n m

where o un’ Am and en are given by Eq. C.46b, ¢, d and C.63 respec~
tively. Expressions for functions E , F , U and V differ depending
m’ m’ “mn mnn

on whether m is swmaller or larger than M- For m < my they are as

follows

-n™"
- sin[X R sin(ﬂ/4—9)]; (C.65a)
m )
F (A R) = —-i:llﬁ—w~ cos|A R sin(m/4+8)
mm (2m—l)AmR ™

- cos[XmR sin(ﬂ/4—8)]} (C.65b)
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uis n

mnm o (2m-=1) {Tn(AmR) Cn(AmR}

i
+ T An(}\mR) Dn(?\mR)}

m n
=DM
an(AmR) - (2m-1) {Tn(AmR) Dn(AmR)

T

A (A R) C (A R)}
4 n nm n o m

where
[6e]

T, OR) = 2 £k Tox B
=0

2 2
. (un + 4k - 1)

2

(ui - 4k® - 4k - l)(ui - ak® o+ 4k - 1)

{C.65c)

(C.65d)

(C.65e)

A{AR), B(AR), C {AR) and D (A R) are defined in Eg. C.48a, C.48bL,
n''m n'm n''m n'm

C.50a and C.50b respectively. For m > mz the above listed functions are

as follows:

(<™ [e-x R sin(1/4-0)

Em(AmR) - - (2m—l)XmR

ev-)\mR sin (7/4-6 )]

i

Fm { J\mR) 0

(C.651)

{C.65g)
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NGV
U AR = - Gn-1) c (AR G (A R) (C.65n)

1l
O

Vv (A_R) (C.651)
mn om o

where Cn(KmR) and Gn(AmR) are defined in Eg. C.50c and C.60 respectively.
Taking the imaginary part of the pressure (Bg. C.2, C.64 and C.65)
and multiplying by -tg, the result given for pr specializes to results

obtained by Xotsubo [5] for excitation Gg(t) = -Qg sin ®t.

C.3.3 Derivation of ?g(ﬁ,z,w)

5? is the complex frequency response function for the hydrodynamic

pressures on the upstream face of the dam when the excitation is the ac-
. =y . ,th , ,
celerxation Yj(w) = 1 (gsee Chapter 5, Eg. 5.4) in the j— antisymmetric
natural mode of vibration of the dam {(without water). From Chapter 5,
Eq., 5.3c to 5.3e, 5.7a and 5.7b, the boundary conditions for the govern-

ing egquation (Eg. C.3) are

9 (R,6,2) = - E(IJ).{f(e.Z) cos 8 + ¢¥f(6,z) sin 8 (C.66a)
or gl ]

op. _

;gg'(r,ﬁ/4,z) =0 (C.66Dh)
3T

.B._E (r,erc) = (0 (C.66C)
pir,0,8) =0 (C.664d)
pl(r,o,z) =0 (C.66e)
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where ¢§f and ¢§f are the x and y components, respectively, of the 322

antisymmetric mode shape evaluated on the upstream face of the dam. In
addition to these boundary conditions, no wave reflections are permitted
at the upstream end of the reservoir (r = «)

.

The general form of the solution for ﬁgB given in Eg. C.46 also

applies to Fg since all boundary conditions except Eg. C.67a are satis-

fied by Eq. C.46. Thus

p(rSZ) ZZ (2}(>\r) 51nu8cosaz

m=1 n=0

E E mn Ku (A r) sin p 8 cos oz (C.67)

M= +l n=0

The complete solution for §y

is obtained when the coefficients
Dmn and an are determined sco that the remaining boundary condition

(Bg. C.&6a} is satisfied. Using Eq. C.67 and Bessel function equalities,

the boundary condition becomes

my g
2.0
—E%—HE-[A (A R) - lB (A R)] sin My 6 cos oz
m=1 n=0
mn m
DI 5, 3O
m—m£+l n=0 n
+ Kﬂn+l(Aqu sin unﬁ cos amz

i

- g-[¢§f(8,z) cos 6 + ¢§f(8,z) sin B (C.68)
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Since the set of eigenfunctions sin unﬁ cos amz, n=2~0,1, 2,... form an
orthogonal set of functions on the interval (0 6 <€ /) (0K z< H), D
: mrt

and an can be found by standard eigenfunction expansion techniques as

32 w An(AmR) + iBn(AmR)

J
D = = T {C.69a)
ma Ay a2 Ry + BE(A ) O
I m n m
32 w Iin
F = ' (C.69b)
mn Ngkm Kun_l(lmR) + Ku +1(AmR)

where

1

T/4 H
Irjnn ﬂf]-f f f I:d)}j{f(e,z) cos €
o o

+ q%.’f(e,z) sin e] sin U 0 cos a z dz a0 (C.69c)

Thus, ﬁg is given by Eq. C.67 with coefficients Dmn and an defined in

Eg. C.6%a and C.69%b. After rearranging terms, the expression for §¥ on

the upstream face of the dam becomes:

-y _ _ 32 wrx J
pj(B,z,w) =g E E I [cn(AmR)

+ iDn(AmR)

sin Une cos amz (C.70)

B (AR J i by Eqg. .46b t
where A Hoo Am’ An(AmR), n( " ) and Imn are given by Eq. C.46b to
C.46d, C.48c, C.48d and C.69c respectively. Expressions for Cn(RmR)
and Dn(XmR) differ depending on whether m is smaller or larger than mp -
For m € m, they are given by Eg. C.50a and C.50b. For m > m Cn(KmR)

L
is given by Eg. C.50c and Dn(KmR) = 0.
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C.4 Vertical Ground Motion

C.4.1 Derivation of Ez(z,w)

5§(z,w) is the complex frequency response function for the hydro-
dynamic pressures on the upstream face of the dam when the excitation is
the vertical, rigid-body accelerations of the dam, the reservoir bottom
and the banks. From Chapter 6, Eg. ©6.3b to 6.3e and 6.4, the boundary

conditions for the governing equation (Eg. C.3) are

2} _
- {(R,0,2) =0 (C.7La)

g%é<(r,w/4,z) = 0 (C.71b)

EE(r,@,o) =-¥ (C.71¢)
oz g

pl{c,0,H) =0 (C.71d)
oy oy =

;§6~(r,o,4} = 0 ~ . (C.71e)

In addition to these boundary conditions, no wave reflections at the up-
stream end of the reservoir (r = ®) are permitted.

For ease in satisfying the boundary conditions, the separated
equations of moticn (Eqg. C.4a to C.4c) are rewritten as

2

ci(z) + 95 -l = o (C.72a)
C

Q" {0) + pze(e) =0 (C.72b)
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p"{xr) + 13;— pr{xr) + (7\2 - B ol{r) =0 (C.72¢c)

where A and 1. are separation constants.
The solution of Eq. C.72b together with the boundary conditions

given in Eg. C.71lb and C.7le yields

B(8) = Bn cos une (C.73a)

where un is the value of U satisfying

Un = 4n n=20,1,2,... (C.73b)

and Bn are undetermined coefficients,

The selution of Eq. C.72c that satisfies boundary condition C.7la
and the condition assuring no wave reflections at the upstream end of
the reservoir depends on the form of A. If A is an imaginary number, a
solution does not exist. When A = 0 Eg. C.72c reduces to an equation

of the Euler type. The general solution is

p=]
)
+
[ve]
O
'.._A
o}
=~
=
i
o
P
It
o

plr) = (C.74)
A.r + B.r [ # 0, A =

j
o

where AO, BO, Al and Bl are constants and un are the values of U defined

in Eg. C.73b. Ewvaluating the constants such that p(r) satisfies the ap-
propriate boundary condition results in Al = BO = Bl = 0. Thus when

A = 0 there is a solution only in the case n = 0,

plry = Ao for A = 0 (C.75)
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When A 1s a real number Eg. C.72¢c is a form of Bessel's eqguation.

Hankel functions of the first and second kind of order Un' H‘l%Ar) and

n

(2)

Hp {Ar), characterize the solution. BHowever, as explained in Sec-
n

. i . . . .
tion C.2.1, Hg %Ar) is omitted from the solution because it can be re-

n

garded as a wave reflected from the upstream boundary (r = ©}). The

golution is
JL, 2000 {(C.76)
2,3

where Dmn is a constant and Amn are the values of A that satisfy the
boundary condition given by Eg. C.7la.
The solution of Eq. C.72a involves the relationship between k;n
2,2 2,2, 2 , . .
and W' /C°. If w /C is greater than Amn (including Amn = 0) the solution
of Eg. C.72a that satisfies boundary condition Eq. C.71d is

L{z) = Emn sin j{{H - =) (C.77)

. 2 . 2 .
where Emn is a constant. If W /C2 is less than kmn the solution that

satisfies the boundary condition is

(C.78)

Combining Egq. C.73, C.75, C.76, C.77 and C.78 the expression for

—_2
po(r,z,m) becomes
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(2)
¥ :2:: :E:: Emn H4n (kmnr)

m=m,+1 n=0

L

8 cos 4nf sinh [(H - z) (C.79)

where my is the largest value of m such that %—> Kmn. §§ satisfies the

remaining boundary condition if the constants are

A =Y, 1 (C.80a)
°© 9 B (W
c c
D =E =0 (C.80b)
mn mn

After substituting Eg. C.80 into Eq. C.79 and rearranging terms, the

—Z
complex frequency response for pressure po(z,w) becomes

sinjL @ f; - 2
2 wr H
- 2 wH 1
= C.81la
P, (2,0) P W T ( )
— cos|zf~—
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where
r TC
wl = 5h (C.81b)
Kotsubo [5] cbtained the pressure on the face of rigid arch dams
for excitation V;(t) = -gg sin wt. Taking the imaginary part of the

pressure (Eg. C.2 and C.81) and multiplying by =-0g, the result given for

pz specializes to Kotsubo's.
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APPENDIX D - COMPUTATION OF HYDRODYNAMIC TERMS

This appendix presents the method used in the computer program
(Appendix H) to compute the hydrodynamic loads on the dam due to hori-

zontal excitation of the arch dam - reservoir system.

D.1 Ground Motion in the Upstream-Downstream Direction

The vector of nodal point loads associated with hydrodynamic
prassures on the upstream face of the dam due to harmonic ground motiocn

in the upstream-downstream direction {(see Chapter 4, Section 4.3.4) is

J
-f -X -X =X -
o (w) = QOD(UJ) + QOB(w) + 2’ Yk(w) gk(w) (L.1)
k=1
here the force vectors 0., O~ and Q. are static equivalents of the
wher e fo vecto QOD' QO Qk 1 gu o)

. . ~X -% -X
corresponding pressure functions Pop’ Pog’ and =N (Chapter 4, Eg. 4.8
to 4,10)., Taking advantage of the symmetry of the mode shapes, dam geom-
etry and pressure functions and applying the principle of virtual work,

the generalized hydrodynamic loads can be expressed in integral form as

- H /4
£l =2 fr -X
{daj}QOD = 2 J J (bj (6,z) pOD(O,z,OJ) R 48 dz (D.2a)
(o) o
- H T/4
£} =x _ fr -%
{(i)j} Q‘OB = 2 f f (i)j 8,=) pOB(B,Z,w) R dO d=z (D.2b)
o o

H /4
£ T-x fr -X
{¢j Qk = 2 .lp ‘]P ¢j (8,z) pk(e,z,m) R dB dz (D.2¢)
e} (6!
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where Qg is a sub-vector of the jlz--}l symmetric mode shape @j of the dam
{(without water in the reservoir) containing elements associated with DOF
on the upstream face of the dam. ¢fr(6,z) is the continucus function
analogue for the radial component of Qﬁ. Since the pressure acts normal
to the upstream face of the dam, only the radial component of the mode
shape (i.e., the component normal to the upstream face) is required for
determining the generalized hydrodynamic loads. Note that in Chapter 4,
fr

$.7(0,2) is expressed in terms of its x and y components {see Fig. 2.1)

as
¢§r(6,z) - ¢§X(9,z) cos B + ¢§Y<e,z) sin 6 (D.3)

Substitution of the expressions for pressure from Chapter 4 (Eg. 4.8 to

4,.11) into Eg. D.2 and interchanging integration and summation glves

i tox _32v2w R°H :E :(~1)m e, L3
3 QOB T[2 (2m=-1) (1—l6n2) mn
El m=1 n=0

.[c (A_R) + iD_(A Rq (D.4)
g3 m It o
V[_ H T/4

x _ 4 w R H |1 fr

{¢ = o q f f fbj (8,z)
o) o
N F)(l R) + iF (A Rﬁ cos a_z | d6 dz
2 : mm mom ™
m=1

+ 8 E E e 17 PJ (A R) + iv_ () Rq (D.5)
i) n mn mn m mi m
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< [+

T 2
fl'= _ 32 wRH ik .
{}e- 222D D caitlcop o pg) (.6)

m=1 n=0

where Cn(}\mR) ’ Dn()\mR) 7 Em(}\-mR)f Fm()\mR)r Umn(}‘mR) ’ an(me)l amr )\-ml

J

€ , and I
n mn

are given in Eg. 4.11. I;n can be rewritten using Eq. 4.1lc

and D.3 as

H T/ 4
I;n = %’ ,Iﬂ J/. ¢§r(8,2) cos 4nb cos oz 40 dz {(D.7)

© o}

The expressions Cn, Dn' Umn and an needed to compute the general-
ized loads (Eg. D.4 to D.6} can be obtained using standard Bessel func-
tion evaluation techniques, The functions Cn and Dn are discussed fur-
ther in Appendix E. However, the procedure for determining Iin and the
integral portion of Eg. D.5 reguire additional explanation.

Using the finite element descritization of the dam, the mode
shapes on the upstream face of the dam, @gr, are obtained at the upstream
face nodal points, Fach sixteen node shell element {(Fig. H2 and H3) used
in the descritization of the dam is oriented such that one of the eight
ncde surfaces coincides with the upstream face. :Since the upstream face
is a segment of a circular cylinder of radius R, it is convenient to
descritize the dam so that the eight node surface associated with ele-
ment e is defined in cylindrical coordinates (Fig. 2.1) by two values

of the height coordinate (zi, ze

2) and two values of the angular coordin-

ate (9?, 83); the value of the radial coordinate is the constant upstream
radius R. Thus, the location of the nodes on the upstream surface are

defined by the global coordinate system (8,z). Within this surface ele-

ment a local coordinate system (£,n) is defined such that & and n vary
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from -1 to 1 (see Fig. D1)., The global coordinates are given in terms

of the local coordinates as

e 1. e 1 e

67 = 2(1 E)@l + 2(1 + 5)62 (D.8a)
e 1. _ e 1 e
z- =501 -nz, + 351 +nlz, (D.8b}

For a particular element e, the values of the mode shape wvectors ¢?f

are given at the elght nodal points on the upstream face of the dam.

rf . . . .
Qj can be expressed as a continuous function within element e as

_ 8
fre _ fre
<f>j (0,z) = E Nj(i,n)cbji (D.9)

i=1

where ¢§§e is the value of Qir at the iEE-nodal point of element e. The

interpolation functions N, are

N = 1 - £) (L - (€ - - 1)

N, = (L= (- W -0 - 1)

N =%<1+£)(1+m(£+n—1)

3
N, = 2(1 - E) (L +n)(-£ +7 = 1)
1 2
N, =51 - £ -
1 2
N, =51+ 8 - nY)
N R o WA
N, =51 -& 1
N =l(l~€)(l—n2) (D.10)
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The integral Iin (Eg. D.7) can be written as the sum of contribu-
tions from each eight node element on the upstream face of the dam within
the region acted upon by the hydrodynamic forces (0 5 & < 7/4),{(0 £ z £ H).
Letting NEL represent the number of elements within the integration re-

gion and substituting Eq. D.8, D.9, and D.10 into Eg. D.7, the integral

beccomes

NEL e o o o 1 1
3 _LE:GZ—Sl z, =2 ff
mn H oy 2 2 -1 -1

cos 4n || =] + | =] & |ak an (D.11)

In the computer program described in Appendix H the above integral
(Eg. D.1l) is computed by direct integration within each element e,
Although numerical integration schemes (such as Gaussian quadrature)
could be used to compute I%n’ the oscillating nature of cos 4nf and
cos O 2z for large values of m and n is difficult to capture with low
order polynomial approximations.

The integral in Eq. D.5, Ij, can be written as

H w/4
1t = ] f ¢§r(e,z) Y(z) db dz (D.12)
O O
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where

o]

Yi(z) = E [Emn(AmR) + iFm(KmR)] cos o 2z {(D.13)

m=1

17 can be written as the sum of contributions from each eight node ele-
ment on the upstream face of the dam within the region acted upon by the
hydrodynamic forces (0 £ 8 £ 1/4){0 £ z £ H). PFor a particular eight

node element e, w(z) can be expressed as

8

W = E N, (€Y, ={E}T{f} (0.14)

i=1

. . . . . . e .
where Ni is the interpoclation functions given in Eqg. D.10 and wi is the
values of Y(z) at nodal point i associated with element e. {§},and-{y?}
are column vectors with elements Ni and wi. Substituting Eg. D.8, D.9

and D.14 into Eg. D.12, 17 can be written as

e e e [
Ij ) E ; 82 - 61 2, T 2y we T
- 2 2 =

.'[: jj {_N_HE}T 4t dn {gﬁre} (D.15)

The direct application of one-dimensional numerical integration formulas

yvields the value of the integral in Eg. D.15 as
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f f NN T ag an ZZW W, (&i.nk)}{y_(ii,nk}T (D.16)
i=1

where (Ei,nk) are the integration points and wi, Wk are appropriate

weight functions.

D.2 Ground Motion in the Cross-Stream Direction

The vector of nodal point loads associated with hydrodynamic
pressures on the upstream face of the dam due to harmonic ground motion

in the cross-stream direction {see Chapter 5, Section 5.3.4) is

J

=-f =y -y .".y -

g W =87 W + 3w E @ B, W) (D.17)
k=1

=Y =Y =Y : :
where the force vectors QOD’ QOB and Qk are static equivalents of the

Y

and ﬁk

corresponding pressure functions égD respectively (Chapter 5,

=Y
* Pop
Eg. 5.8 to 5.10). The generalized hydrcdynamic loads can be expressed
in integral form as

T
Ay
{eit e

H /4

fr
2 f f d)j (8,2) pOD(E) z,w) R d9 dz {D.18a)
o o

H /4
fr -y
f f cﬁ)j (8,2) pOB(G,z,m) R do az (D.18b)
o o

T/4

{q) f f fr(6 z) pk(e z,w) R d6 d=z {D.18c)

T
£ =y
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where Qj is a sub-vector of the jEE-antisymmetric mode shape @j of the
dam (without water) containing elements associated with DOF on the up-
stream face of the dam. ¢§I(9,z) is the continuous function analogue
of Q;. Substitution of the expressions for pressure from Chapter 5
(Eg. 5.8 to 5.11) into Eg. D.18 and interchanging integration and sum-

mation gives

o0 o0

q) _64V2w r%H Z -u"o-nt .3
- (210~1) ( 2_1) mn
El m=1 n=0 un
.[c (A R) + iD (A R)] (D.19)
n'm n'm
/4
¢ y _ ﬁ)/E-w R2H fr(e )
= mgﬂ' =z
. :E: [E (A R} + iF (X R)] cos O z | db dz
m m m m m
m=1

16 i :
ZE I [Jmn()\mR) + len()\mR)] (D.20)

m=1 n=0

{¢§TQ}§£:_64\/_WRHZE e

m=1 n=0

N [Cn(?\mR) + iDn(}\mR)] (D.21)
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where ¢ , D ,® ,F ,U0 ,V ,0da , r , and 14 are given in Eq. 5.11.
n n’" m" o mn” mn” m’ m mn

I;n can be rewritten as

H /4

i _ 1 fr .

L f f Q)j (8,2) sin une cos oz 40 dz (D.22)
o o]

The expressions C , b , U , and Vv can be obtained using stan-
n I mn NI
dard Bessel function evaluation techniques. The procedures for deter-

mining Iin and the integral portion of Eq. D.20 parallel thoge already

discussed in the previous section (D.1).

D.3 Vertical Ground Motion

The vector of nodal point loads associated with hydrodynamic
pressures on the upstream face of the dam due to harmonic vertical ground

motion (see Chapter 6, Section 6.3.4) is

J

- -Z ~Z -7
9 (w) = Qo(w) +Z v, (@) 9 (w) (D.23)
k=1

where the force vectors Qi(m) and Qi(w) are static eguivalents of @z(m)
and ﬁi(m}. Since ﬁi is identical to the c¢orresponding function, ﬁi,
associated with upstream-downstream ground motion (see Chapter 6), the
generalized hydrodynamic load is given by Eqg. D.6. Applying the princi-
ple of virtual work, the generalized load associated with Qz can he ex-

pressed in the integral form as

P H /4
£l =2 _ fr -z
{¢j 2. = 2 ‘/f J/” ¢j (8,2) po(e,z,w) R 40 dz (D.24)
o o
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-Z . . . s
where p, is given by Eq. 6.8 in Chapter 6. The procedures for determining
the above integral follow those already presented in Section D.1 for

evaluating the integral portion of Eg. D.5.
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APPENDIX E ~ LIMIT ANALYSIS

E.l Bessel Function Behavior

The analytical expressions for hydrodynamic pressures on arch dams
given in Chapters 4, 5 and 6 involve Bessel functiong of the first kind
Jn(x), Besgsel functions of the second kind Yn(x) and modified Bessel
functions of the second kind Kn(x) where n is an integer and the argu-
ment x 1s a real number greater than zero. In the expressions for pres-
sures on the dam (Eq. 4.8 to 4.11 and 5.8 to 5.,11), the Bessel functions
occur in the following form. For m i_mg

An(x) J4D(X) + Bn(x) Y4n(x)

C (x) = > 5 : n=20,1,2,... (E.1)
n x An(x) + Bn(X4

B (x) J, x) - A (x) Y, (x)
n n

D (x) = 42 : 4n n=0,1,2,... (E.2)
n X‘A (x) + B (x)]
n n

where

An(x) = J4n_l(x) - J4n+l(x) (E.3)

B (x) =Y, &) =Y, 46 (E.4)
For m > mR

K4n(x)
C (x) = - n=2=9,1,2,... (B.5)
n X[ Kgnoy )+ Ky ()

D (x) =0 n=20,1,2,...
n
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the function given in Eg. E.l1, E.2 and E.5 are plotted in Fig. El to

E3. Although the individual Bessel functions Jn(X) and Yn(x) oscillate
about their null values, and Yn(x) and Kn(x) are unbounded at x = 0, the
composite functions Cn(x) and Dn(x) are very well behaved (Fig. El to
E3). As shown in the figures, as x approaches zero Cn(x) and Dn(x)

have limiting values of

Iim Cn(x) = - %ﬁh n=0,1,2,... (F.6)
x>0
/4 n=0,m=< m2
Lim D (x) = 0 n=0,m>m (E.7)
n L
x+0
0 n=11,2,3...

Notice that as x approaches zero Co(x) is the only unbounded function
(Eg. E.6 and E.7). In the expressions for hydrodynamic pressures on the
dam (Eg. 4.8 to 4.11 and 5.8 to 5.11) the argument x, of the functions
Cn(x) and Dn(X) approaches zerc as the frequency of excitation approaches

the resonant frequencies of the water in the reservoir.

E.2 Gravity Dam Pressures as Limits of Arch Dam Pressures

This section of Appendix E shows that as the central angle of the
dam approaches 180° and R > =, representing a straight dam in the limit,
ESD(B,z,w) approaches the previously obtained [22] two-dimensional solu-
tion of the wave eguation for a straight gravity dam. For an arch dam

with central angle 26a, bgD(G,z,w) can be found as a generalization of

Eg. 4.8.
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. ® ® n
-x 8 wR sin 8a (—l)n En(—l)
p. (8,z,w) =
optTT! gm Ga 2m-1

2
m=1 n=0 “ﬂ%’
elC (A R) + iD (A R)] cos U B cos o z (E.8)
n o m n m n m
where
_ nm _
un =3 n=20,1,2,... (E.9a3)

and M, W, €, Am, o are given in Eq. 4.11. Expressions for <. and

Drl differ depending on whether m is smaller than m_ 2 or larger than m

L 2
For m S.ml they are as follows
An(ka) Jun(AmR) + Bn(AmR) Yun(Kqu
cn(XmR) = 5 5 (E.9b)
A RJAT(A_R) + B (A Rﬂ
mf n nm n m
Bn(AmR) Jpn(ka) - An(AmR) YU (AmR)
DR = 5 5 B (E.9c)
A R[A (A_R) + B (A Rﬂ
mjl| n m n m
where
A (A R) = I (AR - T 41 A R) (E.9d)
n n
B (A R) = Yun_l(AmR) - Yﬂn+l(ka) (E.9e)
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For m > mz the above functions are as follows:

X (A R)

oo

- (F,9f)
ka Kun“l(KmR) + Kun+l(AmR)

H

C_(A_R)
n m

il
(@]

Dn(AmR) (E.9qg)

The above expressgsions specialize to those given in Eg. 4.8 and 4.11 for
dams with Ba = /4 {90° included angle from baﬁk to bank).

In order to extract the gravity dam pressure expression, §g(z,w),
from the above expression for arch dams let Ba = /2 (giving Moo= 2n),
R~»wand 6 = 0. In addition multiply the numerator and denominator

—3 .
of Eq. E.8 by km and rearrange terms. p__(o,z,Ww) can now be written as

oD

[oe]

I
— % ( w) = 32 wH (=1)" cos OLmz
Pop @&/l = e "
m=1 (2m—l)'\J/h2m-1)2 - 9;
®y

)n

T, 1im En(_l
R (1-4n°)
m=0

A RlIC (A R) + iD (A R) (E.10)
m n m n m

where, from Eg. 4.11b,

2
_ TR T
AR = o "\J/Fzm_l) - (B.11)

©q

The limit of A RC (A R) and A RD (A R) as R+» can be obtained from

m n'm m n'om
Eg. .9 by replacing the Bessel functions by thelr asymptotic expansions
and taking the limit of the resulting expression. For m < my the limit-

ing process gives



Lim A R € (A R)
m n m
R»o0

Lim A R D _{A R)
n n mnm
R0

For m > mz the limits are

Lim A R C (x)
m n
R0

It

Lim A R D (%)
m n
R0

Substituting the limiting
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1/2

il

-1/2

c,1,2,...

c,1,2...

(E.12a)

(E.12b)

(E.12¢)

(E.12d)

values from Eq. E.12 into Eg. E.10 and taking

the 1limit within the summation term by term. pzD(o,z,w) can be written

as follows:

my

-X 16 w H
POD(OIZ Iw) -

o0

-1"

. m
1(~-l)t cos O z
m

cos O _2Z

2 -
=+l (2m~l)-\J4(2m~l)2 -

3 :E::
gn -
m=1 (2m—1)'\v/hzm~1)2 -

n=0

w_

wr
1

€ (—:L)n
n_

(l—4n2)

Removing the absolute value sign and noting that

<o n
E:_Eﬂi__ll_zl
(l-4n2) 2

n:Q

The expression given in Eg. E.13 can bhe written as

o0
k
n

(E.13)

(E.14)
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x BWHEOO: et
pOD(sz,w) = 5 cos a_z (E.15)

(-1
gt - 2
=1 (2m—l)\/!(2m-—l)2 - 99-;

The above eguation is identical to the corresponding expressicn, Eg(z,w),

for straight gravity dams [22].

E.3 Dam Response at Resonant Fregquencies of Fluid Domain

If only the fundamental vibration mode of the dam is included, the
response at a rescnant frequency of the fluid domain can be cobtained
through a limiting process., If the excitation ig only the motion of the

base of the dam in the upstream-downstream direction and the banks are

=X

QOB(G,z,m) = 0), the response of the dam

) X -X
stationary {(i.e., pOB(G,z,m) =

(from Chapter 4, BEg. 4.14 and 4.17) can be written as follows:

- L7 + B, (W)

e 1 1

Yl{w) = N ) 5 (E.16)
. 1 1

o 21‘51(5_) * (w ) - By w)
where

OX .

Ll = Generalized force due to the mass of the dam

Ml = Generalized mass of the dam in its fundamental mode of

vibration

¢ = Damping ratio of the dam in its fundamental mode of
vibration

X . .
Yl(m) = Complex frequency response function for generalized accel-
eration of the dam in its fundamental mode of vibration

w = Excitation frequency

W, = Fundamental natural frequency of the dam
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The functions due to hydrodynamic loads on the dam, Bl(w) and B2(w),

are given in Appendix D (Eg. D.4 and D.6 respectively) as

m £ (-
322 wRH (-1 n 1 .
By w) = ng2 ZZQm—l) 5 Lin Cn(AmR) + an(ka)

m=1 n=0 (1-16n ")

' 2 :E : 2 .
_ 32 wrRH E 1 .
Bz(m) = po— En(Imn) lcn(ka) + 1Dn(AmR) (E.18)

m=1 n=0

1 . . .
where Imn’ En’ Cn and Dn are given in Chapter 4, Egqg. 4.11. Restating

Eg. 4.11b,

m 2H r
Wy

TR \J/‘ 2 W 2
AR=— (2m-1)" - [ — (E.19)

where the mEE>rescnant fregquency of the fluid domailn is

o (n-l) 2© =
wo = (2m~1) = m=1,2,3,... (E.20)

. . th x
When the excitation frequency @ equals the ME—-resonant frequency mM'

0
AR = ) > (E.21)
" [ (2m=3)° = (2m-1) m# M

The investigation into Bessel function behavior (Section E.1l) shows

that

Lim C (AmR) = (£.22)
H - = n=1,2,3,...

ey}
w0
o)
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3
0 n=1,2,3,...
Lim D (A R) = T/4 =0 wwHt  (m.23)
1mr oA = 1 n = M .
M r, -
i 0 n=2~a m+(wM}

ry~ .. r . N
where w+(wM) signifies that w < W, in the limiting process and con-

ro+ . L. .
versely w+(mM) signifies that w > w; in the limiting process, Cn(AmR)

and Dn(AmR) are smooth functions and are bounded for all values of AmR

except when n = 0 and AmR+O (i.e., when m+m;). However, the Limr Cn(KmR)
WA
M
and Limr Dn(ka) exist for all m = 1,2,3,... and forn=1,2,3,... .
W
m
However, Lim C (A R) does not exist (i.e,, Lim_ C (A _R)> -}, Thus,
r ‘o''m r o'm
MM WLL}M

both the functions Bl(m) and Bz(m), E¢. E.17 and E.18 and consegquently the
numerator and denominator of E¢. E.16 contdin terms that become unbounded
as wmr
"
The limit of Eg. E.16 as w*wi can be obtained by factoring out
the term that becomes unbounded, CO(XmR}. Dividing both numerator and
dencminator by CO(RmR) and taking the limit, Eg. E.16 can be rewritten

as

LOX B. (w)
1 ! w
— C (AR C(AR)
Lim_ Y] () = . (E.24)
W w ®
M . 1 1
Ml[“l * 2151(w—) * (m_) ] B, (W)

CO ()\mR) co (AmR)
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Referring to Eg. E,17 and E.18, all terms in the numerator and denomin-
ator of Eq. E.24 approach zero as M; except the term in Bl(m) and

Bz(m} agsociated with m = M, n = 0. Thus, the limiting value of Eg. E.21

is

= Vo oy M

Lim Yx(m) = (E.25)

wwl T 7MLy 1t

r
M MO
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APPENDIX F - SYMMETRY OF S(w)

F.1 Ground Motion In The Upstream-Downstream Direction

It can be shown that the matrix S(w) is symmetric. This is most

conveniently demonstrated by expressing S.

ik’ for j # k {(BEg. 4.16) in

integral form.

/4 H
S.. (@ = +20° 65(6,2) X(0,2,0) dz ao 1
ik = 349 Pk %W Z {(F.1)
O (@]

The symmetric (with respect to 0) model vector ¢? has been replaced by
. . £ . . . .
its continuocus analogue ¢j(6,z) and the continuous pressure distribution

BX(0,z,w) replaces the load vector ﬁx(w). Using expressions for B
k =k k

given in Eg. 4,10, Eqg. F.l may be expressed as

T/ 4 H o0 oo
S.. (wy = ~w2 32 wR .I. J[ E E £ Ik
Jk g n - mn
o o}

n=1 n=0

° [C (A R} + iD (X R)l cos 4nb cos o =
noom n'm i

¢§(6,z) dz db (F.2})
where € , 0O, AR, Ik , C and D are defined in Eq. 4.11, The term
n’ m’ ‘m m:’ n n

. £ o
Iin (Eg. 4.11i¢) is an integral invelving the mode shape ¢k. Recognizing

that

£ _.xf vE .
¢k(6,z) = ¢k (8,z) cos 8 + ¢k {8,z) sin B (F.3)
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where ¢if(6,z) and ¢if(6,z) are the x and v components of ¢i(9,z), Imn

can be written as

T/4 H
k 1 £
Imn =g f f q;k(e,z) cos 4nf cos oz dz 46

O le]

Substituting Egq. F.4 into F.2 and rearranging,

oo [ee)

2 32 w R
Sjk(w) =W f f En

m=1 n=0

/4 H
£
f f d)k(e,'r) cos 4no cos O T dT dC
m
(8] (o]

.[C (A R) + iD (A R)| cos 4nbB cos o =z
n m n' m ™

¢§(8,z) dz a6

Interchanging the integral and summation signs and rearranging,

2 32 w R
Sjk(w) = - f f en
m=1 n=

0

T/4 H
f f ¢§(O,T) cos 4n0 cos OLmT ar 4o
o o

[Cﬂ(K R) + iD (A R)| cos 4nf cos a =z
n''m nw ™

¢i(6,z) dz d8

k

(F.4)

(F.5)

(F.6)
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/4 H
= +2w2 f f qbi(@,z) ﬁ}j((ﬁ,z,m) dz 48 (F.7)

o] o

= Skj {w) (F.8)

Thus, the matrix S{w) is symmetric.

F.2 Ground Motion In The Cross-Stream Direction

Express Sj for j # k (Eg. 5.15) in integral form.

k

/4 H
S W = 42w o50,2) 76,2,0) Az ao (F.9)
ik = ; »2) Py (0,2,0) dz .
[} O

in which the antisymmetric (with respect to 8) modal vector Qf has been
replaced by its continucus analogue ¢§ (8,2) and the continuous pressure
distribution 5;;(6,2,(1)) replaces the load vector _@_i(w) . Using expres-
sions for 'f)i given in Eg. 5.10 and the mcde shape relationship of Eg. F.3,

S{w) may be expressed

fee]

T/4 H co
g (w)__wzezleJ’ J' ZZ
Jk ghH

Q o] m=1

n=0

/4 s
£ .
f I q)k(U,T) sin p 0 cos o T art do
Q o]

[ ]

C (AR) + 1D (A R)| sin U 6 cos o =
n''m n''m n m

¢§(B,z) dz do (F.10)
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where W , 0, A, ¢ and D are defined in Eg. 5.11. Interchanging the
n” m" "m" "n n

integral and summation signs and rearranging,

<o (o8]

/4 ‘ H
2 64 w R
e R 2>
o) o)

m=1 n=0

/4 H
f .
f f d)j(O.T) sin p 0 cos a T dT do
Q (8]

. [C (A R) + 1D (A R)| sin 4 6 cos o =
n''m n' ' m n m

¢§{6,z) dz 4eé (F.11)
/4 H

= +2w2 f f (b}f(@,z) '§§j’(6,z,m) dz do (F.12)
Q O

= Skj(w) (F.13)

Thus, the matrix S(w) is symmetric,
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APPENDIX G - DIMENSIONAL ANALYSIS

In this appendix dimensionless variables will be found for three
guantities: the frequency wj and mode shape Qj of the jEE-natural mode
of vibration of the dam without water and the complex frequency response
function for generalized acceleration of the dam--including hydrodynamic
interaction effects--in the jEE-mode of vibration of the dame, ?:.

The T theorem assures that any physical quantity can be expressed
in terms of dimensionless combinations of variables. This theorem may

be stated as follows:

"Any function of N variables
£(pyr Pyu Pys ByseeiBy ) = 0 (©.1)

may be expressed in terms of (N-K) T products

yen.T

f(ﬁl, L N_K) =0 (G.2)

3

where each T product is a dimensionless combinaticn of an arbitrary

selected set of K variables and one other; that is,

T (P By P Prs1)
m, = f(él, PoseePry PK+2)
Tyg = f(Pl, Poyree Py PN) (G.3)

K is equal to the number of fundamental dimensions required to describe
the variables P. If the problem is one in mechanics, all quantities P
may be expressed in terms of mass, length and time, and K = 3. 1In

thermodynamics, all quantities may be expressed in terms of mass, length,
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time and temperature, and K = 4. The arbitrarily selected set of K
variables may contain any of the gquantities Pi ;ith the restriction
that the K set itself may not form a dimensionless combination."*

A set of dimensionless parameters characterizing w., ¢. and ?5
will be obtained using the T theorem from a set of variables for the
specialized arch dam-water system described in Section 7.2. Denoting

dimensions M, L and T as mass, length and time regpectively, the vari-

ablee that describe the system along with their dimensions are:

Symbol Name Dimensions
Bl radial thickness of dam at the crest L
32 radial thickness of dam at the base L
. . -2
C velocity of sound in water LT
. -1 -2
E modulus of elasticity of the dam concrete ML T
H depth of water in the reservoir L
Hd height of dam L
R radius of upstream face of the dam L
r radial coordinate of points on the dam L
9 angular coordinate of points on the dam Dimensionless
Z vertical coordinate of points on the dam L
fj complex frequency response function for Dimensionless

generalized acceleration of the dam in-
cluding hydrodynamic interaction cffects

o reflection constant at reservoir bottom for Dimensionless
hydrodynamic pressure waves defined in
Section 6.3.2; pertinent only for vertical
ground motion

. . .th . . . .
£. damping ratio for the j— mode of vibration Dimensionless
of the dam

*A .M., Kuethe and J.D. Schetzer, Foundations of Aerodynamice,
John Wiley and Sons, Inc., New York, second edition, 1959.
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.th . .
¢. mode shape vector of J— natural mode of Dimensionless
] vibration of the dam

pd mass density of dam concrete ML“3

P mass density of water ML_3

Vv Polsson's ratio Dimensiconless

. . -1
W excitation frequency T
.th -1
mj j— natural frequency of the dam T

Dimensionless Parameters for mj

The jEE-natural frequency of the dam {without water in the reser-

voir) is a function of the following variables:

mj = f(Bl’ Byr Ry ¥V, Ey Hd’ Dd) (G.4)
Write Eg. G.4 in the form of Eqg. G.1l:
f(wj, By Byy R, V, B, Hy, 0)) =0 (G.5)

There are eight variables and three fundamental dimensions. Thus, there
are five T products. If E, Hd and pd are chosen as the K set denoted in

the T theorem, the T products are

m.o= f(wj, E, Hy, pd)
?2 = £(B;, B, Hy, 0y
My = £(B,, E, Hy, Pyl
m, = (R, E, Hyr Pq)
. = £{v, E, Hyr pd) (G.6)
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The T theorem guarantees that the T products above can be made dimension-
less. As an example, a dimensionlegss combinaticon of the variables In 7

b ¢
dpd' where a, b and ¢ are constants. 1In

1

can be found in the form ijaH

. . . . ab c
terms of its dimensions the quantity ij Hdpd becomes

a b c
1) (272) " (L) ()

(T l)(ML T L ML {G.7)
For Ul to be dimensionless the exponents of M, L and T must be zero.
Thus,

M: a+c¢c =20

L: ~-a+b-3c=0 {G.8)

Ts -1 - 2a =0
Solving the above set of simultaneous equations gives a = -1/2, b = 1

and ¢ = 1/2. The 7 product becomes

T. =W. H —_— (.9

Following the same procedure, the other T products are

po_ oL
2 Hd
v o2
3 Hd
G R
4 Hd
= G.1
T o=V (G.10)

In terms of the dimensionless T products given above, Eg. G.5 can be

written
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R
flw.H —I—I_I"I:I-W[\) =0 (G.11)

An expression for mj is obtained from Eg. G.11 as

w, = L E £ Bl BZ R Y] (G.12)
0 = = - o ’ v 7 e r -
1 E \ Py \Hy Hy " Hy

Dimensionless Parameters for @i

For small damping, the mode shape vector, Qi' is a function of

the following variables

Qi = f(Bl, B2, R, v, 0, z, v, E, Hd' pd) (G.13)
Write Eg. G.13 in the form of Eg. G.1l:
f(Qj, Bi» Byr Ryox, 8, z, v, E, H. pd) = 0 (G.14)

There are eleven variables, three fundamental dimensions and, thus,

eight T products, Chocsing E, H

4 and pd as the K set denoted in the

T theorem and following the same procedures as used above for w,, Eqg. G.14

can be written in terms of the eight T products (see Eq. G.2) as

E‘I—_—IBI;—-I\) =0 (G.lS)

r zZ
,ﬁ—,e,ﬁ——,v (G.16)
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Dimensionless Procedures for ij

Yj is a function of the following variables

= B ’ ’ R, L p r Cr HI r ’ ] -

yj £lw, v, By, B, gj 0 o, B, Hy, Py (G.17)
Write Eq. G.17 in the form of Eg. G.1l:

f(YjI U‘)I \)l Bll le RI g]! pl C’ Hl CX-, EI Hd’ pd) (G'l8)

There are fourteen variables, three fundamental dimensions and, thus,
eleven T producte. Choosing E, Hd and pd as the K set denoted in the
T theorem and following the procedures used above for wj, Eg. G.18 can

be written in terms of the eleven T products {see Eq. G.2) as
— o] B B
se 1 / d 1 2 R o]
£ Y-I wH I\)! 7 7 :E.r—',
d E
3 Hy @ Hy @ Hy 1P

= ;O = 0 (G.12)

An alternate form of the above egquation can be obtained by sub-
stituting the expression for the fundamental natural frequency of the

dam wl, from Eg. G.l12 into Eg. G.19.

(g, ey, 2 22 or o0
7 r s Fi 7 ’ 7 !
3w He  Hg  Hy 710 Py
[0
c :E—le{—oc =0 (G.20)

The fundamental resonant frequency of the water in the reservoir,

; normalized with respect toc w, (Eg. G.12) can be written as

bt N 1
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wr
L
w

=C (G.21)

m%
:Izlmm
E‘DU

d 1
__.f =,
H Hd a

[

Using Eg. G.21 in place of the T preoduct C\/i in Eq. G.20 and re-

arranging terms, Eg. G.20 yields the following expression for Y

wr
1 H
oot Eo ¢ (G.22)
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APPENDIX H - USER'S GUIDE TO COMPUTER PROGRAM

Identification

RADHT : Response of Arch Dams Including Hydrodynamic Interaction
To Harmonic Ground Motion

Programmed: Craig Porter, University of California, Berkeley, 1978.

General Description of the Program

The FORTRAN IV computer program RADHI was written for the purpose
of investigating the effects of hydrodynamic interaction on the dynamic
structural behavior and response of arch dams. The program calculates
the modal response of arch dams including hydrodynamic interaction to
any of the three components of hammonic ground motion: horizontal
ground motion in the upstream-downstream direction, horizontal ground
motion in the cross-stream direction and vertical ground motion. The
response both including and neglecting the hydrodynamic effects due to
motion of the reservoir banks is calculated for the horizontal components
of ground motion excitation. The water in the reservoir can be treated
as either compressible or incompressible. The response of the dam alone
{without water in the reservoir) can also be obtained.

The computer program is based on the sub-structure analysis pro-
cedure developed in Chapters 3, 4, 5 and 6 in which the dam-reservoir
system is restricted to the special geometries and conditions described
in Chapter 2 and Fig. 2.1. Briefly, the upstream face of the dam is
a segment of a circular cylinder contained within radially extending banks
enclosing a central angle of 90°, The reservoir, which is filled with
water of constant depth, extends to infinity in the radial direction.
The dam properties are treated as symmetrical about the x — z (8 = 0)

plane. The dam is fixed at the base and at the banks.
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The overlay feature available for use with CDC computers has
been used in the program. The program is composed of several portions
which are treated as overlays. Each overlay is loaded into the memory
when needed; it is removed fram memory when its operations are completed.
This feature has resulted in a significant reduction of the storage re-

guirements of the program.

Description of the Overlays

The program is composed of a main overlay, three primary overlays,
and three secondary overlays. The functions of the different overlays
are described below:

0.L. (0,0) reads in the main control parameters of the problem and
directs the control to different primary overlays depending
upon the problem type. This main overlay remains in the
memory during the entire execution time.

0.L. (1,0) reads in nodal point and element data for the arch dam and
forms the element stiffness and consistent mass matrices.
The element mass and stiffness matrices are written on tape.
This information is later used in forming the global mass
and stiffness matrices for the arch dam. The element sub-
routines utilized in this overlay were taken fram the pro—
gram ADAP [l] .

0.L. (2,0) assembles the global mass andr stiffness matrices for the
dam from the element matrices and solves an eigenvalue prob-
lem to compute natural frequencies and mode shapes of the
dam (without water in the reservoir). This overlay was

taken from the program ADAP [l]
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0.L. (3,0) computes the hydrodynamic loads, the inertia loads of the
dam due to ground motion excitation, and solves for the
complex frequency response for acceleration of the dam in
its modal coordinates. Secondary overlays (3,1), (3,2), and
(3,3) campute the camplex frequency response functions due
to excitation in the upstream-downstream, cross-stream, and
vertical directions respectively. Note that the response to
ground motions in the upstream-downstream and vertical
directions require symmetrical mode shapes, while the re-
spense to cross—stream ground motion requires anti-symmetric

mode shapes.

Saving Mode Shapes and Frequencies

In the dynamic analysis of arch dams, evaluation of the natural
frequencies and mode shapes consumes a significant part of the excitation
time. Thus, the possibility of using previocusly evaluated and stored
mode shapes and frequencies was built into the program. To utilize this
option, the program should be run first to compute the mode shapes and
frequencies of the dam (without water in the reservoir). At the end of
this job, the data on logical units 1, 8, 9, and 10 should be copied on
physical tape(s) and be supplied to the program in subsequent runs for
computing the response to harmonic ground motion. The physical tape(s)
transfers the following information:

Iogical Unit 1 ... Element data
8 ... Nédal point data
9 ... Structure mass matrix

10 ... Mode shapes and frequencies
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Subsequent runs require no element and nodal point data cards. Assuming
the program exists in binary form, the deck setup and control cards (as
required for the CBC 6400 computer at the University of California,
Berkeley) for the first and subsequent jobs are shown below:
1. First job

Job card

GO, INPUT.

REWIND,TAPELl,TAPE2, TAPE3

REQUEST, SAVE,HI,I,B. (tape number) ,WRITE, (output user name)

COPYBF , TAPEL, SAVE

COPYBF, TAPES, SAVE

COPYBF, TAPES ,SAVE

COPYBF,TAPELQ,SAVE

7-8-9

Program in binary form

7-8-9

Data cards

6~7-8-9

2. Subsequent jobs

Jcb card
REQUEST , SAVE,HI, I,B. {tape number)
COPYBF, SAVE, TAPE1

COPYBF, SAVE, TAPES

COPYBF, SAVE, TAPEO

COPYBF, SAVE, TAPELQ

REWIND, TAPEL, TAPES , TAPE9,TAPELQ
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LGO, INPUT

7-8-9

Program in binary form
7-8-9

Data Cards

6=7-8-9

Input Data

A, HEADING CARD (12A6)
This card contains information to be printed as heading
for the output
B. MASTER (QONTROL CARDS
Two or three of the following cards will be required
depending on the type of problem: |
Card 1. This card is required for all problems (6I5).
Colurms 1-5 NUMNP Number of nodal points in the system.
6-10 MIOT Size of available blank common (see note
below) .
11-15 NF Number of mode shapes of the dam to be
included in the analysis
16-20 NDYN Parameter identifying type of analysis
to be performed.
=1 If mode shapes and frequencies are
to be computed only.
=2 For including the hydrodynamic analysis
21-25 IMODE =1 If mode shapes and frequencies are

to be stored on tape or read from

tape.
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=0 Otherwise

26=-30 IPRM =]l If printout of mode shapes is to be
surpressed
=0 Otherwise

The smallest size of the blank common which is required
by the progrém is

MIOT = 7* NUMNP + 4* NMAT + 3970

where NUMNP = Number of nodal points

NMAT

i

Number of different materials for elements
of the dam.

Tt should be emphasized that the value of MIOT as computed
by the above eguation, in cases of large structural systems
{many degrees of freedom), may be quite inadequate to use.
This 1s because a large number of blocks of equations may
be formed and result in excessive exection time. In any
problem, the number of blocks of equations (NBLOCK) will
be determined from the value of MIOT and other prescribed
parameters. In general, larger values of MIOT will result
in smaller values of NBLOCK.

In most cases of practical interest (arch dam
analysis using a fine mesh) the maximum storage capacity
of the computer should be used and the size of blank
common (MIOT) should be computed accordingly. This will
result in the smallest value of NBLOCK for a particular
case. When analyzing small structural systems, partial
storage of the computer, and hence a smaller value of

MIOT, may be used as long as NBICCK = 1. In short, the
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value of NBIOCK should be selected in such a way that the
smallest value for NBLOCK is obtained without any waste of
computer storage. The user will be able to prescribe MIOT
properly after some experience.
Card 2. This card is regquired for all problems (2F10).
Columns 1-10 RADTUS Radius of upstream face of dam measured in
feet.

11-20 RADHT  Radius divided by the height of the dam

(non-dimensional number).
Card 3. This card is required only when previously computed mode
shapes are to be read from tape (3I5).
Colums 1-5  MBAND Bancdwidth of the system of equilibrium
equations as computed in the previous run.
6-10 NUMEL Total mumber of elements in the dam.

11-15 NEQ Nunber of equations {degrees of freedom)
of the system as computed in the previous
run.

C. NODAL POINT COORDINATES AND BOUNDARY CONDITION CARDS (I5, 3F10, 3I5)
No cards are required when mode shapes are to be read from tape.
In any other case, one card per nodal point is required unless some
nodal points are to be generated.
Colums 1-5 NODE Nodal point number
6-15 ANGIE Angle measured in radians from the center
of the dam. The maximumm angle occurs at
the banks where ANGLE = /4.

16-25 HEIGT Vertical coordinate measured in feet
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26-35 THICK Radial distance from the vertical upstream
face of the dam to the nodal point measured
in feet (always a positive mumber).

36-40 v'~displacement fixity code: zero or blank for

41-45 Vy—displacement free component, one for fixed com-

46-50 vz—displacement component.

These cards must be in increasing nodal point numbering sequence.

However, if a set of cards is omitted, the corresponding nodal

points are generated at equal intervals on a straight line

connecting two nodal points for which coordinates are supplied.

Due to the symmetry of the problem only half the dam is

descritized (see Fig. Hl). Input for ground motion in the

X direction (upstream-downstream direction) and in the z di-

rection (vertical direction) reguires symmetrical boundary con-

ditions for nodal points on the plane of symmetry of the dam.

That is, the vadisplacement for nodal points on the plane of

symmetry must be fixed (a one in card column 41-45). Input

for ground motion in the y direction (cross-stream direction)

requires anti-symmetrical boundary conditions for nodal points

on the plane of symmetry of the dam. That is, the vx—displace—
ment for nodal points on the plane of symmetry must be fixed

(a one in card column 36-40).

The dam must be descritized such that all elements have the

same included angle and the same height on the upstream surface.

Hydrodynamic considerations impose this requirement.

The dam is only one element thick.
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D. THREE-DIMENSIONAL THICK SHELL ELEMENT DATA

No cards are required if mode shapes are to be read fram tape.

Otherwise supply the following cards:

1.

Control Card (3I5)
Colums 5 The number 2
6-10 Total number of elements
11-15 Number of different materials (NMAT)
Material Properties Cards (15, 3F10)
One card is required for each material type:
Colums 1-5 Material identification nunber (< NMAT)
6-15 Modulus of elasticity (pounds/(foot)?)

16-25 Poisson's ratio

2635 Welght density of material (pounds/(foot)3)

Acceleration of Gravity Card (F10)
Cne card is required
Colums 1-10 Acceleration due to gravity (ft/secz)

Element Cards

Arch dam eleaements are nunbered from one to the total number

of elements. FElement cards must be in ascending order.
cards are required for each element:
Card 1. (3I5)
Colums 1-5 Element number
10 The number 3 {(integration order)
11-15 Material number (if left blank material

number equals 1) .

TWO
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Card 2. (16I5)

Colums l—5~\\ f’;l
6-10 2
11-15 3
16-20 4
21-25 s
26-30 6
31-35 Global nodal point 7
36-40 % numbers of nodes 8
41-45 (See Fig. H2) < 9
46-50 10
51-55 11
56-60 12
61-65 13
66-70 14
71-75 15
76-80_/ \ 16

Note 1: A typical 20 element mesh is shown in Fig. Hl. Element
nunber one must be adjacent to the base and plane of symmetry
of the dam. Elements in the z direction must be numbered in
ascending order. After reaching the top element in a colum
of elements the next element numbered must be the base element
of the next colum of eléments associated with an increase in
8.

Note 2: Due to the way that the hydrodynamic terms couple to the arch
dam nodal points, the global nodal points correspond to the

local element nodal points in a specific manner. The element
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surface containing the local element nodal points 5, 6, 7, 8,
13, 14, 15, and 16 corresponds to the upstream face of the dam
{i.e., the face of the dam in contact with the water in the
reservolr). TLocal nodal point 5 has the largest ANGIE (angle
from the center of the dam) and the largest HEIGHT (vertical
coordinate) of any nodal point associated with a particular
element. ILoosely speaking, the axis (Fig. H2) of each
element must be lined up approximately with the vertical, z,

axis of the arch dam (Fig. H1).

E. HYDRODYNAMIC CARDS

The following cards are regquired only if hydrodynamic loads
are included in the analysis.

Card 1. (2I5, 3F10, 3IDH)

Column 1-5 NUMELZ Number of elements in z direction

6-10 NIMELT Number of elements in 6 direction

11-20 ™ Half the included angle of the element
{radians)
21-30 ZW Element half height (ft)

31-40 HWATER Depth of the reservoir (ft)

41-45 NTERM Number of terms associated with the
direction in the series solution fox
hydrodynamic loads (see Eq. 4.8 to
4.10 and 5.8 to 5.10)

46=-50 MIERM Number of terms associated with the
z direction in the series solution for
hydrodynamic loads (see Eq. 4.8 to

4.10 and 5.8 to 5.10)
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Note 2:

CARD 2.

Columns
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=55 IXYZ Parameter identifying the direction of

ground motion

=1 Horizontal ground motion in upstream-—
downstream direction (along X axis in
Fig. 2.1)

=2 Horizontal ground motion in cross-stream
direction (along v axis in Fig. 2.1)

=3 Ground motion in vertical direction

(NUMELZ) * (NUMELT) = Total number of elements

(NUMELZ) * (zw + 2w) Height of dam

{NUMELT) * (tw + tw)

/4 radians (dam half angle)
The nmunber of terms, NTERM and MTERM, required to approximate
the infinite series solution variesg with the reservolr natural
frequency, the radius of the dam, and the frequency of excitation.
For most earthcuake excitation problems NTERM = MIERN = 10 is
adequate.
(2810, 215)
1-10 DAMP Damping factor to be applied to all modes
11-20 ALPHA  Coefficient of refraction between water and
ground rock below reservoir. This may be
computed as ALPHA = (k-1)/(k+l), where k =
Crwr/cw with w_ and w being the wnit weights
of rock and water respectively, Cr the P-wave
velocity in rock and C the velocity of sound
in water (4720 ft/sec). ALPHA < 1. Used only

for vertical excitations.
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=30

Note:
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INCOMP Parameter for incompressible water solution
=0 Water treated as compressible
=1 Water assumed to be incompressible
NPUNCH Parameter for punching complex frequency
response results (see note below)
=0 Does not punch results
>1  Punches results
If NPUNCH >1, a set of complex frequency response results
are punched for each excitation frequency. For horizontal
ground motion in the upstream—downstream direction and in
the cross—-stream direction, two cards are punched for
every mode shape included in the analysis. Thus, if
10 modes are included (NF = 10) and if results are required
for 50 excitations, the total number of punched cards equals
1000. DPunched results for vertical ground motion have

only one card per mode shape per excitation frequency,

F. EXCITATION FREQUENCY CARDS

A negative

Cutput

One card with format £10 is required for each excitation frequency.

Colunm

frequency card terminates the prodgram.

1-10 WWIDAM Excitation Frequency, w, normalized with

respect to the fundamental natural fre-

d

cuency of the dam, wy -

The following is printed by the program:

1. Program control information

2. Coordinates of nodal points on the dam

3., Material property parameters
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Nodal point - shell element comnectivity information

Natural frequencies and mode shapes of the dam (without water
in the reservoir) unless surpressed according to the options
provided in Card B.

Hydrodynamic input parameters

The real and imaginary components together with the absolute
value of the complex frequency response function for modal
acceleration (i}j @), 3=1, 2, ... NF) of the dam in each

mode for each input excitation frequency.

The response of an arch dam—reservoir system to vertical ground

motion with 58 nodal points descritizing half the dam illustrates the

preparation of input data for this program. Figure H3 shows the nodal

point numbering scheme for the example. The input data is obtained from

the following parameters.

Radius to upstream face = 450 ft.

Height of dam = 300 ft.

Depth of water in the reservoir = 300 ft.
Modulus of elasticity of dam = 720 x 106 psf
Poisson's ratio of dam = .17

Weight density of dam = 150 pst
Acceleration due to gravity = 32.2 ft/sec2
Modal damping ratio = 5%

Coefficient of refraction between water and ground rock = 0.85

Size of avallable blank common = 12,000

Number of frequencies for modal analysis =1
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Radial width of the dam at the crest = 12.6 ft.

Radial width of the dam at the base = 50.0 ft.

The dam has a constant cross-section normal to the radial
coordinate

Excitation frequencies are w/w1 = 0.100 and 0.500

Half the dam is divided into six elements

Ten terms for each sumation are used to approximate the in~
finite series for the hydrcdynamic loads.

The input data required for the dynamic response analysis of the dam

is presented on the following page.



EXAMPLE PROBLEM - 38 NGDE ARCH DAM MESH - MARCH 1878

5812000 1 z
450. 1.5
1 e 0.0 0.0 1 1 1
] Mo 8500.0 0.0 i
g .0 0.0 50.0 1 1 1
10 .0 300.0 12.6 1
11 . 1303 0.0 0.0 1 1 1
13 . 1809 300.0 0.0
14 L1309 0.0 50.0 i 1 1
18 . 1309 300.0 12.8
17 28618 0.0 0.0 1 1 1
21 2618 300.0 0.0
22 .18 g.o 50.0 1 1 i
28 , 2618 30C.0 12.86
27 . 3927 0.0 0.0 1 1 1
29 .3ez7 300.0 0.0
30 Rl 0.0 50.0 1 1 1
32 . 3827 300.0 t2.6
33 . 8238 0.0 0.0 1 1 1
37 . B236 300.0 0.0
38 . BE3s 0.0 50.0 1 1 1
42 . 5238 300.0 12.6
43 L 548 0.0 0.0 1 % 1
45 . BB45 300.0 0.0
46 . 6545 0.0 50,0 1 1 1
45 L GB45 300.0 12.6
449 . 78540 0.0 C.0 1 i 1
53 . 78540 300.0 0.0 1 i 1
54 L Y8540 .0 50.0 1 1 1
58 L 263540 300, 0 12.8 1 1 ]
2 8 1
1720000000, A7 180.0
3.2
1 3
24 22 8 8 ("] 17 1 3 23 14
2 3
28 24 8 10 21 19 3 5 25 15
3 3
40 38 22 24 35 33 17 19 39 30
4 3
42 40 24 28 37 35 19 21 41 31
5 3
56 54 38 40 51 49 33 35 55 48
& 3
58 56 40 42 5z 51 3% 37 57 47
2 3 L1308 75, 300. 10 10
0.05 0.85
100

vec

[



Hl. ELEMENT NUMBERING OF AN ARCH DAM
ELEMENT MESH

FIG.
DEMONSTRATED WITH A 20
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FIG. H2. LOCAL ELEMENT NUMBERING - THREE
DIMENSIONAL THICK SHELL
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54

NODES 1 THROUGH 10 ARE LOCATED ON THE PLANE OF SYMMETRY,
NODES 49 THROUGH 58 ARE LOCATED ON THE BANK.

FIG. H3. EXAMPLE PROBLEM — NODAL POINT NUMBERING OF
5B NODE, 6 ELEMENT ARCH DAM
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3 ) 4
t 4 6 b S
2 4 1
LOCAL NODAL GLOBAL COORDINATES LOCAL COORDINATES
POINT NUMBER 9% 2% (Em
[
1 €2, 29 -1, -1
2 (6;, z‘:) (1,-1)
e e
3 {92, 22) (1, 1)
e _&
4 (01, z,) -1, 1D
8% +6°
1 2 e
5 ( > 21) (0, -1}
pals z
s <1
6 (32, > ) (1,0
0%+ 08
1 2 e
7 ( . 2 ©,1

8 (. 557)

FIG. Dl1. Iocal Global Corrdinates of Eight Node Surface
Elament on Upstream Face of the Dam
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APPENDIX I - COMPUTER PROGRAM LISTING



240

EXAMPLE PROBLEM™ - S5& NODE ARCH DAM MESH - MARCH 1978

58124500 1 2
45C. 1.5
1 . C 2.4 Cel 1 1 1
5 3 0. e 1
4 O 0.0 50.0 1 1 1
10 o2 200.0 12.% 1
11 « 1309 .2 0.0 1 1 1
1z <1309 00.0 0.0
14 + 1309 0.0 53.0 1 1 1
1¢ 1309 TEc.n 12.6
17? 2618 5.0 .0 1 1 1
21 2418 350.3 8.0
22 P63 C.0 50,0 1 1 1
Z2& <2612 300.0 1244
27 2527 T.0 0.0 1 1 1
z29 3627 Ige.0 .0
30 £21527 .0 5C.C 1 1 1
12 2927 300.0 12.¢
3 .52%¢ 0.0 0.8 1 1 1
27 .52%6 13C.0 0.0
i3 52326 3.0 50.0 1 1 1
42 WSl 230,90 1246
42 6545 Jed 0.0 1 1 1
45 $5545 LoD 0.0
44 £5465 Ceu 50.0 1 1 1
48 6545 *ac.0 124¢
49 78540 .0 2.0 1 1 1
53 75540 oLt 0.0 1 1 1
54 L7547 r.0 0.0 1 1 1
5% 73540 300.0 1246 1 1 1
2 b 1
172000000 $17 150,72
2.2
1 3
24 2 ¢ e 19 17 1 3 23 14
2 3
25 24 2 10 el 19 E > 25 15
z 3 :
«0 18 22 24 35 i3 17 19 9 30
4 3
62 4c ch 26 37 35 1% 21 41 31
5 3
L 54 38 ) 51 49 33 35 55 (3]
6 3
58 56 40 4e 53 51 35 37 57 &7
2 3 L1309 5. 30C, 1C 10
0.0% 0.25
2100
. 500

o]
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2
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100

200
i
i

201

400
1500
1630

OVERLAY{ XFILE«C 0}

PROGRAM RAUHI{ INPUL, DUTPUT (PUNCH,TAPEG=INPUT, TAPEG=OUTPUT» TAPLL
TAPE2, TAPES yTAPE4, TAPET 4 TAPESB, TAPED TAPELO,TAPELL. TAPEYY)

CCHMON/JUNK/HED (12] ,00M(388)

CUMMON /7 MISC / NBLOCK«NEQB+LL+NF+LB +NDYN

aabi
Rapi
KADH
RADH
RAQiH

COMMON /ELPAR/ NPAR (LG NUMNP yMBANDSNELTYP (N1, N2¢N3,N4, NSy MTL Ty NEQRADH

1 N6y NUMNPF
$IPRM  , MESH oMESHFN JISYM,WDEN. T (L0}
COMMON/RADDD/RADIUS s RADHT

PROGRAM (ONTRUL DATA

READI541L00) HLDeNUMNPyMTOT ) NE «NDYNe [MODE » IPRM
NELTYP= 1

Li=0

NLM=O

NEQEST=0

ESTVOL= C.0

MESH=0

MESHFN=Q

WATL=0.0

HOEN=0,0
WRITEL64 200 IHED o NUMNP 4 MTL T NF

READ 1500,RAD1IUS,RADHT

PRINT 1600¢RADIUSRAOHT

TV0L=0.,0

NUMNPF=NUMNP
IF([MOCE . LE.U.UR«NDYNLLE. 1) 60 TO 3
READI54+%0QI MBANUy NUMEL 4 NEQ
WRITE(6: 201 IMBAND s NUMEL 4NEQ

1MASS=1

IFIIMOLE .GT O ANDJNDYNL.GT .1} GO TO 4

INPUT JUOENT UATA AND ELEMENT DATA
FORM ELEMENT STIFFNESSES~--3TIFF, ON TAPE 2 -
FORM CONSISTANT MASS MATR X

CALL OYERLAY{OHXEILE»L1+0¢6HRECALL}

p IPRINY pNLM (NUMEL +WATL,s IMASS»TVOLWNEQEST.IAUDE RADH

RADH
RADH
RADH
RADH
RADH
HADH
RAD
RADH
AALIE
RADK
RAon
KADH
RADH
RADH
HALH
HAOH
RAVH
RADH
HAUH
RADNH
Kar
RADH
RADH
RADH
pand
RADH
RADH
RAOH
RADA
RADA
®ADH
RAUN

SOLVE FUR NATURAL FREQUENCIES AND MODE SHAPES ODIRECTLY 8Y SuniPACERADH

LTERATIONG sau s

CALL OVEKLAV(SHXFILE 240+ 6HRECALL}
IF(NDYN. LELLISTOPR

OLVE FOR HYDRUDYNAMIC FREQUENCY RESPONSE FUNCTICNS
CALL OVERLAY(DHXFILE:31046HRECALL)

SToP

FORMAT {1 2A6/6151

FORMAT(kHL, l2a6///
28H NLUMBEK UF WOUVAL POINTS = 21577
28H REQU. ULANK COMM. STORAGE= 157/
2B8H NUKBER UF FREQUENCEES = L1577

FURMAT I3 THUHALF BANOWIOTHus essennasnscannanssaes 14//
37H TUTAL NO. OF ELEMENT Seensssassassaae 3 l&//
34 Nue UF EQUATIONS cuaccesnusnssonennss r14//)

FORMAT{3 15}

FORMAT [2FL0.01

FORMAT(/ /90 RALIUS =,F 1043, 10X BH RADHY =.F10.4///)

RaDH
HAOH
RAaDH
Hadtt
RAO
“ADH
HAlH
RapH
RADH
RADH
rAUN
RADH
RAUY
RAUH
KRAUH
Aaon
A Al
KAD
QaoH
A0
KAUH

PN -

18

[
-3}

2000

190

15¢

200
250

251

252
253
500

2004
2¢05

END

SUBROUTINE ERRDRINI

WRITELby 2000IN

FURMAT{Z IHSTURAGE EXCEEDED B8Y 45}
sTOP

END

SUBRQUTINE PRINTULIL yOsBeNEQE ¢ NUMNPF yLL gy NBLOCKyNEGeNT gNF )
O IMENSIUN BENEGBsLL )05, LLY » TDUNUNNPF, 3)
REWIND N1

READ(NT?

REWIND 8

READ (&) D

M=NEQ

NN=NEQB*«NOLOLK

WRITEl6,2005)

NaNUMNPF

DO 500 KK=1,NUMNPF
i=3

00 250 [I=1,3

00 100 L=l.ib
DtlgLi=0.

{FIHGT. NN} GL TV 159
IF (MakQ.0} GU TU 159
READ (NT) B
NN=NN-NE Qi

TF{IDENe T4alTul) GO TO 250
KaM-NN

H=M-1

D0 200 L=leli
DELsLI2BEK L)
I=1-1L

DO 251 K=1, 3

IFUIDINSKJWNELO) GO TO 252

CONT {NUE

GO TO 253

WRITE(6.2004) NefL EDULsLEsI=1,30sL=1,LL)
CUNT INUE

N=N~1

RETURN

FORMAS{LHO» 134059 7Xs IPAEL2.3/{ 19+ TXKss3EL12.30)
FURMAT (i THL en sy « MUDE SHAPES// 7y bR NUDE, L1Xe LHX, LL1X, LHY, ILX ¢ LRZ}
END

RADH

ERRJ
ERR{
EKKG
ERRD
ERRU

PRIN
PRIN
PRIN
PRIN
PKIN
PRIN
PRIN
PRIN
PRIN
PRIN
PRIN
PRIN
P#IN
PRIN
PRIN
PRIN
PRIN
PRIN
PrIN
PRIN
PRIN
PRIN
PRIN
PRIN
PRIN
PRIN
PRIN
PRIN
PRIN
PRIN
PN
PRIN
PRIN
PRIN
PRIN
PRIN
PRIN
PN
PRIN

&2

D

——
N O DG =™

—
-

—p————
@~ s

19

844



OVERLAY{ XFILE«L 0}
PROGRAM MAlNL

COMMON ALL)

COMMON FRALUD/RADIUS o RARHT

MalnN
MATY
MALN
AT N

COMMON /ELPAR/ NPAR(L4) s NUMNP ¢ MBAND o NELTYPaNLsN2aN3 o NG o NS MTUT S NENMATN

+ oNG6y NUMNPF
« o MASTIF, MESH, MESHEN e [SYM WDEN
COMMON 7/ JUNK/ MMeLoK.NTAGSIGI3L8)
Ni=]

NZ=N L +3&NUMNP

N3=N2+NUMNP

Ne=NI+NJUMNP

MO=N4eNUMNP

No=NS+NUMNP

TFINGLGY ,MTOTN) CALL ERRORING-MTUT}
CALL INPUTNSIAINI). A{NZ), NUMNP, NUMNPF, HEW» NERESTI
MBAND=0

NUMEL=O

REWIND L

REWIND 2

READ (5,1001J) NPAR

WRITE (1} NPAR

NUMEL=NUMEL +NPARL2)

NI=N&6ENP ARL 3)

N8=NT+NP ARL 3}

NG=NBeNP ARL 3)

N1QG=N9 +NPAR{3)

N11=N10+63%63

IFINLLLOT.MTOT) LALL ERROR{NLI-MTIOT)

s IPRINT pNLM yNUMEL#WATL,DUM{2),NEQEST, IMUUE

CALL ELST3ULAINIO)N,NPAR{2)a NPARIB]s NPAR(&Fs AINI)y ALNZ). A(N3].

- AfNaly A[NG)y AINT), A(NB):y A{NYI, NUMNPE,
RETURN

1001 FORMAT (1415}
£ND

SUBRQUT INE INPUTNS{ I Dy COURD yNUMNE ¢ NUMNPF ¢ NEQs NEQEST

C

COMMON /RAGUO/RADIUS ¢ RADHT

CORMUON AL L)

CIMENSEON TDANUMNP 231 COORD{NUMNP,413, DXY2{3)
c
C READ (CQORDINATE ARHAY
4

NODE=1

5 NOD=NODE

IF{NUDE. EQ.NUMNPIGUTO L1

READ 2000 ,NUGEsANGLF 4HEIGHT, THICK « ( TDINODE K} 5K=1. 31
COURDAINUJE, L)= (RADIUS — THICK) *COS{ANGLE)
COOROUNOUE 2)= IKADIUS = THICK) *SINIANGLE)
COOROUINDUE 3) = HEIGHT

IF(NGQUE - NUD.LE.Ll) GOTO 5

INF= NGJE - hUw -1

SYEP = [NT+1

00 6 J=1.,3

OXYZ{di= [COORLBENUDE.J) = CODRO(NOD.JI}/STEP
NODG= NUD

o

ALNS) )

AN
MATN
MATN
MAEN
MALN
MATN
MA LN
MALN
MATNM
MALN
AATN
MATN
MALN
MAIN
MATN
MATN
MATN
MATH
MATN
MALN
MAIN
AT
AN
MATH
MATH
MATN
MAIYN
MATN
MATN

INPU
INPU
INPU
INPU
Ity
InNPY)
INPY
ey
IhPU
INPUY
ey
INPY
NPy
NPy
NPy
INPU
TPy
NPy
NP
INPU
NP

[N -RN- SV AT A W N

[

>

18

<

20
21
22
23
2%
29
26
27
24
29
3
3t

33
14

N DL G T e T

13
14
1%
16
17
13
1y

21

DO 10 I=i,0NT ey
NODG= NOBLG + 1 INPY

00 9 J=1,3 INPU
CORROINIUGy J)= LUGURDINGD I} + DXYZ L) EnPU

9 10INODGeJI= TULNUDRES JI TNPU

10 NOD= NOD + 1} INPU
IF[NODE LT, NUMNP) GUTOD 5 INPU

11 0O 20 Ll=]+NUMNP INPJ
COORDEI,c 4= 0.0 INPU

20 CONTINUE INPY
PRINT 354 (NUDE+ CCOURDINODE+J)e d=1 440 s LIDINUGE K) 4 K=1,3) yNCDE=L yNUINP U

1MNP) NPy

INPU

C NUMBER UNKNOWNS Ineu
144 NEQ = 0 INPU
BU 140 1 = Ly NUMNPF InNPY

DO 140 J = 1,3 [NPU
IF{I0(1odi-1) 137,138,138 INPU

131 NEQ = NEQ + 1 INPU
LO(IeJd} = NEQ INPU

GO TU l4q INPU

138 {0{i«J} =0 INPU
140 CONTENUE INPU
IFINEJEST.EQ. Q) Gu TO L0 INPU
TF{NEQEST . EWLNEWQS GO TO 160 TP
WRITEL 6y LUJUI NEUNEGEST INPU

STQP 1NPU

160 CONTINUE inPU
REWIND 8 INPU
WRITE (81 1D INPU
WRITEL{B} COORD INPU
RETURN e

35 FORMATI////7/718H NODAL COORDINATES /7 INPU

1 5H NODE 8Xs L1HXsliXelHYoLLlXoLHZQLEXoLHY,SX,13HIDX (DY 122/ INPU
2015, %0 3% 4F9.3) 43151} INPUY

L000 FORMAT{UZ5H LALLULATED NO. OF EQNS.=15/ ITNPU
. 2Z5H ESTIMATED N(. DF EQNS.=151}) INPU

2000 FORMAT(IS5,3F10.0.305) IKPY
END LNPU
SUBRUUTINE ELST3U {54NIDELeNMAT  NLD oI Xy¥,2+EEENUZRHOSALPT, ELST

- NUMNP« TEMR) ELST

c ELST
< STIFNESS SUBRUUTINE FOR 48 OuF. [SUPARAMETKIC3D THICK SHELL ELEM. FLST
[ LEINEAR ELASTIC ISOTROPIC MATERIAL ELST
C NINTENINT#{NINTF~1} GAUSSIAN INTEGRATION RULE USED ELST
C NINT=1424349 ELST
C ELST
ODIMENSIUN SUb63,463) ELS]
OIMENSLUN X (NUMNP Y oY {INUMNP T« ZONUMNP 3y [D (NUMNP, 3) 5 TEMR(NUMNP) FLST
DIMENSIUN EE{L},ENULLY,RHO(LELALPTL LI LLST
QIMENSLON STRTS01043) yNOIR(IDYy [PP(&,2) ELST
COMMONAEM/LM{ 4B 3 eNDoNSoSSI48,4813RF{48,4):XM{4B,%8),5A(40,48} ., Ftsr

° SFLaQsd) ELsd
COMMUN /GASS/ XKL4:e4) o WGT (440 [PERM(3) ©OELST
CCMMON FJUNK/ ELeb24 E3DETeMLDUG) s KLD(S) v MULT L4}, MP{ 16}, INPILS),  ELST

. AL3¢3) . P03,20)0.803,3),xX{16,434Q819),00L(16), LLST

———
PR DB NP AP —

L%
15
16
17

A



[ X o]

[aN ol

. TTL4BY XLFLAL YLF (&) e 2LFT &) TLELS)PLF (5] LesT
- REFTy ENEL ININT g [MAT yIINC ¢ TTEMP ¢ NEL oML s NINT ¢ MAT ELST
a INCoTAGITEMP¢SKEP s T o JaKaLs FAL ¢ LCL4LC29C034CL&a5G. ELST
- DENSFACT o GT,G66,CL2C2,C3.C+KLIK2 ¢ TRIG),THICK(E] LSy

«  +MoNUMNPF

COMMUN /ELPARYS NPARC LG o NUMN o MBANDGNELTYP (NLsN2 N3 N4 NS MTDT, HERELS T

JIPRINT o NLM s NUMLL WATLe IMASSATVOL «OMMIB) v nDEN £1ST

LLST
DATA XK / Oay [/ [/ .y ELST
L =.57735026918906e -5F73502691896, Quy Oes ELST
2 ~aTT459666924L5, .0000000000000, 7745960092415, Qs LLST

3 —uB6LI363115991,-.3399810435849, 3399810435849, .86113031L594L/ LLST

DATA WGI / 2.000, Uer Gay Des ELST
1 1.0000000000000,1.0000000000000, 0.y O.y ELST
2 .5555555555556, 4888488888889, .5555555555%56, Jes ELST

3 3476548451375, 6521451548625 6521451548625, 3478548451375/ ELST

DATA IPERN 7 243,17/ ELST
CATA STPTS 7 la s Lle v=1lo w-le +» Q0o » 0. » 0o » De + Do 4 Q. o+ ELST

. Os v Os 9 Ga 9 Gu gy ko v 1o s=1ls s=le » 0s » 0o + ELST

- e #=la v 1o 4-le o Lo s=Le 9 1a 9g=1u p la y-1a / ELST
DATA IPP/le2e3a0a2e3:102+3:2+3.:17 LLst
ELST

ELST

00 9 I=l. 6930 ELS 1

9 LMUsD=0 ELST
11p=3 ELST
WRITE(Hy 30024 N3DEL,NMAT ELST
cLsty

MATERIAL PRUPLRTIES ELSY
WRITE 1&,1300) ELST
DO 1 I=1oNMAT ELST
READ  15¢1001) NyEEENI«ENUIN) ¢RHOLN) ELST
ALPY(NI= 0.0 [

L WRETE 164200l) NeEELNISENUIN) fRHOIN) ELST
READ(5,1003) GRAV ELST
REFT= 0.0 LLST
IFIGRAV.EdeOa) LRAV=1385.0 ELST
WRITE[69 20031 GRAV 399
CLST

WRETE (B8,1301) ELST
NEL=0 ELSY

30 READ (5,1000) INEL p ININT I MAT FINCoMLDw [ Gy 5GGy [NP FLSY
00 39 I=l.% ELST

39 MULT(1)=1 ELST
IFCTINC.£Q-0)0 LINCSL FL5T
IFELHATL EQ. O iMAT=] ELST

40 NEL=NEL+1 ELST
ML=TNEL-NEL £LSt
IFIMLY 50+55.860 ELST

50 WRETE (6440031 [INEL ELST
sTue ELST

55 0O $6 I=l.l6 ELst
56 NP(I)=INPLL) ELST
NIMT=INLNT ELST
MAT= IMAT ELST
INC=11INC ELST
TAG=1HI ELST
SKIP=99%« ELST
IFININT) 33,33,57 ELST

33 NINT=TABSININTI ELST
SK1P=1. ELST
FF{NINT+£QaD) SKIP=0. ELST

57 CONTINUE ELST

14
19
21
21
22
23
2%
25
26
27
213
29
30
31

33
3%
15
1o
37
3R
e
40
41
47
43
4a
4h
He
47
48
45
50

52
53
54
85
Sa
57
EX]
59
0
61
&2

6%
65
6h
of
b4
64
79
71

2
2

7%
Ta
75
re
17
T8
79

oOon

58
29

60
6l

64
82

10

63

100
1i0

120

i21

123

Do §9 I=1,
KLO{ [ )=1 Al
IFIMLDLLD
MULTILLI=0
CONT +NUE
GO 710 &2

4
SiMLUCL )
28458429

DU 61 I=}1+l86

NP{TI=NP (L}+INC

TAG=1H

DO 64 I=1.4

KLO(LP=KLOL LEMULT T
WRITEL0» 20001 NELeNP NINT,MAY

DO 10 4 = 14l6
K=NPil)

XX{Igll=XIK]

XX{La20=YIK)

XXQ1930=2LK)

XXt1g4d= TEMREK)

CONT iNUE

K=MAT

FAC = EELKIZUI1a=2.%ENUCKI) &{ 1o #ENULKD I}
CCTT=FAL® (L. +ENULK))

LFLSKIP) 70,7403

SKIP=SKIP-1.

CC1=1l—ENULKI

CC2=ENULK)

CC3=.5-ENULKI

DEN = RHO{K)

L3=63%53

DO 100 i=1y4L3
M1i=0.

DO 110G L=1.48
TT{1)=0.

DO 120 t=l.16
pLiL)=0.
L3=48%44

DO 121 121y L3
xMUL1=0.0

0G 123 (=1, ls&u
SFII1=0,0
voL=0.0

LGOBP OVER NINT*¥3 INTEGRATION PUENTS

MINT=NINT-1

DU 300 LX = LeNINT
ELl=XK{LX «NINTJ
E2=XKILY (NINT)

PO 300 LI = LeMINT
E3=XK{LZNIND)

CALL FUNCF{1l.5A)

G = WGTILXoNINTF*WGTILY NINT) *WGT{LZ MINT)}

GV=G¥DET
Gi=6
GG=G*BET *DEN
GGG=GG/GRAY
G=GeFAL/OLT

ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELSY
£LST
ELst
ELST
LLsT
CLST
ELST
ELST
ELST
ELST
ST
ELsT
ELsT
FLST
ELST
ELST
ELST
eLST
ELST
tLST
ELST
ELST
CLST
FLST
ELST
ELST
ELST
LLST
ELST
ELST
LLsT
ELST
ELST
LLST
ELST
ELST
ELST
ELsT
L8t

ELST
ELST
ELsT
FLSY
ELST

£LST
ELSY

ELST
tLST
£LST
ELST
tLST
ELST
ELST
ELST

10z
Loy
104
198
106
17
108
Log
119
111
112
113
1l4
115
Ll&
17
118
1%
120
121
122
123
124
123
126
127
Lag
1i9
130
131
Laz
133
124
135
t3n
13y
138
139
140
L&l

£ve



ek y)

[l %]

[aXaX 2]

13¢

31

-

300

3000

406

Cl=GaCCL
C2=GeCC2
C3=6%C3

CONSESTENT MASS MATRIX

RO 130 [=l. L&
LI=1i~1143

DO 130 J=l. L6

Jumig-lie3

KH=QITI*U{JI%GGE

00 130 K=1,3

Kilx[eK

Kd=JJ¢K

XMIK LKA A= XML KT oK) +HH

XREKS o KN DS KNT KT oK)

ADD CONTRIBUTION TO STIFFNESS MATRIX
VOL=VOL+GV

00 300 i=1,21

K3 = 391

K2 = K3 = 1

Kl = K2 = 1

ui=Satly 1)
Vi=SAl1e2}
wi=SAt1,3)
G0 300 J=1421

L3 = ayy
L2 =13 -1
Ly =2 -]

Ud=SAlJdo L}
VI=SAl Js 22
WJ=SALJy 3}
Uu=yisuy
V=V 1RV)
Wu=WI*wd
Yy=ui=vy
Yu=v el
Ud=UT+nd
wUaW [*Uy
V=Y [&WJ
W=k Irvd
S{KLeL L)
SIK2.L20
S{K3,.L 3}

SIKLeL L) + CisUU & CAR(YVenw?
S4K2:L2) + CLlavy » CAS[WWvUU}
S{K3 L3} ¢ CleWw + CAR{UU*VY)

+ +

+ *

+

[

SURLeL2) = S{KisL2} + C2*UV + C3*yy
StKleL2) S{Kl.43) C2aUn CAkhWy
SEK2,L3) = SIK2,L3) + C2*VW + CI¥KV
IF (1.EQ.J) 6O TQ 300

SEKZaL i) = SUKZ24LL) + C2%VU « C34uyv
SUK3,L0) = SUK3,LL) + C2¥WU + CI®UW
SIK39L2) = SUK3,L2) + C2eWV + [3wvw
CONT INUE

TVOL=TVOLevOL

FORMAT(14H ELEM. VOL. a2 E15,7)
PRINT 3000, VOL

TNTEN |

STATIC CONDENSATION

DO 730 H=1, 15
MN=64-M

ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
FLST
ELST
ELST
FLST
ELST
ELST
ELST
ELST
ELST
eLsT
£L5T
ELST
ELST
ELST
ELST
ELST
ELST
ELST
£LST
ELST
ELST
ELST
ELST
ELST
ELST
ELSY
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELaT
ELST
ELST
ELST
ELST
ELST

ELST
ELST
ELST
ELST

142
143

164
l4h
L4a
L47
148
14y
150
151
152
153
154
16%
313
a7
154
159
160
161
t62
163
164
165
166
167
168
169
170
171
172
173
174
175
174
177
178
178
180
t81
182
183
18%
185
184
187
184
189
190
191
192
163
1494
193
194
197
198
199
200
201
222
203

Onn

65

o

700
710

711

760

iz akal

5085
70

Eal gk o

410
448

550
551

10

aon
P

590
&0C

1090
1001
1003
2000
2001
2603
1300

MO=HN-1 5
FTIFFNESS MATRIX - 5

SP2S{MN. MND

DO 650 1=1/M0
SIMMoL)=G1LoeNNI/SP

00 700 K=1,MD

PSS IMNLK)

PO TOC J=1,K

S{deK)=S1JeK) = SPHSLJMN)
CONTINUE

0Q 760 [=1,48
PO 760 J=[r4s
$3(1ed)=5114Jd)
SStd,Li=38811,d)

SAVE ELASTIC PRUPERTIES

SALLT,10=CC )
SALT.2180(2
SALL17,3)=CC3
SAL1Tp4raFal
00 505 [=l.7
SALL)=SF{1)
CONTINUE

DiSTRIBUFED LOAD

DO 410 J=1,48
DO 410 I=l,4
RF{dyL¥=0.

[J=0Q

DO 6561 =1, lé&
LIsNP{ D)

DO 550 J=i,3
14=1J¢l

LML= iDELLs )
CONT INUE

CONT INUE

N§=1

ND=46

CONT INUE
CALL WRITEY (MUANUsNDIF)

CHECK IF LAST ELEMENT

1F{NIDEL~NEL) 504600+590
1F(ML] 30,30,60

RETURN

FORMAT 1415:41292K,40X e2i5/716]5¢

FORMAT (15.3F1L0.0)

FORMAT (F10.2)

FORMAT (L 69 X0 815/7Xs815,(9,712/)

FURMAT {X415,3E15.4)

FORMAT {///3%H awesa ACCELERATION DUE TO GRAVITY =,F10.2///}
FORMAT (9HIMATERIAL 10X IHE 12X 2HNU 10X 3HRHO./8H NUMBER,/)

ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
LT
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST

ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST
ELST

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
221
228
229
230
231
232
213
234
235
236
237
238
239
240
241
242
243
244
245
246
247
244
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

¥¥e



a2 s R nl

1301 FORMAT & 30HL...16 NODE SULLD ELEMENT QATA ///

8H ELEMENT 10X 15HCONNECFED NODES 17X ZIHINTEGRATIGN
r4 3 “ 5 & T B 66Xy SHURDER

8H NUMBER 3Xy3bH1
TXe 3HNU./
11X, 36H9 i0 1i

12 13 14 15 16 7/ )

4003 FORMAT (36HUOELEMENT CARD ERROR, ELEMENT NUMBER= &}
FORMAT { JlHi.....16 ~ NODE SOLED ELEMENTS ///

24H NUMBER LF ELEMENTSauas 15 7/

24H NUMBER LF MATERIALS..a s[5 F//)

3coz

END

SUBRUUTINE FUNCT (KK.DI

DINENSION D{40e1),B813]
COMMON /GASS/ XKU4:4),WGT (4,4 ), IPERM{3}

COMMON £ JUNKS R 45 T

JDET, MLOC4) y KLD(4) JMULT(4) NPILE) INPL{IS),

Al393) 4P 13921048333 )4XZ1169%1+Q01F)4DLLILG)

R2=2.%(}.—[R¥¥2})
S2=Z.%(Ll.~15%82}))
RN=o125% {l.—R)
SP=letS

SN=1.-5

TP=1.+T

TN=1.-T

RPSPs R¥#S5-La
RPSN= R-5-1.
ANSP=-R#5-14
RNSN=—R—5— 1.

XPP= 2.4%F+3

KPN= 2.¥k-§
ANP= -2 ¥R+ 35
XNN==2.8Kk=5

¥PP= Relza#*5)
¥PN= R—[Z.¥5]
YhN==R~[2.%5]
XX=4125

SHAPE FUNCTIONS

Q{ L)=RP *SP¥TPTRPSP
QI ZI=RNESP ST PERNOP
Qt 31=RN*SN¥TPERNSN
QL 4)=RPESNETPERPSN
QL 2)=RPEIPETN*RPSP
Q¢ 6I=RNXSPETN*RNSP
QU TI=RN ESNFTNERNSN
Qi BI=RPEIN&TN&RP SN
Gl QI=KRZ*SPETPEXX
QIO I=RN*S2*TP
QILLI=RZ EINFT P& XX
QILZI=RP®324TP
QIL13)=RZ¥SPFTNZXX
QULA)I=RNESZ*TN
QULIS)=R2Z *SN*TNkXX
QEL6I=RP¥S2FTN

MATERTAL /

ELST
ELST
LT
ELST
ELST
ELST
TLsT
ELST
ELST
ELST

FUNC
FUNC
FUNC
FUNC
FUNC
FUMC
FUNC
FUNC
FUNC
FUNC
FUNC
FUN{
FUNC
FUNG
FUNC
FUNC
FUNC
FUNC
FUNG
FUNC
FUNC
FUNC
FUNC
FUNL
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNG
FUNC
FUNEC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNG

2640
267
7268
269
270
271
212
273
274
275

T

DR

L1
12
13
14
15
16
7
18
12

21
22
23
24
25
26
27
28
29
39
31

33
34
34
EL)
37
is8
39
40
41
&2
43

45
46

DERIVAT IYES UF SHAPE FUNCTIONS

100 XR=- .58k
X9==4.%5
Pllell= Xx&5p&TPexpp
Plly2)=~ XXESPEIPEANP
PLly3)=-XXBGN®TPEANN
Pll,4d= XX¥SNETPXPN
P(leS)m XX®SP*IN®XPP
PIly6)=— XA®SPOTNEANP
PLLeTh==XX*SN*TNOXNN
P(1lyBl= XX¥SNETN®XPN
PilseGl= XR¥ypelp
PeLyLOb==XX%524TP
Pllelll= XR®SNF*TP
Pllel2h= XX&52%7¢
Plle13)= XR3SP*TN
Pllylé)m—XX¥52%IN
P{ls¢15]= XRESNeTN
Pll,161= XX&52&TN
PElelTizle—E3¥RER)
Pllel8)=0.
P{1,191=0.
PiLy20im 5% L. 0-(3.0%R*R1)
PALle2l)=5%{1.0-(5%5))

P(2y1)= RPEIP®YPP
PL2p21= AN®TPEYNP
P{2Z+3}=-RN&TP&YNN
P{244)s—RPFIPFYPN
Pi2s5)= RPEINEYPP
P{2,6)= RN&TN&YNP
PLZyT)m-RANETNFYNN

P2 B)=—RPEINEYPN
Pl2:9)= RI*TPXX
Pt2el01= XS*TP*RN
PL2eL1)=—R2ETPEXX
P(2s12})= XS*TP#RP
Pl2eld)= R2ATREXX
P{291h)= XSETNTRN
PlZsl5t==R2*INEXX
PlZs16)= XS*XTN*RP
Pl2et?1=0.
P{2418)=1.-13.%3¢5)
PL2,19)=0.
PL2e20)=REL L O-(RM))
PL2Z92L)=R*¥1 LU~ (3.0%5%5))

PL3sl)= RPESPE¥RPSP
P(3;2)= RN&SP&RNSP
Pi{3,3)= ANS® SN¥RNSN
P(3y4)= RPUSNTRPSN
PLl3:2)==RP*SP&=RPSP
PL346)=—RN*SPYRANSP
Pi3y7T)3-RN¥SNFRNSN
PL348)==RPEIN*RPIN
P(3,9)= H2#SP*XX
P(3¢10)* RN¥S2
P{3elli= R2HSNFXX
Pl3,121= RP&32
P{3+13}=-R2¥SP*XX
Pl Lol =—RN®SL

FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FurC
FUNC
FUNC
FUNC
FuUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FuhcC
FUNC
FUKC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC

Ske



omnm

oon

SHoe

[aX s}

150
200

350
400

64040

%50

2

PE3+15)a~R2BINKXX
PL{3,16)=~RP¥S2
P32 07 )=0.
P(3,18)=0.
PL{3,198=-2.%T
P{3,201=0.0
PE3:211=0.0

JACGBIAN MATRIX &

DO 200 I=1,3

D8 2G0 $=1+3

£=0.

00 150 K=1.16
C=C+PL e KIEXIAKa)
AllpJi=C

IF (KK.EQ.3) G ¥O 600

INVERT JACOBI1AN

00 300 I(=1+3

J=IPERM{ )

K=IPERM( J}

GOl D)=ALJr Il EAIKG K —A{ Ko d D RALD K
BiledisAlKe JI®ALToK)—ALTJ)*A[KKE

BlJ e LI=Al Ao RIBA{R ) ~ATSs [) RALK K}

DET=AL L, 1)edils Lh+A0 1210802, L ¢A{1:3)%B{23,1]

MATRIX OF H-Y~1 DERIVATLVES

DO 400 [=1+¢3

DO 400 J=1.22
C=0.

U0 350 K=le3
C=CeBL L, KI®P{KsJ)
Ot =0

RETURN

END

SUBROUTINE WRITETIMBANDGNDIF]
COMMONZE M/LML4B) JNDeNS+5{48, 481, P{5%8:4), XM{48,48),5T140+43)+
1 THGG,4)

CALCULATION OF BAND WIDTH AND WRITES ELEMENT MATRICES ON TAPES
HiN=100000

MAX=D

DO 450 L=1sND

IF (LML) .EW.0) 60 TO 450

IF (LML) «GV.MAX) MAX=LM{L)
LF (LMEL)LT.MEN) MIN=LM{L)
CONT INUE

NDIF=MAX—=MiN+L

IF (NDIFLGT.MBANU} MBAND=NDIF
PRINF 2, NUDIF

FORMAT{TH MBANC=15)

FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUKC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNL
FUNC
FUNC
FUNC
FUNC
FUNG
FUNC
FUNC
FUNC
FUNLC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC
FUNC

109
113
1E1L
112
113
14
s
ite
iy
113
119
120
121
122
i23
124
145
126
127
128
129
130
134
132
133
134
135
130
137
138
139
La0
141
142
143
144
i%s
lan
147
1448

BOMOOO

o0

DO L I=1, 48
IFIXMiLl, {).iT1.040Q1 STOP
CONT INUE

WRITE (1) NSoND.LMaST,TT. XM
WRITE (2) LMAD.NS,5,Py XM
KETURN

END

—

OVERLAY(XFILE.2.0)
PROGRAM EIGSSP

PROGRAM TO COMPUTE o»MALLEST EIGENVALUES AND ASSOUILATED VELTURS
THE GENERALIZED EIGENVALUE PRUBLEM
ASY=RT&B*Y (A POS DEF+8 OIAG NONNEG DEF)

IN

WRIT
w7
WRiT
WRET
whiT
WRIT
wRIT
WRIT

EIGS
EtGS
ELIGS
£lCs
EI1CS
EIGS
EIGS
EI1GS

COMMON 7/ ELPAR/ NPAR{14) NUMNP +MBANDNELTYP NL N2 N3, N4 NS HTOT o NEQU TGS

« «Nés NUMNPF ¢ IPRINT (NLM (NUMEL,WATL,

= +IPRM  (MESH JMESHFN ,ISYM,WDEN

COMMON /7 JUNK/ HED(12)

COMMON / MISC / NoLOCK,NEQB.LL.NF,LBsNDYN
COMMON /TAPES/NST{F JNRED/NLsNR ¢ NT ¢ NMASS

CUMMON A{16000)

MTEMP=MT QT
IFtMTOT.EQ.O)
NST IF =4
NMASS5=9
NRED= 1O
NL=2
NA=3
NT=7
Li=0
[1=0
Ny=2*NF
IF (NF.GT.8) NV=NF+l2
NEQB=MTUT /{ 2xMBANU+ 1}
NBLUCK={NEQ- L) /NEYB+]
Ti=11l+i
IF{TI1.G6T«La0) STOP
IFINEQB. GT . NEQ) NEQO=NEQ
NWA=NEQB*MBAND
NaV=NV¥NEQB
NTB={MBAND—2 ) /NEQBF L
IF INIB.GENDLOCKE NYB=NBLOCK-]
NWVV=NW V(% Bel)
N2=NWVENEQB+NY
IF(N2.LE.MTUT) GU TD 10
NEQB=IMIUT-NVI/L14#NV )
GU T0 5
L0 NI=NWA+NrYeNWY VENEGUE+25NY
IF(N3LE.MTIUT) GU TO 20
NEQB=(MTUT-2%NV )/ [MEANDHNVENVEL L+NTBI+1)
GU TO 5
20 N4=NV&l 3NVe Z&NEQBe 3} +NEQB*YBAND

MTDT=MTEHP

w

TMASS, TVOL g NEQEST, TMUDE EIGS

[T
£16S
[SFRORY
EIG3
CIGS
clGs
ELGS
t16S
EIGS
L16S
Cl6s
EIGS
E1G>
E1GS
LIGS
EIGS
EIGS
EIGS
£16%
E163
£165
EIGS
EIGS
EIGS
LGS
EIGS
EIGS
ELGS
E1G
EIGS
CIGS
EIGS
EIGS
EiG5
EiGS
EIGS
EI1GS
£16>

17

19
23
2l
22
23
24



40

45

50

—-

w

300

400

500

550

IFIN4.LE MTIDT) GuU TO &0
NEGB=(MTOL-NV#{ 3+3%NV] ) /{ MBAND+2%NV ]
GO 10 5

NE2B=Z#NEQY

PRINT 1000 .NEQMBAND+NBLOCK.NEQB +NF
EFLEMODE o GTLA0ANDLNDYNLGTL L) GO TO %0
N2=NL+MBANUSNLZB
CALL ASMBLBUAINLI ¢ AINZ) ¢ NUMEL NBLOCK,NEZB,LL + MBAND+NEQ+MASWAT)
TFUIMDOE . EQ.0URNDYNL.EQL L) GO TO 300
IMODE= 10

REWIND T

REWIND [ MUbE

READ (IMUUE) NBTPNEQATP (NEQTP NFTP,MBTP
LFINBTP. NE.NBLULK]) GU TO 2

[FINEQBTP.NELNE B GO TO 2
IFANEQIP .NELNEQ) GO 10 2
IF{NFTRNELNF) GO 10 2

[F{MBTP. NE.MBANDILOTO 2

REAO(IMUUE) LALLE, [=1, NF)

WRITELT) falldy I=iy NF)

WRITE(G, LOOL) (LE+ALTY)y I=1, NF}
NQF=NEQB *NF

00 1 =1y NBLUCK

READ(IMUDES (AdK]y K=1l, NQF}

WRITELT) LALKT,» K=1+ NQF)

Ni=i

N2=N1+5&NUMNP

N3=N2+5%NF

LF{IPRM  .NE.OJ GO T 3

CALL PRINTO(AINLI s AINZ2) ¢ AUN3) 4 NEQD e NUMNP ¢ NF o NBLUCK ¢ NEQ ¢ T4 NF)
CONT INUE

RETURN

WRITE{G, A000) NEJTPyMBTP ,NBTPy NEQBTPyNf TP
STde

NWA=NEQB&MBAND

NRV=NYeNEUB

NTB={MBANU-2 }/NEQB+L

IF (NTBLOGEJNEBLJLK) NEB=NBLOCK-1
NWYV=NwveE(NTBe 1)

2eNwa +NEUB

NZ=NWV+NEWFNY
NI=NWA+NWVeNWVVENEQB# 2¥NY
NATNVE{ SENVE2TNECH+ 3] +NEQR*MBAND
NS= Nk A+ 6 &Y +NE Qb

IF (N2.GT.N) N=NZ

IF ANJLGT.N) N=N3

IF ANG.GTLN) N=MG

IF (NS, GTaNI N=RS

IF {MTUT-N} 400,300,500
PRINT LuLlG,N

sTGe

CALL 55PACEB (NEQsMBAND NBLOCK yNEQByNF yNY o NIwA  NWV s N VVNTE)
ETP=0

FF{AMULE JNELD) [TP=10

1FLITP.EG.0) GU TC 700
REWIND 7
REWIND [TP
WRITELLTP)
NQF=NEQB *NF

NELOCKsNEQB,NEGNF yMBAND

£16S
EIGS
FIGS
LIGS
£I1Gs
[
LIGS
EiGs
tics
LIGS
LIGS
Elcs
EL6GS
ELIGS
E1GS
TGS
E1GS
E16G3
EIGCS
ElGs
LGy
EIGS
LIGS
EiGS
FIGS
L1GS
ElGas
LIGs
EIGS
elGs
F1GS
CIt5
clGs
EIGS
LIGS
£1G3
EIGS
FIGS
tluy
EIGS
EIGS
LIS
£lGs
EIGS
EICS
EIGS
EIGS
EIGS
E1GS
FIGS
Lits
E1GS
EIGS
ETGS
EiGS
EIGS
EIGS
E1GS
ElG>
EIGS
E1GS
EIGS

49

51
52
53
54
55
96
s7
54
59

61
62
63
(-2
65
by
o7
60
o4
Tu
71
72
&)
T4
75

Tt
T
1o
8n
)
32
A3
84
8s
86
87
LE]
B
91
9l
a9z
97
G4
95
96
9t
919
a9
199
101
102
103
104
145
10%
107
123
109
s

C

c

C
C

60
70

100

1aQ
101

100

200

READIT) LALL), i=Lly NF)
WRITEC(ITP) (At By f=1, NF)
DU 600 N=ls NULOCK

READUT) 1AQLl, I=1s NQF)

O WRITELITIP) datid, =1, NQF!}

0 RETURN

G FORMAT {LlH1,20HPRUBLEM INFORMATION 7/

1 £30H NU OF EQUATLIONS o eurnennrvrrs
2 /30H L/2 BANDWIDTH OF A eenaeaneas
3 F3UH NO UF BLOGKS avucasssoscesens
“ /30H NU UF TONS PER BLUCK .hyusses
5 /30H NU UF FREQUENCIES REQD aasass

1 FORMATIL 9H FREyS. /U15.FE2.8))

14
14
14
14
14

)

0 FURMAT (4O0HOFUR EXECUYION NEED TO INCREASE MTOT TO o)

END

SUBROUT INE SSPACEB (NEQ:MBANDy NBLOCK NEQBsNFyNV ¢ NHAJNWY, NaVV, NTE)

COMMON /TAPES/NSTIF ¢NREDs NL,NR, NT, NMASS
COMMON A(1)
COMMON /ELPAR/ NPARILGI +NUMNPyMB
+« N6y NUMNPF

NITEM=10
FACTORIZE STIFFNESS MATRIX
NZ=L+NW A
N3=NZ+N&A
LALL SELOND [TiMLY

CALL OECOMP LALLI«AIN2)AINI) NEQBMBAND, NBLOLK pNWAyNTBeNSCHNES

CALL SECUND «TIM2)

ESTABLISH STARTING TRANSFORMATION VECTORS ON TAPE NR

NZ=1rNuwY
NI=NZ#NEQD

CALL INVECT (ALL),ACNZ) AIN3)  NBLOCK.NEQB. NV

CALL SECUND {TiM3)
FIMi=TIM2-T[M]

TIHZ=TIMI-TiM -
PRINT 1000,TiMl

PRINT 101GT]M2

PERFORM SUBSPACE ITERN
DO 100 1=1l.NV
A{1)=0.0
NETE=Q
NITE=NITE+>,

PRINT LO20,NITE
CALL SECOND (TIMLH
N1=1#2¢NV
N2=NL+NmWA
NI=N2eNmY
Ne=NI+NwVV

CALL REDBAK (AINL) o AINZF2ALN3) ;ATNG) s NEQB NV NWA, NV, NWVV , NTH,

INBLOCK )}

EL1GS
E1GS
ELGS
FIGS
EIG>
€L6S
EIGS
LIGS
€lGs
E1GS
ELGS
E1Gy
EIGS
ELGS
cibs
ELIGS
EIGS

55PA
35PA
58pA
S5PA

SNELTYP oNLgNZaN3p My NS MIUT (NJRSEPA
2 LPRINT o INODsNUMEL« DUM{ST 4 IPRM

S5PA
S3PA
55PA
55PA
55P4
35P4
SSPA
SSPA
S55PA
33PA
55PA
S5PA
S5PA
55Pa
SSPA
SSPA
s5pPa
S55PA
SS5PA
S5PA
S5PA
S5PA
55PA
SSPA
35P4A
5s5PA
S5PA
SSPA
s§5pPa
55Pa
S5PA
SS5PA
s5pra
S55PA

1t
112
(D)
114
[BE]
116
LT
(RN
119
129
iz21
122
123
124
125
120
127

(=R ROV S P

W L e P RO RS N RS B R R B B e e e e e e e
i e 3 L 8 mb D 1 D e by e L e AR g e

36
3!
38
39

L¥T



c

SOLVE BUBSPACE EIGENVALUE PROBLEM
N2=L#NV

210

300

310

loo0
loLo
1020
1030
1040
1650
1055
1056
1080

NI=N2eNV

Nez N3 ENVENY

N5= No+N yaNY
No=NE SN VENY
NT=N&+NNV
NB=NT*N WV

N9=ME NV

CALL SECUND {f1IM2}

S5PA
S5PA
$384
saPa
sSSP A
55PA
35PA
5504
35PA
5594

CALE ETGSOL (ACLIcAINZI pAENI) g AUINSG)pATNS) yAINE s AINT I ALNB) A (NSESSPA

1o NFs MV NBLUCK NEQBs NITE:MBAND }
CaLi SECOND (T IM3)
TiMd=TIM3-1iM]

YIMZ=TIM3~TiM2Z
PRIMT 1030,TIML
PRINT 10%0,T142

IF (NITE.LY.NITEM) GG TO 200

PIE=ATAN{L. ) ¥4,
PRINT 1055
D0 210 [=1s NF
FREQ=ALi )
FREQ=SQRTIFREw}/2./P1]
PRINT 10564 1, FREQ
CONTINUE
PRINI 1050
PRINT 10605 (ALL) E=1,NF}
CONTINUE
LFLIPRM.NE.O) GU TO 310
Ni=1
N2=K 1+ 56 NUMNP
N3I=N2+5%NF -
CALL PRINTDIAANLI) A(NZ),AUNIY NEQB, NUMNPFNFNBLOCK , NEW,NE,NF )
RETURN

FORMAT (3%HOTIME FOR STIFFNESS FACTORIZATION Fe.2)

FORMAT {42A0TIME FUR GENERAFION UF INPTlAL TR-VECTORS Fé,2)
FORMAT (iHL,11HNO OF [TERN (4]

FORMAT (24HUTIME USED IN LTERN STEP Fé6.2)

FORMAT (25HUTIME FUR EIGENVALUE SULN  F6.2)

FORMAT (LlHLl,20HTHE FINAL EIGENVALUES ARE /)
FORMATI37HL FREQUENCIES IN CYCLE PER SECOND ARE// )
FORMAV (LOR+ L5+ SH-———-F 10,4}

FORMAT {1HO,6E22.14%)

END

SUBROUTINE EIGIUL (DL RTOLYy ARy BRy VECs VLo VR 4Oy XMa NF o NV NBLOLK
INEQBNITE MB)

COMMON /VAPES/NSTIF G NREDsNLs NR g NT y NMASS

DIMENSION ARLNY NV) BRINVANVIVECINV NV Y VLINEQB«NY Iy VRINEGQG NV I

OTMENSION DINV I OLONV) dRTOLVY (NV)+ XMINEQB.HMB}

S3PA
S5PA
S5PA
35PA
S5PA
S5PA
55P4
3SPA
S5PA
55PA
S5PA
SSPA
S5P A
S5PA
SSPA
S55PA
SS5PA
SSPA
55P 4
S5PA
58PA
SSPaA
S5PA
58P A
SSPa
SEPA
S5PA
35PA
$5PA
S5pa
S55Pa
SHPA
55PA
S5PA
SSPA
55PA

ElG
[ 33
EiG
EIG
LiG
E1G

COMNUN FLLPAR/ NPAR{ L4} NUMNP ¢MBAND yNELTYPsNLeNZyNIp NGy NSoMTUTyNEUELG

« sN6s NUMNPF SIPRINT o NLM oNUMEL,WATL 4 IMASS,TVOL

LiG
E1G

490
&1
42
413
%4
45
46
a7
4R
49
%1
ol

83
EL
55
So
57
58
59
&)
61
&2
53
G
&5
[
ot
68
6G
70

72
73
T4
15
e
T
T
79

a)
a2
33
44
35
36

NITEM=10 Vi
RTDL=1.DE-0%

TOL J=i. DE-12

REWIND NMASS

REWINO NT

REWIND NR

c
C FINO PROJELTIONS OF MASS AND STIFFNESS QPERATORS
DG 10U I=1l.NV
R0 100 J=1 NV
AR {2 4)=0.0
100 BRIE9pJI=0.0
DO 200 N=LeNBLUCK
BAGCKSPALE NL
READ (NLI VL
BACKSPALE NL
READ (NRI VR
101 D0 220 [=14NV
00 220 J=Il+NV
ARY=0.0
D0 230 K=L,NEYS
230 ART=ART #¥LIK, LIBVR{ Ky 4)
220 ARL I Ji=AR L, Jaeart
200 CLONT INUE
D0 290 I=1.NV
0o 290 J=1s1
BRI «JI=BREJy 1)
290 AR{L+JI=ARLJ+ 1)

DD 291 N=1ls NBLULK
291 READINL)
CALL TRANSMUXMy VL o VR o BReNEQS» MB o NV o NMAS Sy NL o NT ¢ NBLICK
c

(o
4 SDLVE EIGENVALUE PROBLEM
289 CONT INUE &
CALL JALOBIL {ARsBRsVEC,D VLNV, TOLY
D0 295 J=1l.NV
AMM=SURT(BREJy J} )
DO 295 K=l.Nv
29% VEC UKo }=VEC({K o JI/XMM

C
= ARRANGE LIGENYALUES &
NV 1 =Nv-1
440 Is=0
DO 400 I=1:NV1
If (DCisl)aGELLIIY] GO TO 400
I5=15+¢1
BY=BR{i+*LlsL+])
DT=001+1}
BR{UI+1lel+li=BRI1sI]
DOEI+19=D01)
BROL, 1) =BT
bLII=0T
DO 420 K=lNV
TEMP=VECIK,I+1)
VECIK g +LISVEC (K ()}
420 VEC{KoL}=TEMP
4040 CONTINUE
IF (13.0LTa0) Gi FO 440

C
C CHECK FOR CONVEKGENCE

8%z



C
<

ornt

300

320

340

350

354

1055

00 300 f=l.NV g
DIF=AB3I0LLL)~0(1))
RTOLVELI=DIF/0L1)

PRINT 1040

PRINT LOUOD ¢ tRTULVIL)1=1,NV)

00 320 i=1.NF

IF (RTULVEL}.GTLRTOLY GO TO 340
CONTINUE

PRINT 1050,R¥0L

NITE=NIJEM

GU TO 350

IF (NITELLT.NLEEME GO YO 360
PRINT 1060

DU 354 k=1¢NV

DLII)=0D( 11

IF{D{l)aLE. 0.0} STOP
DUI}aSYRTID(L I

M=NT

NT=NL

NL=H

HM=NR
NR=NL

NL2M
RENIND NR

WRITEINR S (LCL), B=1s NF)

PRINT 1055¢ {(1oD(IF}s I=1e NF)
FORMAT(TH FREWS ./ boH N FREQs /A (I54F10.%}H)
GO TO +30

CALCULATE APPROXIMATE EIGEN DIRECTLONS

360
410

430

500
480
460

1000
1040
1050
1060

DO 410 I=1.NV
oLlLd=uii)

REWIND NR

REWIND NT

DO 460 N=1,NBLOCK
READ {NTJ WR

DO 480 J=l.NV

DG 480 [=l,NEQB
TEMP=0.0

L0 500 K=14NV
TEMP=TERP+VR{] KPEVECIK JI
VLEIeJ)=TEMP

WRITE (NR} Vi

RETURN

FORMAT (LH +12ELL.%)

FORMAT (32HOKEL TOL REACHED ON EIGENVALUES )
FORMAY (2LHOCONVERGENCE FOR RTOL El0.4)
FORNAT {31HOWE ACCEPT CURRENT [TERN VALUES 1}
END

SUBROUTINE TRANSM{XM,A,CoByNEQB,MB¢NVNMASS, ND,NT,NBLOCK)

THIS SUBROUTINE FORMS B=AT®XM&A, WRITES C=XM&A ON TAPE N1.
A AND XN ARE REAU FROM TAPES ND AND NMASS.

DIMENSIUN XMINEQB¢eMB) s AINEQBy NV ) BINV NV Iy LINEWB,/NV)

ElG
FIG
ElG
ElG
ElG
£16G
v iG
339
LG
€16
ElG
EiG
EIG
ELG
g X}
LiG
EIG
EIG
E1G
EIG
EIG
E1G
EiG
t1G
219
E1G
LIG
ElG
ElG

EIG
EIG
E1G
LIG
€1G
EIG
ElG
EIC
EiG
EIG
314
ElG
EIG
EIG
£lG
E1G
16
E1G
E1G
ElG

TRAN
TRAN
TRAN
TRAN
TRAN
TRAN

93

9

97

9v3

49
100
Lol
102
103
104
105
104
107
108
109
110
1t
lie
113
1%
ts
lle
17
118
119
120
121

SR LN e

REWINL NT
NMAX=MB/NEQB+2

IFINMAX.GTNBLULK) NMAX=NBLUOCK

NEV=NEQB NV
Irr=0
CALL SECONODETL)
DU 400 N=1, NOLOLK
REWINUD NMASS
00 5 1=1, NEV

5 LLl1=0.0
NR=N=NMAX
TE(NRGT.0) GG TL 6
NR=0
GO 10 20

6 00 Ld I=1s NR
HACK SPALL Nu
ITT=1T+1

10 READ(NMASSI

2D READ(NMASS) XM
NR=NR+1
BACKSPALE NG
READ (NG} A
BACK SPACE ND
ITT=1TI+1
IF{NR,EJ«N} GL TO 100
ISTART=¢ N~NR~L}&NEQD +1
0G 50 I=1, NewB
NXM=ISTART#NEQU+1
PSTART=LSTART 1
NDEF=MB- I 3TAKT +1
IFINDIF.LT L) 6L TO 20
NM=NE Qb
LEANDIF.LT.NM) NM=NOIF
U0 40 Kaly NM
NA=L1~K
NC=1~NEQ3
K XM=NXM- LENEYB

TFEXN(NXMY . EQ.U.U) GO TO 40

DG 30 J=1. NV
NA=NA+NE YD
NL=NCYNE Qo
30 CANCI=CINCI+XMINXMIEATINA)
40 CONTINUE
50 CONTINuE
60 TU 20
160 CONT INUE

DA 150 [=1, NEWB
NXM=NEWJB*1
DO 140 K=l I
NXM=NXM+ L ~NEWB
II=1¢l-X
FF{HELCT.MB) GU 10 150
IFCXMINXMI EQaU.0) GU T
Ma=K-NEQB
NC=1-NEUB
00 130 J=i. NV
NA=NA+NEQY
NC=NC+NEQB
130 CANCI=CUINCI+XM{NXMI*ALNAJ
140 CONT INUE

TRAN
{1RAN
TdAN
TFAN
TrAN
Tiad
TwAN
TeAN
TRAN
TRay
THAYN
Tit AN
ThAN
ThAN
TRAN
TRAN
TUAN
TRAN
TRAN
Tian
TRAN
Tk AN
TRAN
TRAN
TrAN
ThAN
TAN
TRA
TuAN
TRAN
TRAN
THAN
TRAN
TRAN
FHAS
TRaw
TRAN
TrAN
PrRAN
TRAN
ThaN
TRAN
TRAN
TeAx
TRA&N
TRAY
TRAY
TRAN
TRAN
TRAN
TRA N
TkAN
TRAN
TRAN
TRAN
TPAN
THAN
TRAN
TRAN
TRAN
TKAN
TRAN

4

4h
47
4R
49
LY
51
52
573
H%
50
Gh
57
58
59
63
61
u?
63
23
&5
b
X4
&8

44



IFiE.Eu.NEQB) GU TQ 150
=1+l

DU 145 K=1ily NEUB
[d=K=1+1
IFLIJ.6T MB) GO T0 150
NAM= NXME NEYS
EFEXHUNXMI L EG.0.0) 60 TO 145
NA=K-N&Q B
NC= | -NEGB
DO 155 J=l, NV
NA=NA+NE UB
NC=NC ¢ NE QB
155 CINCF=CING) #XM{NXM} RA(NAD
145 CONTINUE
150 CONY IRUE
1B=N
DO 300 L=2, NMAX
iB=(B+L
TFLIB.GT JNBLUCK) GO T 350
BACKSPAGE ND
REAG (N3) A
BACKSPACE NO
P1T=111r 1
§START=( [B=N) ¢NEQH +2
DU I8U i=l, NEQB
[START=[ $TART-1
NDIF=MB- ESEART+1
PF(NDLF.LT 1) GO 10 180
NXH={1START~23*KEuBe |
NM=NEQB }
[FUNDEF.LTaNM) NMeNDOIF
DO 160 K=Ls NM
NXM=NXH+ NEQB
[FLXMINXM] L EQ9,0) GO TO 160
NA=K~NEJB
NC=1[-NEGH
00 170 J=Ly NV
NA=NAENE OB
NC=NC ¢NEGB
170 CANCI=LERO) $XMINXMITAENA)
160 CUNT INUE
180 CONTINUE
300 CONTINGE
350 DO 310 E=Lle ETT
310 READIND)
WRITE(NT) C
400 [¥F=0
NEY=NVEN V
DO %10 [=l,s NEY
410 B411=0.0
REWIND NT
DO 450 N=l, NBLOCK
BACKSPACE ND
READ(NULY A
BACKSPALE NU
READ INi} C
DO 440 [=1, NY
00 %40 J=1. NY
C¥1=0.0
BO 430 K=1, NEQB
%30 CT=CT#ALK  BI&LUKd)
440 BIL; Jd=Btladi+LT

TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TkAN
TRAN
THAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TKAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TkAN
T AN
TRAN
ThAN
TrRAN
TRAN
THAN
TiRAN
Ik AN
TrAN
TRaM
TRAN
TRAY
TRAN
TRA~N
TRAN
TRAN
FRAN
TRAN
ThAN
TRAN
TRAYN
TRAN
TRAN
TRAN
THAN
TPAY
T AN
FrAN

69
10
71
73
T4
74
EL]

78
73
19}

B2
83
84
35
Ab6
ar
1]
89
an
91

93

Y94

95

e

97

93

99
1049
101
102
1073
104
105
L0&
107
198
104
1L
1t
117
103
4
119
16
117
113
119
120
121
122
123
124
125
126
127
123
12+
13

[sXsRalNsXakal

(2 X sl

450

460

1600
2009

100

15

LONT INUE "
DG 460 I=1s NV ’
D0 460 J=1+ NV

BiJy Li=b{lsJ}

CALL SECONDITZ)

T2=T2-T1

PRINT 2000

PRINT 1200, T2

RETURN

FORMAT(F 1.5

FOURMAT (41H TIML FOR FORMING GENERALIZED MASS MATRIXI

END

SUBROUTINE ASMBLBCASMS NUMEL NBLUGCKsNEZByLL s MBAND NEQ, MASWAT}

FORMS GLOBAL EUUILLIBRIUM EQUATIONS IN BLOCKS

THIS VERSION A>SEMBLES GLOAAL MASS MATRIX..

OIMENSION AINEZDsMBANDSTIF{4850) SM5{NEQ]
COMMON/EM/LN{ 48 ) e NDo NS ST 48,0481 ,PL48,4) yXM(48,48),5T(22,48),
1 TTi12c4)

EQUIVALENCE (STIF,LM)

NEQD=NE2B/2

K=NEQB+1

X=NBLOCK

MB=SQRT{ X}

MB=MB/2+1

NEBB=MB#NE2B

MM=1

NSHIFT=0

REWIND %

REWIND 9

FORM EQUATIONS IN BLOCKS { 2 BLDCKS AT a4 TIME)
00 1000 M=i ¢NBLOLK o2

U0 180 I=1lyNEZg

DA 100 J=1.MBAND

A{lyd)=0.

REWEIND 7

REWIND 2

Na=7

NUME=NUM 7

IF (MM.NELLY GG TA 75
NA=2

NUME=NUMEL

NUMT =0

DO 700 N=Ll,NUME
READ (NAJ STIF
U 600 I=14ND
LMN=1~-LM (1}
TI=LHUL)~NSHIFT

TRAMN
TkAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN
TRAN

ASMB
ASM3
ASMB
ASMB
ASMA
ASMB
ASME
ASMB
ASMEB
ASMB
asMi
ASMB
ASMB
ASME
ASMB
ASMB
ASMB
ASM3
ASMB
ASMB
ASMG
ASMB
ASMB
ASMS
ASMY
ASMA
ASMB
ASHMY
ASMB
ASMB
ASMEB
ASMJ3
ASMB
ASMB
ASMB
ASMT
ASMB
ASMB
ASMB
ASMB
ASMD
ASMA
ASMY
ASMB

131
132
133
134
135
136
137
138
139
140
Lal
142

0sc



[2Eakal

400
500
600

650
660

100

1000

101

Te

401
501
4401

65

-

.13

-

701

IF (II+LE.O.OR. [E.GT.NE2ZB}
DO 500 J=leND
Jd=LM{J) ¥ LMN

IFLJJ} 500,500, 400

ATl edJI=ATTL+JJI+S(1ed)
CUNT INUE

COUNT INUE

DETERMINE IF STIFFNESS IS TQ BE PLACELD ON TAPL 7

IF (MH.6T.1) GO Tu 700
D0 650 I=1,KD
Ti=LM{ I} —-NSHIFT

G0 Tn &00

IFUIL.GY.NE2B.ANO. I LE.NEBB) GO TO 660

CUNT INUE

GO TO 00U
WRITE {7} STIF
NUM7=NUMT7+1

CONT INUE

WRITEN4) (CAT L+ J}el=L,NEQBY o J=1MBAND)

IFIMLEQ.NBLOCK) GO TO 1000

WRITE(4) ({AlLlsJ)ol=KoNE2B)»J=14MBANDI

1F (MM.EQ.Md) MM=0
MM=HMM¥ 1
NSHIFT=NSHIFi+NEZB

MM=1

NSHEIFT=0

G0 1001 H=1.NBLOCK.2
VO 101 I=iy NEZB

DO 10} J=li+ MBAND
All4J1=0.0

REWIND 7

REWLND 2

N&=T

NUME=MUMT7

IF{MM.NE .1} GO TG 76
NA=2

NUME=NUM EL

NUMT=0

D0 701 N=1l, NUMEL
READINAY STIF

DO 601 (=1, ND
LMN=1-LMAL)
PL=LM{L)~NSHEFY

IF {[]eLEeQ<URs11.GTNEZR)
00 501 J=L1s WO
JI=LMLJI+LMN

IF{JJ) 501,501,401
A{Iled i =AL LI JUEHXMET o S
CONTINUE

CONT INUE

IF{MM.GL 1) GO TO 701
DO 851 [=1. ND
LI=LM{LI-NSHIFT

GO 10 601

IF{Il.6T JNE2B.ANDLITLLELNEBRI GO TO 661

CONTINUE

GO TU 701
WRITELT) STIF
NUMT=NUMT¢1
CONT [NUE

854B
ASMy
ASMYE
AsMa
ASMBD
ASMLE
ASMa
ASM3
ASHMB
ASMB
ASMB
ASMY
ASMY
ASME
asMg
A5Md
ASME
ASMB
asMg
ASMB
Asvi
ASMA
ASMY
ASMp
ASMJ
ASME
ASMB
ASMA
ASMB
ASME
ASMB
ASMB
ASMB
ASMB
A5M8
ASMB
ASMB
ASME
ASMB
ASMB
ASMB
ASMB
ASMB
ASMA
ASMB
ASME
ASMd
ASMB
ASMB
A5MP
ASMB
ASMY
ASMH
AsMg
ASMe
ASMB
ASMA
ASMB
ASME
ASMY
ASMB
ASMB

45
“h
o
a8
40
51
51
52
51
Sa
55
56
5¢
9%
59
R
61
&7
63
o4
65
65
o7
53
[25e]
70

T2
73
T4
75
To
77
758
79
80
at
a2

84
g5
86
87
an
89
90
91
92
93
94
95
96
97
43
99
1ad
101
o2
103
104
105
106

1001

90

40

20

34

ip

32

40

WRETELY) L{A{L[4J) 9gI=1,NEQB) =L ,MBAND}

IF(M.EQ.NBLULK) GO TO 1001

WRITE(9T CLALL ab 1=KeNEZB) +J=1,MBAND)

NSHIFT=NSHIFT+NEZE
REFURN
END

SUBROUY FNE INVECT (VAXM  [EQ . NBLOCK,NEQB.NV)

COMMON /TAPE S/NSTIF NREDoNL e NR (NT» NMASS
DIMENSEUN YALNEUB.NV)  XMINEQB) (TEQIL}

NVL=NV-1

KK=1

{ND=0

NBV=KK&{ {NVL=~L}/NBLOCK#1)
IF INBV.GF Neat) NBV=NEQD
IF (NBV.EJ.NEGB) TND=L

LF INBV.GI.NEQUEI NBV=NEQS
IF {NBV.EQ.nEWB) iND-1
NBVN=Q

ICOUNT=0

LL=0

REWIND NMASS

REWINU NSTILF

READ $INMASS) XM

READ (NSTIF} VA
ICOUNT=ECUUNT+ L

DO 20 [=1.NELUB

IF (VALI).EQ.0.0J GO TD 20
VAT L)=xMili/ZVALL)

CONTINUE

NNV =NEQB/NBY

DO 40 L =1.NBV

RI=0,0

NN=L 8NNV

DO 34 1=1+NN

IF (VACL)4LT.RT) GU TO 34
RT=VA(L}

=1

CUNTINUE

00 30 I=NN.NEGS

IF (VAEE)alELKTY GO TO 30
R¥=vaill

td=1

CONTINUE

IF {VA{ LJ).NELDO.O) GO TO 32
NBVYN=NUVN+ [

Gt TO 490

LE=LL+]
TEQULLI=TICUUNT- LI ®NEQB+ LI
If {Li.GE.NVLI GO TQ 50
Vil I1J1=0.0

CONTINUE

IF {INU.EQ.L) GO TO 45

ASMG
ASMU
ASMO
ASHB
asM3
AsMA

[NVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
ITNVE
[NVE
INVE
IRVE
INVE
INVE
INVLC
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
[NVE
INVE
INVE
INVE
TNVE
INVE
LNVE
INVE
INVE
INVE

o7
Ltas
109
119
111
112

18¢



45

41

S0

120

160
188

140

190

IF ((NOVN.EJ.0}+UR, { ECOUNTLEQ.NBLOCKI} GO TD 45

NBV=KK* ({NVI-Li-1)1/{ND
[F {NBV 6T NEGB) NBV=N
NBVYN=Q

IF (ICOUNT.LT.NBLOCK]
IF {INULEQ.L} WL TO &7
KK=2¥KK

G0 10 56

PRINT 1000

srop

REWIND NMASS

REWIND NR

DU 100 L*14NBLOCK
READ INMASSS XM

DO 120 I=1.NECB

YALL, Lh=xMLI)

DO 120 J=2+NV
VACL,4)=0.0

DO 140 K=2Z NV
IE=lgQlk=1)

NLE=(L= L1*NEwB
NRI=_ ®4 EuB

IF {IE=NLE) 14091604156
IF INRI-[L) 140,.80.,18
Il= {[-NLE

YALITsK $=1.

CONTINUE

WRITE (NR} V&
CONTINUE

PRINT 20410

PRINT 10204(TEQII) =1

RETURN

1000  FORMAT {42HOWE L0 NOT

gL
102

0 FURMAT (20HQPRINT DOF V
O FURMAT (1O, 20L&}
END

SUBRULH INE REUBAK [AeVArVY o MAXBRNEQBNY NWANHVeNWVV NTSMBLOCK]

COMMON /TAPES/NSTIF  NR
DUMENSIUN A{NWA) s ¥VALNK

NEA=NTB*NEQB
NEBT=NEB+NEGS

REDUCE VEGCTORS UN TAPE NR
REMINU NRED
RENINU NR
REWIND NL
REWIND NT
REAU (NREDJ A MAXD
1Sv=NTB+1
=9
DO 10 L=1la.1SV

LOCK-T1COUNTI+1}
EQR

GO TO 60

o
0

WNVLY

HAYE ENOUGH FINITE EIGENVALUES
ECTUR [EQ )

EDeNLyNR ZNT s NMAS S
Ve VVINWYV) e MAXB(NERE )

INVE
INVE
IhVE
INVE
INVE
INVE
1hve
IhVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
InVE
INVE
IANVE
INVE
INVE
INVE
INVE
INVLE
[NVE
INVE
INVL
INVE
INVE
INVLE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE
INVE

AEDR
REOD
KLD3
REUS
REOD
REDD
REDB
REDA
RebB
REDS
HEDB
Feug
REDQ
REDS
KEua
KELY
REQS

15

30
1¢

50¢

110

1490
120
100

210
200

c
C

224
24G

300
31¢

READ (NR)} VA
K=0

KK=L11

DO 20 Jd=L,Nv
UG 30 L=lsNEGS
KK+l

KK=KK+1
VVEKK )= VALKS
KE=KK+NEB

L=t +NEWB
[5a=1

DO 100 I=1.NEuB
1i=1+¢NC QB

MAX=MAXB (1)

€=0

DO 120 1I=sIL.MAX.NEQB
JaJel

C=ALED)

IF {C} 110e1l20+110
KK=1+J

Ju=1

DO 140 L=1NV
YYIKKI=VVIKKI-CrVY (0]
KK=KK+NEBT

Jd=JJENEBT

CONTINUE

CONTINUE

00 200 I=i4NEQB
L=Al1)

IF (C)} 180,200,180
KK=1

DO 210 L=1,N¥
VVIKKI=VVIRK}/C
KK=KK+NEBT

CONTINVE

IF (I3ALEQ.NBLUCK) GO 7O 400
READ INRED)} A,MAXE
I5A=135A+]

STORE REQUCEL VELTULRS ON TAPE NT

K=0

KK=0Q

00 240 J=14NV
LO 220 L=1.NEJB
K=K+1

KK=KK+1
VALKI=¥V{KKI
KK=KK+NED

WRITE {NTF VA
K=1

D0 310 J=L+NV
DO 300 l=lsNEbB
KK=KNE wb
YWAKI=VVIRK)
K=K 1

K=K+NEQB

IF (ESV.EQ.NBLUCK) 60 TO 500
AEAD (NR) VA

I5V=13¥+1l
KK=NEB
K=0

REDB
RLod
REDB
REDS
RELB
Revd
REDS
RLDB
REDS
RELB
KLDO
REDB
REQH
R{UY
REQD
REDB
REDG
Rt0d
REQD
REDH
RIDY
RLUY
REDD
REOB
REUOG
REDO
REOB
KE#as
REDD
REDR
REDY
KEDG
RLJIB
REGB
Achid
REDG
RLOB
RECH
REDD
Hiug
REDD
REDS
RLOG
REDD
RIS
Re0s
REDG
REOH
RLOY
REOH
HEDS
REDS
Redy
Redy
Reuid
REDG
REDS
RED3
REDD
RELB
REDG
RLOB

44

i

59

1o

T

AT



32q0
330

00 330 Jal.NV
00 320 1=1.NEQB
K=r+l

KK=KK#1

YVIKK)= VALK
KKaKK+NEB

GO 10 500

[
[ BACKSUBSTITUTE VECTURS ON TAPE NT

400

420

440

640

620
600

670
&o0

720
70¢

160
174G

800

BALKSPACE NREU
I1sA=1

0u 600 [=1,NEQ8
J=NEQB#1~1
HAX=MAXB{J)

1F (A{J)) 490.600.440
KK=J

DD 620 L=ishV
JJU=KK+]
IL=J+NEQB
C=VVIKK}

PO 640 [I=1L«MAX+NEQD
C=C-AlLId®vViJddd
JI=JJ+l
VViKKI=C
KK=KK#NEBT
CONTINUE

KK=0

K=0

DO 660 J=LeNV
00 670 [=1.NtQb
K=K#+L

RK=KR L
VA(KI=VVIKK)
KK=KK+NEB

WRITE (NL} VA
1F {ISA.EQ.NBLOLKE GO TO 800
BACKSPACE NRED

READ INRED} ApMaxXB
BACKSFALE NRED
ISA=[54+1

BACKSPACE NI

READ INT) VA

BACKSPACE NT

K=NEBT

DD 700 J=l4NV

DO 120 1=1.NEB
KK=K-NE 4B

YWIKE=VVIKKI

K=K-1

K=K +NES THNEB

K=0

KK=0

D0 T4 J=lgNV

00 760 I=1l.NEUE

K=K+l

KK= KK #L

YVIKK)=VAIK)

KK=KK+NEB

G 10 %20

RETURN

E£ND

REDB
REDD
HELB
REDD
REDY
REDB
REDB
REDB
REDB
HEDB
REDB
REDU
RECH
REODH
REDD
RED®
REDB
REDB
REDG
REDE
REDB
RLDB
REDS
REDB
KEDB
REDB
REDS
REDB
REDS
REDA
“EDY
REDS
REUSB
REDB
REDB
REDB
REOY
AeDa
REGB
REDD
REDB
REDS
REDB
REDB
REDRA
REDB
REDD
RELY
REDY
RED Y
REDH
REDY
REDG
REDB
REDD
REDG
REDEG
REDY
REDSB
REDB
REDB

106
ot
103
109
1o
il
112
113
114
1mns
16
17
L8
119
120
171
122
123
124
125
1ze
127
128
129
139
131
132
133
134
135
138
137
138
139
140

L0

20
ELY

o0

40

&0
70

a0
90
C
C

100
95

SUBROUT INE JALOBI (AeBeXoEIGVsDaNoRTOL)
OIMENSTON A{NeNIeBIN«NI+XINsNDPEIGVINIZD(N)

NSHAX=15

D0 10 I=1.N
O(II=AC T, 1) /B8O, 1)
EIGVILI=0(1)

IF [N.EQ.l! RETURN
00 30 I=14N

00 20 J=1l+N
Xil.di=0.
X{lgld=1.0
NSWEEP=0

MR=N-1

RE START ITERATIOUN
NSWEEP=NSWEEP+1
PRINT 1000 ,NSWEEP
EPS={ 0. OL*=NSWELCP)**2
D0 S50 J=lsNR
JdmJ+l
00 50 K=J4J4N
TT=A0Js KI*ALJ e K)
Ta=AlJe JI*AIK )
EPTOLA=ALS(TT/Y8)
TT=Blds Ki*Bl{JdsK}
TBB(Js JIXB[Ke KD
EPTOLB=TT/18
IF (IEPTULALLT LEPS)LAND.LEPTOLBLLTLEPS)) GO Ta SO
AKK=ALK qKI¥B{J K I-BIK K $ACS K}
AJJ=ATJ ¢ JI®B LI KI=BLIp JIFAL 4K}
AB=A1J s JI*BIK K)-A{KKI%B{J,J)
CHECK={ AB*AB+5%.0%AKK¥ALI ) /4,0
IF (CHECK) 60970,70
PRINT 1004.CHECK
STOP
SQUH=SURTILHELK)
OL=AB/2.0+SQCH
02=AB/2 .0~ SQCH
DEN=D1
IF (ABS{D21.GT .ABSIODLE) DEN=D2
IF {DEN) 90,80,90
CA=0.
Co==AtJ oK) FALRIK)
GU T3 10
CA=AKK/ DEN
CG=-AJJ/DEN

WE PERFORM THE GENERALIZED ROTATION
IF (N=-2) 495.180,95
JPl=del
JMl=J-1
KP l=K+l
KMl=K-1

IF (JML~1) L204AL0yi10

JACO
JACU
JACU
JACO
JAGu
JAaCo
JACJ
JACO
Jaco
JACOQ
JACU
Jacy
Jacu
JACO
Jacy
JACO
JACO
JACO
JACOD
JACO
Jacy
JACO
JALO
Jady
Jaco
JACO
JACU
JACO
Jacn
JACOD
JACO
JACu
JACU
JACO
JACH
JALd
JACO
JALD
JACU
JACU
JACU
JACD
JACU
JACD
JALL
JACD
JATO
Jatu
JALD
JACO
JACD
JACO
JACO
Jacy
JACO
JaCO
JACO

P



Li0 20 k05 I=lsdM) o JACO 58 0o §6? J=14Nk bt JACO 120
1

Juail,d) . JALD %9 dd=dr JACC 121
BJ=BiLed) JACT 60 00 260 K=JJy4N JACO 122
AK=ALE+K) JACO 61 TT=A(J: KI*#A{J+K) JACUO 123
BK=B{1,X) JACy 62 TB=AlJy JI*ALK, Ki JACO 124
Al I« Jd=AJ+LG*AK JACO &3 EPSA=ABS(TT/TH) JACO 125
BilsJI=BJr(G*EK JACO o4 TT=BlJeKIZBIJ4K) JACD 126
All+KI=AKeCA%AY JACU &5 T8=8(J, JI¥BLK,K) JACQ 127
105 BlleK}=BK+LAYDY JALO 66 EPSB=TT/IB JACQO 128
C JaCy 67 IF ({EPSALLT.EPS).ANDL{EPSBLLT LEPS)] GO TQ 260 JACY 129
120 IF (KPL1-N) 130,130,140 JACD 48 GO TQ 300 JACY 130
130 D0 125 [=KPL.N Jaco 69 260 CONTINUE JACG 131
AJ=ALJq 1} Jato 710 C JACO 132
BJ=Bld, I} Jaco Ti DO 310 I=1.N Jacu 133
AK=ALIKy 1) Jaca T2 00 310 J=E.N JACQ 134
BX=B{Ks [} Jacgd 73 BlJeld=BLl4J} JACO 135
AfJd, [)=Ad*CGHAK JACD Ta 310 AlJeli=all.db JACY 135
Bldeli=z8JdeCH¥8K JACU 75 RETURN JACC 137
AlKg[)=AK+(A®A S Jatu 76 C JACO 138
125  BiK«l)=BKeLAXBJ JACO TY 300 DO 320 I=1l,N JACG 139
c JACD  Ta 320 plIl=Efevi ) JACU 140
140 IF (JPL—KHLI 150,150,180 JACO 79 IF INSWEEP L T.NSMAX) GO TOD 40 JACO 141}
150 DO 160 I=JPL,KMl JACO &0 DO 330 i=LsN JACU 142
Ad=aldy 1} JACO Bl DO 330 J=I.N JACO 143
BI=B{Je 1) JACO 82 BiJeli=Bi14J] JACU 144
AK=ALL. K} JACO 83 339 Ald+i=Al14J) JACO 145
Br=8L [, K} JACO 84 REFURN JACU L46
Aldp 1= AJFCOFAK Jaco a5 c JACO 147
BlJ:I}=BJe(G$BK JACO 86 1000 FORMAT (LhH0slanNd OF SWEEP = 14} JACJ 148
Alf+Xi=AKeCA%AY JaCa  atr 1002 FORMAT (LH ,i12EL1.4) JACO 149
160  BLleK)=HBKECA®B ] JACL 88 1004 FORMAT {BHOCHECK = E20.14) JACO 150
180 AK=AlK. K} JACD 89 1005 FORMAT (24HOCURRENT EIGENVALUES ARE | JALO 151
AK=B(K, K} JACO 90 END JACO 152
ALK K )= AK$2¥CATALS KD +CAFCARAL Uy d ) Jacu 91
B{KsKI=BR+ZELA®B{Js K) +CASLA®B(JqeJ) JACO 92
AfdedI=A{Jed 1 42¥CGHA({ ) KI+CGRCGHAK JACU 93
BlJpdleBlIyd) e 2¥LG¥BL I K ) +LGFLG¥BK JACU 94
AldaRI=0.0 JACU 95
Bld.K)=0.0 JACG 96
[+ Jaco sy SUBROUT ENE DEGCUMP (A¢BeMAXBaNEQDs MBANDSNBLUCKsNWASNTBANSCHANEQ) DECOD 1
[ UPUDATE EIGENVECTORS . JACO 98 C oECo 2
DO 190 L=1.N JACO 99 COMMON FTAPES/NSFIF +NRED+MLsNR (NT,NMASS DECU 3
Xd=Xihyd} JACU 100 DEMENSTUN A{NWA) B (NWAY,MAXBINEQR) DECC 4
XK= XL Ly KD JAaco 101 C DECO 5
R{leJi=XJeCOHXK JACO Lo2 NEQBL=NEQI~1 DECO 5
190 X(1,Ki=XKeCARXY JACU 103 N1=NL OECG 7
[ JACO 104 R2=NR UECO 8
50 CONTINUE JACG 105 REWINU NSTIF DELO 9
[ JALO 106 REWIND NRED DECQO 12
DO 220 I=skeN JACY 107 REWIND N1 VECO 11
220 EIGVINI=AlL, 1) /BLE. B} Jaco o3 REWIND N2 VECD 12
PRINT L1005 JACU ia9 N5SCH=0 DELGC 13
PRINT L002+€ELGVELD¢l=1eN) JaCu 110 [ OECO 14
[4 JACOD 111 00 600 N=1,NOLGCK UECG 15
4 CHECK FOR CONVERGENCE JACW 1L2 IF (NaNEL12 GO TU 10 DECLU L6
DO 240 I[=1¢N JaCu 113 READ (NSTIF} A DECO 17
TOL=RTIDL*D{L) JaCtd Ll4 GO TQ 110 DECG  i8
DIF=ABSIEIGYITII-0{1}) JACO 115 10 IFf {NTB.EQ.l} GO TG 110 DECO 19
240 IF (DIF.GTL.FUL)Y GO TU 300 JACD Lio REWIND Ni . DECG 20
[ JACH 117 REWIND N2Z JECO 21
4 CHECK LF ALL OFF-DIAG ELEMENTS ARE SATISFACTORILY SMALL JACU 118 READ {NL) A BECO 22

EPS=RTOL**2 Jaco 11y G DECO 2%

=T



C FACFORIZE LEADING 8LOCK
ila Do 3

11§

120
130
140
150

160

170

180

250
200
a60

&0

80
50

4
L

410

430

460

440
42¢

1=1.NEQ8IL
PIV=A(l)
IF {PEVI Ll204115,130
1E={N=1 1 *NEUB+1
IF (Li.GYWNEG) GO TO 520
PRINT L000,IL
sTOP
NSCH=NSCHe L
IH= 1 +NWA~NEGB
IF TALLH)) 160,150,160
IH=[H=-NEQB
GO TO 140
HAXKBA 1) ={nt
JL=1+)
El=1
DO 200 J=JLeNEGH
II=I1eNEUB
IF (11-NWAJ 170,170,300
C=at11)
iF (C) 180420054180
C=C/PIV
KK=J
MAX=MAXBII)
DO 250 JJ=11«MAX,NEQHR
A(KKI=A{KK]-LsA{JI)
KE=KK+NEQB
Alll)=C
CONTINUE
IF {AINEUBI} 804060470
11=N*NEQB
EF (11.GT.8EQ) GU TO 520
PRINT 1000.11
sTop
NSCHENSCH* L
DO 50 J=NEQB NWA,NEQB
1€ (AlJ]aNEOLCE MAXDINEQRI=J

CARRY OVER INTU TRAILING BLOCKS

DO 400 NN=Ll,NTB

I FCNN+N).GTLNBLOCK) GO 7O 400
NI=N1

IF ((N-EW.1) .CR.E{NN.EQ.NTB)}] NI=NSTIF
READ IN{) B

DO 420 I=1+NEQY

=1L

DU %40 K= ]l,NEQB

IF (Li-NWAl 4lUs4l0.5%0
C=Alll}

[F IC] 4304440430
C=CrALR]

MAX=MaXBLK }

KK=1

00 %60 JJ=]11+MAXNEQB
BIKK)}=B{KKI=C*ALJJ)
KKaKKéNEQS

AlT1)=C

II=1i-NEQBL

IL=lLeNEYB

If INTB.WE.LY GUu TU 480
WRITE (NRED) A MAXB

00 500 I=1¢NkWA

OECL
DECO
a2t C
QECD
QECO
vECO
OECY
pECO
JECY
VECO
DECO
DECQ
QECO
OECY
DECA
VECO
OECO
DECOY
OECU
DECT
DECO
DECd
QeCa
geca
oEL
DECY
oeEca
2ECO
LBECO
BECA
bLco
JECO
BECO
2ELU
JECO
JFCD
JECD
DECY
urFcn
DLCO
VECU
LGN
oty
[pley)
DECO
JECO
DECO
o] 201e)
Al=as)
viCo
OECD
JECU
JLe0
PEId]
QECO
JECD
UECO
DECO
LECY
DECU
DECD
[FlaAY)

25

500  Alid=8{l}
GO TQO bao
480 WRITE {N2I B
400 CUNTINUE
M=h1
Nl=N2
NZ=M
520 WRITE {NREDI A,MAXS
60¢  CONTINUE
C
RETURN

1000 FORMAT (22HOPIVUT [S ZEROQ IN RUw [%}

END

UVERLAY{ XFILE+3+0}
PROGRAM HYUROL

COMMON / MISC /7 NBLOCKeNEQB¢LLyNF,LE .NDYN

JECT
DECD
VECH
JECC
DECQ
DECQ
JECO
DECO
oLco
DECO
vECO
BECH
JECO

AYDOR
HYDR
HYOR

CUMMON /ELPAR/ NPAR{ L4} +NUMNP MBANDNELTYP yNLsN2yN3 3 Neg NSsMTUT,, NEQHYDR

o oN&, NUMNPF e [ARINT yNLM ¢NUMELWATL,
+ 1 IPRM  ¢MESH (MESHFN o ISYM,WDEN,T(10)

CUMMUN/RAUDO/RADIUS « RADHT

COMMUN/ZHYO/NUMELZ oNUMELT s TW o ZW) HW ATER y NTERM yMTERM , [XY7

READUIS, L 000 INUMELZ +NUMELT , T ZW,HWATER,NTERM,MTERM , [ XY7
WRITE{ Gy 2000 NUMELY « NUMEL Ty T o Z WoHWATER yNTERM s MTERM

NTERM= NTERM + 1
500 GOTOLL.2.3) IXYZ

<
[ HORIZONT AL EXCITATION IN X DIRECTIUN
C
L CALL OVERLAY{SHXFILE.3,1,6HRECALL)
GOTa 60D
C
c HORIZUNTAL EXCITATION IN Y DIRECYION
C
2 CALL OVERLAV{DHXFLLEs342,6HRECALLY
GO0 600
C
C VERTICAL EXCITATIUN
C

3 CALL OVERLAY{S5HXFILE»3,3,6HRECALL)
600 HETURN
1000 FORMAT(215,3F10.0,315]

2000 FORMAT(///33H NUNHER ELEMENTS [N Z DIRECTION =,15,

1 //37TH NUMBER ELEMENTS IN THETA OIRECTION

2 /F29H ELEMENT HALF ANGLE -RADIANS=,.Fi0.5,

3 £/22H cLEMENT HALE HEIGHT =4F1C.5,

& £/22H DEPIH DF RESERVDIR = +F12.6,

5 //28H NUMBER (OF N TERMS -~ NTERM

6 //28H NUMBER OF M TERMS - MTCRM =.15/7/7/)
END

IMASS: TVOL WNEWJEST, [MUILE HYUR

HYDR
HYDR
HY R
HY DR
HYDR
HYCR
HY DR
HYDR
HYOR
HYOR
HYDR
HYOR
HYDIR
rAYOR
HYDR
HYOR
HYDR
HYDR
HYJR
HYDR
HYDR
HYDR
HY)R
HYDR
HYOR
HYDR
HYDR
HYDR
HYDR
HY DR
HYDR
HYDR

114



o+
SUBROUTINE GHTNX(GLOADsFF+1De [RXo XMyNUMNP + NUMEL oNEQB GMTX L READ (7} 3 LOAD
1 MBANDy NF ¢ NBLOCK yNEQy 1XY2) GMTX 2 80 50 1=L+NBLCCK LOAD
DIMENSIUN GLUADINF) s FFINEQ) v IOUNUMNP 3}y IRXINEQ) s XMINEQBy MBAND } GMT X 3 50 READ (7} LOAD
£ GMTX o 00 100 [=1¢NF LUAD
CAFREE e Rhdd kb b b Ak b A4 SRR KRR R Rk A kbR kbR G R TR B bk kSR B b 0 d AR ERECMT X 5 100 GLOADIL)= 0.0 LUAD
¢ THIS SUBROUTINE FURMS THE NEGDAL LOABRS DUE TO GROUND MOT 10N SMTX a NA= ~NEQB LuADL
€ EXCITATION UF THE D#M ALONE ~  FF= (MASSI®*UINFLUENCE COEFF IRX) GMTX 4 DO 500 N=1 NBLGCK LOAD
COPRFEA e hhkB Ak D AB AR E AR RE SIS STk SRS SRR bRTEPeb b kb hdh bbb S o RRERIKGMT X 8 BACKSPALE 7 LOAD
[ GMT X 9 READ (7) B LOAD
REWIND 9 OMTX 10 BACKSPACE 7 LOAD
REWIND & GMTYX 11 NN= NN + NEQB LUAD
READ (8) [D GMTX L2 D0 250 [=1.NF LoAD
DO 50 [=Ll,NEQ GMTX 13 DO 200 L=1,NEQB LUAD
S0 IRXtl)= O CMTX L4 NNN= MN ¢ L LOAD
D0 100 J=1.NUMNP GMTX 15 IFINNNLGT NEQIGUTO 200 LUAD
NhN= L10{J.1x¥7) GMTX 16 GLOAD{ )= GLOADCI) + A(L,EYRFFINNNY LOAD
IFINNNLT.LIGUTO 100 GRIX 17 200 CONT INUE . LUAD
TRX{NNN) =1 GMTX 18 250 CONTINUVE LDAD
100 CUNTINUE GHTX 19 S00 CONTINUE LUAD
00 200 i=1.NEQ GMTX 20 00 600 L=Ll¢NF LOAD
200 FFLLl= 0.0 GMTX 21 600 WRITE(6.,2000)L.GLAADIL) LOAD
NLOC® O GMTx 22 RETURN LDAD
00 400 N=Ll NBLOCK GMTX 23 2000 FOHMAT (7 XaLTeBXsFL2:3) LOAD
READ {91 XM GMTX 24 END LOAD
DU 375 (=1.NEQB GMTX 2%
IR= [ + NLUC GMIX 26
IFLIRGT SNEWIGUTO 500 GMTX 27
00 275 J=1,MBAND GMTXx 28
Jd= IR+ g -1 GMTX 29
IFt4J.GT NEQ)GUTL 300 GMTX 30
K= 1RX(JdJ) GMTX 31 SUBROUTINE BEV{PHIRLLMeBLMTEMPLNEGBT s NUMEL Y NF 2 NBLOCK s NEQB BEV
LF(KLEQ. D) GOT0 275 GMTX 32 1 NUMELZ g NUMEL Ty NIy ZWH e ZWHTUP ZWy THy HRATER) BEV
FELIRI= FRUIRY —XMUL.J) GMTX 33 DIMENSIUN PHIR(NUMEL +84NF} ¢ LLM{NUMEL 241 B(NEQBTNF} LMTEMPI50Q} BEV
275 CUNTINUE . GMTX 34 DEIMENSION SCI8.21.SHAPE(G.81.P40DE (5} BEV
300 K= [RX{IR) GMTX 35 REWIND 7 BEY
IFIK.EQ.0IGUTY 350 GMTX 36 READLTF BEV
00 32% J=2,MBAND GMTX 37 RERIND 1 SEV
IR= R+ GMTX 38 READLL} BEV
TFLIRWGT JNEQIGUTD 350 GMTX 39 4 BEV
325 FFOIRM= FRULRD — xMUl,400 GMTX 40 G READ ELEMENT-NODE LOCATION MATRIX FOR EACH ELEMENT INTD MATRIX LLMBEY
350 CONTINUE GMTX 41 [ BEV
375 CONTINUL GMTX &2 DO LO0 1=1.NUMEL BEV
400 NLOC= NLOGC + NEQH SMTX 43 READLLL LMTEMP atv
500 CONTINUE GMTX 44 DU 90 J=1,3 BEV
RETURN GMTX 45 Ji= Jd BEV
END GMTX 4& K= 20+d4 BEV
LLM{ Lpdl)= LMTEMP{K} BEV
Ji= J1+3 BEY
K= 1T7ed BEY
LLH{Ledli= LMFEMP{K) BEV
d1= Jl+3 BEV
K= 14+J BEV
SUBROUTENE LUGADLIGLOAD,FFyBsNEQBeNBLOCKNFNEQ} LCAD 1 LLM(Ledl)= LMTEMP(K) BEV
DIMENSIUN GLGADINF), FFINEQ) +BINEQB.NF) LOAD 2 Ji= J1+3 BEV
C LCAY 3 K= 23+¢d BEV
ORI SRR R A KR A R R R R R R ER A PR R PR R TP T E TR ERCRREERE R L CFL X RCLLAD 4 LLMLlsdld= LMTEMPIK) BEV
c THIS SUBRDUTINE TRANSFORMS THE NODAL LUADS {STURED [N FF) TO LLAD 5 J1= J1+3 BEV
c MGDAL LGADS (STURED IN GLOADI. THESE L0OADS ARE DUE TD GRIUND LGAD & K= §led BEV
C MOTION EXCLTATION OF THE DAM ALUNE. LGAD 7 LLMLTeJdl)= LMTEMPIN} BEV
o N T L I L I e 1) E] Ji= Jl+3 BEV
[ LOAD § K= 38+J BLV
REWEIND 7 LUAD 10 LLM( EyJdLd= LMTEMPIK) BEV

95¢



[aE xR aNel

90
160

200

510
520
550

160
8BGO

s Jied

K= &T+4

LLME T4 3L )= LMTEMP{K)
Ji= Jl+d

K= 44¢d

LEM{EgJi b= LMILMPLK)
CONT INUL

CONY INUE

READ MODE SHAPL FHRUM TAPE 7 [NTO MATRIX B

NN= [NOLUCK-1J*¥NEwR + 1

D0 200 <=1lsNBLUCK

NNEQB= NN + NEJB — 1
READCFICUBONgL) e NSNAGNNEDBT o( = 1o NF )
NN= NN - NEQB

FORM MODE SHAPE N RAUIAL DIRECTION AT EACH UPSTREAM NUDE-
SIORE RADIAL MUDE SHAPE IN MATRIX PHIR

NN= O
THETAl= 0.0
THETA2= TW

THETA3= iW + Iw

DO 900 1=1+NUMELT
$SC{141)= SIN(THETAL}
SC{ly29= CUS{THETAL)
SC{2s L= SINCTHETA3Z)
SCi2.2)= COSITHETAB}
SC(3pli= 3C{2.1)
SCi342)= $CL2+2)
SCiss13= SCeL, LY
SC{&p2)= SC{Ly23
SCIB.Li= JINITHETAZ)
SC{5.20= COS(THETAZ}
SL{bgll= SCL241)
SCLoe24= 3Li2:2)
SCET.11= 3C(5,114
SC[7,2)= 5C{5421)
SC{8sL3= SCUlel}
SC(8.24= 5CULL.2)

DO 800 J=l¢NUMELL

K= J ¢+ NN

DO 700 L=1.NF

Li= 1

L= L1 + 1

DA 550 NANN=1,8
PHIRIK ¢yNNNyLI= 0.0
LLX= LiMikeil)

Liy= LLMIK,L21]
IFILLY.LT.126LY0 510
PHIR (K eNNNa L} =B ILLY y L) *SCTENNN, L)
TFCLLXLTLLIGUTFD 520
PHIRIKgMNNsL )= PHIR(CK,NNNGL) # BULLXSLI&SCINNN.2I]
Li= L1 + 3

L2= Ll + 1

CONT INUE

CONTINUE

CONT [NUE

NN= NN + NUMELZ
THETAL= THETAS
THETA2= THETAL » IW

BEV
SEV
NEV
dev
BEV
GEV
BEYV
eV
BLv
HEV
BEV
BEV
nEV
SEV
BLY
3tV
dEY
BEY
aEV
BLY
EY
REV
BEV
GEV
BEY
BEV
BEV
nEV
BEV
REv
BEV
BEY
BEv
ARV
E1AY
BLY
aftv
BEv
REV
ary
aLv
BEV
AEV
BEV
BEY
BEV
By
BEV
BEY
eV
BEV
SEV
BEV
HEY
BEV
BiEV
RIAY
BEV
BEV
REV
BEV
SEV

n

40
41

43
414
4
4
47
41
49
50
51
52
9%
54
55
L1
57
L

60
238
62
63
64
6%
&b
ar
64
&Y
10
71
T2
73
T
75
16
17
78
79
80
al
g2
A3
24
85
a6
H7
88
8y
ED
g1
92
T3
G

LaRaNakal

8Go

930

940

950

870

950
991

THETA3= THET
CONT [NUE

ADJUST RADIAL MGUt SHAPES TO ACCOUNT FOR DIFFERENCES

BETWEEN DAM

HT= 0.0

DO 990 I=14N
H=HT

HT= HelnelW
NZ= 1
LWHTOP= (HWaA
Cl= ABS{¢ZWh
TE(C1alT a1l
{F{HRATERLT

GOTC 9490
SCilsld= 1.0
SCL2,1)= =i

SC{3,1i= 1.0
S$Cl4,ld= 0.0
SCL54lh= ~1.
SCile2i= {lh
SCi{z2,2r= 50l
SCL3,20= {LiW
SClae2)= 5CH
SCi5,2)= scl
0D 940 J=1,5%
5=50(Jel)

T= SC{Je2)
SHAPE(Jy 125
SHAPE{Je2)=
SHAPE{ sy 3)=
SHAPE(Js #i=
SHAPE(Js 2=
SHAPE(Jy 6=
SHAPE(J, Ti=
SHAPE(J,B8)=
CONT INUE

K= NI

00 970 J=1,N

Az + TH

HETGHT AND RESERVOIR HEIGHT

UMELZ

TER-H) /[ 2.0%HWATER)
=W TUP ) 7 ZWHI
4)L0Tn 991

«HIILUTY 930

<

¢
HTUP+ZAHTOP=2WHE/ ZWH
Le2)

HTUP—LWH ) /£ 2%H

1.2}

3e2)

0.25%{1.0-5)%{1la-T}#{-5-T-1,}
Qe28¢(laeS)s{ L, =TI®(5-T=1,}
D.25%(latS)r(laeTin(S+T~1.4}
Q.25%[L.—S)&( .4V )% {-SeT-1.}
Oud¥{la-Su3h%{l.-T)
O.9¢(ledSin(la-TeT)

V.5&{ L.-5&5jallaél])
God8l]le=~S1&(1.~T%T

UMELT

DO 960 L=1,NF

00 950 N=led
PHMODE{NI= 0.
00 950 M=1.,8

PNUDEINI= PHUDEIN + PHIR (K MoLJSSHAPCIN,H)

CUNT INUE
PHIR(K3.L0=
PHIR{K &L=
PHIR{KsGLi=
PHIRIKT L=
PHIR{K ¢84Li=
CONT INUE

K= K + NUMEL
CONT INUE
GUTO 991
CONT INUE
CONT INUE
RETURN

END

[

PHULELL}
pPMOLE( 2}
PHODEL3)
PMODE (%)
PMODE({ ST

z

Q5

97
98
59

100

101

102

103

104

105

106

107

108

109

110

11

112

113

114

115

116

17

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

13y

140

141

La2

143

144

145

146

147

14&R

149

159

151

152

153

LST



v

55

301

300

99

302

SUBROUTENE BESSJUYIXeBESJBESY jNMAX NYMAX)
DIMENSION BESJL200)»BESYL200),TJ1200%
EULER=0.5TT21 5664901533
PI=2.0/3.1415926535898
NU22=20

IF(L0.~X1 24243
HATN=(1. 051 %X¢25,

GOVO 4

HATN=35, /{3.5-ALLGIX]T)
MU=HATN

N=IABSINMAX)+ 1

NUZ = No + 2

DO 5 J = NJZWN

TJdldi = 0.

CONT INUE

THNU# L) =0, 000001

B0 6 J=lahU

K=NU+1—)

FR=K+K
TJIRI=FKeTJ (K2 LI/ X-TUiK*2])
SUM=0.0

DU T J=3.NU,2

SUM= SUMs T {3}

SUM=SUME 5UH
TK=la/{TJ{10¥SUM)

DU 8 J=I.N
BESJ{J )= TKRJILI])
IF{NMAKED8,98:55

L=X/5.0

IF{L-11300,300,4301
XB82=1./1 64 5X%X)
XB4=X82« X882

POX= Lo—06 o 5&XBL+459, 3TS¥XB4- 150077, B125*X8%2X82
X8=4 122/ X

XB3=XB*X82

QDX=—XB+ 3T, S¥XE3-T441.875%¥XKB3*XB2+3623307.1875¢X83*K8s

XPa=X~0.2/P1

TI=SQRTIPL/X)
BESY{Li=TI*(POXPSINIXP4I+QOX*COS{XP4) )
GUTQ 302

DX=X

JSUM1=0.0

BouM2=0.0

DX2= 2 25%DXt0X

DXXxsla0

0F=1.0

DO 99 M= 1.,Nu22

oT=-DT

DFFM= M

OFM=1.0/ (DFFMEOFFMI

DX3=DX2¢ DFM

DXX=DXX® X3

DSUM2=D5UMZ + L./0FFH
DSUML=DS UML +DTxDXX*D SUM2
BESY(L)=PI®{BESI(LI*{EULER+ALGS{ 5#DX} ) —0SUML)
BESYL21= (BESJUZI*BESY({L}-{PLI/XIV/0ESILLY
N= NYMAX + 1

00 10 J= 34N

FH={Ji+J)=4}

BEJY
Brdy
BEJY
GeJy
REJY
AEJY
s
BEJY
XN 4
3EJY
BESY
BEJY
BtJy
BEJY
BEJY
SEJY
dEdy
BEJY
SLJY
BLJY
BEJY
BEJY
StJv
BEJY
BiJyY
BEJY
Bi-Jy
BLJY
BEJY
BEJY
BrJy
BJY
Bedy
BLJY
BEyY
BLJY
BEJY
acJy
BLJY
arJgy
aLJy
BEJY
afJy
BEJY
IR g
BEJY
a4tJv
BeJdY
BEJY
RIaNE 4
BCJY
BLyy
GEdv
sEJY
REJY
HEJY
BLJy
BESY
sEJY

o e
WP e O LG TN S R

" - e
O oD~

f RO RS P R NN
B N

N
O TRt

w o
b

W
~ o

10
94

w

-

-

BESY{JI=FMOUESY (J-11 /X-BESY{J-2}
RETURN
LND

SUBROUTENE BESNRS (X KMAXSFK)

DIMENSLUN FLI5014FK200)

TF(X-2e) 2¢%23

T=a08X

T=T&T

FRELI= {{{1{a0QUOUQT40*T+.Q00LATH0)12T+,.002626981xT+. 0348859114 Te
1 L23063756)1€E+.42278420)¢T-457721560

FK(2)= (40 {{-a00U04686%F~, 00110404 )%T-.019194021%1-,18156897)1*7-
1 LHTZT85 19137 ¢u 154431440 5T+,

CALL BESNIS (Xp2+F1)

T2=.5%ALUGITI

FROLIsFREL-T24FILL}

FRIZI=FRLZI/XT2¥FIL2)

T=2./%

GG Ta 1

I=2. /7%

FRILI= L14L1.000532088T-,00251540) % T+, 00587B72)%T-.01062446) %1+
1 J02189568)%7~,07832356)4T+1.253314l4

FK{2)= fLil(-.00U68245%F+.00325614)%¥T-.00T80363)12T+.0150426B1%T1~
1 +036595620)1%1+.234986193%T41.2533 1614

TI=EXP{~Xi/SQRTIX}

FRYLI=FR{LYET Y

FKIZ2}=FK(2Z)*T1

CONT INVE

Ad= 1.0

TE(XLEslaO)AAZL0E-275

FRiL)= AA*FK{1)

FRI2)=AA*FKIZ)

DO 4 N=3sHMAX

DK=N=2

FRINISTHEDREFK (N~LI+FKIN-2}

RETYRN

END

SUBROQUTINE BESNIS{X NMAX,FI)
OIMENSION FLi%01, PIL200)
SUM=0.,

i=x

SMAX=1421

TZ=2./X

M2 = UMAX ¢ 2

D0 4 J = JM2.NMAK

PLLJY = 0.

CONTINWJE
PLIUMAR+L)=1.E-20

DO L J#leJdMax

Kz JHAX+L -J

OR=K—1

BEJY
BEJY
BEJY

BENK
SLNK
BENK
BENK
dENA
BENK
SENK
BENK
BENK
LENK
1319
dLNK
GENK
BLNK
BENK
AENK
JuhNg
BENK
BENK
BENK
SENK
JLNK
BLNK
JENK
BENK
BEAK
RENK
BENK
SENK
BENK
GLNK
BENK
BLNK

GYAVE
dENT
dEN]
ey
dENI
dENT
SENT
dLnNi
BENT

S BENT

HENT
Gl
dhkN]
BEN

60
ol
62

— e
[ R = I SN S, B WO P

LS

16
17
18
19
27
21
27
23
B

2%
206
21
23
24
3
31
iz
33

8G¢c



[xE2Ra! Ccoo faNatal Sem

(a2 s%sl

oo

-

150

200

250

a60

400
450
475

500

600

PI{K=L)=K&T2&P J{K) #P[ LK+
SUM= SUH#P LK)

SUN= U+ SUM

ATEXPIX) F{PICL) «SUM)

DU 2 N=1/NMAX
FIINI=ARPL{N)

RETURN

END

SUBROUTENE CSYHMEG(Ae By NNoLL}
COMPLEX A(15:155.8(15:2)

DO &75 N=1,NN
Nl= Nel

FORM DINLL)

00 150 L=lsbd
BANyLl= BUNoL}/AIN.N)

CHECK FOR LAST EGQUATION
IFIN~NN} 200,509,200
DU %50 J=KR1yNN

FORM HiN<J)

TFICABSLAIN,J i) 250,450,250
AfNe JV= A{N+J b/ ALNN)

MODIFY All.d)

D0 300 [=J,NN
Alledd= Allsd) — ALLNIFAINGJY
AldelY=At1,d)

MODIFY B{l.L)

00 400 L=1,LL

BiJdsLl= BlJdsel) — AfJeNI®BUIN,L])
CONT INUE

CONT INUE

RACK~SJBSTITUTIUN

NL=N

N= N=l

LFIN) 700,700,550

DO 600 L=1,LL

DU 600 Jd= NLeNN

BINsLI= BUN+L} — AENeJI*BLU,L)

GUTg 500

BENT
HENI
BENL
BENI
BEN]
BENT
HENT
BENT

LovH
[
C5¥4
CSYM
LSYM
csyy
(2]
CSrM
CS¥™
LSy
La¥M
(S E
cs5yM
CovH
CuYM
CsSym
Cavd
CSYMm
CSYM
Co¥™
CSY™
Coym
CSvM
[ ]
CSYM
CsyM
CSYH
csYm
[
oYM
CSYM
CoYM
RS L]
C3¥M
CSYM
CSYM
C5¥M
L]
C3YM
CSY4
CoYd
CsvM
CSy#M
LaYM
L5¥M
CSYM
oYM
L5

15

17
18
19
20
2l
z2?

29

24
25
26
217
23
29
34
31
32

34
35
36
3r
38
33
40
<1
42
413
b4
45
4u
&7
48

T00 RETURN CSYM
ERND CoyYM
SUBROUTINE HENMLIPHIR¢HINMy CDNy AR, CDM, HLNM

1 NUMELZ NUMELT \NZ o ZWH  ZWHTOP, TR RTERM, MTERM,NF « NUMEL) HINM
DIMENSION PHIRINUMEL w8 NF I HENMINTERM, MTERMyNF 3}, HINM
L CUNTNUMELT yNTEHM 3] p AAINTERMe 3 CDMINUMELL yMTERM+3) HINM
OIMENSION CCidi HINM
C HINM
COFEIREXREERSE EFERT AR ERERT ER R R FAE TR E RN XA R IR ERERFE R ER XL bk DR R R HIAM
< THIS SUBROUTINE FORMS THE INTEGRAL IiN.M.L! HINM
AP RV R T F E R S Nk F RN P RS NN N RN PN E AT NN AN P e e g [ NM
c HINM
DO 100 N=l,NIERM HINM
00 100 M=L,MTERM HINM
DO 100 L=1+NF HINM
HINM{N,#,Lb= 0.0 HINM

140 CUNT INUE HINM
TWe= 4.0%TK HINY
ANGLE= Iwa HINM
D0 200 N=Z,NTERNM HINM
AN=N-1 HINM
Cl= SINiANGLE) HINM
C2= COS{ ANGLE} HINM
COEL)= LL2~CLFANGLE) 7AN HINM
CCi2¥= 2.0%CL(LI/ANGLE HINMW
CEE30= CL/AN HINM
DO 150 {=LyNUMELT HINM
DO 150 J=1.3 nlNM

150 CONLI Nsdd= CLLIN HINM

200 ANGLE= ANGLE + Tw4 HINM
ANGLEC= TW4 HINM
00 300 J=1sNUMELT HINM
ANGL E= ANGLEC HINM
DO 250 N=Z2e:NTERM HINM
Cl= SINCUANGLE} HINM
£2= CUSY ANGLE} HINM
CUONTTeNs L)=CONELgNo LISCL HINM
CONLI e 23=CDNUTeN,ZI%C2 HINM
CON(IsNe32=CONUTaNe3 Y02 HINM
ANGLE= ANGLE + ANGLEC HENM

250 CONTINUE HINM
ANGLEC= ANGLEC + TW4 + Tuw4 HINM

300 CONTINUE HINM
Pl= 3,141592¢5306 HINMY
Plz= Pi*IWHTOP HINM
PLN= D.5%pPl HINM
ANGLE= D45%P 2 HINM
00 350 M=i.MTERM HINM
Cl= SIN{ANGLED) HINM
L2= COS{ANGLED HINM
COMINZsMoll= §L2 - CL/ANGLE)/PLM HINM
COMINZ Moo 2o D¥CDMINZ yM LI/ ANGLE HINA
COMINZ M 3)= CL/PLM HINM
ANGLE= ANGLE + PLZ HINM
PLM= PN + PI HINM

350 CONTINUE HENM

49
50

657¢



370

ars
«00

450
500

600

IFENZLEQ.
NNJ= NZI-1

LIGOTU 400

Pli= Pl&lhH
PLM= 0.5%P1

ANGLE= 0.

SeplZ

DO 375 M=LlgMTERM

Cl= SINCANGLED

C2= COSCANGLED

CCUld= (L2 ~ CL/ANGLEI/PLM

CC(2)= 2.

Q&CC{LI/ANGLE

CCi30= CL/PILN

DO 379 i=iyNNZ

00 370 J=1y3
COM{LaMa J)= LLEJ)
ANGLE= ANGLE + PIZ

PLH= PLM
CONT INUE

+ Pl

Pli= 0.5%PIvIun

Pil2= PIL

ANGLEC= =PIZ
00 500 I=1.N2
"IFELLEQ.NLIPLIZ2= D.5¥PISIKHIOP

ANGLEC=

ANGLEL & PIZ « PLL2

ANGLE= ANGLEG

00 450 M=14MIERM

Cl= SINIANGLE)

C2= COSIANGLE)

COMEL Mo 1)= COMUL M, LIRCE
COMUI Mo 2d= COM(I+M,21%02

COM{ LyMo 34= COM{I+M,3)¥C2
ANGLE= ANGLE ¢ ANGLEC + ANGLEC

CONT INUE
CONTINUE
HN= O

RO 900 i=
DG 800 J=

K=J + NN

D0 700 L=

LoUMELY
Lo NZ

Lo NF

Cl= 0u25¥ I PHIRIKy LoL )$PHIRIKo 20 LI+PHIR{K s 3,L ) ¢PHIR(K % L })

(5= Ci
Co= (1

Cl= 0uSTIPHIRIKS,L} #PHIRIK, 6oL} ¢ PHIRIK,7sL) ¢PHIRIK,8.L00-C1
C2= QLS5IPHIRIKT4L1 ~ PHIRIK S0 1)
C3= Q.92 {PHIRI{K a,L1 = PHIR(K,8,L))

C4= Qu.25%(PHIR{KolsL) = PHIR{K,Z,L) ¢ PHIR(K:3:L) =~ PHIRIK, 4,1}
€52 (5 ~ DeSTUPHIRIK j6¢l ! + PHIREKSBsL )}

Cé= (6 - C.O%(PHIRIK S+L) + PHIR{K,y 7, L)}

CT= 0.25%(PHIRIK,3,00 « PHIR{K.4,L) - PHIR(K,1,L} — PHIRIK,2,L1]
L2 C7T + D.5F{PHIR(Ky54L) - PHIR(Ke74L)}

C8= 0.25#(PHIRIKs2: L] ¢ PHIRIK; 34010 ~ PHIR{K: LoL) = PHIRIK,4,L10)
L= L8 ¢ Q.5*IPHIRIK 84l t ~ PHIR{Ks6,L))

Aaliel)=s THA*{LL4CH/ 3.0

AAELe2i= TWe®{(2+ {T7/3.01

AALL3)= TH4s(S

DG 600 NF2.NTERM

AAIN s LI= LOMONLINy2) ¢ (CL¥COISCON{L N3} + C3%CONIIeNy L)

AAN 2Dz CTOCONCTN,2) ¢ (C2eCTISCONCINC3) ¢ COxCONEIN. L)
AAINy3 )= CS¥CUN(I Ny3) + CB*CONLI, N1

CONT INUE

00 650 N=1loNTERM

DO 650 M=L,MTERM
HINM(N:MaLY= HINMENGM:LDY + ABIN,Z)SCDMIJ My L) +

HINM
HEINM
HINM
Hikd
HINM
HINY
HINM
HINY
HINY
HINY
HINM
HinM
rIHM
HINM
H1NM
HINM
HINM
HINY
HINM
HINM
HINM
HINM
MM
H1NM
HINM
HINM
HINM
HINM
HINM
HINM
HINY
H1NY
HINY
HINM
HINM
HINM
HINM
HINY
HINM
HINM
HINM
HINY
HINM
HINY
HINM
HINM
HINY
HINY
HINY
HINM
HINM
HINM
HINM
HINY
HINM
HINM
HINM
HINM
HINM
HTNM
H M
HiENM

55
St
57
38
59
65U
61
&2
63
&4
65
&6
67

&9
o
11
T2
13
74
75
T
77
78
79
80
B1
82
83

84 -

8o

BT
88
B9
90
91
92
@3
94
95
G&
97
98
99
ian
101
lo?
103
104
105
Lo&
Loz
108
109
110
1SN}
112
113
il4
s
116

1 AA(NG 3 JRLOMII Me2) + {AAING3Y ¢ AACN, L3)SCOMII,M,3) HINM

650 CONTINUE HINK
700 CONT INUE P HINM
800 COMTINUE HINM
MN= NN + NUMELZ HINM

Q900 CONT INUE HINM
RETURN HINM

END HINM
SUBROUTINE BEVZIPHIR +POB,LLM TNNyNUMEL ¢ NFy NUMELZ NUMELT ¢eNZ o ZWH BEV?2
ZWHTUP 5 Ty NEQH ? BEV2

DIMENSIUN PHIRINUMEL 18+ NF | p POB{NEQW ¢NFIy LLMINUMEL 8] 4 TNN{(B¢ 8,2} peva
DIMENSIGN STL3),H13}.SHAPELS) BEV2

c BEV?2
CoOBEbsARUEIEE SR SRR IR RERI X PR RGP T FEEE T LR ERINEECLF R U LY TR T RN T RO R L ONCREEEPEY 2
C THIS SUBROUTINE FURMS THE INTEGRAL ASSOCIATED WI¥H THE PRESSURE BEV2
C UUE TO THE MUVEMENT DF THE RESERVOIR BANKS — POB BEVZ
CoORBULIEEIEKETE TR R LBEF N EER I B E XX FR Y AR EL RN L EREE R X A KSR ST FFRERRERCY 2
4 BEV2
DATA ST/ cT774596669,0.0,~.774596669/ 8EVZ

DATA H/.5555555%5,. B8B8BUB8T4+.555555556 8EV2

[« BEV2
C FORM THE LLM ARRAY WHICH ASSIGNS A LOCATION TO EACH NODAL POINT BEV2
C IN EACH ELEMENT (DVERED BY WAFER BEVZ
4 BEV2
NN= ~NUMELZ BEV2

NEQ2= 0 BEVZ

DO L00 [=1,NUMELT BEVZ2

NN= NN + NUMELZ BEV2

NEQL= NEYZ + 1 BEV2

NEQ2= NEQL #NZI + NI + L BEV2

NEQ3= NEW2 + NZ + 1 BEV2

D0 LO0 J=lsNZ BEVZ

K= NN +« J BEV?2
LLM{K.1b= NEQL BEV 2
LLHIKsd) = NEW3 8EV2
ELMUKs3)= NEw3 + 2 BEV2
LiMIKa4)= NEQL + 2 8EV2
LLMLK S = NEWZ BEV2
LLM{K,6)= NEQ3 ¢ L BEV2
LIMIK.T1= NEUZ + 1 BEV2
LLM{KeB)= NEQL ¢ 1 BEV2

NERQL= NEQL + 2 BEV2

NEQZ= NEWz + 1 BEV2

NEQ3I= NEJ3 + 2 BEV2

100 CONTINUE 3EV2

[ BEVZ
C FORM THE TNN ARRAY - &% ELEMENT ARRAY FORMED BY INTEGRATING BEV2
[ SHAPE( IN*SHAPE(J) OVER THE ~l. TO 1. RECTANGLE BEV?2
C BEVZ
DO 200 K=1,8 BEV2

DG 200 L=K.d BEV2

200 TNN{K,L,1)= 0.0 BEVZ
DO 400 I=1.3 BEVZ

5= 1L BEV2

DO 400 J=1,3 BEV2

¥= STL{J) BEVZ

117
[ S
119
120
121
122
123
124

O X O P N e

09z



[xEzEaNalal

300
4C0

500

60¢Q

650
700
750
900

HST= Hil1*H(J}

SHAPELLl= 0.25%(1.-5)%l1.-1)&{=-5-T-1.}
SHAPE(2) = 0.25%(1at3)¥i1a-T)*(S5~T-1.)
SHAPE(3)2 0a25F(1.#5)*{LasT)®AS+T-1.)
SHAPE(4) = 0.256{1.~-5)F (1. eTHE(=5+¢T-1.}
SHAPEL Sl = Da5%{ 1 —5*5)1%(1.-T)
SHAPLL O = De5%®( L, +5)¥(1.~T*T)
SHAPELT) = 0.5%L L,~3%5)%(L.+T}
SHAPE(Bl= Qo%iLla=S)%(L.~ToT}

DO 300 K=1,8

Cl= H3T*SHAPLIK}

00 300 L=K, 8

INNGKsLs L0= THNNIKJLo 1) + CL®SHAPE(L)D
CONT INUE

Cl= ZWHeTwW

C2= TWHTOP*TW

00 500 K=148

DC 500 L=K.8

TNN{KyLo2¥= C2¥TNNIK,L, 1)

TNNEKsLoLb= C1ETNNC(KyLe L)

TNNCLsKe L)= THNN(KeL. 1)

TNN{LvKs23= TNNIK4i,2)

FORM POB ARRAY - THLS ARRAY RESULTS FROM MULTIPLYING TNN BY THE
MPDE SHAPESe THE RESULTS FOR EACH ELEMENT ARE STORED 1N POB AT
LOCATIUNS GIVEN BY THE LiM ARRAY

D0 600 I=1,NEQW
D0 600 L=1¢NF
POBLI-L) = 0.0

NM= —NUMELZ

DO 900 1=1ie¢ NUMELT
Nh= NN + NUMELZ
00 900 Jd=14NZ

K= NN ¢ J

M= 1

IF{J.EQNZiM=2

0D 750 L=LsNF

00 TO0 KK=1+8

NEQl= LLMIK+KKI

Cl= 0.0

DD 650 NNN=1,8

C2= PHIR (K NNNsL}
IF{C2.EQeDaMMGUIG 650

Cl= C} + L2FINN{KKsNNN.M)
CONT INUE

POBINEQL ,Li= POB{NEQL.L} + C1
LONTY INUE

CONT INUE

RETURN

END

OVERLAYUXFILE+341)
PROGRAH XHYDRU
COMMON /7 MISU / NBLOCK,NEQB.LLeNFeLB yNDYN

BEV2
BEV2
AEV2
BEVZ
BEVZ
BEVZ
BEVZ2
BEY2
Btv2
REV?Z
BLv2
Bev2
BEVZ
BEVZ
BEV2
BEVZ
Brve
BEv2
BEV2
eV 2
BEVZ
BEVZ
BEVZ2
OEV2
dFV2
BEVZ
BEVZ
BEV2
BEV2
BEVZ
BEV2
BEve
BEVZ
BEV2
BLEV 2
BEV2
BEV2
BEVZ
BEV2
SEV2
BEV2
BEV2
BEV2
BEVZ
BLv2
BEV2
BEV2
BEVZ
BEy2
HEV2
BEVZ2

XHYD
XHMYD
XHYD

COMMON ZELPAR/ NPAR{ L4} NUMNPMBAND NELTYP NLsNZyN3 s Nay NG, MTATy NECXKHYD

+  oN6e NUMNPF

« IPRINT +NLM NUMEL,WATL. THMASS,TVOL.NEQEST,[MODE XHYD

LS SIS

500

o #IPRM  MESH (MESHFN ,ISYM WOEN,F (LD} i
COMMON/RAJOD/RADLUS « RADHT

COMMONJ/H YD/ NUMELZ g NUMELT y TWo 21y HWATER ) NTERMyMTERM ( IX Y2
COMMON Ad L}

NEQBT= NEQB*NBLULK
NEQW= 1

NODEZ= |

Nl= 1

N2= Nl + NF

NI= N2 + NEWQ

Né= N} + NUMNP®3
NS= N4+ NEQ

N6= NS + NEQB*MBAND
IFENGLGT LMTUT)CALL ERRORING-MTOT)

CALL GMTNXCALNLISALNZ) A{NY), ACNGT o ACNS Y JNUMNP  NUMEL o NEUB o
1 MBAND s NFeNBLUCK s NEQs 1XYZ)

N4= N3 + NEQB*NF
FFING,GT +MTOT ICALL ERRORINA-MTOT)
WRITE{ &+ 30004

CALL LOUOADLIAUNL)»ACN2Y, AN}, NEQBoNBLOCK NF,NEQ)

IFIMWATER.EW.0.0}60T0 5300

IWH= IW/HWATER

N3= N2 + B*NUMEL*NF

N4= N3 + 24¥NUMEL

No= N « NEUBT®NF

Né= N5 + 50

IFANG6.GY «MTOT ICALL ERRORING-MTOT)

CALL BEVIAINZIoALM3) s AUNGI+AINS )y NEQBT 4 NUMEL « NFoNBLOCKNEQD «
1 NUMELZ yNUMELT «NZ o ZWH e ZWHTOP e ZH o THa HWATER }

N&= N3 + MTERMENTCRMENE

N5= N4 + NYERM&NUMELT*3

No6= NS + NTERMX]

N7= N& + MTERM®NUMELZ*3
[FINT.GT«MTOTICALL ERRTR(NT-MTOTI

CALL HINML{AINZ} s AIN3)«AINS) s ATNSTALNG Y,
1 NUMELZ yNUMELTaNZ ¢ ZWH s ZWHTOP, TWsNTERM MTERM,NF, NUMEL)

NEQW={ IO NI+ 2)*NUMELT + NI +NZ + 1
N5= N4 » NEQR&NF

N6= NS + BENUMEL

N7= N& +« 128

IFINT.GTSMTOTICALL ERRORINT-MTOTH

CALL BEVZIAINZ) sAING )¢ AINS) ¢ ATNE) g NUMEL ¢ NFy NUMELZ yNUMEL Ty NZ ¢
1 ZdHs ZWHTOP » T e NEQW }

NODEZ= NI +« NI + |

KKMAX= NTERM * NTERM + 14
Nl= |

NZ= Nl + NF

N3= N2 ¢ BENUMEL*NF

N4= N3 + MTERM*NTERMENF
N5= N4 + NEUW®NF

Né= NS + NTERM&KKMAX

XHYO
XHYD
XHY D
XHY
KHYD
XHYE
XHYQ
XHYD
XHYD
XHYO
XHYD
XHYD
XHYD
XHYD
XHYO
XHYO
XHYD
XHYD
XHYD
XHYD
XHYOD
XHY D
XHYOQ
XHYU
XHYOD
XHYD
XHYD
XHYD
XHYD
XHY
XHYO
XHYD
XHYD
XHYD
XHYD
xXHyYn
XHYOD
XHYD
XHYD
XHYD
XHYD
XHYD
XHYD
XHYU
XHYD
XHYD
XHY D
XHYD
XHY )
XHYD
XHYD
XHY D
XHYO
XHYD
XHYD
XHYD
XHY D
XHY D
XHYD
XHYD
XHYD
XHYD

19t



C

NT= N6 + NODE L*MTERM I XHYD
NB= N7 + MTERM h XHY D
N9= NB ¢ HIERM XHYD

N10= N9 + NEQW XHYD

N1l= N1G + NEuWW XHYD

IFENLLLGT.HIOTICALL ERRORINLL-MTUT) XHYD

XY 0D

CALL XHORYZAAUINLICAUNIYALNG)AINS) AN AINT) JAINB]A{NG), XHY 3

i A{NLOY RADIUS HWATER ¢ NF o NTERM yMTERM (NUDE 2o KK WAX ( NEGQH ¢ NUMEL T XHYD
2 ZWH ZWHTUP . THI XHYD
XHYD

RETURN XHY D

3000 FOURMAY(///78H GENERALIZED LOAD FOR HURLZONFAL GRGUND MUTIGN IN X OXHYD

LERECTIUN — STRUCTURE ONLY /7Xa24H FREQ NUMBER Loan XHYD

END XHYD
SUBRUUTEINE XHURIZ{GLOAB:HINM:POByFNKy COSLAMAB+BB,PBRsPUIy XHOR

1 RAULUS HWATER NF o NTERM ,MTERM - NODEZ o KKMAX ¢« NEQW » NUHELT XHOR

2 (ZWHo ZWHTOP. TR RHOR
DIMENSIUN HINMINIERM (MTERM NE ) PODINEQW o NFE FNKINTERMa KHKMAX ) XHUR

2 COSLAMINGDEZ (MTERM} ¢AB{MTERM ) «BBIMTERM) PBR{MEQW) PBIINLIWI] XHOR

3 GLOADINF) XHOR
DINENSION BJKEZ200),BYL200F,6MNT13L) ,WUAML 1Y) XHUOR

REAL JMR131) XHOR
COMPLEX 36154151 4F115,2),55115,18)4FFIL5,21 XHOR

XHOR

COBBuRRhhdRA bk Akd bk b kbt kb hd &b &k bk g h ik bk b b Aok doed bk ok & Bl Bk YHO 4
[ TH1S SUBROUTINE CALCULATES THE COMPLFX FREQUENLY RESPDNSE XHOR
C FUNCTIUNS FUR HORIZONTAL GRUUND MOTEON IN X DIRECTIUN XHOR
LHEESEKAAEITLO EEE S MG A ShA RS SFSEbk kS B D Rk ddd bbby cd & wdokhk bk ok sk bk &sd XH{TH
< XHOR
REWIND 7 XHOR
READLTILWDAMLL)Y (L= NF) RHO#
KEAD(S, 1UGGIVAMP, AL PHAL INCOMP (NPUNCH XHOU®K
HRITE{ Oy 2000 DANP XHOR

Pl= 3.141592653 XHOR

RHOL= 9. 8854001 9*RADTUS*RADIUS#HWATER XHOHR

RHDZ= -.4501%815T9¢RHiL KHOR

RHO3= ~. 1 T67766953%RH0 XHOR
IFIHNATEA.EQ.Co0i60TD 24 XHOR

C XHLR
RCONST= 0.5%Pi¥KADIUS/HWATER XHO R

Wh= 4720.0%PL/{HWATER +» HWATER) XHOR
LFLENCOMPLGT.0IGLTO 8 XHOR
WRITE{ 64 3000wl XHGR

DO T M=1,HMTERM XMk

T WRITE(Gs 35000 My HENME Lo My 1) XHOR
GUTG 9 XHOR

8 WRITE(6, 56000} XHO&
INCOMP= i XHOR

9 DU L0 NN=LpNTERM XHOR

N= NN = ) XHO®

AN= 16¥NTN XHUIR

KMAX= N + N + 16 XHOR

DG 10 KK= L,KMAX XHOR

Cl=KK = 1 XHOR

L2= 4.0%(C1 XHUR

68
69
70
I
712
73
T4
T4
ia
r
T8
745
50
&1
a2

L= O N N e

12
13
ta
15
16
1!
L
13

21

22
23
24
2o

26

28
2%

31
E¥4

34
35
30
37
3R
39
40
L3S

24

25

40

109

€3= C2xi1

FHKENNp KK = (ANS(3—1.0) /({{AN-C3=C2- 1, Gis{AN-C3+(2~1.00}
IH= ~ZIwH

DG 15 J=14NUDEZ

Cl= ~0.0€pl

C2= IwH

IFLJaGYa (RUDEZ-2] ) C25 ZWHTDP

IH= IH ¢+ (2

C3= 1.0

00 15 H=1,MTERN

Cl= C1 + Pl

€3= ~C3

EM= HeM-1

COSLAMEJoMI= (L3/EMI®{LOSICLIFIH])
CUNT [NUE

HRITE{ &, 4000)

READ(S5, 1000wl GAM

IFINRLOAM.LT 0046070 900
W= WOAM( LI*WW 10 AM
iFLINCUMP.EWL21GUTD 860
Cl= 0.0

C2= 0.0

00D 40 L=14NF

Fll,13= CHPLXICL,L2)
FilLe2i= CMPLXILL, (2}

00 &0 K=1,NF .

S{L,Ki= CMPLXICL,C2)

CONT INUE

[FIHWATER 4EQ.0,0}GUTO 8o0
WAL= W/WL
IFLINCUMP L Ede L) Wh1=0.0
MAX= Q.5%{WWl + 1.0)

EM= 1.0

DO 100 M= L, MTERM

ARG= AUSI{WwWl=E#)*{WWI+EMI)
JMR{M}= RCUNST&SQATI ARG}
IFLJMRIM} oL TL0, GOUGLIJIMRIM) = 3.00001
EM= EM+Z2.0

CiM= 1.0

GO 500 M=L,MTERM

ClM= -C1M

EM= MeM-1

C2M= ~L1IM/EM

X5 JMR{M)

IF(MAXLLTLMIGLTO 300
NBESSY= 4v(NTERM-LI ¢ 1
KRBESSJ= NBESLY + 30
TF{XalTe0ud JANDNTERMLGTL LLINBESSY= 41
CALL BESSJY{XsBJKpBY NBESSJHWNBESSY]
CLIN= C2M

DU 200 MN=L1(NTERM

CIN= =ClN

N MN-1

Néo= 48N

KMAX= NeNelS

FL= 0. 5%BJdK{LI¥FNK(NNy1L}
NX= QeS®{leU5%X+L5.)

XHOR
XHAR
XHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XHOR
¥HOR
XHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XHUR
XHOR
KHOR
AHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XKHOR
XHOR
XHOUR
XHOR
KHOR
XHOR
AHOR
XHUR
KHOR
XHOR
XHOR
XHOR
XHOR
XHUR
XHUR
XHOR
XHOR
AHOR
XHOK
XHDR
XHOR
XHOR
XHOR
XHER
XKHUR
XHOR
AHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XHAOR
XHOR
XHOR

46

95

iol
102
103

79t



DO 129 K=1sKHAX
ITF(RGT.NXIGUTO 130
KX= K#]

125 FL= FL + BJRIKK*KI®FNKINN, K]

130 FL= FL + FL
IF(XalT.0alaANDNRGTLELIGOTO LT76
ITF{NN.EQ.LIGOTU 150
AMN= BJK(N4) - BJKIN4+2)

AMN= BYINE) ~ BYING+2)
L2= 2,0
GOTO 175
150 AMN= —2,0%B8JK(2)
BNNE —2,0%8Y(2)
€2= 1.0

175 C111= AMN/BMN
C2= C27¢ (AMNELCLLL + BMNI®JMRIME]
THN= C2&(CLLL#BJKINGFL) + BY(Na+l]))
DMN= C2¢ {BJKIN4G+L)= CLLL*BY{N&*1))
GOt 177

176 CMN=—~1,0/FLDATIN%)

OMN= Q.0
AMN= 0.0

LIT C3= (LN*CHMN
Ca= CLN*¥OMN
€55 0. 7853981L6%AMN
EB= FL®(3 ¢ L(5%(4
HB= FL®C4 - (5%(3
ED= —C3®FNK{NN, 1}

HD= —CH&FNK{NNy L}

00 LBO L=1,NF

Fllslds Flisl) + HINH{NNM LI *CMPLX{EB,HE)
Flle2)= FLLs2) + HINMINNgM,LI¥CMPLX(ED, HD)
DO 180 K=L.NF

C1= HINHINNgMN L bR HINMONN, M, K)

S(LeK)= SULeK) + CLECMPLXICMN,DMN)

180 CONTINUE

200 CONTINUE
GUTO0 500

300 NBESK= 4&{NTERM=LJ + 2
CALL BESNKS{X,NBESK,BJK}

CALL GUXoNTERM, LODGMN)

ClhN= =C2H
D0 400 NN=1,NTERM
CiN= —CLN

N4= 4% (NN-1}
IF{NN-Ew.LIGOTD 350
CHN= ~BJKiN4* 1] JUIBIRKINGY + BUKING+2) )+ I0RIMI}
CHN= CMN + (MN
GATG 359
350 CHMN= —BIKILIFA{(BJKIZI + BUK{2D2eaMREM)
355 EB= C2ZMCMNSGMNINN)
ED= CIN®GHN®FNK (RN, LD
€1= 0.0
DO 375 L=Ll4NF
C2= EBSHINMINN:Ms L)
C3= EORHINMINNe My L)
FiLsll= FlLel) + LMPLX(CZ,C1)
FILs2)= FiL+2) + EMPLXIC3,C1
00 375 K=L,NF
C2= CMN&EHINM{INN (Mol ) SHTNMINN, MpK)
S{LeKl= SIL+K) # CHMPLXIC2,01)
375 CONTINUE

XHGO®
XHOR
XHUR
XHOR
XHUR
KHOR
XHOR
XHOR
XHDA
XHOR
XHUR
XHGK
XHUGR
XHOR
XHUR
XHIR
XHOR
XHOR
XHOR
XHGR
XHOR
XHOR
XHUOR
XHOR
XHOR
XHOR
XHGA
XHOR
XHDR
XHOR
XHOR
XHOR
XHOR
XHGR
XHOR
XHOR
XHOR
XHOR
XHUR
AHOR
XHOR
XHOR
XHECR
XHOR
X
XHUR
XHOR
XHOR
XHOR
AHAR
xtger
XHUR
XHOR
XHOR
XHOR
XHOR
KHUR
XHOR
XHOR
AHOR
XHAQOR
AHO®

194
105
106
a7
108
109
110
111
1nz
mna
11«
1s
ilis
i
118
112
120
121
122
123
124
125
12&
127
128
1249
130
131
132
133
134
135
136
137
135
t39
140
141
ieZ
143
144
l1as
lia6
147
143
149
150
151
152
153
154
155
156
isT1
158
159
160
161
1el
163
laa
165

400
age

©00

CONT INUE

CONTINUE

DD 600 L=1+NF
ElLell= AHOZ2*FE(L. L)
FlLg2)= RHUZ¥F{Le2)

ocoOoon

1¢0

110

730

740
750

a00

850

CALCULATE THE {04l ASSOCIATED WiITH THE INTEGRAL TERM FOR
PRESSURE DUE Th THE MUVEMENT OF ¥THE RESCRVIIR HANKS

NEQL= 0

ANG= —~in

NODET= NUMELT + NUMELT + 1
NNN= 2

NCONST= )

00 750 NTHETA= L,NOOET
NCONST= ~NCUNST

NNN= NNN + NLONST

ANG= ANG + Th

Cl= SIN{ 7853981635 - ANG)
2= SIN(.7853981635 + ANG)
DO 710 M=L,MTERM

C3= Cl&iMRIM)

(4= C2®JMRIM)
IFIMAX L T.MIGUTO 200
ABCMI= (SINEL3S ¢ SINECA)/IMRIM)
BBIMI= (COSE(C3r ¢ CUS(C4})/UMRIMD
GOTU 710

ABI{MI= =LEXP{-C3} & EXPU-C4})/SMR(M}
BA(MI= 0.0

CONT INUE

D0 740 I=1,NODEZsNNN

NEQl= NEQL + 1

C3= 0.0

Ca= 0.0

00 730 M=1,MTERM

£3=03 + Ap(M)®COSLAMTT M}
IFIHAX.LT.M) GUTD T30

Ca= L4 + BBIMIFCOSLAMIT M)
CONT INUE

PBRINEQL)= (3

PBLINEQL }= Ca

CUNTINUE

CUNT INUE

DO 850 L=1sNF

€3= 0.0

C4= 0.0

00 800 N=Ll,NEQW

C3= L3 + PBRIN)*PUBINLI

Cas C4 + PBLUNI#POBIN,L)

CONT [NUE

FllLsld= FLL,LY « KHOB3*CMPLX(C3, Ca)
CONRT INUE

86d

-1-}]

RHOLW= RHOI*w¥wW

00 865 L =LlsNF

DD 865 K=LyNF
SSILKI= HHOLWES{L.K}
SSIKeLI= SS{LVK}
COUNTINUE

XHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XKHOR
XHOR
XHOR
XHOR
XHUR
XHOR
XHOR
XHOR
XHOR
AHOR
XHOR
XHOR
XHUR
XHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XHUR
XHOR
XHOR
XHOR
XHOR
XHOR
XHUR
XHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XHOR
XHUK
XHOR
XHOR
XHOR
XHOR
XHUR
XHOR
XHUR
XH0R
XHOR
KHCR
XHUR
XHOR
XHOR
XHD R

Lo6
167
168
169
170
171
172
173
174
L7s
176
177
178
179
180
[3:31
182
183
184
1895
186
187
184
1849
130
191
192
193
194
19s
196
197
194
199
200
201
202
203
204
205
206
207
2848
209
210
211
212
213
214
219
Zlé
217
218
219
220
221
222
223
224
225
2246
227

£9Z



W= W

00 875 L=L:NF

FRILL2)= FiLs2) ¢ GLOADELY

FEFlLel)= Fli.1)

Cl= WW + WUAM{L)®*WDAM{L)

C2= WeWOAM{L)S{ UAMP+DAMP)

SSELabb= SSEL L} + CMPLXICH,C2)
875 CONTINUE

CALL CSYMEQEIS,FFNF,2)

PRINT COMPLEX FREQUENCY RESPONSE FUNCTIONS FUOR AGCELERATION--—-
THE CUMPLEX FREUUENCY RESPUNSE FGR OISPLACEMENT UF 0AM ARE STURED
IN VECTOR FF AS FOLLOWS=-- FFILs1)= DISPLACEMENT DUE TO
HYDROQGYNAMLC PHRESSURE ON THE DAM CAUSEJ BY MOVEMENT UF

RESERYUIR BANKS, FF{L.:20= OISPLACEMENT DUE TO GROUND MOTILN PLUS
DISPLACEMENT (UE TO HYDRODYNAMIC PRESSURE CAUSED BY DAM MOVEMENT.

[al sl aRalaNaNal el

DD 885 L=L4NF
Ci= WWeREALIFF{LsL))
C2= WH¥AIMAGEFF{L, L)}
C3s WHPREALIFFILeZ))
ChH= WWERALMAGLFFIL«2})
Ch= Cl+03
Co= L2+C4
C7= L5505 ¢ Co%Co
C8= SQRT{C7}
WRIFTEL Sy 5000 ki LUAM; WOAMLL ) pC Ry 025030 L5¢05;06,(8
IFINPURCHGT O} PUNCH TOO0 WWLDAM WOAM{L Y 01, C2,C34C4,05,06,848
885 CONTINUE
IFLINCOHP.GF.C} INCOMP= Z
<
G0To 2%
o
900 RETURN
1000 FORMATI2F10.0,215})
2000 FORMAT(//7/722H MUDAL DAMPING RATID =,f10.64//)

XMOR
XHOR
XHOR
XHOR
¥HUR
XHO®
XHOR
XHOR
ArUR
XHOR
XHOR
XHOR
XHOR
AHGR
XHER
XHOH
XHOR
XHDR
XHOR
XHGR
XHOR
XtiOH
KHOR
XHGR
AH{IW
XHOR
XHOR
XHUR
XHOR
XHOR
XHOR
XHUR
XHDK
XHGR
XHOR
XHUR

3000 FURMAT{///774L1H FUNDAMENTAL FREQUENCY OF THE RESERVUIR =+FL2.6+////XHDK

. 739H INFEGRAL [{M.0) FOR CALCULATING LIMITS)
3500 FORMATC/LOX,3H EQ o2,4H 0)=,EL3,61)

XHOR
XHOR

4000 FORMAY [/ //LOX.d71 COMPLEX FREQUENCY RESPONSE FOR ACCELERATION —-— HXHOR

LORIZONTAL GRUUNO MOTION IN X DIRECTION,//16H EXCITATION FREQ,
2 124 DAN FREQ ,24H HACCEL — BANK MUTiUN,

3 24H HAGCLEL = GMTN+DMTN.

4 164 e HALCEL - TOTAL-——-=-,

5 F3X g LOH WAWDAMILY o TXoFH RAD/SEC o

6 24H REAL IMAG

7 24H REAL THAG

8 36H REAL 1MAG ABS VAL UE)

2000 FORMAT{/ /2FL3.042X+7E12.%1)

6000 FORMAT(////30H EINLONPRESSIBLE WATER SULUTEON,
i JAOH —mrmmm s o e /)
TG00 FURMAT(ZFL3 .64/ TELL.4)

END

SUBRQUTINE G{XeNTERMs [LsGMN)

[

4 THIS SUBROUTINE CUMPUTES GMN USING SIMPSONS RULE

XHOR
XHOR
XHOR
KHDR
XHOR
XHOR
XHUR
XHUR
XHOR
XHOR
XHOR
XHOwX
XHOR

TICD

228
229
239
221
232
233
23h
235
236
231
238
239
240
24l
242
243
Lk
240
2406
261
243
249
2450
251
252
257
254
255
256
257
258
259
260
2&l
262
263
264
265
266
267
208
269
270
2711
272
273
274
275
218
277
278
219
280

DIMENSION GMNINTERM) ¢AAAT 201}

Jo= e
He [I+Q1
H= 0.785
ANG= 0.0
DG 20 J=

o+ 1
398L635/7H

Ledd

Cls S5INIQ.T853981635 — ANG)
€2= SINLQ.7853981035 + ANG)
ARAL J}= CL¥EXP(—X#¥Cl} +¢ L2¢EXPI~X%C2)
20 ANG= ANG + H

DO 50 N=
GMNEINL=
[F{N.EQ.
HN4= 4%t
HM4= HN4
ANGZ= HN
ANG3= HN
C3= AAAL
DO 30 1=
J= {+I-1
Cl= 3

LoNTERM
0.0
L1GGI0 3%
N— 11

*H

4

b & riNG
1

Lell

2= 4.0%A8ALJ# LIRCOS{ANGZI

C3= AAAL

JeZI*CUS(ANG3)

GMNENI= GMNENT + CI+C2+¢C3
ANG2= ANGS + HN4

ANG3= AN
GOTD 49
00 40 1=
J= Iel~1
GHMNIN) =
GMN{NI=
CONT LNUE
RETURN
END

QVERLAY(
PROGRAM

G2 » HN4
Lyl

GMNEND + AAA (I}
(H/3.0) ®OMNIN)

XFILE+3:21)
YHYORO

+ 4.0%AMALJEL) + AAALJL2)

COMMUN / MIST /7 NBLOCK,NTUBsLLeNF4LB sNOYN

COMMON ZELPAR/ NPAR{LG) s NUMNPyMBANDSNELTYPyNL NZiN3, N4 NS MTGT, NEW

N6y NUMNPF ¢ LPRINT

«IPRM

» MESH +MESHFN

T NLM G NUMEL WATL,
ISYMeWDENS T(10)

COMMON/RADDULO/RADIUS, RADHT
COMMON/H YO/ NUMELZ S NUMEL Ty T, ZWe HWATER ¢ NTFRM g MTERM, IXY?

COMMON A

NEQBRT= N
NEQW= 1
NQDEZ= 1
Ni= |
NZ= N1 #
N3= N2 «
Na= N3 +
N5= N& +
Noé= N5 +

(R}

EQBENBLUCK

NF

NEWQ
NUMNP 3
NE R
NEQU*MBAND

IF{NG.GT JMTOTICALL ERROR(NG=-MTDTH

IMASS y TYOL S NEQEST , IMGOE

P DO

[aN YN A RARA TN AN S S

[N AR P Tl o PRl

YHY.D
YHY D
VHYD
YHYD
YHY)
YHY O
YHYD
THY O
YHYD
YHYO
YHY)
YHYQ
YHYUO
YHYD
YHYD
YHYD
YHYD
YHYD
YhYy
YHYO
YHYUD

—
LT

11
12
13
la
15
16
L
18

23
21

23
24
25
26
27
2H
2%
37
3t

32
ER]
34
35
1Y)

38

17a%k4



[

CALL GMTNXTALNLIoALNZD¢AEN3) ALNG] cAINS) «NUMNP - NUMEL +NEQE »

YHYO

L MBAND+ NF ¢+ NBLCCK «NEQs EXYZ) YHYD
YHYD

N4= N3 + NEQB*NF YHYD
TF{N4,GT .HTOTJCALL ERRORING—MTOT) N YHYD
WRITE{ 6, 3000} YHYD
YHY D

CALL LOADAEAUNE) g ALN2S pA(N3) ¢ NEQB, NBLOCK ¢NF ¢ NEQ) FHYD
YHY D

IF(HWATER.EQ.0.QIGATA 500 YHYD
ZWH= IN/HWATER YHYD
N3= N2 & B&NUMECL&NF YHYD
N4= N3 + 29¢NUMEL YHYD
N3= N4 & NEUBTENF YHYD
Né= N5 ¢ 50 YHYO
IF{N&.GY .MTOTICALL ERROR{NG-MTQT) YHYD
YHYD

CALL BEVIAINZ2 Iy AUNI ) r AUNG )y ALNS o NEQBT s NUMEL ¢ NE o NOLOCK NEQE » YHYI}
1 NUMELZ yNUMELT 4 NZ s ZWM o 2WHTOP s 2W T HWATER) YHY O
YHYD

N4= N3 ¢ MTERMENTERMENF VHYD
MS= N& + NTERM®NUMELT*3 YHY D
NO6= N5 & NTERMT3 YHYD
NT= N& » MTERMSNUMELZ*3 YHYO
IFINTAGT JATOTICALL ERRORINT-MTOT) YHYD
YHYD

CALL HYTNMLLAINZ) 4AINI ) JA{NG) s A{NS) 1 A(NE ) YHYO
1 NUMELZ sNUMELT N s ZWH«ZRHTOP« T NTERM« MTERM,NF r NUMEL) YHYD
YHYD

NEQW=§ 3¢ NZ«2) *NUNELT ¢ NZ #NZ + | YHYD
NS= N4 + NEQW&NF YHYD
Noé= N5 + GeNUMEL YHYD
NT= N& « 128 YHYD
TFINTLGF MTOTICALL ERROR{NT-MTOT) YHYO
YHYO

CALL BEV2IAINZ) 4AING T2 AINS) sAINE) « NUMEL ¢ NF o NUMELZ s NUMELT+NZ & YHYJ
1 EWHy ZUHTOP, TH NEQW} YHYOD
YHYD

NODEZ= NI + NL & ] YHYD
500 KKMAX= NTERM + NTERM + L4 YHYD
Ni= | YHYD
NZ2= N1 & NF YHYD
N3= N2 ¢ GENUMEL®NF YHYOD
N4= N3 + MTERMENTERMENF YHYD
N5= N& ¢ NEQWENF YHYD
Né= NS + NTERMSKKMAX YHYD
NT= N6 ¢ NODEZ*MTERM YHYD
N8= NT ¢ HWTERM YHYD
NO= N8 ¢ MTERM YHYD
N10= N9 + NEQw YHYD
Nll= N10 + NEUW YHYD
IFINLL.GTMTOTICALL ERRORINLL-MYOTH YHYD
YHYD

CALL VHORIEZIACNLI ¢ACN3IJAINSG) pATNS) pAING) g AINTH AN A (NT, YHYD
1 AINLO) sRADIUSsHWATER (NF ¢ NTERM 4 MEERM yNODE Z s KKMAX s NEWW yNUMEL T, YHYD
F ZWHe 2uHTOP, TH) YHYD
YHYD

RETURN YHYD
3000 FORMAT(///78H GENERALIZED LOAD FOR HORIZONTAL GROUND MOTLON IN Y OYHYD
1IRECTION — STRUCTURE GNLY/7X24H FREQ NUMSER LOAD) YHYD
END YHYD

2e
23
24
25
26
27
za
79
30
31
32
33
34
35
1
37
38
39
40
41
“2
43
a4
[
4n
41
48
49

51
52

54
55
5o
57
54
59
&d
3
62
&3
ba
65
&6
i f
68
69
ro
Tl
77
T3
T4
75
I6
71
T4
9
80
a1
an

|}

1

SUBRGUTINE HYINMLIPRIR HINMGCON® Ad LOM,y

NUMELZ 4NUMEL ToNZ s ZWH , ZWHTOP + TW 4NTERM ¢ MTERM o NF » NUME L

DIMENSIUN PHIRUNUMEL »8, NF}  HINMINTERM ;MY ERM ,NF}

CONLNUMELT yNTERM 30 ¢ AAINTERMy 31, COMINUMEL L ,MTERM, 3}

DIMENSIGN CCi3!

HYIN
HY IN
HYIN
HYIN
HY TN
HY 1N

C
CHandabseE ki EEAEN PR AR EE R LN ERN R F PR G A Bk e e h e o b ek cd kg h g m Rk ffY ] ¥

[+

THIS SUBROUTINE FORMS THE I[NTEGRAL I{N.MeL) FNOR ¥ EXCETATIGN

HY LN

CENSREEEFRENEY Perexrrepprk kb ik gk phbhhbS kb bk bhk bk h kb o kb ks ukd ks bkpkksxHY [N

£

100

150
280

250
ElUY

350

DO 100 N=1.NTERM

DO 109 M=1,MTERM

00 100 L=1.NF
HINMINM.L)= 0.0

CONT INUE

THé= 4.08TKH

ANGLE= TW * ik

00 200 N=1,NTERM

AN=H~1

AN = AN ¢ Q0.5

Cl=s SINCANGLED

C2= CO3{ ANGLE)

CC{LlY= (C2-C1/ANGLE}/AN
CCE2)= 2.0%CCE L) ZANGLE
CC{3)= CL/AN

o0 150 [=1,NuMELT

DO 150 41,3

CON{LeNy J3= LCEJ)

ANGLE= ANGLE + Tké
ANGLEC= Tu

DO 300 §=leNUMELT

DO 250 N=1,NTERM

AN= N - 1

AN= 4.0%AN ¢ 2.0

ANGLE= AN®ANGLEC

Cl= COUS{ANGLE)

L2= SINCANGLE)D

CONUIoNs LI=CON{LoNy LI*CH
CON{ LyNs 23=CON{ T, N, 21802
CONUEI Ny 3)=CDNE Ly 3102
CONTINUE

ANGLEC= ANGLEC + TW + TMW
Pl= 3.l415926536

PII= PL*ZWHIOP

PLM= 0.5¥P1

ANGLE= Qa59PiL

DQ 390 M=Ll,MTLRH

Cl= SINLANGLE)

C2= COSLANGLE)

CDMINZ Maoh)= (L2 = CLZANGLE)/PLM
COMINZ M, 21= 2.0%COMINZ+M, L}/ ANGLE
COMUNZ 4 ¢3)= CL/PLM
ANGLE= ANGLE + PIL

PLM= PiM + PI

CUONT iNUL

IFINZ.EQ.LIGOTO 400

NNZI= NI-1

HYIN
HYIN
HYIN
HY IN
HYIN
HY LN
HYIN
HY TN
HYIN
HY LN
HYIN
YN
HY IR
HYIN
Y IN
HYIN
HYIN
HYIN
HY [H
HY DN
HYIN
AY 1N
HYIN
AYIN
HYEN
HYIN
HY N
HYIN
HY 1N
HY N
HYTY
HYIN
HYIN
HYIN
HY [N
HYIN
HYIN
HYIN
HYIN
HYIN
HYIN
HYIN
HYIN
HY TN
HYTN
HYTN
HY TN
HYIN

—
= N e

.
W —

14
15

|94
18
19
20
21

23
24
25
26
27
28
29
33
31
32
33
34
EL
£l
37
38
39
40
41
42
43
44
fel
46
47
48
49
51
Sl
52
53
5S4
A5
56
57

S9c



PIZ= PI&iWH
PLM= 0.5%PI
ANGLE= 0.2%PlL I
DO 373 M=1,MTERM
Cl= SINIANGLE)
C2= COSLANGLE)
CCtl)= (€2 = CL/ANGLE}/PLM
CCU2)= 2.06LCLLI7ANGLE
CCI3r= L L/PLM
DO 370 I=1+NNZ
DO 37C J=1,3
30 COMEGeMy JI= LLLOY
ANGLE= ANGLE + PIZ
PLM= PLH + PI
315 CONTINUE
400 PIZI= Q.0%Pi#*InH
pPlI2= Pl2Z
ANGLEC= —PE2Z
OU 500 [=1yNL
TF(TEQ.NZIPL22= Q.9%PI#ZKATAP
ANGL EC= ANGLEC ¢ PIZ & PLI?
ANGLE= ANGLEC
DO 450 M=L.MYERN
Cl= SINUANGLE)D
C2= COSLANGLE)D
COMLIsMpbd= COMLILN,L1I®CL
COMIIeMe2)= COMUIMa2)¥C2
COMU{IsMe3i= COM{EsMy3)002
ANGLE= ANGLE ¢ ANGLEC + ANGLEC
450 CONT EINUE
500 CONTINUE
Nh= 0
00 900 I=l.NUMELT
00 800 J=l4NL
K=d ¢ NN
00 700 L=lyNF
Cl= Qu29%{PHLIRIKy Ly LI +PHIRIK, 23 LI+ PHIR{K 34 LI #PHIR{K 444 L1}
€s= Cl
Co= (1
Cl= Q.5%{PHIR{Ks3¢L} +PHIRIK 6, L) + PHIR(K,T+L) #PHIR(K,8,L1)}-CL
C2x DJH®IPRIR(R Tl = PHIRIX,S.L3)
C3= 0.%¢{PHIR{K6,L) — PHIR{Ke8,L}1}
Cas Qu25%FIPHERIR LaL) — PHIRIK,; ZyL) + PHIRIK 34LY = PHIR{K,;4,L))
C5= €5 = Q.5%{PHIR(K,6,L) + PHIRIK:+8,+L1})
Lo C6 — O0.58 (PHIRIKS4L) + PHIRIK,T,4L})
C7= Qa258(PHIRIK Iy L) & PHIR{K,4,L) — PHIRIK¢1lyL) = PHIR(K,2,L}}
CT= C7 ¢ D5 {PHIRIX,5.L) - PHIREKToL}}
C8= 0.25%(PRIREKy 2oL ¢ PHIRING34L} — PHIR(KyLpL) — PHIR{Kph,LH]}
C8z €8 # O.0%{PHIRIKs8eL) - PHIRIKyO,L)}
DO 600 N=1.NTERM

AdiN, 1= COHOXCONI TN 2) ¢ LCI+CHITCONLToNg3) — C3RCONTI Ny 1)
ARIN 22 CTYCONLLeNy 2) & (C2¥C7)%CONUToNg3) — CA®CONII¢N: I}
AAIN,3 )= COLONTLeN,3) « CB%CDN{[+N,L]

60C CONTINUE

00 650 N=isNTLRM

D0 650 M=1,MTERM

HINMEN M, L}~ HINMINM L) ¢ AAIN,2}8COM{d M, 1) +

1 AACN3®COMIIeMa2) + [ARING3) & AAINSL}ERCOMIJ M 3]
650 CONTINUE
700 CONTINUE
800 CONTINUE

NN= NN o NUMELZ

dYIN
HYIN
HY N
HY TN
HYI N
HY TN
HY [N
HY TN
HYIN
HY 1N
HYIN
HY 1N
HYTN
HYEN
AY 1N
HYIN
HYIN
ay 1N
HY N
Y inN
HY 1N
HYIN
HY TN
HY [N
HYIN
HYIN
HY IN
Ay IN
HY TN
HY 1N
HY [
HY TN
HY IN
HY [N
HYIN
HY [N
HyIN
HY [N
HY TN
HY Ly
HY I
HYIN
AYiN
HY I
HYIN
AY N
HYIN
HYIN
HYIN
HY T
HY N
HY IN
HYIN
HY 1IN
hy Iy
nYIN
HY TN
HY 4y
HYIN
dy 1N
HY Y
HYIN

S8
5%
40
61

5%
a4
&5
19
a8
69
0
7
[
73
T4
%
16
Y
£
79
87
a1
82
a3
Ha
45
86
a7
23
39
RA]
91
92
93
G4
5
D
Q1
98
493
3¢
1901
1oz
103
104
i0a
o6
127
103
109
119
(RNt
tte
13
114
LS

rrr
s
Lig

900 CONTINUE HY [N
RETURN HYTN

ENO HY LN
SUBRGBUTINE YHORIZ{GLOAD-HINMPOBFNK:COSLAM AR +BHoPBRPBI YHIR

1 RADIUS +HWA TERe NF pNTERH yMTERM ¢ NODEZ y KKMAX s NEQW , NUMELT, YHOR

2 LW Hy ZWHTLUP ¢ TH) YHOR
DIMENS ION HINM{NTERM MTERM+NF by POB (NEQW yNF ) s FNKINTERM,KKMAX) THYR

2  COSLAMINOOEZsMIERM) (ARCMTERM) BB (MTERM) ¢ PBRINEQW ) o PBEINEGW T+ YHGR

3 GLOADUNE) THOR
DIMENSIUN BJKCZ00),BYL20001,GMNI 31}, WOAM(15) YHOR

REAL JMR{31} YHOR
CONPLEX SEL5915)4F 015020 sSS{L154 151 +FF{15,2) YHOR

YHUR
Cﬁt&*t'*t!#‘*??10‘*7'?‘%'**##3##"'#!?#*'3"!**!!?!*!‘*#*&#!8#4‘*#*###&#*ﬂ\‘HUR
C THIS SUBRUUTINE CALCULATES THE COMPLEX FREQUENCY RESPUNSE YHOR
c FUNCTIONS FOR HOR{ZONTAL GROUND MUTION IN Y DIRECTION YHOR
ctt!"v"‘tﬁt.t;vt'v‘t¢$t$tF'V‘ttv'v‘V'*Rv"#!#*##!##s*&lvﬂ##»f'*t&t*k#*t\"ﬂﬂﬂ
ot YHOR
REWIND 7 YHOR
READAT H( WOAMEL } 4L =1, NF} YHUR
READIS5.1000)DAMPy ALPHA INCUMP yNPUNCH YHOR
WRITEL 64 2000)DANP YHOR

Pl= 3.141592653 YHOR

RHOL= 19.,77060U03B%RADIUS¥RADIUS*HWATER YHOR

RHO2= ~. 4501581579 RHOL YHOR

RHO3= —. OB8388347T6%RHDL YHOR
IFIHNATEREQ.Q.01G0T0 24 THOR

c YHOR
RCONST= O 5P [ *RADIUS/HWATER YHOR

HWl= @720, U%P] /| HWATER + HWATER) YHOR
IFCINCONP LT QIGUT0 8 ¥HOR
WRITEL 643000101 YHOR

GUTO 9 YHOR

8 WRITE(6s6000) YHOR
INCOMP= 1 YHOR

9 DU 10 NN=lyNTERM YHOR

N= NN = 1 YHOR

AN= 16%N*N & Llo*N ¢ 4 YHOR

KMAX= N & N + 16 YHIR

00 10 KK= 1.KMAX YHUR

L1=KK ~ | YHOR

(2= 4.0%(] YHQR

€3= C2%C1 ¥YHOR

L0 FNKENNKKE= [ANPCI~1 400/ [EAN-CI-C2~10) ®{AN-C3+L2-1.0}) YHOR

C YHUR
L= —LWn YHOR

DO 15 J=l.NUDEZ YHOR

L= —0a.5%P1 THOR

2= IWH YHOR
IF(J.GTa {NODEZ-21}C2= ZWHTOP YHQR

IH= 2H ¢ (2 YHOR

£3= 140 THOR

00 L5 M=1.MTERM YHUR

Ci= ¢l + PI YTHOR

C3= -C3 YHIOR

ENM= M+M-1 F¥HOR

120
121
122

-
DD o O AR e

L e Rl oy
[SIN-RE Y SO Y

o R MR
oIV e

25

2t
28
29
30
31
3z
33
34

ELS)
37
38
39
&0
41
42
43
S4
4%
£33
47

“3
50
51

53

99¢



[}

© [aN o

15

24

25

40

100

125
130

175

COSLAM{J M0 = (CI/EMY*ILOSICLEZHED
CONT INUE

WRITE(G6e4000E

READ (S, 1000)wwlDAM

IF(RWIDAN.LT.0.0)60F0 90Q

W= WOAMO L) ®ww LUAM
TFCENCOMPaEW. 20 GOLTY B&C

Cl= Q.0

C2= 04d

DO 40 L=1¢N

FiLell= CHPLX{CL4C2)

FiLa2l= LMPLXILL.C2)

DU 40 K=1eNF

StLskl= CHPLXICLaC2)

CONT [NUE

IF{HEAREK «EG- D=0 6UTA 860

Wel= W/nWl

IF{INCUMPaEUs L wni=0.0

MAKE Q.5*luikl + L0}

EM= 1.0

DO 100 M=L,MTLR#M

ARG= ABS({(WWi-EMI®{WnW]l+EM))
JMREM) = RCONS T#SQKT LARGT
IF{JMREM LT 0. QUOOT P IMRIMI= 0, 00001L
EM= EM42.0

Clé= {.0

00 500 M=1,MIEKM

Cik= —CIM

EM= MeM-1

C2M= —CLM/EM

X= JMR(M)

TF{MAX.LT.MIGULTG 300

NBESSY= 4%{NTLRM~-L} + 3

NBESS e NBESHY ¢ 30
TF{XLT.0u L ARDJNTERM.GTLLLINBESSY= 43
CALL BESSJY{X BJK,BY NBESSS NIESHY L
CiN= C2M

DU 200 NN=L NFEtaM

CiN= =CIN

N= NN-L

No= 4&N + 2

KMAX= NeN+lDH

FLe DLSEBIKLLIEFNICINNG LY

NX= 0.9¢{1,05%X+25.

00 125 K=1«KMAX

[FIK.GT.NXIG0TU 13D

kK= R+1

FL= FL + BJK{KK+KI#FNK{NNJKK]

FL= FL + FL
FFAXLLT. 0. Lo ANULNNGGT.LLIGUTO L Ts
AMN= BJK{N«) — BJKIN&+2)

BMN= BY[N4} - BY{N4+2)

2= 1.0

Clll= AMN/BMN

C2= Ca/UUANNRCLLL + BMN)SIMR{M))
CHMN= C2%(CLIL®BJR(NSG+L] + BY(Na+L)]
DMN= C2*{BJKINeel) - CLLL¥DY(N4+1})
GCYO L 17

YHNR
YHOK
YHEOK
YHUR
YHOR
YHUX
YHOR
YHDK
THOR
YHOR
YHOKR
YHOkK
YHIOR
YH kK
YHOR
YHOR
YHUR
YHOR
YHOR
YHOR
YHOIR
YHOR
YHUR
YHOR
YHIIR
YHLIR
YH{R
YHUR
YHOR
YHOR
YRR
YHR
YHR
YHOR
YHUR
YHCHK
YRR
YHO A
YH() A
YHOA
YHER
YHOR
THOR
YHOR
YR
YHROA
YuOR
YRR
¥YiHC A
YHU &
YHOR
YHCA
YO
YHOR
YO
Yhily
YHUR
Y2
st
YHUR
YHC%
YHU

5h

C

(] e e e e e e e e e

CALCULATE THE LOAD ASSOCIAYED WITH THE INTEGRAL TERM FOR
PRESSURE JUE TG THE MOVEMENT OF THE RESERVOIR BANKS

C
C
¢

178

117

la0
200

300

35%

315
400
500

600

CMN=
DMN=
AMN=
C3=
Ca=
£o=
E8=
HB=
ED=
HD=
0o 1
Fils
FiL,
oo 1
Ci=
S{L,
CONT
CUNT
GGTO
NBE S|
LAt
CALL
CLIN=
DU &
C1N=
Na=
CMN=
£8=
D=
Cl=
0G 3
C2=
C3=
Flbls
FilL,
Do 3
C2=
SiL,
CONT
CONT
CONT
uo &
FllLe
FlL,

NEQL
ANG=
NODE
NAN=
NCON
Do 7
NCON
NNN=
ANG=
Cl=

Ce=

oo 7
3=

=0. 5/FLUAT (NG}
0.0

0.0
CLN*{MN
CLN®DMN
0.785398 165 AMN
FLIL3 + (5%C4
FL¥L Y — U923
C3*FNKLINN 1)
CAsFNK{NN, L}
80 L=1.NF
L1)= FlLyk) — BINMINNs M LYV*CMPLX{EBHB)
21= Fidl42) ¢ HINMINNGMe U2 *CMPLXLED,y HOY
BO S=LWNF
HINMINN My L) ¥HINMINNG M, X
Ki= StL,K]) « CL®CMPLX{CMN,OMN}
ENVE
INUE
500
K= 4*%(NTERM=-1} + %
BESNKS{X ¢ NBESK, BJKE
GVL X NTERM ¢ LOD, GMNY
£2M
00 Ni=} (NTERM
=CLlN
a¥{NN-L) + 2
—BJR{NG+ L) /L(BIKINGYD + BIKING+2) P EOMREM) )
C2MELMNEGMN INN T
CLN® CHN*FNCENNY L)
6.9
25 L=1,.NF
EBEH {NMINNy MeL)
EDTHINM (NI, My L)
)= Fllel) & CHPLXLLZ,C L)
21= F(Le2) ¢+ CMPLXIC3,CL)
T8 K=l oNE
CHNEHLNM{NN e Me L] SHINM (NNaMe K)
Ki= 3{LaKi +» CHPLXICZ,C01)
INUE
INUE
INUE
00 L=1yNF
L1= RHO2¥FLL,1}
2= RHO2%*F(Le2)

=90

-Tw

T= NUME!T + NUMELT + }
2

5T= |

50 NTHL 1A= [ yNOODET

3T= -NCUNST

NNN + NCUNST

ANG + T
SIN[.785398163% — ANG}
SING.7853981635 + ANG)
10 M=sLyMTLRM

Cl®JMRIM)

YHOR
YHGR
YHOR
YHOR
THIR
YHOR
YHOR
YHGR
YROR
YHUR
yHOR
YHEGR
¥YHUR
YHOR
YHOR
RN ES
YHOR
YHOR
YHUR
YHOR
YHOR
YHOR
YHOR
YHOK
Y023
YHOR
YHO )
YHOR
YHOR
YHOR
¥HOR
YHUR
YHOR
¥HOR
YHOR
YHOR
YHER
YHOR
YHOK
YHOR
YHCA
YHOR
YHGR
YHOR
YHOR
YHIIR
YHOR
YHGR
YHOR
YHUER
YHOR
YHOR
YHOR
YHOR
YHOR
YHUR
YHOR
YHOR
YHOR
YHOR
THGR
YHOR

116
1z
s
113
129
121
122
123
124
125
12¢
121
126
129
130
131
132
133
134
135
136
137
13s
119
14N
141
142
143
144
14%
140
147
148
149
152
151
192
153
154
155
15¢&
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

L9T



T00

710

730

T40
150

800

850

C4= L2%JMRI{M)

TFIMAX.LT.HIGOYO 700

ABIM)= (SIN{(4) - SINEC3D)/IMRIM)
BBIM)= (COS{C4) = COS(CIFI/IMRL M)
GuTa 710

AB(KI= —{EXP{-C4) — EXPL~C3)I/iMRIM}
Ba{M}= 0.0

CONT fNUE

00 740 1=1,NODEZ,NNN

NEQl= NEQL + |

€3= 0,0

Ce= 0.0

D 730 M=l RIERM

€3=C3 + AB(M)®COSLAMII,H}
IF{HAX.L TaH) GATO T30

Ca= C4 ¢ BBEM)I®COSLAMIIWMY

CONT INUE

PBR{NEQL )= C3

PRLINEQLI> (&

CONTINUE

CONT INUE

00 859 L=LNF

€3= 0.0

C4= 0.0

CO 800 N=loNEQW

C3= C3 + PBRINIHPOR{N,L]

C4z C4 + PREINI®PUBLIN,LY

CONT INUE

Flleli= FlLol) o HHO3ZSCNPLXICE, C4)
CONTINUE

la X »]

[aNaN s R aNaXa Yok ol

860

as

[¥.]

815

RHDLH= RHOL¥WEW .
00 865 L=lsNF

DO 865 K=L.NF

SSILeKIs RHULWESLLK)

35(Kell= SS{L.KI

CONT INUE

WHE —WE

DO 875 LzlaNF

FFIL:20= FlL.2) + GLOAD(L)
FRIL,10= FLL, L}

Cl= s ¢ WBAM{LI®WIAMIL)Y

C2= WhHDAMIL) %{ DANP + DANP)
SSlLeld= SS5(L,1) » CHPLX{CL,C2)
CONT INUE

CALL CSYMEQISS+FF(NFs2)

PREINT CUMPLEX FREQUENCY RESPONSE FUNCTIONS FOR ACCELERATION--~~
THE COMPLEX FREQUENCY RESPDNSE FOR DISPLACEMENY OF DAM ARE STORLCD

IN VECTOR FF AS FOLLONS—— FFil,1)= DISPLACEMENT QUE TO
HYDRODYNAMIC PRLESSURE ON THE DAM CAUSED BY MUVEMENT UF

RESERVOIR BANKS. FFIL,2)= OISPLACEMENT
DISPLACEMENT QUE TO HYDRAODYNAMIL PRESSURE CAUSED BY DAM MOVEMENT,

DO 885 L=1«NF

Cl= WWEPREALIFFEL,e1))
C2= WHHAIMAGIFFiL.1)}
€3= WHSREALIFFIL,2))
Coe= WWeA[MAG(FFI(L,2))
Co= CleC3

QUE TGO GRGUND MOTION fLusS

YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHO R
YHOR
YHOR
YHOR
YHOR
YROA
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHUR
YHOR
YHOR
YHOR
YHOR
YHIR
¥ RHOR
YHIR
YHOR
YHOR
YHOR
YHOR
YHUR
¥R
YHOR
YHUR
YHOR
YHOR
YHOR
YHOR
YHIOR
YHUR
YHOR
YhOR
YHOR
YHOR
YHIR
YHUR
YHOR

178
179
180
181
1az
183
184
185
186
187
188
189
1990
191
192
193
194
195
196
97
198
169
200
291
202
203
204
205
206
207
208
209
210
21
22
213
2l4
215
2l6
247
213
219
220
221
2722
223
224
225
226
227
228
229
230
231
232
273
2544
235
236
237
23R
235

[aRal el

885

900

Co= €204
L¥= (5%(5

+ LO*(H

C8= SQRT(CT)

HRITE{ 65 5000} HWIDAM y WOAMILE 4 C1yC24034C4yC54C6,C8
LFENPUNG HeGT o0 JPUNTH 7000 WHIDAMeWOAMIL ) «CLoC2+03+C44C5,064(8

CONTINUE
IF{INCUNP.

GUTY 25

RETURN

GTe0) INCONP= 2

1000 FORMATIZFLO.04215)

2000
3000
40060

LORTZONTAL GRUGUND MCFLION IN ¥ DIRECTION.//16H EXCITATION FREQ.
HACCEL — BANK MOT JIUN,

NSNS W

FORMAT L/ 7/

/221 HOODAL DAMPING RATIO =.F10.4.//)

YHOR
YHUR
YHOR
YHOR
YHOR
YHUR
YHOR
YHOR
YHUR
YHQOR
YHOR
YHOR
YHOR

FORMAT{/ //7/41H FUNDAMENTAL FREQUENCY OF THE RESERVOIR =,F12.6.//) YHOR
FORMAT I/ /#10X,87TH COMPLEX FREQUENCY RESPONSE FOR ACCELERATION —- HYHOR

12d
24H
304

DAM FREQ 244

HALCEL — GMINEDMTN,

Z3X s LOH RA/uDAME 1) 47Xy 9H RAD/SEC

24t
244
a6H

REAL tMaG
REAL IMAG
REAL 1MaG ABS VALUE)

5000 FORMAT{//2F1546¢2XpTEL2:%)
6000 FURMAT{////30H INCOMPRESSIBLE WATER SOLUTION.
1

JROH — e mme e .

7000 FORMAT{2F13.,be/TELL %]}

20

END

SUBROUTINE

GY IXNTERM 11+ GMN)

DIMENS [UN GMNINTERMY 2 AAAL ZOL)

THIS SUBROUTINE CALCULATES GMNCASSOCEATED WITH THE EXCITATION

IN THE ¥ O

Jd= 1L o+ o
He T1+11
H= Q.7T8534
ANG= 0.0

FRECTIONE USING SIMPSUNS RULE
I+l

81635/

6G 20 4s1pJd

Cl= SIN(O.
€2= SIN{O.
AAALJY= C2
ANG= ANG +

76853981635 ~ ANG)
78535981635 + ANG)
YEXP{-X®(C2} - CL¥EXP{-X%C1)
H

03 50 N=L,NTERM

GMR (N} =
HN&G=  4&{ N~
HN4= HN4 *H
ANGZ= HN&
ANG3=
C3= 0.0
D0 30 1=1,
J= Iel-1
Cl= C3

0.0

1y + 2

HN4 + HNé4

it

C2= 4.0%AAALJEL IS INEANGZI

C3=

AAAL J+2]%SINLANG3)

GMNiN)= GHNINI ¢ CE+C24CT

Iral

YHOR
YHIR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YHOR
YUUR
YHOR

oY
Gy
Gy

Gy

GY
GY

GY
GY
GY
Gy
Gy

GY
Gy

GY
GY
GY
GY
GY

GY
eY
GY

240
241
242
243
244
245
246
247
248
249
250
291
252
253
254
255
258
257
258
259
260
261
262
2613
264
265
266
267

O W NG N

89¢C



3

5

<

o

ANG2= ANG3 + HN&
ANG3= ANGZ + HN4
GMNIM)= (H/3.0)*GHMN (NI
CONFINUE

RETURN

END

UVERLAYI XFILEs3,3)
PROGRAM ZHYDRO
COMMON / MISC 7/ NBLOCK.NEQB.LL,NF,LB NDYN

GY

InYw
IHYa
LHY Y

COMMON /ELPAR/ NPAR( 14) «NUMNP oHMBAND NELTYP oN 1 N2 N3+ N4-NF MTCT W NEQIHY D

+ 1 Nb6r NUNNPF ¢ IPRINT o NLM o NUMELWATL:
« +IPRM  MESH ,MESHFN +»ISYM,WOEN.T(L0}
COMMON/RADDD/ RAGIUS « RADHT .
COMMONZH YU/ NUMELZ (NUMELT s TWoZW e HWATERy NTERM ¢y MTERM, IXY 7
COMMON Afl)

NEQBT= NEUB¥NBLOLK

N1= 1

N2= N1 + NF

N3= N2 + NEJ

N4= N3 ¢ NUMNPH3
NSs N4 + NEQ

Na= N5 + NEQBSMBAND
1FINGGT MIUTICALL ERRORING-MTOT)

CALL GMINXUAINLIoRINZY<AIND Iy AENG) s AINS ) e NUMNP S NUMEL oNEQB o
1 MAAND NF JNBLOCKNEQ:s TXYL}

Né= N3 + NEQB&NF
IF{NG.GIHMTOF)CALL ERROR{N&=MTOT}
WRITE(6, 3000}

CALL LOADI(ACNLIZAINZ) AN ) NEQB+ NBLOCK o NF ¢ NEQ)

IFIHWATER.EQ-0.0460T0 500

IwH= IW/HWATER

N3= N2 ¢ BENUMEL SNF

Na= NI + 2&9NUMEL

NS= N4 + NEJBT*NF

No= NS + S0

IFINGGT . MIUT ) CALL ERRORING-MTOT}

CALL BEVLAUN2 s AIN3JoAINGF,ALNS I, NEQBT, NUMEL ,NF W NBLGCK «NEQY 4

L NUMELZ gNUMELT e NZpZWHy ZWHTOPy W THy HWATER)
Na= N3 + MTERMENTERMENF

NG= Né& + NTERM&NUMELT®)

N6= N2 ¢ NTERM#3

NT= N6 + MIERMkNUMEL Z%3

IFINT.GE.MTOUTJCALL ERRDRINT-MYQT)

CALL MINMLEACNZ2 3, ALNIY 2 AING ) AINS ), AING ) s NUMELZ A NUMEL Y NZ ZWH,
1 ZWHTUP ¢ Ty NTERM yMTERMp NF 9 NUMEL S

500 N3= N2 + U¥NUMELYNF

CALL VERTICHAINLII s &INZFoAUN3) gNUMELTo NUMEL 2+ NUMEL o NE o TH+

IMASS s TVOLyNEQEST, 1MOIE ZHYQ

IHY )
IHY O
IHY D
ZHY O
IHYD
ZHYD
ZHY )
IRYD
IHY D
ZHYD
ZHYD
IRYO
Iy
ZhYd
ZHY O
ZHY D
LZHY o
IHY D
IHYD
ZHY D
ZHY D
IHY )
IHYU
ZHYD
ZHY 9
IHY B
ZHY ]
ZHY D
ZHY D
IHYG
LHY
ZHYa
IHY
INYD
IHYD
ZHY
ZhY Y
2HY D
IHY U
ZHY D
ZHYD
IHY D
IBY 3
LHY D
IHY g

LW O N

349
4
41
a2
43
4
(3
&4h

LY
@9
50

. 1 ZWH 3 ZWHTUP s NFy NTERM, MTERM RADTUS ¢ HWATER ) ;ng
Y
RETURN IHYD

3000 FORMAT(//2/61H GENERALIZED LDAD FOR VERTICAL GRODUND MUTEON - STRUCFZHYD
LURE ONLY ,/7Xs24H FREQ NUMBER LUAD) ZHYD

END LHYD

g

SUBRQUTINE VERTICIGLOAD ;PHIRs HINMy NUMELT dNUMEL 2o NUMFL N2, Thy VERT

1 IWH e ZWHTWUP yNFyNTERM MY ERM RADLUS yHWATER) VERT
DIMENSION BJK(200)yBY{200),GH4NI31) ,WDAMILS) VERT
CIMENS LuN GLOAD{NF ) ¢PHIR{NUMEL, 8 ¢NF Y, HINMINTERMyMTERM NF } VERT
REAL JHR (3L} VERT
COMPLEX SLEL15415k,F(L5)S8{15+153)aFFI(L5} VERT

C VERT
LRt dbd ik bbbk ks bbbk e bk hE b Ak I AR E RN EF R AR C RN SO Rk KRRk R S PRk kR VERT
C THIS SUBRUUTINE CALCULATES THE COMPLEX FREQUENCY RESPONSE YERT
C FUNCTIONS FUR VEKTJCAL GROUND MOTIUN VERT
Chuadb bt kb sk kbR bk b kR AT EE RN C R R AR R YRR TR R R R SR DRk & R b kR VERT
C VERT
REWIND T VERT
READ(TIL WOAMCLY »L=1NF} VERT
REAUC(S,1UQQI0AMP AL PHA, INCOMP  NPUNCH VERY
TFIALPHA . £ 0.0 FALPHA=T,0 VERT
WRITE{6, 2000 DAMPALPHA VERT

PI= 3.141592653 VERT

RHULl= 9. 885400D19*¥RADIUS*RANIUSFHWATER VERT

VRHO= =1 573310304 RATTUSSHWATERSHHWATER #Ti VERT
IFIHWATEREG. 00456070 24 VERT

C VERT
RCONST= 0.5%PLsRADIUS/HWATER VERT

Wl= 4720.0%PI/(HRATER » HWATER) VERT
IFUINCOMPLGT. 0 GUTO 8 VERT
WRITE( 6, 3000) Wl VERT

GOT3 24 VERT

8 WRITElGs60GO) VERT
INCOMP= | VERT

C VERT
2% WRITLEIGy 4G0O0} YERT

¢ VERT
C YERT
25 READIS5,1 000 Il DAM VERT

4 VERT
iFIWKIUAMLTL0.0060T0 900 VERY

W= WUAM{ LI*Wh1lUAM VERY
IFCINCOMPLEG. 2H60TO 860 VERT

Cl= d.0 VERT

2= Q.0 VERT

DO 40 L=1.Nf VERT

FLLI= LHPLXLCL1.C2) VERT

DU 40 K= 1,NF VERT

40 SILsK)= CMPLX{LL.C2) VERTY
IFIHWATERCEQaD0IUOTD 860 VERT

Wihl= B/wl VERT
JFUINCUMPEWa LiWki=0.0 VERT
IF{HWL.L TalQE~05)WH L= L. OF-03 VERT

MAX= D.S5F(WWL + 1.0} VERT

EM= 1.0 VERT

= T S N N

697



[aX o]

(2 X o]

100

150

175

176

117

180
240

300

3509
358

375
400
500

B&0

DU 100 M=1,MTERN
ARG= ABS{{Wwwl—EMI*{WWL+EM})
JERINES RCONSTESQRT{ARG)

IF{JMRIMILLTL0.COU0LIJIMRINI = Q. 00001

EM= EM + 2.0

DO 500 M=) MTERM

Xz JMR M)
TF{MAXLT.M}IGGLFD 300
NBESSY= 4®(NTERM-1} + 1

IF{XeLT.00LeANDLNTERM GT4 LLINBESSY= 21
CALL BESSJY{X+BJK DY NBESSY.NBESSY)

DO 200 NN=l:NYERM
No= &e(NN-L)

IF{X LT 0l ANDNNCGELLLIGATY LTE

EF{MNeEJ . 11GRTC 150

AMN= BJK{N&) — BJKIN&+2)

BMN= BY(N4l = BY(N4+2)

C2= 2.0

GATg LTS

AMN= =2, 0%8JK{2}

BMN= —2.0%8¥(2)

L2= 1.0

Clil= AMN/BMN

(2= CZ/4 {AMNRLLILL + BMN)EJMR{MI )

CMN= C2¥{CL11*3JK{N&+1) + BY{N4+1))
DMN= CZ& (BJK{N4+Ll) ~ CLLL#*BY{N&+1})

GOTO 177
CMN= —i.0/FLUAT (N&}
DMN= 0.0

DO 180 L=LyNF
DD 180 K=LyNF
Cl= HINM{NN e MsL a3 INMINNG M, K}

SlLeil= SULAR)D ¢ CLECMPLXICMN,DMNY

CONT INUE
CONTINUE
GGTG 500

NBESK= 4*{NTERM - L} + 2
CALL BESNKS{X¢NBESK, BJK)
00 400 NN=LsNTERM

N4= 4*{NN-1)

IFINN-EQ=L 3500 350

CHMN= —BJKINAFL)/LIBIKING) + BJKI(N&+2) )€ JMRIM) |

CMN= CMN + CHMN
GOTH 355

CMh= =BJKILI/ZULIBJKI2Y & BJIK(2)E*IMRIMEY

Cl= 0.0
DO 375 L=1¢NF
DO 375 K=L.NF

C2= CMNeHUINMINN oM. L) S HINM NN M K)

SILyXI= SELsK) + CMPLXIT2,01H
CONT TNUE
CONTINUE
CONTINUE

CALL VILODAD{PHIR.Fo NUMELT 4NUMEL Z¢NZZWH ZWHTOP, TWe NUMEL +NF 4

Wkl g VRHO s A LPHA )

RHO LW= RHOL* WK
00 865 L=L1s+NF

VERT
VERT
VERT
VERT
VERT
VERT
VERT
VLRT
YERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERY
VERT
VERT
VERT
VERT
VERT
VEFT
VERT
VERT
VERT
VERY
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VERT
VER]
VERT
VERT
YERT
VERT
VERT
VERT
VERT
VERT

5

53
54
35

57
58
54
60
61
63
63
b4
&5
68
67
68
63
70

T2
73
74
75
7e
77
T8
g
a0
81
32
_3
84
85
36
87
B4
39

91
92
k]
G4
95
kL)
kX4
98
qyq
100
101
02
103
104
108
10a
107
108
109
L0
1L
12

DO 865 K=L,NF

VERT

SSIL,K)= RRULWESILK) VERT
S8{K.LI= 334L,K} VERT

865 CONTINUE VERT
T VERT

DO 875 L=1,NF ‘o VERT
BFILI= FILI + GLGADIL) VERT

Cle WW ¢ WOAM(LI*WDAMILY VERT

C2= A*HDAM(L)#{ DAMP ¢ DAMP) VERY
SSIL,Li= S5{L.L} + CHPLXLCL,C24 VERT

815 CONTINUE VERT
¢ VERT
CALL CSYHEQUSS,Fé NF .1} VERT

¢ VERT
DG 885 L=L.NF VERT

Cls WHHKLAL{FF(L]) VERT

C2= WA [MAGIFF(L]} VERF

C3= CLC + L2%C2 VERT

C4= SORTIL3) VERT
WRITE(6, 50001y mi I0AH WOAMILY (C1yC2,C4 VERT
LFNPUNCH.GT-GJFUNCH 7030 }W o HWLOAM  wDAM{LE ¢ CLeC2yC% VERT

885 CONT INUE VERT
TFLINCOMP.6Ta0) INLOYPS 2 VERT

C VERT
GoTO 25 VERT

c VERT
900 RETURN VERT
1000 FORMAT{2FL0.0+215) VERT
2000 FORMAT(///722H MUDAL DAMPING RATI0 = FlO.4, VERT
! £73%H RESERVOIR BOTFOM REFRACT [ON CONSVANT =4E10,49//) VERT
3000 FORMAT(////%LH FUNDAMENTAL FREQUENCY OF THE RESERVOIR =,F12.6://) VERT
4000 FORMAT(////XyTOH COMPLEX FREQUENCY RESPONSE FOR ACCELERATION -— VVERT
LERTCAL GROUNU MUTION,//L16H EXCIVATION EREQsLZH  wW/Wload « VERT

2 124 DAN EREQ VERT

3 45H e COMPLEX FREQ RESPONSE===-—===— . VERT

“ F5XyBH RAO/SEC, 16X, BH RAO/SELBX5H REAL 1LOXo5H IMAG, VERT

5 7% 10W ABS VALUE) VERT
5000 FORMAT(/ /LK, FL346s2F12.402X,3EL5. 4) VERT
6000 FORMAT(/ /77301 INLOMPRESSIBLE WATCR SOLUTION, vERT
L F30H mmmmmmmmommms e ey 7} VERT
7000 FORMAT(3E13.6,3611.4) VERT
END VERT

SUBROUTINE VZLUADIPHIR Fe NUMELT sNUMELZsNZ, ZWH ZWHTOP ; TW e NUMEL W+ NFy VZLO

L Wl VRHO ; ALPHAL vZto
DEMUNSIUN PHER (NUMEL 48 NF ), VLUADILS ), V(8] viLa
LCUNMPLEX FINF) VLY

C vILO
TR P R I e Ry e Ry e L e L I T P L T L LAV AN}
< THIS SUBRUUTINE FURMS THE GENERALIZED LOAD ASSOCIATED WITH Vild
[ HYDRODYNAMIC PRESSURE DUE TO VERTICAL GROUND MOTIDN ACTING vZLo
L ON THE RIGED DAM. viLa
COBMSE SRk ESFRO RS RERNKLSTECRRRFF NARRET EERREETRREREHERRCHRR R IRSRF I EH R R kS T
[ VILO
00 LOO L=Lg4NF vZzra

100 YLOAD(LI= 0.0 VLo
A= 1.570796327%unl 74N

i3
114
S 5]
116
Ly
1138
119
L20
121
L2z
123
124
125
126
127
128
129
130
131
L32
133
134
135
L36
137
1338
L39
140
14t
142
143
a4
145
lao
147
148
149
50
151
152
153
154

0LZ



a00
900

950

Cl= (1
C2= [1
VRHO L=
VRHOAR=
VRHO[=
Nh= —N
DO 960
NN= NN
c= -1
DO 900
NNUMEL
IC= IC
Al= A%
IFIN.E
TF{N.E
A2z A%
sCi= §
sC2= C
Cl= 5C
C2= (S
c3= (L
vitl=

V2=

viil=

Via)=

Vi5}=

Vigd=

viti=

vVigl=

DO 800
oo 800
YLOAD(C
CONTIN
CONTIN
U0 950
Ct= VR
C2= VR
FlL)=

RETURN
ENO

<0 ¢ ALPHA)SCOSLA)

+0 - ALPHA)ESIN{A)
{VRHO* L1 ,Q#ALPHA} )/ (WHl¥WWI*(CL¥C1l + C2¥C21})
VRHQL*C1

~VRHOL*( 2

UMELZ

NTHETA= 14NUMELT

* NUMELZ

wH

N= LgN4Z

= NN ¢ N

+ IWH + ZWH

IWH

QuNLIAL=ASZWHTOP
WaNZ}2C=2C~1WHeZWHTOP
(Ly—iC)

INLAL)
astal)

1*¥5iN(A2)
C2 ~ SCL/AlI*COS(A2]

2.0/400%(SL2 = SCL/ALY « SCLISINLAZ)
C3/2.0 — {1/3.0 - C2/6.0

¥ill
C372.0 = CL/3.0 ¢ C2/6.0

v(3)

0. 6066666667+ (CL - €23}
¢l - (3
U. 666666666T#(CL + C2)

V(o)

L=1.NF

[=1,8
Li= VLUAGILY ¢ VII)&PHIRINNUMEL, [,i)
ug

UE

L=] NP
HOR*VLUADIL)
HOL=VLOAD (L)

CHPLX L Ly L)

viLd
VZLY
VZLA
viLa
VILO
vitd
VIl
VaLa
YiLu
VZLa
VLo
VILO
(23]
VZL0
VILO
vZto
ity
vZLy
¥aL0
YL G
viLy
YZLO
VZLU
VILY
va2Lu
vIiea
LrANS}
(748
Wil
viLu
vaLe
YiLa
vZLY
VLD
ViLg
v7Ln
VL
VILG
viLn
VZLO

L2
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J.G. Bouwkamp, R.W. Clough and J. Penzien -~ 1969 (FB 189 111JA04

“Seismic Responsc of Soil Deposits Underlain by Sloping Rock Boundaries," by H. Dezfulian and H.B. Seed
1963 (PB 189 114)a03

"Dynamic Stress Analvsis of Axisymmetric Structures Under Arbitrary Loading," by S. Ghesh and E.L. Wilson
1969 (PB 189 026)Al0

"Seismic Behavior of Multistory Frames Designed by Different Philosophies," by J.C. Anderson and
V. V. Bartero - 1969 (PB 190 662}Al0

"Stiffness Degradation of Reinforcing Concrete Members Subjected to Cyclic Flexural Moments,” by
V.V. Bertero, B. Bresler and H. Ming Liac - 1969 (PR 202 942)A07

"Response of Non-Uniform Soil Deposits to Travelling Seismic Waves,” by I. Dezfulian and H.B. Seed - 1369
(PB 191 023}A03

"Damping Capacity of a Model Steel Structure," by D. Rea, R.W. Clough and J.G. Bouwkamp - 1963 (PB 190 663)A06

"Influence of Local Scil Conditions on Building Damage Potentlal during Darthguakes," by H.B. Seed and
I.M. Idriss = 1969 (PE 191 036)A03

"The Behavior of Sands Under Seismic Loading Conditions,” by M.L., Silver and H.B. Seed - 1369 {(AD 714 982)n07

“Earthguake Response of Gravity Dams," by A.K. Chopra -1%70 (AD 709 64C)A03

"Relationships between Soil Conditions and Building Damage in the Caracas Earthguake of July 29, 1967," by
H.B. Seed, 1.M. Idriss and H. Dezfulian - 1970 {PRB 195 762)205

"Cyclic Loading of Full Size Steel Comnections,” by E.P. Popov and R,M. Stephen -1%70 (PB 213 545)A04
"Seismic¢c Analysis of the Charaima Building, Caraballeda, Venezuela," by Subcommittee of the SEAONC Research

Committee: V.V. Bertero, P.F. Fratessa, S.A. Mahin, J.H. Sexton, A.C. Scordelis, BE.L. Wilsen, L.A. Wyllie,
H.B. Seed and J. Penzien, Chairman - 1970 (PB 201 455)A06
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"A Computer Program for Earthquake Analysis of Dams,"” by A.K. Chopra and P. Chakrabarti - 1970 (AD 723 994)A08

"The Propagation of Love Waves Across Non-Horizontally Layered Structures," by J. Lysmexr and L.A. Drake
1970 {PB 197 896}A03

"Influence of Base Rock Characteristics on Ground Response,” by J. Lysmer, H.B. Seed and P.B. Schnabel
1970 (PB 197 8871A03

"Applicability of Laboratory Test Procedures for Measuring Soil Liquefaction Charactexistics under Cyclic
Loading," by H.B. Seed and W.H, Peacock - 1970 {PB 198 0l16)}A03

"2 Simplified Procedure for Fvaluating Soil Liquefaction Potential,” by H.B. Seed and I.M. Idriss - 197¢
(PB 198 009)A03

"Soil Moduli and bamping Factors for Dynamic Response Analysis,” by H.B. Seed and I.M. TIdriss -1970
(PB 197 869)A03

“¥oyna Earthquake of December 11, 1967 and the Performance cof Xoyna Dam," by A.X, Chopra and P. Chakrabarti
1971 (A 731 496)A0o

"Preliminary In-Situ Measurements of Anelastic Absorption in Soils Using a Prototype Earthquake Simulator,"
by R.D. Borcherdt and P.W. Rodgers -~ 1971 (PB 201 454)A03

"Static and Dynamic Analvsis of Inelastic Frame Structures," by F L. Porter and G.H. Powell - 1971
{PB 210 135)A06

"Research Needs in Limit Design of Reinforced Concrete Structures," by V.V. Bertero - 1971 (PB 202 943)A04

"Dynamic Behavior of a High-Rise Diagonally Braced Steel Building,” by D. Rea, A.A. Shah and 5.G. Bouwlawp
1971 {PBR 203 584)A06

"Dynamic Stress Analysis of Porous Elastic Solids Saturated with Compressible Fluids,” by J. CGhaboussi and
E. L. Wilson = 1971 (PB 211 396)AN6

"Inelastic Behavior of Steel Beam-to-Column Subassenblages,” by H. Krawinkler, V.V. Bertero and E.P. Popov
1271 (PB Z11 335)Al4

"Modification of Seismograph Records for Effects of Local Soil Conditions," by P. Schnabel, H.B. Seed and
J. Lysmer = 1971 (PB 214 450}A03
"Static and Earthquake Analysis of Three Dimensional Frame and Shear Wall Buildings," by E.L. Wilson and

H.H. Dovey - 1372 (PB 212 904)A05

"Accelerations in Rock for Earthquakes in the Western United States," by P.B. Schnabel and H.B. Seed - 1972
(P8 213 100)}a03

"Elastic~Plastic Earthquake Response of Soil-Building Systems,™ by T. Minami -1972 (PB 214 868)}A08

"Stochastic Inelastic Response of Offshore Towers to Strong Motion Earthguakes,” by M.K. Kaul - 1972
(PB 215 713}A05

"Cyclic Behavior of Three Reinforced Concrete Flexural Members with High Shear," by E.P. Popov, V.V. Bertero
and H. Krawinkler - 1972 (PB 214 555)A05

"Earthquake Response of Gravity Dams Including Reservoir Interaction Effects," by P. Chakrabarti and
A.K. Chopra ~ 1972 (AD 762 330)A08

"Dynamic Properties of Pine Flat Dam,” by D. Rea, C.Y. Liaw and A.K. Chopra - 1972 (AD 763 928)A05
"Three Dimensional Analysis of Building Systems," by E.L. Wilson and H.H, Dovey - 1972 (PB 222 438)A06

“"Rate of Loading Effects on Uncracked and Repaired Reinforced Concrete Members," by S. Mahin, V.V. Bertexo,
0. Rea and M. Atalay - 1972 (PB 224 520)A08

"Computer Program for Static and Dynamic Analysis of Linear Strustural Systems," by BE.L. Wilson, X.~J. Bathe,
J.E. Peterson and H,H.Dovey - 1972 (PB 220 437)A04

"Literature Survey - Seismic Effects on Highway Bridges," by T. Iwasaki, J. Penzien and R.W. Clough -1572
(PB 215 £13)A19

"SHAKE-A Computsr Program for Farthquake Response Analysis of Horizontally Layered Sites,” by P.B. Schnabel
and J. Lysmer - 1972 (PB 220 207}306

"Optimal Seismic Design of Multistory Frames," by V.V, Bertero and H. Kamil - 1973

"Analysis of the Slides in the San Fernando Dams During the Earthquake of February 9, 1971," by H.B. Seed,
K.L. Lee, I.M. Idriss and F. Makdisi - 1973 (PB 223 402)Al4
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"Computer Aided Ultimate Load Design of Unbraced Multistory Steel Frames," by M.B. El-Hafez and G.H. Powell
1973 (PB 248 315)A09

"Experimental Investigaticn inte the Seismic Behavior of Critical Retions of Reinforced Concrete Components
as Influenced by Moment and Shear," by M. Celebi and J. Penmicn - 19732 (PB 215 884)A09

"Hysteretic Bchavior of Epoxy-Repaired Reinforced Concrete Beams," by M, Celebi and J. Penzien - 1973
{(PB 239 568)a03

"General Purpose Computer Program for Inelastic Dynamic Response of Plane Structurces,” by A. Kanaan and
G.H. Powell - 1973 {PB 221 260)A08

"A Computer Program for Earthquake Analysis of Gravity Dams Tneluding Reservoir Interaction,” by
P. Chakrabarti and A.K., Chopra -~ 1973 (AD 766 271)A04

"Behavior of Reinforced Concrete Deep Beam-Column Subassemblages Under Cyelic Loads," by 0. Kustid and
J.G. Bouwkamp - 1973 (PB 246 117)Aal12

"Earthquake Analysis of Structure-Foundation Systems," by A.XK. Vaish and A.X. Chopra - 1973 (AD 766 272)A07
"Deconvolution of Seismic Response for Linear Systems,” by R.B. Reimer - 1973 (PB 227 179)a08

"SAP IV: A Structural Analysis Program for Static and Dynamie Response of Linear Systems," by K.-~J. Bathe,
E.L, Wilson and F.E. Peterson - 1973 (PB 221 967)A0%

"Analytical Investigations of the Seismic Response of Long, Multiple Span liighway Bridges," by W.S. Tseng
and J. Penzien - 1873 (PR 227 816)A10

"Earthquake Analysis of Multi-Story Buildings Including Foundation Interaction,® by A.K. Chopra and
J.A. Gutisrrez - 1973 (PB 222z 970}A03

“ADAP: A Computer Program for Static and Dynamic Analysis of Arch Dams,” by R.W. Clough, J.M. Raphael and
5. Mojtahedi - 1973 (FB 223 763)A09%

"Cyeclic Plastic Analysis of Structural Steel Joints," by R.B. Pinkney and R.W. Clough - 1973 (PR 226 843)A08

"QUAD-4: A Computer Program for Fvaluating the Seismic Response of Soil Structures by Variable bamping
Finite Element Procedures,” by I.M. Idriss, J. Lysmer, R. Hwang and H.B. Seed - 1973 (DB 229 4243ANS

"Dyramic .ohavior of a Multi-Story Pyramid Shaped Building," by R.M. Stephen, J.P. Hollings and
J.G. Bouwkamp - 1373 (PB 240 718)A06

"Effect of Different Types of Reinforcing on Seismic Behavior of Short Concrete Columns," by V.V. Berterao,
J. Hollings, O. Kustu, R.M. Stephen and J.G. Bouwkamp - 1973

"Olive View Medical Center Materials Studies, Phase T," by B. Bresler and V.V. Bertero - 1973 (PB 235 S88)A06

"Linear and Nenlinear Seismic Analysis Computer Programs for Long Multiple-Span Highway Bridges,” by
W.S., Tseng and J. Penzien - 1973

"Constitutive Models for Cyclic Plastic Deformation of Engineering Materials,” by J.M, Kelly and P.P. Gillis
1973 (PR 226 024)RA03

"DRAIN - 2D User's Guide,” by G.H. Powell - 1373 (PB 227 Ol6)A05
“Farthguake Engineering at Berkeley - 1973," (PB 226 033)all
Unasgigned

"Earthquake Response of Axisymmetric Tower Structures Surrounded by Water," by C.Y. Liaw and A.K. Chopra
1973 (AD 773 052)a09

“Investigation of the Failures of the Olive View Stairtowers During the San Fernando Earthquake and Their
Implications on Seismic Design,” by V.V. Bertero and R.G. Colling - 1273 (PB 235 106)ALl3

“"Further Studies on Seismic Behavior of Stcel Beam-Column Subassemblages,”™ by V.V. Bertero, H. Krawinkler
and E.P. Popov -1973 (PE 234 172)A06
"Seismic Risk Analysis," by C.S. Oliveira - 1974 (PB 235 9Z0)A06

“Settlement and Liquefaction of Sands Under Multi-Directional Shaking," by R. Pyke, C.K. Chan and H.B. Seed
19274

"Optimum Design of EBarthquake Resistant Shear Buildings,” by D. Ray, X.S. Pister and A.K., Chopra - 1974
(PR 231 172)A06

"LUSH - A Computer Program for Complex Response Analysis of Soil-Structure Systems," by J. Lysmer, T. Udaka,
H.B., Seed and R, Hwang - 1974 (PB 236 796)A05
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“Sensitivity Analysis for Hysteretic Dynamic Systems: Applications to Earthquake Engineering,”™ by D. Ray
1974 (PB 233 213}A06

"Soil Structure Interaction Analyses for Evaluating Seismic Response,” by H.B. Seed, J. Lysmer and R. Hwang
1974 (PB 236 519)A04

Unassigned
"Shaking Table Tests of a Steel Frame ~ A Progress Report,” by R.W. Clough and D. Tang - 1974 (PB 240D 869)A03

"Hysteretic Behavior of Reinforced Concrete Flexural Members with Special Web Reinforcement,® by
V.V. Bertero, E.P. Popov and T.Y. Wang - 1974 (PB 236 797)A07

"Applications of Reliability-Based, Global Cost Optimization to Design of Barthguake Resistant Structures,”
by E. Vitiello and K.S. Pister - 1974 (PB 237 231)A06

“Liguefaction of Gravelly Soils Under Cyclic Loading Conditions," by R.T. Wong, H.B. Seed and C.K. Chan
1974 (PB 242 042)}A03

“"Site-Depcndent Spectra for Earthquake-Resistant Design," by H.B. Seed, C. Ugas and J. Lysmer - 1974
{PB 240 953)A03

"Earthquake Simulator Study of a Reinforced Concrete Frame,” by P. Hidalgo and R.W. Clough - 1974
{PB 241 944)A13

"Nenlinear Earthquake Response of Concrete Gravity Dams," by N. Pal = 1974 {AD/A 006 583)A0e

"Modeling and Identification in Nonlinear Structural Dynamics - I. One Degree of Freedom Models," by

N. Distefanc and a. Rath -19274 (PB 241 548)A06

"Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol.I: Description,
Theory and Analytical Modeling of Bridge and Parameters," by F. Baron and S.-H. Pang - 1975 (PB 253 407)Al15
"Determination of Seismic Design Criteria for the Dumbarton Bridge Replacement Structure, Vol.TI: Numerical
Studies and Establishment of Seismic Design Criteria," by F. Baron and S.-H. Pang ~ 1975 (PB 259 408)All
{For set of EERC 75-1 and 75-2 (PB 259 406))

“Seismic Risk Analysis for a Site and a Metropolitan Area," by C€.8. Oliveira - 1975 (PB 248 134)m09

"analytical Investigations of Seismic Response of Short, Single or Multiple~Span Highway Bridges," by
M.-C. Chen and J. Penzien - 1975 (PB 241 454)A09

"An Evaluation of Some Methods for Predicting Seismic Behavior of Reinforced Concrete Buildings,™ by 8.A.
Mahin and V.V. Bertero - 1875 (PB 246 306)Aal6

"Earthquake Simulator Study of a Steel Frame Structure, Vol. I: Experimental Results,” by R.W. Clough and
D.T. Tang =-1975 (PR 243 981)Aal13

"Dynamic Properties of San Bernardino Intake Tower,” by D. Rea, C.-Y, Liaw and A.K. Chopra - 1975 (AD/AGOS 406)
ADS

"Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. I: Description,
Theory and Analytical Modeling of Bridge Components,” by F., Baron and R.E. Hamati - 1975 (PB 251 539)A07

"Seismic Studies of the Articulation for the Dumbarton Bridge Replacement Structure, Vol. 2: Numerical
Studies of Steel and Concrete Girder Alternates," by F. Barcn and R.E. Ramati - 1975 (PR 251 S540)Al0

“Static and Dynamic Analysis of Nonlinear Structures," by D.P. Mondkar and G.H. Powell - 1375 {PB 242 434)A08
"Hysteretic Behavior of Steel Columns,” by E.P. Popov, V.V. Berterc and 5. Chandramouli - 1975 (PB 252 365)}AllL
"Earthquake Engineering Research Center Library Printed Catalog," ~ 1975 (PB 243 711)A26

"Three Dimensional Analysis of Building Systems (FExtended Version)," by E.L. Wilson, J.P. Hollings and
H.H, Dovey - 1975 (FB 243 989)A07 .

“Determination of Soil Liquefaction Characteristics by Large-Scale Laboratory Tests," by P. De Alba,
C.K. Chan and H.B. Seed - 1975 {NUREG (027)A08

"A Literature Survey - Compressive, Tensile, Bond and Shear Strength of Masonry,” by R.L. Mayes and R.W.
Clough - 1975 (PB 24% 292)Al10

"Hysteretic Behavior of Ductile Moment Resisting Reinforced Concrete Frame Components,” by V.V, Berterc and
E.P. Popov - 1975 (PR 246 388)A05

"Relaticnships Between Maximum Acceleration, Maximum Velocity, Distance from Source, Local Site Conditions
for Moderately Strong Earthquakes,” by H.B. Seed, R. Murarka, J, Lysmer and I.M. Idriss - 1975 (PB 248 172)A03

“The Effects of Method of Sample Preparation on the Cyc¢lic Stress-Strain Behavior of Sands,” by J. Mulilis,
C.K. Chan and H.B. Seed - 1975 (Summarized in EERC 75-28)
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"The Seismiec Behavior of Critical Reqgions of Reinforced Concrete Components as Influenced by Moment, Shear
and Axial Force," by M.B. Atalay and J. Penzien -~ 1975 (PB 258 842)All

“Dynamic Propertics of an Eleven Story Masonry Building," by R.M. Stephen, J.P. Hollings, J.G. Bouwkamp and
D. Jurukovski - 1975 (PB 246 945)A04

"State-of-the-Art in Seismic Strength of Masonry - An Evaluation and Review,” by R.L. Mayes and R.W. Clough
1975 (PB 249 040)A07

"Frequency Dependent Stiffness Matrices for viscoelastic Half-Tlane roundations,”" by A.K. Chopra,
P. Chakrabarti and G. Dasgupta - 1375 (PB 248 121)A07

"Hysteretic Behavior of Reinforced Concrete Framed Walls," by T.Y. Wong, V.V. Berleroc and E.P. Popov ~ 1975
"Testing Facility for subassemblages of Frame-wall Structural Systems," by V.V. Bertero, E.P. Popov and
T. Endo - 1975

"Influence of Seismic History on the liquefaction Characteristics of Sands," by H.B. Seed, K. Mori and
C.¥. Chan - 1975 (Summarized in EERC 75-28}

"The Generation and Dissipation of Pore Water Pressures during Soil Liguefaction," by H.B. Seed, P.P. Martin
and J. Lysmer - 1975 (PB 252 £48)A03

"Identification of Research Neceds for Improving hAseismic Design of Building Structures,” by V.V. Bertero
1975 (PB 24B 136)A05

"Evaluation of Soil Liguefaction Potential during Earthguakes," by H.B. Seed, I. Arango and C.K. Chan - 1975
(NUREG 0Q026)A13

“"Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liguefaction
Analyses," by H.B. Secd, I.M. Idriss, F. Makdisi and N. Bancrjee - 1975 (PR 252 635)A03

"PLUSH -~ A Computer Program for Approximate 3-D Bnalysis of Soil-Structure Interaction Problems," by
J. Lysmer, T. Udaka, C.-TF. Tsai and i.B. Seed - 1375 (PB 259 332)A07

"ALUSH - A Computer Program for Seismic Response Analysis of Axisymmetric Soil-Structure Systems," by
E. Berger, J. Lysmer and H.B. Seed - 1975

"TRIP and TRAVEL - Camputer Programs for Soil-Structure Interaction Analysis with Horizontally Travelling
Waves," by T. Udaka, J. Twvsimer and H.B. Seed -1975

"Predicting the Performance of Structures in Regions of High Seismicity,"” by J. Penzien - 1975 (PB 248 130)A03

YEfficient Finlte Element Analysis of Seismic Structure - Soil - Direction,” by J. Lysmer, H.B. Seed, T. Udaka,
R.N. Hwang and C.-F. Tgai - 1975 (PB 253 570}A03

“The Dynamic Behavior of a First Story Girder of a Three-Story Steecl Frame Subjected to Earthquake Loading,”
by R.W. Clough and L.-Y. Li ~1975 {(PB 248 841)A05

"rarthquake Simulator Study of a Steel Frame Structure, Volume IT - Analytical Results,™ by D.T. Tang - 1975
{PE 252 926)Al0

“ANSR-T General Purpose Computer Program for Analysis of Non-Linear Structural Response,” by D.P. Mondkar
and G.H. Powell - 1975 (PR 252 386)A08

"Nonlinear Response Spectra for Probabilistic Scismic Design and Damage Asscssment of Reinforced Concrete
Structures,” by M, Murakami and J. Penzien - 1975 (PB 259 530}A05

"Study of a Method of Feasible Directionsg for Optimal Elastic Design of Frame Structures Subjected to Carth-
quake Ioading,” by W.D, Walker and K.S, Pister — 1975 (PB 257 781}A06

"An Alternative Representation of the Elastic-Viscoelastic Analogy,” by G. Dasgupta and J.L. Sackman - 1975
(PB 252 173)A03

"Effect of Multi-Dirsctional Shaking on Liguefaction of Sands," by H.B. Seed, R. Pyke and G.R. Martin - 1972
(PR 258 781)A03
"Strength and Ductility Evaluation of Existing Low-Rise Reinforced Concrete Buildings - Screening Method," by

T. Okada and B. Bresler - 1976 (PB 257 906j}All

"Experimental and Analytical Studies on the Hysteretic Behavior of Reinforced Concrete Rectangular and
T~Beams," by S.~Y.M. Ma, E.P. Popov and V.V. Berterc=~ 1976 (PB 260 843)}A12

"Dynamic Behavior of a Multistory Triangular-Shaped Building," by J. Petrovski, R.M. Stephen, E. Gartenbaum
and J.G. Bouwkamp - 1976 (PB 272 279)An07

"Earthquake Induced Deformations of Earth Dams,” by N. Serff, H.B. Seed, F.I. Makdisi & C.-~¥. Chang - 1976
[{PB 292 D65)A08
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EERC 76-5 “Analysis and Design of Tube-Type Tall Building Structures," by H. de Clercg and G.H. Powell - 1976 (PB 252 220)
AlOD

EERC 76-6 “Time and Frequency Domain Analysis of Three-Dimensional Ground Motions, San Fernando Earthquake," by T. Kubo
and J. Penzien {PRB 260 556}Al}l

EERC 76-7 "Expected Performance of Uniform Building Code Design Masonry Structures," by R.L. Mayes, Y. Omote, 8.W. Chen
and R.W. Clough -197¢ (PB 270 098)A05

EERC 76-8 "Cyclic Shear Tests of Masonry Piers, volume 1 - Test Results," by R.L. Mayes, Y. Omote, R.W.
Clough ~ 1976 (PB 264 424)AD6

EERC 76-9 "A Substructure Method for Earthguake Analysis of Structure - Soil Interaction," by J.A. Gutierrez and
A.X. Chopra - 1276 (PB 257 733)A08

EERC 7e~10 "Stabilization of Potentially Liguefiable 8and Deposits using Gravel Drain Systems,” by H.B. Seed and
J.R. Booker - 1976 (PB 258 820)A04

EERC 76~11 "Influence of Design and Analysis Assumptions on Compured Inelastic Response of Moderately Tall Frames," by
G.H. Powell and D.G. Row - 1976 (PB 271 409)a0e

EERC 76-12 *"Sensitivity Analysis for Hysteretic Dynamic Systems: Theory and Applications," by D. Ray, K.S. Pister and
E. Polak - 1976 (PB 262 859)A04

EERC 76-13 “"Coupled Lateral Torsicnal Response of Buildings to Ground Shaking,” by C.L. Kan and A.K. Chopra -
1976 {PB 257 907)A09

EERC 76~14 "Selsmic Analyses of the Banco de Bmerica,” by V.V. Bertero, S.A. Mahin and J.A. Hollings - 1976

EERC 76-15 "Reinforced Concrete Frame 2: Seismic Testing and Analytical Correlation,” by R.W. Clough and
J. Gidwani - 1976 (PB 261 323)A08

EERC 76~16 "“Cyclic Shear Tests of Masonry Piers, Volume 2 - Analysis of Test Results," by R.L. Mayes, Y. Omote
and R.W. Clough - 1976

EERC 76-17 '"structural Steel Bracing Systems: Behavior Under Cyclic Loading," by E.P. Popov, K. Takanashi and
C,W. Roeder - 1976 (pPB 250 715}A05

EERC 76-18 ‘'Experimental Model Studies on Seismic Response of High Curved Overcrossings,” by D. Williams and
W.G. Godden - 1976 (PB 269 548)ANR

EERC 76-19 "Effects of Non-Uniform Seismic Disturbances on the Dumbarton Bridge Replacement Structure,” by
F. Baron and R.E. Hamati - 1976 (PR 282 4B1)nl6

EERC 76-20 "Investigation of the Inelastic Characteristics of a Single Story Stesl Structure Using System
Identification and Shaking Table Experiments," by V.C. Matzen and H.D. McNiven - 1376 (PB 258 453)A07

EERC 76-21 "Capacity of Columns with Splice Imperfections,
(PB 260 378)A04

" by E.P. Popov, R.M. Stephen and R. Philbrick - 1976
EERC 76-22 ’"Response of the Olive View Hospital Main Building during the San Fernando Earthquake,™ by S. A. Mahin,
V.V. Bertero, A.K. Chopra and R. Collins - 1976 (pB 271 423%)al14

EERC 76-23 "A Study on the Major Factors Influencing the Strength of Masonry Prisms,” by N.M. Mostaghel,
R.L, Mayes, R- W. Clough and $.W. Chen - 1976 (Not published)

EERC 76~24 "GADFLEA - A Computer Program for the Analysis of Pore Pressure Generation and Dissipation during
Cyclic or Earthquake Loading,” by J.R. Booker, M.S. Rahman and H.B. Se¢ed - 1976 (PB 263 947)R04

EERC 76-25 ‘*Seismic Safety Evaluation of a R/C School Building," by B. Bresler and J. Rxley - 1976

EERC 76-26 "Correlative Investigations on Theoretical and Experimental pynamic Behavior of a Model Bridge
Structure," by K. Kawashima and J. Penzien - 1976 (PB 263 388}Al1l
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