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Abstract

In this work, we introduce the concept of mild solution for an abstract Cauchy problem of non-homogeneous type governed by the
generator of a two-parameter C0-semigroup on a real or complex Banach space X. Precisely we are concerned by the following
two-time dynamical system:

(ACP(2)) :


∂ψ(s,t)
∂s = A1ψ(s, t) + u1(s, t)F1(s, ψ(s, t)),

∂ψ(s,t)
∂t = A2ψ(s, t) + u2(s, t)F2(t, ψ(s, t)),

ψ(s0, t0) = x0 ∈ X,

for all (s, t) ∈ [s0, S ] × [t0,T ], where s0 ≤ S ≤ +∞ and t0 ≤ T ≤ +∞. Under certain conditions on the functions u1, u2, F1 and F2,
we investigate the generalized stability in the sense of Ulam, Hyers and Rassias of these mild solutions. Our approach to stablity is
based on the fixed point method.
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1. Introduction, recalls and preliminaries

1.1. A brief recall on two-parameter semigroups
Throughout this paper, X will be a Banach space on the field K = R or K = C and we denote by B(X) the

Banach algebra of all bounded linear operators on X. We denote R+ the set of all nonnegative real numbers. A map
T : R2

+ 7→ B(X) is called a two-parameter semigroup, if it satisfies the two following conditions:

(i) T (0, 0) = I, where I is the identity mapping of X;

(ii) T (s1 + s2, t1 + t2) = T (s1, t1)T (s2, t2) for all (s1, t1), (s2, t2) ∈ R2
+.
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The two-parameter semigroup T on X will be denoted by (T (s, t))s≥0,t≥0.

A two-parameter semigroup (T (s, t))s≥0,t≥0 is said to be strongly continuous if :

lim
(s,t)7→(0,0)

∣∣∣∣∣∣∣∣T (s, t)x − x
∣∣∣∣∣∣∣∣, ∀ x ∈ X.

A two-parameter semigroup on X which is strongly continuous is also called a two-parameter C0-semigroup.

Let (U(s))s≥0 and (V(t))t≥0 be one-parameter C0-semigroups on X satisfying:
U(s)V(t) = V(t)U(s) for all s, t ∈ R+. We put T (s, t) = U(s)V(t) for all (s, t) ∈ R2

+. Then T is a two-parameter
C0-semigroup on X.

Conversely, let (T (s, t))s≥0,t≥0 be a two-parameter C0-semigroup on X. We set L(s) = T (s, 0) and R(t) = T (0, t) for
all (s, t) ∈ R2

+. Then, we have

(i) T (s, t) = L(s)R(t) = R(t)L(s), for all (s, t) ∈ R2
+.

(ii) (L(s))s≥0 and (R(t))t≥0 are one-parameter C0-semigroups (called, respectively, the left and right components).

Definition 1.1. [3] Let f : R+ −→ X a function. We say that f is quasi-differentiable at (0, 0), if there exist a linear
mapping L : R2 −→ X, a positive numbers α > 0, and a function ε : [0, α) × [0, α) −→ X satisfying the following
conditions:

(i) for all (h, k) ∈ [0, α) × [0, α), we have

f (h, k) − f (0, 0) − L(h, k) = ε(h, k)||(h, k)||,

(ii) lim(h,k)−→(0,0) ε(h, k) = 0.

Definition 1.2. [3] Let (T (s, t))s≥0,t≥0 be a two-parameter C0-semigroup on the Banach space X. For every x ∈ X, we
denote φx : R2

+ 7→ X the mapping defined by φx(s, t) = T (s, t)x.We consider the linear operator A : D(A) ⊆ X 7→ X×X
defined on its domain:

D(A) = {x ∈ X : φx is quasi − di f f erentiable at (0, 0)},

by
Ax := (D+φx(0, 0))e1,D+φx(0, 0)e2),

where e1 = (1, 0), and e2 = (0, 1). The operator A will be called the infinitesimal generator of the two-parameter
C0-semigroup (T (s, t))s≥0,t≥0.

Let (T (s, t))s≥0,t≥0 be a two-parameter C0-semigroup on the Banach space X, then T (s, t) = L(s)R(t) for all s, t ∈ R+,
where (L(s))s≥0 and (R(t))t≥0 are the components of T . By the classical theory of one parameter C0-semigroups, we
know that there exist ω1, ω2 ≥ 0 and M1,M2 ≥ 1, satisfying:∣∣∣∣∣∣∣∣L(s)

∣∣∣∣∣∣∣∣ ≤ M1eω1 s, and
∣∣∣∣∣∣∣∣R(t)

∣∣∣∣∣∣∣∣ ≤ M2eω2t, ∀s, t ∈ R+.

By setting M = M1M2, we obtain ∣∣∣∣∣∣∣∣T (s, t)
∣∣∣∣∣∣∣∣ ≤ Meω1 seω2t, ∀(s, t) ∈ R2

+.

The domain of the infinitesimal generator A of the two-parameter C0-semigroup (T (s, t))s≥0,t≥0 is precised in the
next result (see [3]).

Theorem 1.3. [3] Let (T (s, t))s≥0,t≥0 be a two-parameter C0-semigroup on the Banach space X, and let A be its
infinitesimal generator. Then, we have the equality:

D(A) = D(A1) ∩ D(A2),

where (D(A1), A1), and (D(A2), A2) are respectivly the infinitesimal generators of the one-parameter C0-semigroups
(L(s))s≥0 and (R(t))t≥0.
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Next we recall some important properties concerning two-parameter C0-semigroups on a Banach space (see [3]).

Theorem 1.4. [3] Let (T (s, t))s≥0,t≥0 be a two-parameter C0-semigroup on the Banach space X, and let A be its
infinitesimal generator. Then, for all x ∈ D(A), we have

(i) ∀t ≥ 0, R(t)x ∈ D(A1), and A1R(t)x = R(t)A1x;

(ii) ∀s ≥ 0, L(s)x ∈ D(A2), and A2L(s)x = L(s)A2x;

(iii) ∀(s, t) ∈ R2
+, T (s, t)x ∈ D(A), and we have

A1T (s, t)x = T (s, t)A1x, and A2T (s, t)x = T (s, t)A2x.

(iv) The map φx : R∗+ × R∗+ 7→ X given by φ(s, t) = T (s, t)x is differentiable on R∗+ × R∗+ and satisfies the following
abstract Cauchy problem in two variables:

(ACP(1)) :


∂ψ(s,t)
∂s = A1ψ(s, t), ∀(s, t) ∈ R∗+ × R∗+

∂ψ(s,t)
∂t = A2ψ(s, t), ∀(s, t) ∈ R∗+ × R∗+

ψ(0, 0) = x0 ∈ X.

For a given initial state x0 ∈ X, we consider the following abstract and non-homogenious Cauchy problem:

(ACP(2))(x0) :


∂ψ(s,t)
∂s = A1ψ(s, t) + u1(s, t)F1(s, ψ(s, t)),

∂ψ(s,t)
∂t = A2ψ(s, t) + u2(s, t)F2(t, ψ(s, t)),

ψ(s0, t0) = x0 ∈ X,

for all (s, t) ∈ [s0, S ] × [t0,T ], where as above, (D(A), A := (A1, A2)) is the infinitesimal generator of a two-parameter
C0-semigroup (T (s, t))s≥0,t≥0.

For the remainder of this paper, we assume that the two following conditions are fulfilled:
(C 1) F1 : [0,+∞) × X 7→ X and F2 : [0,+∞) × X 7→ X, are given continuous functions, and

(C 2) ui : [0,+∞) × [0,+∞) 7→ R is a continuous function for all i ∈ {1, 2}.

As in [4], we introduce the concept of mild solution for the system (ACP(2)):

Definition 1.5. A function ψ(s, t) defined on [s0, S ]×[t0,T ] is called a mild solution on [s0, S ]×[t0,T ] of the (ACP(2)),
if there exists x0 ∈ X such that

ψ(s, t) = T (s − s0, t − t0)x0 +

∫ t

t0
T (s − s0, t − w)u2(s0,w)F2(w, ψ(s0,w))dw

+

∫ s

s0

L(s − v)u1(v, t)F1(v, ψ(v, t))dv, ∀(s, t) ∈ [s0, S ] × [t0,T ].

The definition given above, for mild solutions of the two-time dynamical system (ACP(2)), will be justified by the
results stated in Theorem 2.1 below.

Next, we present two kinds of stability concerning the mild solutions of the two-time dynamical system (ACP(2)).

1.2. Recalls on stability in the sense of Ulam-Hyers-Rassias
It is recognized that S. M. Ulam (see [23]) has first introduced the notion of stability for functional equations. In

fact, in the year 1940, S. M. Ulam asked the following question:

Given a group G1, a metric group (G2, d) and a positive number ε, does there exists a δ > 0 such that if a function
f : G1 −→ G2 satisfies the inequality d( f (xy), f (x) f (y)) < δ for all x, y ∈ G1, then there exists a homomorphism
T : G1 −→ G2 such that d( f (x),T (x)) < ε, for all x ∈ G1?
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If the answer is yes, then we say that the homomorphisms from G1 to G2 are stable, or that the equation defining
group homomorphisms is stable in the sense of Ulam. One year later Hyers, [13] gives a positive answer to Ulam’s
question. In 1978, Rassias [19], has extended the concept of stability in the sense of Ulam-Hyers to the concept known
as the stability in the sense of Ulam-Hyers-Rassias. Several other generalizations were made later building a new and
general theory of stability for functional equations. This theory has attracted attention of many mathematicians to
develop a very extensive literature.

For more informations on the theory of stability for various kinds of functional equations and its generalisations,
one can see for instantce the references: [15], [19], [14], [20], [18], [21], [16], [17] and [22].

To precise the concepts of the stability in the sense of Ulam-Hyers and the generalized stability in the sense of
Ulam-Hyers-Rassias, we need the following considerations:

Let I := [s0, S ], and J := [t0,T ] or I = [s0,∞), and J = [t0,∞). In the sequel, the set C(I × J, X) of all continuous
functions from I × J to X will be denoted by E.

For all x0 ∈ X and all ψ ∈ E, we put

Λ(ψ)(s, t) := T (s − s0, t − t0)x0 (1.1)

:= +

∫ t

t0
T (s − s0, t − w)u2(s0,w)F2(w, ψ(s0,w))dw

+

∫ s

s0

L(s − v)u1(v, t)F1(v, ψ(v, t))dv, ∀(s, t) ∈ I × J.

We observe that the map ψ 7→ Λ(ψ) is a self-mapping of the space E.
We consider the following integral equation :

ψ(s, t) = Λ(ψ)(s, t). (1.2)

For any positive number ε, we consider the following inequality

||ψ(s, t) − Λ(ψ)(s, t)|| ≤ ε, ∀(s, t) ∈ I × J. (1.3)

For any function Φ ∈ C(I × J, (0,+∞)), we consider the following inequality

||ψ(s, t) − Λ(ψ)(s, t)|| ≤ Φ(s, t), ∀(s, t) ∈ I × J, (1.4)

where, in all inequalities above, the unknown function ψ is in C(I × J, X).

As in [1] (see also [22]), we introduce the following definitions:

Definition 1.6. The integral equation (1.2) is called Ulam-Hyers stable, if there exists c > 0, such that for each
function ψ ∈ C(I × J, X) satisfying (1.3) there exists a function φ ∈ C(I × J, X) satisfying (1.2) and

||ψ(s, t) − φ(s, t)|| ≤ cε, ∀(s, t) ∈ I × J.

The constant c is called the Ulam-Hyers constant of stability.

Definition 1.7. The integral equation (1.2) is generalized Ulam-Hyers-Rassias stable with respect to Φ ∈ C([0,+∞)×
[0,+∞), [0,+∞)), if there exists cΦ > 0, such that for each function ψ ∈ C(I × J, X) satisfying (1.4) there exists a
function φ ∈ C(I × J, X) satisfying (1.2) and

||ψ(s, t) − φ(s, t)|| ≤ cΦΦ(s, t), ∀(s, t) ∈ I × J.

The constant cΦ is called the Ulam-Hyers-Rassias constant of stability with respect to the control function Φ.
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The purpose of this paper, is to investigate the stability of the mild solution of the system (ACP(2)) in the sense of
the definitions 1.6 and 1.7 above.

This paper is organised as follows:

In section 2, we establish a result concerning the classical solution of problem (ACP(2)). This result will motivate
the definition taken here for its mild solutions.

In section 3, we study the generalized Ulam-Hyers-Rassias stability of equation (1.2) on the finite product [s0, S ]×
[t0,T ], where s0 ≤ S < ∞ and t0 ≤ T < ∞.

Section 4 will be devoted to the study of the Ulam-Hyers stability of the integral equation (1.2) on the infinite
product [s0,+∞] × [t0,+∞].

We end the paper by some concluding remarks.

2. Some results and remarks on the classical solutions of ACP(2)

The first result if this papers reads as follows. It will explain the defintion taken for the mild solutions of the
system (ACP(2)).

Theorem 2.1. Let (T (s, t))s≥0,t≥0 be a two-parameter C0-semigroup on the Banach space X. Let v,w ≥ 0 be given. Let
ψ(s, t) be a solution of (ACP(2)) such that:

R(t)ψ(v,w) ∈ D(A1) and L(s)ψ(v,w) ∈ D(A2), ∀ s ≥ 0 and ∀ t ≥ 0. (2.1)

Then we have

ψ(s, t) = T (s − s0, t − t0)ψ(s0, t0)

+

∫ t

t0
T (s − s0, t − w)u2(s0,w)F2(w, ψ(s0,w))dw

+

∫ s

s0

L(s − v)u1(v, t)F1(v, ψ(v, t))dv,

for all s ≥ v and all t ≥ w.

Proof. Let ψ be a solution of (ACP(2)) satisfying (2.1) and let s ≥ s0 and t ≥ t0 be fixed.
For all v ∈ [s0, s] and w ∈ [t0, t], we set y(v,w) := L(s − v)R(t − w)ψ(v,w).
Since R(t − w)ψ(v,w) ∈ D(A1) and L(s − v)ψ(v,w) ∈ D(A2) for every s ≥ v, t ≥ w, then y(v,w) is differentiable (in

the usual sense) and we have

∂y(v,w)
∂v

= −A1L(s − v)R(t − w)ψ(u, v) + L(s − v)R(t − w)
∂ψ(v,w)
∂v

.

Hence,
∂y(v,w)
∂v

= L(s − v)R(t − w)u1(v,w)F1(v, ψ(v,w)). (2.2)

Similarly, we have
∂y(v,w)
∂w

= L(s − v)R(t − w)u2(v,w)F2(w, ψ(v,w)). (2.3)

Integrate (2.2) with respect to v from s0 to s where 0 ≤ s0 ≤ s < +∞ to get:∫ s

s0

∂y(v,w)
∂v

dv = y(s,w) − y(s0,w) =

∫ s

s0

L(s − v)R(t − w)u1(v,w)F1(v, ψ(v,w))dv.

On the other hand,

y(s,w) − y(s0,w) = R(t − w)ψ(s,w) − L(s − s0)R(t − w)ψ(s0,w), s ≥ s0, t ≥ w.
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Therefore,
R(t − w)ψ(s,w) − L(s − s0)R(t − w)ψ(s0,w) =∫ s

s0

L(s − v)R(t − w)u1(v,w)F1(v, ψ(v,w))dv.

By letting w = t, we obtain

ψ(s, t) = L(s − s0)ψ(s0, t) +

∫ s

s0

L(s − v)u1(v, t)F1(v, ψ(v, t))dv. (2.4)

By doing the same process to equation (2.3), we get:

ψ(s, t) = R(t − t0)ψ(s, t0) +

∫ t

t0
R(t − w)u2(s,w)F2(w, ψ(s,w))dw. (2.5)

From this its follows

ψ(s0, t) = R(t − t0)ψ(s0, t0) +

∫ t

t0
R(t − w)u2(s0,w)F2(w, ψ(s0,w))dw. (2.6)

From (2.4) and (2.6), we get:

ψ(s, t) = T (s − s0, t − t0)ψ(s0, t0)

+

∫ t

t0
T (s − s0, t − w)u2(s0,w)F2(w, ψ(s0,w))dw

+

∫ s

s0

L(s − v)u1(v, t)F1(v, ψ(v, t))dv.

This completes the proof

Remark 2.2. Under the asssumptions of Theorem 2.1, one can prove that:

ψ(s, t) = T (s − s0, t − t0)ψ(s0, t0)

+

∫ s

s0

T (s − v, t − t0)u1(v, t0)F1(v, ψ(v, t0))dv

+

∫ t

t0
R(t − w)u2(s,w)F2(w, ψ(s,w))dw.

Under the assumptions (C 1) and (C 2) made in subsection 1.1 and according to Theorem 2.1 together with the
remark above, one can easily deduce the following corollary:

Corollary 2.3. Let (T (s, t))s≥0,t≥0 be a two-parameter C0-semigroup on the Banach space X with infinitesimal gener-
ator (D(A), (A1, A2)). Let ψ : [s0, S ] × [t0,T ]→ R be a function, where 0 ≤ S ≤ +∞ and 0 ≤ T ≤ +∞.

We suppose the following:
(a) x0 ∈ D(A).
(b) F2(w, ψ(s,w)) ∈ D(A1) for all (s,w) ∈ [s0, S ] × [t0,T ], and
(c) F1(v, ψ(v, t)) ∈ D(A2) for all (v, t) ∈ [s0, S ] × [t0,T ].
Then the following assertions are equivalent:

(i) ψ is a (a classical) solution of (ACP(2)) on [s0, S ] × [t0,T ].
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(ii) For all (s, t) ∈ [s0, S ] × [t0,T ], we have

ψ(s, t) = T (s − s0, t − t0)x0

+

∫ t

t0
T (s − s0, t − w)u2(s0,w)F2(w, ψ(s0,w))dw

+

∫ s

s0

L(s − v)u1(v, t)F1(v, ψ(v, t))dv

= T (s − s0, t − t0)x0 +

∫ s

s0

T (s − v, t − t0)u1(v, t0)F1(v, ψ(v, t0))dv

+

∫ t

t0
R(t − w)u2(s,w)F2(w, ψ(s,w))dw.

3. Generalized Ulam-Hyers-Rassias stability on [s0, S] × [t0, T]

In this section, we study the generalized Ulam-Hyers-Rassias stability of mild solutions on the finite product
[s0, S ] × [t0,T ]. Our second main result reads as follows.

Theorem 3.1. Let (X, ||.||) be a (real or complex) Banach space and let (T (s, t))s≥0,t≥0 be a two-parameter C0-
semigroup on X. Let M1,M2 ≥ 1, ω1, ω2 ≥ 0 be constants such that ||T (s, t)|| ≤ M1M2eω1 s+ω2t for all s, t ≥ 0.
Let x0 ∈ X be fixed and let T > 0, and S > 0 be given positive numbers. Let G : [s0, S ] × [t0,T ] 7→ (0,+∞) be a
continuous function and f : [s0, S ] × [t0,T ] 7→ X be a continuous function satisfying∣∣∣∣∣∣∣∣ f (s, t) − T (s − s0, t − t0)x0 −

∫ t

t0
T (s − s0, t − w)u2(s0,w)F2(w, f (s0,w))dw

−

∫ s

s0

L(s − v)u1(v, t)F1(v, f (v, t))dv
∣∣∣∣∣∣∣∣ ≤ G(s, t), ∀(s, t) ∈ [s0, S ] × [t0,T ]. (3.1)

We assume that the conditions (C 1) and (C 2) are fulfilled and suppose that the functions l1 and l2 are locally
bounded on [0,+∞).

Then there exist a constant cG > 0 and a unique continuous function θ : [s0, S ] × [t0,T ] 7→ X such that

θ(s, t) := T (s − s0, t − t0)x0

+

∫ t

t0
T (s − s0, t − w)u2(s0,w)F2(w, θ(s0,w))dw

+

∫ s

s0

L(s − v)u1(v, t)F1(v, θ(v, t))dv, ∀(s, t) ∈ [s0, S ] × [t0,T ], (3.2)

and
|| f (s, t) − θ(s, t)|| ≤ cGG(s, t), ∀(s, t) ∈ [s0, S ] × [t0,T ]. (3.3)

Proof. According to the assumptions made above, we can find two positive constants D1 and D2 such that

|u2(s0,w)|eω1(S−s0)eω2(T−w)l2(w) ≤ D1, for almost all w ∈ [t0,T ], (3.4)

and
|u1(v, t)|eω1(S−v)l1(v) ≤ D2, ∀t ∈ [t0,T ] and for almost all v ∈ [s0, S ], (3.5)

Let K > 0 be such that
M1M2KD1 + M1KD2 < 1. (3.6)
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We choose a continuous function φ : [s0, S ] × [t0,T ] 7→ (0,+∞) satisfying the following properties:∫ t

t0
φ(s0,w)dw ≤ Kφ(s, t) and

∫ s

s0

φ(v, t)dv ≤ Kφ(s, t), (3.7)

for all (s, t) ∈ [s0, S ] × [t0,T ].
By considering exponential functions, one can see that such functions exist.
Let f and G satisfying the inequality (3.1). Since G and φ are continuous functions on the compact set [s0, S ] ×

[t0,T ] taking values in (0. +∞), then we can find aG and bG two positive numbers such that

aGφ(s, t) ≤ G(s, t) ≤ bGφ(s, t), ∀(s, t) ∈ [s0, S ] × [t0,T ]. (3.8)

We consider the following set

X f := {g ∈ E : ∃c > 0, such that ‖ f (s, t) − g(s, t)‖ ≤ cφ(s, t),

∀(s, t) ∈ [s0, S ] × [t0,T ]},

where, as above, E is the set of all continuous functions from [s0, S ] × [t0,T ] to X.

We observe that f and Λ( f ) are in the set X f . So, this set is not empty.

For all h, g ∈ X f , we set

dφ(h, g) := inf{C ∈ (0,∞) : ||h(s, t) − g(s, t)|| ≤ Cφ(s, t),

∀(s, t) ∈ [s0, S ] × [t0,T ]}.

One can easily show that (X f , dφ) is a metric space and that (X f , dφ) is complete.

Now, consider the operator Λ : X f 7→ E defined for all h ∈ X f , by the following:

Λ(h)(s, t) := T (s − s0, t − t0)x0

+

∫ t

t0
T (s − s0, t − w)u2(s0,w)F2(w, h(s0,w))dw

+

∫ s

s0

L(s − v)u1(v, t)F1(v, h(v, t))dv, ∀(s, t) ∈ [s0, S ] × [t0,T ].

Next, we prove that Λ(X f ) is contained in X f and that Λ is stricly contractive on the complete metric space X f .

Indeed, for all h, g ∈ X f , let C(h, g) ∈ [0,+∞) be an arbitrary constant satisfying

||h(s, t) − g(s, t)|| ≤ C(h, g)φ(s, t), ∀(s, t) ∈ [s0, S ] × [t0,T ].

Then, by using (3.2), (3.3), and (3.6), we have successively the following inequalities:∣∣∣∣∣∣∣∣(Λh)(s, t) − (Λg)(s, t)
∣∣∣∣∣∣∣∣ = (3.9)

∣∣∣∣∣∣∣∣ ∫ t

t0
T (s − s0, t − w)u2(s0,w)

(
F2(w, h(s0,w)) − F2(w, g(s0,w))

)
dw

+

∫ s

s0

L(s − v)u1(v, t)
(
F1(v, h(v, t)) − F1(v, g(v, t)

)
dv

∣∣∣∣∣∣∣∣
≤

∫ t

t0
|u2(s0,w)|l2(w)

∣∣∣∣∣∣∣∣T (s − s0, t − w)
∣∣∣∣∣∣∣∣||h(s0,w) − g(s0,w)||dw

+

∫ s

s0

|u1(v, t)|l1(v)
∣∣∣∣∣∣∣∣L(s − v)

∣∣∣∣∣∣∣∣||h(v, t) − g(v, t)||dv
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≤ M1M2C(h, g)
( ∫ t

t0
|u2(s0,w)|φ(s0,w)l2(w)ew1(s−s0)ew2(t−w)dw

)
+M1C(h, g)

( ∫ s

s0

|u1(v, t)|φ(v, t)l1(v)ew1(s−v)dv
)

≤ M1M2C(h, g)D1

∫ t

t0
φ(s0,w)dw + M1C(h, g)D2

∫ s

s0

φ(v, t)dv

≤ C(h, g)(M1M2KD1 + M1KD2)φ(s, t), ∀(s, t) ∈ [s0, S ] × [t0,T ].

To simplify notations, we set λ(K) := (M1M2KD1 + M1KD2). From (3.6), we know that 0 < λ(K) < 1.
By taking h := f in (3.9), we get

‖Λ( f )(s, t) − Λ(g)(s, t)‖ ≤ λC(h, g)φ(s, t),

for all (s, t) ∈ [s0, S ] × [t0,T ]. This shows that Λ(g) is in X f .
Also, (3.9) shows that we have

dφ(Λ(h), Λ(g)) ≤ λC(h, g). (3.10)

(3.10) implies that
dφ(Λ(h), Λ(g)) ≤ λ(K)dφ(h, g), ∀g, h ∈ X f .

It follows that Λ is strictly contractive on the complete metric space (X f , dφ). By the Banach fixed point principle, we
infer that there exits a unique function (say) θ in X f such that Λ(θ) = θ.

By using the triangle inequality, we have:

dφ( f , θ) ≤ dφ( f , Λ( f )) + dφ(Λ( f ), Λ(θ)) ≤ bG + λ(K)dφ( f , θ),

which implies that

dφ( f , θ) ≤
bG

1 − λ(K)
.

We deduce that

|| f (s, t) − θ(s, t)|| ≤
bG

1 − λ(K)
φ(s, t)

≤
bG

1 − λ(K)
G(s, t)

aG

≤ cGG(s, t), ∀(s, t) ∈ [s0, S ] × [t0,T ],

where
cG :=

bG(
1 − λ(K)

)
aG

.

Thus we have shown that the integral equation (1.2) is stable in the sense of Definition 1.4. That is (1.2) satisfies the
generalized Ulam-Hyers-Rassias stability. This ends the proof.

4. Ulam-Hyers stability on [s0,+∞) × [t0,+∞)

In this section we provide a sufficient condition ensuring the Ulam-Hyers stability of mild solutions of the two
dynamical system (ACP(2)) on the set [s0,+∞) × [t0,+∞).

The main result of this section is the following.
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Theorem 4.1. Let (X, ||.||) be a (real or complex) Banach space and let (T (s, t))s≥0,t≥0 be a two-parameter C0-
semigroup on X. Let x0 ∈ X be fixed and let ε be given positive number.

We assume that the conditions (C 1) and (C 2) are fulfilled and we suppose that λ∞ < 1, where

λ∞ := sup
s≥s0,t≥t0

∫ t

t0
l2(w)|u2(s0,w)|

∣∣∣∣∣∣∣∣T (s − s0, t − w)
∣∣∣∣∣∣∣∣dw

+ sup
s≥s0,t≥t0

∫ s

s0

l1(v)|u1(v, t)|
∣∣∣∣∣∣∣∣L(s − v)

∣∣∣∣∣∣∣∣dv. (4.1)

Suppose that a continuous function f : [s0,+∞] × [t0,+∞] 7→ X satisfies∣∣∣∣∣∣∣∣ f (s, t) − T (s − s0, t − t0)x0 −

∫ t

t0
T (s − s0, t − w)u2(s0,w)F2(w, f (s0,w))dw

−

∫ s

s0

L(s − v)u1(v, t)F1(v, f (v, t))dv
∣∣∣∣∣∣∣∣ ≤ ε, ∀(s, t) ∈ [s0,+∞] × [t0,+∞]. (4.2)

Then then there exists a unique mild solution θ of the two-time dynamic system (ACP(2)) defined on [s0,+∞)×[t0,+∞)
such that

|| f (s, t) − θ(s, t)|| ≤
ε

1 − λ∞
, ∀(s, t) ∈ [s0,+∞] × [t0,+∞]. (4.3)

Proof. Let ε > 0 be given. Let f ∈ C([s0,+∞]× [t0,+∞], X) satisfying the iequality (4.2). Consider the set E f defined
by

E f := {g ∈ C([s0,+∞] × [t0,+∞], X) : sup
s≥s0,t≥t0

||g(s, t) − f (s, t)|| < +∞}.

We observe that E f is not empty, because it contains f and Λ( f ). For any arbitrary functions h, g ∈ E f , we set

d∞(h, g) = sup
s≥s0,t≥t0

||h(s, t) − g(s, t)||.

One can prove that d∞ is a distance and that the metric space (E f , d∞) is complete.
For any functions h, g ∈ E f , we have the following inequalities:∣∣∣∣∣∣∣∣Λ(h)(s, t) − Λ(g)(s, t)

∣∣∣∣∣∣∣∣ =∣∣∣∣∣∣∣∣ ∫ t

t0
T (s − s0, t − w)u2(s0,w)

(
F2(w, h(s0,w)) − F2(w, g(s0,w))

)
dw

+

∫ s

s0

L(s − v)u1(v, t)
(
F1(v, h(v, t)) − F1(v, g(v, t)

)
dv

∣∣∣∣∣∣∣∣
≤

∫ t

t0
|u2(s0,w)|l2(w)

∣∣∣∣∣∣∣∣T (s − s0, t − w)
∣∣∣∣∣∣∣∣||h(s0,w) − g(s0,w)||dw

+

∫ s

s0

|u1(v, t)|l1(v)
∣∣∣∣∣∣∣∣L(s − v)

∣∣∣∣∣∣∣∣||h(v, t) − g(v, t)||dv

≤
( ∫ t

t0
|u2(s0,w)|l2(w)

∣∣∣∣∣∣∣∣T (s − s0, t − w)
∣∣∣∣∣∣∣∣dw

)
d∞(h, g)

+
( ∫ s

s0

|u1(v, t)|l1(v)
∣∣∣∣∣∣∣∣L(s − v)

∣∣∣∣∣∣∣∣dv
)
d∞(h, g)

≤ λ∞d∞(h, g),

for all (s, t) ∈ [s0,+∞] × [t0,+∞].
Therefore, we obtain

d∞(Λ(h), Λ(g)) ≤ λ∞d∞(h, g).
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From the inequalities above, we deduce that Λ(h) ∈ E f for any function h ∈ E f . Therefore, Λ is a contraction of the
complete metric (E f , d∞). According to the the Banach contraction principle, there exists a unique element θ ∈ E f

such that θ = Λ(θ).
An application of the triangle inequality yields to the following

d∞( f , θ) ≤ d∞( f , Λ( f )) + d∞(Λ( f ), Λ(θ)) ≤ ε + λ∞d∞( f , θ),

from which, we deduce the following inequality

d∞( f , θ) ≤
ε

1 − λ∞
.

That is
|| f (s, t) − θ(s, t)|| ≤

1
1 − λ∞

ε := cε, ∀(s, t) ∈ [s0,+∞] × [t0,+∞],

This says that the integral equation (1.2) is stable in the sense of Definition (1.3). This ends the proof.

5. Concluding remarks

This paper utilizes the results of the paper [3]. We have started by defining the mild solutions of the abstract
Cauchy problem (ACP(2)) governed by a two-parameter C0-semi group on a (real or complex) Banach space. We
have motivated this definition, of mild solutions, by establishing a new result on the classical solutions of this problem
(ACP(2)). Then, we have investigated the generalied stability of these mild solutions in the sense of Ulam-Hyers-
Rassias in the case of finite times, and the Ulam-Hyers stability in the case of infinite times. That is, we have provided
sufficient conditions to ensure these types of stability.

This paper provides some complements (and a continuation) to the work [1] dealing with mild solutions of one-
time dynamical systems.

The results of stability obtained in this paper are proved by the fixed point method. This method is considered
now, as the second most popular technique of proving the stability of functional equations. (The first one being known
as the direct method). This fixed point approach was initiated by J.A. Baker in 1991 (see [5]) who applied a variant
of Banach’s fixed point theorem to obtain the Hyers–Ulam stability of a functional equation in a single variable. V.
Radu (see [18]) has continued this approach by using a theorem of Diaz and Margolis ([12]). Many other kinds of
fixed point theorems were used in the Rassias–Hyers–Ulam stability of functional equations. The reader is invited to
consult for instance, the following papers: [2], [6], [8], [9], [10].

For more informations on this topic, one is invited to the nice survey (see [11]) published by K. Ciepliński in 2012,
the paper [7], and the references therein.
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[6] J. Brzdȩk, J. Chudziak and Zs. Páles, A fixed point approach to the stability of functional equations, Nonlinear Anal. 74 (17), 6728-6732,

2011.
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