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Polarization estimates for abelian varieties
David Masser and Gisbert Wüstholz

In an earlier paper we showed that an abelian variety over a number field of fixed
degree has a polarization whose degree is bounded by a power of its logarithmic
Faltings height, provided there are only trivial endomorphisms. Here we greatly
relax the endomorphism hypothesis, and we even eliminate it completely when
the dimension is at most seven. Our methods ultimately go back to transcendence
theory, with the asymmetric geometry of numbers as a new ingredient, together
with what we call the Severi–Néron group, a variant of the Néron–Severi group.

1. Introduction

In this paper we address the following question: is the polarization of an abelian
variety determined by arithmetical data? More precisely, if A is an abelian variety of
fixed dimension defined over a fixed number field, is there necessarily a polarization
on A whose degree is bounded in terms of the Faltings height of A?

So formulated, the question has the easy answer, “yes”. For a fundamental
finiteness result states that, up to isomorphism, there are only finitely many such
abelian varieties with a bounded height, and then we can choose a polarization on
each of them. However, this argument fails to give any kind of explicit estimate for
the degrees of the polarizations.

Taking into account the applications of transcendence theory to abelian varieties
in recent years, in particular our papers [Masser and Wüstholz 1993a; 1993b; 1993c;
1994; 1995a; 1995b], one may conjecture that these degrees are bounded by an
expression of the form C max{1, h(A)}π , where h(A) is the absolute logarithmic
semistable Faltings height of A (see, for example, [Faltings 1983] or [Bost 1996a]),
π depends only on the dimension of A, and C depends only on this dimension
together with the degree of the field of definition of A.

The object of the present paper is to establish this conjecture in almost all the
cases of interest to algebraists or arithmetic geometers. It was already proved in
[Masser and Wüstholz 1995a, Corollary, p. 6] when the endomorphism ring of A is
trivial. In general suppose that A is defined over a number field k, and write End A

MSC2010: primary 11G10; secondary 11J95.
Keywords: abelian varieties, estimating polarizations.
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1046 David Masser and Gisbert Wüstholz

for the ring of endomorphisms defined over the algebraic closure k of k; this is an
order in the algebra Q⊗End A over the rational field Q. If A is simple, this algebra
is a division algebra whose center is a number field. Our main result can be stated
as follows.

Theorem 1.1. For positive integers n and d there is a constant π depending only
on n and a constant C depending only on n and d with the following property. Let
A be an abelian variety of dimension n defined over a number field k of degree d.
Suppose that A is simple over k and that Q⊗End A is commutative or its center is
totally real. Then A has a polarization over k of degree at most C max{1, h(A)}π .

In fact the above hypotheses on the endomorphism algebra correspond precisely
to the types I, II and III in Albert’s famous classification, together with type IV
in the commutative case. This remark is already enough to establish the above
conjecture for simple abelian varieties in infinitely many dimensions and all abelian
varieties, not necessarily simple, in small dimensions. For example, we will deduce
the following consequences.

Corollary 1.2. For a positive squarefree integer n and a positive integer d there
is a constant π depending only on n and a constant C depending only on n and d
with the following property. Let A be an abelian variety of dimension n defined
over a number field k of degree d. Suppose that A is simple over k. Then A has a
polarization over k of degree at most C max{1, h(A)}π .

Corollary 1.3. For a positive integer d there is a constant C depending only on d
with the following property. Let A be an abelian variety of dimension at most 7
defined over a number field k of degree d. Then A has a polarization over k of
degree at most C max{1, h(A)}π , where π is an absolute constant.

In all of the above results the quantity C max{1, h(A)}π can readily be replaced
by C0 max{d, h(A)}π with C0 independent of d; see the remarks in [Masser and
Wüstholz 1995a, p. 23]. A more interesting problem is to prove that A has a
polarization over k itself of small degree in the above sense, but this seems not
to follow from our methods. At any rate we may note that all polarizations of
an abelian variety of dimension n defined over a field k of characteristic zero are
automatically defined over an extension of k of relative degree at most 316n4

; see
[Masser and Wüstholz 1993a, Lemma 2.3, p. 415].

Our original motivation for estimating polarizations was to extend the isogeny
estimates of [Masser and Wüstholz 1993b], for polarized abelian varieties, to unpo-
larized abelian varieties, simply by providing the latter with explicit polarizations.
In fact we solved this isogeny problem in a completely different way in our paper
[Masser and Wüstholz 1995a]. Nevertheless we feel that our conjecture has enough
independent interest to justify the present paper. And similar problems over finite
fields have been studied by Howe [1995].
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Actually the proof of our theorem relies heavily on the methods and results of
[Masser and Wüstholz 1995a]; in particular we need discriminant estimates and
factorization estimates. This paper is based ultimately on the work of [Masser and
Wüstholz 1993a], which involves techniques from the theory of transcendental
numbers. By contrast, the deduction of our present results from those of [Masser
and Wüstholz 1995a] is by purely algebraic methods, together with the geometry of
numbers. More precisely, the necessary positive definiteness properties of our polar-
izations are established using tools from the so-called asymmetric geometry of num-
bers. For endomorphism algebras of types I, III and IV it suffices to use a theorem
of Chalk, but for type II we have to develop what seems to be a new generalization
to number fields of a theorem of Blaney. All these results are recorded in Section 2.

In Section 3 we prove some elementary properties of discriminants in quaternion
algebras and CM-fields, and in Section 4 we give some analogous results for the
cross-discriminants introduced in [Masser and Wüstholz 1995a]. Only instead of
considering the full set Hom(A, Â) of homomorphisms from A into its dual Â,
we have to restrict to its subset the Néron–Severi group NS(A), as well as to a
certain complement, which for want of a better name we call the Severi–Néron
group SN(A). Also in this section we record the necessary facts about Albert’s
classification and the representations of the corresponding endomorphism algebras.
Some of this material is borrowed from an article of Shimura [1963].

Then in Sections 5 and 6 we obtain our purely algebraic estimates for polarizations
on complex abelian varieties; this enables us to postpone the appeal to [Masser and
Wüstholz 1995a] until Section 7, where we establish our theorem and its corollaries.

Of course our results are not quite complete; in fact to prove the full conjecture
it remains only to treat simple abelian varieties in the noncommutative case of type
IV. We hope to return to this problem in a later paper. For the moment it is perhaps
amusing to speculate on whether our conjecture holds with π = 0; for example,
does every abelian variety of dimension 2 defined over Q have a polarization whose
degree is bounded by an absolute constant, say 1010?

And finally we should say something about effectivity. As usual the exponents
π in our results are not only effective but also explicitly computable, as already in
[Masser and Wüstholz 1993a; 1993b; 1995a]. The effectivity of the coefficients C
is known for some time since the work of Bost [1996b]. At any rate the algebraic
estimates of our own Sections 2–6 are all completely explicit and it is not until
Section 7 that we appeal to [Masser and Wüstholz 1995a].

Some of this work was written up while the first author was visiting Göttingen
and Erlangen in 1991 (sic), and he would like to thank S. Patterson and H. Lange
for hospitality. Since then the work has been mentioned by Bost in his 1994–95
Séminaire Bourbaki talk [Bost 1996b, p. 126], as well as in [Masser 2006] and
[Baker and Wüstholz 2007, p. 164].
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Recently É. Gaudron and G. Rémond [2013] sent us a manuscript in which they
complete our results. They use the general strategy and methods laid down in our
papers [Masser and Wüstholz 1993a; 1993b; 1993c; 1994; 1995a; 1995b], but their
details appear to differ from ours. Thus our work is of independent value, not least
in our use of the asymmetric geometry of numbers. This topic is relevant to class
number problems for quadratic forms over number fields and in our context it brings
to the fore some interesting side questions.

2. Asymmetric geometry of numbers

For a positive integer ` let 4 be a lattice in the real Euclidean space R` with
determinant d(4). If d1, . . . , d` are positive real numbers with d1 · · · d` = d(4),
Minkowski’s theorem in the geometry of numbers (see, for example, [Gruber and
Lekkerkerker 1987, Theorem 3, p. 43]) provides nonzero (ξ1, . . . , ξ`) in 4 with

|ξ1| ≤ d1, . . . , |ξ`| ≤ d`. (2-1)

An asymmetric version of this was established by Chalk; it provides instead
(ξ1, . . . , ξ`) in 4 with

ξ1 > 0, . . . , ξ` > 0, |ξ1 · · · ξ`| ≤ d(4) (2-2)

(see, for example, [Gruber and Lekkerkerker 1987, corollary, p. 598] for a proof of
Chalk’s original theorem for grids). Note that it is not possible to localize further
as in (2-1).

Our first application of these results is as follows. Let K be a totally real number
field of degree m, and denote by φ1, . . . , φm the different embeddings of K into
the real field R. For ξ in K write N (ξ)= ξφ1 · · · ξφm and T (ξ)= ξφ1 + · · · + ξφm

for the norm and trace, respectively, from K to Q. If O is an order in K we define
in the usual way its discriminant d(O) as the determinant of the matrix with entries
det T (ξi , ξ j ), (1≤ i, j ≤ m), where ξ1, . . . , ξm are elements of any basis of O over
the rational integers Z. Since K is totally real, it is easy to see (for example, as in
the proof just below) that d(O) is positive.

Lemma 2.1. For any nonzero σ in K there exists ξ in O such that σξ is totally
positive and |N (ξ)| ≤ d(O)1/2.

Proof. Let u1, . . . , um be the signs of σ φ1, . . . , σ φm . As ξ runs over O, the vectors
(u1ξ

φ1, . . . , umξ
φm ) describe a lattice 4 in Rm , and it is straightforward to check

that its determinant d(4) satisfies (d(4))2 = d(O). The desired result now follows
at once from (2-2). �

Next let n be a positive integer (soon to disappear, so that there is no danger of
confusion with n = dim A in Section 1). Let F be a field (also soon to disappear),
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and let Q be a quadratic form on Fn over F . This has a discriminant d(Q) in
F defined as the determinant of the matrix with entries Q(ei , e j ) (1 ≤ i, j ≤ n),
where Q also denotes the associated bilinear form, and e1, . . . , en are elements of
the standard basis of Fn over F .

Suppose for the moment that K =Q and F = R. If Q is nondegenerate and not
negative definite a theorem of Blaney [Gruber and Lekkerkerker 1987, Theorem 4,
p. 471] shows how to find small positive values of Q on Zn . Namely, there exists
(ξ1, . . . , ξn) ∈ Zn such that

0< Q(ξ1, . . . , ξn)≤ 2n−1
|d(Q)|1/n.

Our purpose in the rest of this section is to obtain generalizations of this result
to arbitrary totally real fields K , with totally positive values of Q on On for some
order O of K . For applications it suffices to restrict ourselves to n ≤ 3 and forms Q
defined over K (the latter is not in fact a genuine restriction). In that case the real
conjugates Qφ1, . . . , Qφm each have a certain signature, and it seems necessary to
assume that these are all the same. If this common signature is u, we say that Q
has total signature u.

We start with totally positive definite binary forms.

Lemma 2.2. Let Q(x, y) be a binary quadratic form over K with total signature
(++). Then there are ξ, η in O such that q = Q(ξ, η) is totally positive and

N (q)≤ 2md(O) |N (d(Q))|1/2.

Proof. Completing the square on each of the positive definite conjugates of Q, we
find real numbers ai , bi , ci such that

Qφi (x, y)= ai
(
(x − bi y)2+ (ci y)2

)
(1≤ i ≤ m). (2-3)

In particular
d(Qφi )= a2

i c2
i > 0, ai > 0 (1≤ i ≤ m), (2-4)

and we can also suppose ci > 0 (1≤ i ≤ m). Now, as ξ, η run over O, the vectors(
ξφ1 − b1η

φ1, ηφ1, . . . , ξφm − bmη
φm , ηφm

)
describe a lattice 4 in R2m , and it is easy to see that

d(4)=
(
d(O)1/2

)2
= d(O).

Define C by
C2m
= c1 · · · cmd(O); (2-5)

then it follows from (2-1) that we can find ξ, η in O, not both zero, with

|ξφi − biη
φi | ≤ C, |ηφi | ≤ C/ci (1≤ i ≤ m).
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So (2-3) gives
0< Qφi

(
ξφi , ηφi

)
≤ 2C2ai (1≤ i ≤ m).

Hence q = Q(ξ, η) is totally positive and

N (q)≤ 2mC2ma1 · · · am = 2md(O) |N (d(Q))|1/2

by (2-4) and (2-5). This completes the proof. �

The analogue for totally indefinite forms seems to lie a little deeper.

Lemma 2.3. Let Q(x, y) be a binary quadratic form over K with total signature
(+−). Then there are ξ, η in O such that q = Q(ξ, η) is totally positive and

N (q)≤ 2md(O) |N (d(Q))|1/2.

Proof. This time we factorize each indefinite conjugate as

Qφi (x, y)= ai (x − bi y)(x − ci y) (1≤ i ≤ m)

for real ai , bi , ci ; in particular

d(Qφi )=− 1
4a2

i (bi − ci )
2 < 0 (1≤ i ≤ m).

Now, as ξ, η run over O, the vectors(
ξφ1 − b1η

φ1, a1(ξ
φ1 − c1η

φ1), . . . , ξφm − bmη
φm , am(ξ

φm − cmη
φm )
)

describe a lattice 4 in R2m with

d(4)= |a1 · · · am | |b1− c1| · · · |bm − cm | d(O).

So Chalk’s theorem (2-2) applied to 4 gives us in a similar way the desired estimate.
This completes the proof. �

To extend these results to ternary forms we need a couple of elementary obser-
vations. For an order O in K recall from [Masser and Wüstholz 1995a, p. 8] the
class index i(O) = i1(O), which is the smallest positive integer I such that every
O-module of rank 1 in O contains a principal O-module of index at most I .

Lemma 2.4. Given elements ξ, η in O there are µ, ν in O with

0< |N (ν)| ≤ i(O)3

such that

νM ⊆ Oµ⊆ M

for M = Oξ +Oη.
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Proof. Of course µ plays the role of a highest common factor of ξ and η. If ξ and
η are both zero then the result is trivial with µ= 0, ν = 1. Otherwise M has rank 1
and so there is µ 6= 0 in M with

[M : Oµ] = I ≤ i(O). (2-6)

Let L be the O-module of all λ in O such that λM ⊆ Oµ. Again there is ν 6= 0 in L
with

[L : Oν] = I ′ ≤ i(O). (2-7)

Now L = Lξ ∩ Lη, where Lζ is the set of all λ in O such that λζ is in Oµ. So

[O : L] = [O : Lξ ][Lξ : Lξ ∩ Lη] ≤ [O : Lξ ][O : Lη]. (2-8)

Also for any ζ in M we have

[O : Lζ ] = [Oζ : Oζ ∩Oµ] ≤ [M : Oµ] = I,

so (2-8) gives [O : L] ≤ I 2. Finally this together with (2-6) and (2-7) leads to

[O : Oν] = [O : L][L : Oν] ≤ I 2 I ′ ≤ i(O)3,

and since the left-hand side is |N (ν)| (see, for example, [Reiner 1975, Example 3,
p. 231] the proof is complete. �

Next we say that a row vector v in O3 is O-primitive if every nonzero λ in K
with λv in O3 satisfies |N (λ)| ≥ 1.

Lemma 2.5. Suppose that v0 in O3 is O-primitive. Then there are v1, v2 in O3 such
that v0, v1, v2 form a matrix V with

0< |N (det V )| ≤ i(O)9.

Proof. Let v0 = (ξ0, η0, ζ0). By Lemma 2.4 there are µ, ν in O with

0< |N (ν)| ≤ i(O)3 (2-9)

such that
νM ⊆ Oµ⊆ M (2-10)

for M = Oξ0+Oη0. In particular there exist ξ1, η1 in O with µ= η1ξ0− ξ1η0, and
we define v1 = (ξ1, η1, 0) in O3. Again by Lemma 2.4 there are µ′, ν ′ in O with

0< |N (ν ′)| ≤ i(O)3 (2-11)

such that
ν ′M ′ ⊆ Oµ′ ⊆ M ′ (2-12)

for M ′=Oµ+Oζ0. In particular there exist σ, τ in O with µ′= σµ+τζ0. By (2-10)
the numbers ξ2 = −ντξ0/µ, η2 = −ντη0/µ are in O, and so v2 = (ξ2, η2, σν) is
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in O3. Now we can quickly check that the rows v0, v1, v2 form a matrix V with
det V = νµ′; and this is nonzero since µ′ = 0 would imply v0 = 0, contradicting
primitivity.

It remains to verify the upper bound for |N (det V )|. But (2-10) and (2-12) show
that λv0 is in O3 for λ= νν ′/µ′, so primitivity gives |N (µ′)| ≤ |N (νν ′)|. Therefore

|N (det V )| ≤
∣∣N(ν2ν ′

)∣∣≤ i(O)9

by (2-9) and (2-11); and this completes the proof. �

If O happens to be a maximal order, a more natural proof of Lemma 2.5 might
be obtained using the projectivity of torsion-free O-modules. But this does not
seem quite straightforward, since our definition of primitivity does not quite imply
that O3/Ov0 is torsion-free. Further the extension to nonmaximal orders appears to
involve exponents of i(O) depending on m = [K :Q].

In practice we shall estimate i(O) by d(O)1/2, as in the class index lemma of
[Masser and Wüstholz 1995a, p. 8] for e = 1.

At last we can extend the earlier results of this section to ternary forms.

Lemma 2.6. Let Q(x, y, z) be a ternary quadratic form over K with total signature
(+−−). Then there are ξ, η, ζ in O such that q = Q(ξ, η, ζ ) is totally positive and

N (q)≤ 22md(O)5|N (d(Q))|1/3.

Proof. We follow closely the method in [Gruber and Lekkerkerker 1987, p. 471].
Since K is dense in R⊗ K it is easy to see that Q takes totally positive values on
K 3 and so also on O3. The norms of these latter values are rational numbers with
bounded denominator and so form a discrete set. Thus we can find v0 = (ξ0, η0, ζ0)

in O3 at which the value q0 = Q(ξ0, η0, ζ0) is totally positive with minimal norm,
say N0= N (q0). Then v0 must be O-primitive, otherwise we could find a value with
strictly smaller norm. We express the variables x, y, z in terms of new variables
x ′, y′, z′ using the matrix V of Lemma 2.5. So if the new form Q′ is defined by
Q′(x ′, y′, z′)= Q(x, y, z) we now have q0 = Q′(1, 0, 0). Completing the square
on q−1

0 Q′ gives

q−1
0 Q′

(
x ′, y′, z′

)
=
(
x ′+αy′+βz′

)2
+ Q1

(
y′, z′

)
for α, β in K and a binary form Q1 over K . Since q0 is totally positive and Q′ has
total signature (+−−), it follows that Q1 has total signature (−−). Lemma 2.2
applied to −Q1 gives η′, ζ ′ in O with q1 = Q1(η

′, ζ ′) totally negative and

|N (q1)| ≤ 2md(O) |N (d(Q1))|
1/2.

Now
d(Q1)= q−3

0 d(Q′), d(Q′)= (det V )2d(Q)
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and so the estimate of Lemma 2.5 and the class index lemma lead to

|N (q1)| ≤ 2m N−3/2
0 d(O)11/2

|N (d(Q1))|
1/2. (2-13)

Next define a third form over K by

Q′′
(
x ′′, y′′

)
= q−1

0 Q′
(
x ′′, η′y′′, ζ ′y′′

)
=
(
x ′′+ γ y′′

)2
+ q1

(
y′′
)2

for some γ in K . This has total signature (+−). So Lemma 2.3 gives ξ ′′, η′′ in O

with q ′′ = Q′′(ξ ′′, η′′) totally positive and N (q ′′)≤ 2md(O) |N (d(Q′′))|1/2. Using
the estimate (2-13) for d(Q′′)= q1 we find that

N (q ′′)≤ 23m/2 N−3/4
0 d(O)15/4

|N (d(Q1))|
1/4. (2-14)

Finally q = Q′(ξ ′′, η′η′′, ζ ′η′′)= q0q ′′ is a totally positive value of Q′ on O3 and
so a totally positive value of Q on O3. Therefore minimality implies N0 ≤ N (q), or
N (q ′′)≥ 1. Now (2-14) leads at once to the required upper bound for N0, and this
completes the proof. �

Lemmas 2.2, 2.3, and 2.6 above are all partial generalizations of Blaney’s theorem
from the rationals to totally real number fields. There is no difficulty in extending
the induction argument, as in [Gruber and Lekkerkerker 1987, p. 471], to any
number of variables, provided one assumes that Q has a total signature which is
not negative definite. But it does not seem straightforward to prove the analogous
results under the weaker and more natural hypothesis that no conjugate of Q is
negative definite.

3. Quaternion algebras and CM-fields

As in the preceding section, let K be a totally real number field of degree m. Let
D be a quaternion algebra over K ; that is, a noncommutative algebra over K of
dimension 4 with center K . For a finitely generated additive subgroup 0 of D
of rank r we define the discriminant d1(0) as the determinant of the matrix with
entries T1(γiγ j ) (1≤ i, j ≤ r), where γ1, . . . , γr are elements of any Z-basis for 0,
and T1 denotes the trace from D to Q obtained for example through left (or right)
regular representations. We also have for all δ in D

T1(δ)= 2T (tr δ), (3-1)

where as before T is the trace from K to Q and now tr is the reduced trace from D
to K ; see, for example, [Reiner 1975, Example 5, p. 7 and Equation (9.7), p. 116] .

There is a canonical involution ρ0 on D defined by

ρ0(δ)= (tr δ)− δ (3-2)
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for all δ in D. Its fixed space, consisting of all δ with ρ0(δ)= δ, is just K ; while
its antifixed space, consisting of all δ with ρ0(δ)=−δ, is a K -vector space E of
dimension 3. So D = K ⊕ E .

The following result specifies the ternary quadratic form to which Lemma 2.6
will eventually be applied. Denote the reduced norm from D to K by

nm δ = δρ0(δ)= ρ0(δ)δ,

and let N as before be the norm from K to Q.

Lemma 3.1. If α, β, γ are elements of E linearly independent over K , the quadratic
form

Q(x, y, z)=−(xα+ yβ + zγ )2 = nm(xα+ yβ + zγ )

satisfies

N (d(Q))= (−1)md1(M)d1(O)
−3 (3-3)

for any order O in K , where M = Oα⊕Oβ⊕Oγ .

Proof. If ξ1, . . . , ξm are elements of a Z-basis for O, then for any λ in K the matrix
with entries T1(ξiξ jλ) (1 ≤ i, j ≤ m) has determinant d1(O)N (λ). We can find a
K -basis of E consisting of elements α0, β0, γ0 satisfying the standard quaternion
relations

α2
0 = ξ, β2

0 = η, γ0 = α0β0 =−β0α0

for ξ, η in K , and now (3-3) follows after a short calculation with α0, β0, γ0 in
place of α, β, γ ; in fact both sides have the value N (ξη)2.

Next let α, β, γ in E be such that M = Oα ⊕ Oβ ⊕ Oγ is a submodule of
M0 = Oα0 ⊕ Oβ0 ⊕ Oγ0, so that α, β, γ are related to α0, β0, γ0 by means of a
nonsingular matrix V over O. If we can check that

|N (det V )| = [M0 : M], (3-4)

then both sides of (3-3) change by the square of this quantity on replacing M0 by
M , so (3-3) follows for α, β, γ .

Now (3-4) should be in the literature, but we could not find an exact reference. It
can be verified ad hoc by picking a Z-basis of O and for each λ in K writing Vλ for
the matrix in the corresponding right regular representation; then if V has entries λ,
the index [M0 :M] is the absolute value of the determinant of the matrix with blocks
Vλ. By [Reiner 1975, Example 3, p. 7] this determinant is just N (det V ). See also
[Reiner 1975, Example 3, p. 231] for another approach. Or one can compare the
maximal exterior powers of M and M0; these have the shape P(det V ),P for an
O-module P of rank 1.
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Hence (3-3) is established for any such α, β, γ . Finally the general case can be
reduced to this case simply by multiplying by a suitable positive integer; and the
proof of the present lemma is thereby complete. �

Notice in this lemma that d1(O) is not quite the same as the d(O) in Section 2;
in fact

d1(O)= 4md(O) (3-5)

due to the differing traces.
Next let K1 be a CM-field over K ; that is, a totally imaginary quadratic extension

of K . For a finitely generated additive subgroup 0 of K1 we define the discriminant
d1(0) as above using the trace T1 from K1 to Q. The analogue of (3-1) is

T1(δ)= T (tr δ), (3-6)

where T is the trace from K to Q and tr is the (reduced) trace from K1 to K . There
is a canonical involution ρ0 on K1, which we can identify with complex conjugation,
and (3-2) continues to hold. We define as before E as the antifixed space, so that
K1 = K ⊕ E .

Lemma 3.2. Let O1 be an order of either D or K1. Then:

(a) |d1(K ∩O1)| ≤ 24m
|d1(O1)|.

(b) |d1(E ∩O1)| ≤ 24m
|d1(O1)|.

Proof. Suppose first that O1 is a maximal order. If OK is the ring of integers of K
then OK O1 contains O1 and so must be O1. In particular O1 is an OK -order containing
OK . So [Reiner 1975, Theorem 10.1, p. 125] shows that tr δ is in OK for all δ in O1.
In particular tr δ is in O1, and now the identity 2δ = tr δ+ (2δ− tr δ) leads to

2O1 ⊆ (K ∩O1)⊕ (E ∩O1)⊆ O1.

Since the summands are perpendicular with respect to the reduced trace, and
therefore by (3-1), (3-6) also with respect to T1, taking discriminants gives

24m
|d1(O1)| ≥ |d1(K ∩O1)| |d1(E ∩O1)| ≥ |d1(O1)|.

Since all these discriminants are nonzero rational integers, (a) and (b) follow when
O1 is maximal.

In general there is a maximal order Om containing O1, and

d1(O1)= [Om : O1]
2d1(Om),

d1(K ∩O1)= [K ∩Om : K ∩O1]
2d1(K ∩Om).

But the second index above does not exceed the first index, so (a) follows in general;
and (b) is established similarly. This completes the proof. �
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4. Polarizations and representations

Let A be an abelian variety defined over the field C of complex numbers. Analyti-
cally A is isomorphic to the quotient of the tangent space Lie A at the origin by the
period group Per A defined as the kernel of the exponential map from Lie A to A.

We write Â for the dual abelian variety of A. Then Lie Â can be identified with
the space of all C-antilinear maps from Lie A to C, and Per Â with the subgroup of
all such maps whose imaginary parts are integer-valued on Per A (see [Lange and
Birkenhake 1992, pp. 35, 73] or [Mumford 1974, p. 86]). Now a homomorphism
f from A to Â takes an element z of Lie A to an element of Lie Â which itself
takes (antilinearly) an element w of Lie A into an element R(z, w) of C. In this
way the group H=Hom(A, Â) of all homomorphisms f from A to Â is identified
with the group of sesquilinear forms R = R(z, w) (linear in z and antilinear in
w) on Lie A×Lie A whose imaginary parts are integer-valued on Per A× Per A.
The dual map f̂ (corresponding to R(w, z)) is also in H, and we can identify the
Néron–Severi group N= NS(A) with the subgroup of all such f satisfying f̂ = f .
These correspond to Hermitian R. We shall also be interested in the complementary
group S = SN(A) of all f with f̂ = − f . For example, the sum of NS(A) and
SN(A) is direct, lying between 2H and H.

Interchanging A and Â, we obtain in a similar way the groups

H′ = Hom( Â, A), N′ = NS( Â), S′ = SN( Â).

For f in H and f ′ in H′ we denote by f ′ f the composition in the ring End A of
endomorphisms of A.

Next let 0,0′ be additive subgroups of H,H′, respectively, with the same rank,
say r . We define the cross-discriminant c(0′, 0), as in [Masser and Wüstholz
1995a, p. 15], as the square of the determinant of the matrix with entries T1(γ

′

i γ j )

(1 ≤ i, j ≤ r), where γ1, . . . , γr and γ ′1, . . . , γ
′
r are elements of Z-bases of 0,0′,

respectively, and T1 is the trace from Q⊗ End A to Q obtained through regular
representations.

From now on (except briefly in Section 7) we shall assume that A is absolutely
simple. The next lemma can be regarded as an analogue of Lemma 3.2.

Lemma 4.1. Suppose that End A has Z-rank `. Then:

(a) 1≤ c(N′,N)≤ 24`c(H′,H).

(b) 1≤ c(S′,S)≤ 24`c(H′,H).

Proof. Since H contains surjective homomorphisms (for example coming from
polarizations as in the discussion below), it is easy to see that both H and H′ have
Z-rank `. Further

2H⊆ N⊕S⊆H, 2H′ ⊆ N′⊕S′ ⊆H′,
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and taking cross-discriminants gives

24`c(H′,H)≥ c(N′⊕S′,N⊕S)= c(N′,N)c(S′,S)≥ c(H′,H) (4-1)

provided we check that N and S′ (as well as N′ and S) are perpendicular with
respect to T1. But this trace is proportional (see [Masser and Wüstholz 1995a,
Equation (4.1), p. 14]) to the rational representation trace coming from homology,
which is itself proportional to the real part of the analytic representation trace Tr
(see, for example, [Lange and Birkenhake 1992, Proposition 2.3, p. 10]). Now pick
basis elements of Lie A and then basis elements of Lie Â dual with respect to the
standard pairing. Then f in N corresponds to a Hermitian matrix F , and f ′ in S′

corresponds to an antihermitian matrix F ′. With the transposes F t , F ′t we have

Tr(F ′F)= Tr(F F ′)= Tr(F ′t F t)=−Tr(F ′F)

and so the real part of Tr(F ′F) is zero. Hence N,S′ are indeed perpendicular;
and similarly for N′,S. Now [Masser and Wüstholz 1995a, Lemma 5.1(b), p. 17]
and the nonvanishing of discriminants implies that c(H′,H) 6= 0. Since all the
cross-discriminants in (4-1) are rational integers, the inequalities of the present
lemma follow at once, and this completes the proof. �

The next result generalizes [Masser and Wüstholz 1995a, Lemma 4.2, p. 16], at
least when B = Â. Note that through composition H and H′ have natural structures
of right and left modules, respectively, over End A. We write deg δ for the degree
of δ in End A when it is an isogeny. As in Section 1 let n be the dimension of A.

Lemma 4.2. Let O in End A be an order of a division subalgebra of Q⊗ End A.
Suppose that 0 in H is a right O-module of rank 1 and that 0′ in H′ is a left O-module
of rank 1. Suppose further that c(0′, 0) 6= 0 and f ′ f is in O for every f in 0 and
f ′ in 0′. Then there are f in 0 and f ′ in 0′ such that f ′ f is an isogeny with

deg f ′ f ≤ c(0′, 0)n.

Proof. There exists f in 0 with

[0 : f O] = I ′ ≤ i ′(O)

the right class index of O (see [ibid., p. 13]). And there exists f ′ in 0′ with

[0′ : O f ′] = I ≤ i(O)

the left class index. The class index lemma of [ibid., p. 8], together with [ibid.,
Equation (3.11), p. 14], provides estimates for these class indices in terms of the
discriminant of O, which divides the discriminant d1(O) defined using the present
trace T1 (compare (3-5) above). We get

c(O f ′, f O)= I 2 I ′2c(0′, 0)≤ d1(O)
2c(0′, 0). (4-2)
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On the other hand the left side is the square of the determinant of the matrix with
entries T1(ξiδξ j ) (1 ≤ i, j ≤ r) for δ = f ′ f and elements ξ1, . . . , ξr of a Z-basis
of O. Using the left (or right) regular representation of δ in O, we find (much as in
the proof of Lemma 3.1) that this determinant is Nd1(O), where N is the norm of δ
from Q⊗ O to Q. In particular N 6= 0 so δ is an isogeny. Finally comparison of
norms (see [Masser and Wüstholz 1995a, Equation (4.2), p. 14]) yields

N 2n
= (deg δ)r ≥ deg δ,

and the present lemma follows from (4-2) after cancellation. This completes the
proof. �

The ultimate goal of this paper is to obtain information about the polarizations
on A. These may be identified with the subset Pol A of NS(A) corresponding to
positive definite Hermitian forms. Recall that every such polarization f gives rise
to its Rosati involution ρ on Q⊗End A by the equation

ρ(δ)= f −1δ̂ f. (4-3)

It is well known (see, for example, [Lange and Birkenhake 1992, Theorem 1.8,
p. 120] or [Mumford 1974, Theorem 1, p. 192]) that ρ is a positive involution in
the sense that T1(δρ(δ)) > 0 for all nonzero δ in Q⊗End A.

The existence of ρ provides a quick method for calculating NS(A). For multipli-
cation on the left by f −1 gives a (noncanonical) identification of Q⊗Hom(A, Â)
with Q⊗End A, and Q⊗NS(A) corresponds to the fixed space of ρ (see [Lange
and Birkenhake 1992, Proposition 2.1(a), p. 122] or [Mumford 1974, p. 190]).
Similarly SN(A) corresponds to the antifixed space. Further, multiplication on the
right by f gives an identification of Q⊗Hom( Â, A) with Q⊗End A; and now it
is Q⊗NS( Â) and Q⊗ SN( Â) that correspond to the fixed and antifixed spaces,
respectively, of ρ.

Recall that A is absolutely simple. Then D=Q⊗End A is a division algebra, and
we have the following fundamental classification due to Albert (see, for example,
the summaries in [Lange and Birkenhake 1992], [Mumford 1974], [Shimura 1963]
or the original papers [Albert 1934a; 1935a; 1934b; 1935b]).

Type I: D is a totally real number field.

Type II: D is a totally indefinite quaternion algebra over a totally real number
field.

Type III: D is a totally definite quaternion algebra over a totally real number
field.

Type IV: D is a division algebra, of dimension e2 say, over its center, which is a
CM-field.
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For each type the underlying totally real number field will be denoted by K ,
and its degree by m. Let φ1, . . . , φm be the different real embeddings of K as in
Section 2. For a field F we denote by Me(F) the ring of square matrices of order
e over F , and we write U for the subring of M2(C) consisting of all

( x
−y

y
x

)
. The

operation of complex conjugate transposition defines an involution * on Me(R),
Me(C) and U , which we extend to m-fold products in the obvious way. We need
the following isomorphisms.

Lemma 4.3. Fix f in Pol A with Rosati involution ρ. Then the above real embed-
dings induce an isomorphism φ = (φ1, . . . , φm) from R⊗ D to one of the following
rings (corresponding to the above types):

(I) Rm
=M1(R)

m ,

(II) M2(R)
m ,

(III) Um ,

(IV) Me(C)
m .

Further we have
φ(ρ(δ))= φ(δ)∗ (4-4)

for every δ in R⊗D; and for every σ in K , the matrix φi (σ ) is the identity multiplied
by σ φi (1≤ i ≤ m).

Proof. All except the last clause is contained in the discussions in [Lange and
Birkenhake 1992, pp. 133–141], [Mumford 1974, pp. 201, 202] or [Shimura 1963,
pp. 150–153, 155]. As for φ1(σ ), . . . , φm(σ ), they must be in the centers of the
appropriate rings and therefore multiples of the identity matrix by some scalars.
Further these scalars must have the form σ φ

′

1, . . . , σ φ
′
m for φ′1, . . . , φ

′
m chosen from

φ1, . . . , φm . But since φ is surjective, φ′1, . . . , φ
′
m must be all different, and after a

permutation we can assume them to be φ1, . . . , φm . This completes the proof. �

We next extend φ to an analytic representation of R⊗ D on the tangent space
Lie A. Let φ1, . . . , φm be the complex conjugates of the coordinates of φ. For
matrices X in Me(C) with entries xi j (1 ≤ i, j ≤ e), and Y in Mh(C), define the
Kronecker product X ⊗ Y in Meh(C) as in [Shimura 1963, p. 156] or [Lange
and Birkenhake 1992, p. 249] to consist of blocks xi j Y (1 ≤ i, j ≤ e). Also for
matrices X1, . . . , Xk define diag(X1, . . . , Xk) as in this last reference, with blocks
X1, . . . , Xk “down the main diagonal”. Finally write I (e) for the identity in Me(C).

Lemma 4.4. Fix f in Pol A. There is a basis of Lie A such that the corresponding
analytic representation 8 sends δ in R⊗ D to 8(δ) = diag(81(δ), . . . , 8m(δ)),
with

(I) 8i (δ)= φi (δ)⊗ I (n/m) (1≤ i ≤ m),
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(II) 8i (δ)= φi (δ)⊗ I (n/2m) (1≤ i ≤ m),

(III) 8i (δ)= φi (δ)⊗ I (n/2m) (1≤ i ≤ m),

(IV) 8i (δ)= diag
(
φi (δ)⊗ I (ri ), φi (δ)⊗ I (si )

)
(1≤ i ≤ m)

for nonnegative integers ri , si with ri + si = n/em (1≤ i ≤ m).

Proof. See [Shimura 1963, pp. 156, 157]; of course if ri = 0 or si = 0 then the
corresponding block in case (IV) should be omitted. �

The above result leads to the following for the Riemann form R(z, w) associated
with the polarization f , where now z= (z1, . . . , zn)

t , w= (w1, . . . , wn)
t are column

vectors of Cn identified with Lie A by means of the above basis.

Lemma 4.5. Fix f in Pol A; then with the basis of Lie A constructed above, the
Riemann form R(z, w) associated with f has the shape zt Fw for

F = diag(F1, . . . , Fm)

with

(I) Fi of order n/m (1≤ i ≤ m),

(II) Fi = I (2)⊗ F ′i for F ′i of order n/2m (1≤ i ≤ m),

(III) Fi = I (2)⊗ F ′i for F ′i of order n/2m (1≤ i ≤ m),

(IV) Fi = diag(I (e) ⊗ Gi , I (e) ⊗ Hi ) for Gi , Hi of orders ri , si , respectively
(1≤ i ≤ m).

Proof. The equation (4-3) of ρ leads to

R(z,8(δ)w)= R(8(ρ(δ))z, w)

for every δ in End A. With r(z, w) = zt Fw it follows from (4-4) that F8(δ) =
8(δ)F for every such δ, and so also for every δ in R⊗ D. Therefore F commutes
with every element of 8(R⊗ D)=8(R⊗ D). The required forms are now easy
to work out; see, for example, [Shimura 1963, Formulae (32), (33), pp. 161, 162].
This completes the proof. �

5. Preliminary estimates (i)

In this section we establish preliminary estimates for polarizations on simple abelian
varieties with endomorphism algebras of types I, III and the commutative case
e = 1 of type IV. These cases are especially easy to handle because there is only
one positive involution on D = Q ⊗ End A (see [Lange and Birkenhake 1992,
Theorem 5.3, p. 135 and Theorem 5.6, p. 139] or [Mumford 1974, Theorem 2,
p. 201]). For type I it is the identity; for type III it is the canonical involution of
Section 3; and for type IV it induces complex conjugation on the center, so in
the commutative case it is also the canonical involution considered in Section 3.
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Therefore the totally real number field K is always the fixed space. For the rest of
this section we assume that A is simple corresponding to one of the above cases.
We write

O1 = End A, O= K ∩O1. (5-1)

Lemma 5.1. Suppose that f is in Pol A and ζ is totally positive in O. Then f ζ is
in Pol A.

Proof. Shimura [1963, Proposition 21, p. 185] gives a short elegant proof of
this based on Siegel’s theorem that ζ is a sum of squares in K . The following
demonstration is more elementary.

By Lemma 4.5 the polarization f corresponds to the form zt Fw with

F = diag(F1, . . . , Fm)

(with respect to a suitable basis). So f ζ corresponds to the form zt Fζw with
Fζ =8(ζ)t F . Now it follows easily from Lemmas 4.3 and 4.4 that

8(ζ)t =8(ζ)= diag(ζ φ1 I, . . . , ζ φm I )

for I = I (n/m), and so

Fζ = diag(ζ φ1 F1, . . . , ζ
φm Fm).

Since f is a polarization, F is positive definite Hermitian. Therefore F1, . . . , Fm

are positive definite Hermitian. Since ζ is totally positive, it follows that ζ φ1 F1, . . . ,

ζ φm Fm are also positive definite Hermitian. Hence Fζ is positive definite Hermitian,
and so f ζ is indeed a polarization. This completes the proof, which works even for
the noncommutative case of type IV. �

Lemma 5.2. The group N = NS(A) is a right O-module of rank 1; the group
N′ = NS( Â) is a left O-module of rank 1; and f ′ f is in O for every f in N and f ′

in N′.

Proof. The claims for N can be checked by noncanonically identifying Q⊗H with
D=Q⊗O1 as described in Section 4; this identification respects the right D-module
structure. For type I every Rosati involution is the identity; so N=H, S= {0} and
everything is clear. For type III every Rosati involution ρ is canonical, so H, N,
S have Z-ranks 4m,m, 3m, respectively. So the asserted O-module structure of N

is obvious because ρ fixes O. For the commutative case of type IV, every Rosati
involution is again canonical, so H, N, S have Z-ranks 2m, m, m, respectively, and
again ρ fixes O.

The claims about N′ can be verified similarly by identifying Q⊗H′ with D.
Finally let f be in N and f ′ in N′. It is easy to see that Q⊗N is generated by
polarizations. So in proving that δ = f ′ f is in O we may assume that f is a



1062 David Masser and Gisbert Wüstholz

polarization. Now using f̂ = f and a similar equation for f ′ we find at once that
f −1δ̂ f = δ, so δ is fixed by the Rosati involution. So it lies in K and therefore in
O as desired. This completes the proof. �

We can now give our first preliminary estimate for polarizations. We write deg f
for the degree of f in H=Hom(A, Â) when it is an isogeny (that is, when f 6= 0).

Proposition 5.3. Suppose that A is simple and its endomorphism algebra is either
commutative or a totally definite quaternion algebra over a totally real number field.
Then A has a polarization of degree at most 218mnc(H′,H)n|d1(O1)|

n .

Proof. From Lemma 4.1(a) we have c(N′,N) 6= 0. Now Lemma 5.2 above allows
us to apply Lemma 4.2 with 0 = N, 0′ = N′ to find an isogeny f̃ in N with
deg f̃ ≤ c(N′,N)n . Again using Lemma 4.1(a) and the fact that ` ≤ 4m in our
situation, we get

deg f̃ ≤ 216mnc(H′,H)n. (5-2)

Now there is certainly some polarization f ; so we deduce f̃ = f σ for some nonzero
σ in K . By Lemma 2.1 there is a ξ in O with ξσ totally positive and |N (ξ)|≤d(O)1/2.
Also Lemma 3.2(a) together with (3-5) gives d(O)≤ 22m

|d1(O1)|, and so we get

deg ξ = |N (ξ)|2n/m
≤ N (ξ)2n

≤ 22mn
|d1(O1)|

n. (5-3)

It is clear from this and (5-2) that our proposition is established as soon as we verify
that f̃ ξ is a polarization. But there is a positive integer s such that ζ = sσξ is in O;
and now it follows from Lemma 5.1 that s f̃ ξ = f ζ is a polarization. So f̃ ξ is too;
and this completes the proof. �

6. Preliminary estimates (ii)

We now deal with type II. This is harder because there are now many positive
involutions on D = Q⊗ End A; even worse, the canonical involution ρ0 is not
among them. It is here that we need the considerations of Section 2 on quadratic
forms.

But first we recall the isomorphism φ from R⊗ D to M2(R)
m constructed in

Lemma 4.3 from a given polarization on A. We already have Equation (4-4), where
* denotes complex conjugate transposition extended to the m-fold product. We also
need the following remarks.

Lemma 6.1. For any δ in R⊗ D we have

φ(ρ0(δ))= φ(δ)
a,

where (−)a denotes the adjoint involution extended to the m-fold product.
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Proof. The involution ρ0 on R⊗ D induces via φ an involution i on M=M2(R)
m .

Since δ+ ρ0(δ), δρ0(δ) are both fixed by ρ0, they are in the center for every δ in
R⊗ D. It follows that X + i(X), X i(X) are both in the center of M for every X in
M. From this we conclude with a simple calculation that i(X)= Xa for every X ,
which is the assertion of the present lemma. �

For the next remark we recall the decomposition D = K ⊕ E of Section 3.

Lemma 6.2. For any α, β, γ in E linearly independent over K , the quadratic form

Q(x, y, z)=−(xα+ yβ + zγ )2

has total signature (+−−).

Proof. Fix rational numbers x, y, z; then

q = Q(x, y, z)= πρ0(π)

for π = xα+ yβ + zγ , so calculating φi (q) from both Lemma 4.3 and 6.1 using
M Ma

= (det M)I (2) on M2(R) shows that

Qφi (x, y, z)= detφi (π)= det(xφi (α)+ yφi (β)+ zφi (γ )) (1≤ i ≤ m).

Since α, β, γ are linearly independent over K , their images in R⊗ D are linearly
independent over R⊗ K and so their images by each φi in M2(R) are linearly
independent over R. Further their traces are zero, again by Lemma 6.1. But it is
easy to check that the determinant function evaluated on the zero trace subspace of
M2(R) has signature (+−−). The assertion of the present lemma is now evident,
and this completes the proof. �

Although ρ0 itself is not positive, it is known that every positive involution ρ on
D is defined by

ρ(δ)= ω−1ρ0(δ)ω, (6-1)

where ω is a nonzero element of D with ω2 in K and totally negative (see, for
example, [Lange and Birkenhake 1992, Theorem 5.3, p. 135], [Mumford 1974,
Theorem 2, p. 201] or [Shimura 1963, Proposition 2, p. 153]). A simple calculation
shows that ω lies in E (not K ). Let �⊆ E be the set of such elements ω. Our first
task is to find a small element of � in the order O1. We keep the notation (5-1).

Lemma 6.3. There exists ω̃ in �∩O1 with

|N (ω̃)| ≤ 26m
|d1(O1)|

3.

Proof. Write M1 = E ∩O1. By Lemma 3.2(b) we have

|d1(M1)| ≤ 24m
|d1(O1)|. (6-2)
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Now M1 is an O-module of rank 3, so by the definition of the generalized class index
in [Masser and Wüstholz 1995a, p. 8] it contains a free O-module M=Oα⊕Oβ⊕Oγ

with index [M1 : M] ≤ i3(O). By the class index lemma we have i3(O)≤ d(O)3/2,
and it follows using (3-5) and (6-2) that

|d1(M)| = [M1 : M]2|d1(M1)| ≤ 2−2md1(O)
3
|d1(O1)|.

So by Lemma 3.1 the quadratic form

Q(x, y, z)=−(xα+ yβ + zγ )2

satisfies
|N (d(Q))| ≤ 2−2m

|d1(O1)|. (6-3)

And by Lemma 6.2 it has total signature (+−−). So Lemma 2.6 provides ξ, η, ζ
in O such that q =−ω̃2 is totally positive for ω̃= ξα+ηβ+ ζγ in O1; and by (6-3)

N (q)≤ 24m/3d(O)5|d1(O1)|
1/3.

Finally the desired estimate for |N (ω̃)| = N (q)1/2, even with exponent 8
3 , follows

from this together with (3-5) and Lemma 3.2(a); the proof is thereby complete. �

We next give an analogue of Lemma 5.1; recall from Section 3 that tr is the
reduced trace from D to K .

Lemma 6.4. Suppose that f in Pol A has Rosati involution ρ given by (6-1) for
some ω in �.

(a) Then f0 = f ω−1 is in Q⊗S, and we have

f −1
0 δ̂ f0 = ρ0(δ) (6-4)

for every δ in D.

(b) Suppose further that ω′ is in �. Then tr ε 6= 0 for ε = ω−1ω′.

(c) Suppose in addition that ε is in O1 with tr ε totally positive. Then f ε is in
Pol A.

Proof. By the definition (4-3) of ρ we have

f −1δ̂ f = ω−1ρ0(δ)ω (6-5)

for every δ in D. Put δ = ω; we get f −1ω̂ f =−ω, and using f̂ = f we see easily
that the dual of f0 satisfies f̂0 = − f0. So f0 is in Q⊗ S as desired. Also the
formula (6-4) is immediate from (6-5). This establishes (a).

As for (b), we fix φ = (φ1, . . . , φm) corresponding to f as in Lemma 4.3, and
we start by proving that the matrices

Ei = φi (ε) (1≤ i ≤ m)
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in M2(R) are symmetric. For (4-4) gives the relations

φi
(
ω−1ρ0(ε)ω

)
= φi (ε)

t (1≤ i ≤ m).

Also ρ0(ε)= ω
′ω−1, and we end up with the desired symmetry properties.

Next by Lemma 6.1 we have

(det Ei )I = φi (ε)φi (ρ0(ε))= φi
(
ω−1ω′ω′ω−1) (1≤ i ≤ m)

for I = I (2). But ω2
= σ and ω′2 = σ ′ are both totally negative in K ; thus

ω−1ω′ω′ω−1
= σ−1σ ′ is totally positive in K , and the above matrix is (σ−1σ ′)φi I .

We deduce that
det Ei > 0 (1≤ i ≤ m). (6-6)

If ti is the trace of Ei , then we also have

ti I = φi (ε)+φi (ρ0(ε))= 2φi (τ )= 2τφi I (1≤ i ≤ m) (6-7)

with τ = tr ε the reduced trace. Now τ = 0 would imply ti = 0 (1≤ i ≤m), but the
trace of a symmetric matrix in M2(R) cannot vanish if its determinant is positive as
in (6-6). So indeed τ 6= 0, and this establishes (b).

Lastly, suppose τ is totally positive. We prove that E1, . . . , Em are positive
definite. For (6-7) now implies that ti > 0 (1≤ i ≤m), and it is easy to check that a
symmetric matrix in M2(R) is positive definite if (and only if) its determinant and
trace are both positive. Thus E1, . . . , Em are indeed positive definite.

Finally from Lemma 4.5 we know that the polarization f corresponds to the
form zt Fw with

F = diag(F1, . . . , Fm),

where Fi = I⊗F ′i for F ′i of order n/2m (1≤ i ≤m). As in the proof of Lemma 5.1,
the map f ε corresponds to zt Fεw with Fε =8(ε)t F , and we have

8(ε)= diag(81(ε), . . . , 8m(ε))

with 8i (ε)= Ei ⊗ I ′ (1≤ i ≤ m) for I ′ = I (n/2m). By symmetry we get

8i (ε)
t Fi = (Ei ⊗ I ′)(I ⊗ F ′i )= Ei ⊗ F ′i (1≤ i ≤ m),

so that
Fε = diag(E1⊗ F ′1, . . . , Em ⊗ F ′m).

Since F is positive definite Hermitian, so are F1, . . . , Fm and also F ′1, . . . , F ′m . We
have just seen that E1, . . . , Em are positive definite Hermitian (and even symmetric).
Now it is well known (and almost trivial) that the Kronecker product of two positive
definite Hermitian matrices is also positive definite Hermitian. It follows that Fε is
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positive definite Hermitian, and so f ε is a polarization. This establishes (c), and so
completes the proof of the present lemma. �

The next result is the analogue of Lemma 5.2, but with the Néron–Severi group
replaced by the Severi–Néron group.

Lemma 6.5. The group S= SN(A) is a right O-module of rank 1; the group S′ =

SN( Â) is a left O-module of rank 1; and f ′ f is in O for every f in S and f ′ in S′.

Proof. The claims for S can be checked by noncanonical identification, as in the
proof of Lemma 5.2. In fact a Rosati involution of the form (6-1) has antifixed
space Kω, since the equation ρ(δω)=−δω turns out to be equivalent to ρ0(δ)= δ.
So H,N,S have Z-ranks 4m, 3m,m, respectively. The claims for S′ can be verified
similarly.

Finally let f be in S and f ′ in S′. In showing that f ′ f is in O we can assume
f 6= 0. By Lemma 6.4(a) applied to some polarization (of course not the present f )
there is some f0 in Q⊗S with f −1

0 δ̂ f0 = ρ0(δ) for every δ in D. Since f0 = f σ
for some σ in K , we deduce also

f −1δ̂ f = ρ0(δ) (6-8)

for every δ in D. With δ = f ′ f using f̂ =− f and a similar equation for f ′ leads
immediately to f ′ f = ρ0( f ′ f ), so f ′ f is in K and therefore in O as desired. This
completes the proof. �

It is perhaps interesting to note that (6-8) above says that any nonzero f in S (for
type II) determines the canonical involution on D in the same way as a polarization
determines its Rosati involution (compare (4-3)).

We now establish our second preliminary estimate for polarizations.

Proposition 6.6. Suppose that A is simple and its endomorphism algebra is a
totally indefinite quaternion algebra over a totally real number field. Then A has a
polarization of degree at most

230mnc(H′,H)n|d1(O1)|
7n.

Proof. From Lemma 4.1(b) we have c(S′,S) 6= 0. Lemma 6.5 allows us to apply
Lemma 4.2 with 0 = S, 0′ = S′ to find an isogeny f̃ in S with deg f̃ ≤ c(S′,S)n .
Again using Lemma 4.1(b) and `= 4m, we get

deg f̃ ≤ 216mnc(H′,H)n. (6-9)

Next by Lemma 6.3 there is ω̃ in �∩O1 with |N (ω̃)| ≤ 26m
|d1(O1)|

3, and therefore

deg ω̃ = |N (ω̃)|2n/m
≤ |N (ω̃)|2n

≤ 212mn
|d1(O1)|

6n. (6-10)
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Now there is certainly some polarization f , and the Rosati involution for f has
the form (6-1) for some ω in �. By Lemma 6.4(a), f0 = f ω−1 lies in Q⊗S, and
therefore f̃ = f0σ for some nonzero σ in K . By Lemma 6.4(b), τ = tr(ω−1ω̃)

is nonzero and so we can use Lemma 2.1 to find ξ in O such that στξ is totally
positive and |N (ξ)| ≤ d(O)1/2. Exactly as in (5-3) above we find

deg ξ ≤ 22mn
|d1(O1)|

n.

Now it is clear from this and (6-9), (6-10) that the proposition is established as soon
as we verify that f̃ ω̃ξ is a polarization. But there is a positive integer s such that
ε = ω−1ω′ is in O1 for ω′ = s(ω̃σξ), and by construction tr ε = s(στξ) is totally
positive. So from Lemma 6.4(c) we see that f ε = s( f̃ ω̃ξ) is a polarization. So
f̃ ω̃ξ is too; and this completes the proof. �

7. Conclusion

We prove the theorem first. Thus let A be a simple abelian variety of dimension n
whose endomorphism algebra is commutative or has the property that its center is
totally real of degree m. Then we are in the situation of Section 5 or 6, and the
appropriate proposition shows that A has a polarization of degree at most

230mnc(H′,H)n|d1(O1)|
7n, (7-1)

where H= Hom(A, Â), H′ = Hom( Â, A) and O1 = End A.
Now suppose that A is defined over a number field of degree d . We use positive

constants C1,C2, . . . depending only on n and d, and we estimate the quantities
in (7-1) in terms of h =max{1, h(A)} using Lemma 6.1 of [Masser and Wüstholz
1995a, p. 19]; this says that

max{c(H′,H), |d1(O1)|} ≤ C1hλ,

where λ= λ(8n) for a certain monotonically increasing function. The inequality of
our theorem follows immediately, with exponent 8nλ(8n).

To prove the first corollary, we note that if A is simple of squarefree dimension n
then its endomorphism algebra D is necessarily of the form considered in the
theorem. For we only have to rule out the noncommutative case of type IV. In this
case D has dimension e2

≥ 4 over its center, which is a CM-field of degree 2m.
Now it is well known that the Q-dimension 2me2 of D must divide 2n (see [Lange
and Birkenhake 1992, Proposition 5.7, p. 141] or [Mumford 1974, p. 182]). This is
here impossible and so the first corollary is proved.

Similarly, as preparation for the proof of the second corollary, we note that if
A is simple of dimension n ≤ 7 then D is also as in the theorem. Here the only
possibility is e2

= 4 and then m = 1, n = 4.
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Now it is a fact that such a case is impossible for simple A, but we could not
find a completely satisfactory explicit reference in the literature. Without using this
fact, the second corollary would follow only for dimension n at most 3. So we feel
obliged to add some remarks about the impossible case.

Everything can be found in Albert’s papers [1934a; 1935a], but the reader may
well appreciate a more modern exposition. There are two subcases characterized by
r1s1 = 0 and r1s1 6= 0. The first of these is covered by [Albert 1934a, Theorem 3,
p. 13]. A modern treatment (which also implies that A is isogenous to the fourth
power of a CM elliptic curve) is given in Shimura [1963, Proposition 14, p. 176].
See [Lange and Birkenhake 1992, Exercise 3, p. 286].

Next if r1s1 6=0 then r1= s1=1 by virtue of r1+s1=2. So this subcase is covered
by [Albert 1935a, Theorem 20, p. 391] and also [Shimura 1963, Proposition 19,
p. 184]. However Shimura’s conclusion that A is isogenous to the square of an
abelian surface (of endomorphism type II with m = 1) is valid only for what he
calls “generic” A; his arguments are definitely moduli-space-theoretic in nature.
Our own A is defined over a number field and so unlikely to be generic; on the
other hand it is known that specialization only increases the endomorphism ring.
Now the generic ring already has rank 16 over Z, whereas the maximum rank for
simple A of dimension 4 is only 8 (see above). A general result independent of
such considerations is given in [Lange and Birkenhake 1992, Exercise 5, p. 286].

This last subcase r1 = s1 = 1 can also be treated using only a very elementary
specialization argument, paying due attention to the discrepancy between Shimura’s
analytic concept of generic and the more usual algebraic concept. We omit the
details.

We now prove the second corollary. Suppose first that A is an abelian variety
of dimension n, not necessarily simple, defined over a number field k of degree d .
By [Masser and Wüstholz 1995a, Theorem I, p. 5] there are abelian subvarieties
A1, . . . , Ar of A, simple over the algebraic closure k, together with an isogeny g
from A to A′ = A1× · · · × Ar of degree

deg g ≤ C2hκ (7-2)

for κ = κ(n) depending only on n. Also, as in [Masser and Wüstholz 1995a, p. 6],
A1, . . . , Ar are necessarily defined over an extension of k of relative degree at most
C3. Assume that the endomorphism algebras of A1, . . . , Ar are all of the type
considered in our theorem. As we have observed, this is automatically true if n ≤ 7.
Then Ai has a polarization fi of degree at most C4 max{1, h(Ai )}

8niλ, where λ is
as above and ni is the dimension of Ai (1≤ i ≤ r). As in [Masser and Wüstholz
1995a, p. 6] we have h(A)≤ C5h (1≤ i ≤ r), and so

deg fi ≤ C6h8niλ (1≤ i ≤ r).
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Therefore A′ =
∏

Ai has a polarization f with

deg f =
∏
(deg fi )≤ C7h8nλ. (7-3)

Finally the “pullback” ĝ f g is a polarization on A whose degree is (deg g)2(deg f ).
So by (7-2) and (7-3) this completes the proof of the second corollary, with exponent
8nλ(8n)+ 2κ(n).
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and Bernstein isomorphisms

in characteristic p
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We study the center of the pro-p Iwahori–Hecke ring zHZ of a connected split
p-adic reductive group G. For k an algebraically closed field of characteristic p,
we prove that the center of the k-algebra zHZ˝Z k contains an affine semigroup
algebra which is naturally isomorphic to the Hecke k-algebra H.G; �/ attached
to an irreducible smooth k-representation � of a given hyperspecial maximal
compact subgroup of G. This isomorphism is obtained using the inverse Satake
isomorphism defined in our previous work.

We apply this to classify the simple supersingular zHZ˝Z k-modules, study the
supersingular block in the category of finite-length zHZ˝Z k-modules, and relate
the latter to supersingular representations of G.
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1. Introduction

The Iwahori–Hecke ring of a split p-adic reductive group G is the convolution
ring of Z-valued functions with compact support in InG=I, where I denotes an
Iwahori subgroup of G. It is isomorphic to the quotient of the extended braid
group ring associated to G by quadratic relations in the standard generators. If
one replaces I by its pro-p Sylow subgroup QI, then one obtains the pro-p Iwahori–
Hecke ring zHZ. In this article we study the center of zHZ. We are motivated by
the smooth representation theory of G over an algebraically closed field k with
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characteristic p and subsequently will be interested in the k-algebra zHk WD zHZ˝Zk.
We construct an isomorphism of k-algebras between a subring of the center of zHk
and (generalizations of) spherical Hecke k-algebras by means of the inverse mod p
Satake isomorphism defined in [Ollivier 2012]. This result is the compatibility
between Bernstein and Satake isomorphisms referred to in the title of this article.
We then explore some consequences of this compatibility. In particular, we study
and relate the notions of supersingularity for Hecke modules and k-representations
of G.

1A. Framework and results. Let F be a nonarchimedean locally compact field
with residue characteristic p and k an algebraic closure of the residue field. We
choose a uniformizer $ . Let G WD G.F/ be the group of F-rational points of
a connected reductive group G over F, which we assume to be F-split. In the
semisimple building X of G, we choose and fix a chamber C , which amounts to
choosing an Iwahori subgroup I in G, and we denote by QI the pro-p Sylow subgroup
of I. The choice of C is unique up to conjugacy by an element of G. We consider
the associated pro-p Iwahori–Hecke ring zHZ WD ZŒQInG=QI� of Z-valued functions
with compact support in QInG=QI under convolution.

Since G is split, C has at least one hyperspecial vertex x0, and we denote by
K the associated maximal compact subgroup of G. Fix a maximal F-split torus T
in G such that the corresponding apartment A in X contains C . The set X�.T/ of
cocharacters of T is naturally equipped with an action of the finite Weyl group W.
The choice of x0 and C induces a natural choice of a positive Weyl chamber of A,
that is to say, of a semigroup XC� .T/ of dominant cocharacters of T.

1A1. The complex case. The structure of the spherical algebra CŒKnG=K� of com-
plex functions compactly supported on KnG=K is understood thanks to the classical
Satake isomorphism [1963] (see also [Gross 1998; Haines 2001])

s W CŒKnG=K� �!� .CŒX�.T/�/W:

On the other hand, the complex Iwahori–Hecke algebra HC WDCŒInG=I� of complex
functions compactly supported on InG=I contains a large commutative subalgebra
AC defined as the image of the Bernstein map � W CŒX�.T/� ,! HC, which depends
on the choice of the dominant Weyl chamber (see [Lusztig 1989, Section 3.2]). The
algebra HC is free of finite rank over AC and its center Z.HC/ is contained in AC.
Furthermore, the map � yields an isomorphism

b W .CŒX�.T/�/W �!� Z.HC/:

This was proved by Bernstein ([Lusztig 1989, Section 3.5]; see also [Haines 2001,
Theorem 2.3]). By [Dat 1999, Corollary 3.1] and [Haines 2001, Proposition 10.1],
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the Bernstein isomorphism b is compatible with s, in the sense that the composi-
tion .eK ? � /b is an inverse for s, where .eK ? � / denotes the convolution by the
characteristic function of K.

1A2. Bernstein and Satake isomorphisms in characteristic p. After defining an
integral version of the complex Bernstein map, Vignéras [2005] gave a basis for
the center of zHZ and proved that zHZ is noetherian and finitely generated over its
center. In the first section of this article, we define a subring Zı.zHZ/ of the center
of zHZ over which zHZ is still finitely generated. In Proposition 2.8 we prove that
Zı.zHZ/ is not affected by the choice of another apartment containing C and of
another hyperspecial vertex of C , as long as it is conjugate to x0. In particular, if
G is of adjoint type or GD GLn, then Zı.zHZ/ depends only on the choice of the
uniformizer $ .

The natural image of Zı.zHZ/ in zHk D zHZ˝Z k is denoted by Zı.zHk/, and we
prove that it has an affine semigroup algebra structure. More precisely, we have an
isomorphism of k-algebras (Proposition 2.10)

kŒXC� .T/� �!� Zı.zHk/� zHk : (1-1)

By the main theorem in [Herzig 2011b] (and in [Ollivier 2012]), this makes
Zı.zHk/ isomorphic to the algebra H.G; �/ of any irreducible smooth k-represen-
tation � of K. Note that when � is the k-valued trivial representation 1K of K, one
retrieves the convolution algebra kŒKnG=K�DH.G; 1K/.

In [Ollivier 2012], we constructed an isomorphism

T W kŒXC� .T/� �!� H.G; �/: (1-2)

Here we prove the following theorem:

Theorem 4.3. We have a commutative diagram of isomorphisms of k-algebras

kŒXC� .T/�
(1-1)
����! Zı.zHk/ ??y

kŒXC� .T/�
T

����! H.G; �/

(1-3)

where the vertical arrow on the right-hand side is the natural morphism of k-
algebras (4-3) described in Section 4.

The isomorphism T was constructed in [Ollivier 2012] by means of generalized
integral Bernstein maps, as are the subring Zı.zHk/ and the map (1-1) in the current
article. By analogy with the complex case, we can see the map (1-1) as an iso-
morphism à la Bernstein in characteristic p. The above commutative diagram can
then be interpreted as a statement of compatibility between Satake and Bernstein
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isomorphisms in characteristic p. Note that under the hypothesis that the derived
subgroup of G is simply connected, it is proved in [Ollivier 2012] that T is the
inverse of the mod p Satake isomorphism defined in [Herzig 2011b]. (The extra
hypothesis on G is probably not necessary).

If we worked with the Iwahori–Hecke algebra kŒInG=I�, the analog of Zı.zHk/
would actually be the whole center of kŒInG=I�. We prove:

Theorem 2.14. The center of the Iwahori–Hecke k-algebra kŒInG=I� is isomorphic
to kŒXC� .T/�.

1A3. Generalized integral Bernstein maps. One ingredient of the construction of T
in [Ollivier 2012] and of the proof of Theorem 4.3 is the definition of Z-linear
injective maps

B�F W ZŒ
zX�.T/�! zHZ

defined on the group ring of the (extended) cocharacters zX�.T/, which are mul-
tiplicative when restricted to the semigroup ring of any chosen Weyl chamber of
zX�.T/ (see Section 1B5 for the definition of zX�.T/). The image of B�F happens
to be a commutative subring of zHZ, which we denote by A�F . The parameter � is
a sign and F is a standard facet (a facet of C containing x0 in its closure). The
choice of F corresponds to the choice of a Weyl chamber in A: for example, if
F D C (resp. x0), then the corresponding Weyl chamber is the dominant (resp.
antidominant) one.

The maps B�F are called integral Bernstein maps because they are generalizations
of the Bernstein map � mentioned in Section 1A1. In the complex case, it is
customary to consider either � which is constructed using the dominant chamber,
or �� which is constructed using the antidominant chamber (see the discussion in
the introduction of [Haines and Pettet 2002] for example). By a result by Bernstein
[Lusztig 1983], a basis for the center of HC is given by the central Bernstein
functions X

�02O

�.�0/;

where O ranges over the W-orbits in X�.T/. We refer to [Haines 2001] for the
geometric interpretation of these functions. It is natural to ask whether using ��

instead of � in the previous formula yields the same central element in HC. The
answer is yes (see [Haines and Pettet 2002, Section 2.2.2]). The proof is based
on [Lusztig 1983, Corollary 8.8] and relies on the combinatorics of the Kazhdan–
Lusztig polynomials. Note that there is no theory of Kazhdan–Lusztig polynomials
for the complex pro-p Iwahori–Hecke algebra.

Integral (and pro-p) versions of � and �� for the ring zHZ were defined in
[Vignéras 2005]. In our language they correspond respectively to BCC DB�x0 and



Satake and Bernstein isomorphisms in characteristic p 1075

BCx0 DB�C . It is also proved there that a Z-basis for the center of zHZ is given byX
�02O

BCC .�
0/; (1-4)

where O ranges over the W-orbits in zX�.T/. It is now natural to ask whether the
element (1-4) is the same if (a) we use � instead of C, and if, more generally, (b)
we use any standard facet F instead of C , and any sign � . We prove:

Lemma 3.4. The element X
�02O

B�F .�
0/

in zHZ does not depend on the choice of the standard facet F and of the sign � .

To prove the lemma, we first answer positively question (a) above; we then study
and exploit the behavior of the integral Bernstein maps upon a process of parabolic
induction. In passing we also consider question (a) in the k-algebra zHk in the
case when G is semisimple, and we suggest a link between such questions and the
duality for finite-length zHk-modules defined in [Ollivier and Schneider 2012] (see
Proposition 3.3).

1A4. In Section 5, we define and study a natural topology on zHk which depends
only on the conjugacy class of x0. It is the I-adic topology, where I is a natural
monomial ideal of the affine semigroup algebra Zı.zHk/.

We define the supersingular block of the category of finite length zHk-modules to
be the full subcategory of the modules that are continuous for the I-adic topology
on zHk (Proposition-Definition 5.10). A finite length zHk-module then turns out
to be in the supersingular block if and only if all its irreducible constituents are
supersingular in the sense of [Vignéras 2005].

In the case when the root system of G is irreducible, we establish the following
results. We classify the simple supersingular zHk-modules (Theorem 5.14 and
subsequent corollary). (For example, when G is semisimple simply connected, the
simple supersingular modules all have dimension 1.) We prove in passing that
even if the ideal I does depend on the choices made, the supersingular block is
independent of all the choices.

Theorem 5.14 extends Theorem 5 of [Vignéras 2005] and Theorem 7.3 of [Ollivier
2010], which dealt with the case of GLn and relied on explicit minimal expressions
for certain Bernstein functions associated to the minuscule coweights. The results
of those two papers together proved a “numerical Langlands correspondence for
Hecke modules” of GLn.F/: there is a bijection between the finite set of all simple
n-dimensional supersingular zHk-modules and the finite set of all irreducible n-
dimensional smooth k-representations of the absolute Galois group of F, where
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the action of the uniformizer $ on the Hecke modules and the determinant of
the Frobenius on the Galois representations are fixed. Recently, Große-Klönne
constructed a functor from the category of finite-length zHk-modules for GLn.Qp/
to the category of étale .'; �/-modules. This functor induces a bijection between
the two finite sets above, turning the “numerical” correspondence into a natural and
explicit correspondence in the case of GLn.Qp/. In fact, Große-Klönne [2013a]
has constructed such a functor (with values in a category of modified étale .'; �/-
modules) in the case of a general split group over Qp . In the case of SLn.F/, Koziol
[2013] has defined packets of simple supersingular zHk-modules and built a bijection
between the set of packets and a certain set of projective k-representations of the
absolute Galois group of F; if FD Qp, this bijection is proved to be compatible
with Große-Klönne’s functor and therefore with the explicit Langlands-type cor-
respondence for Hecke modules of GLn.Qp/. This result is a first step towards a
mod p principle of functoriality for Hecke modules.

The current article provides, in the case of a general split group, a classification of
the objects that one wants to apply Große-Klönne’s functor to, in order to investigate
the possibility of a Langlands-type correspondence for Hecke modules in general.

1A5. In Section 5F we consider an admissible irreducible smooth k-representation
  of G. In the case where the derived subgroup of G is simply connected, we use
the fact that (1-2) is the inverse of the mod p Satake isomorphism to prove that if
  is supersingular, then

  is a quotient of indG
QI 1=I indG

QI 1: (1-5)

The condition (1-5) is equivalent to saying that  QI contains an irreducible supersin-
gular zHk-module.

When GD GLn.F/ and F is a finite extension of Qp, we use the classification
of the nonsupersingular representations obtained in [Herzig 2011a], the work on
generalized special representations in [Große-Klönne 2013b], and our Lemma 3.4
to prove that the condition (1-5) is in fact a characterization of the supersingular
representations (Theorem 5.27).

Finally, we comment in Section 5F on the generalization of this characterization
to the case of a split group (with simply connected derived subgroup), and on the
independence of the characterization of the choices made.

We raise the question of the possibility of a direct proof of this characterization
that does not use the classification of the nonsupersingular representations.

1B. Notation and preliminaries. We choose the valuation valF on F normalized
by valF.$/ D 1, where $ is the chosen uniformizer. The ring of integers of
F is denoted by O and its residue field by Fq , where q is a power of the prime
number p. Recall that k denotes an algebraic closure of Fq . Let Gx0 and GC
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denote the Bruhat–Tits group schemes over O whose O-valued points are K and I
respectively. Their reductions over the residue field Fq are denoted by Gx0 and
GC . Note that GDGx0.F/DGC .F/. By [Tits 1979, 3.4.2, 3.7 and 3.8], Gx0 is
connected reductive and Fq-split. Therefore we have GıC .O/D GC .O/D I and
Gıx0.O/DGx0.O/DK. Denote by K1 the prounipotent radical of K. The quotient
K=K1 is isomorphic to Gx0.Fq/. The Iwahori subgroup I is the preimage in K of
the Fq-rational points of a Borel subgroup B with Levi decomposition BDTN. The
pro-p Iwahori subgroup QI is the preimage in I of N.Fq/. The preimage of T.Fq/ is
the maximal compact subgroup T0 of T. Note that T0=T1 D I=QID T.Fq/, where
T1 WD T0\ QI.

1B1. Affine root datum. To the choice of T is attached the root datum

.ˆ;X�.T/; L̂ ;X�.T//:

This root system is reduced because the group G is F-split. We denote by W the
finite Weyl group NG.T/=T, the quotient by T of the normalizer of T. Recall that
A denotes the apartment of the semisimple building attached to T (see [Tits 1979;
Schneider and Stuhler 1997, Section I.1], and we follow the notation of [Ollivier
2012, Section 2.2]). We denote by h � ; � i the perfect pairing X�.T/�X�.T/! Z.
The elements in X�.T/ will be called coweights. We identify X�.T/ with the
subgroup T=T0 of the extended Weyl group WDNG.T/=T0 as in [Tits 1979, I.1]
and [Schneider and Stuhler 1997, Section I.1]: to an element g 2 T corresponds the
vector �.g/ 2 R˝Z X�.T/ defined by

h�.g/; �i D � valF.�.g// for any � 2 X�.T/; (1-6)

and � induces the required isomorphism T=T0 Š X�.T/. The group T=T0 acts by
translation on A via �. The actions of W and T=T0 combine into an action of W on
A as recalled in [Schneider and Stuhler 1997, p. 102]. Since x0 is a special vertex
of the building, W is isomorphic to the semidirect product WËX�.T/, where we
see W as the fixator in W of any lift of x0 in the extended apartment [Tits 1979,
1.9]. A coweight � will sometimes be denoted by e� to underline that we see it as
an element in W, meaning as a translation on A.

Denote by ˆaff the set of affine roots. The choice of the chamber C implies in
particular the choice of the positive affine roots ˆCaff taking nonnegative values on
C . The choice of x0 as an origin of A implies that we identify the affine roots
taking value zero at x0 with ˆ. We set ˆC WDˆCaff\ˆ and ˆ�D�ˆC. The affine
roots can be described the following way: ˆaff Dˆ�ZDˆCaff tˆ

�
aff, where

ˆCaff WD f.˛; r/ W ˛ 2ˆ; r > 0g[ f.˛; 0/ W ˛ 2ˆ
C
g:

Let … be the basis for ˆC consisting of the set of simple roots. The finite Weyl
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group W is a Coxeter system with generating set S WD fs˛ W ˛ 2 …g, where s˛
denotes the (simple) reflection at the hyperplane h � ; ˛i D 0. Denote by � the
partial ordering on XC� .T/ associated to …. Let …m be the set of roots in ˆ that are
minimal elements for �. Define the set of simple affine roots by …aff WD f.˛; 0/ W

˛ 2…g[ f.˛; 1/ W ˛ 2…mg. Identifying ˛ with .˛; 0/, we consider … a subset of
…aff. For A 2…aff, denote by sA the following associated reflection: sA D s˛ if
AD .˛; 0/ and sAD s˛e L̨ if AD .˛; 1/. The action of W on the coweights induces
an action on the set of affine roots: W acts onˆaff bywe� W .˛; r/ 7! .w˛; r�h�; ˛i/,
where we denote by .w; ˛/ 7! w˛ the natural action of W on ˆ. The length on
the Coxeter system .W; S/ extends to W in such a way that the length `.w/ of
w 2W is the number of affine roots A 2ˆCaff such that w.A/ 2ˆ�aff. It satisfies the
following formula, for A 2…aff and w 2W:

`.wsA/D

�
`.w/C 1 if w.A/ 2ˆCaff;

`.w/� 1 if w.A/ 2ˆ�aff:
(1-7)

The affine Weyl group is defined as the subgroup Waff of W generated by Saff WD

fsA W A 2…affg. The length function ` restricted to Waff coincides with the length
function of the Coxeter system .Waff; Saff/ [Bourbaki 1968, V.3.2, Théorème 1(i)].
Recall from [Lusztig 1989, Section 1.5] that Waff is a normal subgroup of W: the set
� of elements with length zero is an abelian subgroup of W and W is the semidirect
product WD�ËWaff. The length ` is constant on the double cosets of W mod�.
In particular, � normalizes Saff.

The extended Weyl group W is equipped with a partial order � that extends the
Bruhat order on Waff. By definition, given w D !waff, w D !0w0aff 2�ËWaff, we
have w �w0 if !D!0 and waff �w

0
aff in the Bruhat order on Waff (see for example

[Haines 2001, Section 2.1]).
We fix a lift Ow 2 NG.T/ for any w 2W. By Bruhat decomposition, G is the

disjoint union of all I OwI for w 2W.

1B2. Orientation character. The stabilizer of the chamber C in W is �. We
define as in [Ollivier and Schneider 2012, Section 3.1] the orientation character
�C W�!f˙1g ofC by setting �C .!/DC1 (resp.�1) if! preserves (resp. reverses)
a given orientation of C . Since W=Waff D�, we can see �C as a character of W
trivial on Waff. By definition of the Bruhat order on W, we have �C .w/D �C .w

0/

for w;w0 2W satisfying w � w0.
On the other hand, the extended Weyl group acts by affine isometries on the

Euclidean space A. We therefore have a determinant map det WW! f˙1g which
is trivial on X�.T/. An orientation of C is a choice of a cyclic ordering of its set of
vertices (in the geometric realization of A). Therefore, det.!/ is the signature of
the permutation of the vertices of C induced by ! 2�, and det.!/D �C .!/.
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Lemma 1.4. (i) For w 2Waff, we have det.w/D .�1/`.w/.

(ii) For � 2 X�.T/, we have �C .w/D .�1/
`.e�/ for any w 2W such that w � e�.

Proof. Part (i) comes from the fact that det sD�1 for s 2Saff. For (ii), by definition
of the Bruhat order it is enough to prove that �C .e

�/D .�1/`.e
�/ for � 2 X�.T/.

Decompose e� D !waff with w 2Waff and ! 2�. Recall that ! has length zero.
Since �C is trivial on Waff, we have �C .e

�/D �C .!/D det!. Since e� has unit
determinant, we get det! D detwaff D .�1/

`.waff/ D .�1/`.e
�/. �

1B3. Distinguished cosets representatives.

Proposition 1.5. (i) The set D of all elements d 2W satisfying d�1.ˆC/�ˆCaff
is a system of representatives of the right cosets WnW. It satisfies

`.wd/D `.w/C `.d/ for any w 2W and d 2D. (1-8)

In particular, d is the unique element with minimal length in Wd .

(ii) An element d 2D can be written uniquely as d D e�w, with � 2 XC� .T/ and
w 2W. We then have `.e�/D `.d/C `.w�1/D `.d/C `.w/.

(iii) For s 2 Saff and d 2D, we are in one of the following situations:
� `.ds/D `.d/� 1, in which case ds 2D.
� `.ds/D `.d/C 1, in which case either ds 2D or ds 2Wd .

Proof. This proposition is proved in [Ollivier 2010, Lemma 2.6, Proposition 2.7] in
the case of GD GLn.F/. It is checked in [Ollivier and Schneider 2012, Proposi-
tion 4.6] that it remains valid for a general split reductive group (see also [Ollivier
2012, Proposition 2.2] for (ii)), except for point (iii) when s2Saff�S . We check here
that the argument goes through. Let s 2 Saff and A be the corresponding affine root.
Let d 2D and suppose that ds 62D; then there is ˇ 2… such that .ds/�1ˇ 2ˆ�aff
while d�1ˇ 2ˆCaff. This implies that d�1ˇ D A, which in particular ensures that
dA 2ˆCaff and therefore `.ds/D `.d/C1. Furthermore, dsd�1 D sdA D sˇ 2W.

�

There is an action of the group G on the semisimple building X recalled in
[Schneider and Stuhler 1997, p. 104] that extends the action of NG.T/ on the
standard apartment. For F a standard facet, we denote by P

�
F the stabilizer of F

in G.

Proposition 1.6. (i) The Iwahori subgroup I acts transitively on the apartments
of X containing C .

(ii) The stabilizer P�x0 of x0 acts transitively on the chambers of X containing x0
in their closure.

(iii) A G-conjugate of x0 in the closure of C is a P
�
C -conjugate of x0.
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Proof. Part (i) is [Bruhat and Tits 1984, 4.6.28]. For (ii), we first consider C 0 a
chamber of A containing x0 in its closure. Since the group W acts transitively
on the chambers of A, there is d 2D and w0 2W such that C 0 D w0dC and C
contains d�1x0 in its closure. By [Ollivier and Schneider 2012, Proposition 4.13i.],
this implies that d�1C D C , and therefore C 0 D w0C or, when considering the
action of G on the building, C 0 D Ow0C , where Ow0 2 K\NG.T/ denotes a lift for
w0. Now, let C 00 be a chamber of X containing x0 in its closure. By [Bruhat and
Tits 1972, Corollaire 2.2.6], there is k 2 P�x0 such that kC 00 is in A. Applying the
previous observation, C 00 is a P

�
x0-conjugate of C . Lastly, let gx0 (with g 2 G) be

a conjugate of x0 in the closure of C . By (ii), the chamber g�1C is of the form
kC for k 2 P�x0 , which implies that gk 2 P�C and gx0 is a P

�
C -conjugate of x0. �

Remark 1.7. By [Ollivier and Schneider 2012, Lemma 4.9], P�C is the disjoint
union of all I O!ID O!I for ! 2�. Therefore, a G-conjugate of x0 in the closure of
C is a P

�
C \NG.T/-conjugate of x0.

1B4. Weyl chambers. The set of dominant coweights XC� .T/ is the set of all � 2
X�.T/ such that h�; ˛i � 0 for all ˛ 2ˆC. It is called the dominant chamber. Its
opposite is the antidominant chamber. A coweight � such that h�; ˛i > 0 for all
˛ 2ˆC is called strongly dominant. By [Bushnell and Kutzko 1998, Lemma 6.14],
strongly dominant elements do exist.

We call a facet F of A standard if it is a facet of C containing x0 in its closure.
Attached to a standard facet F is the subset ˆF of all roots in ˆ taking value zero
on F and the subgroup WF of W generated by the simple reflections stabilizing F .
Let ˆCF WDˆ

C\ˆF and ˆ�F WDˆ
�\ˆF . Define the following Weyl chambers

in X�.T/ as in [Ollivier 2012, Section 4.1.1]:

CC.F /D f� 2 X�.T/ such that h�; ˛i � 0 for all ˛ 2 .ˆC�ˆCF /[ˆ
�
F g

and its opposite C�.F / D �CC.F /. They are respectively the images of the
dominant and antidominant chambers under the longest element wF in WF .

By Gordan’s lemma [Kempf et al. 1973, p. 7], a Weyl chamber is finitely generated
as a semigroup.

1B5. We follow the notations of [Ollivier 2012, Sections 2.2.2, 2.2.3]. Recall that
T1 is the pro-p Sylow subgroup of T0. We denote by zW the quotient of NG.T/ by
T1, and obtain the exact sequence

0 �! T0=T1 �! zW �!W �! 0:

The group zW parametrizes the double cosets of G modulo QI. We fix a lift Ow 2NG.T/
for any w 2 zW and denote by �w the characteristic function of the double coset QI OwQI.
The set of all .�w/w2 zW is a Z-basis for zHZ, which was defined in the introduction
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to be the convolution ring of Z-valued functions with compact support in QInG=QI.
For g 2 G, we will also use the notation �g for the characteristic function of the
double coset QIgQI.

For Y a subset of W, we denote by zY its preimage in zW. In particular, we have
the preimage zX�.T/ of X�.T/. Similarly to those of X�.T/, its elements will be
denoted by � or e� and called coweights. For ˛ 2ˆ, we inflate the function h � ; ˛i
defined on X�.T/ to zX�.T/. We still call the elements in the preimage zXC� .T/ of
XC� .T/ dominant coweights. For � a sign and F a standard facet, we consider the
preimage of C� .F / in zX�.T/, and we still denote it by C� .F /.

The length function ` on W pulls back to a length function ` on zW [Vignéras
2005, Proposition 1]. For u; v 2 zW we write u� v (resp. u < v) if their projections
Nu and Nv in W satisfy Nu� Nv (resp. Nu < Nv).

1B6. We emphasize the following remark which will be important for the definition
of the subring Zı.zHZ/ of the center of zHZ in Section 2B.

For � 2 XC� .T/, the element �.$�1/ 2NG.T/ is a lift for e�, viewed in W by
our convention (1-6). The map

� 2 X�.T/! Œ�.$�1/ mod T1� 2 zX�.T/ (1-9)

is a W-equivariant splitting for the exact sequence of abelian groups

0 �! T0=T1 �! zX�.T/ �! X�.T/ �! 0: (1-10)

We will identify X�.T/with its image in zX�.T/ via (1-9). Note that this identification
depends on the choice of the uniformizer $ .

Remark 1.8. We have the decomposition of zW as the semidirect product zW D
zWËX�.T/, where zW denotes the preimage of W in zW.

1B7. Pro-p Hecke rings. The product in the generic pro-p Iwahori–Hecke ring zHZ

is described in [Vignéras 2005, Theorem 1]. It is given by quadratic relations and
braid relations. Stating the quadratic relations in zHZ requires some more notation.
We are only going to use them in zHk where they have a simpler form, and we
postpone their description to Section 1B8. We recall here the braid relations

�ww 0 D �w�w 0 for w;w0 2 zW satisfying `.ww0/D `.w/C `.w0/: (1-11)

The functions in zHZ with support in the subgroup of G generated by all parahoric
subgroups form a subring zHaff

Z called the affine subring. It has Z-basis the set of
all �w for w in the preimage zWaff of Waff in zW (see for example [Ollivier and
Schneider 2012, Section 4.5]). It is generated by all �s for s in the preimage zSaff of
Saff and all �t for t 2 T0=T1.
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There is an involutive automorphism defined on zHZ˝Z ZŒq˙1=2� by

š W �w 7! .�q/`.w/��1
w�1

(1-12)

[Vignéras 2005, Corollary 2], and it actually yields an involution on zHZ. Inflating
the character �C WW!f˙1g defined in Section 1B2 to a character of zW, we define
a Z-linear involution �C of zHZ by

�C .�w/D �C .w/�w for any w 2 zW:

It is the identity on the affine subring zHaff
Z . We will consider the following Z-linear

involution on zHZ:
šC D š ı �C : (1-13)

Remark 1.9. The involution š fixes all �w for w 2 zW with length zero. The
involution šC fixes all �e� for � 2 zX�.T/ with length zero.

1B8. Let R be a ring with unit 1R, containing an inverse for .q1R�1/ and a primitive
.q � 1/-th root of 1R. The group of characters of T0=T1 D T.Fq/ with values in
R� is isomorphic to the group of characters of T.Fq/ with values in F�q , which we
denote by yT.Fq/. To � 2 yT.Fq/ we attach the idempotent element �

�
2 zHR as in

[Vignéras 2005] (definition recalled in [Ollivier 2012, Section 2.4.3]). For t 2 T0

we have �
�
�t D �t�� D �.t/�� . The idempotent elements �

�
, � 2 yT.Fq/ are pairwise

orthogonal and their sum is the identity in zHZ˝Z R.
For A 2…aff, choose the lift nA 2 G for sA defined after fixing an épinglage for

G as in [Vignéras 2005, Section 1.2]. We refer to [Ollivier 2012, Section 2.2.5]
for the definition of the associated subgroup TA of T0, which is identified with a
subgroup of T0=T1.

For � 2 yT.Fq/, we have in zHZ˝Z R

���
2
nA
D

�
�
�
..q1R� 1/�nA C q1R/ if � is trivial on TA,

an element of qR��
�

otherwise:
(1-14)

The field k is an example of ring R as above. In zHk we have

���
2
nA
D

�
��
�
�nA if � is trivial on TA;
0 otherwise:

(1-15)

Remark 1.10. In zHk we have �nAš.�nA/ D 0 for all A 2 Saff. Furthermore,
š.�nA/ C �nA lies in the subalgebra of zHk generated by all �t , t 2 T0=T1, or
equivalently by all �

�
, � 2 yT.Fq/. This can be seen using for example [Ollivier

2012, Remark 2.10], which also implies the following:

� If � is trivial on TA, then š.�
�
�nA/D ��š.�nA/D���.�nA C 1/.
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� If � is not trivial on TA, then š.�
�
�nA/D����nA .

1B9. Parametrization of the weights. The functions in zHZ with support in K form a
subring zHZ. It has Z-basis the set of all �w for w 2 zW. Denote by zHk the k-algebra
zHZ˝Z k. The simple modules of zHk are one-dimensional [Sawada 1977, (2.11)].

An irreducible smooth k-representation � of K will be called a weight. By [Carter
and Lusztig 1976, Corollary 7.5], the weights are in one-to-one correspondence
with the characters of zHk via � 7! �

QI. To a character � W zHk ! k is attached the
morphism N� W T0=T1! k� such that N�.t/ D �.�t / for all t 2 T0=T1 and the set
… N� of all simple roots ˛ 2… such that N� is trivial on T˛ . We then have �.�Qs˛ /D 0
for all ˛ 2…�… N�, where Qs˛ 2 zW is any lift for s˛ 2W. We denote by …� the
subset of all ˛ 2… N� such that �.�Qs˛ /D 0. The character � is determined by the
data of N� and …� (see also [Ollivier 2012, Section 3.4]).

Remark 1.11. Choosing a standard facet F is equivalent to choosing the subset…F
of … of the simple roots taking value zero on F . The standard facet corresponding
to …� in the previous discussion will be denoted by F�.

2. On the center of the pro-p Iwahori–Hecke algebra in characteristic p

2A. Commutative subrings of the pro-p Iwahori–Hecke ring. Let � be a sign
and F a standard facet.

2A1. As in [Ollivier 2012, Section 4.1.1], we introduce the multiplicative injective
map

‚�F W
zX�.T/ �! zHZ˝Z ZŒq˙1=2�

and the elements B�F .�/ WD q
`.e�/=2‚�F .�/ for all �2 zX�.T/. Recall that B�F .�/D

�e� if � 2 C� .F /.
The map B�F does not respect the product in general, but it is multiplicative

when restricted to any Weyl chamber (see [ibid., Remark 4.3]). For any coweight
� 2 zX�.T/, the element B�F .�/ lies in zHZ (see Lemma 2.3 below). Furthermore,
combining Lemmas 1.4(ii), 2.3 and [ibid., Lemma 4.4],

šC .B
C

F .�//DB�F .�/: (2-1)

Extend ‚�F linearly to an injective morphism of ZŒq˙1=2�-algebras

ZŒq˙1=2�ŒzX�.T/� �! zHZ˝Z ZŒq˙1=2�:

We consider the commutative subring A�F WD zHZ \ Im.‚�F /. By [ibid., Proposi-
tion 4.5], it is a free Z-module with basis the set of all B�F .�/ for � 2 zX�.T/. Since
the Weyl chambers (in zX�.T/) are finitely generated semigroups, A�F is finitely
generated as a ring.
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Remark 2.1. Note that BCC DB�x0 (resp. B�C DBCx0) coincides with the integral
Bernstein map EC (resp. E) introduced in [Vignéras 2005] and ACC (resp. A�C )
with the commutative ring denoted by AC;.1/ (resp. A.1/) in Theorem 2 of the
same paper.

Identify X�.T/ with its image in zX�.T/ via (1-9). We denote by .A�F /
ı the

intersection
.A�F /

ı
WD zHZ\‚

�
F .ZŒX�.T/�/�A�F :

A Z-basis for .A�F /
ı is given by all B�F .�/ for � 2 X�.T/. It is finitely generated

as a ring.

Proposition 2.2. The commutative Z-algebra A�F is isomorphic to the tensor prod-
uct of the Z-algebras ZŒT0=T1� and .A�F /

ı. In particular, .A�F /
ı is a direct

summand of A�F as a Z-module.

Proof. Since the exact sequence (1-10) splits, A�F is a free .A�F /
ı-module with

basis the set of all �t for t 2 T0=T1. Indeed, recall that

B�F .�C t /DB�F .�/�t D �tB
�
F .�/

for all � 2 zX�.T/ and t 2 T0=T1. �

2A2. The following is a direct consequence of the lemma proved in [Haines 2001,
§5] and adapted to the pro-p Iwahori–Hecke algebra in [Vignéras 2005, Lemma 13]
(see also [Vignéras 2006, Sections 1.2 and 1.5]).

Lemma 2.3. Let F be a standard facet and � a sign. For any � 2 zX�.T/, we have

B�F .�/D �e� C
X
w<e�

aw�w ;

where .aw/w is a family of elements in Z (depending on � , F and �) indexed by the
set of w 2 zW such that w < e�. For those w, we have in particular `.w/ < `.e�/.

2A3. In this subsection, we suppose that the root system of G is irreducible. This
implies in particular that there is a unique element in …m. It can be written �˛0,
where ˛0 2ˆC is the highest root; we have ˇ � ˛0 for all ˇ 2ˆ [Bourbaki 1968,
VI.1.8]. For any standard facet F ¤ x0, we have ˛0 62ˆF . Denote by s0 2 Saff the
simple reflection associated to .�˛0; 1/ 2…aff and n0 WD n.�˛0;1/ 2 G the lift for
s0 as chosen in Section 1B8.

Lemma 2.4. Suppose that F ¤ x0 and let � 2 zXC� .T/ be such that `.e�/¤ 0. We
have

BCF .�/ 2 �n0
zHZ:
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Proof. It suffices to check the claim for � 2 XC� .T/. Let �; � 2 X�.T/, such that
�D��� and wF�;wF � 2XC� .T/, where wF denotes the longest element in WF .
Note that wF ˛0 2ˆ

C because F ¤ x0. Furthermore, h�; ˛0i � 1 because there is
ˇ 2… such that h�; ˇi � 1 and ˇ � ˛0.

We have e�.�˛0; 1/ D .�˛0; 1C h�; ˛0i/ D .�˛0; 1C hwF �;wF ˛0i/ 2 ˆ
C
aff.

Therefore `.e�n0/ D `.e�/C 1 and �e��n0 D �e�n0 in zHZ. On the other hand,
e��.�˛0; 1/D .�˛0; 1� h�; ˛0i/ 2ˆ

�
aff, and therefore `.n0e�/D `.e�/� 1.

We perform the computations in zHZ˝Z ZŒq˙1=2�, where, by definition, BCF .�/D

q
1
2
.`.e�/C`.e�/�`.e�//��1e� �e� . By the previous remarks,

BCF .�/D �n0q
1
2
.`.n0e

�/C`.e�n0/�`.e
�//��1e�n0�e� ;

which, by the lemma evoked in Section 2A2, lies in �n0 zHZ. �

2B. On the center of the pro-p Iwahori–Hecke ring.

2B1. The ring zHZ is finitely generated as a module over its center Z.zHZ/D .ACC /
W,

and the latter has Z-basis the set of allX
�02O

BCC .�
0/; (2-2)

where O ranges over the W-orbits in zX�.T/. Moreover, Z.zHZ/ is a finitely generated
Z-algebra. Those results are proved in [Vignéras 2005, Theorem 4] (the hypothesis
of irreducibility of the root system of G made there is not necessary for the statements
about the center). One can also find a proof in [Schmidt 2009].

2B2. We denote by Zı.zHZ/ the intersection of .ACC /
ı with Z.zHZ/. We have

Zı.zHZ/D ..ACC /
ı/W. It has Z-basis the set of all

z� WD
X

�02O.�/

BCC .�
0/ for � 2 XC� .T/; (2-3)

where we denote by O.�/ the W-orbit of �.

Proposition 2.5. (i) The left and right .ACC /
ı-modules zHZ are finitely generated.

(ii) As a Zı.zHZ/-module, zHZ is finitely generated.

(iii) Zı.zHZ/ is a finitely generated Z-algebra.

(iv) As Z-modules, Z.zHZ/, ACC , Zı.zHZ/ and .ACC /
ı are direct summands of zHZ.

Proof. Using Proposition 2.2 and [Vignéras 2005, Theorems 3 and 4], which
state that zHZ is finitely generated over ACC (see Remark 2.1), we see that zHZ is
finitely generated over .ACC /

ı. Statements (ii) and (iii) follow from [Bourbaki 1964,
V.1.9, Théorème 2] because Zı.zHZ/ is the ring of W-invariants of .ACC /

ı and Z is



1086 Rachel Ollivier

noetherian. For (iv), we first remark that the Z-module Z.zHZ/ (resp. Zı.zHZ/) is
a direct summand of ACC (resp. .ACC /

ı) since Z.zHZ/D .ACC /
W (resp. Zı.zHZ/D

..ACC /
ı/W). The Z-module .ACC /

ı is a direct summand of ACC by Proposition 2.2.
It remains to show that ACC is a direct summand of zHZ, which can be done by
considering the integral Bernstein basis for the whole Hecke ring zHZ introduced
in [Vignéras 2005]. We recall it later in Section 5A and finish the proof of (iv) in
Remark 5.1. �

2B3. Given a ring R with unit 1R, we denote by zHR the R-algebra zHZ˝Z R; we
identify q with its image in R. By Proposition 2.5(iv), the R-algebras Z.zHZ/˝Z R,
ACC ˝Z R, .ACC /

ı˝Z R and Zı.zHZ/˝Z R are identified with subalgebras of zHR,
which we denote by Z.zHR/ .ACC /R, .ACC /

ı
R and Zı.zHR/, respectively. By [Schmidt

2009], Z.zHR/ is not only contained in but is equal to the center of zHR.

Remark 2.6. Proposition 2.5 remains valid with x0 instead of C (use the involution
šC and (2-1)). We introduce the subalgebras .ACx0/R and .ACx0/

ı
R of zHR with the

obvious definitions.

For � 2 zX�.T/ (resp. w 2 zW), we still denote by B�F .�/ (resp. �w ) its natural
image B�F .�/˝ 1 (resp. �w ˝ 1) in zHR. An R-basis for Zı.zHR/ is given by the set
of all z� for � 2 XC� .T/, where again we identify the element z� with its image in
zHR.

From Proposition 2.5 we deduce:

Proposition 2.7. Let R be a field. A morphism of R-algebras Zı.zHR/! R can be
extended to a morphism of R-algebras Z.zHR/! R.

2B4. In the process of constructing Zı.zHZ/, we first fixed a hyperspecial vertex
x0 of C and then an apartment A containing C .

Proposition 2.8. The ring Zı.zHZ/ is not affected by

� the choice of another apartment A0 containing C ,

� the choice of another vertex x00 of C , provided it is G-conjugate to x0.

Proof. Let g be in the stabilizer P�C of C in G. Let T0 WD gTg�1 and x00D gx0g
�1.

The apartment A0 corresponding to T0 contains C and x00 is a hyperspecial vertex
of C . Starting from T0 and x00 we proceed to the construction of the corresponding
commutative subring Zı.zHZ/

0 of the center of zHZ. Since g 2 P�C , we have QIgQID
QI O!QI D QI O! for some ! 2 z�. Since this element ! has length zero, for � 2 X�.T/
the characteristic function of QIg�.$/g�1QI is equal to the product �g��.$/��1g .
Therefore, the restriction to X�.T/ of the new map .BCC /

0 corresponding to the
choice of x00 and T0 is defined by

X�.T0/ �! zHZ; � 7! �gB
C

C .g
�1�g/��1g :
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The element z0
�
2Zı.zHZ/

0 corresponding to the choice of �2XC� .T
0/DgXC� .T/g

�1

is therefore �gzg�1�g�
�1
g D z�. We have proved that Zı.zHZ/

0 D Zı.zHZ/.
By Proposition 1.6(i) and Remark 1.7

� changing A into another apartment A0 containing C , and

� changing x0 into another vertex x00 of C which is G-conjugate to x0

can be done independently of each other by conjugating by an element of I and
of P�C \NG.T/ respectively. We have checked that these changes do not affect
Zı.zHZ/. �

If G is of adjoint type or GD GLn, then all hyperspecial vertices are conjugate:

Corollary 2.9 [Tits 1979, Section 2.5]. If G is of adjoint type or GD GLn, then
Zı.zHZ/ depends only on the choice of the uniformizer $ .

2C. An affine semigroup algebra in the center of the pro-p Iwahori–Hecke
algebra in characteristic p. We will use the following observation several times
in this subsection: Let F be a standard facet and � a sign. For �1; �2 2X�.T/, we
have in zHk

B�F .�1/B
�
F .�2/

D

�
B�F .�1C�2/ if �1 and �2 lie in a common Weyl chamber,
0 otherwise.

(2-4)

In zHZ˝Z ZŒq˙1=2� we have indeed

B�F .�1/B
�
F .�2/D q

.`.e�1 /C`.e�2 /�`.e�1C�2 //=2B�F .�1C�2/:

If �1 and �2 lie in a common Weyl chamber, then `.e�1/C `.e�2/� `.e�1C�2/
is zero; otherwise, there is ˛ 2… satisfying h�1; ˛ih�2; ˛i< 0, which implies that
this quantity is � 2. This gives the required equality in zHk .

2C1. The structure of Zı.zHk/.

Proposition 2.10. The map

kŒXC� .T/� �! Zı.zHk/; � 7�! z�; (2-5)

is an isomorphism of k-algebras.

Proof. We already know that (2-5) maps a k-basis for kŒXC� .T/� onto a k-basis for
Zı.zHk/. We have to check that it respects the product. Let �1; �2 2 XC� .T/, with
respective W-orbits O.�1/ and O.�2/. We consider the product

z�1z�2 D
X

�12O.�1/;
�22O.�2/

B�F .�1/B
�
F .�2/ 2

zHk :
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A Weyl chamber in X�.T/ is a W-conjugate of XC� .T/. Given a Weyl chamber
and a coweight (in X�.T/), there is a unique W-conjugate of the coweight in the
chosen Weyl chamber. The map .�1; �2/ 7! �1C�2 yields a bijection between
the set of all .�1; �2/ 2 O.�1/�O.�2/ such that �1 and �2 lie in the same Weyl
chamber and the W-orbit O.�1C�2/ of �1C�2: it is indeed surjective, and one
checks that the two sets in question have the same size because, �1 and �2 being
both dominant, the stabilizer in W of �1C�2 is the intersection of the stabilizers
of �1 and of �2. Together with (2-4), this proves that z�1C�2 D z�1z�2 . �

For a different proof of this proposition, see the remark after Theorem 4.3.

2C2. Since X�.T/ is a free abelian group (of rank dim.T/), the k-algebra kŒX�.T/�
is isomorphic to an algebra of Laurent polynomials and has a trivial nilradical. By
Gordan’s lemma, XC� .T/ is finitely generated as a semigroup. So, kŒXC� .T/� is a
finitely generated k-algebra and its Jacobson radical coincides with its nilradical.

The Jacobson radical of Zı.zHk/ is therefore trivial.

Proposition 2.11. The Jacobson radical of Z.zHk/ is trivial.

Proof. Since Z.zHk/ is a finitely generated k-algebra contained in .ACC /k , it is
enough to prove that the nilradical of .ACC /k is trivial. Using the notation of
Section 1B8, it is enough to prove that, for any � 2 yT.Fq/, the nilradical of the
k-algebra �

�
.ACC /k with unit �

�
is trivial. By Proposition 2.2, the latter algebra is

isomorphic to .ACC /
ı
k

. It is therefore enough to prove that the nilradical of .ACC /
ı
k

is trivial.
By definition (see the convention in Section 2B3), the image of the k-linear

injective map
BCC W kŒX�.T/� �! zHk

coincides with .ACC /
ı
k

.

Fact i. Let �0 2 XC� .T/ be a strongly dominant coweight. The ideal of .ACC /
ı
k

generated by BCC .�0/ does not contain any nontrivial nilpotent element.

An element a 2 .ACC /
ı
k

is a k-linear combination of elements BCC .�/ for � 2
X�.T/, and we say that � 2X�.T/ is in the support of a if the coefficient of BCC .�/
is nonzero. Suppose that a is nilpotent and nontrivial. After conjugating by an
element of W, we can suppose that there is an element of XC� .T/ in the support of a.
Then, let �0 2 XC� .T/ be strongly dominant. The element aBCC .�0/ is nilpotent
and by (2-4) it is nontrivial. By Fact i, we have a contradiction. �

Proof of the fact. The restriction of BCC to kŒXC� .T/� induces an isomorphism of
k-algebras kŒXC� .T/�ŠBCC .kŒX

C
� .T/�/. By (2-4), the ideal A of .ACC /

ı generated
by BCC .�0/ coincides with the ideal of BCC .kŒX

C
� .T/�/ generated by BCC .�0/. Since
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the k-algebra kŒXC� .T/� does not contain any nontrivial nilpotent element, neither
does A. �

Since k is algebraically closed, we have:

Corollary 2.12. Let z 2 Z.zHk/. If �.z/D 0 for all characters � W Z.zHk/! k, then
z D 0.

2C3. The center of the Iwahori–Hecke algebra in characteristic p. Let R be a ring
containing an inverse for .q1R� 1/ and a primitive .q� 1/-th root of 1R. We can
apply the observations of Section 1B8 and consider the algebra

zHR.�/ WD ��
zHR�� :

It can be seen as the algebra H.G; I; ��1/ of G-endomorphisms of the representation
�
�

indG
QI 1R, which is isomorphic to the compact induction indG

I �
�1 of ��1 seen as

an R-character of I trivial on QI: denote by 1I;��1 2 indG
I �
�1 the unique function

with support in I and value 1R at 1G, and then the map

zHR.�/!H.G; I; ��1/; h 7! Œ1I;��1 7! 1I;��1h� (2-6)

gives the identification. In particular, when � D 1 is the trivial character, then the
algebra zHR.1/ identifies with the usual Iwahori–Hecke algebra HRDRŒInG=I� with
coefficients in R.

Remark 2.13. Let � 2 yT.Fq/. We have inclusions

��Zı.zHR/� ��Z.zHR/� Z.zHR.�//;

where the latter space is the center of zHR.�/. The inclusion �
�
Zı.zHR/�Z.zHR.��//

is strict in general. For example if G D GL2.F/, R D k, and � is not fixed by
the nontrivial element of W, then zHk.�/ is commutative with a k-basis indexed
by the elements in X�.T/ and contains zero divisors [Barthel and Livné 1994,
Proposition 13] while the k-algebra ��Zı.zHk/ is isomorphic to kŒXC� .T/�.

If � D 1 however, these inclusions are equalities: one easily checks by direct
comparison of the basis elements (2-2) and (2-3) that the first inclusion is an
equality. The second one comes from the fact that �1 is a central idempotent in zHR.
In particular we have:

Theorem 2.14. The center of the Iwahori–Hecke k-algebra kŒInG=I� is isomorphic
to kŒXC� .T/�.

Proof. The map
kŒXC� .T/� �! �1Z.zHk/; � 7�! �1z�

is surjective by the previous discussion. It is easily checked to be injective using
Lemma 2.3 (compare with [Vignéras 2006, (1.6.5)]). �
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3. The central Bernstein functions in the pro-p Iwahori–Hecke ring

Let O be a W-orbit in zX�.T/. We call the central element of zHZ

zO WD

X
�02O

BCC .�
0/ (2-2)

the associated central Bernstein function.

3A. The support of the central Bernstein functions. For h 2 zHZ, the set of all
w 2 zW such that h. Ow/¤ 0 is called the support of h. For O a W-orbit in zX�.T/,
we denote by `O the common length of all the coweights in O.

Lemma 3.1. Let O be a W-orbit in zX�.T/. The support of zO contains the set of all
e� for � 2 O: more precisely, the coefficient of �e� in the decomposition of zO is
equal to 1. Any other element in the support of zO has length < `O. The same is true
with šC .zO/ instead of zO.

Proof. This is a consequence of Lemma 2.3 (and of (2-1)). �

Proposition 3.2. The involution šC fixes the elements in the center Z.zHZ/ of zHZ.
In particular, for O a W-orbit in zX�.T/, the element

P
�02O

B�C .�
0/ 2 zHZ does not

depend on the sign � .

Proof. We prove that šC fixes zO by induction on `O.
If `O D 0, we conclude using Remark 1.9. Let O be a W-orbit in zX�.T/ such

that `O > 0. The element šC .zO/ is central in zHZ. Recall that a Z-basis for Z.zHZ/

is given by the central Bernstein functions zO, where O ranges over the W-orbits in
zX�.T/. Lemma 3.1 implies that šC .zO/ decomposes as a sum

šC .zO/D zOC

X
O0

aO0zO0 ;

where O0 ranges over a finite set of W-orbits in zX�.T/ such that `O0 <`O and aO0 2Z.
By induction and applying the involution šC , we get

zO D šC .zO/C
X

O0

aO0zO0

and 2.š.zO/� zO/D 0. Since zHZ has no Z-torsion, š.zO/DzO. The second statement
follows from (2-1). �

If G is semisimple, the projection in zHk of the equality proved in Proposition 3.2
can be obtained independently, using the duality for finite-length zHk-modules
defined in [Ollivier and Schneider 2012]:

Proposition 3.3. Suppose that G is semisimple. The element
P
�02O B

�
C .�

0/ 2 zHk
is fixed by the involution šC and therefore does not depend on the sign � .
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Proof. Suppose that G is semisimple. Let O be a W-orbit in zX�.T/. We want to
prove, without using Proposition 3.2, that in zHk we have zO D šC .zO/.

Let � WZ.zHk/! k be a character and M D zHk˝Z.zHk/
� the induced zHk-module.

It is finite dimensional over k and therefore by [Ollivier and Schneider 2012,
Corollary 6.12] we have an isomorphism of right zHk-modules

Extd
zHk
.M; zHk/D Homk.š

�
CM;k/;

where d is the semisimple rank of G and š�CM denotes the left zHk-module M with
action twisted by the involution šC defined by (1-13). The category of left zHk-
modules is naturally a Z.zHk/-linear category, and therefore, forX and Y two left zHk-
modules, Extd

zHk
.X; Y / inherits the structure of a central Z.zHk/-bimodule. Hence,

the right zHk-module Extd
zHk
.M; zHk/ has a central character equal to �. On the other

hand, Homk.š�CM;k/ has �ıšC as a central character. Therefore, �.zO/D �ıšC .zO/.
By Corollary 2.12, we have the required equality zO D šC .zO/. �

3B. Independence lemma. The following lemma will be proved in Section 3C3.

Lemma 3.4. For O a W-orbit in zX�.T/, the elementX
�2O

B�F .�/

in zHZ does not depend on the choice of the standard facet F and of the sign � .

Corollary 3.5. The center of zHZ is contained in the intersection of all the commu-
tative rings A�F for F a standard facet and � a sign.

3C. Inducing the generalized integral Bernstein functions. We study the behav-
ior of the integral Bernstein maps upon parabolic induction and subsequently prove
Lemma 3.4.

3C1. Let F be a standard facet, …F the associated set of simple roots and PF
the corresponding standard parabolic subgroup, with Levi decomposition PF D
MFNF . The root datum attached to the choice of the split torus T in MF is
.ˆF ;X�.T/; L̂ F ;X�.T// (notation in Section 1B4). The extended Weyl group
of MF is WF D .NG.T/\MF /=T0. It is isomorphic to the semidirect product
WF ËX�.T/, where WF is the finite Weyl group .NG.T/\MF /=T (also defined
in Section 1B4). We denote by `F its length function and by �F the Bruhat order
on WF .

Set zWF D .NG.T/\MF /=T1. It is a subgroup of zW. The double cosets of
MF modulo its pro-p Iwahori subgroup QI\MF are indexed by the elements in
zWF . For w 2 WF , we denote by �Fw the characteristic function of the double
coset containing the lift Ow for w (which lies in NG.T/\MF ). The set of all �Fw
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for w 2 WF is a basis for the pro-p Iwahori–Hecke ring zHZ.MF / of Z-valued
functions with compact support in .QI\MF /nMF =.QI\MF /. The ring zHZ.MF /

does not inject in zHZ in general.
An element in w 2 WF is called F -positive if w�1.ˆC �ˆCF / � ˆ

C
aff. For

example, for � 2 X�.T/, the element e� is F -positive if and only if h�; ˛i � 0 for
all ˛ 2ˆC�ˆCF . In this case, we will say that the coweight � itself is F -positive.
If furthermore h�; ˛i> 0 for ˛ 2ˆC�ˆCF and h�; ˛i D 0 for ˛ 2ˆCF , then it is
called strongly F -positive. The F -positive coweights are the WF -conjugates of
the dominant coweights. The C -positive (resp. strongly C -positive) coweights are
the dominant (resp. strongly dominant) coweights. An element in WF is F -positive
if and only if it belongs to e�WF for some F -positive coweight � 2 X�.T/. If �
and � 2 X�.T/ are F -positive coweights such that �� � is also F -positive, then
we have the equality (see [Ollivier 2012, Section 1.2] for example)

`.e���/C `.e�/� `.e�/D `F .e
���/C `F .e

�/� `F .e
�/: (3-1)

An element in zWF will be called F -positive if its projection in WF is F -positive.
The subspace of zHZ.MF / generated over Z by all �Fw for F -positive w 2 zWF is

denoted by zHZ.MF /
C. It is in fact a ring, and there is an injection of rings

jCF W
zHZ.MF /

C
�! zHZ; �Fw 7�! �w

which extends to an injection of ZŒq˙1=2�-algebras

jF W zHZ.MF /˝Z ZŒq˙1=2�! zHZ˝Z ZŒq˙1=2�:

This is a classical result for complex Hecke algebras [Bushnell and Kutzko 1998,
(6.12)]. The argument is valid over ZŒq˙1=2�.

Remark 3.6. An element w 2 zWF is called F -negative (resp. strongly F -negative)
ifw�1 is F -positive (resp. strongly F -positive), and, as before, zHZ.MF / contains as
a subring the space zHZ.MF /

� generated over Z by all �Fw for F -negative w 2 zWF .
There is an injection of rings j�F W zHZ.MF /

� �! zHZ; �
F
w 7�! �w .

Fact ii. Let v 2WF , such that v �F e� for � 2 X�.T/ an F -positive coweight.
Then v is F -positive.

Proof. Suppose first that � is dominant. Then the claim is Lemma 2.9(ii) of
[Ollivier 2012]. In general, � is a WF -conjugate of a dominant coweight �0: there
is u 2WF such that e� D ue�0u�1. We argue by induction on `F .u/. Let s be a
simple reflection in WF such that `F .su/D `F .u/� 1. By the properties of the
Bruhat order (see [Haines 2001, Lemma 4.3] for example), one of v, vs, sv, svs
is �F se�s, and by induction this element is F -positive, which implies that v is
F -positive. �
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3C2. Let F 0 � C be another facet containing x0 in its closure, such that F � F 0.
This implies that ˆF 0 �ˆF and ˆCF 0 �ˆ

C

F . Let F‚CF 0 be the map constructed as
in Section 2A with respect to the root data attached to MF :

F‚
C

F 0 W ZŒq
˙1=2�ŒzX�.T/� �! zHZ.MF /˝Z ZŒq˙1=2�:

The corresponding Z-linear integral map is denoted by FB
C

F 0 W ZŒzX�.T/� �!
zHZ.MF / and defined by FB

C

F 0.�/ D q`F .e
�/=2

F‚
C

F 0.�/ for all � 2 zX�.T/. It
satisfies FBCF 0.�/D �

F
e�

if h�; ˛i � 0 for all ˛ 2 .ˆCF �ˆ
C

F 0/[ˆ
�
F 0 .

Remark 3.7. If F D x0 then x0B
C

F 0 DBCF 0 .

Lemma 3.8. Let � 2 zX�.T/ be an F -positive coweight. Then FB
C

F 0.�/ lies in
zHZ.MF /

C and
jCF .FB

C

F 0.�//DBCF 0.�/: (3-2)

Proof. Decompose �D��� with�; �2CC.F 0/. Then in zHZ.MF /˝ZZŒq˙1=2�we
have FBCF 0.�/ D q

.`F .e
�/C`F .e

�/�`F .e
�//=2�Fe�.�

F
e� /
�1. By Lemma 2.3 applied

to the pro-p Iwahori–Hecke algebra zHZ.MF /, this element decomposes in zHZ.MF /

into a linear combination of �F
Qw

for Qw 2 zWF , where the projection w of Qw in WF

satisfies w �F e�. Fact ii ensures that these w (and Qw) are F -positive. Now, jF
respects the product and

jCF .FB
C

F 0.�//D jF .FB
C

F 0.�//D q
.`F .e

�/C`F .e
�/�`F .e

�//=2�e�.�e� /
�1

because � and � are in particular F -positive. Apply (3-1) to finish the proof. �

3C3. We prove Lemma 3.4. Let O be a W-orbit in zX�.T/. Since BCx0 DB�C , and
using (2-1), it is enough to proveX

�2O

BCF .�/D
X
�2O

BCC .�/ (3-3)

for any standard facet F . If F D x0 then the result is given by Proposition 3.2. Let
F be a standard facet, such that F ¤ x0.

(1) Let � 2 zX�.T/ be an F -positive coweight with WF -orbit OF . We have the
following identity:X
�02OF

BCF .�
0/D

X
�02OF

jCF .FB
C

F .�
0//D

X
�02OF

jCF .FB
C

C .�
0//D

X
�02OF

BCC .�
0/;

where the first and third equalities come from (3-2) and the second one from
Proposition 3.2 applied to MF .

(2) Choose � a strongly F -positive coweight such that �C � is F -positive for
all � 2 O. Decompose the W-orbit O into the disjoint union of WF -orbits O iF
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for i 2 f1; : : : ; rg. Since � lies in both zXC� .T/ and CC.F /, we have BCF .��/ D

BCC .��/D šC .�e�� /.
Let i 2 f1; : : : ; rg and � 2 O iF . We have in zHZ˝Z ZŒq˙1=2� that

BCF .�/D q
1
2
.`.e�/�`.e�C�/�`.e�//BCF .�C �/B

C

F .��/:

Note that `.e�/�`.e�C�/�`.e�/ does not depend on � 2 O iF : since h�; ˛i D 0 for
all ˛ 2ˆCF , this quantity is equal to

P
˛2ˆC�ˆ

C

F

jh�; ˛ij � jh�C �; ˛ij � jh�; ˛ij,

which does not depend on the choice of � 2 O iF because ˆC �ˆCF is invariant
under the action of WF . Therefore, if we pick a representative �i 2 O iF , we haveX
�2O iF

BCF .�/D q
1
2
.`.e�i /�`.e�iC�/�`.e�//

X
�2O iF

BCF .�C �/B
C

C .��/:

D q
1
2
.`.e�i /�`.e�iC�/�`.e�//

X
�2O iF

BCC .�C �/B
C

C .��/D
X
�2O iF

BCC .�/

(where the second equality follows from (1) applied to the WF -orbit of �C �),
which proves that

P
�2O B

C

F .�/D
P
�2O B

C

C .�/.

4. Compatibility between Satake and Bernstein isomorphisms
in characteristic p

In this section all the algebras have coefficients in k.
Let .�;V/ be a weight and v a chosen nonzero QI-fixed vector. Let � W zHk! k be

the associated character and F� the corresponding standard facet (Remark 1.11).
We consider the compact induction indG

K � and its k-algebra of G-endomorphisms
H.G; �/. The QI-invariant subspace .indG

K �/
QI is naturally a right zHk-module. Let

1K;v 2 indG
K � be the (QI-invariant) function with support K and value v at 1.

The map

Z.zHk/ �! HomzHk ..indG
K �/
QI; .indG

K �/
QI/; z 7�! Œf 7! f z�; (4-1)

defines a morphism of k-algebras. On the other hand, by [Ollivier 2012, Corol-
lary 3.14], passing to QI-invariants yields an isomorphism of k-algebras

H.G; �/D HomG.indG
K �; indG

K �/ �!
� HomzHk ..indG

K �/
QI; .indG

K �/
QI/: (4-2)

Composing (4-1) with the inverse of (4-2) therefore gives a morphism of k-algebras
Z.zHk/!H.G; �/, and we consider its restriction to Zı.zHk/:

Zı.zHk/ �!H.G; �/; z 7�! Œ1K;v 7! 1K;vz�: (4-3)
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For � 2 XC� .T/, we denote by T0
�
2H.G; �/ the image under (4-3) of the central

Bernstein function z� defined by (2-3).
On the other hand, recall that we have the isomorphism of k-algebras [Ollivier

2012, Theorem 4.11]
T W kŒXC� .T/� �!� H.G; �/; (4-4)

where T� for � 2 XC� .T/ is defined by

T� W 1K;v 7! 1K;vB
C

F�
.�/: (4-5)

Proposition 4.1. We have T0
�
D T� for all � 2 XC� .T/.

Proof. It is enough to check that these operators coincide on 1K;v. If � has length
zero, then BCF�.�/D z� D �e� and the claim is true. Otherwise � has length > 0;
recall that O.�/ denotes the W-orbit of �.

(a) Let �0 2 O.�/ and suppose that �0 ¤ �. By (2-4), we have BCF�.�
0/BCF�.�/D

BCF�.�/B
C

F�
.�0/D 0 in zHk . This implies that T�.1K;vB

C

F�
.�0//D 0 and therefore

that 1K;vB
C

F�
.�0/D 0 by [Herzig 2011a, Corollary 6.5], which claims that indG

K �

is a torsion-free H.G; �/-module.

(b) By Lemma 3.4, we have

T0�.1K;v/D 1K;vB
C

F�
.�/C

X
�02O.�/;
�0¤�

1K;vB
C

F�
.�0/D T�.1K;v/C

X
�02O.�/;
�0¤�

1K;vB
C

F�
.�0/

D T�.1K;v/;

where the last equality follows from (a). �

Remark 4.2. By [Ollivier 2012, Lemma 3.6], the map

�˝zHk
zHk Š .indG

K �/
QI; 1˝ 1 7! 1K;v; (4-6)

induces an zHk-equivariant isomorphism. Proposition 4.1, combined with (4-6),
proves that for � 2 XC� .T/, the right actions of z� and of BCF�.�/ on 1˝ 1 2
�˝zHk

zHk coincide. This remark will be important for the classification of the
simple supersingular zHk-modules in Section 5D.

Proposition 4.1 implies:

Theorem 4.3. The diagram

kŒXC� .T/�
(2-5)
����! Zı.zHk/ ??y(4-3)

kŒXC� .T/�
T

����! H.G; �/

(4-7)
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is a commutative diagram of isomorphisms of k-algebras.

We remark that we have not used the fact that (2-5) is multiplicative. We proved
this fact beforehand in Proposition 2.10, but it can also be seen as a consequence of
the commutativity of the diagram.

5. Supersingularity

We turn to the study of the zHk-modules with finite length. We consider right
modules unless otherwise specified. Recall that k is algebraically closed with
characteristic p.

5A. A basis for the pro-p Iwahori–Hecke ring. We recall the Z-basis for zHZ

defined in [Vignéras 2005]. It is indexed byw2 zW and is denoted by .Ew/w2 zW there.
We will call it .BCx0.w//w2 zW because it coincides on zX�.T/ with the definition
introduced in Section 2A (see also Remark 2.1). Recall that we have a decomposition
of zW as the semidirect product

zWD X�.T/Ì zW:

For w0 2 zW, set BCx0.w0/ D �w0 and for w D e�w0 2 X�.T/ Ì zW, define in
zHZ˝Z ZŒq˙1=2�

BCx0.w/D q
.`.w/�`.w0/�`.e

�//=2BCx0.�/B
C
x0
.w0/D q

.`.w/�`.w0//=2‚Cx0.�/�w0 :

By [Vignéras 2005, Theorem 2 and Proposition 8], this element lies in zHZ and the
set of all .BCx0.w//w2 zW is a Z-basis for zHZ.

Remark 5.1. As a Z-module, zHZ is the direct sum of ACx0 and of the Z-module with
basis .BCx0.e

�w0//, where � ranges over X�.T/ and w0 over the set of elements in
zW the projection of which in W is nontrivial. Applying (2-1), we obtain that the

Z-module ACC is a direct summand of zHZ as well.

Remark 5.2. Let d 2D and Qd 2 zW be a lift for d . Write Qd D e�w0 with w0 2 zW,
� 2 XC� .T/ and `.e�/D `.d/C `.w0/ (Proposition 1.5).

Then in zHZ˝Z ZŒq˙1=2�, we have

BCx0.
Qd/D q.`.

Qd/�`.w0/C`.e
�//=2��1

e��
�w0 D q

`. Qd/��1
Qd�1
D .�1/`.d/š.� Qd /: (5-1)

5B. Topology on the pro-p Iwahori–Hecke algebra in characteristic p. We con-
sider the (finitely generated) ideal I of Zı.zHk/ generated by all z� for � 2 XC� .T/
such that `.e�/ > 0, and the associated ring filtration of Zı.zHk/. A Zı.zHk/-module
M can be endowed with the I-adic topology induced by the filtration

M �MI�MI2 � � � � :
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An example of such a module is zHk itself. We define on zHk another decreasing
filtration .FnzHk/n2N by k-vector spaces, where

FnzHk WD the k-vector space generated by BCx0.w/, w 2 zW with `.w/� n. (5-2)

Lemma 5.3. The filtration (5-2) is a filtration of zHk as a left ACx0-module. In par-
ticular, it is a filtration of zHk as a (left and right) Zı.zHk/-module. It is compatible
with the I-filtration: for all n 2 N, we have

.FnzHk/ID I .FnzHk/ � FnC1zHk :

Proof. Let � 2 zX�.T/ and w 2 zW. From the definition of BCx0 , we see that

BCx0.�/B
C
x0
.w/D q.`.e

�/C`.w/�`.e�w//=2BCx0.e
�w/

and therefore in zHk we have BCx0.�/B
C
x0
.w/ D 0 if `.e�/C `.w/ > `.e�w/ and

BCx0.�/B
C
x0
.w/DBCx0.e

�w/ if `.w/C`.e�/D `.e�w/. This proves the claims. �

Proposition 5.4. The I-adic topology on zHk is equivalent to the topology on zHk
induced by the filtration .FnzHk/n2N. In particular, it is independent of the choice
of the uniformizer $ .

Proof. We have to prove that given m 2 N, m � 1, there is n 2 N such that
FnzHk � ImzHk .

Fact iii. For � 2 X�.T/ such that `.e�/ > 0 and m� 1, we have BCx0..mC 1/�/ 2
ImzHk .

Proof. We check that for m 2N we have BCx0..mC1/�/D z
m
�
BCx0.�/. Notice that

BCx0.2�/DBCx0.�/B
C
x0
.�/D z�B

C
x0
.�/ by (2-4) and Lemma 3.4. Now let m� 2.

We have BCx0..mC 1/�/DBCx0.m�/B
C
x0
.�/D zm

�
BCx0.�/ by induction. �

Fact iv. Let m � 1. There is Am 2 N such that for any � 2 X�.T/, if `.e�/ > Am
then BCx0.�/ 2 I

mzHk .

Proof. Let fz�1 ; : : : ; z�r g be a system of generators of I with �1; : : : ; �r 2 XC� .T/.
LetAm WDm

Pr
iD1 `.e

�i /. Let �2X�.T/ such that `.e�/>0. This is W-conjugate
to an element �0 2 XC� .T/, and one can write � D w0:�0 with w0 2 W and
�0D

Pr
iD1 ai�i with ai 2N (not all equal to zero). If `.e�/D `.e�0/ > Am, then

there is i0 2 f1; : : : ; rg such that ai0 >m and BCx0.�/D
Qr
iD1B

C
x0
.ai .w0:�i // 2

BCx0..mC 1/.w0:�i0//
zHk � ImzHk by Fact iii. �

We now turn to the proof of the proposition. Let m � 1. To any w0 2 W

corresponds, by [Vignéras 2006, (1.6.3)], a finite set X.w0/ of elements in X�.T/
such that

for all � 2 X�.T/ there is � 2 X.w0/ such that `.e�w0/D `.e���/C `.e�w0/:
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Let Qw 2 zW with image w0 under the projection zW ! W. Its image w under
zW!W has the form w D e�w0 2 X�.T/ÌW, and there is � 2 X.w0/ such that
`.w/ D `.e���/C `.e�w0/. Choose lifts ze�w0 and ze��� in zW for e�w0 and
e���. The product ze���ze�w0 differs from Qw by an element in T0=T1 (which has
length zero). Therefore, BCx0. Qw/ 2 BCx0.���/

zHk (see the proof of Lemma 5.3,
for example). If `. Qw/ > Am.w0/ WD Am C maxf`.e�

0

w0/; �
0 2 X.w0/g then

`.e���/ > Am and BCx0. Qw/ 2 I
mzHk by Fact iv.

We have proved that n >maxfAm.w0/; w0 2Wg implies FnzHk � ImzHk . �

5C. The category of modules of finite length over the pro-p Iwahori–Hecke
algebra in characteristic p. We consider the abelian category Modfg.zHk/ of all
zHk-modules with finite length.

For an zHk-module, having finite length is equivalent to being finite-dimensional
as a k-vector space (see [Vignéras 2007, Section 5.3] or [Ollivier and Schneider
2012, Lemma 6.9]). Therefore, any irreducible zHk-module is finite dimensional
and has a central character, and any module in Modfg.zHk/ decomposes uniquely
into a direct sum of indecomposable modules.

5C1. The category of finite-dimensional Zı.zHk/-modules. Let Modfd .Zı.zHk//
denote the category of finite-dimensional Zı.zHk/-modules. For M a maximal ideal
of Zı.zHk/, we consider the full subcategory

M- Modfd .Z
ı.zHk//

of modules M of M-torsion, that is, such that there is e 2 N satisfying MMe D 0.
The category Modfd .Zı.zHk// decomposes into the direct sumL

M

M- Modfd .Zı.zHk//;

where M ranges over the maximal ideals of Zı.zHk/.

5C2. Blocks of zHk-modules with finite length. For M a maximal ideal of Zı.zHk/,
we say that an zHk-module with finite length is an M-torsion module if its restriction
to a Zı.zHk/-module lies in the subcategory M- Modfd .Zı.zHk//. We denote by

M- Modfg.zHk/ (5-3)

the full subcategory of Modfg.zHk/ whose objects are the M-torsion modules.

Lemma 5.5. Let M and N be two maximal ideals of Zı.zHk/. If there is a nonzero
M-torsion moduleM and a nonzero N-torsion moduleN such that Extr

zHk
.M;N /¤

0 for some r � 0, then MDN.

Proof. For any zHk-modules X and Y , the natural morphisms of algebras Zı.zHk/!
EndzHk .X/ and Zı.zHk/! EndzHk .Y / equip HomzHk .X; Y / with the structure of a
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central Zı.zHk/-bimodule. The space Extr
zHk
.M;N / is therefore naturally a central

Zı.zHk/-bimodule. It is an M-torsion module and an N-torsion module; it is zero
unless MDN. �

Since Zı.zHk/ is a central finitely generated subalgebra of zHk , an indecomposable
zHk-module with finite length is an M-torsion module for some maximal ideal M
of Zı.zHk/.

Remark 5.6. An zHk-module with finite length M lies in the block corresponding
to some maximal ideal M if and only if all the characters of Zı.zHk/ contained in
M have kernel M.

Remark 5.7. The blocks (5-3) are not indecomposable. They can for example be
further decomposed via the idempotents introduced in Section 1B8.

5C3. The supersingular block.

Definition 5.8. We call a maximal ideal M of Zı.zHk/ supersingular if it contains
the ideal I defined in Section 5B. A character of Zı.zHk/ is called supersingular if
its kernel is a supersingular maximal ideal of Zı.zHk/.

Given a character ! of the connected center Z of G, there is a unique supersingu-
lar character �! of Zı.zHk/ satisfying �!.z�/D !.�.$// for any � 2 XC� .T/ with
length zero. A character of the center of zHk is called “null” in [Vignéras 2005] if it
takes value zero at all central elements (2-2) for all W-orbits O in zX�.T/ containing
a coweight with nonzero length.

Lemma 5.9. A character Z.zHk/! k is null if and only if its restriction to Zı.zHk/
is a supersingular character in the sense of Definition 5.8.

Proof. Consider a character � W Z.zHk/! k whose restriction to Zı.zHk/ is super-
singular. We want to prove that � is null. Since the zHk-module zHk˝Z.zHk/

� is
finite dimensional, it contains a character O� for the commutative finitely generated
k-algebra .ACx0/k and the restriction of O� to Z.zHk/ coincides with �.

Let � 2XC� .T/ with `.e�/¤ 0; by (2-4), there is at most one W-conjugate �0 of
� such that O�.BCx0.�

0//¤ 0, and if there exists such a �0, then O�.z�/D �.z�/¤ 0,
which is a contradiction; we have proved that O�.BCx0.�

0//D0 for all �0 2X�.T/with
`.e�

0

/¤ 0, which implies that this is also the case for �0 2 zX�.T/ with `.e�
0

/¤ 0.
Therefore, � is null. �

A finite-dimensional zHk-moduleM with central character is called supersingular
in [Vignéras 2005] if this central character is null. We extend this definition:

Proposition-Definition 5.10. A finite-length zHk-module is in the supersingular
block and is called supersingular if and only if , equipped with the discrete topology,
it is a continuous module for the I-adic topology on zHk or, equivalently, for the
topology induced by the filtration (5-2).
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Proof. An indecomposable zHk-module M with finite length is in the supersingular
block if and only if there is m� 1 such that MImD f0g. Then use Proposition 5.4.

�

5D. Classification of the simple supersingular modules over the pro-p Iwahori–
Hecke algebra in characteristic p. We establish this classification in the case
where the root system of G is irreducible, which we will suppose in Section 5D4.
Until then the results are valid without further assumption on the root system.

5D1. Denote by zHaff
k

the natural image in zHk of the affine Hecke subring zHaff
Z of

zHZ defined in Section 1B7. We generalize [Ollivier 2010, Theorem 7.3]:

Proposition 5.11. A finite-length zHk-module in the supersingular block contains a
character for the affine Hecke subalgebra zHaff

k
.

Proof. Let M be an zHk-module with finite length in the supersingular block. By
Proposition-Definition 5.10, there is n 2 N such that for any w 2 zW, if `.w/ > n
then MBCx0.w/D 0. Let x 2M , and suppose that it supports a character for zHk
(see Section 1B9) and let d 2D with maximal length such that xBCx0.

Qd/¤ 0, where
Qd 2 zW denotes a lift for d (the property xBCx0.

Qd/¤ 0 does not depend on the choice
of the lift Qd ). As in the proof of [Ollivier 2010, Theorem 7.3], we prove that x0 WD
xBCx0.

Qd/ supports a character for zHaff
k

which is the k-algebra generated by all �t and
all �Qs for t 2 T0=T1 and s 2 Saff with chosen lift Qs 2 zW (see paragraph Section 1B7).
From the relations (1-11) we get that x0�t D x�dtd�1B

C
x0
. Qd/ is proportional to x0.

Now let s 2 Saff. If `.ds/D `.d/�1, then ds 2D by Proposition 1.5 and, by (5-1),
the element x0 is equal to xš.� Qd Qs/š.�Qs/ (up to an invertible element in k), so x0�QsD0
by Remark 1.10. If `.ds/D `.d/C1 and ds 2D, then xBCx0.

Qd Qs/ is equal to zero on
one side and, by (5-1), to x0š.�Qs/ (up to an invertible element in k) on the other side.
This proves that x0�Qs is proportional to x0 by Remark 1.10. If `.ds/D `.d/C1 and
ds 62D then there is s0 2 S such that ds D s0d by Proposition 1.5, and x0š.�Qs/ is
proportional to xš.�Qs0/BCx0.

Qd/ and therefore to x0 because š.�Qs0/2 zHk . We conclude
that x0�Qs is proportional to x0 by Remark 1.10. �

5D2. Characters of zHaff
k

. We call a morphism of k-algebras zHaff
k
! k a character

of zHaff
k

. A character X of zHaff
k

is completely determined by:

� The unique � 2 yT.Fq/ such that X .�
�
/D 1 (see notation in Section 1B8). This

� is defined by �.t/ D X .�t /, where t 2 T0=T1 D T.Fq/, and we call � the
restriction of X to kŒT0=T1�.

� The values X .�nA/ for all A 2 Saff, which, by the quadratic relations (1-15)
satisfy X .�nA/ 2 f0;�1g, if � is trivial on TA, and X .�nA/D 0 otherwise.
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Conversely, one checks that any such datum of � 2 yT.Fq/ and values X .�nA/ for
all A 2 Saff satisfying the above conditions defines a character X of zHaff

k
.

Example. The pro-p Iwahori–Hecke ring zHZ is endowed with two natural mor-
phisms of rings zHZ! Z defined by

�w 7! q`.w/ and �w 7! .�1/`.w/:

We denote by Xtriv and Xsign the characters of zHk that they respectively induce, as
well as their restrictions to characters of zHaff

k
. The former can be described by � D 1

and Xtriv.�nA/D 0 for all A 2 Saff, the latter by � D 1 and Xsign.�nA/D�1 for all
A 2 Saff.

Let X be a character of zHaff
k

and � the corresponding element in yT.Fq/.

� Let �0 2 yT.Fq/, and suppose that �0 is trivial on T˛ for all ˛ 2…. Then one
can consider the twist .�0/X of X by �0 in the obvious way. The restriction
of .�0/X to kŒT0=T1� is the product �0� , and .�0/X coincides with X on the
elements of type �nA for A2Saff. By a twist of the character X , we mean from
now on a twist of X by an element in yT.Fq/ that is trivial on T˛ for all ˛ 2….

� The involution šC extends to an involution of the k-algebra zHk . The compo-
sition X ı šC is then also a character for zHaff

k
. Note that X and X ı šC have

the same restriction to kŒT0=T1� (Remark 1.9). Furthermore, if X .�nA/D�1
for some A 2 Saff, then X ı šC .�nA/ D 0 (use Remark 1.10). For example,
Xtriv D Xsign ı šC .

� There is an action of z� by conjugacy on zWaff. Since the elements in z� have
length zero, this yields an action of z� on zHaff

k
and its characters. For ! 2 z�,

we denote by !:X the character X .�!�1 : �!/.

Lemma 5.12. A simple zHk-module containing a twist of the character Xtriv or of
the character Xsign of zHaff

k
is not supersingular.

Proof. Let M be a simple zHk-module. Suppose that it contains a twist of the
character Xsign supported by the nonzero vector m 2M . In particular, m supports
the character of zHk parametrized by (a twist of) the trivial character of yT.Fq/ and
by the facet C (see Section 1B9). By Remark 4.2, we have

mz� DmB
C

C .�/

for all � 2 XC� .T/. There are ! 2 z� and w 2 zWaff such that �.$�1/ mod T1

corresponds to w! 2 zW. Since BCC .�/D ��.$�1/, the element mBCC .�/ is equal
to .�1/`.w/m�! (up to multiplication by an element in k�), and we recall that �!
is invertible in zHk . We have proved that m:z� ¤ 0 and M is not supersingular.
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Now if M contains a twist of the character Xtriv, then š�CM contains a twist of
the character Xsign and is not supersingular (notation in the proof of Proposition 3.3).
By Proposition 3.2, this implies that M is not supersingular either. �

5D3. Consider the image of z� in zHk via ! 7! �! . For X a character of zHaff
k

,
denote by z�X its fixator under the action of z�; obviously z�X contains T0=T1

as a subgroup. We consider the set P of pairs .X ; �/ where X is a character of
zHaff
k

and .�;V� / an irreducible finite-dimensional k-representation of z�X (up to
isomorphism) whose restriction to T0=T1 coincides with the inverse of the restriction
of X ; for any t 2 T0=T1 and v 2 V� , we have �.t/v D X .�t�1/v.

The set P is naturally endowed with an action of z�: for .X ; �/ 2 P and ! 2 z�,
denote by !:� the representation of z�!:X D ! z�X!

�1 naturally obtained by
conjugating � ; then !:.X ; �/ WD .!:X ; !:�/ 2 P.

Let .X ; �/ 2 P. Consider the subalgebra zHk.X / of zHk generated by kŒ z�X � and
zHaff
k

. It is isomorphic to the twisted tensor product of algebras

zHk.X /' kŒ z�X �˝kŒT0=T1�
zHaff
k ;

where the product is given by .! ˝ h/.!0 ˝ h0/ D !!0 ˝ ��1!0 h�!0h
0. As a left

zHk.X /-module, zHk is free with basis the set of all �! , where ! ranges over a set of
representatives of the right cosets z�X n z�. The tensor product � ˝X is naturally a
right zHk.X /-module: the right action of !˝h on v 2V� is given by X .h/�.!�1/v.
The right zHk.X /-module �˝X is irreducible. As an zHaff

k
-module, it is isomorphic

to a direct sum of copies of X .

Lemma 5.13. The isomorphism classes of the simple zHk-modules containing a
character for zHaff

k
are represented by the induced modules

m.X ; �/ WD .� ˝X /˝zHk.X / zHk;

where .X ; �/ ranges over the set of orbits in P under the action of z�.

Proof. First note that for any ! 2 z�, the .zHaff
k
; !:X /-isotypic component of m.X ; �/

is isomorphic to !:� ˝!X as a right zHk.!:X /-module.

(1) We check that an zHk-module of the form m.X ; �/ is irreducible. Restricted to
zHaff
k

, it is semisimple and isomorphic to a direct sum of X and of its conjugates.
Therefore, a submodule m of m.X ; �/ contains a nonzero .zHaff

k
; !:X /-isotypic

vector for some ! 2 z�, and, after translating by �!�1 , we see that m contains a
nonzero .zHaff

k
;X /-isotypic vector. But the .zHaff

k
;X /-isotypic component in m.X ; �/

supports the irreducible representation � of kŒ z�X �. Therefore mDm.X ; �/.
(2) Let m be a simple zHk-module containing the character X of zHaff

k
. Its .zHaff

k
;X /-

isotypic component contains an irreducible (finite-dimensional) representation � of
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kŒ z�X � which coincides with the inverse of X on kŒT0=T1�. Therefore, using (1),
m' .� ˝X /˝zHk.X / zHk .

(3) Let ! 2 z� and .X ; �/ 2 P. The .zHaff
k
;X /-isotypic component of m.!:.X ; �//

contains the representation � of kŒ z�X �. The simple zHk-module m.!:.X ; �// is
therefore isomorphic to m.X ; �/ by (2).

(4) Let .X ; �/ and .X 0; � 0/ be in P and suppose that they induce isomorphic zHk-
modules. Looking at the restriction of the latter to zHaff

k
, we see that there is ! 2 z�

such that X 0 D !:X .
Therefore, by (3), m.X ; !�1� 0/ and m.X ; �/ are isomorphic, and looking at the

restriction to the .zHaff
k
;X /-isotypic component shows that � 0 ' !:� . Therefore,

.X 0; � 0/ and .X ; �/ are conjugate. �

5D4. Classification of the simple supersingular zHk-modules when the root system
of G is irreducible. We generalize [Vignéras 2005, Theorem 5(1)] and [Ollivier
2010, Theorem 7.3].

Theorem 5.14. Suppose that the root system of G is irreducible. A simple zHk-
module is supersingular if and only if it contains a character for zHaff

k
that is different

from a twist of Xtriv or Xsign.

Remark 5.15. This proves in particular (if the root system of G is irreducible) that
the notion of supersingularity for Hecke modules does not depend on any of the
choices made.

Proof of Theorem 5.14. We already proved in Proposition 5.11 (without restriction
on the root system of G) that a simple supersingular module contains a character
for zHaff

k
, and by Lemma 5.12 we know that this character is not a twist of Xtriv or

Xsign.
Conversely, let m be a simple zHk-module containing the character X for zHaff

k

and suppose that X is not a twist of Xtriv or Xsign. We want to prove that m is
supersingular. Since, by Proposition 3.2, this is equivalent to showing that š�Cm
is supersingular (notation in the proof of Proposition 3.3), we can suppose (see
the discussion before Lemma 5.12) that X .�n0/D 0, where n0 was introduced in
Section 2A3.

Let m2m be a nonzero vector supporting X . Let � be the restriction of X to zHk
and F� the associated standard facet. Suppose that F� D x0; then … N� D…� D…
(notation in Section 1B9) and X .�n˛ / D 0 for all ˛ 2 …. Since, by hypothesis,
we also have X .�n0/D 0, the character X is equal to Xtriv up to twist. Therefore,
F� ¤ x0. Let � 2 XC� .T/ with `.e�/ > 0. By Remark 4.2,

m:z� Dm:B
C

F�
.�/;
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and, since F�¤x0, we havem:z�D 0 by Lemma 2.4. We have proved that Zı.zHk/
acts on m and therefore on m by a supersingular character. �

Let P� denote the subsets of pairs .X ; �/ in P such that X is different from a twist
of Xtriv or Xsign. It is stable under the action of z�. Lemma 5.13 and Theorem 5.14
together give the following:

Corollary 5.16. Suppose that the root system of G is irreducible. The map

.X ; �/ 7!m.X ; �/

induces a bijection between the z�-orbits of pairs .X ; �/ 2 P� and a system of
representatives of the isomorphism classes of the simple supersingular zHk-modules.

5E. Pro-p Iwahori invariants of parabolic inductions and of special representa-
tions.

5E1. In this section, k is an arbitrary field. Let F be a standard facet, …F the
associated set of simple roots and PF the group of F-points of the corresponding
standard parabolic subgroup, with Levi decomposition PF DMFNF . We use the
same notation as in Section 3C1. The unipotent subgroup NF is generated by all
the root subgroups U˛ for ˛ 2 ˆC �ˆCF . Let N�F denote the opposite unipotent
subgroup of G. The pro-p Iwahori subgroup QI has the decomposition

QID QICF QI
0
F
QI�F ;

where
QICF WD QI\NF ; QI0F WD QI\MF ; QI�F WD QI\N�F :

By Remark 3.6, the subspace zHk.MF /
� of zHk.MF / generated over k by �Fw for

F -negative w 2 zWF is identified with a sub-k-algebra of zHk via the injection

j�F W
zHk.MF /

�
�! zHk; �Fw 7�! �w :

This endows zHk with the structure of left module over zHk.MF /
�.

Proposition 5.17. Let .¢;V¢/ be a smooth k-representation of MF . Consider the
parabolic induction IndG

PF ¢ and its QI-invariant subspace .IndG
PF ¢/

QI. There is a
surjective morphism of right zHk-modules

¢
QI0F ˝zHk.MF /�

zHk �! .IndG
PF ¢/

QI (5-4)

sending v˝ 1 to the unique QI-invariant function with support in PF QI and value v
at 1G.

Remark 5.18. In the cases GD PGLn or GLn, Proposition 5.2 in [Ollivier 2010]
implies that (5-4) is an isomorphism. This result should be true for a general (split)
G, but we will only use the surjectivity here.
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The proposition follows from the discussion below. All the lemmas are proved
in the next section.

Lemma 5.19. Let DF D fd 2W W d�1ˆCF �ˆ
Cg.

(i) For d 2DF , we have PF QI Od QID PF Od QI.

(ii) The set of all Od 2 G for d 2DF is a system of representatives of the double
cosets PF nG=QI.

(iii) For d 2DF , let QI Od QID
F
y
QI Ody be a decomposition into right cosets. Then

PF Od QID
G
y

PF QI Ody:

(iv) Let d 2 DF . Under the projection PF � MF , the image of PF \ Od QI Od�1

is QI0F .

An element m 2MF contracts QICF and dilates QI�F if it satisfies the conditions

mQICFm
�1
� QICF ; m�1QI�Fm� QI

�
F (5-5)

(see [Bushnell and Kutzko 1998, (6.5)]).

Remark 5.20. This property of an element m 2MF only depends on the double
coset QI0FmQI

0
F . Furthermore, ifm2K\MF thenmQICFm

�1DQICF andm�1QI�FmDQI
�
F :

Lemma 5.21. Let w 2 zWF . The element Ow satisfies (5-5) if and only if w is
F -negative.

Let .¢;V¢/ be as in the proposition. Let v 2 V
QI0F
¢ and d 2DF . By (ii) and (iv)

of Lemma 5.19, the QI-invariant function

fd;v 2 .IndG
PF �/

QI

with support in PF Od QI and value v at Od is well defined, and the set of all fd;v form

a basis of .IndG
PF �/

QI, where d ranges over DF and v over a basis of V
QI0F
¢ .

Lemma 5.22. (i) If w is an F -negative element in zWF , then f1;v:�w D f1;v:�Fw .

(ii) We have f1;v:� Od D fd;v.

5E2. Proof of the lemmas. Recall that given ˛ 2 ˆ, the root subgroup U˛ is
endowed with a filtration U.˛;k/ for k 2 Z (see for example [Schneider and Stuhler
1997, Section I.1] or [Ollivier and Schneider 2012, Section 4.2]) and that the product
map Y

˛2ˆ�

U.˛;1/ �T1 �
Y
˛2ˆC

U.˛;0/ �!
� QI (5-6)

induces a bijection, where the products on the left side are ordered in some arbitrary
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chosen way [Schneider and Stuhler 1997, Proposition I.2.2]. The subgroup QICF of QI
is generated by the image of

Q
˛2ˆC�ˆ

C

F
U.˛;0/, while QI�F is generated by that ofQ

˛2ˆ��ˆ�F
U.˛;1/. The subgroup QI0F is generated by the image ofY

˛2ˆ�F

U.˛;1/ �T1 �
Y
˛2ˆ

C

F

U.˛;0/:

Proof of Lemma 5.19. (i) We have PF QI Od QID PF QI�F
Od QI. But for ˛ 2 ˆC, we have

Od�1U.�˛;1/ OdDU.�d�1˛;1/�QI, so QI�F
Od � Od QI and PF QI Od QIDPF Od QI. Point (ii) follows

by Bruhat decomposition for K and Iwasawa decomposition for G. For (iii), we
first recall that the image of PF \K under the reduction red K!Gx0.Fq/ modulo
K1 is a parabolic subgroup PF .Fq/ containing B.Fq/ (notation in Section 1B).

Recall that the Weyl group of Gx0.Fq/ is W; for w 2W we will still denote
by w a chosen lift in Gx0.Fq/. The set DF is a system of representatives of
PF .Fq/nGx0.Fq/=N.Fq/. For d 2DF we have, using [Carter 1985, 2.5.12],

PF .Fq/\ dN.Fq/d�1 � N.Fq/:

We deduce that the image of PF \ QI�F
Od QI Od�1 by red is contained in N.Fq/ and

therefore PF \ QI�F
Od QI Od�1 is contained in QI.

Now let d 2DF and y 2 QI. By the previous observations, Od 2PF QI OdyDPF QI�F
Ody

implies Od 2 QI Ody. This proves (iii). In passing we proved that PF \ Od QI Od�1 is
contained in PF \ QID QI0F QI

C

F . Since QI0F is contained in PF \ Od QI Od�1 by definition
of DF , this proves (iv). �

Proof of Lemma 5.21. By Remark 5.20, it is enough to prove the result for wD e� 2
X�.T/. A lift for e� is given by �.$�1/. The element �.$�1/ satisfies (5-5) if

for all ˛ 2ˆC�ˆCF we have �.$�1/U.˛;0/�.$/� QI
C

F

and �.$/U.�˛;1/�.$
�1/� QI�F :

(5-7)

By [Ollivier and Schneider 2012, Remark 4.1(1)] for example,

�.$�1/U.˛;0/�.$/DU.˛;�h˛;�i/ and �.$/U.�˛;1/�.$
�1/DU.�˛;1�h˛;�i/:

Condition (5-7) is satisfied if and only if � is F -negative (definition in Section 3C1).
�

Proof of Lemma 5.22. (i) Let w be an F -negative element in zWF . The function
f1;v:�w has support in PF QI�F OwQI. Since Ow satisfies (5-5), we have PF QI�F OwQI D
PF OwQI D PF QI. It remains to compute the value of f1;v:�w at 1G (we choose the
unit element 1G of G as a lift for 1 2DF ). The proof goes through exactly as in
[Ollivier 2010, Section 6A.3], where it is written up in the case of GD GLn.
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(ii) Let d 2DF . By Lemma 5.19(i), the QI-invariant function f1;v : �d has support
in PF Od QI, and it follows from Lemma 5.19(iii) that it takes value v at Od . �

5E3. Here we consider again representations with coefficients in an algebraically
closed field k with characteristic p. We draw corollaries from Proposition 5.17.

Corollary 5.23. Let F ¤ x0 be a standard facet. If ¢ is an admissible k-represen-
tation of MF with a central character, then .IndG

PF ¢/
QI is a finite-dimensional

zHk-module whose irreducible subquotients are not supersingular.

Proof. That .IndG
PF ¢/

QI is finite-dimensional is a consequence of the admissibility
of ¢ . Let � 2 X�.T/ be a strongly F -negative coweight (see Remark 3.6) and
�0 2 XC� .T/ the unique dominant coweight in its W-orbit O.�/. By Lemma 3.4,

z�0 D
X

�02O.�/

B�F .�
0/:

We compute the action of z�0 on an element of the form v˝12 ¢
QI0F ˝zHk.MF /�

zHk .
We have B�F .�/D �e� and therefore

.v˝ 1/B�F .�/D v˝ �e� D v˝ j
�
F .�

F
e�
/D .v�F

e�
/˝ 1:

Recall that �F
e�
D �F

�.$�1/
and that �.$�1/ is a central element in MF . Therefore,

v�F
e�
D !.�.$//v, where ! denotes the central character of ¢ . By (2-4), this

implies in particular that .v˝ 1/B�F .�
0/ D 0 for �0 2 O.�/ distinct from �. We

have proved that z�0 acts by multiplication by !.�.$//¤ 0 on ¢QI
0
F ˝zHk.MF /�

zHk ,
and therefore on .IndG

PF ¢/
QI by Proposition 5.17. This proves the claim. �

Corollary 5.24. Let F be a standard facet. Let SpF be the generalized special
k-representation of G

SpF D
IndG

PF 1P
F 0¤F�F

IndG
PF 0
1
;

where F 0 ranges over the set of standard facets ¤ F contained in the closure
of F . The QI-invariant subspace of SpF is a finite-dimensional zHk-module whose
irreducible subquotients are not supersingular.

Proof. Suppose first that F ¤ x0. By [Große-Klönne 2013b, (18)] (which is valid
with no restriction on the split group G), .SpF /

QI is a quotient of .IndG
PF 1/

QI. Apply
Corollary 5.23. If F D x0, then the special representation in question is the trivial
character of G, whose QI-invariant subspace is isomorphic to the trivial character of
zHk and is not supersingular (see the example in Section 5D2 and Lemma 5.12). �
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5F. On supersingular representations. Let � be a weight of K. By (4-7), there
is a correspondence between the k-characters of H.G; �/ and the k-characters of
Zı.zHk/, and we will use the letter � for each of the two characters paired up by
(4-7). With this notation, by the work in Section 4 we have a surjective morphism
of representations of G:

�˝Zı.zHk/
indG
QI 1 �! �˝H.G;�/ indG

K �: (5-8)

For ! a character of the connected center of G, let �! the supersingular character
of Zı.zHk/ as in Section 5C3. We remark that the representation �! ˝Zı.zHk/

indG
QI 1

of G has central character !.
From now on we suppose that the derived group of G is simply connected and

that F is a finite extension of Qp.

Lemma 5.25. A character H.G; �/ ! k is parametrized by the pair .G; !/ in
the sense of [Herzig 2011a, Proposition 4.1] if and only if it corresponds to the
supersingular character �! of Zı.zHk/ via (4-7).

Proof. In this proof we denote by  WH.G; �/! k and � W Zı.zHk/! k a pair of
characters corresponding to each other by (4-7). Recall that T denotes the inverse
Satake isomorphism (4-4). By [ibid., Corollary 4.2] (see also Corollary 2.19 there),
the character  W H.G; �/! k is parametrized by the pair .G; !/ if and only if
 ı T.�/D 0 for all � 2 XC� .T/ such that `.e�/¤ 0 and if  ˝H.G;�/ indG

K � has
central character equal to ! (see Lemma 4.4 and its proof there). Since for all
� 2 XC� .T/ we have �.z�/D  ıT.�/ and since  ˝H.G;�/ indG

K � is a quotient of
�˝Zı.zHk/

indG
QI 1, we have proved (using the remark before the statement of this

lemma) that  is parametrized by the pair .G; !/ if and only if � D �! . �

A smooth irreducible admissible k-representation of G has a central character. A
smooth irreducible admissible k-representation   with central character ! WZ!k�

is called supersingular with respect to .K;T;B/ [ibid., Definition 4.7] if for all
weights � of K, any map indG

K �!   factors through

�! ˝H.G;�/ indG
K � �!  :

Note that if the first map is zero, then the condition is trivial. By (5-8), a supersin-
gular representation with central character ! WZ! k� is therefore a quotient of
�! ˝Zı.zHk/

indG
QI 1 and, by Definition 5.8, of

indG
QI 1=I indG

QI 1:

Remark 5.26. (i) The representation indG
QI 1=I indG

QI 1 depends only on the con-
jugacy class of x0. It is independent of any choices if G is of adjoint type or
GD GLn.
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(ii) An irreducible admissible representation   of G is a quotient of indG
QI 1=I indG

QI 1

if and only if  QI contains a supersingular zHk-module. Recall that when the root
system of G is irreducible, we have proved that the notion of supersingularity
for zHk-modules is independent of all the choices made.

Theorem 5.27. If G D GLn.F/ or PGLn.F/, a smooth irreducible admissible
k-representation   is supersingular if and only if  QI contains a supersingular
zHk-module; that is to say, if and only if   is a quotient of

indG
QI 1=I indG

QI 1: (5-9)

Proof. Let   be a smooth irreducible admissible k-representation of G with
central character !. If it is a quotient of indG

QI 1=I indG
QI 1, then it is a quotient

of �! ˝Zı.zHk/
indG
QI 1, and  QI contains the supersingular character �! of Zı.zHk/.

Therefore it contains a supersingular zHk-module. By Corollaries 5.23 and 5.24, this
implies that   is neither a representation induced from a strict parabolic subgroup
of G nor (a twist by a character of G of) a generalized special representation. By
[Herzig 2011a, Theorem 1.1], which classifies all smooth irreducible admissible
k-representation of G, we conclude by elimination that the representation   is
supersingular. �

The results of [Herzig 2011a] have been generalized to the case of an F-split
connected reductive group G in [Abe 2013]: the classification of the smooth
irreducible admissible representations of G is quite similar to the case of GLn.F/
(expect for a certain subtlety when the root system of G is not irreducible). Based
on this classification and on Corollaries 5.23 and 5.24, N. Abe confirmed that the
space of QI-invariant vectors of a nonsupersingular representation does not contain
any supersingular zHk-module. Therefore, Theorem 5.27 is true for a general split
group with simply connected derived subgroup.
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The final log canonical model of M6

Fabian Müller

We describe the birational model of M6 given by quadric hyperplane sections
of the degree-5 del Pezzo surface. In the spirit of the genus-4 case treated by
Fedorchuk, we show that it is the last nontrivial space in the log minimal model
program for M6. We also obtain a new upper bound for the moving slope of the
moduli space.

1. Introduction

A general smooth curve C of genus 6 has five planar sextic models with four
nodes in general linear position. Blowing up these four points and embedding the
resulting surface in P5 via its complete anticanonical linear series, one finds that
the canonical model of C is a quadric hyperplane section of a degree-5 del Pezzo
surface S. As any four general points in P2 are projectively equivalent, this surface
is unique up to isomorphism. Its automorphism group is finite and isomorphic
to the symmetric group S5 (see, e.g., [Shepherd-Barron 1989]). The surface S
contains ten (−1)-curves, which are the four exceptional divisors of the blowup,
together with the proper transforms of the six lines through pairs of the points.
There are five ways of choosing four nonintersecting (−1)-curves on S, inducing
five blowdown maps S→ P2, and restricting to the five g2

6’s on C . Residual to
the latter are five g1

4’s, which can be seen in each planar model as the projection
maps from the four nodes, together with the map that is induced on C by the linear
system of conics passing through the nodes.

This description gives rise to a birational map

ϕ :M6 99K X6 := |−2KS|/Aut(S),

which is well defined and injective on the sublocus (M6 ∪1
irr
0 ) \GP6. Here 1irr

0
denotes the locus of irreducible singular stable curves, and GP6 is the closure of
the Gieseker–Petri divisor of curves having fewer than five g1

4’s (or residually, g2
6’s).

These have planar sextic models in which the nodes fail to be in general linear
position, which forces the anticanonical image of the blown-up P2 to become

MSC2010: primary 14H10; secondary 14E30, 14H45.
Keywords: moduli space of curves, genus 6, log canonical model, moving slope.
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singular. In the generic case, exactly three of the nodes become collinear, and the
line through them is a (−2)-curve that gets contracted to an A1 singularity. The
class of the Gieseker–Petri divisor is computed in [Eisenbud and Harris 1987b] as[

GP6
]
= 94λ− 12δ0− 50δ1− 78δ2− 88δ3.

It is an extremal effective divisor of minimal slope on M6 [Chang and Ran 1991].
The aim of this article is to study the birational model X6, determine its place

within the log minimal model program of M6, and use it to derive an upper bound
on the moving slope of this space. In order to do so, we will start in Section 2
by determining explicitly the way in which ϕ extends to the generic points of the
divisors 1i for i = 1, 2, 3 and of GP6. The divisors 11 and 12 are shown to
be contracted by 1 and 4 dimensions as the low-genus components are replaced
by a cusp and an A5 singularity, respectively. The image of 13 is at most one-
dimensional, and GP6 turns out to be contracted to a point. The curves parametrized
by the latter two are shown to be mapped to the classes of certain nonreduced degree-
10 curves on S.

In Section 3, we will then construct test families along which ϕ is defined and
determine their intersection numbers with the standard generators of Pic(M6) as
well as with ϕ∗OX6(1). Having enough of those enables us in Section 4 to finally
compute the class of the latter. This computation is then used to establish the upper
bound s ′(M6) ≤

102
13 for the moving slope of M6 as well as to show that the log

canonical model M6(α) is isomorphic to X6 for 16
47 < α ≤

35
102 and becomes trivial

below this point.

2. Defining ϕ in codimension 1

In this section, we will see how ϕ is defined on the generic points of the codimension-
one subloci of M6 parametrizing curves whose canonical image does not lie on
S. As mentioned in the introduction, these are the divisors 1i , i = 1, 2, 3, as well
as GP6, and they will turn out to constitute exactly the exceptional locus of ϕ.

Proposition 2.1. A curve C = C1 ∪p C2 ∈ 11 with p not a Weierstraß point
on C2 ∈M5 is mapped to the class of a cuspidal curve whose pointed normalization
is (C2, p). In particular, the map ϕ contracts 11 by one dimension.

Proof. This follows readily from the existence of a moduli space for pseudostable
curves [Schubert 1991]. More concretely, let π : C→ B be a flat family of genus-6
curves whose general fiber is smooth and Gieseker–Petri general and with special
fiber C . Then the twisted linear system |ωπ (C1)| maps C to a flat family of curves
in |−2KS|. It restricts to OC1 on C1 and to ωC2(2p) on C2, so it contracts C1 and
maps C2 to a cuspidal curve of arithmetic genus 6, which lies on a smooth del Pezzo
surface. �
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Proposition 2.2. Let C = C1 ∪p C2 ∈12 be a curve such that

• the component C2 ∈M4 is Gieseker–Petri general and

• p is not a Weierstraß point on either component.

Then C is mapped to the class of a curve consisting of C2 together with a line that
is 3-tangent to it at p. In particular, the map ϕ restricted to 12 has 4-dimensional
fibers.

Proof. Let C→ B be a flat family of genus-6 curves whose general fiber is smooth
and Gieseker–Petri general and with special fiber C . Blow up the hyperelliptic
conjugate p̃ ∈ C1 of p, and let π : C′→ B be the resulting family with central
fiber C ′ and exceptional divisor R. Then the twisted line bundle L := ωπ (2C1)

restricts to ωC2(3p), OC1 , and OR(1) on the respective components of C ′. By a
detailed analysis, one can see that the family of linear systems (L, π∗ωπ ) restricts
to |ωC2(3p)| on C2 and maps R to the 3-tangent line at p while contracting C1. A
similar but harder analysis of this kind is carried out in Lemma 2.5 for the case
of 13, to which we refer.

In order to see that the central fiber lies on S as a section of −2KS , it suffices to
observe that a generic pointed curve (C2, p) ∈M4,1 has three quintic planar models
with a flex at p. Each such model has two nodes, projecting from which gives the
two g1

3’s. The 3-tangent line R at p meets C2 at two other points, so C2 ∪ R is a
plane curve of degree 6 with four nodes (and an A5 singularity). Blowing up the four
nodes, which for generic (C2, p) will be in general linear position, gives the claim.

For showing that the flat limit is unique, it suffices by [Fedorchuk 2012, Lemma
3.10] to show that, if C ′ is any curve in a small punctured neighborhood of R∪p C2

inside |−2KS|, then C is not the stable reduction of C ′ in any family in which it
occurs as the central fiber. If C ′ is smooth, this is obviously satisfied, so assume
it is still singular. If C ′ retains an A5 singularity, then its genus-4 component must
be different from (C2, p) since C2 has only a finite number of g2

5’s with a flex at p.
Thus, its stable reduction cannot be isomorphic to C . If on the other hand the type
of singularity changes, it can only become an Ak singularity with 1 ≤ k ≤ 4. In
case k ≤ 3, any irreducible component arising in the stable reduction has genus
at most 1 while for k = 4 the stable tail is always a genus-2 curve attached at a
Weierstraß point [Hassett 2000, Section 6]. Thus, the stable reduction cannot be
isomorphic to C in these cases either. �

Proposition 2.3. Let C =C1∪p C2 ∈13 be a curve such that, on both components,

• p is not a Weierstraß point and

• p is not in the support of any odd theta characteristic (in particular, neither
component is hyperelliptic).
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Figure 1. The central curve C ′.

Then C is mapped to the class of two times a twisted cubic on S together with two
(possibly reducible) conics meeting it tangentially. In particular, the image of 13

under ϕ is at most 1-dimensional.

Proof. Let C→ B be a flat family of genus-6 curves whose general fiber is smooth
and Gieseker–Petri general and with special fiber C . By assumption, the two base
points of |ωCi (−2p)| are distinct from each other and from p for i = 1, 2. Blow
up the total space C at p and at these four base points. Let π : C′→ B denote the
resulting family with central fiber C ′ = C1+C2+ R +

∑
Ri j , where Ci are the

proper transforms of the genus-3 components and R and Ri j are the exceptional
divisors over p and the base points, respectively. For i, j = 1, 2, denote by pi j the
point of intersection of Ci with Ri j and by pi the point of intersection of Ci with R
(see Figure 1).

Consider the twisted sheaf L := ωπ
(
3(C1+C2)+

∑
Ri j
)

on C′. On the various
components of C ′, it restricts to OCi , OR(6), and ORi j (1), respectively. The push-
forward π∗L is not locally free (the central fiber has dimension 7 instead of 6),
but it contains π∗ωπ as a locally free rank-6 subsheaf. The central fiber V of the
image of this sheaf in π∗L is described in Lemma 2.5. The induced linear system
(L|C ′, V ) maps C ′ to the curve C ′′ = R+ 2R1+ 2R2 ⊆ P5, which consists of the
middle rational component R embedded as a degree-6 curve together with twice the
tangent lines R1 and R2 at p1 and p2. The genus-3 components Ci are contracted
to the points pi . If one introduces coordinates [x0 : · · · : x5] in P5 corresponding to
the basis of V given in Lemma 2.5, the image curve lies on the variety

S̃2,3 =
⋃

[λ:µ]∈P1

ϕ1([λ : µ])ϕ2([λ : µ]),
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where
ϕ1([λ : µ]) := [λ

3
: 0 : λ2µ : λµ2

: 0 : µ3
],

ϕ2([λ : µ]) := [0 : λ2
: 0 : 0 : µ2

: 0],

which is a projection of the rational normal scroll S2,3 ⊆ P6 from a point in the
plane of the directrix. This surface is among the possible degenerations of the
degree-5 del Pezzo surface investigated in [Coskun 2006, Proposition 3.2] and has
the same Betti diagram. In equations, it is given by

S̃2,3 =

{
rk
(

x0 x1 x2

x3 x4 x5

)
≤ 1

}
∩

{
rk
(

x0 x2 x3

x2 x3 x5

)
≤ 1

}
,

and C ′′ is a quadric section cut out for example by x1x4− x0x5. When restricted to
the directrix, the image of the projection is the line L̃ = {x0 = x2 = x3 = x5 = 0},
which is the singular locus of S̃2,3. The two branch points qi of this restriction are
the intersection points of the double lines Ri with L̃ .

The image of C′ under the family of linear systems (L, π∗ωπ ) lies on a flat
family of surfaces S ⊆ P5

× B with general fiber S and special fiber S̃2,3. We
will construct a birational modification of S whose central fiber is isomorphic
to S. Let π ′ : S′→ B be the family obtained by blowing up L̃ and S′ ⊆ S′ the
exceptional divisor. The proper transform of S̃2,3 in S′ is S2,3, and the intersection
curve L = S2,3 ∩ S′ is its directrix.

We want to show that S′ ∼= S. The ten (−1)-curves of the generic fiber cannot
all specialize to points in the central limit since then the whole surface S would
be contracted, contradicting flatness. Any exceptional curve that is not contracted
must go to L̃ in the limit since it is the only curve on S̃2,3 having a normal sheaf of
negative degree. By a chase around the intersection graph of the (−1)-curves on S,
one can see that, if one of them is mapped dominantly to L̃ , then at least four of
them are. Since the graph is connected, the rest of them get mapped to points that
lie on L̃ . Using a base change ramified over 0 if necessary, we may assume that
limits of noncontracted curves get separated in S′ while the contracted ones are
blown up to lines. Thus, there are ten distinct (−1)-curves on S′, which by the list
of possible limits in [Coskun 2006] forces it to be isomorphic to S (note that there
are at most seven (−1)-curves on a singular degree-5 del Pezzo surface [Coray and
Tsfasman 1988, Proposition 8.5]).

It remains to see what happens to the curve C ′′ in the process. Denote by
ψ :S′→P5

×B the map induced by the family of linear systems (ω∨π ′(S2,3), π
′
∗
ω∨π ′).

This restricts to −KS′ on S′ and to a subsystem of |3F | on S2,3. Thus, the map ψ
contracts the latter and has degree 3 on L . This implies that OS′(L) = ρ∗OP2(1)
for one of the five maps ρ : S′ → P2, and there are exactly four exceptional
curves E1, . . . , E4 ⊆ S′ that do not meet L . The blowdown fibration on S′ is given
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Figure 2. Two possibilities for the image of C under ϕ and the
proper transform of the latter after blowing up the nodes.

by
∣∣2L−

∑
Ei
∣∣, and it contains exactly 3 reducible conics. The flat pullback of C ′′

to S′ contains the two conics in the fibration that meet L at the ramification points
of the map L→ L̃ , and the map ψ restricted to C ′′ contracts the two double lines Ri

to the points qi and maps R doubly onto L . Thus, the flat limit of C ′′ consists of
twice the line L together with the two conics in the fibration which are tangent to L
at the points qi . Up to automorphisms, such a configuration has a 1-dimensional
family of moduli, so the image of 13 under ϕ is at most 1-dimensional. �

Remark 2.4. The image curve ϕ(C) has two possible kinds of nonreduced planar
singularities shown in Figure 2. The one on the left with local equation y2(y−x2)=0
appears in the proof of Proposition 2.3 in the curve C ′′. For the second one with
equation y2(y2

− x2)= 0, one can see directly using an appropriate family that it
has the generic smooth genus 3 curve in its variety of stable tails. We will use this
construction in the proof of Lemma 3.5.

Lemma 2.5. Let C′ and L be constructed as in the proof of Proposition 2.3, and
let V be the central fiber of the image of π∗ωπ ↪→ π∗L. Choose coordinates [s : t]
on each rational component such that on R1 j the coordinate t is centered at p1 j ,
on R2 j the coordinate s is centered at p2 j ( j = 1, 2), and on R the coordinate s is
centered at p1 and t at p2. Then V is spanned by the following sections (on Ci the
sections are constants and not listed in the table):

R11 R12 R R21 R22

0 0 s6 t t
0 0 s5t s s
0 0 s4t2 0 0
0 0 s2t4 0 0
t t st5 0 0
s s t6 0 0
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Proof. Let `R = (LR, VR) be the R-aspect of the unique limit canonical series on
the central fiber of C′. By [Eisenbud and Harris 1987a, Theorem 2.2], we have that

LR = ωπ
(
5(C1+C2)+ 4

∑
Ri j
)∣∣

R = OR(10)

and `R has vanishing sequence a`R(pi )= (2, 3, 4, 6, 7, 8) at both pi , so

VR = s2t2
〈s6, s5t, s4t2, s2t4, st5, t6

〉.

Since on R the inclusion L|R ↪→ LR restricts to OR(6) ↪→ OR(10), σ 7→ s2t2σ ,
we have that s2t2V |R ⊆ VR . Since the dimensions match, the claim for the central
column follows. By dimension considerations, it is clear that L must restrict to the
complete linear series |ORi j (1)| on Ri j .

It remains to show that, if a section σ ∈ V fulfills ordpi
(σ |R)≥ 2, then σ |Ri j = 0

for j = 1, 2. For this, let σCi ∈ H 0(C,OC′(Ci )|C) be the restriction of a gener-
ating section, and let ϕi : H 0(C,L(−Ci )|C) → H 0(C,L|C) be the map given
by σ 7→ σCi · σ . For a divisor D on C′ and k ∈ N, introduce the subspaces

Vi,k(D) :=
{
σ ∈ H 0(C,L⊗OC′(D)|C)

∣∣ ordpi
(σ |R)≥ k

}
,

Vi,k := Vi,k(0).

Since L|Ci = OCi , we have that im(ϕi ) = Vi,1. Moreover, we certainly have the
inclusion ϕi (Vi,1(−Ci ))⊆ Vi,2 and

codim(ϕi (Vi,1(−Ci )), Vi,1)≤ codim(Vi,1(−Ci ), H 0(C,L(−Ci )|C))

≤ 1.

From the description of the sections on R, it is apparent that Vi,2 ( Vi,1, so we have
in fact ϕi (Vi,1(−Ci ))= Vi,2. Thus, we get

Vi,2 = ϕi (Vi,1(−Ci ))

= ϕi
({
σ ∈ H 0(C,L(−Ci )|C)

∣∣ σ |Ri j = 0 for j = 1, 2
})

⊆
{
σ ∈ H 0(C,L|C)

∣∣ σ |Ri j = 0 for j = 1, 2
}
. �

Proposition 2.6. Let C be a smooth Gieseker–Petri special curve whose canonical
image lies on a singular del Pezzo surface with a unique A1 singularity but not
passing through that singularity. Then ϕ maps C to a nonreduced degree-10 curve
on S consisting of four times a line together with two times each of the three lines
meeting it. In particular, ϕ contracts GP6 to a point.

Proof. This can be done by a geometric construction similar to [Fedorchuk 2012,
Theorem 3.13]. Here we follow a simpler approach from [Jensen 2013]. A curve C
as above has a planar sextic model with three collinear nodes, so the map G1

4→M6

is simply ramified over C . Thus, a neighborhood of the ramification point will map
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a (double cover of a) neighborhood of C to a family of (4, 4)-curves on P1
×P1.

The image of the general fiber will be an irreducible curve with three nodes while
the special fiber goes to four times the diagonal. Blowing up the nodes gives a flat
family on S with central fiber as described. �

Remark 2.7. A pencil of antibicanonical curves on a singular del Pezzo surface as
above has slope 47

6 like in the smooth case (for which see Lemma 3.1). This would
seem to contradict the fact that ϕ contracts the Gieseker–Petri divisor, which has
the same slope, to a point. However, any such pencil will contain a curve C having
a node at the singular point. The normalization of such a curve is a trigonal curve of
genus 5 since blowing up the node and blowing down four disjoint (−1)-curves gives
a planar quintic model of C together with a line. Using this model, one can show
that ϕ maps C to a configuration consisting of three times a line on S together with
three lines and two conics meeting it. This arrangement obviously has moduli, so we
deduce that ϕ is not defined on 1trig

0 := {C ∈10 | C has a trigonal normalization},
which is a component of 10 ∩GP6.

3. Test families

In order to compute the class of ϕ∗OX6(1), we now construct some test families
and record their intersection numbers with the standard generators of Pic(M6) and
with ϕ∗OX6(1). Those numbers not mentioned in the statements of the lemmas are
implied to be 0.

Lemma 3.1. A generic pencil T1 of quadric hyperplane sections of S has intersection
numbers

T1 · λ= 6, T1 · δ0 = 47, T1 ·ϕ
∗OX6(1)= 1.

Proof. Since all members of T1 are irreducible, it suffices to show that ϕ∗λ= OV (6)
and ϕ∗δ = OV (47) on V := |−2KS| ∼= P15. This is completely parallel to the
computation in [Fedorchuk 2012, Proposition 3.2]. If Y := S × V and C ⊆ Y
denotes the universal curve, we have OY (C) = OY (−2KS, 1), so by adjunction,
ωC/V = OC(−KS, 1). Applying π2∗ to the exact sequence

0→ OY (KS, 0)→ OY (−KS, 1)→ ωC/V → 0,

we find that

π2∗ωC/V ∼= π2∗OY (−KS, 1)∼= H 0(S,−KS)⊗OV (1)

since π2∗OY (KS, 0)= R1π2∗OY (KS, 0)= 0 by Kodaira vanishing. Therefore, we
obtain that ϕ∗λ= detπ2∗ωC/V = OV (6).

We also find that

ϕ∗κ = π2∗(ω
2
C/V )= π2∗((−2KS, 1) · (−KS, 1)2)= OV (25),
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and from κ = 12λ− δ, we deduce that ϕ∗δ = OV (47). �

Lemma 3.2. Let T2 be the family obtained by attaching a fixed genus-5 curve to a
base point of a general pencil of plane cubics. Then T2 has intersection numbers

T2 · λ= 1, T2 · δ0 = 12, T2 · δ1 =−1, T2 ·ϕ
∗OX6(1)= 0.

Proof. The first three intersection numbers are standard. By Proposition 2.1, ϕ is
defined on T2 and contracts it to a point. �

Lemma 3.3. There is a family T3 of stable genus-6 curves having intersection
numbers

T3 · λ= 3, T3 · δ0 = 30, T3 · δ2 =−1, T3 ·ϕ
∗OX6(1)= 0.

Proof. In [Alper et al. 2011, Example 6.1], the authors construct for all k ≥ 2
a complete family Bk of stable hyperelliptic curves of genus k with two marked
points that are conjugate under the hyperelliptic involution. It is obtained by taking
a double cover of the Hirzebruch surface F1 (considered as a P1-bundle over P1),
branched along 2k + 2 general sections of self-intersection 1. The markings are
given as the preimage of the unique (−1)-curve, which does not meet the branch
locus. The covering map to F1 restricts to the hyperelliptic g1

2 on every fiber, and
since the two markings are always distinct, they are never Weierstraß points.

From the family B2, we construct our family T3 by forgetting one marking and
attaching at the other a fixed 1-pointed curve of genus 4. Then the first three
intersection numbers directly carry over from the computation in [Alper et al. 2011,
Example 6.1] (note that T3 ·δ2 =−B2 ·ψ1). The last one follows by Proposition 2.2
since ϕ is defined on T3 and contracts it to a point. �

The following computation is used in the proof of Lemma 3.5:

Lemma 3.4. Let X be a smooth threefold, C⊆ X a surface with an ordinary k-fold
point p, π : X̃ → X the blowup at p, and C̃ the proper transform of C. Then
χ(OC̃)= χ(OC)−

(k
3

)
.

Proof. Let E ⊆ X̃ be the exceptional divisor and C = E ∩ C̃. By adjunction,

KC̃ = (K X̃ + C̃)|C̃

= (π∗K X + 2E +π∗C− k E)|C̃
= π∗KC− (k− 2)C,

so Riemann–Roch for surfaces gives

χ(OC̃)= χ(OC̃(−kC))− kC2

= χ(OC̃(−kC))+ k2.
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From the exact sequence

0→ OX (−C)→ OX̃ (−k E)→ OC̃(−kC)→ 0,

we get that
χ(OC̃(−kC))= χ(OX̃ (−k E))−χ(OX )+χ(OC).

Finally, using induction on the exact sequence

0→ OX̃ (−(i + 1)E)→ OX̃ (−i E)→ OP2(i)→ 0

for i = 0, . . . , k− 1, we conclude that

χ(OX̃ (−k E))= χ(OX )−

k−1∑
i=0

i2
+ 3i + 2

2
= χ(OX )−

k3
+ 3k2

+ 2k
6

.

Putting these three equations together gives the result. �

Lemma 3.5. There is a family T4 of stable genus-6 curves having intersection
numbers

T4 · λ= 16, T4 · δ0 = 118, T4 · δ3 = 1, T4 ·ϕ
∗OX6(1)= 4.

Proof. Let X be the blowup of P2
× P1 at four constant sections of the second

projection, and let C,C′ ⊆ X denote the proper transforms of degree-4 families
of plane sextic curves with assigned nodes at the blown-up points. Suppose C is
chosen in such a way that it contains the curve pictured in Figure 2 on the right as
a member and that the fourfold points of this fiber are also ordinary fourfold points
of the total space while away from this special fiber the family is smooth and all
singular fibers are irreducible nodal. The stable reduction of the special fiber is then
a 13-curve, which we furthermore assume to lie in the locus where the map ϕ is
defined. The family C′ is chosen generically so that all its members are irreducible
stable curves.

Let π : X̃→ X be the blowup of X at the two fourfold points of C; denote by C̃

the proper transform of C and by E1, E2 ⊆ X̃ the exceptional divisors of π . Then
C̃= π∗C− 4E1− 4E2 and K X̃ = π

∗K X + 2E1+ 2E2, so

K 2
C̃
= (K X̃ + C̃)2C̃

= (π∗(K X +C)− 2(E1+ E2))
2(π∗C− 4(E1+ E2))

= (K X +C′)2C′− 16(E3
1 + E3

2)= K 2
C′ − 32.

By Lemma 3.4, we find that

χ(OC̃)= χ(OC)− 2
(4

3

)
= χ(OC′)− 8,
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so c2(C̃)= c2(C
′)−64 by Noether’s formula. If T4 and T ′4 denote the families in M6

induced by C̃ and C′, respectively, we find that T4 · λ= T ′4 · λ− 8= 4 · 6− 8= 16
(note that T ′4 is numerically equivalent to 4T1, where T1 is the pencil described in
Lemma 3.1). Moreover, the difference in topological Euler characteristics between
a general (smooth) fiber and the special (blown-up) fiber of C̃ is 6; thus, we find
T4 · δ0 = T ′4 · δ0− 64− 6= 4 · 47− 70= 118. Finally, T4 is constructed in such a
way that T4 · δ3 = 1 and T4 ·ϕ

∗OX6(1)= 4. �

Lemma 3.6. There is a family T5 of stable genus-6 curves having intersection
numbers

T5 · λ= 21, T5 · δ0 = 164, T5 ·ϕ
∗OX6(1)= 10.

Proof. In order to construct T5, we take a family of quadric hyperplane sections
of a family of generically smooth anticanonically embedded del Pezzo surfaces
with special fibers having A1 singularities. More concretely, let S̃ be the blowup
of P2

×P1 along the four sections

61 = ([1 : 0 : 0], [λ : µ]),

62 = ([0 : 1 : 0], [λ : µ]),

63 = ([0 : 0 : 1], [λ : µ]),

64 = ([λ+µ : λ : µ], [λ : µ]),

where [λ : µ] ∈ P1 is the base parameter. We map S̃ into P7
× P1 by taking a

system of eight (3, 1)-forms that span the space of anticanonical forms in every
fiber as given for example by

f ([x0 : x1 : x2])=
[
x0x1(λx0− (λ+µ)x1) : x2

0(µx1− λx2)

: x0x2(µx0− (λ+µ)x2) : x0x2(µx1− λx2)

: x0x1(µx1− λx2) : x2
1(µx0− (λ+µ)x2)

: x1x2(µx1− λx2) : x2
2(λx0− (λ+µ)x1)

]
.

This maps every fiber anticanonically into a 5-dimensional subspace of P7 that
depends on [λ : µ] ∈ P1. The image of the blown-up P2 is isomorphic to S except
for the parameter values [λ : µ] = [1 : 0], [0 : 1], and [1 : −1], where three base
points lie on a line that gets contracted to an A1 singularity under the anticanonical
embedding.

Denote the image of f by S; let H1 and H2 be the generators of Pic(P7
×P1)

and H̃1, H̃2, E1, . . . , E4 those of Pic(S̃). Note that f ∗H1 = 3H̃1−
∑

Ei + H̃2 and
f ∗H2 = H̃2. We claim that

S≡ 5H 5
1 + 9H 4

1 H2 ∈ A∗(P7
×P1).
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Indeed, the first coefficient is just the degree in a fiber while the second one is
computed as

S · H 3
1 =

(
3H̃1−

4∑
i=1

Ei + H̃2

)3

= 27H̃ 2
1 H̃2+ 3

4∑
i=1

H̃2 E2
i − E3

4 + 9H̃1 E2
4

= 27− 12+ 3− 9= 9.

Here we have used that H̃2 E2
i =−1 for i = 1, . . . , 4 as it is just the self-intersection

of the exceptional P1 in a fiber. Moreover, by the normal bundle exact sequence,

E3
i = KP2×P1 ·6i − deg K6i = (−3H̃1− 2H̃2)H̃ 2

1 + 2= 0

for i = 1, 2, 3, and similarly,

E3
4 = (−3H̃1− 2H̃2)(H̃ 2

1 + H̃1 H̃2)+ 2=−3.

Finally, H̃1 and H̃2 both restrict to the same thing on E4 (namely the class of a fiber
of the fibration E4→64), so H̃1 E2

4 = H̃2 E2
4 =−1.

Let C be the family cut out on S by a generic hypersurface of bidegree (2, 2)
so that C≡ 10H 6

1 + 28H 5
1 H2. Since KS̃ = OS̃(−3H̃1+

∑
Ei − 2H̃2), we find that

KS = OS(−H1− H2). Thus, ωS/P1 = OS(−H1+ H2), and by adjunction, ωC/P1 =

OC(H1+ 3H2). If T5 denotes the family induced in M6 by C, we then find that

T5 · κ = ω
2
C/P1 = (H1+ 3H2)

2
· (10H 6

1 + 28H 5
1 H2)= 88.

Next we note that OS(−C)= 2KS, so applying the Riemann–Roch theorem for
threefolds to the short exact sequence 0→ 2KS→ OS→ OC→ 0, we get

χ(OC)= χ(OS)−χ(2KS)

=−
1
2 K 3

S+ 4χ(OS)

=−
1
2(−H1− H2)

3(5H 5
1 + 9H 4

1 H2)+ 4

= 16,

where we used that χ(OS)= 1 because S is rational. Hence, if C denotes a generic
fiber of C, we get that T5 · λ = χ(OC)− (g(P1)− 1)(g(C)− 1) = 21. Finally, by
Mumford’s relation, we obtain T5 · δ0 = 12 · 21− 88= 164.

For computing T5 ·ϕ
∗OX6(1), we note that we can also construct S as follows:

blow up P2
×P1 at [1 :0 :0], [0 :1 :0], [0 :0 :1], and [1 :1 :1], embed it into P7

×P1 via

f ′([x0 : x1 : x2])=
[
x0x1(x0− x1) : x2

0(x1− x2) : x0x2(x0− x2) : x0x2(x1− x2)

: x0x1(x1− x2) : x2
1(x0− x2) : x1x2(x1− x2) : x2

2(x0− x1)
]
,
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and take the proper transform of this constant family under the birational map
ψ : P7

×P1 99K P7
×P1 given by

ψ([y0 : · · · : y7])=
[
λ2(λ+µ)2 y0 : λµ(λ+µ)

2 y1 : µ
2(λ+µ)2 y2 : λµ

2(λ+µ)y3

: λ2µ(λ+µ)y4 : λ
2µ(λ+µ)y5 : λ

2µ2 y6 : λµ2(λ+µ)y7
]
.

Denoting by S′ ∼= S×P1 the image of f ′, the intersection number T5 · ϕ
∗O(1) is

given by the number of curves in T5 passing through a general fixed point of S. Since
two general hyperplane sections cut out five general points on S, we compute that

T5 ·ϕ
∗OX6(1)=

1
5 OS′(H1)

2
·ψ∗OS(C)=

1
5 H 5

1 · H
2
1 · (2H1+ 10H2)= 10. �

4. The moving slope of M6

Proposition 4.1. The moving slope of M6 fulfills 47
6 ≤ s ′(M6)≤

102
13 .

Proof. The lower bound is the slope of the effective cone of M6 and was known
before [Farkas 2010]. Using the test families T1 through T5 described in Section 3,
we get that

ϕ∗OX6(1)= 102λ− 13δ0− 54δ1− 84δ2− 94δ3.

Since OX6(1) is ample on X6 and ϕ is a rational contraction, this is a moving divisor
on M6, which gives the upper bound on the moving slope. �

Remark 4.2. Note that 102
13 ≈ 7.846 is strictly smaller than 65

8 = 8.125, which was
the upper bound previously obtained in [Farkas 2010]. However, since our families
T4 and T5 are not covering families for divisors contracted by ϕ, we cannot argue
as in [Fedorchuk 2012, Corollary 3.7]. In particular, the actual moving slope may
be lower than the upper bound given here.

Proposition 4.3. The log canonical model M6(α) is isomorphic to X6 whenever
16
47 < α ≤

35
102 . It is a point for α = 16

47 , and empty for α < 16
47 .

Proof. This is completely analogous to [Fedorchuk 2012, Corollary 3.6]. Since

(KM6
+αδ)−ϕ∗ϕ∗(KM6

+αδ)

= (13λ− (2−α)δ)−ϕ∗ϕ∗(13λ− (2−α)δ)

=
( 35

2 − 51α
)[

GP6
]
+ (9− 11α)δ1+ (19− 29α)δ2+ (34− 96α)δ3

is an effective exceptional divisor for ϕ as long as α ≤ 35
102 , the upper bound follows.

Moreover, ϕ∗(13λ− (2−α)δ)= OX6(47α− 16), which gives the lower bound. �
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Poisson structures and star products
on quasimodular forms
François Dumas and Emmanuel Royer

We construct and classify all Poisson structures on quasimodular forms that extend
the one coming from the first Rankin–Cohen bracket on the modular forms. We
use them to build formal deformations on the algebra of quasimodular forms.

1. Introduction

Henri Cohen [1975, Theorem 7.1] defined a collection of bidifferential operators
on modular forms. Let n be a positive integer, f a modular form of weight k, and
g a modular form of weight `. The n-th Rankin–Cohen bracket of f and g is the
modular form of weight k+ `+ 2n defined by

RCn( f, g)=
n∑

r=0

(−1)r
(k+n−1

n−r

)(
`+n−1

r

)
Dr f Dn−rg

(
D=

1
2π i

d
dz

)
.

The algebraic structure of these brackets has been studied in the seminal [Zagier
1994]. That Rankin–Cohen brackets define a formal deformation of the algebra of
modular forms has been widely studied. Important contributions are [Unterberger
and Unterberger 1996; Cohen et al. 1997; Yao 2007; Bieliavsky et al. 2007; Pevzner
2012; Kobayashi and Pevzner 2013].

In this paper, we construct formal deformations of the algebra M≤∞
∗

of quasi-
modular forms. This algebra is generated over C by the three Eisenstein series
E2, E4 and E6. The algebra M∗ of modular forms is the subalgebra generated by
E4 and E6. As a first step, we classify the admissible Poisson structures of M≤∞

∗
.

A Poisson bracket { , } on M≤∞
∗

is admissible if

(i) the restriction of { , } to the algebra M∗ of modular forms is the first Rankin–
Cohen bracket RC1 and

We thank François Martin and Anne Pichereau for many fruitful discussions.
MSC2010: primary 17B63; secondary 11F25, 11F11, 16W25.
Keywords: quasimodular forms, Poisson brackets, Rankin–Cohen brackets, formal deformation,

Eholzer product, star product.
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(ii) it satisfies {M≤s
k ,M≤t

` } ⊂M≤s+t
k+`+2 for any even integers k, ` and any integers s

and t ,

where M≤s
k is the vector space of quasimodular forms of weight k and depth less

than s. The vector space of parabolic modular forms of weight 12 is one-dimensional.
We choose 1= E3

4−E2
6 a generator.

Proposition A (first family of Poisson brackets). For any λ ∈ C∗, there exists an
admissible Poisson bracket { , }λ on the algebra of quasimodular forms defined by
the following values on the generators:

{E4,E6}λ =−21,

{E2,E4}λ =−
1
3(2E6E2− λE2

4),

{E2,E6}λ =−
1
2(2E2

4E2− λE4E6).

Moreover:

(i) For any λ ∈ C∗, the Poisson bracket { , }λ is not unimodular.

(ii) The Poisson algebras (M≤∞
∗
, { , }λ) and (M≤∞

∗
, { , }λ′) are Poisson modular

isomorphic for all λ and λ′ in C∗.

(iii) For any λ ∈ C∗, the Poisson centre of (M≤∞
∗
, { , }λ) is C.

Remark. A Poisson isomorphism ϕ on M≤∞
∗

is modular if ϕ(M∗)⊂M∗.

Thanks to (ii) in Proposition A, we restrict to the bracket { , }1. Following [Zagier
1994, Equation (38)], we consider the derivation w on M≤∞

∗
defined by

w( f )=
{1, f }1

121
.

A derivation δ on M≤∞
∗

is complex-like if δ(M≤s
k )⊂M≤s+1

k+2 for any k and s. The
set of complex-like derivations δ such that k f δ(g)− `gδ( f )= 0 for any f ∈M≤s

k
and g ∈M≤t

` , for any k, `, s, t , is a one-dimensional vector space over C. Let π be
a generator. The following theorem provides a first family of formal deformations
of the algebra M≤∞

∗
.

Theorem B. For any a∈C, let da be the derivation on M≤∞
∗

defined by da=aπ+w.

(i) For all quasimodular forms f and g of respective weights k and `, we have

{ f, g}1 = k f da(g)− `gda( f ).

(ii) More generally, for any a ∈ C, the brackets defined for any integer n ≥ 0 by

[ f, g]da,n =

n∑
r=0

(−1)r
(k+n−1

n−r

)(
`+n−1

r

)
dr

a( f )dn−r
a (g)

( f ∈M≤∞k , g ∈M≤∞` )
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satisfy
[M≤∞k ,M≤∞` ]da,n ⊂M≤∞k+`+2n

and define a formal deformation of M≤∞
∗

.

(iii) Moreover, [M≤s
k ,M≤t

` ]da,n ⊂M≤s+t
k+`+2n for all n, s, t, k, ` if and only if a = 0.

Remark. A generator π is defined by linear extension of π( f )= k f E2 for f any
quasimodular form of weight k. For this choice, the derivation da is defined on the
generators by

daE2 = 2aE2
2−

1
12 E4, daE4 = 4aE4E2−

1
3 E6, daE6 = 6aE6E2−

1
2 E2

4.

Proposition C (second family of Poisson brackets). For any α ∈ C, there exists an
admissible Poisson bracket ( , )α on the algebra of quasimodular forms defined by
the following values on the generators:

(E4,E6)α =−21, (E2,E4)α = αE6E2, (E2,E6)α =
3
2αE2

4E2.

Moreover:

(i) For any α ∈ C \ {4}, the Poisson bracket ( , )α is not unimodular. For α = 4,
the Poisson bracket ( , )4 is Jacobian (and hence unimodular) of potential
k0 =−21E2.

(ii) The Poisson algebras (M≤∞
∗
, ( , )α) and (M≤∞

∗
, ( , )α′) are Poisson modular

isomorphic if and only if α = α′.

(iii) For any α ∈ C,

(a) if α /∈Q, the Poisson centre of (M≤∞
∗
, ( , )α) is C;

(b) if α = 0, the Poisson centre of (M≤∞
∗
, ( , )α) is C[E2];

(c) if α = p/q with p ∈ Z∗ and q ∈ N∗, p and q coprimes, the Poisson centre
of (M≤∞

∗
, ( , )α) is

C if p < 0,

C[1pE4q
2 ] if p ≥ 1 is odd,

C[1uE2q
2 ] if p = 2u for odd u ≥ 1,

C[1vEq
2] if p = 4v with v ≥ 1.

Remark. The bracket ( , )0 is the trivial bracket.

This second family provides a new set of formal deformations of the algebra
of quasimodular forms. Following [Zagier 1994, Equation (38)], we consider the
derivation v defined on M≤∞

∗
by

v( f )=
(1, f )α

121
.
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Let us define Kα : M≤∞
∗
→ C by setting Kα( f )= k− (3α+ 2)s if f has weight k

and depth s. The set of complex-like derivations δ such that

Kα( f ) f δ(g)−Kα(g)gδ( f )= 0

for any f ∈M≤s
k and g ∈M≤t

` , for any k, `, s, t , is a one-dimensional vector space
over C. Let πα be a generator. We define

Ms
k =Mk−2sEs

2.

Theorem D. Let α ∈ C. For any b ∈ C, let δα,b be the derivation on M≤∞
∗

defined
by δα,b = bπα + v.

(i) For all f ∈Ms
k and g ∈Mt

`, we have

( f, g)α = (k− (3α+ 2)s) f δα,b(g)− (`− (3α+ 2)t)gδα,b( f )

for any f ∈Ms
k and g ∈Mt

`.

(ii) Moreover, the brackets defined for any integer n ≥ 0 by

[ f, g]Kα

δα,b,n

=

n∑
r=0

(−1)r
(k−(3α+2)s+n−1

n−r

)(
`−(3α+2)t+n−1

r

)
δr
α,b( f )δn−r

α,b (g)

for any f ∈Ms
k and g ∈Mt

` define a formal deformation of M≤∞
∗

satisfying

[M≤s
k ,M≤t

` ]
Kα

δα,b,n ⊂M≤s+t
k+`+2n

for all k, ` in 2N and s, t in N if and only if b = 0.

Remark. A generator πα is defined by linear extension of

πα( f )= [k− (3α+ 2)s] f E2 ( f ∈Ms
k).

For this choice, the derivation δα,b is defined on the generators by

δα,bE2 =−3bαE2
2, δα,bE4 = 4bE4E2−

1
3 E6, δα,bE6 = 6bE6E2−

1
2 E2

4.

To complete the classification of Poisson structures, we introduce a third family
of Poisson brackets. We note, however, that when µ 6= 0 this third family does not
lead to a formal deformation of M≤∞

∗
with the shape of Rankin–Cohen brackets

(see Section 4.3).

Proposition E (third family of Poisson brackets). For any µ ∈ C, there exists an
admissible Poisson bracket 〈 , 〉µ on the algebra of quasimodular forms defined by
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the following values on the generators:

〈E4,E6〉µ =−21,

〈E2,E4〉µ = 4E6E2+µE2
4,

〈E2,E6〉µ = 6E2
4E2− 2µE4E6.

Moreover:

(i) This Poisson bracket is Jacobian with potential

kµ =−21E2+µE2
4E6.

(ii) The Poisson algebras (M≤∞
∗
, 〈 , 〉µ) and (M≤∞

∗
, 〈 , 〉µ′) are Poisson modular

isomorphic for all µ and µ′ in C∗.

(iii) For any µ ∈ C, the Poisson centre of (M≤∞
∗
, 〈 , 〉µ) is the polynomial algebra

C[kµ].

Remark. We note that 〈 , 〉0 = ( , )4.

Finally, the following result implies that our classification is complete.

Theorem F. Up to Poisson modular isomorphism, the only distinct admissible
Poisson brackets on the algebra of quasimodular forms are { , }1, 〈 , 〉1 and the
family ( , )α for any α ∈ C.

Remark. We could endow the algebra of modular forms with another Poisson
structure b. If we require b(Mk,M`) ⊂ Mk+`+2, then b is necessarily defined by
b(E4,E6)=αE3

4+βE2
6 for some complex numbers α and β. If αβ 6= 0, then (M∗, b)

is Poisson isomorphic to (M∗,RC1) and is indeed studied by this work. If αβ = 0,
the Poisson algebras are no longer Poisson isomorphic (they do not have the same
group of automorphisms). This degenerate case deserves another study.

Remark. From an algebraic point of view, classifications of Poisson structures
and associated (co)homology for polynomial algebras in two variables appear in
[Monnier 2002; Pichereau 2006a; Roger and Vanhaecke 2002] for a Poisson bracket
on C[x, y] defined by {x, y}=ϕ(x, y) with ϕ a homogeneous or square-free weight-
homogeneous polynomial in C[x, y]. The algebra of modular forms M∗=C[E4,E6]

with the Poisson bracket defined by RC1 is the case A2 in the classification theorem
3.8 in [Monnier 2002]. Applying Propositions 4.10 and 4.11 of [Pichereau 2006a],
or Theorems 4.6 and 4.11 of [Monnier 2002], we can deduce that the Poisson
cohomology spaces HP1(M∗) and HP2(M∗) are of respective dimensions 1 and 2.
In three variables, the Poisson structures on the algebra M≤∞

∗
= C[E2,E4,E6] of

quasimodular forms arising from Theorem F do not fall under the classification of
[Dufour and Haraki 1991] since they are not quadratic. The (co)homological study
of Pichereau [2006a; 2006b] does not apply to the brackets { , }1 and ( , )α, since
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they are not Jacobian, or to the Jacobian bracket 〈 , 〉1, because its potential k1 does
not admit an isolated singularity at the origin.

2. Number theoretic and algebraic background

2.1. Quasimodular forms. The aim of this section is to provide the necessary
background on quasimodular forms. For details, the reader is advised to refer
to [Zagier 2008] or [Martin and Royer 2005]. On SL(2,Z), a modular form of
weight k ∈ 2N, k 6= 2, is a holomorphic function on the Poincaré upper half-plane
H= {z ∈ C : =z > 0} satisfying

(cz+ d)−k f
(

az+ b
cz+ d

)
= f (z)

for any
(

a b
c d

)
∈ SL(2,Z) and having Fourier expansion

f (z)=
∑
n≥0

f̂ (n)e2π inz.

We denote by Mk the finite-dimensional space of modular forms of weight k. The
algebra of modular forms is defined as the graded algebra

M∗ =
⊕
k∈2N
k 6=2

Mk .

Let k ≥ 2 be even. We define the Eisenstein series of weight k by

Ek(z)= 1−
2k
Bk

+∞∑
n=1

σk−1(n)e2π inz.

Here the rational numbers Bk are defined by their exponential generating series

+∞∑
n=0

Bn
tn

n!
=

t
et − 1

and σk−1 is the divisor function defined by

σk−1(n)=
∑
d | n
d>0

dk−1 (n ∈ N∗).

If k ≥ 4, the Eisenstein series Ek is a modular form of weight k and M∗ is the
polynomial algebra in the two algebraically independent Eisenstein series E4 and E6.
In other words,

M∗ = C[E4,E6], Mk =
⊕

(i, j)∈N2

4i+6 j=k

CEi
4E j

6.
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However, the Eisenstein series E2 is not a modular form. It satisfies

(cz+ d)−2E2

(
az+ b
cz+ d

)
= E2(z)+

6
π i

c
cz+ d

(z ∈H)

for any
(

a b
c d

)
∈ SL(2,Z). Moreover, the algebra of modular forms is not stable by

the normalised complex derivation

D=
1

2π i
d
dz
.

For example, we have the Ramanujan differential equations

DE2 =
1

12(E
2
2−E4), DE4 =

1
3(E4E2−E6), DE6 =

1
2(E6E2−E2

4).

To account for these observations, and using the fact that E2, E4 and E6 are al-
gebraically independent, we introduce the algebra M≤∞

∗
of quasimodular forms

defined as the polynomial algebra

M≤∞
∗
= C[E2,E4,E6] =M∗[E2].

More intrinsically, if for γ =
(

a b
c d

)
∈ SL(2,Z) we define

X(γ )= z 7→
c

cz+ d
and

f |kγ = z 7→ (cz+ d)−k f
(

az+ b
cz+ d

)
,

then a quasimodular form of weight k ∈ 2N and depth s ∈ N is a holomorphic
function f on H such that there exist holomorphic functions f0, . . . , fs ( fs 6= 0)
satisfying

f |kγ =
s∑

j=0

f j X(γ ) j

for any γ ∈ SL(2,Z). Moreover, it is required that any f j have a Fourier expansion

f j (z)=
∑
n≥0

f̂ j (n)e2π inz (z ∈H).

The zero function is supposed to have arbitrary weight and depth 0. We write
M≤∞k for the space of quasimodular forms of weight k and M≤s

k for the space
of quasimodular forms of weight k and depth less than or equal to s. We have
M≤0

k =Mk and

M≤s
k =

s⊕
j=0

Mk−2 j E
j
2, M≤∞

∗
=

⊕
k∈2N

M
≤k/2
k .
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Moreover, DM≤s
k ⊂M≤s+1

k+2 . Since the depth of a quasimodular form is nothing but
its degree as a polynomial in E2 with modular coefficients, we note that

M≤s
k =

s⊕
t=0

Mt
k, M≤∞

∗
=

⊕
k∈2N

k/2⊕
t=0

Mt
k,

where
Mt

k =Mk−2t Et
2 =

⊕
(i, j)∈N2

4i+6 j=k−2t

CEi
4E j

6Et
2.

An important element in our study will be the discriminant function 1= E3
4−E2

6.
We note that D1=1E2.

Let n be a nonnegative integer, f a modular form of weight k, and g a modular
form of weight `. The n-th Rankin–Cohen bracket of f and g is

RCn( f, g)=
n∑

r=0

(−1)r
(k+n−1

n−r

)(
`+n−1

r

)
Dr f Dn−rg.

This is a modular form of weight k+ `+ 2n. If f and g are quasimodular forms of
respective weights k and ` and respective depths s and t , their n-th Rankin–Cohen
bracket is defined in [Martin and Royer 2009] by

RCn( f, g)=
n∑

r=0

(−1)r
(k−s+n−1

n−r

)(
`−t+n−1

r

)
Dr f Dn−rg. (1)

This is a quasimodular form of weight k+ `+ 2n and minimal depth (that is s+ t).

2.2. Poisson algebra. The aim of this section is to give a brief account of what
is needed about Poisson algebra. For more details, the reader is advised to refer
to [Laurent-Gengoux et al. 2013]. A commutative C-algebra A is a Poisson algebra
if there exists a bilinear skew-symmetric map b : A× A→ A satisfying the two
conditions

• (Leibniz rule) b( f g, h)= f b(g, h)+ b( f, h)g and

• (Jacobi identity) b( f, b(g, h))+ b(g, b(h, f ))+ b(h, b( f, g))= 0

for all f , g and h in A. The bilinear map b is given the name of Poisson bracket.
If A is a finitely generated algebra with generators x1, . . . , xN , a Poisson bracket
b is entirely determined by its values b(xi , x j ) for i < j , where A is generated by
x1, . . . , xN . More precisely, we have

b( f, g)=
∑

0≤i< j≤N

(
∂ f
∂xi

∂g
∂x j
−
∂g
∂xi

∂ f
∂x j

)
b(xi , x j ) (2)

for f and g expressed as polynomials in x1, . . . , xN .
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If A = C[x, y], any p ∈ A determines a Poisson bracket satisfying b(x, y)= p.
However, if A = C[x, y, z], for any p, q and r in A, there exists a Poisson bracket
on A defined by

b(x, y)= r, b(y, z)= p and b(z, x)= q

if and only if
curl(p, q, r) · (p, q, r)= 0, (3)

where

curl(p, q, r)=
(
∂r
∂y
−
∂q
∂z
,
∂p
∂z
−
∂r
∂x
,
∂q
∂x
−
∂p
∂y

)
.

If condition (3) is satisfied, then (p, q, r) is called a Poissonian triple. A par-
ticular case is obtained if there exists k ∈ C[x, y, z] such that curl(p, q, r) =
(p, q, r)∧ grad k. The bracket b is said then to be unimodular. Among unimodular
brackets are the Jacobian brackets. A bracket b is Jacobian if (p, q, r)= grad k for
some polynomial k. The bracket b then satisfies

b( f, g)= jac( f, g, k) ( f, g ∈ A).

In this case, C[x, y, z] is said to have a Jacobian Poisson structure of potential (or
Casimir function) k. The Poissonian triple (p, q, r) is said then to be exact.

The Poisson centre (or zeroth Poisson cohomology group) of a Poisson algebra
A is the Poisson subalgebra

HP0(A)= {g ∈ A : b( f, g)= 0, ∀ f ∈ A}.

The Poisson centre is contained in the Poisson centraliser of any element in the
algebra: let f ∈ A; its Poisson centraliser is {g ∈ A : b( f, g)= 0}. The following
lemma computes the Poisson centre of polynomial algebras in three variables
equipped with a Jacobian Poisson structure. It allows one to recover, for example,
Proposition 4.2 of [Pichereau 2006b] in the particular case where the potential
is a weight-homogeneous polynomial with an isolated singularity. A polynomial
h ∈C[x, y, z] is indecomposable if there is no polynomial p ∈C[x] with deg p≥ 2
such that h = p ◦ ` for some ` ∈ C[x, y, z].

Lemma 1. Let C[x, y, z] be endowed with a Jacobian Poisson structure of noncon-
stant potential k. Its Poisson centre is C[k] if and only if k is indecomposable.

Proof. Assume that k is not indecomposable: k = p ◦ ` with p ∈ C[x], deg p = 2.
Then jac(`, g, k) = (p′ ◦ `) jac(`, g, `), and hence ` is in the Poisson centre, but
not in C[k]. Assume conversely that k is indecomposable. Let f be in the Poisson
centre; then the rank of the Jacobian matrix of ( f, g, k) is at most 2 for any g. If
it is 1 for any g then grad f and grad k are zero, which contradicts the fact that
k is not constant. Hence, for some g, the rank is 2. It follows (see, for example,
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[Gutierrez and Sevilla 2006, Theorem 6]) that there exist q ∈ C[x, y, z], F ∈ C[x]
and K ∈ C[x] such that f = F ◦ q and k = K ◦ q. Since k is indecomposable and
nonconstant, we have deg K = 1, and hence q and f are polynomials in k. �

If A and B are two Poisson algebras with respective Poisson brackets bA and bB ,
a map ϕ : A→ B is a morphism of Poisson algebras when it is a morphism of
algebras that satisfies

ϕ(bA( f, g))= bB(ϕ( f ), ϕ(g))

for any f and g in A. Two Poisson-isomorphic Poisson algebras have isomorphic
Poisson centres.

We detail now a canonical way to extend a Poisson structure from an algebra A
to a polynomial algebra A[x]. This construction is due to Sei-Qwon Oh [2006]. A
Poisson derivation of A is a derivation σ of A satisfying

σ(b( f, g))= b(σ ( f ), g)+ b( f, σ (g))

for all f and g in A. If σ is a Poisson derivation of A, a Poisson σ -derivation is a
derivation δ of A such that

δ(b( f, g))= b(δ( f ), g)+ b( f, δ(g))+ σ( f )δ(g)− δ( f )σ (g)

for all f and g in A.

Theorem 2 [Oh 2006]. Let (A, bA) be a Poisson algebra. Let σ and δ be linear
maps on A. The polynomial ring A[x] becomes a Poisson algebra with Poisson
brackets b defined by

b( f, g)= bA( f, g), b(x, f )= σ( f )x + δ( f )

for all f and g in A if and only if σ is a Poisson derivation and δ is a Poisson
σ -derivation. In this case, the Poisson algebra A[x] is said to be a Poisson–Ore
extension of A. It is denoted by A[x]σ,δ.

We describe also a general process to obtain Poisson brackets from a pair of
derivations. A pair (δ, d) of two derivations of A is solvable if there exists some
scalar α such that δ ◦ d− d ◦ δ = αd. In particular, a solvable pair (δ, d) is abelian
when α = 0.

Proposition 3. Let A be a commutative algebra, and d and δ two derivations of A.
Let b : A× A→ A be defined by

b( f, g)= δ( f )d(g)− d( f )δ(g) ( f, g ∈ A).

Then:

(i) The map b is bilinear skew-symmetric and satisfies the Leibniz rule.
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(ii) If (δ, d) is solvable, then b satisfies the Jacobi identity and so becomes a
Poisson bracket.

(iii) If (δ, d) is solvable, then d is a Poisson derivation for b.

Proof. Point (i) is immediate. Point (ii) is a consequence of the following computa-
tion. If (δ, d) is solvable with δd− dδ = αd and if B : A⊗ A⊗ A→ A is defined
by B( f, g, h)= b( f, b(g, h)), then

B= α(d⊗ d⊗ δ− d⊗ δ⊗ d)+
(
δ⊗ (d ◦ δ)⊗ d− d⊗ δ⊗ (d ◦ δ)

)
+
(
d⊗(d◦δ)⊗δ−δ⊗d⊗(d◦δ)

)
+(δ⊗δ⊗d2

−δ⊗d2
⊗δ)+(d⊗d⊗δ2

−d⊗δ2
⊗d).

Point (iii) is obtained by direct computation. �

A direct consequence of this proposition is the following corollary. If A =⊕
n≥0 An is a commutative graded algebra, a map κ : A→ C is graded-additive if

for any f ∈ Ak and g ∈ A` (for any k and `) we have κ( f g)= κ( f )+ κ(g).

Corollary 4. Let A =
⊕

n≥0 An be a commutative graded algebra. Let κ : A→ C

be a graded-additive map. Let d be a homogeneous derivation of A (there exists
e ≥ 0 such that dAn ⊂ An+e for any e ≥ 0). Then the bracket defined on A by the
bilinear extension of

b( f, g)= κ( f ) f d(g)− κ(g)gd( f ) ( f ∈ Ak, g ∈ A`)

is a Poisson bracket for which d is a Poisson derivation.

We turn to formal deformations of a commutative C-algebra A. Assume we have
a family µ= (µi )i∈N of bilinear maps µi : A× A→ A such that µ0 is the product.
Let A[[}]] be the commutative algebra of formal power series in one variable } with
coefficients in A. The family µ is a formal deformation of A if the noncommutative
product on A[[}]] defined by extension of

f ∗ g =
∑
j≥0

µ j ( f, g)} j ( f, g ∈ A)

is associative. This condition is equivalent to

n∑
r=0

µn−r (µr ( f, g), h)=
n∑

r=0

µn−r ( f, µr (g, h)) (for all f, g, h ∈ A) (4)

for all n ≥ 0. In this case, the product ∗ is called a star product. If µ is a formal
deformation and if moreover µ1 is skew-symmetric and µ2 is symmetric, then
(A, µ1) is a Poisson algebra.
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2.3. Problems at issue. The first Rankin–Cohen bracket

RC1( f, g)= k f D(g)−D( f )`g ( f ∈Mk, g ∈M`)

gives M∗ a structure of Poisson algebra. This is a consequence of Corollary 4.
Cohen, Manin and Zagier [Cohen et al. 1997] and Yao [2007] (see also Rochberg,
Tang and Yao [Rochberg et al. 2011]) proved that the family of Rankin–Cohen
brackets is a formal deformation of M∗. In this case, the star product is called the
Eholzer product. This subject has been widely studied. See for example [Olver and
Sanders 2000; Pevzner 2008].

Can we construct formal deformations of M≤∞
∗

? In other words, can we construct
suitable families (µn)n∈N of bilinear maps on M≤∞

∗
that increase the weight by 2n,

preserve the depth and define an analogue of the Eholzer product? The brackets
defined in (1) do not lead to a solution since RC1 does not even provide M≤∞

∗
with

a Poisson structure. Our first step is to obtain admissible Poisson brackets on M≤∞
∗

with the following definition.

Definition 5. A Poisson bracket b on M≤∞
∗

is admissible if

(1) b( f, g)= RC1( f, g) if f and g are in M∗;

(2) it satisfies b(M≤s
k ,M≤t

` )⊂M≤s+t
k+`+2 for all k, `, s, t .

Remark. We could have replaced condition (2) by the following one: there exists
e ≥ 0 such that b(M≤s

k ,M≤t
` ) ⊂ M≤s+t

k+`+e for all k, `, s, t . However, condition (1)
implies that necessarily e = 2.

Equivalently, a Poisson bracket b on M≤∞
∗

is admissible if and only if

b(E4,E6)=−21,

b(E2,E4) ∈M≤∞8 , b(E2,E6) ∈M≤∞10 ,

b(E2,M∗)⊂M∗E2+M∗.

In order to classify the admissible Poisson brackets, we introduce the notion of
Poisson modular isomorphism.

Definition 6. A Poisson isomorphism ϕ : (M≤∞
∗
, b1) → (M≤∞

∗
, b2) is called a

Poisson modular isomorphism if ϕ(M∗)⊂M∗.

Indeed, if ϕ is a Poisson modular isomorphism, then its restriction to the subal-
gebra M∗ is the identity. This is a consequence of the following proposition.

Proposition 7. The group of Poisson automorphisms of Poisson algebra (M∗,RC1)

is trivial.
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Proof. Let ϕ be a Poisson automorphism of M∗. There exist two polynomials s and
t in C[x, y] such that ϕ(E4)= s(E4,E6) and ϕ(E6)= t (E4,E6). By (2), we have

RC1(ϕ(E4), ϕ(E6))= jac(s, t)(E4,E6) ·RC1(E4,E6).

Since ϕ is an automorphism, jac(s, t) is a nonzero scalar, say λ. We get

ϕ(RC1(E4,E6))= λRC1(E4,E6) and hence s3
− t2
= λ(x3

− y2) in C[x, y].
(5)

We develop s and t into homogeneous components with respect to the weight:

s =
m∑

i=0
i 6=1

s2i and t =
n∑

i=0
i 6=1

t2i ,

where

s2i =
∑

(a,b)∈N2

2a+3b=i

σa,bxa yb and t2i =
∑

(a,b)∈N2

2a+3b=i

τa,bxa yb (σa,b, τa,b ∈ C)

for all i (where m = 0 or m ≥ 2 and n = 0 or n ≥ 2). Equation (5) implies that
t (E4,E6)

2
− s(E4,E6)

3 has weight 12. Then only three cases are possible.

(1) If 3m > 2n then m = 2 and so n ∈ {0, 2}. This implies that s = σ00+σ10x and
t = τ00+ τ10x . This contradicts jac(s, t) 6= 0.

(2) If 3m < 2n then n = 3 and m = 0. This contradicts jac(s, t) 6= 0.

(3) If 3m = 2n, we differentiate (5) with respect to x and y and get

3s2 ∂s
∂x
− 2t

∂t
∂x
= 3λx2, 3s2 ∂s

∂y
− 2t

∂t
∂y
=−2λy.

This implies

2t = 3x2 ∂s
∂y
+ 2y

∂s
∂x
, 3s2

= 3x2 ∂t
∂y
+ 2y

∂t
∂x
. (6)

From the first differential equation of (6) we have

2t (E4,E6)= 3E2
4
∂s
∂y
(E4,E6)+ 2E6

∂s
∂x
(E4,E6).

The highest weight of the right-hand side is less than or equal to 2m + 2. This
implies n ≤ m+ 1. From the second differential equation of (6), we have

3s2(E4,E6)= 3E2
4
∂t
∂y
(E4,E6)+ 2E6

∂t
∂x
(E4,E6);

hence 2m≤n+1. We deduce (m, n)∈{(0, 0), (2, 3)}. Since n=m=0 would imply
jac(s, t)=0, we have n=3 and m=2. Then s=σ00+σ10x and t= τ00+τ10x+τ01 y.
The first differential equation in (6) implies that τ00= τ10= 0 and τ01=σ10, whereas
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the second one implies that σ00 = 0 and σ10 = 1. Finally, ϕ(E4)= s(E4,E6)= E4

and ϕ(E6)= s(E4,E6)= E6. �

Since RC1(1, f )= (12D( f )− k f E2)1 for any f ∈Mk , the first Rankin–Cohen
bracket defines a derivation on M∗ called Serre’s derivative by linear extension of

ϑ f =
RC1(1, f )

121
= D( f )−

k
12

f E2 ( f ∈Mk). (7)

This derivation is characterised by its values on the generators

ϑE4 =−
1
3 E6, ϑE6 =−

1
2 E2

4.

We shall need the following result.

Proposition 8. The kernel of Serre’s derivative is the Poisson centraliser of 1 for
the first Rankin–Cohen bracket. This is C[1].

Proof. If f ∈ Mk is in kerϑ then k f D(1) = 121D( f ). Solving the differential
equation, we find that 12 divides k and that f ∈ C1k/12. �

We note that for any g ∈M` we have

RC1(1
m, g)= m1m(12D(g)− `gE2)

and deduce that for any f ∈ C[1] and g ∈M∗ we have

RC1( f, g)= 12ξ( f )ϑ(g), (8)

where ξ is the Eulerian derivative on C[1] defined by ξ =1
∂

∂1
.

3. Poisson structures on quasimodular forms

3.1. First family. This section is devoted to the proof of Proposition A.
We fix λ ∈ C∗ and introduce in C[x, y, z] the three polynomials

r(x, y, z)= 1
3(λy2

− 2xz),

p(x, y, z)=−2(y3
− z2),

q(x, y, z)=− 1
2(λyz− 2xy2).

Since (p, q, r) · curl(p, q, r)= 0, we define a Poisson bracket on M≤∞
∗

if we set

{E4,E6}λ = p(E2,E4,E6),

{E2,E4}λ = r(E2,E4,E6),

{E6,E2}λ = q(E2,E4,E6).
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Let us prove that { , }λ is not unimodular. If it were, we would have k ∈ C[x, y, z]
such that curl(p, q, r)= (p, q, r)∧ grad k. Identifying the first components would
lead to

7
6
λy =

1
2
(−λyz+ 2y2x)

∂k
∂z
−

1
3
(λy2
− 2zx)

∂k
∂y
,

which has no solution in C[x, y, z].
A Poisson modular isomorphism ϕλ between (M≤∞

∗
, { , }λ) and (M≤∞

∗
, { , }1) is

determined by

ϕλ(E2)= λE2, ϕλ(E4)= E4, ϕλ(E6)= E6.

Finally, we determine the Poisson centre of the Poisson algebra (M≤∞
∗
, { , }1).

Let us define a derivation on M∗ by σ = 2ϑ (see (7)) and a derivation on M∗ by
linear extension of

δ( f )=
k
12

f E4 ( f ∈Mk).

We note that (M≤∞
∗
, { , }1) is the Poisson–Ore extension C[E4,E6][E2]σ,δ. Now

consider any f ∈M≤∞
∗

written as

f =
s∑

i=0

fi Ei
2 ( fi ∈M∗).

We compute

{E2, f }1 = δ( f0)+

s∑
i=1

(σ ( fi−1)+ δ( fi ))Ei
2+ σ( fs)Es+1

2 .

If {E2, f }1 = 0 then δ( f0) = 0, and hence f0 ∈ C and σ( f0) = 0. We obtain
inductively that fi ∈ C for all 0≤ i ≤ s, so the Poisson centraliser of E2 is C[E2].
Suppose that the Poisson centre contains a nonscalar element. Then it is in the
Poisson centraliser of E2 and can be written

f =
p∑

j=0

α j E
j
2 (p ≥ 1, α j ∈ C, αp 6= 0).

We compute

{E4, f }1 =
p∑

j=0

jα j E
j−1
2 · {E4,E2}1

and find that the coefficient of Ep
2 is nonzero. It follows that f is not in the Poisson

centre.
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3.2. Second family. This section is devoted to the proof of Proposition C. We fix
α ∈ C and introduce in C[x, y, z] the three polynomials

r(x, y, z)= αxz,

p(x, y, z)=−2(y3
− z2),

q(x, y, z)=− 3
2αxy2.

Since (p, q, r) · curl(p, q, r)= 0, we define a Poisson bracket on M≤∞
∗

if we set

(E4,E6)α = p(E2,E4,E6),

(E2,E4)α = r(E2,E4,E6),

(E6,E2)α = q(E2,E4,E6).

Assume α 6= 4. Let us prove that ( , )α is not unimodular. If it were, we would
have k ∈ C[x, y, z] such that curl(p, q, r) = (p, q, r) ∧ grad k. Identifying the
second components would lead to

(4−α)z = αxz
∂k
∂x
+ 2(y3

− z2)
∂k
∂z
,

which has no solution in C[x, y, z].
If α = 4, then (p, q, r)= grad k0, where k0 =−2(y3

− z2)x . As a consequence,
the bracket ( , )4 provides M≤∞

∗
with a Jacobian Poisson structure of potential

k0 =−21E2 =−2D(1).
If ϕ : (M≤∞

∗
, ( , )α)→ (M≤∞

∗
, ( , )α′) is a Poisson modular isomorphism, let us

prove that α = α′. By Proposition 7, we have ϕ(E4) = E4 and ϕ(E6) = E6. By
surjectivity, it follows that ϕ(E2) = ηE2 + F for some η ∈ C∗ and F ∈ M∗. We
compute

ϕ((E2,E4)α)= αηE6E2+αE6 F

and
(ϕ(E2), ϕ(E4))α′ = α

′ηE6E2+ (F,E4)α′ .

Since (F,E4)α′ ∈M∗ we get α′ = α.
Finally, we determine the Poisson centre of the Poisson algebra (M≤∞

∗
, ( , )α).

We note that (M≤∞
∗
, ( , )α) is the Poisson–Ore extension C[E4,E6][E2]σ,δ, where

σ =−3αϑ (see (7)) and δ = 0. Let

f =
s∑

j=0

f j E
j
2 ( f j ∈M∗).

We have

(E2, f )α =
s∑

j=0

σ( f j )E
j+1
2 ,
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and hence f is in the Poisson centraliser of E2 if and only if each f j is in the
Poisson centraliser of 1 for RC1. By Proposition 8, we deduce that the centraliser
of E2 is C[1,E2]. Let

f =
s∑

j=0

f j (1)E
j
2 ∈ C[1,E2].

We use (8) to compute

( f,E4)α =

s∑
j=0

(−4ξ( f j )+ jα f j )E6E j
2,

( f,E6)α =
3
2

s∑
j=0

(−4ξ( f j )+ jα f j )E2
4E j

2.

We deduce that f is in the Poisson centre of ( , )α if and only if

ξ( f j )=
jα
4

f j

for all j , that is, if and only if any f j is of the form f j = λ j1
m j for some λ j ∈ C

and m j ∈ N such that jα = 4m j . If α /∈Q or if α < 0 then j = 0 and m j = 0, and
hence f = f0 ∈ C. If α = p/q with p ≥ 1, q ≥ 1 and (p, q) = 1, then λ1m j E j

2
is in the Poisson centre if and only if pj = 4qm j . The result follows by obvious
arithmetical consideration. Finally, if α = 0, then ( , )0 is the trivial bracket and its
Poisson centre is C[E2].

3.3. Third family. In this section, we study the third family, that is, we prove
Proposition E.

For any µ ∈ C, let us introduce

kµ =−21E2+µE2
4E6.

Then

jac(E4,E6, kµ)=
∂kµ
∂E2
=−2E3

4+ 2E2
6,

jac(E2,E4, kµ)=
∂kµ
∂E6
= 4E6E2+µE2

4,

jac(E2,E6, kµ)=−
∂kµ
∂E4
= 6E2

4E2− 2µE4E6.

The third family of Poisson brackets is then defined by 〈 f, g〉µ = jac( f, g, kµ).
With the notation of Proposition C, we have in particular 〈 f, g〉0 = ( f, g)4.

For anyµ∈C∗, define a Poisson modular isomorphism ϕµ between (M≤∞
∗
, 〈 , 〉µ)

and (M≤∞
∗
, 〈 , 〉1) by setting ϕµ(E2)= µE2, ϕµ(E4)= E4 and ϕµ(E6)= E6.
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Since the degree in E2 of kµ as a polynomial in E2,E4,E6 is 1, Lemma 1 implies
that the Poisson centre of (M≤∞

∗
, 〈 , 〉µ) is C[kµ].

3.4. Classification. This section is devoted to the proof of Theorem F.
Let { , } be an admissible bracket on M≤∞

∗
. By Definition 5 and Theorem 2, there

exist a Poisson derivation σ of M∗ and a Poisson σ -derivation δ of M∗ such that

{E2, f } = σ( f )E2+ δ( f ) ( f ∈M∗).

By definition, σ(Mk)⊂Mk+2 and δ(Mk)⊂Mk+4 for any k. The admissible bracket
{ , } is then defined by the four scalars α, β, γ and ε such that

σ(E4)= αE6, δ(E4)= βE2
4, σ (E6)= γE2

4 and δ(E6)= εE4E6.

The condition that σ is a Poisson derivation imposes the condition

{σ(E4),E6}+ {E4, σ (E6)} = −2σ(E3
4−E2

6),

or equivalently, 3α = 2γ . The condition that δ is a Poisson σ -derivation imposes

δ({E4,E6})= (2β + ε)E4{E4,E6}+αεE4E2
6−βγE4

4,

or equivalently, {
4β + (α− 2)ε = 0,
(3α− 4)β + 4ε = 0.

Either β = ε = 0 is the only solution, or α ∈
{
−

2
3 , 4

}
and ε = 4

2−α
β.

• The case β = ε = 0 leads to the second family: { , } = ( , )α.

• The case α =− 2
3 and ε = 3β/2 6= 0 leads to the first family: { , } = { , }3β .

• The case α = 4 and ε =−2β 6= 0 leads to the third family: { , } = 〈 , 〉β .

Using Propositions C and E, we conclude that the only admissible Poisson brackets,
up to Poisson modular isomorphisms, are { , }1, 〈 , 〉1 and ( , )α for any α ∈ C.
Looking at the centres, it is clear that the Poisson algebras (M≤∞

∗
, 〈 , 〉1) and

(M≤∞
∗
, { , }1) are not Poisson modular isomorphic. Suppose that there exists a

Poisson modular isomorphism ϕ from (M≤∞
∗
, ( , )α) to (M≤∞

∗
, { , }1). We know

(see Section 3.2) that

ϕ(E4)= E4, ϕ(E6)= E6 and ϕ(E2)= ηE2+ F

for some η ∈ C∗ and F ∈M∗. From ϕ((E2,E4)α)= {ϕ(E2), ϕ(E4)}1 we obtain

αηE6E2+αFE6 =−
2
3
ηE6E2+

1
3
ηE2

4+{F,E4}1,

and hence

α =−
2
3
,

1
3
ηE2

4 =−
2
3

FE6−{F,E4}1 =−
2
3

FE6+ 2(E3
4−E2

6)
∂F
∂E6
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by (2). We get a contradiction. Replacing { , }1 by 〈 , 〉1, we get

α = 4, ηE2
4 = 4FE6− 2(E3

4−E2
6)
∂F
∂E6

,

and again we get a contradiction.

4. Star products on quasimodular forms

4.1. Extension of the first family. This section is devoted to proving Theorem B.
We will use the following result of Zagier [1994, Example 1]. Let A =

⊕
Ak be a

commutative graded algebra with a derivation d homogeneous of degree 2 (that is,
d(Ak)⊂ Ak+2). Let us define, for any f ∈ Ak , g ∈ A`, r ≥ 0:

[ f, g]d,r =
r∑

i=0

(−1)i
(k+r−1

r−i

)(
`+r−1

i

)
di ( f )dr−i (g) ∈ Ak+`+2r . (9)

Then A equipped with these brackets is a Rankin–Cohen algebra, which means that
all algebraic identities satisfied by the usual Rankin–Cohen brackets on modular
forms are also satisfied, in particular those expressing the associativity of the
corresponding star product. We obtain the following result.

Theorem 9. The star product defined by

f #g =
∑
n≥0

[ f, g]d,n}n

defines a formal deformation on A.

In particular, we recover the fact, given by Corollary 4, that [ , ]d,1 is a Poisson
bracket. Note also that this theorem can be obtained from Connes and Moscovici’s
result cited below (see Section 4.2).

Let a ∈C and da be the homogeneous derivation of degree 2 on M≤∞
∗

defined by

da(E2)= 2aE2
2−

1
12 E4, da(E4)= 4aE4E2−

1
3 E6, da(E6)= 6eE6E2−

1
2 E2

4.

A direct computation proves that the two Poisson brackets [ , ]da,1 and { , }1 coincide
on generators and hence are equal on M≤∞

∗
.

Remark. A derivation d on M≤∞
∗

is complex-like if dM≤s
k ⊂M≤s+1

k+2 for all k and s.
Let π be the derivation on M≤∞

∗
defined by linear extension of π( f )= k f E2 for all

f ∈M≤∞k . The set of complex-like derivations d such that [ , ]d,1 = 0 is the vector
space of dimension 1 over C generated by π . Let us define w on M≤∞

∗
by

w( f )=
{1, f }1

121
.

Then
da = w+ aδ.
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This implies in particular that if a complex-like derivation d satisfies [ , ]d,1 = { , }1,
then d= da for some a ∈ C.

Point (ii) of Theorem B is obtained by a direct application of Theorem 9. We
prove now (iii). The term of highest degree with respect to E2 in [E2,E4]da,2 is
8a2E4E3

2. This forces a = 0. Conversely, if a = 0, then d0M≤∞
∗
⊂ M∗. For any

f = fi Ei
2 with fi ∈M∗, we have

d0( f )= d0( fi )Ei
2−

1
12 i fi E4Ei−1

2 ,

and hence degE2
d0( f )≤ degE2

f and degE2
d j

0( f )≤ degE2
f for any f ∈M≤∞

∗
and

j ≥ 0. This implies that

[M≤s
k ,M≤t

` ]d0,n ⊂M≤s+t
k+`+2n.

4.2. Extension of the second family. The aim of this section is to prove Theorem D.
The proof of (i) is similar to the proof of (i) in Theorem B. Let K :M≤∞

∗
→ C be a

graded-additive map. For any integer n ≥ 0, we define a bilinear application [ , ]Kd,n
by bilinear extension of

[ f, g]Kd,n =
n∑

r=0

(−1)r
(K( f )+n−1

n−r

)(K(g)+n−1
r

)
dr f dn−rg.

By Corollary 4, we know that [ f, g]Kd,1 is a Poisson bracket.
Let us fix Kα to be the linear extension on M≤∞

∗
=
⊕

k
⊕

s Ms
k of

Kα( f )= (k− (3α+ 2)s) ( f ∈Ms
k). (10)

Let πα be the derivation on M≤∞
∗

defined by πα( f )=Kα( f ) f E2 for all f ∈M≤∞
∗

.
The set of complex-like derivations such that [ , ]Kα

d,1 = 0 is the vector space of
dimension 1 over C generated by πα. Define derivations v and δα,b on M≤∞

∗
by

v( f )=
(1, f )α

121
and

δα,b = v+ bπα.

Note that v does not depend on α. By comparing the values on the generators, it is
immediate that ( , )α = [ , ]

Kα

δα,b,1.

Remark. Direct computations show that if d is a homogeneous derivation of degree
2 and K is such that ( , )α = [ , ]Kd,1, then we necessarily have K= Kα and d= δα,b
for some b ∈ C.

The condition that [E4,E6]
K
δα,b,2 has to be a modular form implies b = 0 or

α = −1
3 . For α = −1

3 , condition (4) for µr = [ , ]
K
δα,b,r and n = 3 is not satisfied
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(this can be shown with computer assistance, for example with Sage [Stein et al.
2013]). We assume then that b = 0.

Connes and Moscovici [2004, Remark 14] (see also [Yao 2007, §II.2] for a nice
presentation of this result) proved that if E and H are two derivations of an algebra
R such that HE − EH = E , then the applications µn : R× R→ R defined by

µn( f, g)=
n∑

r=0

(−1)r

r !(n− r)!
[Er
◦(2H+r)〈n−r〉( f )]·[En−r

◦(2H+n−r)〈r〉(g)] (11)

define a formal deformation on R with the notation

F 〈m〉 = F ◦ (F + 1) ◦ (F + 2) ◦ · · · ◦ (F +m− 1).

Let $ be the derivation defined on M≤∞
∗

by $( f )= K( f ) f. Then we have

$ ◦ δα,0− δα,0 ◦$ = 2δα,0.

We use Connes and Moscovici’s result with E = δα,0 and H =$/2 to obtain

µn( f, g)

=

n∑
r=0

(−1)r
(k−(3α+2)s+n−1

n−r

)(
`−(3α+2)t+n−1

r

)
δr
α,0( f )δn−r

α,0 (g).

This implies Theorem D.

Remark. We could have applied Connes and Moscovici’s result to extend the first
family. Indeed Zagier’s result is a consequence of Connes and Moscovici’s. Let
d be a derivation homogeneous of degree 2 of the commutative graded algebra
A=

⊕
Ak . It is obvious that the linear map defined on each Ak by H( f )= (k/2) f

is a derivation of A. It is also clear that it satisfies H ◦ d− d ◦ H = d . In particular,
for any f ∈ Ak and g ∈ A` we calculate

(2H + r)〈n−r〉( f )=
(k+ n− 1)!
(k+ r − 1)!

f,

(2H + (n− r))〈r〉(g)=
(`+ n− 1)!

(`+ n− r − 1)!
g.

Hence a direct application of formula (11) gives formula (9).

4.3. Extension of the third family. We do not extend the third family, since for
µ 6= 0, the bracket 〈 , 〉µ does not have the shape of a Rankin–Cohen bracket. More
precisely, if there exist a function κ :M≤∞

∗
→ C and a complex-like derivation δ of

M≤∞
∗

such that
〈 f, g〉µ = κ( f ) f δ(g)− κ(g)gδ( f )
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for all f and g in M≤∞
∗

, then µ= 0. Indeed, assume κ and δ exist; then
δ(E2)= AE2

2+ BE4,

δ(E4)= CE4E2+ DE6,

δ(E6)= EE6E2+ FE2
4

for some complex numbers A, B, C , D, E and F . Since we know the values of
〈 , 〉µ on the generators, we get a system depending on A, B, C , D, E , F , κ(E2),
κ(E4) and κ(E6). It is not difficult to prove that this system has a solution if and
only if µ= 0.
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We give sufficient conditions for the affinity of Etingof’s sheaves of Cherednik
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1. Introduction

1.1. In a seminal paper, Etingof and Ginzburg [2002] introduced the family of
rational Cherednik algebras associated to a complex reflection group. Since their
introduction, rational Cherednik algebras have been intensively studied, and found
to be related to several other areas of mathematics. Their definition was vastly
generalized in [Etingof 2004]. Given any smooth variety X and finite group W
acting on X , Etingof defines a family of sheaves1 of algebras Hω,c(X,W ) on X
which are flat deformations of the skew group ring DX o W . Being sheaves of
algebras, one would like to be able to use standard geometric techniques such as
pullback and pushforward to study their representation theory. This paper is a small
first step in developing these techniques. As motivation, we consider the question
of affinity for these algebras when X = P(V ).

MSC2010: primary 20C08; secondary 16S80.
Keywords: rational Cherednik algebras, localization theory.

1Here, one must take the W -equivariant Zariski topology on X . See Section 2.1.
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1.2. If V is a finite-dimensional vector space and W acts linearly on V , then there
is an induced action of W on P(V ). Thus, Etingof’s construction gives us a sheaf
of algebras Hω,c(P(V ),W ) on P(V ). In trying to understand the representation
theory of these algebras, one would like to know when they are affine, i.e., for
which ω and c does the global sections functor give us an equivalence between the
category of modules for Hω,c(P(V ),W ) and the category of modules for its global
sections Hω,c(P(V ),W ). Our main result is an explicit combinatorial criterion on
ω and c which guarantees that the corresponding Cherednik algebra is affine. We
associate to ω, c and λ ∈ Irr W a pair of scalars aλ, bλ; see Section 5.5.

Theorem 1.2.1. The sheaf of algebras Hω,c(P(V ),W ) is affine provided aλ /∈ Z≥0

and bλ /∈ Z>0 for all λ ∈ Irr W .

In order to prove this result, we introduce two key pieces of machinery. The first
is the notion of pullback of Hω,c-modules under certain well-behaved maps (which
we call melys). The second is to establish an equivalence between the category
of (twisted) T -equivariant Hc-modules on a principal T -bundle Y → X and the
category of modules for a Cherednik algebra Hω,c on the base X of the bundle.
With this machinery in place, the proof of the main result is essentially the same
as for sheaves of twisted differential operators on P(V ); see [Hotta et al. 2008,
Theorem 1.6.5].

1.3. Being able to pull back D-modules is an extremely useful tool in studying the
representation theory of sheaves of differential operators. Therefore, one would
like to be able to do the same for Cherednik algebras. We show that this is possible,
at least for some morphisms. A W -equivariant map ϕ : Y → X between smooth
varieties is said to be melys if it is flat and, for all reflections (w, Z) in X , ϕ−1(Z)
is contained in the fixed point set Yw of w.

Theorem 1.3.1. If ϕ : Y → X is melys, then pullback is an exact functor

ϕ∗ :Hω,c(X,W )-Mod−→Hϕ∗ω,ϕ∗c(Y,W )-Mod.

The pullback functor is particularly well behaved when ϕ is étale. We define
the melys site over X , a certain modification of the usual étale site over X . Using
Theorem 1.3.1, we show that the Cherednik algebra forms a sheaf on this site.

One particularly rich source of melys morphisms is when π : Y → X is a
principal T -bundle, where T is a torus acting on Y with the action commuting
with the action of W . In this situation, one can perform quantum Hamiltonian
reduction of the Cherednik algebra Hc(Y,W ) on Y to get a sheaf Hβ(χ),c(X,W ) of
Cherednik algebras on X . As a consequence, one gets an equivalence between the
category of (χ -twisted) T -equivariant Hc(Y,W )-modules on Y and the category of
Hβ(χ),c(X,W )-modules on X .
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Theorem 1.3.2. Let χ ∈ t∗. We have an isomorphism of sheaves of algebras on X

Hβ(χ),c(X,W )' (π qHc(Y,W ))T /〈{t −χ(t) | t ∈ t}〉,

and the functor

(Hc(X,W ), T, χ)-Mod−→Hβ(χ),c(Y,W )-Mod

given by M 7→ (π qM)T is an equivalence of categories, with quasi-inverse N 7→π∗N.

1.4. We also study a natural generalization of the Knizhnik–Zamolodchikov con-
nection. The question of whether the Knizhnik–Zamolodchikov connection is flat is
closely related to the issue of presenting the Cherednik algebra. In the appendix, we
summarize for the reader unfamiliar with sheaves of twisted differential operators
(TDOs) those basic properties that we require.

2. Sheaves of Cherednik algebras

In this section we introduce sheaves of Cherednik algebras on a smooth variety.

2.1. Conventions. Throughout, all our spaces will be equipped with the action of
a finite group W . We do not assume that this action is effective. The morphisms
ϕ : Y → X that we will consider will always be assumed to be W -equivariant.
Since we wish to deal with objects such as OX o W , we work throughout with the
W -equivariant Zariski topology: a subset U ⊂ X is an open subset in this topology
if and only if it is open in the Zariski topology and W -stable. Then, OX o W
becomes a sheaf on X . If w ∈W , then Xw denotes the set of all points fixed under
the automorphism w. The sheaf of vector fields (resp. one-forms) on a smooth
variety X is denoted by 2X (resp. �1

X ).

2.2. Let X be a smooth, connected, quasiprojective variety over C. Let Z be
a smooth subvariety of X of codimension one. Locally, the ideal defining Z is
principal, generated by one section, fZ say. Then, the element

d log fZ :=
d fZ

fZ

is a section of �1
X (Z)=�

1
X ⊗OX (Z). Contraction defines a pairing

2X ⊗�
1
X (Z)→ OX (Z), (ν, ω) 7→ iν(ω).

Let �1,2
X be the two-term subcomplex �1

X
d
−→ (�2

X )
cl, concentrated in degrees 1

and 2, of the algebraic de Rham complex of X , where (�2
X )

cl denotes the subsheaf
of closed forms in �2

X . As noted in the appendix, sheaves of twisted differential op-
erators on X are parametrized, up to isomorphism, by the second hypercohomology
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group H2(X, �1,2
X ). Given ω ∈H2(X, �1,2

X ), the corresponding sheaf of differential
operators is denoted by Dω

X .

2.3. Dunkl–Opdam operators. Let W be a finite group acting on X . Let S(X) be
the set of pairs (w, Z) where w ∈ W and Z is a connected component of Xw of
codimension one. Any such Z is smooth. A pair (w, Z) in S(X) will be referred
to as a reflection of (X,W ). The group W acts on S(X), and we fix c : S(X)→ C

to be a W -equivariant function, where W acts trivially on C. A Picard algebroid P

on X is said to be W -equivariant if there are isomorphisms ψw : w∗(P)−→∼ P of
algebroids satisfying the usual cocycle condition such that the inclusion OX →P

and anchor map σ : P → 2X are W -equivariant. Since W acts rationally on
H2(X, �1,2

X ), each class [ω] ∈ H2(X, �1,2
X )W can be represented by an invariant

2-cocycle ω. The corresponding Picard algebroid Pω is W -equivariant. We fix
one such W -equivariant Picard algebroid Pω. Fix also an open affine, W -stable
covering {Ui } of X such that Pic(Ui )= 0 for all i . Then, we can choose functions
fZ ,i defining Ui ∩ Z . The union of all the Z is denoted by D. If j : X − D ↪→ X is
the inclusion, then write Pω(D) for the sheaf j q(Pω

|X−D).

Definition 2.3.1. For each ν ∈0(Ui ,Pω), the associated Dunkl–Opdam operator is

Dν = ν+
∑

(w,Z)∈S(X)

2c(w, Z)
1− λw,Z

iσ(ν)(d log fZ ,i )(w− 1), (2.3.2)

where λw,Z is the eigenvalue of w on each fiber of the conormal bundle of Z in X .

The operator Dv is a section of Pω(D) o W over Ui . The 0(Ui ,OX o W )-
submodule of Pω(D)oW generated by 0(Ui ,OX oW ) and all the Dunkl–Opdam
operators {Dv | v ∈ 0(Ui ,Pω)} is denoted by 0(Ui ,F1

ω,c(X,W )). Though the
definition of the Dunkl–Opdam operator Dv depends on the choice of functions
fZ ,i , it is easy to see that the submodule 0(Ui ,F1

ω,c(X,W )) of 0(Ui ,Pω(D)oW )

is independent of any choices. The modules 0(Ui ,F1
ω,c(X,W )) glue to form a sheaf

F1
ω,c(X,W ) in the W -equivariant Zariski topology on X . As noted in the remark

after Theorem 2.11 of [Etingof 2004], a calculation in each formal neighborhood of
x ∈ X shows that [Dν1, Dν2] ∈F1

ω,c(X,W ) for all ν1, ν2 ∈Pω. However, there is no
natural bracket on F1

ω,c(X,W ). The anchor map σ : Pω(D)⊗W →2X (D)⊗W
restricts to a map F1

ω,c(X,W )→2X ⊗W which fits into a short exact sequence

0−→ OX o W −→ F1
ω,c(X,W )

σ
−→2X ⊗W −→ 0. (2.3.3)

Definition 2.3.4. We call the subsheaf of algebras of j q(Dω
X−D o W ) generated by

F1
ω,c(X,W ) the sheaf of Cherednik algebras associated to W, ω and c. It is denoted

Hω,c(X,W ).

The global sections of Hω,c(X,W ) are denoted Hω,c(X,W ).
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2.4. There is a natural order filtration F
q
ω,c(X,W ) on Hω,c(X,W ), defined in one

of two ways. Either one defines F
q
ω,c(X,W ) to be the restriction to Hω,c(X,W )

of the order filtration on j q(Dω
X−D o W ), or, equivalently, one gives elements

in F1
ω,c(X,W ) degree at most one, with D ∈ F1

ω,c(X,W ) having degree one
if and only if σ(D) 6= 0, and then defines the filtration inductively by setting
Fi
ω,c(X,W )= F1

ω,c(X,W )Fi−1
ω,c (X,W ). By definition, the filtration is exhaustive.

Let π : T ∗X→ X be the projection map. Etingof [2004, Theorem 2.11] has shown
that the algebras Hω,c(X,W ) are a flat deformation of DX o W . Equivalently, the
PBW property holds for Cherednik algebras:

Theorem 2.4.1. We have grF Hω,c(X,W )' π qOT ∗X o W .

We note for later use that Theorem 2.4.1 implies that for any affine W -stable
open set U ⊂ X , the algebra 0(U,Hω,c(X,W )) has finite global dimension; its
global dimension is bounded by 2 dim X .

2.5. Throughout, an Hω,c(X,W )-module will always mean an Hω,c(X,W )-module
that is quasicoherent over OX . The category of all Hω,c(X,W )-modules is de-
noted by Hω,c(X,W )-Mod and the full subcategory of all modules coherent over
Hω,c(X,W ) is denoted by Hω,c(X,W )-mod. A module M ∈Hω,c(X,W )-Mod is
called lisse if it is coherent over OX .

3. Pullback of sheaves

In this section we show that modules for sheaves of Cherednik algebras can be
pulled back under morphisms that are “melys” for the parameter c.

3.1. Let ϕ : Y → X be a W -equivariant morphism between smooth, connected,
quasiprojective varieties. As explained in the appendix, given a Picard algebroid
Pω

X on X , there is a ϕ-morphism P
ϕ∗ω
Y → ϕ∗Pω

X . This implies that the sheaf
ϕ∗Dω

X is a left D
ϕ∗ω
Y -module. We give conditions on the map ϕ so that there

exist a sheaf of Dunkl operators F1
ϕ∗ω,ϕ∗c(Y,W ) on Y and morphism of OY o W -

modules F1
ϕ∗ω,ϕ∗c(Y,W )→ ϕ∗F1

ω,c(X,W ). As a consequence ϕ∗Hω,c(X,W ) be-
comes a left Hϕ∗ω,ϕ∗c(Y,W )-module and we can pullback Hω,c(X,W )-modules to
Hϕ∗ω,ϕ∗c(Y,W )-modules.

3.2. If the morphism ϕ is flat of relative dimension r , then there is a good notion
of pullback of algebraic cycles, namely, ϕ∗ : Ck(X)→ Ck+r (Y ), where Ck(X)
is the abelian group of k-dimensional algebraic cycles on X . See [Fulton 1998,
Section 1.7]. The class in Ck(X) of a k-dimensional subscheme Z of X is denoted
by [Z ].

Lemma 3.2.1. Let ϕ :Y→ X be flat and (w, Z)∈S(X). Write ϕ∗[Z ]=
∑

i ni [Zi ],
where each Zi is an irreducible subvariety of Y . Then, w permutes the [Zi ].
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Moreover, if ϕ−1(Z) is set-theoretically contained in Yw, then each irreducible
component of ϕ−1(Z) is a connected component of Yw of codimension one.

Proof. The first claim follows from the fact that, set-theoretically, ϕ−1(Z) =⋃
ni 6=0 Zi . Since ϕ−1(Z) is a union of closed subvarieties of Y of codimension one

and Y is assumed to be irreducible, it suffices for the second claim to show that
Yw 6= Y . Assume otherwise. Then, since ϕ is flat, ϕ(Yw)= ϕ(Y ) is open in X , but
is also contained in the closed subvariety Xw. Hence Xw

= X . This contradicts the
fact that Z is an irreducible component of Xw. �

3.3. Let Sc(X) denote the set of all pairs (w, Z) ∈ S(X) such that c(w, Z) 6= 0.

Definition 3.3.1. The morphism ϕ : Y → X is melys with respect to c if:

(1) ϕ is flat.

(2) For all (w, Z) ∈ Sc(X), set-theoretically ϕ−1(Z)⊂ Yw.

If ϕ is melys with respect to c then we define ϕ∗c on S(Y ) by

(ϕ∗c)(w, Z ′)=
∑

(w,Z)∈S(X)

nZ ,Z ′ c(w, Z),

where ϕ∗[Z ] =
∑

Z ′ nZ ,Z ′[Z ′]. Let E =
⋃

c(w,Z) 6=0 Z and D = ϕ−1(E). Since
ϕ is flat, each irreducible component of D has codimension one in X . Let j :
U := X − D ↪→ X and k : V = Y − E ↪→ Y ; these are affine morphisms. For any
quasicoherent sheaf F on X (resp. on Y ), we denote by F(D) the sheaf j q(F|U )
(resp. by F(E) the sheaf k q(F|V )).
Lemma 3.3.2. The sheaf ϕ∗Dω

Y (E)oW on X is a D
ϕ∗ω
X (D)oW -module, and there

exists a morphism

γ : D
ϕ∗ω
X (D)o W −→ ϕ∗Dω

Y (E)o W

of D
ϕ∗ω
X (D)o W -modules.

Proof. The map ϕ restricts to a flat morphism 8 :U → V . By Lemma A.2.2, we
have

P8∗ω
U −→∼ 8∗Pω

V ×8∗2V
2U .

This induces a morphism γ : D8∗ω
U → 8∗Dω

V of D8∗ω
U -modules. Since ω was

chosen to be W -invariant, this extends to a morphism γ :D8∗ω
U oW→8∗Dω

V oW
of D8∗ω

U o W -modules. Since j qP8∗ω
U = P

ϕ∗ω
X (D), we have j q(D8∗ω

U o W ) =
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D
ϕ∗ω
X (D)o W . The diagram

U �
� j

//

8

��

X

ϕ

��
V �
� k

// Y

is Cartesian. Therefore, by flat base change, j q8∗Pω
V o W = ϕ∗Pω

Y (E)o W and
hence j q(8∗Dω

V o W )= ϕ∗Dω
Y (E)o W . �

3.4. By analogy with ϕ-morphisms (see Lemma A.2.2) we have:

Proposition 3.4.1. There is a morphism

γ :Hϕ∗ω,ϕ∗c(Y,W )−→ ϕ∗Hω,c(X,W )

of Hϕ∗ω,ϕ∗c(Y,W )-modules that induces an isomorphism of OY o W -modules

ψ : F1
ϕ∗ω,ϕ∗c(Y,W )−→∼ ϕ∗F1

ω,c(X,W ) ×ϕ∗2X⊗W 2Y ⊗W.

Proof. The algebra Hϕ∗ω,ϕ∗c(Y,W ) is a subalgebra of D
ϕ∗ω
Y (E) o W , whereas

ϕ∗Hω,c(X,W ) is a subalgebra of ϕ∗Dω
X (D) o W . Let γ : Hϕ∗ω,ϕ∗c(Y,W ) →

ϕ∗Dω
X (D)oW be the restriction of the morphism γ :D

ϕ∗ω
Y (E)oW→ϕ∗Dω

X (D)oW
of Lemma 3.3.2. We claim that it suffices to show that the image of γ is contained in
ϕ∗Hω,c(X,W ). Assuming this, the action of Hϕ∗ω,ϕ∗c(Y,W ) on ϕ∗Hω,c(X,W )will
just be the restriction of the action of D

ϕ∗ω
Y (E)o W on ϕ∗Dω

X (D)o W . Therefore,
it is given by

a · (g⊗ p)= γ ([a, g]) · (1⊗ p)+ g(γ (a) · (1⊗ p)),

where a ∈Hϕ∗ω,ϕ∗c(Y,W ), g ∈ OY and p ∈ ϕ−1Hω,c(X,W ). Here [a, g] is thought
of as an element of Hϕ∗ω,ϕ∗c(Y,W ). If γ (a) is contained in ϕ∗Hω,c(X,W ) and
p ∈ϕ−1Hω,c(X,W ), then γ (a)·(1⊗ p) belongs to ϕ∗Hω,c(X,W ). Thus, it suffices
to show that the image of γ is contained in ϕ∗Hω,c(X,W ) as claimed.

Since Hϕ∗ω,ϕ∗c(Y,W ) is generated as an algebra by F1
ϕ∗ω,ϕ∗c(Y,W ), it will suffice

to show that the image of F1
ϕ∗ω,ϕ∗c(Y,W ) is contained in ϕ∗F1

ω,c(X,W ). This is
a local calculation. Therefore, we may assume that both X and Y are affine and
that the subvarieties Z of X with (w, Z) ∈ Sc(X) are defined by the vanishing
of functions fZ . Let p ∈ P

ϕ∗ω
Y , and denote by Dp the associated Dunkl–Opdam

operator given by (2.3.2). Let γ (p)=
∑

i gi
⊗ q i in ϕ∗Pω

X . Then,

γ (Dp)=
∑

i

gi
⊗ q i
+

∑
(w,Z ′)

2(ϕ∗c)(w, Z ′)
1− λw,Z ′

iσY (p)(d log fZ ′)⊗ (w− 1).
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If ϕ−1(Z)= Z ′1∪· · ·∪ Z ′l set-theoretically and ϕ∗[Z ] =
∑l

i=1 ni [Z ′i ], then ϕ∗ fZ =

u
∏

i f ni
Z ′i

, for some unit u, and scheme-theoretically ϕ−1(Z) is defined by the
vanishing of the function

∏
i f ni

Z ′i
. Therefore, by definition of the parameter ϕ∗c,

2c(w, Z)
1− λw,Z

ϕ∗d log fZ =
∑

Z ′⊂ϕ−1(Z)

2(ϕ∗c)(w, Z ′)
1− λw,Z ′

d log fZ ′ + h, (3.4.2)

where h ∈ OY o W . Hence, up to a term in ϕ∗OX o W ,∑
(w,Z ′)

2(ϕ∗c)(w, Z ′)
1− λw,Z ′

iσY (p)(d log fZ ′)⊗ (w− 1)

=

∑
(w,Z)

2c(w, Z)
1− λw,Z

iσY (p)(d logϕ∗ fZ )⊗ (w− 1)

=

∑
(w,Z)

2c(w, Z)
1− λw,Z

σY (p)(ϕ∗ fZ )

ϕ∗ fZ
⊗ (w− 1)

=

∑
(w,Z)

2c(w, Z)
1− λw,Z

1
ϕ∗ fZ

(∑
i

giϕ∗(σX (q i )( fZ ))

)
⊗ (w− 1)

=

∑
i

gi
⊗

(∑
(w,Z)

2c(w, Z)
1− λw,Z

σX (q i )( fZ )

fZ
(w− 1)

)

=

∑
i

gi
⊗

(∑
(w,Z)

2c(w, Z)
1− λw,Z

iσX (q i )(d log fZ )(w− 1)
)
.

Thus, γ (Dp)=
∑

i gi
⊗ Dq i , which lies in ϕ∗F1

ω,c(X,W ).
Finally, we show that the morphism γ induces the isomorphism ψ , as stated.

Since ϕ is flat, pulling back the sequence (2.3.3) gives a short exact sequence

0−→ OY o W −→ ϕ∗F1
ω,c(X,W )−→ ϕ∗2X ⊗W −→ 0.

Using the fact that OYoW×ϕ∗2X⊗W 2Y⊗W =OYoW , where OYoW→ϕ∗2X⊗W
is the zero map, and the fact that ϕ∗2X ⊗W ×ϕ∗2X⊗W 2Y ⊗W =2Y ⊗W , we
have a commutative diagram

0 // OY o W // F1
ϕ∗ω,ϕ∗c(Y,W )

σ //

ψ

��

2Y ⊗W // 0

0 // OY o W // ϕ∗F1
ω,c(X,W ) ×ϕ∗2X⊗W 2Y ⊗W // 2Y ⊗W // 0

By the five lemma, ψ is an isomorphism. �



Affinity of Cherednik algebras on projective space 1159

3.5. The morphism γ allows us to define an action of Hϕ∗ω,ϕ∗c(Y,W ) on ϕ∗M for
any Hω,c(X,W )-module M.

Corollary 3.5.1. Assume that ϕ is melys with respect to c. Then pullback is an
exact functor

ϕ∗ :Hω,c(X,W )-Mod−→Hϕ∗ω,ϕ∗c(Y,W )-Mod

extending the usual pullback ϕ∗ : QCoh(X)−→ QCoh(Y ).

Proof. Proposition 3.4.1 implies that

ϕ∗M= ϕ∗Hω,c(X,W ) ⊗ϕ−1Hω,c(X,W ) ϕ
−1M

is naturally an Hϕ∗ω,ϕ∗c(Y,W )-module. Since ϕ is flat, pullback of quasicoherent
OX -modules is an exact functor. �

It is clear by definition that ϕ∗ maps Hω,c(X,W )-mod to Hϕ∗ω,ϕ∗c(Y,W )-mod

and lisse Hω,c(X,W )-modules to lisse Hϕ∗ω,ϕ∗c(Y,W )-modules.

3.6. Étale morphisms. In this section we consider étale morphisms. Fix X , ω, W
and c as above. Let (X, c)mel be the full subcategory of Sch /X (schemes over X )
consisting of all morphisms Y → X that are étale and melys with respect to c.
Then, one can easily check that (X, c)mel is a site over X ; see, e.g., [Milne 1980,
Section II.1] for details on sites. We call (X, c)mel the melys site over X . The
following result is closely related to [Wilcox 2011, Proposition 2.3].

Proposition 3.6.1. The sheaf Hω,c(X,W ) is a sheaf of algebras on the melys site
(X, c)mel.

Proof. Let ϕ :Y→ X be an étale map, melys with respect to c. We begin by showing
that ϕ∗Hω,c(X,W ) is a sheaf of algebras and the morphism γ of Proposition 3.4.1
is an isomorphism of algebras.

As in Section 3.3, let D=
⋃

Z , E = ϕ−1(D), U = X−D and V = Y−E . Since
8 :V→U is étale, it is flat, and hence8−1Dω

U oW is a subsheaf of8∗Dω
U oW . As

noted in Remark A.2.4, the natural map γ :D8∗ω
V oW →8∗Dω

U oW is an algebra
isomorphism such that the restriction of γ−1 to8−1Dω

U oW is an algebra morphism
8−1Dω

U o W → D8∗ω
V o W . Therefore, using flat base change as in the proof of

Lemma 3.3.2, we get an algebra morphism γ−1
: ϕ−1Dω

X (D)oW→D
ϕ∗ω
Y (E)oW .

This morphism induces an algebra isomorphism

γ−1
: ϕ∗Dω

X (D)o W −→∼ D
ϕ∗ω
Y (E)o W,

where the multiplication in ϕ∗Dω
X (D)o W is given by

(g1⊗ q1) · (g2⊗ q2)= (g1⊗ 1)u(q1, g2)(1⊗ q2),

with u(q, g) :=γ ([γ−1(q), g])∈8∗Dω
X (D)oW , for all q, q1, q2∈ϕ

−1Dω
X (D)oW
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and all g, g1, g2 ∈ OY . By Proposition 3.4.1, γ−1 restricts to an algebra morphism
ϕ−1Hω,c(X,W )→Hϕ∗ω,ϕ∗c(Y,W ), inducing an isomorphism ϕ∗Hω,c(X,W )−→∼

Hϕ∗ω,ϕ∗c(Y,W ). Let
Y1

ϑ //

ϕ1   

Y2

ϕ2~~
X

be a morphism in (X, c)mel. Then, Y1 and Y2 are smooth varieties and, by [Milne
1980, I, Corollary 3.6], ϑ is an étale morphism. Lemma 3.2.1 implies that it is also
melys. Thus, the above computations show that Hω,c(X,W ) forms a presheaf on
(X, c)mel.

To check that it is in fact a sheaf, it suffices to do so locally; see the proof of
[Borho and Brylinski 1989, Proposition 0]. Therefore, we assume that X is affine
and that we are given an étale, W -equivariant, affine covering (iα : Yα→ X) of X ;
i.e., each Yα is affine and the union of the images of the maps iα cover X . Then we
must prove that the sequence

0−→ Hω,c(X,W )−→
⊕
α

Hi∗αω,i∗αc(Yα,W )−→
⊕
α,β

Hi∗α,βω,i
∗

α,βc(Yα ×X Yβ,W )

is exact. Let U, Vα, . . . be the usual open subsets of X, Yα, . . . . Then, we have a
commutative diagram

0 // Hω,c(X,W )
j //

� _

��

⊕
α

Hi∗αω,i∗αc(Yα,W )
k //

� _

��

⊕
α,β

Hi∗α,βω,i
∗

α,βc(Yα ×X Yβ,W )

� _

��

0 // 0(U,Dω
U o W ) //

⊕
α

0
(
Vα,D

i∗αω
Vα o W

)
//
⊕
α,β

0
(
Vα ×U Vβ,Di∗α,βωo W

)
The bottom row is exact because Dω

U o W is a sheaf on the melys site. Since the
diagram commutes, j is injective and the image of j is contained in the kernel of k.
Therefore, we just need to show that the image of j is exactly the kernel of k. The
sequence on the bottom row is strictly filtered with respect to the order filtration
and, as noted in Section 2.4, the Cherednik algebra inherits its natural filtration by
restriction of the order filtration on Dω

U o W . Therefore, the top row will be exact
if and only if the corresponding sequence of associated graded objects is exact. But
this sequence is also the associated graded of the analogous sequence for DX o W ,
which we know is exact. �

3.7. The KZ-functor. Assume that W acts freely on the open sets V ⊂ Y and
U ⊂ X , and let ω= 0. The proof of Proposition 3.4.1 makes it clear that pullback of
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Hc(X,W )-modules is compatible with the KZ-functor. Denote by Hc(X,W )-Reg
the full subcategory of Hc(X,W )-mod consisting of all lisse Hc(X,W )-modules
whose restriction to U is an integrable connection with regular singularities. Let DR
be the de Rham functor that maps integrable connections with regular singularities
on U/W to representations of the fundamental group π1(U/W ). The KZ-functor
is defined by

KZX (M)= DR
(
[ρ q(M|U )]W ).

Then ϕ∗ maps Hc(X,W )-Reg into Hϕ∗c(Y,W )-Reg. Therefore, since the de Rham
functor behaves well with respect to pullback [Hotta et al. 2008, Theorem 7.1.1],
the following diagram commutes

Hc(X,W )-Reg
ϕ∗ //

KZX

��

Hϕ∗c(Y,W )-Reg

KZY

��
π1(U/W )-mod

8∗ // π1(V/W )-mod

The image of the KZ-functor is contained in the full subcategory of π1(U/W )-mod

consisting of all modules for a certain “Hecke” quotient of Cπ1(U/W ); see [Etingof
2004, Proposition 3.4].

3.8. Pushforward. It is also possible to define (derived) pushforward of modules
under melys maps. Let ϕ : Y → X be melys with respect to c, and denote by
Mod-Hω,c(Y,W ) the category of right Hω,c(Y,W )-modules. Then, the derived
pushforward functor

Rϕ∗ : Db(Mod-Hω,c(Y,W ))−→ Db(Mod-Hω,c(X,W ))

is given by
Rϕ∗(M)= Rϕ q(M⊗L

Hω,c(Y,W ) ϕ
∗Hω,c(X,W )

)
.

Let us justify the fact that the image of Rϕ∗ is contained in Db(Mod-Hω,c(X,W )).
First, as noted in Section 2.4, the PBW theorem implies that the sheaf Hω,c(Y,W )

has good homological properties. Since we have assumed that Y is quasiprojective,
this implies that each M ∈ Mod-Hω,c(Y,W ) has a finite resolution by locally
projective Hω,c(Y,W )-modules; see [Hotta et al. 2008, Section 1.4]. Hence, for
M ∈ Db(Mod-Hω,c(Y,W )), the complex M⊗L

Hω,c(Y,W ) ϕ
∗Hω,c(X,W ) belongs to

Db(Mod-ϕ−1Hω,c(Y,W )). That Rϕ∗(M) belongs to Db(Mod-Hω,c(X,W )) then
follows, for instance, from [Hotta et al. 2008, Proposition 1.5.4].

We will also require pushforwards of left Hω,c(Y,W )-modules under open em-
beddings j : Y ↪→ X . The following is standard; see, e.g., [Hotta et al. 2008,
Proposition 1.5.4].



1162 Gwyn Bellamy and Maurizio Martino

Lemma 3.8.1. For M ∈ Hω,c(Y,W )-Mod, the sheaves Ri j q(M), i ≥ 0, belong to
Hω,c(X,W )-Mod.

It would be interesting to develop a notion of duality for Cherednik algebras,
which would allow one to define pushforwards of left Hω,c(Y,W )-modules along
arbitrary melys morphisms.

4. Twisted equivariant modules

In this section we define (twisted) G-equivariant Hω,c(X,W )-modules.

4.1. Let X be a smooth W -variety, and Hω,c(X,W ) a sheaf of Cherednik algebras
on X . Assume that a connected algebraic group G also acts on X such that
this action commutes with the action of W . Write p, a : G × X −→ X for the
projection and action maps. Let M be an Hω,c(X,W )-module. Clearly, p∗M is an
Hω,c(G× X,W )= DG �Hω,c(X,W )-module.

Lemma 4.1.1. The action map a is melys for any c, and therefore a∗M is an
Hω,c(G× X,W )-module.

Proof. The action map a is smooth and hence flat. Let (w, Z) ∈ S(X). Since the
action of G commutes with the action of W , Xw is G-stable. Moreover, the fact that
G and Z are connected implies that Z itself is G-stable. Thus, a−1(Z)= G× Z is
contained in (G× X)w = G× Xw. �

4.2. The Lie algebra of G is denoted by g. Let m : G×G→ G the multiplication
map and s : X→ G× X be defined by s(x)= (e, x). Choose χ ∈ (g/[g, g])∗, and
let O

χ

G be the DG-module DG/DG{v− χ(v) | v ∈ g}, where we have identified g

with right-invariant vector fields on G. It is an irreducible integrable connection
on G.

Definition 4.2.1. The module M ∈Hω,c(X,W )-Mod is called (G, χ)-monodromic
if there exists an isomorphism θ : O

χ

G �M−→∼ a∗M of Hω,c(G× X,W )-modules
such that s∗θ = idM and the diagram

O
χ

G �O
χ

G �M
idG×θ //

=

��

O
χ

G � a∗M

=

��
(m× id)∗(OχG �M)

(m×idX )
∗θ

��

(idG × a)∗(OχG �M)

(idG×a)∗θ

zz
(m× idX )

∗a∗M = // (idG × a)∗a∗M

(4.2.2)
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is commutative: M satisfies the cocycle condition.

We will denote the category of (G, χ)-monodromic Hω,c(X,W )-modules by
(Hω,c(X,W ),G, χ)-Mod.

4.3. T-monodromic modules. Let T be a torus, i.e., a product of copies of the
multiplicative group C×. The Lie algebra of T is denoted by t. Let π : Y → X be a
principal T -bundle, with X smooth. We assume that the finite group W acts on Y , the
action commuting with the action of T . This implies that W also acts on X and that
the map π is T -equivariant. Let Hc(Y,W ) be a sheaf of Cherednik2 algebras on Y .

Lemma 4.3.1. There is a morphism of Lie algebras µc : t→ F1
c(Y,W ) such that

the composite σ ◦µc equals the usual moment map µ : t→2Y ⊗W .

Proof. Since the action of T commutes with the action of W , the open set V =Y−E
is T -stable. Differentiating the action of T on U , there is a map µ′ : t→DY (E)oW .
It is clear that σ ◦µ′ = µ. Therefore, we just need to show that the image of µ′ is
contained in the subsheaf F1

c(Y,W ). This is a local computation. Hence we may
assume that Y = X × T , in which case Hc(Y,W ) = Hc(X,W )� DT . Now the
claim is clear. �

The group T acts on Hc(Y,W ) and the map µc is T -equivariant. Moreover, a
local computation (using the fact that the bundle Y→ X is locally trivial) shows that
the image of t is central in (π qHc(Y,W ))T , and hence we may perform quantum
Hamiltonian reduction. Recall that we define the map β : t∗ → H2(X, �1,2

X )

in (A.3.2).

Proposition 4.3.2. Let χ ∈ t∗. We have an isomorphism of sheaves of algebras
on X

Hβ(χ),c(X,W )' (π qHc(Y,W ))T /〈{µc(t)−χ(t) | t ∈ t}〉.

Proof. As in the proof of Proposition 3.4.1, let D =
⋃

c(w,Z) 6=0 Z , U = X − D,
E =π−1(D) and V = Y −E . Then the restriction of π to V is a principal T -bundle
5 : V →U and we have a Cartesian diagram

V �
� j //

5

��

Y

π

��
U �
� k // X

Proposition A.3.3 implies that there is an isomorphism

(5 qDV o W )T/〈{µ′(t)−χ(t) | t ∈ t}〉 −→∼ D
β(χ)

U o W. (4.3.3)

2We assume, for simplicity, that the twist ω is zero. Presumably one can also deal with nontrivial
twists.
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Recall that D
β(χ)

X (D)o W = k q(Dβ(χ)

U o W ). Since

k q(5 qDV o W )T = (k q(5 qDV o W ))T = (π q( j qDV o W ))T

and (π qHc(Y,W ))T is a subalgebra of (π q j qDV o W )T , we have a morphism of
sheaves τ : (π qHc(Y,W ))T → D

β(χ)

X (D)o W . The isomorphism (4.3.3) implies
that 〈{µc(t)−χ(t) | t ∈ t}〉 is contained in the kernel of τ . Therefore it suffices to
show that 〈{µc(t)− χ(t) | t ∈ t}〉 is precisely the kernel of τ and that the image
of τ is Hβ(χ),c(X,W ). Both of these statements are local. Thus, we may assume
without loss of generality that Y = X × T . In this case, both statements reduce to
the statement D(T )T /〈{t −χ(t) | t ∈ t}〉 ' C, which is clear. �

4.4. As for differential operators on principal T -bundles — see Section 2.5 of
[Beilinson and Bernstein 1993]) — Proposition 4.3.2 implies an equivalence of
categories:

Theorem 4.4.1. The functor

(Hc(X,W ), T, χ)-Mod→Hβ(χ),c(Y,W )-Mod, M 7→ (π qM)T
is an equivalence of categories with quasi-inverse N 7→ π∗N.

The above theorem can be extended in the obvious way to the category of weakly
T -equivariant Hc(X,W )-modules with generalized central character χ ∈ t∗/X(T ),
as in [Beilinson and Bernstein 1993]. We leave the details to the interested reader.

5. Affinity of Cherednik algebras on projective space

In this section we prove the main result, which is a criterion for the affinity of
Cherednik algebras on P(V ).

5.1. Let V be a vector space and W ⊂GL(V ) a finite group. For each (s, H)∈S(V )
and (s, H∗) ∈ S(V ∗), we fix αH ∈ V ∗ and α∨H ∈ V such that H = KerαH and
H∗=Kerα∨H , normalized so that αH (α

∨

H )=2. Let V o
=V−{0} and π :V o

→P(V )
be the quotient map. The map π is a principal T -bundle, where T = C× acts on
V by dilations; i.e., t · v = t−1v for t ∈ T and v ∈ V . Since W acts on V it also
acts on P(V ). For each s ∈W , codim P(V )s = 1 if and only if s is a reflection, in
which case P(V )s = P(H)∪C ·α∨H .

Lemma 5.1.1. We have H2(P(V ),�1,2
P )' C, and the morphism β of (A.3.2) is an

isomorphism.

Proof. For each n ∈ Z, let λn be the character of C× given by t 7→ tn . Then,
(π qOV o)λn ' O(n). This implies that β is injective. Therefore, it suffices to show
that dim H2(P(V ),�1,2

P )= 1. Since P(V ) can be covered by open sets isomorphic
to An−1, and H i

DR(A
n−1)= 0 for i 6= 0, the algebraic de Rham complex is acyclic.



Affinity of Cherednik algebras on projective space 1165

This implies that the map dOP[−1] →�
1,2
P is a quasi-isomorphism. Therefore, the

map H 1(P(V ), dOP)=H2(P(V ), dOP[−1])→H2(P(V ),�1,2
P ) is an isomorphism.

The long exact sequence associated to the short exact sequence

0−→ CP −→ OP −→ dOP −→ 0

shows that H 1(P(V ), dOP)' H 2(P(V ),CP) is one-dimensional. �

Lemma 5.1.1 implies the well-known fact that twisted differential operators
on projective space are locally isomorphic, in the Zariski topology, to the usual
differential operators. We identify H2(P(V ),�1,2

P ) with C so that if ω = n ∈ Z,
then Dω

P(V ) acts on O(n). The action of W on H2(P(V ),�1,2
P ) is trivial; therefore

the sheaf Dω
P(V ) is W -equivariant for all ω.

5.2. When X = V , the rational Cherednik algebra Hc(V,W ), as introduced by
Etingof and Ginzburg, can be described as an algebra given by generators and
relations. Namely, it is the quotient of the skew group algebra T (V ⊕ V ∗)o W by
the ideal generated by the relations

[x, x ′] = 0, [y, y′] = 0, [y, x] = x(y)−
∑
s∈S

c(s)αH (y)x(α
∨

H )s (5.2.1)

for all x, x ′ ∈ V ∗ and y, y′ ∈ V . Let x1, . . . , xn be a basis of V ∗ and y1, . . . , yn ∈ V
the dual basis. The Euler element is

h=
n∑

i=1

xi yi −
∑
s∈S

2c(s)
1− λs

s =
n∑

i=1

yi xi − n+
∑
s∈S

2c(s)
(

1−
1

1− λs

)
s.

One can easily check that [h, x] = x , [h, y] = −y and [h, w] = 0 for all x ∈ V ∗,
y ∈ V and w ∈W . The element h defines an internal grading on Hc(V,W ), where
deg(x)= 1, deg(y)=−1 and deg(w)= 0. The m-th graded piece of Hc(V,W ) is
denoted by Hc(V,W )m .

5.3. Dunkl embedding. The open subset U =V−D of V is the complement to the
zero locus of

∏
s∈S αH . For y ∈ V , thought of as a constant coefficient differential

operator, the corresponding Dunkl operator Dy equals

∂y +
∑
s∈S

2c(s)
1− λs

αH (y)
αH

(s− 1) ∈ 0(U,DU o W ).

The presentation of Hc(V,W ) given above is identified with the Cherednik algebra,
defined in terms of Dunkl operators, via the injective algebra homomorphism

Hc(V,W ) ↪→ 0(U,DU o W ), w 7→ w, x 7→ x, y 7→ Dy
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for all w ∈W , x ∈ V ∗ and y ∈ V . The image of h under the Dunkl embedding is

h=
n∑

i=1

xi
∂

∂xi
−

∑
s∈S

2c(s)
1− λs

. (5.3.1)

5.4. The sheaf of Cherednik algebras on P(V ). Set ρc =
∑

s∈S 2c(s)/(1− λs).
As noted in Example 2.20 of [Etingof 2004], the global sections of Hω,c(P(V ),W )

are related to Hc(V,W ) as follows:

Lemma 5.4.1. The space Hω,c(P(V ),W ) of global sections equals

Hc(V,W )0/(h+ ρc−ω).

Proof. By Proposition 4.3.2, we have a morphism

Hc(V,W )0 = Hc(V,W )T → Hc(V o,W )T → Hω,c(P(V ),W ).

Equation (5.3.1) implies that the operator h+ ρc−ω is in the kernel of this map
because it is in the kernel of the composite

Hc(V,W )0→ Hω,c(P(V ),W )→Hω,c(P(V ),W ) ↪→ Dω
P(V )(D)o W.

To prove that Hc(V,W )0/(h+ ρc−ω)→ Hω,c(P(V ),W ) is an isomorphism, we
consider the associated graded morphism. We have

grF Hc(V,W )0 = C[xi y j | i, j = 1, . . . , n]o W.

We claim that

grF Hω,c(P(V ),W )= 0(P(V ), π qOT ∗P(V )o W )

=

(
C[xi y j | i, j = 1, . . . , n]

/ ( n∑
i=1

xi yi

))
o W.

The second equality just follows from the usual description of T ∗P(V ) as the
Hamiltonian reduction of T ∗V o

= V o
×V ∗ with respect to the induced action of T .

The first equality follows from Theorem 2.4.1, once one takes into account that the
short exact sequences

0−→ Fm−1
ω,c (P(V ),W )−→ Fm

ω,c(P(V ),W )−→ (Symm 2P(V ))⊗W −→ 0

imply by induction that Ri0(Fm
ω,c(P(V ),W )) = 0 for i > 0. Therefore, the fil-

tered morphism Hc(V,W )0→ Hω,c(P(V ),W ) is surjective, and hence so too is
Hc(V,W )0/(h+ ρc − ω)→ Hω,c(P(V ),W ). On the other hand, the associated
graded algebra of Hc(V,W )0/(h+ ρc−ω) is a quotient of the algebra(

C[xi y j | i, j = 1, . . . , n]/
( n∑

i=1
xi yi

))
o W. �
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5.5. Let Irr W be the set of all isomorphism classes of irreducible W -modules. The
element

z :=
∑
s∈S

2c(s)
(

1−
1

1− λs

)
s =−z0+

∑
s∈S

2c(s)s

belongs to the center of CW . For each λ ∈ Irr W , let cλ be the scalar by which z
acts on λ and dλ the scalar by which z0 acts on λ. Set

aλ := ρc+ cλ− n−ω, bλ := ρc− dλ−ω.

The sheaf of algebras Hω,c(P(V ),W ) is said to be affine if the global sections
functor 0 induces an equivalence of categories

0 :Hω,c(P(V ),W )-Mod−→∼ Hω,c(P(V ),W )-Mod.

Theorem 5.5.1. Let aλ and bλ be as above.

(1) The functor 0 is exact, provided aλ /∈ Z≥0 for all λ ∈ Irr W .

(2) The functor 0 is conservative, provided bλ /∈ Z>0 for all λ ∈ Irr W .

Hence, the sheaf of algebras Hω,c(P(V ),W ) is affine, provided aλ /∈ Z≥0 and
bλ /∈ Z>0 for all λ ∈ Irr W .

Our proof of Theorem 5.5.1 follows that of Theorem 1.6.5 in [Hotta et al. 2008].

Proof. The category of finitely generated Hc(V,W )-modules supported on {0} ⊂ V
is denoted by O−. It is the category O for the rational Cherednik algebra as studied
in [Ginzburg et al. 2003]. We use basic results from this article without reference.
The element h acts locally finitely on modules in O−. The generalized eigenvalues
of h on M ∈ O− are the weights of M . Let 1(λ), for λ ∈ Irr W , denote the Verma
modules in O−. It is isomorphic to (Sym V )⊗λ as a Sym V o(CW⊗C[h])-module.
The weights of 1(λ) are cλ − n − Z≥0. If M ∈ O−, then there exist a projective
module P ∈ O− and a surjection P � M . The fact that the module P has a
Verma flag implies that the weights of M are contained in

⋃
λ∈Irr W cλ− n−Z≥0.

Therefore, zero is not a generalized eigenvalue of h + ρc − ω on M , provided
cλ+ ρc− r −ω− n 6= 0 for all r ∈ Z≥0, i.e., provided aλ /∈ Z≥0.

Let 0→M1→M2→M3→ 0 be a short exact sequence in Hω,c(P(V ),W )-mod.
By Theorem 4.4.1, the terms of the sequence 0→ π∗M1→ π∗M2→ π∗M3→ 0
belong to (Hc(V o,W ), T, ω)-mod. Moreover, the sequence is exact because π is
smooth. Let j : V o ↪→ V . As noted in Lemma 3.8.1, the sheaves Ri j q(π∗Mk)

for i ≥ 0 and k = 1, 2, 3 are Hω,c(V,W )-modules. The modules Ri j q(π∗Mk) are
supported on {0} for all i > 0. Therefore, they belong to the ind-category Ind O−.
The global sections 0(P(V ),Mk) are the element of the 0(V, j qπ∗Mk)

T . Therefore
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the long exact sequence

0−→ 0(V, j qπ∗M1)−→ 0(V, j qπ∗M2)

−→ 0(V, j qπ∗M3)−→ 0(V,R1 j q(π∗M1))−→ · · ·

gives rise to

0−→ 0(P(V ),M1)−→ 0(P(V ),M2)

−→ 0(P(V ),M3)−→ 0(V,R1 j q(π∗M1))
T
−→ · · · .

The space 0(V,R1 j q(π∗M1))
T can be identified with the space of generalized

h-eigenvectors in 0(V,R1 j q(π∗M1)) with eigenvalue ω− ρc. But if aλ /∈ Z≥0 for
all λ, then this space is necessarily zero. Hence the sequence 0→ 0(P(V ),M1)→

0(P(V ),M2)→ 0(P(V ),M3)→ 0 is exact.
Next we need to show if bλ /∈ Z>0 for all λ ∈ Irr W , then 0 is conservative;

i.e., 0(P(V ),M)=0 implies that M=0. Assume that M 6=0. Since π is smooth and
surjective, it is faithfully flat and π∗M=0 implies that M=0. Hence π∗M 6=0. Since
π∗M is (T, ω)-monodromic, the Euler element h acts semisimply on 0(V, j qπ∗M),
hence it decomposes as

0(V, j qπ∗M)=⊕
α∈Z

0(V, j qπ∗M)α+ω−ρc .

There is some α ∈Z for which 0(V, j qπ∗M)α+ω−ρc 6= 0. We first assume that α > 0.
Choose 0 6= m ∈ 0(V, j qπ∗M)α+ω−ρc . Since the space 0(V, j qπ∗M)α+ω−ρc is a
W -module, we may assume that m lies in some irreducible W -isotypic component
(of type λ say) of 0(V, j qπ∗M)α+ω−ρc . We claim that there is some y such that
y · m 6= 0. Assume not; then h · m = −dλm. Hence −dλ = α + ω − ρc; i.e.,
bλ = ρc− dλ−ω = α ∈ Z>0, contradicting our assumption on bλ. Thus y ·m 6=
0. But y ·m ∈ 0(V, j qπ∗M)α−1+ω−ρc , so eventually we get a nonzero vector in
0(V, j qπ∗M)ω−ρc as required. Now, assume that α < 0. If m ∈0(V o, π∗M)α+ω−ρc

is a nonzero section, then the support of m is not contained in {0}. On the other
hand, if x ·m = 0 for all x ∈ V ∗, then Supp(m) ⊂ {0} and hence m = 0. Hence
m 6= 0 implies that there exists some x ∈ V ∗ such that x ·m 6= 0. Repeating this
argument, we eventually conclude that 0(V o, π∗M)ω−ρc 6= 0. �

When W is trivial, Theorem 5.5.1 says that P(V ) is Dω-affine provided ω /∈

{−n,−n− 1, . . . }, which equals the set of all ω ∈A∪E of [Van den Bergh 1991,
Theorem 6.1.3].

Remark 5.5.2. The action of W on V induces an action of W on all the partial
flag manifolds GL(V )/P , where P is a parabolic of GL(V ). However, one can
check that there are reflections in (GL(V )/P,W ) if and only if GL(V )/P = P(V )
or GL(V )/P is the Grassmannian of codimension-one subspaces in V .
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5.6. Abelianization of W. In this section we assume that (V,W ) is a complex
reflection group. Pullback of melys morphisms can be used to relate the represen-
tation theory of Hc(V,W ) with that of Hc(0), where 0 is a cyclic quotient of W .
Let A denote the set of reflecting hyperplanes in V and, for each H ∈A, fix sH a
generator of the cyclic group WH = {w ∈W | w(H)= H}. Let Wab =W/[W,W ],
and let χ0, . . . , χk−1 denote the linear characters of W , where k = |Wab|. For each i
and H ∈A we let ai,H be the least positive integer such that χi (sH )= (det sH )

ai,H .
We write N(Wab) for the free semigroup generated by χ0, . . . , χk−1. Then there
is an evaluation map N(Wab)→ {χ0, . . . , χk−1} which sends χ =

∑k−1
i=0 niχi to

ev(χ)=
∏k−1

i=0 χ
ni
i . For each χ =

∑k−1
i=0 niχi , define

m H =

k−1∑
i=0

ni ai,H and fχ =
∏
H∈A

α
m H
H ∈ C[V ].

Then it follows from Stanley’s results [1977] on W -semi-invariants that

w · fχ = ev(χ)(w) fχ for all w ∈W.

Fix χ ∈ N(Wab). The one-dimensional space spanned by fχ in C[V ] is denoted
by t∗. Inclusion t∗ ↪→ C[V ] defines a W -equivariant morphism ϕ : V → t. It
is melys for any parameter c associated to (t,W ). Define c′ : S(V ) → C by
c′(s, H) = m H c(s, {0}) for all (s, H) such that (s, {0}) ∈ S(t), and c′(s, H) = 0
otherwise. Corollary 3.5.1 implies:

Proposition 5.6.1. Pullback by ϕ defines an exact functor

Hc(t,W )-Mod→ Hc′(V,W )-Mod.

One can check that (3.4.2) implies that ϕ∗ maps a module M ∈ Oc(t,W ) to
ϕ∗M ∈Oc′(V,W ), since the term h of (3.4.2) will be zero in this case. Moreover, for
any such M , we have GK-dim(ϕ∗M)=GK-dim(M)+dim V−1. Let0 be the cyclic
group W/Ker ev(χ). Representations of the rational Cherednik algebra Hc(t,W )

can be viewed as W -equivariant representations of Hc(t, 0); see [Chmutova 2005].

Remark 5.6.2. More generally, if t∗ ⊂ C[V ] is an irreducible W -module, then we
get a morphism ϕ : V → t. It seems likely that one can use the theory developed
in [Bessis et al. 2002] to classify all t such that ϕ is melys. However, there do not
seem to be many examples where dim t> 1.

6. A local presentation of the Cherednik algebra

In this section we give a local presentation of the sheaf of Cherednik algebras.
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6.1. In this section only, we make the following assumptions:

• For each (w, Z) ∈ S(X), there exists a globally defined function fZ such that
Z = V ( fZ ).

• All Picard algebroids considered can be trivialized in the Zariski topology.

We fix a choice of functions fZ .

6.2. The KZ-connection. Recall that U = X −
⋃
(w,Z) Z , where the union is over

all (w, Z) in S(X). Since we have fixed a choice of defining equations of the
hypersurfaces Z , it is possible to write down a KZ-connection on U .

Definition 6.2.1. The Knizhnik–Zamolodchikov connection on U , with values in
OU ⊗CW , is defined to be

ωX,c =
∑

(w,Z)∈S(X)

2c(w, Z)
1− λw,Z

(d log fZ )⊗ s.

The KZ-connection behaves well under melys morphisms:

Lemma 6.2.2. Let ϕ : Y → X be a surjective morphism, melys for c. Then,
ϕ∗ωY,c = ωX,ϕ∗c.

Proof. The fact that ϕ is surjective implies that ϕ∗ fZ is not a unit for all (w, Z) ∈
Sc(X). Then, the lemma follows from (3.4.2), since the term h there can be chosen
to be zero. �

6.3. Fix ω∈H2(X, �1,2
X )W , trivializable in the Zariski topology. For (w, Z)∈S(X)

and ν1, ν2 ∈ Pω, define

4wZ (ν1, ν2) := iσ(ν1)(d log fZ )(w(ν2)− ν2)− iσ(ν2)(d log fZ )(w(ν1)− ν1)

in Pω(D).

Lemma 6.3.1. Let (w, Z) ∈ S(X), g ∈ OX and ν1, ν2 ∈ Pω. Then,

iσ(ν)(d log fZ )(w(g)− g) ∈ OX and 4wZ (ν1, ν2) ∈ Pω.

Proof. If g∈OX and ν∈Pω, then iσ(ν)(d log fZ )(w(g)−g)∈OX becausew(g)−g∈
I (Z). The second claim is that

σ(ν1)( fZ )

fZ
(w(ν2)− ν2)−

σ(ν2)( fZ )

fZ
(w(ν1)− ν1) ∈ Pω.

The statement is local and is clearly true in a neighborhood of any point of X − Z .
Therefore, we may assume that we have fixed a point x ∈ Z . Choose a small,
affine w-stable open subset U of X with coordinate system x1, . . . , xn such that
w(x1) = ζ x1 and w(xi ) = xi for i 6= 1. Moreover, since we have assumed that
the Picard algebroid Pω trivializes in the Zariski topology, we may assume that
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Pω
|U = OU ⊕2U . There exists some unit u ∈ 0(U,OX ) such that fZ = ux1. The

statement is clear if either ν1 or ν2 is in 0(U,OX ). Thus, without loss of generality,
ν1, ν2 ∈ 0(U,2X ). Expanding,

4wZ (ν1, ν2)=
ν1(x1)

x1
(w(ν2)− ν2)−

ν2(x1)

x1
(w(ν1)− ν1)+ h

for some h ∈0(U,2X ). There are fi , gi ∈0(U,OX ) such that ν1=
∑n

i=1 fi (∂/∂xi )

and ν2 =
∑n

i=1 gi (∂/∂xi ). We have

ν1(x1)

x1
(w(ν2)− ν2)=

n∑
i, j=1

fi x−1
1
∂x1

∂xi

(
w(g j )

∂

∂w(x j )
− g j

∂

∂x j

)

=

n∑
j=1

f1x−1
1

(
w(g j )

∂

∂w(x j )
− g j

∂

∂x j

)

=

n∑
j=1

f1x−1
1

(
(w(g j )− g j )

∂

∂w(x j )
+ g j

(
∂

∂w(x j )
−

∂

∂x j

))

= f1g1x−1
1 (ζ − 1)

∂

∂x1
+

n∑
j=1

f1x−1
1

(
(w(g j )− g j )

∂

∂w(x j )

)
.

Thus, if we define

h1=

n∑
j=1

f1x−1
1

(
(w(g j )−g j )

∂

∂w(x j )

)
, h2=

n∑
j=1

g1x−1
1

(
(w( f j )− f j )

∂

∂w(x j )

)
,

which belong to 0(U,Pω), we have

ν1(x1)

x1
(w(ν2)− ν2)−

ν2(x1)

x1
(w(ν1)− ν1)

= f1g1x−1
1 (ζ − 1)

∂

∂x1
+ h1− f1g1x−1

1 (ζ − 1)
∂

∂x1
− h2 = h1− h2,

which belongs to 0(U,2X ). �

6.4. We define the sheaf of algebras Uω,c(X,W ) to be the quotient of T Pωo W
by the relations

ν⊗ g− g⊗ ν = σ(ν)(g)+
∑
(w,Z)

2c(w, Z)
1− λw,Z

iσ(ν)(d log fZ )(w(g)− g)w, (6.4.1)

ν1⊗ ν2− ν2⊗ ν1 = [ν1, ν2] +
∑
(w,Z)

2c(w, Z)
1− λw,Z

4wZ (ν1, ν2)w (6.4.2)
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for all ν, ν1, ν2 ∈ Pω
X and g ∈ OX , and the relation3 1P = 1.

Remark 6.4.3. When X=V is a vector space and ν1, ν2∈V are constant coefficient
vector fields, the right-hand side of (6.4.2) is zero and we get the usual relations of
the rational Cherednik algebra.

Proposition 6.4.4. The map ν 7→ Dν , w 7→ w for ν ∈ Pω and w ∈ W defines an
isomorphism Uω,c(X,W )−→∼ Hω,c(X,W ) if and only if the KZ-connection is flat.

Proof. The proof is a direct calculation. It is straightforward to see that relation
(6.4.1) always holds in Hω,c(X,W ). Therefore, we just need to check that relation
(6.4.2) holds for Dunkl operators in Hω,c(X,W ) if and only if the KZ-connection
is flat. Let ν1, ν2 ∈ Pω

X , and Dν1, Dν2 the corresponding Dunkl operators. We need
to calculate the right-hand side of

[Dν1, Dν2]

=

[
ν1+

∑
(w,Z)

2c(w, Z)
1− λw,Z

σ(ν1)( fZ )

fZ
(w−1), ν2+

∑
(w,Z)

2c(w, Z)
1− λw,Z

σ(ν2)( fZ )

fZ
(w−1)

]
.

We have[
σ(ν1)( fZ )

fZ
(w− 1), ν2

]
=
σ(ν2) ◦ σ(ν1)( fZ )

fZ
(w− 1)−

σ(ν1)( fZ )σ (ν2)( fZ )

f 2
Z

(w− 1)

+
σ(ν1)( fZ )

fZ
(w(ν2)− ν2)w,

and hence∑
(w,Z)

2c(w, Z)
1− λw,Z

([
ν1( fZ )

fZ
(w− 1), ν2

]
+

[
ν1,

ν2( fZ )

fZ
(w− 1)

])
equals∑
(w,Z)

2c(w, Z)
1− λw,Z

(
[ν1, ν2]( fZ )

fZ
(w− 1)+

ν1( fZ )

fZ
(w(ν2)− ν2)w

−
ν2( fZ )

fZ
(w(ν1)− ν1)w

)
.

Also,[
−
ν1( fZ )

fZ
w1,

ν2( fZ ′)

fZ ′

]
+

[
ν1( fZ )

fZ
,−
ν2( fZ ′)

fZ ′
w2

]
+

[
ν1( fZ )

fZ
w1,

ν2( fZ ′)

fZ ′
w2

]
3Recall from Definition A.1.1 that 1P is defined to be the image of 1 ∈ OX under the map

i : OX → P.
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equals

−
ν1( fZ )

fZ
w1

(
ν2( fZ ′)

fZ ′

)
(w1− 1)+

ν2( fZ ′)

fZ ′
w2

(
ν1( fZ )

fZ

)
(w2− 1)

+
ν1( fZ )

fZ
w1

(
ν2( fZ ′)

fZ ′

)
w1w2−

ν2( fZ ′)

fZ ′
w2

(
ν1( fZ )

fZ

)
w2w1.

Combining the above equations, one sees that relation (6.4.2) holds for Dunkl
operators in Hω,c(X,W ) if and only if∑
(w1,Z)
(w2,Z ′)

4c(w1, Z)c(w2, Z ′)
(1− λw1,Z )(1− λw2,Z ′)

(
ν2( fZ )

fZ

ν1( fZ ′)

fZ ′
−
ν1( fZ )

fZ

ν2( fZ ′)

fZ ′

)
w1w2 = 0.

Since the left-hand side equals( ∑
(w1,Z)
(w2,Z ′)

4c(w1, Z)c(w2, Z ′)
(1− λw1,Z )(1− λw2,Z ′)

(d log fZ ∧ d log fZ ′)⊗w1w2

)
(ν2, ν1),

it will be zero for all ν1, ν2 if and only if the meromorphic two-form inside the
bracket is zero. But this two-form is the curvature ωX,c∧ωX,c of the KZ-connection.

�

Proposition 6.4.4 implies that when the KZ-connection is flat, the algebra
Uω,c(X,W ) is, up to isomorphism, independent of the choice of functions fZ .

Appendix: TDOs

In the appendix we summarize the facts we need about twisted differential operators,
following [Beilinson and Bernstein 1993] and [Kashiwara 1989].

A.1. Twisted differential operators. It is most natural to realize a sheaf of algebras
of twisted differential operators as a quotient of the enveloping algebra of a Picard
algebroid.

Definition A.1.1. An OX -module L is called a Lie algebroid if there exists a bracket
[− ,−] : L⊗CX L→ L and morphism of OX -modules σ : L→ 2X (the anchor
map) such that (L, [− ,−]) is a sheaf of Lie algebras with the anchor map being a
morphism of Lie algebras, and, for l1, l2 ∈ L and f ∈ OX ,

[l1, f l2] = f [l1, l2] + σ(l1)( f )l2.

If, moreover, there exists a map i : OX → L of OX -modules such that the sequence

0−→ OX −→ L−→2X −→ 0

is exact and i(1) := 1L is central in L, then L is called a Picard algebroid.
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As in [Beilinson and Bernstein 1993], we denote by �1,2
X the two-term subcom-

plex �1
X

d
−→ (�2

X )
cl, concentrated in degrees 1 and 2, of the algebraic de Rham

complex of X .

Proposition A.1.2. The Picard algebroids on X are parametrized up to isomor-
phism by H2(X, �1,2

X ).

Given ω ∈ H2(X, �1,2
X ), the corresponding Picard algebroid is denoted by Pω

X .
Associated to Pω

X is Dω
X , the sheaf of differential operators on X with twist ω. It

is the quotient of the enveloping algebra U(Pω
X ) of Pω

X by the ideal generated by
1Pω

X
− 1.

Definition A.1.3. A module for the Picard algebroid P is a quasicoherent OX -
module M together with a map −·− :P⊗CX M→M such that i( f ) ·m = f m and
[p, q] ·m = p · (q ·m)− q · (p ·m) for all p, q ∈ P,m ∈M and f ∈ OX .

There is a natural equivalence between the category of Pω-modules and the
category of Dω-modules.

A.2. Functoriality. We recall from Section 2.2 of [Beilinson and Bernstein 1993]
the functoriality properties of Picard algebroids and twisted differential operators.
Fix a morphism ϕ : Y → X . Let PX be a Picard algebroid on X and PY a Picard
algebroid on Y .

Definition A.2.1. A ϕ-morphism γ :PY→PX is an OY -linear map γ :PY→ϕ∗PX

such that for any section p∈PY and γ (p)=
∑

i gi
⊗q i with gi ∈OY and qi ∈ϕ

−1PX ,
we have

γ ([p1, p2])=
∑
i, j

gi
1g j

2 ⊗[q
i
1, q j

2 ] +
∑

j

σ(p1)(g
j
2 )⊗ q j

2 −
∑

i

σ(p2)(gi
1)⊗ q i

1

and σ(n)( f ∗g)=
∑

i giϕ∗(σ (q i )(g)) for all g ∈ ϕ−1OX .

The first fundamental theorem on differential forms [Matsumura 1989, The-
orem 25.1] implies that there is a morphism of sheaves ϕ−1�1

X → �1
Y . This

extends to a morphism of complexes ϕ−1�
q
X → �

q
Y and ϕ−1�

1,2
X → �

1,2
Y . By

functoriality of hypercohomology, we get a map ϕ∗ : H2(X, �1,2
X )→ H2(Y, �1,2

Y ).
For ω ∈ H2(X, �1,2

X ), let Pω
X be the corresponding Picard algebroid and PY the

fiber product ϕ∗Pω
X ×ϕ∗2X

2Y , where ϕ∗Pω
X → ϕ∗2X is the anchor map and

2Y → ϕ∗2X is dϕ.

Lemma A.2.2. The sheaf PY is a Picard algebroid, ψ : PY → ϕ∗PX is a ϕ-
morphism and we have an isomorphism of Picard algebroids PY ' P

ϕ∗ω
Y .
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Thus, by definition, the diagram

0 // OY //

��

P
ϕ∗ω
Y

ψ

��

σY // 2Y

��

// 0

OY = ϕ
∗OX // ϕ∗Pω

X
σX // ϕ∗2X

commutes. The projection P
ϕ∗ω
Y → ϕ∗Pω

X extends to a morphism D
ϕ∗ω
Y → ϕ∗Dω

X ,
making ϕ∗Dω

X a left D
ϕ∗ω
Y -module. Let M be a left Dω

X -module. Since ϕ∗M =
ϕ∗Dω

X ⊗ϕ−1Dω
X
ϕ−1M, we have:

Proposition A.2.3. For any M ∈ Dω
X -Mod, the sheaf ϕ∗M is a D

ϕ∗ω
Y -module.

Remark A.2.4. If ϕ is étale, then dϕ :2Y → ϕ∗2X is an isomorphism. Therefore,
the projection P

ϕ∗ω
Y → ϕ∗Pω

X is also an isomorphism and, in this case, the isomor-
phism γ : D

ϕ∗ω
Y → ϕ∗Dω

X of left D
ϕ∗ω
Y -modules is actually an algebra isomorphism

(in particular, ϕ∗Dω
X is a sheaf of algebras).

A.3. Monodromic D-modules. Let T be a torus, i.e., a product of copies of the
multiplicative group C×. The Lie algebra of T is denoted by t. Let π : Y → X
be a principal T -bundle, with X smooth. A common way of constructing sheaves
of twisted differential operators on X is by quantum Hamiltonian reduction. Let
µ : t→DY be the differential of the action of T on Y . Since DY is a T -equivariant
sheaf, there is a stalkwise action of T on π qDY . The map µ is T -equivariant and,
since T acts trivially on t, µ descends to a map t→ (π qDY )

T . The image of µ is
central. Given a character χ : t→ C, let

DX,χ := (π qDY )
T /〈{µ(t)−χ(t) | t ∈ t}〉. (A.3.1)

Let X(T ) be the lattice of characters of T . By differentiation, we may identify
X(T ) with a lattice in t∗ such that X(T )⊗Z C = t∗. Given λ ∈ X(T ), the sheaf
of λ-semi-invariant sections (π qOY )

λ is a line bundle on X . Thus, we have a map

X(T )→ H 1(X,O×X ). Composing this with the map O×X
d log
−−−→Ker(d :�1

X→�2
X )⊂

�
1,2
X gives a map

βZ : X(T )−→ H 1(X,O×X )
d log
−−−→ H2(X, �1,2

X )

of Z-modules. Extending scalars, we get a map

β : t∗→ H2(X, �1,2
X ). (A.3.2)

Proposition A.3.3. The sheaf of algebras DX,χ is a sheaf of twisted differential
operators, isomorphic to D

β(χ)

X .
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Sketch of proof. Let λ ∈ X(T ) and L := (π qOY )
λ be the corresponding line bundle

on X . If χ is the differential of λ, then (A.3.1) implies that DX,χ acts on L.
As explained in [Beilinson and Bernstein 1993, Section 2.1.12], this implies that
DX,χ ' D

βZ(χ)

X . The fact that this extends to an isomorphism DX,χ ' D
β(χ)

X for all
χ ∈ t∗ follows from the Baer sum construction, as explained in [ibid., Section 2.1.3].

�
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Cosemisimple Hopf algebras are
faithfully flat over Hopf subalgebras

Alexandru Chirvasitu

The question of whether or not a Hopf algebra H is faithfully flat over a Hopf
subalgebra A has received positive answers in several particular cases: when
H (or more generally, just A) is commutative, cocommutative, or pointed, or
when K contains the coradical of H . We prove the statement in the title, adding
the class of cosemisimple Hopf algebras to those known to be faithfully flat
over all Hopf subalgebras. We also show that the third term of the resulting
“exact sequence” A→ H → C is always a cosemisimple coalgebra, and that the
expectation H → A is positive when H is a CQG algebra.
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3. Expectations on CQG subalgebras are positive 1192
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Introduction

The issue of faithful flatness of a Hopf algebra (always over a field) over its Hopf
subalgebras arises quite naturally in several ways. One direction is via the so-called
Kaplansky conjecture [1975], which initially asked whether or not Hopf algebras
are free over Hopf subalgebras (as an analogue to the Lagrange theorem for finite
groups). The answer was known to be negative, with a counterexample appearing
in [Oberst and Schneider 1974], but it is true in certain particular cases: using the
notation in the abstract, H is free over A whenever H is finite-dimensional (the
Nichols–Zoeller theorem [Montgomery 1993, Theorem 3.1.5]), or pointed [Radford
1977b], or A contains the coradical of H [Radford 1977a, Corollary 2.3].

Montgomery then naturally asks whether one can get a positive result by requiring
only faithful flatness of a Hopf algebra over an arbitrary Hopf subalgebra [1993,

MSC2010: primary 16T20; secondary 16T15, 16T05, 20G42.
Keywords: cosemisimple Hopf algebra, CQG algebra, faithfully flat, right coideal subalgebra,

quotient left module coalgebra, expectation.
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Question 3.5.4]. Again, this turns out not to work in general (see [Schauenburg
2000] and also [Chirvasitu 2010], where the same problem is considered in the
context of whether or not epimorphisms of Hopf algebras are surjective), but one
has positive results in several important cases, such as when A is commutative
[Arkhipov and Gaitsgory 2003, Proposition 3.12] or H is cocommutative ([Takeuchi
1972, Theorem 3.2], which also takes care of the case when H is commutative).
The most recent version of the question, asked in [Schauenburg 2000], seems to be
whether or not a Hopf algebra with bijective antipode is faithfully flat over Hopf
subalgebras with bijective antipode.

Another way to get to the faithful flatness issue is via the problem of constructing
quotients of affine group schemes. We recall briefly how this goes.

Let A→ H be an inclusion of commutative Hopf algebras; in scheme language,
A and H are affine groups, and the inclusion means that spec(A) is a quotient group
scheme of spec(H). The Hopf-algebraic analogue of the kernel of this epimorphism
is the quotient Hopf algebra π : H→C = H/H A+, where A+ stands for the kernel
of the counit of A. The map π is then normal, in the sense of [Andruskiewitsch
and Devoto 1995, Definition 1.1.5]:

LKER(π)= {a ∈ A | (π ⊗ id) ◦1(a)= 1C ⊗ a}

equals its counterpart

RKER(π)= {a ∈ A | (id⊗π) ◦1(a)= a⊗ 1C}.

This means precisely that spec(C) is a normal affine subgroup scheme of spec(A)
[Takeuchi 1972, Lemma 5.1]. This gives a map A 7→ C from quotient affine group
schemes of H to normal subgroup schemes. One naturally suspects that this is
probably a bijective correspondence, and this is indeed true (see [Takeuchi 1972,
Theorem 4.3] and also [Demazure and Gabriel 1970, III §3, 7.2]). In Takeuchi’s
paper, faithful flatness is crucial in proving half of this result, namely, the injectivity
of the map A 7→ C : one recovers A as LKER(π).

Many of the technical arguments and constructions appearing in this context go
through in the noncommutative setting, so one might naturally be led to the faithful
flatness issue by trying to mimic the algebraic group theory in a more general
setting, where Hopf algebras are viewed as function algebras on a “quantum” group.
This is, for example, the point of view taken in the by now very rich and fruitful
theory of compact quantum groups, first introduced and studied by Woronowicz:
the main characters are certain C∗ algebras A with a comultiplication A→ A⊗ A
(the minimal C∗ tensor product), imitating the algebras of continuous functions on
compact groups (we refer the reader to [Klimyk and Schmüdgen 1997, Chapter 11]
or Woronowicz’s landmark papers [1987; 1988] for details).
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These objects are not quite Hopf algebras, but for any compact quantum group
A as above, one can introduce a genuine Hopf algebra A, imitating the algebra
of representative functions on a compact group (i.e., the linear span of matrix
coefficients of finite-dimensional unitary representations), and which contains all
the relevant information on the representation theory of the quantum group in
question. The abstract properties of such Hopf (∗)-algebras have been axiomatized,
and they are usually referred to as compact quantum group (CQG) algebras (see
[Klimyk and Schmüdgen 1997, Section 11.3] or the original paper [Dijkhuizen and
Koornwinder 1994], where the term was coined). They are always cosemisimple (as
an analogue of Peter–Weyl theory for representations of compact groups), which is
why we hope that despite the seemingly restrictive hypothesis of cosemisimplicity,
the results in the present paper might be useful apart from any intrinsic interest,
at least in dealing with Hopf-algebraic issues arising in the context of compact
quantum groups.

We now describe the contents of the paper.
In the first section we introduce the conventions and notation to be used through-

out the rest of the paper, and also develop the tools needed to prove the main results.
In Section 1A we set up a Galois correspondence between the set of right coideal
subalgebras of a Hopf algebra H and the set of quotient left module coalgebras of
H . We then recall basic results on categories of objects imitating Sweedler’s Hopf
modules: These have both a module and a comodule structure, one of them over a
Hopf algebra H , and the other one over a right coideal subalgebra or a quotient left
module coalgebra of H . These categories are used extensively in the subsequent
discussion.

Section 2 is devoted to the main results. We provide sufficient conditions for
faithful flatness over Hopf subalgebras in Theorem 2.1 and Corollary 2.4. We also
investigate the case of cosemisimple H further, proving in Theorem 2.5 that for any
Hopf subalgebra A, the quotient left H -module coalgebra C = H/H A+ is always
cosemisimple. This quotient is the third term of the “exact sequence” which com-
pletes the inclusion A→ H , and the question of whether or not C is cosemisimple
arises naturally in the course of the proof of Theorem 2.1, which shows immediately
that the answer is affirmative when H A+ happens to be an ideal (both left and right).

Finally, in Section 3 we show that when the ambient Hopf algebra H is CQG, the
“expectation” H → A that plays a crucial role in the preceding section is positive.
In the course of the proof we use a sort of “A-relative” Fourier transform from H to
C∗ (whereas ordinary Fourier transforms, as in, say, [Podleś and Woronowicz 1990],
are roughly speaking more like maps from H to the dual H∗). This construction has
some of the familiar properties from harmonic analysis, such as intertwining prod-
ucts and “convolution products” (Proposition 3.11(1)), playing well with ∗ structures
(Proposition 3.11(2)), and satisfying a Plancherel-type condition Remark 3.12.
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1. Preliminaries

In this section we make the preparations necessary to prove the main results.
Throughout, we work over a fixed field k, so all algebras and coalgebras are to be
taken over k. The reader should feel free to assume k to be algebraically closed
whenever convenient, as most results are invariant under scalar extension. In
Section 3 we specialize to characteristic zero.

We assume basic familiarity with coalgebra and Hopf algebra theory, for example
as presented in [Montgomery 1993]. We will make brief use of the notion of
coring over a (not necessarily commutative) k-algebra; we refer to [Brzezinski and
Wisbauer 2003] for basic properties and results.

The notation is standard: 1C and εC stand for comultiplication and the counit
of the coalgebra C respectively, and we will allow ourselves to drop the subscript
when it is clear which coalgebra is being discussed. Similarly, SH or S stands for
the antipode of the Hopf algebra H , 1A (or just 1) will be the unit of the algebra
A, etc. Sweedler notation for comultiplication is used throughout: 1(h)= h1⊗ h2,
as well as for left or right coactions: if ρ : N → N ⊗ C (ρ : N → C ⊗ N ) is a
right (left) C-comodule structure, we write n0 ⊗ n1 (n〈−1〉 ⊗ n〈0〉) for ρ(n). We
sometimes adorn the indices with parentheses, as in 1(c)= c(1)⊗ c(2).

We will also be working extensively with categories of (co)modules over (co)alge-
bras, as well as categories of objects admitting both a module and a comodule
structure, compatible in some sense that will be made precise below (see Section 1A).
These categories are always denoted by the letter M, with left (right) module
structures appearing as left (right) subscripts, and left (right) comodule structures
appearing as left (right) superscripts. All such categories are abelian (and in fact
Grothendieck), and the forgetful functor from each of them to vector spaces is
exact. The one exception from this notational convention is the category of k-vector
spaces, which we simply call VEC.

Recall that the category MH
f of finite-dimensional right comodules over a Hopf

algebra is monoidal left rigid: every object V has a left dual V ∗ (at the level
of vector spaces it is just the usual dual vector space), and one has adjunctions
(⊗V,⊗V ∗) and (V ∗⊗, V⊗) (the left-hand member of the pair is the left adjoint)
on MH

f .
We also use the correspondence between subcoalgebras of a Hopf algebra H

and finite-dimensional (right) comodules over H : for such a comodule V , there is a
smallest subcoalgebra D= COALG(V )≤ H such that the structure map V→V⊗H
factors through V → V ⊗ D. Conversely, if D ≤ H is a simple subcoalgebra, then
we denote by VD the simple right D-comodule, viewed as a right H -comodule.
Then, for simple subcoalgebras D, E ≤ H , the product E D will be precisely
COALG(VE ⊗ VD), while S(D) is COALG(V ∗).
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For a coalgebra C , the symbol Ĉ denotes the set of isomorphism classes of
simple (right, unless specified otherwise) C-comodules.

1A. Descent data and adjunctions. We will be dealing with the kind of situation
studied extensively in [Takeuchi 1979]: H will be a Hopf algebra, and for most of
this section (and in fact the paper), ι : A→ H will be a right coideal subalgebra,
while π : H → C will be a quotient left H -module coalgebra. Recall that this
means that A is a right coideal of H (1H (A) ≤ A⊗ H ) as well as a subalgebra,
and so the induced map A→ A⊗ H is an algebra map; similarly, C is the quotient
of H by a left ideal as well as a coalgebra, and the induced map H ⊗C→ C is
supposed to be a coalgebra map.

Given a coalgebra map π : H→C , we write h for π(h), h ∈ H . In this situation,
H will naturally be both a left and a right C-comodule (via the structure maps
(π⊗id)◦1H and (id⊗π)◦1H respectively), while C has a distinguished grouplike
element 1, where 1 ∈ H is the unit. Write

πH = CH{h ∈ H | h1⊗ h2 = 1⊗ h}, Hπ
= HC

= {h ∈ H | h1⊗ h2 = h⊗ 1}.

These are what were called LKER(π) and RKER(π) back in the introduction,
following the notation in [Andruskiewitsch and Devoto 1995]. They are the spaces
of 1-coinvariants under the left and right coaction of C on H respectively, in the
sense of [Brzezinski and Wisbauer 2003, Section 28.4].

Dually, let ι : A → H be an algebra map, and set A+ = ι−1(ker εH ). Write
Hι= HA for the left H -module H/H ι(A+), and similarly, ιH = A H = H/ι(A+)H .

It is now an easy exercise to check that if ι : A→ H is a right coideal subalgebra,
then HA is a quotient left module coalgebra, and, vice versa, if π : H → C is the
projection on a quotient left module coalgebra, then CH is a right coideal subalgebra
of H .

set of right coideal
subalgebras of H

set of quotient left module
coalgebras of H

A 7→ HA

CH ←[ C

In the above diagram, the maps are order-reversing with respect to the obvious
poset structures on the two sets (whose partial orders we write as �)

Remark 1.1. Note that the two order-reversing maps form a Galois connection
in the sense of [Mac Lane 1998, Section IV.5] between the poset of right coideal
subalgebras and the poset of left module quotient coalgebras.
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Definition 1.2. Let ι : A→ H be a right coideal subalgebra and π : H → C a
quotient left module coalgebra. We call π : H → HA (or HA itself) the right
reflection of ι : A→ H or of A, and ι : CH→ H (or CH itself) the left reflection of
π : H → C . We also write r(A) and r(C) for HA and CH .

Using this language, recall from [Andruskiewitsch and Devoto 1995, Proposi-
tion 1.2.3]:

Definition 1.3. Let H be a Hopf algebra. For a right coideal subalgebra A→ H
and a quotient left module coalgebra H → C , we say that k→ A→ H → C→ k
is exact if A and C are each other’s reflections.

We usually drop the k and talk just about exact sequences A→ H → C .
If H is a Hopf algebra and C is a left H -module coalgebra, then C

H M will be the
category of left H -modules endowed with a left C-comodule structure which is a left
H -module map from M to C⊗M (where the latter has the left H -module structure
induced by the comultiplication on H ). Similarly, if A is a right H -comodule
algebra, then MH

A is the category of right H -comodules with a right A-module
structure such that M ⊗ A→ M is a map of right H -comodules. The morphisms
in each of these categories are required to preserve both structures.

Let ι : A→ H be a right coideal subalgebra and π : H → C a quotient left
module coalgebra such that π ◦ ι factors through A 3 a 7→ ε(a)1 ∈ C (this is
equivalent to saying that A� r(C), or C � r(A), in the two posets discussed before
Definition 1.2). Then, there is an adjunction between the categories AM and C

H M,
and dually, an adjunction between MH

A and MC . We will recall briefly how these
are defined, omitting most of the proofs, which are routine.

Let M ∈ AM. The vector space H ⊗A M then has a left H -module structure,
as well as a left C-comodule structure inherited from the left C-coaction on H
(checking this is where the condition A � r(C) is needed). This defines a functor
L : AM→ C

H M. To go in the other direction, for N ∈ C
H M, let

R(N )= {n ∈ N | n〈−1〉⊗ n〈0〉 = 1⊗ n}. (1)

This defines a functor, and, as the notation suggests, L is a left adjoint to R.
For the other adjunction, given M ∈ MH

A , define L ′(M) = M/M A+. This is
a functor (with the obvious definition on morphisms), and it is left adjoint to
R′ :MC

→MH
A defined by R′(N ) = N �C H ; the latter has a right H -comodule

structure obtained by making H coact on itself, as well as a right A-module structure
obtained from the right A-action on H .

Let us now focus on the adjunction AM←→ C
H M. In [Takeuchi 1979], the same

discussion is carried out in a slightly less general situation: the adjunction described
above is considered in the case A = r(C). On the other hand, we remark that
when C = r(A), the category C

H M introduced above is nothing but the category of
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descent data for the ring extension A→ H . Recall from [Brzezinski and Wisbauer
2003, Proposition 25.4] that in our case this would be the category H⊗A H M of left
comodules over the canonical H -coring H⊗A H associated to the algebra extension
A→ H . This means left H -modules M with an appropriately coassociative and
counital left H -module map ρ : M 7→ (H ⊗A H)⊗H M ∼= H ⊗A M .

The usual bijection

H ⊗ H ∼= H ⊗ H, h⊗ k 7→ h1⊗ h2k

is easily seen to descend to a bijection H ⊗A H ∼= r(A)⊗ H . Hence, we see
that a map ρ as above is the same thing as a map ψ : M 7→ r(A) ⊗ M . The
other properties of ρ, namely, being a coassociative, counital, left H -module map,
precisely translate to ψ being coassociative, counital, and a left H -module map,
respectively. Taking into account this equivalence r(A)

H M' H⊗A H M, the adjunction
(L , R) : AM←→ r(A)

H M is an equivalence as soon as H is right faithfully flat over
A (this is the faithfully flat descent theorem; see [Nuss 1997, Theorem 3.8]).

Apart from faithful flatness, other criteria are known to ensure (L , R) is an
equivalence. To state one such, we recall some notation from [Mesablishvili 2006].

For a ring A, consider the contravariant endofunctor ACA on the category of
A-bimodules defined by

ACA(M)= Hom(M,Q/Z);

these are homomorphisms of abelian groups, with the usual A-bimodule structure
induced from that on M . Then, [ibid., Theorem 8.1] (very slightly rephrased) reads:

Theorem. If ι : A→ H is a map of rings such that ACA(ι) : ACA(H)→ ACA(A)
is a split epimorphism, then H⊗A is an equivalence between AM and H⊗A H M.

Since we have just observed that in our case the functor H⊗A from the statement
of the theorem can be identified with L : AM→ r(A)

H M, we get the following result
as a consequence:

Proposition 1.4. With the previous notation, (L , R) : AM←→ r(A)
H M is an equiva-

lence if the inclusion ι : A→ H splits as an A-bimodule map. �

Remark 1.5. The paper [Mesablishvili 2006] deals with rings rather than Hopf al-
gebras. To deduce Proposition 1.4 one uses the noted identification r(A)

H M' H⊗A H M

to turn the problem into the usual formulation of descent for arbitrary rings. Sections
7 and 8 of [ibid.] spell this out.

As a kind of converse to the faithfully flat descent theorem, (L , R) being an
equivalence implies that H is right A-faithfully flat. Indeed, H⊗A is then exact
on AM. Note that we are using the fact that r(A)

H M is abelian, with the same exact
sequences as VEC. All in all, this proves:
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Proposition 1.6. Let ι : A→ H be a right coideal subalgebra. The adjunction

(L , R) : AM←→ r(A)
H M

is an equivalence if and only if H is right A-faithfully flat. �

Remark 1.7. This result is very similar in spirit to the equivalence (5)⇐⇒ (3) in
[Schneider 1990, Theorem I], or to (1) ⇐⇒ (2) in [Schauenburg and Schneider
2005, Lemma 1.7]. These can all be deduced from much more general, coring-
flavored descent theorems that are now available, such as, say, [Caenepeel et al.
2007, Theorem 2.7].

1B. CQG algebras. For background, we rely mainly on [Klimyk and Schmüdgen
1997, 11.3–11.4] or the paper [Dijkhuizen and Koornwinder 1994], where these
objects were originally introduced. Recall briefly that these Hopf algebras are
meant to have just enough structure to imitate algebras of representative functions
on compact groups. This means they are complex ∗-algebras (they possess conjugate-
linear involutive multiplication-reversing automorphisms ∗) as well as Hopf algebras,
and the two structures are compatible in the sense that the comultiplication and the
counit are both ∗-algebra homomorphisms.

In addition, CQG algebras are required to have unitarizable comodules. This
is a condition we will not spell out in any detail, but it says essentially that every
finite-dimensional comodule has an inner product compatible with the coaction in
some sense (once more imitating the familiar situation for compact groups, where
invariant inner products on representations can be constructed by averaging against
the Haar measure). In particular, CQG algebras are automatically cosemisimple,
and hence fit comfortably into the setting of Section 2.

Not all ∗-algebras have enveloping C∗-algebras, but CQG algebras do. See, e.g.,
[Klimyk and Schmüdgen 1997, Section 11.3.3]. Such a completion is a so-called full,
or universal, C∗-algebraic compact quantum group, in the sense that it is a (unital)
C∗-algebra A endowed with coassociative C∗-algebra homomorphism A→ A⊗ A
(minimal C∗ tensor product) with additional conditions ([Klimyk and Schmüdgen
1997, Section 11.3.3, Proposition 32] or [Dijkhuizen and Koornwinder 1994, §4–5]).

On the very few occasions when tensor product C∗-algebras come up, ⊗ always
denotes the smallest C∗ tensor product (as treated in [Wegge-Olsen 1993, T.5], for
instance). The term completely positive map between C∗-algebras will also make
brief appearances. Recall that a linear map T : A→ B between C∗-algebras is
said to be positive if for each x ∈ A we have T (x∗x)= y∗y for some y ∈ B, and
completely positive [Takesaki 2002, Section IV.3] if the maps

id⊗T : Mn ⊗ A→ Mn ⊗ B

between matrix algebras are all positive.



Cosemisimple Hopf algebras are faithfully flat over Hopf subalgebras 1187

2. Main results

We now prove the statement from the title of the paper:

Theorem 2.1. A cosemisimple Hopf algebra is faithfully flat over all its Hopf
subalgebras.

Proof. Let H be cosemisimple, and ι : A→ H an inclusion of a Hopf subalgebra.
Combining Propositions 1.6 and 1.4, it suffices to show that ι splits as an A-
bimodule map. In fact, one can even find a subcoalgebra B ≤ H with H = A⊕ B
as A-bimodules.

Let I be the set of simple subcoalgebras of H , and J the subset of I consisting
of subcoalgebras contained in A. One then has H =

⊕
I D and A=

⊕
J D. Define

B =
⊕

I\J D; in other words, B is the direct sum of those simple subcoalgebras
of H which are not in A. Clearly, B is a subcoalgebra and H = A⊕ B, and we
now only need to check that B is invariant under (either left or right) multiplication
by A.

Let D ∈ J and E ∈ I \ J be simple subcoalgebras of A and B respectively.
The product E D inside H is then COALG(VE ⊗ VD) (see last paragraph above
Section 1A). Now assume F ∈ J is a summand of E D. This means VF ≤ VE⊗VD ,
so V ∗E ≤ VD ⊗ V ∗F . This is absurd: V ∗E is a B-comodule, while VD ⊗ V ∗F is an
A-comodule. �

Remark 2.2. This proves the first part of [Wang 2009, Conjecture 1]; the second
part, stating the faithful coflatness of a CQG algebra over quotient CQG algebras,
follows immediately from the cosemisimplicity of CQG algebras.

Remark 2.3. Examples of cosemisimple Hopf algebras which are not faithfully
coflat over quotient Hopf algebras abound, at least in characteristic zero.

Indeed, let G be a reductive complex algebraic group and B a Borel subgroup.
Denoting by O( • ) “regular functions on the variety •”, the Hopf algebra H = O(G)
is cosemisimple (e.g., [Fogarty 1969, p. 178]), and it surjects onto C = O(B).

If the surjection H → C were to be faithfully coflat, then, by [Takeuchi 1979,
Theorem 2], we could reconstruct C as H/H A+ for A = r(C). But A is simply
the algebra of global regular functions on the projective variety G/B, and hence
consists only of constants; this provides the contradiction.

In fact, the result can be strengthened slightly. Recall that the coradical C0 of a
coalgebra C is the sum of all its simple subcoalgebras.

Corollary 2.4. A Hopf algebra H whose coradical H0 is a Hopf subalgebra is
faithfully flat over its cosemisimple Hopf subalgebras.

Proof. Any cosemisimple Hopf subalgebra A ≤ H will automatically be contained
in the coradical H0. By the previous corollary, H0 is faithfully flat over A. On the
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other hand, Hopf algebras are faithfully flat (and indeed free) over sub-bialgebras
which contain the coradical [Radford 1977b, Corollary 1]; in particular, in this case,
H is faithfully flat over H0. The conclusion follows. �

Now let us place ourselves in the setting of Theorem 2.1, assuming in addition
that the Hopf subalgebra A→ H is conormal in the language of [Andruskiewitsch
and Devoto 1995]. This simply means that H A+ = A+H , and is equivalent to
C = r(A) being a quotient Hopf algebra of H rather than just a quotient coalgebra
[Andruskiewitsch and Devoto 1995, Definition 1.1.9]. Recalling the decomposition
H = A⊕ B as a direct sum of subcoalgebras, C breaks up as the direct sum of
the coalgebras k = k1 and B/B A+. In other words, the coalgebra spanned by the
unit of the Hopf algebra C has a coalgebra complement in C . It follows from
the equivalence of (c) and (f) in [Sweedler 1969, Theorem 14.0.3] that C is a
cosemisimple Hopf algebra. Our aim in the rest of this section is to extend this
result to the general case covered by Theorem 2.1:

Theorem 2.5. If ι : A→ H is a Hopf subalgebra of a cosemisimple Hopf algebra
H , then the coalgebra C = r(A) is cosemisimple.

Proof. We know from Theorem 2.1 that H is right A-faithfully flat, and hence also
left faithfully flat (just flip everything by means of the bijective antipode). This then
implies, for example by [Takeuchi 1979, Theorem 1], that the second adjunction
we introduced above, (L ′, R′) :MH

A ←→MC , is an equivalence. It is then enough to
show that all objects of the category MH

A are projective, and this is precisely what
the next two results do. �

Definition 2.6. An object of MH
A is said to be A-projective if it is projective as an

A-module.

Proposition 2.7. Under the hypotheses of Theorem 2.5, every object of MH
A is

A-projective.

Proof. Let M ∈MH
A be an arbitrary object. Endow M⊗H with a right H -comodule

structure by making H coact on itself, and also a right A-module structure by the
diagonal right action (i.e., M⊗H is the tensor product in the monoidal category MA).
It is easy to check that these are compatible in the sense that they make M⊗H into
an object of MH

A , and the map ρ :m 7→m〈0〉⊗m〈1〉 ∈ M⊗ H giving M its right H -
comodule structure is actually a morphism in MH

A . Similarly, id⊗εH :M⊗H→M
is a morphism in MA, and it splits the inclusion ρ. It follows that it is enough to
show that the object M ⊗ H ∈MH

A described above is A-projective.
Theorem 2.1 says that H is A-faithfully flat, and it follows from [Masuoka and

Wigner 1994, Corollary 2.9] that it is then (left and right) A-projective. This means
that M⊗H can be split embedded (in the category MA) into a direct sum of copies
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of M ⊗ A with the diagonal right action of A. But

M ⊗ A→ M ⊗ A, m⊗ a 7→ ma1⊗ a2

exhibits an isomorphism from M⊗ A with the right A-action on the right tensorand
to M ⊗ A with the diagonal A-action (its inverse is m⊗ a 7→ mS(a1)⊗ a2). This
means that in MA, M⊗ H is a direct summand of a direct sum of copies of A, thus
projective. �

Proposition 2.8. Under the hypotheses of Theorem 2.5, A-projective objects of MH
A

are projective.

Before going into the proof, we need some preparation, including additional
notation to keep track of the several A-module or H -comodule structures that might
exist on the same object.

As in the proof of Theorem 2.1, denote by I and J ⊆ J the sets of simple right
comodules over H and A, respectively. Recall that these are also in one-to-one
correspondence with the simple subcoalgebras of H and A, respectively. We will
henceforth denote by ϕ : H → A the map which is the identity on A and sends
every simple subcoalgebra D ∈ I \ J to 0.

Notice now that A acts on H (as well as on itself) not just by the usual right
regular action, but also by the right adjoint action: hG a= S(a1)ha2 (h ∈ H , a ∈ A).
This gives H and A a second structure as objects in MH

A . When working with this
structure rather than the obvious one, we denote these objects by Had and Aad.

Lemma 2.9. (a) For any object M ∈ MH
A , M ⊗ Had becomes an object of MH

A
when endowed with the diagonal A-action (where A acts on M ∈MH

A and on
H by the right adjoint action) and the diagonal H-coaction.

(b) Similarly, M ⊗ Aad ∈MH
A .

(c) id⊗ϕ : M ⊗ Had → M ⊗ Aad respects the structures from (a) and (b), and
hence is a morphism in MH

A .

Proof. We will only prove (a); (b) is entirely analogous, while (c) follows im-
mediately, since ϕ clearly preserves both the right H -coaction and the adjoint
A-action.

Proving (a) amounts to checking that the diagram

M ⊗ Had⊗ A M ⊗ Had

M ⊗ Had⊗ HM ⊗ Had⊗ H ⊗ A
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is commutative. The path passing through the upper horizontal line is

m⊗ h⊗ a 7−→ ma1⊗ S(a2)ha3 7−→ m0a1⊗ S(a4)h1a5⊗m1a2S(a3)h2a6,

while the other composition is

m⊗ h⊗ a 7−→ m0⊗ h1⊗m1h2⊗ a 7−→ m0a1⊗ S(a2)h1a3⊗m1h2a4.

Using the properties of the antipode and counit in a Hopf algebra, we have

m0a1⊗ S(a4)h1a5⊗m1a2S(a3)h2a6 = m0a1⊗ S(ε(a2)a3)h1a4⊗m1h2a5

= m0a1⊗ S(a2)h1a3⊗m1h2a4,

concluding the proof. �

Now denote by (M ⊗ H)r ∈MH
A the object from the proof of Proposition 2.7:

the A-action is diagonal, while H coacts on the right tensorand alone. The upper r
is meant to remind the reader of this.

Lemma 2.10. For M ∈MH
A , the map ψM : M ⊗ H → M ⊗ H defined by

m⊗ h 7−→ m0⊗ S(m1)h

is a morphism in MH
A from (M ⊗ H)r to M ⊗ Had.

Proof. We only check compatibility with the A-actions, leaving H -coactions to the
reader. The composition (M ⊗ H)r ⊗ A −→ (M ⊗ H)r −→ M ⊗ Had is

m⊗ h⊗ a 7−→ ma1⊗ ha2
ψM

m0a1⊗ S(m1a2)ha3,

while the other relevant composition is

m⊗ h⊗ a
ψM⊗id

m0⊗ S(m1)h⊗ a 7−→ m0a1⊗ S(a2)S(m1)ha3.

Since S is an algebra antimorphism, they are equal. �

Finally, we have:

Lemma 2.11. Let M ∈MH
A . The map M⊗A→M giving M its A-module structure

is a morphism M ⊗ Aad→ M in MH
A .

Proof. Compatibility with the H -coactions is built into the definition of the category
MH

A , so one only needs to check that the map is a morphism of A-modules. In other
words, we must show that the diagram

M ⊗ Aad⊗ A M ⊗ Aad

MM ⊗ A
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is commutative. The right-down composition is

m⊗ a⊗ b 7−→ mb1⊗ S(b2)ab3 7−→ mb1S(b2)ab3,

while the other composition is

m⊗ a⊗ b 7−→ ma⊗ b 7−→ mab;

they are thus equal. �

Lemma 2.12. For M ∈MH
A , the composition

tM : (M ⊗ H)r M ⊗ Had M ⊗ Aad M,
ψM id⊗ϕ

where the last arrow gives M its A-module structure, is a natural transformation
from the MH

A -endofunctor ( • ⊗ H)r to the identity functor, and it exhibits the latter
as a direct summand of the former.

Proof. The fact that tM is a map in MH
A follows from Lemmas 2.9, 2.10 and 2.11.

Naturality is immediate (one simply checks that it holds for each of the three maps),
as is the fact that tM is a left inverse of the map M → (M ⊗ H)r giving M its
H -comodule structure. �

We are now ready to prove the result we were after:

Proof of Proposition 2.8. Let P ∈MH
A be an A-projective object. We must show that

MH
A (P, • ) is an exact functor. Embedding the identity functor as a direct summand

into ( • ⊗ H)r (Lemma 2.12), it suffices to show that MH
A (P, ( • ⊗ H)r ) is exact.

The functor ( • ⊗ H)r : MA → MH
A is right adjoint to forget : MH

A → MA (as
MH

A is the category of coalgebras for the comonad •⊗ H on MA; see [Mac Lane
1998, Theorem VI.2.1]), so MH

A (P, ( • ⊗H)r ) is naturally isomorphic to MA(P, • ),
which is exact by our assumption that P is A-projective. �

Remark 2.13. In the above proof, the forgetful functor forget : MH
A → MA has

been suppressed in several places, in order to streamline the notation; we trust that
this has not caused any confusion.

Remark 2.14. The proof of Proposition 2.7 is essentially a rephrasing of the
usual proof that Hopf algebras H with a (right, say) integral sending 1H to 1 are
cosemisimple [Sweedler 1969, §14.0]; we will call such integrals unital. The map
ϕ : H → A introduced in Lemma 2.9 might be referred to as an A-valued right
integral (by which we mean a map preserving both the right H -comodule structure
and the right adjoint action of A), and specializes to a unital integral when A = k.
In conclusion, one way of stating Proposition 2.8 would be:

If the inclusion ι : A→ H of a right coideal subalgebra is split by an A-valued
right integral, then the forgetful functor MH

A →MA reflects projectives.
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Remark 2.15. Propositions 2.7 and 2.8 can both be traced back to work by Y. Di,
but we have included proofs for completeness. Proposition 2.7, for instance, is a
consequence of [Doi 1983, Theorem 4]. Similarly, Proposition 2.8 follows from
[Doi 1990, Theorem 1]. I thank the referee for pointing this out.

3. Expectations on CQG subalgebras are positive

We now move the entire A→ H → C setting over to the case when H is a CQG
algebra. We take for granted the preceding sections, and in particular the fact
that C is cosemisimple (Theorem 2.5). The inclusion ι : A→ H is now one of
∗-algebras, and we follow the operator-algebraists’ convention of referring to its
left inverse p : H → A from the proof of Theorem 2.1 as the expectation of H on
A (in accordance with a view of A and H as consisting of random variables on
noncommutative measure spaces). Positivity here means the following:

Think of H as embedded in its universal C∗ completion Hu (Section 1B), and
complete A to Au with the subspace norm. Then, p extends to a completely positive
map Hu → Au . Equivalently, the self-map ι ◦ p : H → H lifts to a completely
positive self-map of Hu .

Note that a functional ψ ∈ H∗ with ψ(1) = 1 extends to a state on the C∗

completion Hu if and only if it is positive in the usual sense; i.e., ψ(x∗x)≥ 0 for
every x ∈ H .

The main result of the section is this:

Theorem 3.1. Let ι : A→ H be an inclusion of CQG algebras. Then, the expecta-
tion p : H → A is positive in the above sense.

Remark 3.2. So-called expected C∗-subalgebras of (locally) compact quantum
groups have featured prominently in the literature (see [Tomatsu 2007; Salmi
and Skalski 2012] and references therein). The techniques used in the proof of
Theorem 3.1 will be applied elsewhere to characterize all right coideal ∗-subalgebras
A of a CQG algebra H which are expected in the sense of admitting a positive
splitting of the inclusion as an A-bimodule, right H -comodule map, where positivity
is understood as in Theorem 3.1.

Let us first reformulate the theorem slightly. Denote the unique unital (left and
right) integral of C by hC , and the composition hC ◦ π by ϕ (where π : H → C
is the surjection we start out with). The expectation decomposes as (ϕ⊗ id) ◦1 :
H → A. This follows easily from the decomposition H = A⊕ B as a direct sum
of subcoalgebras used in the proof of Theorem 2.1, and the fact that ϕ|A equals εA

and ϕ|B is the zero map.

Remark 3.3. Let us note in passing that ϕ is self-adjoint as a functional, in the
sense that ϕ(x∗) is the complex conjugate of ϕ(x) for any x ∈ H . This follows
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immediately from ϕ|A = εA and ϕ|B = 0, the fact that A and B are closed under ∗,
and the fact that ε is a ∗-homomorphism.

This observation is needed in the proof of item (2) in Proposition 3.11, for
instance.

Lemma 3.4. The conclusion of Theorem 3.1 holds if and only if the functional
ϕ ∈ H∗ is positive.

Proof. Note that ϕ equals ε ◦ p (more pedantically, in this expression ε is the
restriction of εH to A). If p is positive then so is ϕ, given that ε is a ∗-algebra map
A→ C which lifts to Au .

Conversely, if ϕ is positive (and hence lifts to a state on Hu), then both maps
in the composition (ϕ⊗ id) ◦1 : H → H lift to completely positive maps on the
appropriate C∗ completions (1 lifts to a C∗-algebra map Hu → Hu ⊗ Hu , while
ϕ⊗ id : Hu ⊗ Hu→ Hu will also be completely positive). But that composition is
precisely ι ◦ p, as noted above. �

Remark 3.5. The identity ϕ = ε ◦ p, in particular, shows that ϕ ◦ S = ϕ. This is
needed below.

We are going to take what looks like a detour to make the necessary preparations.
For a cosemisimple coalgebra D over an algebraically closed field, denote by

D• its restricted dual: the direct sum of the matrix algebras dual to the matrix
subcoalgebras of D. In general, D• is a nonunital algebra. In our case, the full dual
H∗ is in addition a (unital) ∗-algebra, with ∗ operation defined by

f ∗(x)= f ((Sx)∗)∗ for all x ∈ H, (2)

where the outer ∗ means complex conjugation of a number (see, e.g., [Van Daele
1998, Proposition 4.3]). Furthermore, C• ≤ H∗ is a ∗-subalgebra.

Finally, again for a cosemisimple coalgebra D, we will talk about its completion
D; this is by definition the direct product of the matrix subcoalgebras comprising D.
Equivalently, D is the (ordinary, vector space) dual of D•. The module structure
H ⊗C→ C extends to an action of H on C .

Remark 3.6. This extension of the H -module structure to C is a simple enough
observation, but there is some content to it. The claim is that for x ∈ H and some
simple subcoalgebra Cα ≤ C (for α ∈ Ĉ), there are only finitely many simple
comodules β ∈ Ĉ such that xCβ intersects Cα nontrivially.

Although MC is not monoidal, V ⊗W can be made sense of as a C-comodule for
any H -comodule V and C-comodule W . This makes MC into a module category
over the monoidal category MH . Upon rephrasing the claim using the correspon-
dence W 7→ COALG(W ) between comodules and subcoalgebras, it reads: for each
finite-dimensional H -comodule V and each α∈ Ĉ , there are only finitely many β∈ Ĉ
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such that (identifying α, β with the corresponding comodules) HomMC (α, V ⊗β) is
nonzero. But just as in a rigid monoidal category, V⊗ :MC

→MC is right adjoint
to V ∗⊗, and hence we’re saying only finitely many β satisfy Hom(V ∗⊗α, β) 6= 0.
This is clear simply because V ∗⊗α is some finite direct sum of irreducibles.

First, a preliminary result:

Lemma 3.7. The squared antipode S2 of H descends to an automorphism of every
simple subcoalgebra Cα of C. Moreover, the resulting automorphism on the C∗-
algebra C∗α is conjugation by an invertible positive operator.

Proof. That S2 descends to C = H/H A+ is clear from the fact that it acts on A.
We move the action over to duals by precomposition: S2 f = f (S2

· ) for f ∈ H∗.
Now let D ≤ H be a simple subcoalgebra, and

⊕
α∈I Cα, I ⊂ Ĉ the image of

D through H → C . The squared antipode acts on D∗ as conjugation by a positive
operator F [Klimyk and Schmüdgen 1997, Chapter 11, Lemma 30 and Proposition
34], and, by the previous paragraph, preserves the subalgebra B =

⊕
α∈I C∗α. In

particular, conjugation by F permutes the |I | minimal nonzero projections pα,
α ∈ I in the center of B. I claim that this permutation action is in fact trivial, which
would finish the proof.

To check the claim, consider the unique (up to isomorphism) simple ∗-represen-
tation of D∗ on a Hilbert space H. If FpαF−1 were equal to some pβ with β 6=α∈ I ,
then F would map the range of pα onto the range of pβ . Denoting by 〈 , 〉 the
inner product on H, this implies that 〈Fx, x〉 vanishes for any x in the range of pα .
This cannot happen for nonzero x , as F is both positive and invertible. �

We now establish the existence of a kind of “relative Haar measure” on C•.

Proposition 3.8. There is an element θ ∈ C satisfying the following conditions:

(a) Writing θ as a formal sum of elements in the simple subcoalgebras of C , its
component in C1≤ C is 1.

(b) It is H-invariant, in the sense that xθ = ε(x)θ for x ∈ H.

(c) It is positive as a functional on the ∗-algebra C•.

Sketch of proof. Let ei , ei , i ∈ I be dual bases in C and C• respectively, compatible
with the decomposition of C into simple subcoalgebras. We distinguish an element
0 ∈ I such that e0 = 1. Since the automorphism S2 of H descends to C = H/H A+,
the definition

θ =
∑
i∈I

ei (S2ei(2))ei(1)

makes sense as an element of C , and clearly satisfies (a). Moreover, the definition
does not depend on the choice of bases.
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The calculation proving H -invariance can simply be lifted, e.g., from [Van Daele
1997, Proposition 1.1]. Even though that result is about finite-dimensional Hopf
algebras, it works verbatim in the present setting.

Finally, let us prove positivity, this time imitating [Van Daele 1996]. Let α ∈ Ĉ ,
and u ∈ C∗α ≤ C• an element. We can assume harmlessly that the bases ei , ei are
organized as matrix (co)units; i.e., those ei in the matrix coalgebra Cα form a matrix
counit epq , and ei will then be the dual matrix unit epq

∈ C∗α.
Now note that epq , regarded as a functional on C∗α, can be written as trα( · eqp),

where trα is the trace on the matrix algebra C∗α ∼= Mn , so that trα(1) = n. In
conclusion, the component of θ in Cα, regarded as a functional on C∗α, is

θα =
∑
p,q

trα( · S2(epq)eqp). (3)

If Q ∈ C∗α is a positive operator such that conjugation by Q equals S2 on C∗α
(Lemma 3.7), then, suppressing summation over p, q = 1, . . . , n,

S2(epq)eqp
= Qepq Q−1eqp

= trα(Q−1)Q.

This is a positive operator, and the conclusion follows. �

Remark 3.9. The expression (3), the invariance of θ with respect to bases, and the
fact that S2(epq) are again matrix units make it clear that θ ◦ S2

= θ . In fact θ is
unique, but we do not need this stronger fact.

Definition 3.10. Keeping the previous notation, the ϕ-relative Fourier transform
F : H → C• is defined as

H 3 x 7→ ϕ(Sx · ).

There is a slight abuse of notation in the definition: although a priori ϕ is a
functional on H , it descends to one on C = H/H A+. The map F is a relative
analogue to the usual Fourier transform [Podleś and Woronowicz 1990, §2], and
enjoys similar properties. Let us record some of them:

Proposition 3.11. The map F : H → C• introduced above satisfies the following
relations:

(1) F(x G Fy)= FxFy for all x, y ∈ H , where the right action G of H∗ on H is
defined by x G f = f (x1)x2.

(2) F(x)∗ = S2F((Sx)∗), where the ∗ structure on C• is defined in (2), and S2

acts on H∗ by precomposition, as in the proof of Lemma 3.7.

(3) ε(x G Fy)= ϕ(Sy x).

(4) θF= ε, where θ is the functional on C• from Proposition 3.8.

(5) FS2
= S−2F.
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Proof. Most of this consists of simple computations, so let us only prove the first
and fourth items.

Applying both sides of (1) to z ∈ H , we have to prove

ϕ(Sy x1)ϕ(Sx2 z)= ϕ(Sx z1)ϕ(Sy z2).

Substituting y for Sy, z for Sz, and using ϕ ◦ S = ϕ (Remark 3.5), this turns into

ϕ(yx1)ϕ(zx2)= ϕ(z2x)ϕ(ySz1).

Now make the substitution yx1⊗x2=a⊗b, which in turn means y⊗x=aSb1⊗b2.
The target identity turns into

ϕ(a)ϕ(zb)= ϕ(aSb1Sz1)ϕ(z2b2).

Writing zb = c, it transforms further into

ϕ(a)ϕ(c)= ϕ(aSc1)ϕ(c2).

Finally, the substitution of c for S−1c and again ϕ ◦ S = ϕ turn this into

ϕ(a)ϕ(c)= ϕ(ac2)ϕ(c1).

To prove this last equality, it suffices to split into two cases, according to whether c
is in A or the complementary A-bimodule, right H -comodule ker(p).

In the latter case, both ϕ(c) and ϕ(c1) vanish. In the former, the left-hand side
is ϕ(a)ε(c), while the right-hand side is ϕ(ac) (since ϕ(c1) = ε(c1)). These two
expressions are equal because ϕ = εp and p is an A-bimodule map.

We now check (4). Applying its left-hand side to x ∈ H , we get θ(ϕ(Sx · ))=
ϕ(Sx θ), where this time θ is thought of as an element of C , Sx θ is the action
of Sx on it (Remark 3.6), and ϕ is regarded naturally as a functional on C . By
the H -invariance of θ (Proposition 3.8(b)), the expression is ε(x)ϕ(θ)= ε(x) by
Proposition 3.8(a). �

All of the ingredients are now in place.

Proof of Theorem 3.1. According to Lemma 3.4, it suffices to show that ϕ(x∗x)≥ 0
for all x ∈ H . We do this through a string of equalities based on the preliminary
results of this section.

Let x, y ∈ H . Then, we have

θ((Fy)∗Fx)
(2)
= θ(S2F((Sy)∗)Fx)= θ(S2F((Sy)∗)F(S2x))
(1)
= θF((Sy)∗ G F(S2x))

(4)
= ε((Sy)∗ G F(S2x))

(3)
= ϕ(S3x(Sy)∗)= ϕ(S3x S(S2 y)∗)= ϕ((S2 y)∗S2x),
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where the numbers above the equal signs refer to the items in Proposition 3.11,
the second equality follows from (5) and the fact that θ S2

= θ (Remark 3.9), the
next-to-last one is a simple manipulation valid in any Hopf ∗-algebra, and the last
equality is based on ϕS = ϕ (Remark 3.5). Since the left-hand side is nonnegative
when x = y, so is the right-hand side. This concludes the proof of the theorem. �

Remark 3.12. The equality obtained in the course of the proof should be thought
of as a Plancherel theorem [Rudin 1991, 7.9, p. 188], to the effect that the relative
Fourier transform is an isometry with respect to the “inner products” induced by ϕ
and θ .
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Tetrahedral elliptic curves and the
local-global principle for isogenies

Barinder S. Banwait and John E. Cremona

We study the failure of a local-global principle for the existence of l-isogenies
for elliptic curves over number fields K. Sutherland has shown that over Q there
is just one failure, which occurs for l D 7 and a unique j -invariant, and has
given a classification of such failures when K does not contain the quadratic
subfield of the l-th cyclotomic field. In this paper we provide a classification of
failures for number fields which do contain this quadratic field, and we find a new
“exceptional” source of such failures arising from the exceptional subgroups of
PGL2.Fl /. By constructing models of two modular curves, Xs.5/ and XS4

.13/,
we find two new families of elliptic curves for which the principle fails, and we
show that, for quadratic fields, there can be no other exceptional failures.

1. Introduction

Let E be an elliptic curve defined over a number field K, and l a prime. It is
easy to show that if E possesses a K-rational l-isogeny, then the reduction zEp=Fp,
for all primes p of K of good reduction and not dividing l , likewise possesses an
Fp-rational l-isogeny.

Andrew Sutherland [2012] asked a converse question: if zEp=Fp admits an
Fp-rational l-isogeny for a density-one set of primes p, then does E=K admit
a K-rational l-isogeny? Sutherland showed that while the answer to this question is
usually “yes”, there nevertheless exist pairs .E=K; l/ for which the answer is “no”.

Whether an elliptic curve over a field possesses a rational l-isogeny or not
depends only on its j -invariant, provided that the j -invariant is neither 0 nor 1728;
thus, if the answer is “no” for one elliptic curve E=K for the prime l , it is also
“no” for every elliptic curve over K with the same j -invariant j.E/ (with the same
exceptions). Following Sutherland, we thus define a pair .l; j0/, consisting of a
prime l and an element j0 6D 0; 1728 of a number field K, to be exceptional for K
if there exists an elliptic curve E over K, with j.E/D j0, such that the answer to

The first author was supported by an EPSRC Doctoral Training Award at the University of Warwick.
MSC2010: primary 11G05; secondary 11G18.
Keywords: elliptic curves, local-global, isogeny, exceptional modular curves.
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the above question at l is “no”. We will refer to the prime in the exceptional pair as
an exceptional prime for K, and any elliptic curve E over K with j.E/D j0 as a
Hasse at l curve over K.

Sutherland gives a necessary condition for the existence of an exceptional pair,
under a certain assumption. To state Sutherland’s result, recall that the absolute
Galois group GK WD Gal.K=K/ acts on the l-torsion subgroup E.K/Œl�, yielding
the mod-l representation

N�E;l WGK ! GL2.Fl/;

whose image GE;l WD Im N�E;l is well-defined up to conjugacy; we refer to GE;l
as the mod-l image of E. We let HE;l WDGE;l modulo scalars, and observe that
HE;l depends only upon j.E/, provided that j.E/¤ 0 or 1728; we refer to HE;l
as the projective mod-l image of E.

It is easy to show that l D 2 is not an exceptional prime for any number field, so
henceforth we assume that l is odd. We now define l� WD ˙l , where the plus sign
is taken if l � 1 .mod 4/, and the minus sign otherwise.

Sutherland’s result may now be stated as follows; by D2n we mean the dihedral
group of order 2n:

Proposition 1.1 (Sutherland). Assume
p
l� … K. If .l; j0/ is exceptional for K,

then for all elliptic curves E=K with j.E/D j0:

(1) The projective mod-l image of E is isomorphic to D2n, where n > 1 is an odd
divisor of .l � 1/=2.

(2) l � 3 .mod 4/.

(3) The mod-l image ofE is contained in the normaliser of a split Cartan subgroup
of GL2.Fl/.

(4) E obtains a rational l-isogeny over K.
p
l�/.

(In fact, the converse is also true, as may be shown by applying the proof of the
converse part of Proposition 1.3 below; see Section 7.)

Sutherland used this result for K D Q to determine the exceptional pairs for
Q (where the assumption

p
l� … Q is trivially satisfied for all l). If .l; j.E// is

exceptional for Q, then (3) above says that E corresponds to a Q-point on the
modular curve Xs.l/. By the recent work of Bilu, Parent and Rebolledo [Bilu et al.
2013], it follows that l must be 2, 3, 5, 7 or 13. Of these, only 3 and 7 are 3 .mod 4/,
and 3 can easily be ruled out as a possible exceptional prime (for all number fields).
Thus, 7 is the only possible exceptional prime for Q, and (1) above tells us that
the projective mod-7 image of a Hasse at 7 curve over Q must be isomorphic to
D6, the dihedral group of order 6. The modular curve parametrising elliptic curves
with this specific level-7 structure turns out to be the rational elliptic curve with
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label 49a3 in [Cremona 1997], which has precisely two noncuspidal rational points.
Evaluating j at these points yields the same value, and hence gives Sutherland’s
second result.

Theorem 1.2 [Sutherland 2012, Theorem 2]. The only exceptional pair for Q is�
7; 2268945

128

�
:

In this paper we would like to investigate what happens in the case where
p
l� 2K. In Section 7 we will prove the following using Sutherland’s methods:

Proposition 1.3. Assume
p
l� 2K. Then .l; j0/ is exceptional for K if and only if

one of the following holds for elliptic curves E=K with j.E/D j0:

� HE;l Š A4 and l � 1 .mod 12/.

� HE;l Š S4 and l � 1 .mod 24/.

� HE;l Š A5 and l � 1 .mod 60/.

� HE;l Š D2n and l � 1 .mod 4/, where n > 1 is a divisor of .l � 1/=2, and
GE;l lies in the normaliser of a split Cartan subgroup.

Thus, in the case
p
l� 2K, there are two sorts of exceptional pairs: the dihedral

ones and the nondihedral ones.
Let us now consider each of these two cases overKDQ.

p
l�/, the smallest field

containing
p
l�. Regarding the dihedral pairs, we may ask the following question:

Question 1.4. For which l � 1 .mod 4/ is there an elliptic curve E over Q.
p
l/

such that HE;l ŠD2n, for n > 1 a divisor of .l � 1/=2?

A positive answer to the Serre uniformity problem for number fields would imply
that there should be only finitely many such l , but we are unable to prove this.
Instead, we show that the set of l asked for by the above question is not empty;
l D 5 gives a positive answer.

Theorem 1.5. An elliptic curve E over Q.
p
5/ has HE;5 ŠD4 if and only if its

j -invariant is given by the formula

j.E/D

�
.sC 5/.s2� 5/.s2C 5sC 10/

�3
.s2C 5sC 5/5

(1-1)

for some s 2 Q.
p
5/, together with the condition that s2 � 20 is not a square in

Q.
p
5/ for all s 2Q.

p
5/ satisfying (1-1).

Thus, the exceptional pairs at 5 over Q.
p
5/ are given by .5; j.E// for j.E/

as above, and, in particular, there are infinitely many exceptional pairs at 5 over
Q.
p
5/.
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The proof of this theorem considers the modular curve Xs.5/ corresponding to
the normaliser of a split Cartan subgroup, whose Q.

p
5/-points (as we will see)

correspond to elliptic curves E over Q.
p
5/ withHE;5�D4. This curve is defined

over Q and has genus 0; writing the j -map

Xs.5/
j
�!X.1/

as a rational function yields the parametrisation (1-1); the further condition stated in
the theorem is needed to force the corresponding elliptic curve to have HE;5 ŠD4
(and not merely a subgroup of D4); see Section 3 for the full proof.

Regarding the nondihedral pairs, we prove the following in Section 8:

Proposition 1.6. The only nondihedral exceptional prime l over any quadratic field
is 13 over Q.

p
13/, where the projective mod-13 image is isomorphic to A4.

This leads to the following question:

Question 1.7. Find all elliptic curves E over Q.
p
13/ such that HE;13 Š A4.

By Proposition 1.6, such elliptic curves are the only nondihedral Hasse curves
over quadratic fields.

We take a similar approach to this question as we did for Theorem 1.5, by studying
the relevant modular curveXS4

.13/; this is the modular curve over Q corresponding
to the pullback to GL2.F13/ of S4� PGL2.F13/; the earliest reference to this curve
we are aware of is in [Mazur 1977b]. This modular curve is geometrically connected,
and over the complex numbers has the description �A4

.13/nH�, where �A4
.13/ is

the pullback to PSL2.Z/ of A4 � PSL2.F13/. A Q-point on XS4
.13/ corresponds

to an elliptic curve E=Q such that HE;13 � S4. A Q.
p
13/-point corresponds to

an elliptic curve E=Q.
p
13/ such that HE;13 � A4. Thus, the elliptic curves we

seek in Question 1.7 correspond to certain Q.
p
13/-points on the modular curve

XS4
.13/.

Theorem 1.8. The modular curve XS4
.13/ is a genus-3 curve, whose canonical

embedding in P2
Q

has the model

C W 4X3Y � 3X2Y 2C 3XY 3�X3ZC 16X2YZ � 11XY 2Z

C5Y 3ZC 3X2Z2C 9XYZ2CY 2Z2CXZ3C 2YZ3 D 0:

On this model, the j -map XS4
.13/

j
�!X.1/ is given by

j.X; Y;Z/D
n.X; Y;Z/

d.X; Y;Z/13
;

where

d.X; Y;Z/D 5X3� 19X2Y � 6XY 2C 9Y 3CX2Z

�23XYZ � 16Y 2ZC 8XZ2� 22YZ2C 3Z3
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and n.X; Y;Z/ is an explicit degree-39 polynomial.

The proof of this theorem will occupy Sections 4 and 5 of the paper.
We have not been able to provably determine the Q.

p
13/-points on the curve.

The method of Chabauty does not apply in this case, and this is likely to be a
difficult problem; see Section 9 for more about the Jacobian of C and the difficulty
of determining the Q and Q.

p
13/-rational points.

We have, however, the following six points1 in C.Q.
p
13//, four of which are

in C.Q/:˚
.1 W 3 W �2/; .0 W 0 W 1/; .0 W 1 W 0/; .1 W 0 W 0/; .3˙

p
13 W 0 W 2/

	
:

By evaluating the j -map at these points, we obtain the j -invariants of elliptic
curves over Q.

p
13/ whose projective mod-13 image is contained in A4; in fact,

apart from .0 W 0 W 1/, whose corresponding j -invariant is 0, these points have
projective mod-13 image isomorphic to A4.

Corollary 1.9. Elliptic curves over Q with j -invariants

11225615440

1594323
D
24 � 5 � 134 � 173

313
;

�
160855552000

1594323
D�

212 � 53 � 11 � 134

313
;

90616364985637924505590372621162077487104

197650497353702094308570556640625

D
218 � 33 � 134 � 1273 � 1393 � 1573 � 2833 � 929

513 � 6113

have projective mod-13 images isomorphic to S4. Elliptic curves over Q.
p
13/ with

these j -invariants have projective mod-13 images isomorphic to A4, as do elliptic
curves over Q.

p
13/ with j -invariant

j D
4096000

1594323
.15996230˙ 4436419

p
13/:

Thus, elliptic curves over Q.
p
13/ with these j -invariants are Hasse at 13 curves

over Q.
p
13/.

Remark 1.10. It is known that, for l > 13, there are no elliptic curves E over
Q with HE;l Š S4; in fact, Serre proved that XS4

.l/.Q/ is empty for l > 13.
Mazur [1977a, p. 36] reports that Serre has constructed a Q-point on XS4

.13/

corresponding to elliptic curves with complex multiplication by
p
�3; this point

that Serre found corresponds to the point .0 W 0 W 1/ on the curve C above.

1These are all the points in C.Q.
p
13// of logarithmic height less than 5:24, according to [Turner

2013].
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Remark 1.11. The rational points on XS4
.l/ for l � 11 have already been deter-

mined. The most interesting case is l D 11, where Ligozat [1977] proved that the
curve XS4

.11/ is the elliptic curve with Cremona label 121c1.

We conclude this introduction by considering the following problem, which we
would like to solve at least for every quadratic field. This may be viewed as a
generalisation of Sutherland’s theorem 2 (see 1.2).

Problem 1.12. Fix a number field K. Find all exceptional pairs over K.

Samuele Anni [2014] has proved that there can be only finitely many exceptional
primes for a given number field K. In the quadratic case, his result gives the
following:

Proposition 1.13 (Anni). A quadratic field K admits at most 3 exceptional primes.
IfKDQ.

p
l/ for l a prime � 1 .mod 4/, then the only possible exceptional primes

are 7, 11, and l . If K ¤Q.
p
l/, then only 7 and 11 are possible exceptional primes.

It is straightforward to determine, for a given quadratic field K, the exceptional
pairs of the form .7; j0/; in principle all one needs to do is determine the j -invariants
of the K-points on the elliptic curve 49a3.

In the case where K D Q.
p
l/ and the prime is l , Problem 1.12 reduces to

Question 1.4 above, which essentially asks for quadratic points on the modular
curves Xs.l/; this is known to be a difficult problem.

Regarding 11 as a possible exceptional prime, we make the following conjecture:

Conjecture 1.14. 11 is not an exceptional prime for any quadratic field.

In Section 10, we will explain our evidence for this conjecture.

2. Preliminaries

Let l be an odd prime. We define PSL2.Fl/ to be the kernel of the map det W
PGL2.Fl/! F�

l
=.F�

l
/2 Š f˙1g. It is isomorphic to SL2.Fl/=f˙I g. By GLC2 .Fl/

we mean the subgroup of matrices with square determinant.

Lemma 2.1. Let E=K be an elliptic curve. The following are equivalent:

(1) HE;l � PSL2.Fl/.

(2)
p
l� 2K.

(3) GE;l � GLC2 .Fl/.

Proof. The equivalence of (1) and (3) is clear. The equivalent of (2) and (3) follows
from standard Galois theory upon observing that the determinant of N�E;l is equal
to the mod-l cyclotomic character over K. �
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In particular, if E=Q is an elliptic curve with HE;13 Š S4, then after base-
changing to Q.

p
13/ the projective image is intersected with PSL2.F13/, and

becomes isomorphic to A4. This argument uses the fact that 13� 5 .mod 8/.
We would like to briefly mention the Cartan subgroups of GL2.Fl/; for a complete

treatment see [Lang 2002, Chapter XVIII, §12]. There are two sorts of Cartan
subgroup, split and nonsplit. A split Cartan subgroup is conjugate to the group
of diagonal matrices, and hence is isomorphic to F�

l
� F�

l
. Its normaliser is then

conjugate to the group CCs of diagonal and antidiagonal matrices. A nonsplit Cartan
subgroup is isomorphic to F�

l2
, and is conjugate to the group Cns defined as follows:

Cns D

n�
x ıy
y x

�
W x; y 2 Fl ; .x; y/¤ .0; 0/

o
;

where ı is any fixed quadratic nonresidue in F�
l

. It also has index two in its
normaliser CCns .

Associated to the groups CCs and CCns are modular curves Xs.l/ and Xns.l/

respectively; these serve as coarse moduli spaces for elliptic curves E whose mod-l
Galois image GE;l is contained in (a conjugate of) CCs and CCns respectively. Both
curves are geometrically connected and defined over Q. Over the complex numbers
each curve has the description of being the quotient of the extended upper half-plane
H� by an appropriate congruence subgroup. The curve Xs.l/ is Q-isomorphic to
the quotient XC0 .l

2/ of the modular curve X0.l2/ by the Fricke involution. Over C,
this isomorphism is established by mapping � on XC0 .l

2/ to l� on Xs.l/.
One of Sutherland’s insights was that the notion of Hasse at l curve E over

K depends only on the projective mod-l image HE;l . Given a subgroup H of
PGL2.Fl/, we say that H is Hasse if its natural action on P1.Fl/ satisfies the
following two properties:

� Every element h 2H fixes a point in P1.Fl/.

� There is no point in P1.Fl/ fixed by the whole of H .

Proposition 2.2 (Sutherland). An elliptic curve E=K is Hasse at l if and only if
HE;l is Hasse.

This allows us to reduce the study of exceptional pairs largely to group theory.

3. Proof of Theorem 1.5

Throughout this proof, K DQ.
p
5/.

LetE=K haveHE;5ŠD4. It follows from Dickson’s classification of subgroups
of GL2.Fl/ [1901] that GE;5 is contained in the normaliser of a Cartan subgroup. If
this Cartan subgroup were nonsplit, thenGE;5 would be contained inCCns\GLC2 .F5/
(we take the intersection by Lemma 2.1), and so HE;5 would be contained in
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.CCns \GLC2 .F5//=scalars, which is a group of size 6, and hence cannot contain
a subgroup isomorphic to D4; thus GE;5 � CCs , and so E=K corresponds to a
K-point on Xs.5/. The converse is not quite true; a K-point on Xs.5/ corresponds
to an elliptic curve E 0 over K with HE 0;5 �D4, but not necessarily equal to D4.

We now give an expression for the j -map Xs.5/
j
�!X.1/. Since XC0 .25/ is

isomorphic to Xs.5/ under the map � 7! 5� , it suffices to write down the function
j.5�/ in terms of a Hauptmodul s for XC0 .25/.

Let tN be a Hauptmodul for X0.N /. Klein found the following formula in 1879:

j.5�/D
.t25 C 250t5C 3125/

3

t55
:

We can look up an expression for t5 in terms of t25 from [Maier 2009]:

t5 D t25.t
4
25C 5t

3
25C 15t

2
25C 25t25C 25/:

We also know that the Fricke involutionw25 maps t25 to 5=t25. Hence a Hauptmodul
for XC0 .25/ is s WD t25C 5=t25. It follows that

j.5�/D
..sC 5/.s2� 5/.s2C 5sC 10//3

.s2C 5sC 5/5
:

Inserting a K-value for s in this expression yields the j -invariant of an elliptic
curve E over K with HE;5 � D4. The condition on s2 � 20 in the statement
of the theorem ensures that we have equality here, by ensuring that the image
is not contained in any one of the three subgroups of order 2 in D4, as we now
demonstrate.

Let E be a curve in Xs.5/.K/ corresponding to a choice of s in K, so that
HE;5 �D4. The following statements are readily seen to be equivalent to HE;5 6D
D4:

� HE;5 is cyclic.

� GE;5 is contained in (a conjugate of) Cs.F5/.

� E has a pair of independent K-rational 5-isogenies.

� E pulls back to a K-point on X0.25/.

� t25 2K.

Since t25 is a root of the polynomial x2� sxC 5 of discriminant s2� 20, we have
t25 2K if and only if s2� 20 is a square in K. Thus the statement that s2� 20 is
not a square in K is equivalent to HE;5 not being cyclic, and hence HE;5 ŠD4.

We have, however, overlooked an issue above. For a given j D j.E/ 2 K

satisfying (1-1), there are two other values of s 2K also satisfying (1-1). This is
because the field extension K.s/=K.j /, which has degree 15 and is not Galois, has
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automorphism group of order 3, generated by s 7! ..
p
5�5/s�20/=.2sC5C

p
5/.

We must ensure that for none of the Galois conjugate values is s2�20 square in K,
so that HE;5 is not contained in any of the three cyclic subgroups of D4. This
explains the final condition in the statement of the theorem.

Example 3.1. To illustrate this theorem, we input s D 3
p
5C 1 to obtain

j D
337876318862280

p
5C 741305345279328

41615795893
I

we check that s2 � 20 is not a square for the other two values of s 2 K, namely
.
p
5�15/=7 and .�22

p
5�30/=19, and hence any elliptic curve over Q.

p
5/ with

this j has HE;5 ŠD4. Equivalently, the pair .5; j / is exceptional for Q.
p
5/.

However, if we input s D .3
p
5� 80/=41, we get

j D
277374956280053760

p
5C 622630488102469632

18658757027251
;

and whilst .3
p
5� 80/=41 does satisfy s2� 20 not being a square, this is not the

case for s D 3
p
5C 2, which yields the same j -value. One therefore has to be

careful of these “pretenders”, hence the last paragraph of the above proof.
We can even insert rational values of s, such as s D 1, to obtain elliptic curves

over Q whose base-change to Q.
p
5/ are Hasse at 5, e.g.,

j D
�56623104

161051
:

4. Proof of Theorem 1.8: the model

Let G be a subgroup of GL2.Z=NZ/ for some N , and consider the modular curve
XG.N / over Q; let us assume detGD .Z=NZ/�, so that this curve is geometrically
connected. As a curve over C, the curve depends only on the intersection of G
with SL2.Z=NZ/. Therefore, if N D 13, and G is the pullback to GL2.F13/ of
S4 � PGL2.F13/, then the modular curve XS4

.13/ WD XG.13/, when considered
over C, depends only on G \ SL2.F13/, which modulo scalar matrices becomes
A4 � PSL2.F13/, and has the description �A4

.13/nH�, where �A4
.13/ is the

pullback of A4 � PSL2.F13/ to PSL2.Z/, and H� is the extended upper half-plane.
Steven Galbraith [1996, Chapter 3] has described a method to compute the

canonical model of any modular curve X.�/, provided one can compute explicitly
and to some precision the q-expansions of a basis of S2.�/, the weight-2 cuspforms
of level � (a congruence subgroup). Hence, to compute the desired equation, we
are reduced to computing explicitly a basis of the finite-dimensional C-vector space
S2.�A4

.13//. A standard application of the Riemann–Hurwitz genus formula gives
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that the genus of the desired curve is 3; this is also the dimension of S2.�A4
.13//.

We will proceed with the exposition in a series of steps.

Step 1. Identifying our desired space as the set of invariant vectors of a representa-
tion. Since �.13/� �A4

.13/, we obtain

S2.�A4
.13//� S2.�.13//;

a 3-dimensional subspace of a 50-dimensional space. On this latter 50-dimensional
space there is a right action — the “weight 2 slash operator” — of PSL2.Z/ (since
�.13/ is normal in PSL2.Z/) which, by definition of S2.�.13//, factors through
the quotient PSL2.F13/, which we recall contains a unique (up to conjugacy)
subgroup isomorphic to A4. Our desired 3-dimensional space is then the subspace
of S2.�.13// fixed by A4:

S2.�A4
.13//D S2.�.13//

A4 ;

that is, the A4-invariant subspace of the PSL2.F13/-representation S2.�.13//.
When we carry out the computation, we will work with an explicit subgroup

of PSL2.F13/ isomorphic to A4, namely that generated by the two matrices

AD

�
�5 0

0 5

�
and B D

�
�2 �2

�3 3

�
:

A different choice of A4 will yield an isomorphic space of cuspforms, which
for our application (in computing an equation for XS4

.13/) makes no difference.
However, the present choice of A4 is favourable for computational reasons, since it
is normalised by the matrix

�
�1
0
0
1

�
; the congruence subgroup is then said to be of

real type (see [Cremona 1997, Section 2.1.3]).

Step 2. The conjugate representation. Given a congruence subgroup � of level 13,
denote by z� the conjugate subgroup of level 132:

z� WD

�
13 0

0 1

��1
�

�
13 0

0 1

�
� �0.13

2/\�1.13/:

In general, z� has level 132; in particular we have

e�.13/D �0.132/\�1.13/:
Then we have the important isomorphism

S2.�/! S2.z�/;

f .z/ 7! f .13z/;
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which on q-expansions takes q WD e2�iz to q13. The point is that we may work
with S2.z�/ instead of S2.�/ if we like, as we can easily pass between the two; the
two spaces are only superficially different.

This is exactly our plan for �.13/��A4
.13/. We have S2.B�A4

.13//�S2. e�.13//.
This latter space is also a representation of PSL2.F13/; for g 2 PSL2.F13/, we let
 be a pullback to PSL2.Z/ of g, and define, for F 2 S2. e�.13//,

g �F WD F j2 Q WD F j2

�
13 0

0 1

��1


�
13 0

0 1

�
:

We then obtain
S2.B�A4

.13//D S2. e�.13//A4 :

Working inside the conjugated space S2. e�.13// is better, since its alternative
description as S2.�0.169/\�1.13// is more amenable to the explicit computations
we wish to carry out using the computer algebra systems Sage and Magma.

Step 3. The three relevant subrepresentations. Inside S2.�0.169/\�1.13//, we
have S2.�C0 .169//, the subspace of w169-invariants of S2.�0.169//. We can com-
pute this space explicitly in Sage. Let q WD e2�iz , �7 WD e2�i=7, �C7 WD �7C �

�1
7 ,

and � a nontrivial Galois automorphism of the field Q.�C7 /D Q.�7/
C. Then an

explicit Sage computation yields

S2.�
C
0 .169//D hg; g

� ; g�
2

i;

where

g.z/D q� .�C7 C 1/q
2
C .1� �C7

2/q3C .�C7
2
C 2�C7 � 1/q

4
C � � � :

These three forms are Galois-conjugate newforms. We will denote by an the Fourier
coefficients of g.

For each r 2 F�13, define the isotypical component gr of g as

gr WD
X

j�r mod13

aj q
j ;

and consider the C-span V0 of these components. Similarly define V1 and V2 by
replacing g with g� and g�

2

respectively. We will show in the coming sections that
each Vi is a 12-dimensional subrepresentation of S2. e�.13// which is irreducible as
QŒPSL2.F13/�-module. We may focus on these three subrepresentations, because, as
we compute later, each one contains a unique (up to scaling) A4-invariant cuspform.

Since we already know that we are looking for three forms, we need not concern
ourselves with the other irreducible components of S2. e�.13//. In fact, the sum
V0˚V1˚V2, of dimension 36, is the subspace of S2.�0.169/\�1.13// spanned
by the Galois conjugates of the newform g together with their twists by characters
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of conductor 13. The complementary subspace of dimension 14 is spanned by
oldforms from level 13 and their twists. Each of these two subspaces is the base-
change of a vector space over Q which is irreducible as a QŒPSL2.F13/�-module,
while the 36-dimensional piece splits as a Q.�C7 /ŒPSL2.F13/�-module into three
irreducible 12-dimensional subspaces.

Although we discovered these facts computationally, there is an alternative
representation-theoretic explanation of these spaces in [Baran 2013], whose Propo-
sitions 3.6 and 5.2 show that the spaces Vi are irreducible cuspidal representations
of PSL2.F13/.

Step 4. Computing the action of PSL2.F13/ on each subrepresentation. PSL2.F13/
is generated by the two matrices

S D

�
0 �1

1 0

�
and T D

�
1 1

0 1

�
:

However, since we have conjugated the congruence subgroup, the action we need
to consider must also be conjugated by the matrix

�
13
0
0
1

�
. Hence, PSL2.F13/ acts

on S2. e�.13// via the matrices zS and zT :

zS D
1

13

�
0 �1

169 0

�
and zT D

�
1 1=13

0 1

�
:

Observe that the action of zS is, up to a scaling that we may ignore, the same as the
Fricke involution w169.

Thus, to describe the action of PSL2.F13/ on each Vi , we will express the action
of zS and zT on each Vi , explicitly as 12� 12 matrices.

Step 5. Computing the action of zS and zT . We fix i D 0; the other two cases are
completely analogous and can be obtained by Galois conjugation (see Lemma 4.4
below).

To compute the action of zT on V0, we use the definition directly:�
gj2

�
1 1=13

0 1

��
.z/D g

�
zC 1

13

�
:

Recall that ai is the i -th coefficient of g. We then get

g
�
zC 1

13

�
D �13q� .�

C
7 C 1/�

2
13q

2
C � � � ;

which we can rearrange as

�13.a1qC a14q
14
C a27q

27
C � � � /C �213.a2q

2
C a15q

15
C � � � /C � � � :
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Thus, in the isotypical basis for V0, the action of zT is given simply by the 12�12
diagonal matrix 0BBB@

�

�2

: : :

�12

1CCCA ;
where we write � for �13. In particular, this shows that V0 is indeed invariant under
the action of zT .

Computing zS directly on the isotypical basis is not so easy, so what we do is
change to a basis upon which we can compute it. Instead of the isotypical basis,
we take the twist basis

hg˝�j W 0� j � 11i;

where � W 2 7! �12 is a fixed generator of the group of Dirichlet characters of
conductor 13, and g˝ � denotes the usual twist of g by �. Note that this twist
basis consists entirely of newforms (see [Atkin and Li 1978]). Since twisting
by � preserves V0 and the change of basis matrix is .�j .i// (for 0 � j � 11 and
1� i � 12), which has nonzero determinant, we have shown the following:

Lemma 4.1. Both the isotypical and twist bases are C-bases for the 12-dimensional
subspace V0 of S2. e�.13//:

hg˝�j W 0� j � 11i D hgj W 1� j � 12i:

Recall that the action of zS is the same as the Fricke involution w169. It is known
(see [loc. cit.]) that wN acts on newforms F of level N as

F j2wN D �N .F / �F ;

where F is the newform obtained from the Fourier expansion of F by complex con-
jugation, and �N .F / is the Atkin–Lehner pseudoeigenvalue, an algebraic number
of absolute value 1 [loc. cit., Theorem 1.1]. In our twist basis, we have

g˝�j D g˝�12�j ;

so we only need to compute the pseudoeigenvalues associated to g˝�j for 0�j �6;
the others may be obtained from these by complex conjugation. Also, the pseu-
doeigenvalues for j D 0 and j D 6 are actually eigenvalues, and may be computed
directly (for example in Sage); we find that the eigenvalue for j D 0 is C1, and for
j D 6 is �1.
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Step 6. Computing the Atkin–Lehner pseudoeigenvalues. In order to stay consistent
with the notation of [Atkin and Li 1978], we relabel g to F , and we let q D 13. By
a.q/ we mean the q-th Fourier coefficient of F , which we may check is 0. We may
also check that F is not a twist of an oldform of S2. e�.13//; thus, in the language
of [loc. cit.], F is 13-primitive. We let �0 be the trivial character modulo 13, so
�0 D �

0, and we write �.�/ for the Atkin–Lehner pseudoeigenvalue of F ˝ �,
for � any character. We let g.�/ be the Gauss sum of the character �, with the
convention that g.�0/D�1.

The main tool to compute �.�j /, for 0� j � 11, is this:

Theorem 4.2 (special case of Theorem 4.5 of [Atkin and Li 1978]). With the above
notation and assumptions, we have, for 0� j � 11,

.�1/j 12g.�12�j /�.�j /D

11X
kD0

g.�k/g.�jCk/�.�k/:

This theorem gives us, for each 0� j � 11, a linear relation among the �.�k/.
Although there are twelve �.�k/, we have in the previous paragraph computed two
of them, leaving us with ten. But actually, we have �.�j /D�.�12�j / for 0� j � 5,
so we really only have five independent unknowns. However, our strategy is, at
first, to consider that we indeed have ten unknowns (namely, �.�j / for 1� j � 5
and 7 � j � 11) and use the theorem to derive as many linear relations between
these ten unknowns as we can.

Doing this yields six independent equations, whose coefficients lie in Q.�156/

(the field over which the Gauss sums are defined). One is, however, able to obtain
two more independent equations, by applying Theorem 4.5 of Atkin and Li starting
not with F D g (as we did previously), but rather with F D g˝�6. Thus we get:

Theorem 4.3 (another special case of Theorem 4.5 of [Atkin and Li 1978]). For
0� j � 11, we have

.�1/jC112g.�12�j /�.�6Cj /D

11X
kD0

g.�k/g.�jCk/�.�6Ck/:

As previously stated, this yields two more independent equations, giving us a
linear system of eight independent equations in ten unknowns.

Let x D �.�/ and y D �.�2/. We obtain the following two linear equations in
the unknowns x; Nx; y; Ny:

c1 NyC c2yC c3xC c4 Nx D c5; (4-1)

c6yC c7xC c8 Nx D c9I (4-2)

here the ci are explicit elements of Q.�156/. We now use the relations x NxDy NyD 1.
We use (4-2) to eliminate y and Ny from (4-1) to obtain a linear relation between
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x and Nx; now, using x Nx D 1, we obtain a quadratic in x. This quadratic has no
root in Q.�156/; we need to adjoin

p
�7, so in fact we work in the field Q.�1092/;

this might seem excessive, but the coefficients of g are anyway in Q.�7/
C. This

quadratic in x tells us that x is one of two values, and x determines all other �.�j /.
In order to determine which of the two values x really is, we computed two

competing zS matrices, and took the one which satisfied the correct relations with
zT to be the generators of PSL2.F13/, namely,

zS2 D zT 13 D . zS zT /3 D 1:

Step 7. The cuspforms. We now have matrices giving the action of zS on the twist
basis, and the action of zT on the isotypical basis; a change of basis matrix applied
to either of these gives the action of both matrices in terms of the same basis. Write
�.S/ and �.T / for the 12� 12 matrices giving the action of zS and zT respectively
with respect to the twist basis.

We now compute the A4-invariant subspace of V0. Recall that our generators of
A4 � PSL2.F13/ are

AD

�
�5 0

0 5

�
and B D

�
�2 �2

�3 3

�
:

Writing each generator as a word in S and T ,

AD T 5ST �2ST 2ST 3ST �5;

B D T 4ST 3ST �3S;

the action of A4 on S2. e�.13// is given by the same words in the matrices zS; zT :

zAD zT 5 zS zT �2 zS zT 2 zS zT 3 zS zT �5;

zB D zT 4 zS zT 3 zS zT �3 zS:

The action of zA and zB on our vector space V0 is given by taking the same words
as above, but in �.S/ and �.T /; we call the resulting matrices �.A/ and �.B/.

The intersection of the kernels of �.A/� I and �.B/� I is one-dimensional,
spanned by a vector of the coefficients, in the twist basis, of an A4-invariant
cuspform in V0. These coefficients lie in the degree-9 field Q.�C7 ; �

CC
13 /, where by

Q.�CC13 / we denote the unique cubic subfield of Q.�13/. We call this A4-invariant
form f .

We do not have to repeat the calculation for V1 and V2, because of the following
fact. Here we regard Vi as QŒPSL2.F13/�-modules.
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Lemma 4.4. Let  be an element of PSL2.F13/. The following diagram commutes:

V0
�

������! V1



??y ??y
V0

�
������! V1

Proof. Each Vi admits a twist basis, corresponding to g�
i

and its twists under
powers of �. Fixing this twist basis for each Vi , we find that the actions of zS and zT
are exactly the same; this is because the coefficients in zS and zT we found for V0
are invariant under the action of � . �

The lemma allows us to conclude that for i D 0; 1; 2, the conjugate f �
i

spans the
A4-invariant subspace of Vi , and hence that ff; f � ; f �

2

g is a basis of S2.B�A4
.13//.

Next we replace this basis with one defined over a smaller field, namely Q.�CC13 /.
Write f as

f D F C �C7 GC �
C2
7 H;

where F;G;H have coefficients in Q.�CC13 /. The forms F;G;H form a basis for
the same space, with coefficients in the smaller field:

Lemma 4.5. The following two C-spans are the same:

hf; f � ; f �
2

i D hF;G;H i:

Proof. We have 0@ f

f �

f �
2

1AD
0@1 �C7 �C27
1 �.�C7 / �.�C27 /

1 �2.�C7 / �
2.�C27 /

1A0@FG
H

1A ;
where the matrix has nonzero determinant. �

As a final flourish, we apply the nonsingular transformation0@ 1 4 3

�4 �3 1

6 �2 5

1A
to obtain the following cuspforms (where again � D �13), which are a basis for
S2.B�A4

.13//:

f D �q

C .��11��10��3��2/q2

C .�11C�10��9��7��6��4C�3C�2�2/q3C� � � ;
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g D .��11��10��9��7��6��4��3��2�1/q

C .��11��10��9��7��6��4��3��2�2/q2

C .��11��10��3��2�1/q3 C � � � ;

hD .�11C�10C�3C�2C3/q

C .��11��10��9��7��6��4��3��2�3/q2

C q3 C � � � :

The final transformation was chosen retrospectively, solely for cosmetic reasons; it
moves three of the rational points on the curve to Œ1 W 0 W 0�, Œ0 W 1 W 0�, Œ0 W 0 W 1�.

Having obtained the q-expansions, we may proceed with the canonical embedding
algorithm of Galbraith, to obtain the smooth quartic equation for the model C given
in the introduction. In practice this simply amounts to finding a linear relation
between the q-expansions of the fifteen monomials of degree 4 in f; g; h. Although
these q-expansions have coefficients defined over a cubic field (and there is no basis
with rational q-expansions), the relation we find has rational coefficients.

Remark 4.6. Burcu Baran [2013] uses a different method to compute the equation
of the modular curve Xns.13/; her method would also work for the present curve
XS4

.13/; one would need an analogue of her Proposition 6.1 for the subgroup at
hand, which can be proved using her formulae in §3.

Remark 4.7. We also implemented a variation of the approach detailed here, using
a modular symbol space of level 169, dual to the spaces Vi above. This second
approach saved us from having to find the pseudoeigenvalues, since the matrices of
both S and T on modular symbols are easily computed. This variation is also easy
to adapt to find models for the curves Xs.13/ and Xns.13/. Full details (including
the cases Xs.13/ and Xns.13/) may be found in the annotated Sage code [Banwait
and Cremona 2013] and Sage worksheet [Cremona 2014].

5. Proof of Theorem 1.8: the j -map

In this section we explicitly determine the j -map

XS4
.13/

j
�!X.1/Š P1Q

as a rational function on XS4
.13/. This is a function of degree 91, which we seek

to express in the form

j.X; Y;Z/D
n.X; Y;Z/

d0.X; Y;Z/
;

where n and d0 are polynomials of the same degree over Q. We first find a suitable
denominator d0.X; Y;Z/. The poles of j are all of order 13 and are at the seven
cusps of XS4

.13/, so we will find these, as Q-rational points on XS4
.13/. Then
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we find a cubic d in QŒX; Y;Z� which passes through these seven points (there is
no quadratic which does), and set d0 D d13. Having found d0 we determine the
numerator n using linear algebra on q-expansions.

Remark 5.1. It would also be possible, in principal, to follow [Baran 2013] by
computing the zeros of j numerically to sufficient precision to be able to recognise
them as algebraic points, as then we would have the full divisor of the function j
from which j itself could be recovered using an explicit Riemann–Roch space
computation. Our method has the advantage of not requiring any numerical approx-
imations.

We first need to find which points on our model C for XS4
.13/ are the seven

cusps. It turns out that there are three which are defined and conjugate over the
degree-3 subfield Q.˛/ of Q.�/, where � D �13 and ˛ D �C �5C �8C �12, and
the other four are defined and conjugate over the degree-4 subfield Q.ˇ/ of Q.�/,
where ˇ D �C �3C �9.

Proposition 5.2. On the model C for XS4
.13/, the seven cusps are given by the

three Galois conjugates of

Œ�3˛2� 7˛C 1 W 4˛2C 11˛� 3 W 5�

and the four conjugates of

Œ3ˇ3C 6ˇ2C 6ˇ� 15 W ˇ3Cˇ2� 4ˇ� 4 W 9�;

where ˛ and ˇ have minimal polynomials x3Cx2�4xC1 and x4Cx3C2x2�4xC3
respectively.

The degree-3 cusps are easy to obtain; the cusp corresponding to the point i1 on
the extended upper half-plane H� has coordinates given by the leading coefficients
of the three basis cuspforms f; g; h; denoting by ' the map

' W �A4
.13/nH�

�
�!XS4

.13/;

�A4
.13/ � z 7�! Œf .z/ W g.z/ W h.z/�;

we see that '.i1/D Œa1.f / W a1.g/ W a1.h/�. Expressing these coordinates in terms
of ˛ gives the degree-3 cusp given in the proposition.

It is possible to determine in advance the Galois action on the cusps, as in the
following lemma. However, note that in practice our method to compute the cusps
algebraically, given below, does not require this knowledge.

Lemma 5.3. The absolute Galois group of Q acts on the seven cusps with two
orbits, of sizes 3 and 4.
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Proof. We know a priori that the cusps are all defined over Q.�13/. Theorem 1.3.1 in
[Stevens 1982] explains how to compute the action of Gal.Q.�N /=Q/Š .Z=NZ/�

on the cusps of a modular curve X of level N , provided that the field of rational
functions on X is generated by rational functions whose q-expansions have rational
coefficients. This does not apply here, since the field of modular functions for
�A4

.13/ is not generated by functions with rational q-expansions, but rather by
functions with q-expansions in the cubic field Q.˛/. But following Stevens’ method
we can compute the action of the absolute Galois group of Q.˛/, which acts through
the cyclic subgroup of order 4 of .Z=13Z/� fixing ˛. We find that it fixes three cusps
(which we already know from above, as they are defined over Q.˛/), and permutes
the remaining four cyclically. It follows that the other four cusps are also permuted
cyclically by the full Galois group, and hence have degree 4 as claimed. �

It remains to find the coordinates of one cusp of degree 4.
Let c 2 �A4

.13/nP1.Q/ be any cusp. Then there exists  2 PSL2.Z/n�A4
.13/

such that .c/D1, and hence,

˛.c/D Œa1.f j/ W a1.gj/ W a1.hj/�:

Since we already computed in the previous section the action of PSL2.Z/ on the
cuspforms f; g; h, we can compute the right-hand side of this equation for any  .
With some work one can show that the cubic cusps are obtained using c D1; 1
and 7=6, while the quartic cusps are obtained from c D 2; 3; 6 and 9; or we can
simply choose random  2 PSL2.Z/ until we find a point which is not one of the
three conjugates we already have. This proves Proposition 5.2.

Next we find a cubic curve passing through these seven points.

Proposition 5.4. The following cubic passes through the seven cusps:

5X3�19X2Y �6XY 2C9Y 3CX2Z�23XYZ�16Y 2ZC8XZ2�22YZ2C3Z3:

Proof. The full linear system of degree 3 associated to OP2.1/ has dimension 10,
and the subsystem passing though the seven cusps has dimension 3 with a basis in
QŒX; Y;Z�. Using LLL-reduction we found a short element which does not pass
through any rational points on C (to simplify the evaluation of the j -map at these
points later). �

Since all cusps have ramification degree 13 under the j -map, a possible choice for
the denominator of the j -map is to take the thirteenth power d0D d13 of this cubic.

Next we turn to the numerator n.X; Y;Z/, which is a polynomial of degree 39.
The idea is to consider an arbitrary degree-39 polynomial in the q-expansions of the
cusp forms f; g; h, and compare it with the known q-expansion of j � d.f; g; h/13.
This gives a system of linear equations which can be solved.
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The full linear system of degree 39 has dimension 820, but modulo the defining
quartic polynomial for C we can reduce the number of monomials needing to be
considered to only 154. We chose those monomials in which either X does not
occur, or else Y does not occur and X has exponent 1 or 2, but this is arbitrary.

Now we consider the equation

n.X; Y;Z/� j.X; Y;Z/ � d.X; Y;Z/13 D 0

as a q-expansion identity after substituting f; g; h for X; Y;Z. Using 250 terms
in the q-expansions (giving a margin to safeguard against error) and comparing
coefficients gives 250 equations for the unknown coefficients of n.X; Y;Z/. There
is a unique solution, which has rational coefficients. Although we have apparently
only shown that the equation holds modulo q250, it must hold identically, since we
know that there is exactly one solution.

The expression for n.X; Y;Z/ we obtain this way is too large to display here (it
has 151 nonzero integral coefficients of between 46 and 75 digits), but can easily
be used to evaluate the j -map at any given point on the curve C. For the sake of
completeness, however, we give here explicitly the zeros of the j -map from which
(together with the poles) it may be recovered; the complete expression may be seen
in [Cremona 2014].

The 91 zeros of j consist of 29 points with multiplicity 3 and four with mul-
tiplicity 1, all defined over the number field M D Q.ı/, where ı has minimal
polynomial

x8� 9x6C 32x4� 9x2C 1;

which is Galois with groupD8. This field is the splitting field of the polynomialP.t/
defined in the next section, so is also the field of definition of the points in the
fibre over j D 0 of the covering map X0.13/! X.1/. Some of the 33 zeros are
defined over the quartic subfields Q.˛/ and Q.ˇ/, where ˛ and ˇ have minimal
polynomials x4C 13x2� 39 and x4� 13x2C 52 respectively. Their coordinates
are as follows (together with all Galois conjugates): with multiplicity 1 we have

Œ3ˇ3C 2ˇ2� 15ˇ� 14 W �3ˇ3C 4ˇ2C 29ˇ� 22 W �3ˇ3� 4ˇ2C 25ˇC 46�;

and with multiplicity 3 we have the rational point Œ1 W 0 W 0�, the degree-4 points

Œ2.�˛2C 5˛� 4/ W �˛3�˛2C˛C 6 W ˛3C 14˛� 35�;

Œˇ3� 2ˇ2� 9ˇC 14 W 2.ˇ2�ˇ� 2/ W 2.�ˇ3� 2ˇ2C 7ˇC 16/�;

Œ4.ˇ� 1/ W ˇ3� 7ˇ� 10 W 2.ˇ3C 2ˇ2� 7ˇ� 12/�;
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and the degree-8 points

Œı7C 2ı6� 8ı5� 8ı4C 36ı3C 12ı2� 5ı� 2 W 8.ı3C ı2/ W

�ı7� 2ı6C 4ı5� 28ı3� 8ı2C 5ıC 2�

and

Œ2.�ı6C4ı5�10ı3C4ı�1/ W �3ı7C2ı6C28ı5�32ı4�52ı3C16ı2C7ı�2 W

ı7� 2ı6� 4ı5C 4ı4C 4ı3C 8ı2� 9ıC 2�:

6. Proof of Corollary 1.9

Evaluating the j -map at the six points in C.Q.
p
13// exhibited in the introduction

yields the five j -invariants listed in the statement of Corollary 1.9, together with
j D 0, which is the image of Œ1 W 0 W 0�. We know that any elliptic curve E over
Q.
p
13/ with one of these six j -invariants has HE;13 � A4. Any elliptic curve

with j D 0 has complex multiplication, with mod-13 image contained in a split
Cartan subgroup (split since 13� 1 .mod 3/). Hence what remains to prove in this
section is that HE;13 Š A4 for the five nonzero j -invariants listed.

Lemma 6.1. Let l be a prime for whichX0.l/ has genus 0 (that is, lD2; 3; 5; 7; 13).
There is an explicit polynomial Fl.X; Y / 2 ZŒX; Y � such that, if E=K is an elliptic
curve over a number field, then

HE;l Š Gal
�
Fl.X; j.E//

�
:

Proof. The function field of X0.l/ is generated by a single modular function t (the
so-called “Hauptmodul”), and classically there is a canonical choice of such, for
each l . The j -function is a rational function of t of degree lC1 of the form P.t/=t ,
where P is an explicit integral polynomial of degree l C 1.

Define Fl.X; Y /D P.X/�YX 2 ZŒX; Y �. Let E=K be an elliptic curve over
a number field, and consider the set of roots of Fl.X; j.E// 2KŒX� over Q. As
a set, this is in bijection with the set of preimages t of j.E/ under the j -map
X0.l/!X.1/ (which is unramified away from j D 0 and j D 1728), and hence is
in Galois-equivariant bijection with the l-isogenies on E. Hence the Galois action
on the set of l C 1 isogenies is isomorphic to the Galois action on the roots of
Fl.X; j.E//. �

For l D 13, we have

P.t/D .t2C 5t C 13/ � .t4C 7t3C 20t2C 19t C 1/3;

and hence

F13.X; Y /D .X
2
C 5X C 13/ � .X4C 7X3C 20X2C 19X C 1/3�XY:
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For each j -invariant listed in Corollary 1.9 we may verify that F13.X; j / has Ga-
lois group isomorphic toA4 over Q.

p
13/, and for the rational j -values, isomorphic

to S4 over Q.

7. Proof of Proposition 1.3

By Proposition 2.2 and Lemma 2.1, Proposition 1.3 is equivalent to the following
purely group-theoretic statement.

Proposition 7.1. Let H � PSL2.Fl/. Then H is Hasse if and only if one of the
following holds:

(1) H Š A4 and l � 1 .mod 12/.

(2) H Š S4 and l � 1 .mod 24/.

(3) H Š A5 and l � 1 .mod 60/.

(4) H ŠD2n and l � 1 .mod 4/, where n > 1 is a divisor of .l � 1/=2, and the
pullback of H to GL2.Fl/ is contained in the normaliser of a split Cartan
subgroup.

We begin the forward implication of this Proposition by quoting the following
lemma of Sutherland, which is a small piece of his Lemma 1.

Lemma 7.2 (Sutherland). If H � PSL2.Fl/ is Hasse, then l − jH j.

We may now invoke the following classical result (see [Lang 1976, Theorem
XI.2.3]).

Fact 7.3. Let H be a subgroup of PGL2.Fl/ with l − jH j, and let G denote its
pullback to GL2.Fl/. Then one of the following occurs:

� H is cyclic, and G is contained in a Cartan subgroup.

� H is dihedral, and G is contained in the normaliser of a Cartan subgroup.

� H is isomorphic to A4, S4 or A5.

Clearly H being cyclic is incompatible with H being Hasse, so either H ŠD2n
for n > 1, or H is one of A4, S4 or A5.

Lemma 7.4. LetH � PSL2.Fl/ be Hasse, and let h 2H . Then the order of h must
divide .l � 1/=2.

Proof. Write H 0 WD hhi, a cyclic group of order r say, prime to l . By Fact 7.3, the
pullback G0 of H 0 to GL2.Fl/ is contained in a Cartan subgroup. If this Cartan
subgroup were nonsplit, then the elements of G0 would not be diagonalisable, and
hence h would not fix an element of P1.Fl/, contradicting the Hasse assumption.
Thus the Cartan subgroup must be split, so the elements of G0 are diagonalisable,



Tetrahedral elliptic curves and the local-global principle for isogenies 1223

and thus h has two fixed points; the same is true for every nonidentity element of
H 0. We now apply the orbit counting lemma to H 0:

s WD jP1.Fl/=H j D 2C
l � 1

r
: (7-1)

Note that this formula says that there are .l � 1/=r nontrivial orbits of P1.Fl/

under h (a trivial orbit being a fixed point). The sizes of these .l � 1/=r nontrivial
orbits all divide r and sum to l � 1, and hence they are all equal to r .

We claim that s must be even. This is clear if r is odd, by (7-1). If r is even, then

sign.h/D .�1/s�2 D .�1/s;

where sign means the sign as a permutation. The key observation, which proves the
claim, is that sign.h/ must be 1, because it coincides with deth.

As s must be even, we look finally at (7-1) to conclude that r must divide l � 1
with even quotient, and the lemma is proved. �

A part of the previous proof is worth framing, for it explains why the pullback of
the dihedral group D2n is contained in the normaliser of a split Cartan subgroup.

Lemma 7.5. Let H � PSL2.Fl/ be Hasse, and let h 2 H . Let H 0 WD hhi, and
let G0 be the pullback of H 0 to GL2.Fl/. Then G0 is contained in a split Cartan
subgroup.

Lemma 7.4 implies that the n in D2n divides .l �1/=2, and also the congruence
restrictions for A4, S4 and A5; indeed, since A4 contains elements of order 1, 2
and 3, we must have that 2 and 3 divide .l �1/=2, or equivalently, l � 1 .mod 12/;
the same argument works for S4 and A5. This proves the forward implication of
the group-theoretic proposition above.

We now prove the converse; that is, if H is isomorphic to one of the four
subgroups listed above, then it satisfies the Hasse condition.

The easier thing to prove is that every element h in H fixes a point of P1.Fl/,
so we address this first. Suppose, for a contradiction, that we have h 2H which
fixes no point of P1.Fl/, let r be the order of this h, and let s WD jP1.Fl/=hj be the
number of orbits. Proposition 2 of [Sutherland 2012] says that sign(h) = .�1/s; in
particular, s must be even. Applying the orbit counting lemma to the action of hhi
on P1.Fl/ yields the formula s D .l C 1/=r , and hence r must divide .l C 1/=2.
We now do a case-by-case elimination. Suppose first that H ŠD2n with all the
other conditions expressed above. The order of any element of this group must
divide .l � 1/=2. Since .l � 1/=2 and .l C 1/=2 are coprime, we obtain the desired
contradiction. The argument in the other cases is similar.
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We are left with proving that, in the four cases, no point of P1.Fl/ is fixed by the
whole of H . This follows from the following well-known fact from group theory;
see for example Theorem 80.27 in [Curtis and Reiner 1987].

Lemma 7.6. Let G be a group, S a transitive left G-set, and H a subgroup of G.
Denote by HnS the set of orbits of S under H . Let B denote the G-stabiliser of
any point of S . Then we have an isomorphism of H -sets

S Š
G
g

H=.H \Bg/;

where g runs over a set of double coset representatives forHnG=B; here we regard
the S on the left as an H -set.

This allows us to prove that, in the four cases, there is no point of P1.Fl/ fixed by
all ofH . We apply the lemma withGDPSL2.Fl/, S DP1.Fl/, and B the stabiliser
of1, that is, the Borel subgroup. By the lemma, an orbit of size 1 corresponds to a
double coset representative g for which H � Bg . But this inclusion is impossible,
since each H contains D4 and B does not. This finishes the proof.

8. Proof of Proposition 1.6

Let E=Q.
p
l/ be a nondihedral Hasse at l curve. Then l � 1 .mod 12/, .mod 24/

or .mod 60/, according as the projective image of N�E;l is A4, S4 or A5, by
Proposition 7.1. However, there is the following general result of David regarding
the projective mod-p image, which we are grateful to Nicolas Billerey for bringing
to our attention. For F a number field, and p a prime, let

ep WDmax
p
fepg;

where ep denotes the ramification index of the prime p j p.

Fact 8.1 [David 2011, Lemme 2.4]. For an elliptic curve defined over a number field
F , the projective mod-p image contains an element of order at least .p� 1/=.4ep/.

Applying this with F DQ.
p
l/ and p D l , we see that:

� A4 can occur only when l � 25 and l � 1 .mod 12/, so only for l D 13.

� S4 can occur only when l � 33 and l � 1 .mod 24/, so cannot occur.

� A5 can occur only when l � 41 and l � 1 .mod 60/, so cannot occur.

Thus only A4 is possible, for the prime l D 13.

9. The Jacobian of XS4
.13/

Over the complex numbers, there are precisely three modular curves of level 13
and genus 3; they are Xs.13/, Xns.13/, and XS4

.13/; see for example the table of
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[Cummins and Pauli 2003]. Observe that all of these curves are defined over Q and
are geometrically connected.

Baran [2013; 2012] proved in two different ways that the curves Xs.13/ and
Xns.13/ are in fact Q-isomorphic. Her first proof [2013] was computational; she
computed models of both curves and showed that they give isomorphic curves.
Her second proof was more conceptual, establishing that the Jacobians Js.13/ and
Jns.13/ are isomorphic, with an isomorphism preserving the canonical polarisation
of both Jacobians; the Torelli theorem then gives the result.

The Q-points on Xs.13/ have not yet been determined; in fact, as discussed
in the final section of [Bilu et al. 2013], p D 13 is the only prime p for which
the Q-points on Xs.p/ have not yet been determined, and Baran’s result, linking
Xs.13/ and Xns.13/, may give some reason for why this pD 13 case is so difficult:
the determination of Q-points on Xns.p/ is known to be a difficult problem.

Another reason for this difficulty is that Js.13/.Q/ is likely to have Mordell–
Weil rank 3, which equals the genus, so the method of Chabauty to determine the
rational points does not apply. By likely, we mean that the analytic rank of this
Jacobian is 3, so under the Birch–Swinnerton-Dyer conjecture, we would have that
the Mordell–Weil rank is also 3.

The curves Xs.13/ and XS4
.13/ are not isomorphic, even over C; this may be

verified using the explicit models of both curves, by computing certain invariants
of genus-3 curves and observing that they are different — we are grateful to Jeroen
Sijsling for carrying out this computation.

Nevertheless, their Jacobians are isogenous:

Proposition 9.1. The Jacobians Js.13/ and JS4
.13/ of the modular curves Xs.13/

and XS4
.13/ are Q-isogenous.

Proof. Let G D GL2.F13/, B the Borel subgroup of G, and for K any subgroup
of PGL2.F13/, denote by ��1.K/ the pullback of K to G. One first verifies (for
example in Magma) that there is a QŒG�-module isomorphism as follows:

2QŒG=CCs �˚QŒG=��1.C13 ËC3/�˚QŒG=��1.C13 ËC4/�
Š 2QŒG=��1.S4/�˚QŒG=��1.D26/�˚QŒG=B�: (9-1)

For R any Q-algebra, apply the contravariant functor HomQŒG�.�; J.13/.R// to
this formula; this yields, by a well-known method of Kani and Rosen ([1989], but
see also [de Smit and Edixhoven 2000]), the following Q-isogeny between Jacobians
of modular curves of level 13:

J 2S4
˚J��1.D26/

˚JB �! J 2s ˚J��1.C13ËC3/
˚J��1.C13ËC4/

I (9-2)

here we have, for simplicity, denoted the Jacobian of the modular curve XH .13/
simply as JH .
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However, as may be checked by computing genera of these curves, most of these
terms are zero, leaving us with a Q-isogeny J 2S4

! J 2s . Restricting this isogeny to
the first component yields an isogeny between JS4

and its image in J 2s . This image
must have dimension 3, and since Js is simple over Q (as shown in Section 2 of
[Baran 2012]), the image is isogenous to Js. �
Remark 9.2. One may still wonder whether Js is isomorphic to JS4

or not. They
are indeed not isomorphic; for if they were, then the arguments in Section 3 of
[Baran 2012] would apply, and we would conclude that the curves Xs and XS4

were isomorphic, which we know is not true.

Remark 9.3. With additional work one may show that there is a Q-isogeny between
Js and JS4

of degree a power of 13, and furthermore that 13 must divide the degree
of any isogeny.

10. The evidence for Conjecture 1.14

There can be no Hasse at 11 curve over Q.
p
�11/, because 11 is not congruent

to 1 .mod 4/ (see Proposition 1.3). Thus, we let K be any other quadratic field.
Sutherland’s result (Proposition 1.1) tells us that, if E=K is a Hasse at 11 curve
over K, then it corresponds to a K-point on the modular curve Xs.11/. A model
for this curve, as well as an expression for the j -map Xs.11/! X.1/, may be
computed along the lines of that for XS4

.13/; we obtain a singular projective model

Xs.11/ W y
2
D 4X6� 4X4� 2X3C 2X2C 3

2
X C 1

4
:

We used Magma to search for K-points on this curve, for every quadratic field with
absolute discriminant up to 107, and evaluated the j -map at these points, giving
many potential j -invariants of Hasse at 11 curves over quadratic fields.

Given such a j -invariant j0 2K, we considered the polynomial ˆ11.X; j0/ 2
KŒX�, that is, the classical modular polynomial at 11, evaluated at Y D j0.

Proposition 10.1. The pair .11; j0/ is exceptional for K if and only if the polyno-
mial ˆ11.X; j0/ 2KŒX�

� has no linear factor over K, and

� modulo every prime p in a density-one set, it has a linear factor.

Proof. This is a direct consequence of the fact, proved in [Igusa 1959], that, for an
elliptic curveE over any field F , and an integerN with char F −N , the existence of
a cyclic F -rational N -isogeny on E is equivalent to ˆN .X; j.E// 2 F ŒX� having
a linear factor. �

We found that, for all of our potential j -invariants, ˆ11.X; j0/ had many reduc-
tions with no linear factor — too many to be of density zero. This suggested to us
that Conjecture 1.14 should be true.
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The results of [Serre 1972] imply the following.

Proposition 10.2. Let K be a quadratic field. If E=K is Hasse at 11, then either
11 ramifies in K, or E has additive reduction at all places v of K dividing 11.

Proof. If 11 is unramified in K and E has a place v of good or multiplicative
reduction above 11, then the results of [Serre 1972] (see in particular Section 4)
give the image of the inertia subgroup at v of GK under N�E;11, which in all cases
is incompatible with the projective image being isomorphic with D10. �

We can also say, by part (a) of Proposition 1.1, thatE=K is Hasse at 11 if and only
if HE;11 ŠD10, and so corresponds to a K-point on the modular curve XD10

.11/

parametrising such elliptic curves. This modular curve is the Q.
p
�11/-twist of

the more usual modular curve X0.121/, which, by Theorem 4.9 of [Bars 2012], has
only finitely many quadratic points. Thus, we can say that there are only finitely
many quadratic fields over which a Hasse at 11 curve might exist. If we could
determine exactly which quadratic fieldsK arise for the twistXD10

.11/ ofX0.121/,
we could prove the conjecture by determining theK-points onXs.11/, find the finite
list of potential j -invariants, and show that none of them yield HE;5 ŠD10 (this
last step can be established by recent work of Sutherland, who has implemented
an algorithm to determine the mod-p Galois image of any elliptic curve over any
number field). The methods of Freitas, Le Hung and Siksek [Freitas et al. 2013]
for determining the quadratic points on X0.N / for certain N may be of use here.
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Local cohomology with support
in generic determinantal ideals

Claudiu Raicu and Jerzy Weyman

To the memory of Andrei Zelevinsky

For positive integers m ≥ n≥ p, we compute the GLm ×GLn-equivariant descrip-
tion of the local cohomology modules of the polynomial ring S = Sym(Cm

⊗Cn)

with support in the ideal of p × p minors of the generic m × n matrix. Our
techniques allow us to explicitly compute all the modules Ext•S(S/Ix, S), for x
a partition and Ix the ideal generated by the irreducible subrepresentation of S
indexed by x. In particular we determine the regularity of the ideals Ix, and we
deduce that the only ones admitting a linear free resolution are the powers of the
ideal of maximal minors of the generic matrix, as well as the products between
such powers and the maximal ideal of S.

1. Introduction

Given positive integers m ≥ n and a field K of characteristic zero, we consider the
space Km×n of m×n matrices and the ring S of polynomial functions on this space.
For each p = 1, . . . , n we define the ideal Ip ⊂ S generated by the polynomial
functions in S that compute the p× p minors of the matrices in Km×n . The goal of
this paper is to describe for each p the local cohomology modules H•Ip

(S) of S with
support in the ideal Ip. The case p = n was previously analyzed by the authors
in joint work with Emily Witt [Raicu et al. 2014]. There is a natural action of the
group GLm ×GLn on Km×n and hence on S, and this action preserves each of the
ideals Ip. This makes the H•Ip

(S) into GLm ×GLn-representations, and our results
describe the characters of these representations explicitly. Our methods also allow
us to determine explicitly the characters of all the modules Ext•S(S/I, S), where I
is an ideal of S generated by an irreducible GLm ×GLn-subrepresentation of S, and
in particular to determine the regularity of such ideals. It is an interesting problem
to determine the minimal free resolutions of such ideals I , which unfortunately has
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only been answered in a small number of cases. We hope that our results will help
shed some light on this problem in the future.

We will adopt a basis-independent notation throughout the paper, writing F
(resp. G) for a K-vector space of dimension m (resp. n), and thinking of F∗⊗G∗ as
the space Km×n of m×n matrices and of S=Sym(F⊗G) as the ring of polynomial
functions on this space. S is graded by degree, with the space of linear forms F⊗G
sitting in degree 1. The Cauchy formula [Weyman 2003, Corollary 2.3.3]

S =
⊕

x=(x1≥···≥xn≥0)

Sx F ⊗ Sx G (1-1)

describes the decomposition of S into a sum of irreducible GL(F) × GL(G)-
representations, indexed by partitions x with at most n parts (Sx denotes the
Schur functor associated to x). This decomposition respects the grading, the
term corresponding to x being of degree |x | = x1 + · · · + xn . We denote by Ix

the ideal generated by Sx F ⊗ Sx G. If we write (1p) for the partition x with
x1 = · · · = x p = 1 and xi = 0 for i > p, then I(1p) is just another notation for the
ideal Ip of p× p minors. Our first result gives an explicit formula for the regularity
of the ideals Ix :

Theorem 5.1 (regularity of equivariant ideals). For a partition x with at most n
parts, letting xn+1 = −1, we have the following formula for the regularity of the
ideal Ix :

reg(Ix)= max
p=1,...,n
x p>x p+1

(n · x p + (p− 2) · (n− p)).

In particular, the only ideals Ix which have a linear resolution are those for which
x1 = · · · = xn (i.e., powers I x1

n of the ideal In of maximal minors) or x1 − 1 =
x2 = · · · = xn (i.e., I x1−1

n · I1).

The minimal free resolutions of the powers of In have been computed in [Akin
et al. 1981, Theorem 5.4]. Together with the fact that I ·m has a linear resolution
whenever I has a linear resolution and m is the maximal homogeneous ideal, this
implies that the ideals Ix have a linear resolution when x2=· · ·= xn= x1 (or x1−1).
The fact that no other Ix has a linear resolution is, to the best of our knowledge,
new.

The theorem on the regularity of equivariant ideals is a consequence of the
explicit description of the modules Ext•S(S/Ix , S) that we obtain in Theorem 4.3.
This description is somewhat involved, so we avoid stating it for the moment. A
key point is that the modules Ext•S(S/Ix , S) grow as we append new columns to
the end of the partition x . More precisely, we can identify a partition x with its
pictorial realization as a Young diagram consisting of left-justified rows of boxes,
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with xi boxes in the i-th row; for example, x = (5, 5, 5, 3) corresponds to

,

and adding two columns of size 2 and three columns of size 1 to the end of x yields
y = (10, 7, 5, 3).

Theorem 4.2 (the growth of Ext modules). Let d ≥ 0 and consider partitions x, y,
where x consists of the first d columns of y; i.e., xi =min(yi , d) for all i = 1, . . . , n.
The natural quotient map S/Iy � S/Ix induces injective maps

ExtiS(S/Ix , S) ↪−→ ExtiS(S/Iy, S)

for all i = 0, 1, . . . ,m · n.

We warn the reader that the naive generalization of the statement above fails: if
y is a partition containing x (i.e., yi ≥ xi for all i), then it is not always the case that
the induced maps ExtiS(S/Ix , S)→ ExtiS(S/Iy, S) are injective. In fact, a general
partition x has the property that most modules ExtiS(S/Ix , S) are nonzero, but it is
always contained in some partition y with y1 = · · · = yn; for such a y, all but n of
the modules ExtiS(S/Iy, S) will vanish.

We next give the explicit description of Ext•S(S/Ix , S), which requires some
notation. We write R for the representation ring of the group GL(F)×GL(G).
Given a Z-graded S-module M =

⊕
i∈Z Mi admitting an action of GL(F)×GL(G)

compatible with the natural one on S, we define its character χM(z) to be the
element in the Laurent power series ring R((z)) given by

χM(z)=
∑
i∈Z

[Mi ] · zi ,

where [Mi ] denotes the class in R of the GL(F)×GL(G)-representation Mi . We
will often work with doubly graded modules M j

i , where the second grading (in j)
is a cohomological one and M j

• 6= 0 for only finitely many values of j ; for us they
will be either Ext modules or local cohomology modules. We define the character
of such an M to be the element χM(z, w) ∈R((z))[w±1

] given by

χM(z, w)=
∑

i, j∈Z

[M j
i ] · z

i
·w j .

We will refer to an r-tuple λ= (λ1, . . . , λr ) ∈ Zr (for r = m or n) as a weight.
We say that λ is dominant if λ1 ≥ λ2 ≥ · · · ≥ λr , and denote by Zr

dom the set of
dominant weights. Note that a partition is just a dominant weight with nonnegative
entries. We will usually use the notation x, y, z, etc. to refer to partitions indexing



1234 Claudiu Raicu and Jerzy Weyman

the subrepresentations of S, and λ,µ, etc. to denote the weights describing the
characters of other equivariant modules (Ext modules or local cohomology modules).

For λ ∈ Zn
dom and 0≤ s ≤ n, we define

λ(s)=
(
λ1,...,λs, s− n,...,s− n︸ ︷︷ ︸

m−n

, λs+1 + (m−n),...,λn + (m−n)
)
∈Zm . (1-2)

(Note that in [Raicu et al. 2014] this was called λ(n− s).)

Theorem 4.3 (the characters of Ext Modules). With the above notation, the char-
acter of the doubly graded module Ext•S(S/Ix , S) is given by

χExt•S(S/Ix ,S)(z, w)

=

∑
1≤p≤n

0≤s≤t1≤···≤tn−p≤p−1
λ∈W ′(x,p;t,s)

[Sλ(s)F ⊗ SλG] · z|λ| ·wm·n+1−p2
−s·(m−n)−2·(

∑n−p
j=1 t j ),

where W ′(x, p; t, s) is the set of dominant weights λ ∈ Zn satisfying
λn ≥ p− x p −m,
λt j+ j ≤ t j − xn+1− j −m for j = 1, . . . , n− p,
λs ≥ s− n and λs+1 ≤ s−m.

Our proof of this theorem starts with the observation in [de Concini et al. 1980]
that even though the algebraic set defined by Ix is somewhat simple (it is the set of
matrices of rank smaller than the number of nonzero parts of x), its scheme-theoretic
structure is more complicated: it is generally nonreduced, and has embedded
components supported on Ip for each size p of some column of x . Our approach is
then to filter S/Ix with subquotients Jz,p (defined in Section 2B) whose scheme-
theoretic support is the (reduced) space of matrices of rank at most p, which
are therefore less singular and easier to resolve. In fact, each Jz,p is the push-
forward of a locally free sheaf on some product of flag varieties, which allows us to
compute Ext•S(Jz,p, S) via duality theory. Solving the extension problem to deduce
the formulas for Ext•S(S/Ix , S) turns out to be then trivial, due to the restrictions
imposed by the equivariant structure of the modules.

We end this introduction with our main theorem on local cohomology modules,
whose statement needs some more notation. For 0 ≤ s ≤ n, we define (with the
convention λ0 =∞, λn+1 =−∞)

hs(z)=
∑
λ∈Zn

dom
λs≥s−n
λs+1≤s−m

[Sλ(s)F ⊗ SλG] · z|λ|, (1-3)
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so that hn(z) is just the character of S. The other hs(z)’s are characters of local
cohomology modules with support in In (in the case when m > n). More precisely,
for p = 1, . . . , n we write Hp(z, w) for the character of the doubly graded module
H•Ip

(S). In [Raicu et al. 2014] we proved that for m > n

Hn(z, w)=
n−1∑
s=0

hs(z) ·w(n−s)·(m−n)+1,

and it is easy to see that the same formula holds for m = n (in this case, the
only nonzero local cohomology module is H 1

In
(S)= Sdet/S, where det denotes the

determinant of the generic n× n matrix, and Sdet is the localization of S at det).
We write p(a, b; c) for the number of partitions of c contained in an a × b

rectangle, and define the Gauss polynomial
(a+b

b

)
(w) to be the generating function

for the sequence p(a, b; c)c≥0:(a+b
a

)
(w)=

∑
c≥0

p(a, b; c) ·wc
=

∑
b≥t1≥t2≥···≥ta≥0

wt1+···+ta . (1-4)

Gauss polynomials have previously appeared in [Akin and Weyman 2007] in con-
nection to the closely related problem of understanding the minimal free resolutions
of the ideals I(pd ).

Theorem 6.1 (local cohomology with support in generic determinantal ideals).
With the above notation, we have, for each p = 1, . . . , n,

Hp(z, w)=
p−1∑
s=0

hs(z) ·w(n−p+1)2+(n−s)·(m−n)
·

( n−s−1
p−s−1

)
(w2).

The theorem implies that the maximal cohomological index for which H•Ip
(S) is

nonzero (the cohomological dimension of the ideal Ip) is obtained for s = 0 and is
equal to

(n− p+ 1)2+ n · (m− n)+ (p− 1) · (n− p)= m · n− p2
+ 1.

This was first observed in [Bruns and Schwänzl 1990]. Using the fact that once we
invert one of the entries of a generic m× n matrix, Ip becomes Ip−1 for a generic
(m− 1)× (n− 1) matrix, it follows easily from the above that

H j
Ip
(S) 6= 0 for j = (m− s) · (n− s)− (p− s)2+1, s = 0, 1, . . . , p−1. (1-5)

For maximal minors (p = n) this nonvanishing result is sharp, as explained in [Witt
2012]. Our next result, which is a direct consequence of Theorem 6.1, says that
many more of the local cohomology modules H j

Ip
(S) are nonzero when p < n,

namely:
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Theorem (nonvanishing of local cohomology with determinantal support). If p ≤
n ≤ m then H j

Ip
(S) 6= 0 precisely when

j= (n−p+1)2+(n−s)·(m−n)+2·k for 0≤s≤ p−1, 0≤k≤ (p−s−1)·(n−p).

The nonvanishing statement (1-5) is obtained for k = (p− s− 1) · (n− p).

This result contrasts with the positive characteristic situation, where the only
nonvanishing local cohomology module appears in degree j = (m − p + 1) ·
(n− p+1) (see [Hochster and Eagon 1971, Corollary 4] or [Bruns and Vetter 1988,
Corollary 5.18], where it is shown that Ip is perfect, and [Peskine and Szpiro 1973,
Proposition 4.1], where a local cohomology vanishing result for perfect ideals in
positive characteristic is proved). For determinantal ideals over arbitrary rings one
can’t expect such explicit results as Theorem 6.1; for the latest advances in this
general context, the reader should consult [Lyubeznik et al. 2013] and the references
therein.

Our paper is organized as follows: In Section 2 we give some representation-
theoretic preliminaries: in Section 2A we fix some notation for Schur functors,
weights and partitions; in Section 2B we recall from [de Concini et al. 1980] some
properties of the ideals Ix and introduce certain associated subquotients Jx,p that
will play an important role in the sequel; in Section 2C we recall the definition of
flag varieties and formulate some consequences of Bott’s theorem in a form that
will be useful to us; we also recall in Section 2D a method described in [Raicu
et al. 2014] for computing extension groups for certain modules that arise as push-
forwards of vector bundles with vanishing higher cohomology. In Section 3 we
compute explicitly the characters of the modules Ext•S(Jx,p, S), and in Section 4 we
use this calculation to deduce the main result about the characters of the modules
Ext•S(S/Ix , S) for all partitions x . In Section 5 we derive the formulas for the
regularity of the ideals Ix , while in Section 6 we describe the characters of the local
cohomology modules with support in determinantal varieties.

2. Preliminaries

2A. Representation theory [Fulton and Harris 1991; Weyman 2003, Chapter 2].
Throughout the paper, K will denote a field of characteristic 0. If W is a K-vector
space of dimension dim(W ) = N , a choice of basis determines an isomorphism
between GL(W ) and GLN (K). We will refer to N -tuples λ= (λ1, . . . , λN ) ∈ ZN

as weights of the corresponding maximal torus of diagonal matrices. We say that λ
is a dominant weight if λ1 ≥ λ2 ≥ · · · ≥ λN . Irreducible (rational) representations
of GL(W ) are in one-to-one correspondence with dominant weights λ. We denote
by SλW the irreducible representation associated to λ, often referred to as the
Schur functor. We write (aN ) for the weight with all parts equal to a, and define
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the determinant of W by det(W ) = S(1N )W =
∧N W . We have SλW ⊗ det(W ) =

Sλ+(1N )W and SλW ∗= S(−λN ,...,−λ1)W . We write |λ| for the total size λ1+· · ·+λN

of λ.
When x is a dominant weight with xN ≥ 0, we say that x is a partition of r = |x |.

Note that when we’re dealing with partitions we often omit the trailing zeros, so
x = (5, 2, 1) is the same as x = (5, 2, 1, 0, 0, 0). If y is another partition, we write
x ⊂ y to indicate that xi ≤ yi for all i .

2B. The ideals Ix and the subquotients Jx, p. Recall the Cauchy formula (1-1)
and the definition of the ideals Ix ⊂ S = Sym(F ⊗G) as the ideals generated by
subrepresentations Sx F ⊗ Sx G of S. It is shown in [de Concini et al. 1980] that

Ix =
⊕
x⊂y

Sy F ⊗ SyG, (2-1)

and in particular Iy ⊂ Ix if and only if x ⊂ y. More generally, for arbitrary partitions
x, y, we let z =max(x, y) be defined by zi =max(xi , yi ) for all i , and get

Ix ∩ Iy = Iz. (2-2)

Even more generally, for any set T of partitions we let

IT =
∑
y∈T

Iy (2-3)

and have

Ix ∩ IT =
∑
y∈T

Imax(x,y). (2-4)

For p ∈ {0, 1, . . . , n} and x a partition, we write

Succ(x, p)= {y : x ⊂ y, and yi > xi for some i > p}. (2-5)

By the discussion above, Iy ⊂ Ix for all y ∈ Succ(x, p). We define

Jx,p = Ix/ISucc(x,p) (2-6)

It follows from (2-1) that

Jx,p =
⊕
x⊂y

yi=xi for all i>p

Sy F ⊗ SyG. (2-7)

If p = n then Jx,p = Ix , while if p = 0 then Jx,0 = Sx F ⊗ Sx G, which as an
S-module is annihilated by the maximal ideal of S. We have:
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Lemma 2.1. Fix an index p ∈ {0, 1, . . . , n − 1}, and consider a partition x with
x1 = · · · = x p+1. Let

Z = {z : z1 = · · · = z p+1 = x1}. (2-8)

We have

ISucc(x,p) =

( ∑
z∈Z , x(z

Iz

)
+ Imax(x,(x1+1)p+1). (2-9)

Proof. “⊃”: Consider z ∈ Z , x ( z. We have zi > xi for some i , and since xi = zi for
i ≤ p+1, we conclude that zi > xi for some i > p+1; thus, z ∈Succ(x, p). Writing
y =max(x, (x1+ 1)p+1), we have that yp+1 > x p+1 and y ⊃ x , so y ∈ Succ(x, p),
proving that the right side of (2-9) is contained in the left.

“⊂”: Consider a partition y ∈ Succ(x, p). If yp+1 > x p+1 = x1 then y contains
max(x, (x1 + 1)p+1), so Iy is contained in the right side of (2-9). Otherwise
yp+1 = x p+1, so by possibly shrinking some of the first p rows of y (which would
enlarge Iy), we may assume that y ∈ Z . Clearly y ) x , since yi > xi for some
i > p+ 1, so it follows again that Iy is contained in the right side of (2-9). �

The following result will be used in Section 4:

Lemma 2.2. Fix an index p∈{0, 1, . . . , n−1}, and consider a partition x with x1=

· · · = x p+1. For a nonnegative integer d ≥ 0, let y be the partition defined by yi =

xi+d+1 for i =1, . . . , p+1 and yi = xi for i > p+1 (y=max(x, (x1+d+1)p+1)).
The quotient Ix/Iy admits a filtration with successive quotients Jz,p, where z runs
over all partitions with{

x1 ≤ z1 = · · · = z p+1 ≤ x1+ d,
zi ≥ xi for i > p+ 1.

Proof. By induction, it suffices to prove the result when d = 0. We consider Z as
in (2-8) and define

I(Z)= {IT : T ⊂ Z}.

For I ∈ I(Z), we write

Z(I )= {z ∈ Z : Iz ⊂ I }.

Note that if z0
∈ Z(I ) then

if z ∈ Z and z0
⊂ z then z ∈ Z(I ). (2-10)

We let I0 = I((x1+1)p+1) and prove by induction on |Z(I )| that for I ∈ I(Z), the
quotient (I + I0)/I0 has a filtration with successive quotients Jz,p, where z varies
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over the set of elements of Z(I ). Once we do this, we can take I = Ix and observe
that Ix ∩ I0 = Iy (by (2-2)), which yields

(I + I0)/I0 ' I/(I ∩ I0)= Ix/Iy,

concluding the proof of the lemma.
For the induction, assume first that |Z(I )| = 1, so that I = Iz with z1 = · · · =

zn = x1. We have (Iz + I0)/I0 = Jz,p so the base case for the induction follows.
Suppose now that |Z(I )|> 1 and consider a maximal element z0 in Z(I ), i.e., a

partition z0 with the property that Iz0 6⊂ Iz for any z ∈ Z(I ) \ {z0
}. Define

I ′ = IZ(I )\{z0},

and note that |Z(I ′)| = |Z(I )| − 1, I = I ′+ Iz0 , and

(I + I0)/(I ′+ I0)' Jz0,p, (2-11)

which is proved as follows. The equality I = I ′+ Iz0 implies that the natural map

Iz0 → (I + I0)/(I ′+ I0)

is surjective. Its kernel is

Iz0 ∩ (I ′+ I0)
(2-4)
=

( ∑
z∈Z(I )\{z0}

Imax(z0,z)

)
+ Imax(z0,(x1+1)p+1)

(2-10)
=

( ∑
z∈Z , z0(z

Iz

)
+ Imax(z0,(x1+1)p+1)

(2-9)
= ISucc(z0,p),

from which (2-11) follows. Since by induction (I ′ + I0)/I0 has a filtration with
successive quotients Jz,p for z ∈ Z(I ′), we get the corresponding statement for
(I + I0)/I0, finishing the induction step. �

2C. Partial flag varieties and Bott’s theorem [Weyman 2003, Chapter 4]. Consider
a K-vector space V with dim(V )= d and positive integers q ≤ n ≤ d. We denote
by Flag([q, n]; V ) the variety of partial flags

V• : V � Vn � Vn−1 � · · ·� Vq � 0,

where Vp is a p-dimensional quotient of V for each p = q, q + 1, . . . , n. For p in
[q, n]we write Qp(V ) for the tautological rank-p quotient bundle on Flag([q, n]; V )
whose fiber over a point V• ∈ Flag([q, n]; V ) is Vp. For each p there is a natural
surjection of vector bundles

V ⊗OFlag([q,n];V ) � Qp(V ). (2-12)
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Note that for q=n, Flag([q, n]; V )=G(n,V ) is the Grassmannian of n-dimensional
quotients of V .

We consider the natural projection maps

π (q) : Flag([q, n]; V )→ Flag([q + 1, n]; V ), (2-13)

defined by forgetting Vq from the flag V•. For q ≤ n − 1, this map identifies
Flag([q, n]; V ) with the projective bundle PFlag([q+1,n];V )(Qp+1(V )), which comes
with a tautological surjection

Qp+1(V )� Qp(V ).

For q = n we make the convention Flag([q + 1, n]; V ) = Spec(K), so π (n) is
just the structure map of G(n, V ). With the usual notation R•π (q)∗ for the derived
push-forward, we obtain using [Weyman 2003, Corollary 4.1.9] the following:

Theorem 2.3. (a) Suppose that q ≤ n− 1, and consider a dominant weight µ ∈ Zq .
For q < p ≤ n,

R jπ (q)
∗
(SµQp(V ))=

{
SµQp(V ) if j = 0,
0 otherwise.

If µq−t + t =−1 for some t = 0, . . . , q − 1, then

R jπ (q)
∗
(SµQq(V ))= 0 for all j.

Otherwise (with the convention µ0 =∞, µq+1 =−∞), consider the unique index
0≤ t ≤ q such that

µq−t+1+ t + 1≤ 0≤ µq−t + t.

Letting
µ̃= (µ1, . . . , µq−t ,−t, µq−t+1+ 1, . . . , µq + 1),

we have

R jπ (q)
∗
(SµQq(V ))=

{
Sµ̃Qq+1(V ) if j = t,
0 otherwise.

(b) Consider a dominant weight µ ∈ Zn . If n − d ≤ µn−s + s ≤ −1 for some
s = 0, . . . , n− 1, then

R jπ (n)
∗
(SµQn(V ))= 0 for all j.

Otherwise (with the convention µ0 =∞, µn+1 =−∞), consider the unique index
0≤ s ≤ n such that

µn−s ≥−s and µn−s+1 ≤−s− d + n.
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Letting

µ̃=
(
µ1, . . . , µn−s,−s, . . . ,−s︸ ︷︷ ︸

d−n

, µn−s+1+ (d − n), . . . , µn + (d − n)
)
∈ Zd ,

(compare to (1-2)), we have

R jπ (n)
∗
(SµQn(V ))=

{
Sµ̃V if j = s · (d − n),
0 otherwise.

2D. Computing Ext modules via duality. In this section we recall [Raicu et al.
2014, Theorem 3.1] as a tool to compute Ext•S(M, S) when M comes as the push-
forward of certain vector bundles with vanishing higher cohomology. More precisely,
we have:

Theorem 2.4. Let X be a projective variety, and let W be a finite-dimensional
K-vector space. Suppose

W ⊗OX � η

is a surjective map, where η is locally free, and let k = dim(W )−rank(η). Consider
a locally free sheaf V on X , and define

M(V)= V⊗Sym(η), M∗(V)= V⊗ det(W )⊗ det(η∗)⊗Sym(η∗).

Giving V internal degree v, and η and W degree 1, we think of M(V) and M∗(V)

as graded sheaves, with

M(V)i+v = V⊗Symi (η), M∗(V)i+v = V⊗ det(W )⊗ det(η∗)⊗Sym−i+k(η∗).

Suppose that H j (X,M(V))= 0 for j > 0, and let

M(V)= H 0(X,M(V)).

We have for each j ≥ 0 a graded isomorphism

Ext j
S(M(V), S)= H k− j (X,M∗(V))∗, (2-14)

where (−)∗ stands for the graded dual.

3. Ext modules for the subquotients Jx, p

The goal of this section is to compute explicitly the character of Ext•S(Jx,p, S) for
all p and all partitions x with x1 = · · · = x p, where Jx,p is defined as in (2-6). We
will achieve this by realizing Jx,p as the global sections of a vector bundle with
vanishing higher cohomology on a certain product of flag varieties, and then using
duality (Theorem 2.4) and Bott’s theorem (Theorem 2.3).



1242 Claudiu Raicu and Jerzy Weyman

Consider as before vector spaces F,G, with dim(F)= m, dim(G)= n, m ≥ n.
For q = 1, . . . , n, we consider the projective varieties

X (q)
= Flag([q, n]; F)×Flag([q, n];G), X = X (∞)

= Spec K,

and the locally free sheaves (see Section 2C)

η(p) = Qp(F)⊗Qp(G), p = 1, . . . , n, η = η(∞) = F ⊗G.

Note that η(p) can be thought of as a sheaf on X (q) whenever p≥ q . We consider for
q≤n−1 (resp. q=n) the natural maps π (q) : X (q)

→ X (q+1) (resp. π (n) : X (n)
→ X )

induced from (2-13). We define

S(q) = Sym η(q)

as relative versions of the polynomial ring S = S(∞) = Sym(F ⊗ G). We will
always work implicitly with quasicoherent sheaves on the affine bundles

Y (q) = AX (q)(η
(q))= Spec

X (q)
(S(q)),

which we identify with S(q)-modules on X (q) as in [Hartshorne 1977, Exercise
II.5.17]. The Cauchy formula (1-1) becomes in the relative setting

S(q) =
⊕

x=(x1≥···≥xq≥0)

Sx Qq(F)⊗ Sx Qq(G), (3-1)

and we can define the ideals I (q)x ⊂ S(q) and subquotients J (q)x,p for 0 ≤ p ≤ q
analogously to (2-1) and (2-6). For 1≤ p ≤ q , we write I (q)p for I (q)(1p), the ideal of
p× p minors in S(q). We define the line bundle

det(q) = det(Qq(F))⊗ det(Qq(G)), (3-2)

and note that the ideal I (q)q is generated by det(q). It follows easily from (3-1) and
Theorem 2.3 that

R jπ (q)
∗
(S(q))=

{
S(q+1)/I (q+1)

q+1 if j = 0,
0 otherwise,

(3-3a)

and, for p > q,

R jπ (q)
∗
(S(p))=

{
S(p) if j = 0,
0 otherwise.

(3-3b)

Lemma 3.1. (a) For a partition x = (x1 ≥ · · · ≥ xq), there exist natural identifica-
tions

det(q)⊗I (q)x = I (q)x+(1q ), (3-4)

and
det(q)⊗J (q)x,p = J (q)x+(1q ),p for 0≤ p ≤ q. (3-5)
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(b) For a partition x = (x1 ≥ · · · ≥ xq), we have

R jπ (q)
∗

I (q)x =

{
(I (q+1)

x + I (q+1)
q+1 )/I (q+1)

q+1 if j = 0,
0 otherwise.

(3-6)

(c) For a partition x = (x1 ≥ · · · ≥ xq) and 0≤ p ≤ q , we have

R jπ (q)
∗

J (q)x,p =

{
J (q+1)

x,p if j = 0,
0 otherwise.

(3-7)

Proof. (a) The multiplication map det(q)⊗S(q)→ S(q) is injective: if we think of
S(q) as locally the ring of polynomial functions on q×q matrices, then det(q) is the
determinant of the generic q × q matrix. It follows that det(q)⊗I (q)x = det(q) ·I (q)x

is in fact an ideal in S(q). Equation (3-4) then follows from the fact that multiplying
by the determinant corresponds to adding a column of maximal size to the Young
diagram (a special case of Pieri’s rule). In fact, the same argument shows that for
any set of partitions Z

det(q)⊗
(∑

z∈Z

I (q)z

)
=

∑
z∈Z

I (q)z+(1q ).

Given the definition of J (q)x,p as the analogue of (2-6), (3-5) follows by taking
Z = Succ(q)(x, p) (the analogue of (2-5)) in the formula above, and using (3-4)
and the exactness of tensoring with det(q).

Part (b) follows from (3-3), while (c) follows from the fact that if x= (x1, . . . , xq)

and 0≤ p ≤ q , then

Succ(q+1)(x, p)= Succ(q)(x, p)∪ {z : z ⊃ x, z p+1 ≥ 1}. �

For each partition x = (x1 = · · · = x p ≥ x p+1 ≥ · · · ≥ xn ≥ xn+1 = 0), we define
the locally free sheaf Mx,p on X (p) by

Mx,p =

( n⊗
q=p

(det(q))⊗(xq−xq+1)

)
⊗ S(p). (3-8)

Lemma 3.2. With the notation above, we have

H j (X (p),Mx,p)=

{
Jx,p if j = 0,
0 otherwise.

Proof. Note that S(p) = J (p)0,p , so using (3-4) we get

Mx,p =

( n⊗
q=p+1

(det(q))⊗(xq−xq+1)

)
⊗ J (p)((x p−x p+1)p),p.
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It follows that

Rπ (p)
∗

Mx,p = π
(p)
∗

Mx,p
(3-7)
=

( n⊗
q=p+1

(det(q))⊗(xq−xq+1)

)
⊗ J (p+1)

((x p−x p+1)p),p

(3-4)
=

( n⊗
q=p+2

(det(q))⊗(xq−xq+1)

)
⊗ J (p+1)

((x p−x p+2)p,x p+1−x p+2),p.

Applying Rπ (p+1)
∗ , Rπ (p+2)

∗ , . . . , Rπ (n)∗ iteratively, and using (3-7) and (3-4) as
above, we obtain

Rπ∗Mx,p = π∗Mx,p = J(x p
p ,x p+1,...,xn),p

(x1=···=x p)
= Jx,p,

where π = π (n) ◦ · · · ◦ π (p) is the structure map X (p)
→ Spec K, concluding the

proof of the lemma. �

We are now ready to prove the main result of this section:

Theorem 3.3. The character of the doubly graded module Ext•S(Jx,p, S) is given by

χExt•S(Jx,p,S)(z, w)

=

∑
0≤s≤t1≤···≤tn−p≤p
λ∈W (x,p;t,s)

[Sλ(s)F ⊗ SλG] · z|λ| ·wm·n−p2
−s·(m−n)−2·(

∑n−p
j=1 t j ), (3-9)

where W (x, p; t, s) is the set of dominant weights λ ∈ Zn with the properties
λn ≥ p− x p −m, (3-10a)

λt j+ j = t j − xn+1− j −m for j = 1, . . . , n− p, (3-10b)

λs ≥ s− n and λs+1 ≤ s−m. (3-10c)

Remark 3.4. If we take p = n and x1 = · · · = xn = d in the above theorem, we
recover [Raicu et al. 2014, Theorem 4.3]. The character of Jx,n = Ix = I d

n is

χExt•S(Jx,n,S)(z, w)=
∑

0≤s≤n
λn≥n−d−m
λs≥s−n
λs+1≤s−m

[Sλ(s)F ⊗ SλG] · z|λ| ·w(n−s)·(m−n).

When p = 0, since Jx,0 = Sx F ⊗ Sx G is just a vector space the only nonvanishing
Ext module is

Extmn
S (Jx,0, S)=

(
Sx F ⊗ Sx G⊗ det(F ⊗G)

)∗
.
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Proof of Theorem 3.3. We apply Theorem 2.4 with

X = X (p), η = η(p), W = F ⊗G, V=

n⊗
q=p

(det(q))⊗(xq−xq+1),

so that M(V) =Mx,p (see (3-8)). Lemma 3.2 ensures that the hypotheses of the
duality theorem hold, and M(V)= Jx,p. We have rank(η(p))= p2, dim(W )=m ·n,
so k = m · n− p2. We give V internal degree v = |x |, and get

Ext j
S(Jx,p, S)r−|x |

= H m·n−p2
− j
(

X (p),

n⊗
q=p

(det(q))⊗(xq−xq+1)⊗ det(F ⊗G)

⊗ det(η∗)⊗Symr+m·n−p2
(η∗)

)∗
. (3-11)

Formula (3-9) now follows from a direct application of Theorem 2.3, which we
sketch below.

Using Cauchy’s formula and that det(η∗)= det(Qp(F))−p
⊗ det(Qp(G))−p, we

get
det(η∗)⊗Symr+m·n−p2

(η∗)=
⊕
µ∈Z

p
dom

|µ|=r+m·n
µ1≤−p

SµQp(F)⊗ SµQp(G).

For each µ in the formula above, we have to first compute

Rπ∗

( n⊗
q=p

(det(q))⊗(xq−xq+1)⊗ SµQp(F)⊗ SµQp(G)
)
, (3-12)

where π = π (n) ◦ · · · ◦ π (p) : X (p)
→ Spec K is the structure map, then tensor

with det(F ⊗ G) and dualize, in order to get the corresponding contribution to
(3-11). If (3-12) is nonzero, then there exist uniquely determined dominant weights
µ(q), δ(q) ∈ Zq for q = p, . . . , n, and nonnegative integers tn−q , q = p, . . . , n− 1,
and s, such that µ(p) = µ, and if for q = p, . . . , n we write

M(q)
= Sµ(q)Qq(F)⊗ Sµ(q)Qq(G), N(q)

= Sδ(q)Qq(F)⊗ Sδ(q)Qq(G),

then
N(q)
=M(q)

⊗ (det(q))⊗(xq−xq+1) for q = p, . . . , n, (3-13)

2 · tn−q is the unique integer j for which R jπ
(q)
∗ (N(q)) 6= 0, and

R2·tn−qπ (q)
∗
(N(q))=M(q+1) for q = p, . . . , n− 1, (3-14)

and finally, s · (m− n) is the unique integer j for which R jπ
(n)
∗ (N(n)) 6= 0.
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The dominant weight δ(q) is easy to determine; namely, we get from (3-13) that

δ(q) = µ(q)+ ((xq − xq+1)
q). (3-15)

Assuming we know δ(q), (3-14) determines tn−q and µ(q) according to (a) of
Theorem 2.3: tn−q is the unique integer t with the property

δ
(q)
q−t+1+ t + 1≤ 0≤ δ(q)q−t + t, (3-16)

and

µ(q+1)
=
(
δ
(q)
1 , . . . , δ

(q)
q−tn−q

,−tn−q , δ
(q)
q−tn−q+1+ 1, . . . , δ(q)q + 1

)
. (3-17)

It follows from (3-17) and (3-15) that

δ
(q+1)
q+1−tn−q

=−tn−q + xq+1− xq+2 ≥−tn−q ,

so t = tn−q satisfies the right-hand inequality in (3-16) with q replaced by (q + 1),
which forces tn−(q+1) ≤ tn−q . It follows easily that

δ
(i)
q+1−tn−q

=−tn−q + xq+1− xi+1 for i = q + 1, . . . , n. (3-18)

We have seen so far how to calculate µ(q), δ(q) for q = p, . . . , n, and tn−q for
q = p, . . . , n − 1, so we’re left with determining s. By Theorem 2.3(b), s is
uniquely determined by the inequalities

δ
(n)
n−s ≥−s and δ

(n)
n−s+1 ≤−s−m+ n, (3-19)

and moreover
Rs·(m−n)π (n)

∗
(N(n))= Sδ̃F ⊗ SδG, (3-20)

where δ = δ(n) and

δ̃ =
(
δ1, . . . , δn−s, (−s)m−n, δn−s+1+ (m− n), . . . , δn + (m− n)

)
.

Since δ(n)n−t1 =−t1+ xn ≥−t1, it follows as before that s ≤ t1. Tensoring (3-20) with
det(F⊗G)= det(F)⊗n

⊗det(G)⊗m and dualizing, we obtain by putting everything
together that there exist integers 0≤ s ≤ t1 ≤ · · · ≤ tn−p ≤ p such that

Rs·(m−n)+2·
∑n−p

j=1 t jπ∗

( n⊗
q=p

(det(q))⊗(xq−xq+1)⊗det(F⊗G)⊗SµQp(F)⊗SµQp(G)
)∗

= Sλ(s)F ⊗ SλG,

where λ(s) is defined as in (1-2) and

λi =−m− δn−i+1 for all i = 1, . . . , n. (3-21)



Local cohomology with support in generic determinantal ideals 1247

We next check that λ ∈W (x, p; t, s). Since µ1 ≤−p, it follows from (3-15) and
(3-17) that δ1≤−p+x p, so λn =−δ1−m≥ p−x p−m; i.e., (3-10a) holds. Letting
i = n in (3-18) we get δq+1−tn−q =−tn−q + xq+1, so λn−q+tn−q = tn−q − xq+1−m;
i.e., (3-10b) holds. Finally, (3-10c) follows from (3-19).

We conclude from the discussion above that (3-9) holds, after possibly replacing
W (x, p; t, s) by a smaller set. To see that all weights λ ∈ W (x, p; t, s) in fact
appear, one has to reverse the steps above in order to show that each λ can be reached
from a certain weight µ. We give the formula for µ, and leave the details to the
interested reader. We first define δ ∈ Zn

dom by reversing (3-21): δi =−m− λn+1−i .
Letting tn−p+1 = p and t0 = 0, for each i = 0, . . . , n− p and j = 1, . . . , ti+1− ti
we let

µp−ti+1+ j = δn−i−ti+1+ j + xn−i + (n− p− i). �

Corollary 3.5. Fix an index p ∈ {0, 1, . . . , n}. Suppose that M is an S-module with
a compatible GL(F)×GL(G) action, admitting a finite filtration with successive
quotients isomorphic to Jx j ,p for j=1, . . . , r , where each x j is a partition satisfying
x j

1 = x j
2 = · · · = x j

p. We have a decomposition as GL(F)×GL(G)-representations

ExtiS(M, S)=
r⊕

j=1

ExtiS(Jx j ,p, S) (3-22)

for each i = 0, 1, . . . ,m · n. Equivalently, if

0−→ A −→ B −→ C −→ 0 (3-23)

is a GL(F)× GL(G)-equivariant short exact sequence of S-modules admitting
filtrations as above, then for each i = 0, 1, . . . ,m · n, the induced sequence

0−→ ExtiS(C, S)−→ ExtiS(B, S)−→ ExtiS(A, S)−→ 0 (3-24)

is exact.

Proof. Suppose that the conclusion of the corollary fails, and consider modules
A, B,C sitting in an exact sequence (3-23) such that (3-22) holds for A and C but
fails for B. In particular, not all sequences (3-24) are exact, so there exist an index i
and a nontrivial connecting homomorphism

ExtiS(A, S)
δ
−→ Exti+1

S (C, S).

It follows that some irreducible representation of GL(F)×GL(G) appears in both
ExtiS(A, S) and Exti+1

S (C, S). This is clearly impossible when m= n, because from
(3-22) and (3-9) it follows that the cohomological degrees j for which Ext j

S(A, S)
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and Ext j
S(C, S) are nonzero satisfy

j ≡ m · n− p2 (mod 2).

When m> n, a similar argument applies: if [Sλ(s)F⊗SλG] = [Sµ(t)F⊗SµG] (with
λ,µ, λ(s) and µ(t) dominant), then it follows from (1-2) that λ = µ and s = t ;
moreover, we get from (3-22) and (3-9) that the cohomological degrees j for which
Sλ(s)F ⊗ SλG appears in Ext j

S(A, S) and Ext j
S(C, S) satisfy

j ≡ m · n− p2
− s · (m− n) (mod 2). �

4. Ext modules for S/Ix

In this section we will use the explicit calculation of Ext•S(Jx,p, S) from the previous
section in order to deduce a formula for the characters of Ext•S(S/Ix , S) for all
ideals Ix . We begin with an important consequence of the results in the preceding
section:

Corollary 4.1. Fix an index p ∈ {0, 1, . . . , n− 1} and positive integers b > c > 0.
If we let x = (cp+1), y = (bp+1), then the natural quotient map S/Iy � S/Ix

induces injective maps

ExtiS(S/Ix , S) ↪−→ ExtiS(S/Iy, S)

for all i = 0, 1, . . . ,m ·n. More generally, if z is any partition with z1 = · · · = z p+1

and x = z+ (cp+1), y = z+ (bp+1), then the quotient map Iz/Iy � Iz/Ix induces
injective maps

ExtiS(Iz/Ix , S) ↪−→ ExtiS(Iz/Iy, S)

for all i = 0, 1, . . . ,m · n.

Proof. Note that the former statement follows from the latter by taking z = 0
and noting that S = I0. By Lemma 2.2, the modules A = Ix/Iy , B = Iz/Iy ,
and C = Iz/Ix have finite filtrations with quotients isomorphic to Jt,p for various
partitions t satisfying t1 = · · · = tp. Apply Corollary 3.5 to yield the desired
conclusion. �

Theorem 4.2. Let d ≥ 0 and consider partitions x, y, where x consists of the first d
columns of y; i.e., xi = min(yi , d) for all i = 1, . . . , n. The natural quotient map
S/Iy � S/Ix induces injective maps

ExtiS(S/Ix , S) ↪−→ ExtiS(S/Iy, S) (4-1)

for all i = 0, 1, . . . ,m · n.
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Proof. Arguing inductively, it suffices to prove the result when all the columns of y
outside x have the same size (say p+1, for p∈{0, 1, . . . , n−1}); i.e., y= x+(a p+1)

for some positive integer a. Note that this forces x1= x2=· · ·= x p+1=d . We prove
by descending induction on p that the induced map (4-1) is injective. When p=n−1,
we have x = (dn) and y = ((d+a)n), so the conclusion follows from Corollary 4.1
(or from the results in [Raicu et al. 2014]).

Suppose now that p < n− 1 and y = x + (a p+1), x1 = · · · = x p+1 = d . Let z be
the partition consisting of the columns of x of size strictly larger than p+1; i.e., zi =

min(xi , x p+2) for all i = 1, . . . , n. Consider the partitions x̃ (resp. ỹ), defined by
letting x̃i = xi (resp. ỹi = yi ) for i 6= p+ 2, and x̃ p+2 = x p+1 (resp. ỹp+2 = yp+1).
Alternatively, x̃ = z+ ((d− x p+2)

p+2), ỹ = z+ ((d+a− x p+2)
p+2). By induction,

for all i = 0, 1, . . . ,m · n, we obtain inclusions

ExtiS(S/Iz, S) ↪−→ExtiS(S/Ix̃ , S) and ExtiS(S/Iz, S) ↪−→ExtiS(S/I ỹ, S). (4-2)

The natural commutative diagrams

S/Ix̃ //

��

S/Iz

S/Ix // S/Iz

and

S/I ỹ //

��

S/Iz

S/Iy // S/Iz

induce commutative diagrams

ExtiS(S/Iz, S) // ExtiS(S/Ix̃ , S)

ExtiS(S/Iz, S) // ExtiS(S/Ix , S)

OO

and

ExtiS(S/Iz, S) // ExtiS(S/I ỹ, S)

ExtiS(S/Iz, S) // ExtiS(S/Iy, S)

OO

Since the top maps are injective by (4-2), the bottom ones must be injective as well.
For all i = 0, 1, . . . ,m · n, we get commutative diagrams

0 // ExtiS(S/Iz, S) // ExtiS(S/Ix , S) //

αi

��

ExtiS(Ix/Iz, S)

βi

��

0 // ExtiS(S/Iz, S) // ExtiS(S/Iy, S) // ExtiS(Iy/Iz, S)

where the rows are exact. The maps βi are injective by Corollary 4.1, forcing the
maps αi to be injective as well. We conclude that the inclusion (4-1) holds, finishing
the proof of the theorem. �
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Theorem 4.3. The character of the doubly graded module Ext•S(S/Ix , S) is given by

χExt•S(S/Ix ,S)(z, w)

=

∑
1≤p≤n

0≤s≤t1≤···≤tn−p≤p−1
λ∈W ′(x,p;t,s)

[Sλ(s)F ⊗ SλG] · z|λ| ·wm·n+1−p2
−s·(m−n)−2·(

∑n−p
j=1 t j ), (4-3)

where W ′(x, p; t, s) is the set of dominant weights λ ∈ Zn satisfying
λn ≥ p− x p −m, (4-4a)

λt j+ j ≤ t j − xn+1− j −m for j = 1, . . . , n− p, (4-4b)

λs ≥ s− n and λs+1 ≤ s−m. (4-4c)

Remark 4.4. The condition tn−p ≤ p− 1 in (4-3), combined with the inequalities

tn−p − x p+1−m ≥ λtn−p+n−p ≥ λn ≥ p− x p −m

obtained from (4-4b) by letting j = n− p, shows that the only values of p for which
there may be a nontrivial contribution to (4-3) are the ones for which x p > x p+1 or
p = n. It follows that for x1 = · · · = xn , the only interesting value of p is p = n,
in which case Ix = Jx,n and (4-3) follows from (3-9) and the standard long exact
sequence relating Ext•S(S/Ix , S) to Ext•S(Ix , S).

Proof of Theorem 4.3. We induct on the number of columns of x . When x = 0,
S/Ix = 0, so Ext•S(S/Ix , S)= 0. It follows that (4-3) is verified in this case, since
W ′(0, p; t, s) is empty whenever 0≤ s ≤ p− 1: to see this, note that

s−m
(4-4c)
≥ λs+1 ≥ λn

(4-4a)
≥ p−m

implies s ≥ p, which is incompatible with the condition s ≤ p− 1.
Suppose now that y is obtained from x by appending a column of size (q + 1)

for some q = 0, . . . , n− 1. This implies that x1 = · · · = xq+1 and yi = xi + 1 for
1≤ i ≤ q + 1. It follows from Theorem 4.2 that

χExt•S(S/Iy ,S)(z, w)= χExt•S(S/Ix ,S)(z, w)+χExt•S(Ix/Iy ,S)(z, w), (4-5)

and from Lemma 2.2 and Corollary 3.5 that

χExt•S(Ix/Iy ,S)(z, w)=
∑

z=(z1≥···≥zn≥0)
z1=···=zq+1=x1
zi≥xi , i>q+1

χExt•S(Jz,q ,S)(z, w). (4-6)
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By Remark 4.4, since x1 = · · · = xq+1 and y1 = · · · = yq+1, the only relevant
terms in (4-3) (for both x and y) are those for which p ≥ q + 1. For such p,
xn+1− j = yn+1− j whenever 1≤ j ≤ n− p, so condition (4-4b) is the same for x as
it is for y. Equation (4-4c) is clearly the same for both x and y, and the same is
true for (4-4a) when p ≥ q + 2. We conclude that W ′(x, p; t, s)= W ′(y, p; t, s)
for p 6= q + 1, from which it follows using (4-5) and the induction hypothesis that
in order to prove (4-3) for y, it suffices to show that

χExt•S(Ix/Iy ,S)(z, w)

=

∑
p=q+1

0≤s≤t1≤···≤tn−p≤p−1
λ∈W ′(y,p;t,s)\W ′(x,p;t,s)

[Sλ(s)F⊗SλG]·z|λ| ·wm·n+1−p2
−s·(m−n)−2·(

∑n−p
j=1 t j )

=

∑
0≤s≤t1≤···≤tn−q−1≤q

λ∈W ′(y,q+1;t,s)\W ′(x,q+1;t,s)

[Sλ(s)F⊗SλG]·z|λ|

·w
m·n−q2

−2·q−s·(m−n)−2·(
∑n−q−1

j=1 t j ). (4-7)

Note that since (4-4b) and (4-4c) are the same for x and y when p = q + 1, it
follows that

λ ∈W ′(y, q + 1; t, s) \W ′(x, q + 1; t, s)

⇐⇒


λn = q + 1− yq+1−m = q − x1−m,
λt j+ j ≤ t j − xn+1− j −m for j = 1, . . . , n− q − 1,
λs ≥ s− n and λs+1 ≤ s−m.

(4-8)

Consider now a partition z appearing in (4-6). We claim that W (z, q; t, s) is
empty unless tn−q = q . Furthermore, if λ ∈W (z, q; t, s), then λn = q− x1−m. To
see this, note that

λn ≤ λtn−q+n−q
(3-10b)
= tn−q − zq+1−m = tn−q − zq −m ≤ q − zq −m

(3-10a)
≤ λn,

which forces equalities throughout, and in particular

tn−q = q and λn = tn−q − zq+1−m = q − x1−m.

We get from (3-9) that

χExt•S(Jz,q ,S)(z, w)

=

∑
0≤s≤t1≤···≤tn−q−1≤tn−q=q

λ∈W (x,q;t,s)

[Sλ(s)F⊗SλG]·z|λ|·wm·n−q2
−2q−s·(m−n)−2·(

∑n−q−1
j=1 t j ). (4-9)
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Combining (4-6), (4-7) and (4-9), it remains to show that

W ′(y, q + 1; t, s) \W ′(x, q + 1; t, s)=
⋃

z=(z1≥···≥zn≥0)
z1=···=zq+1=x1
zi≥xi , i>q+1

W (x, q; t, s).

This follows immediately from (4-8) and the fact that the condition

λt j+ j ≤ t j − xn+1− j −m for j = 1, . . . , n− q − 1

in (4-8) is equivalent to the existence of a partition z satisfying z1= · · · = zq+1= x1

and zn+1− j ≥ xn+1− j for j = 1, . . . , n−q−1 (or equivalently zi ≥ xi for i > q+1),
such that

λt j+ j = t j − zn+1− j −m for j = 1, . . . , n− q − 1. �

5. Regularity of the ideals Ix

The explicit description of the character of Ext•S(Ix , S) obtained in Theorem 4.3
allows us to obtain the following result on the regularity of every ideal Ix , whose
proof will be the focus of the current section.

Theorem 5.1. For a partition x with at most n parts, letting xn+1 = −1 we have
the following formula for the regularity of the ideal Ix :

reg(Ix)= max
p=1,...,n
x p>x p+1

(n · x p + (p− 2) · (n− p)). (5-1)

In particular, the only ideals Ix which have a linear resolution are those for which
x1 = · · · = xn (i.e., powers I x1

n of the ideal In of maximal minors) or x1 − 1 =
x2 = · · · = xn (i.e., I x1−1

n · I1).

By [Eisenbud 1995, Proposition 20.16], one can compute the regularity of a
finitely generated S-module M by the formula

reg(M)=max{−r − j : Ext j
S(M, S)r 6= 0}. (5-2)

Since reg(Ix)= reg(S/Ix)+ 1, we get by combining (5-2) and (4-3) that

reg(Ix)= max
1≤p≤n

0≤s≤t1≤···≤tn−p≤p−1
λ∈W ′(x,p;t,s)

(
−|λ|−mn+ p2

+ s · (m−n)+2 ·
(n−p∑

j=1

t j

))
. (5-3)

It is then important to decide when W ′(x, p; t, s) is nonempty, which we do in
the following lemma:
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Lemma 5.2. Fix p ∈ {1, . . . , n} and 0 ≤ s ≤ t1 ≤ · · · ≤ tn−p ≤ p − 1. The set
W ′(x, p; t, s) is nonempty if and only if{

x p − xn+1− j ≥ p− t j for j = 1, . . . , (n− p),
s ≥ p− x p.

(5-4)

Moreover, the weight λ ∈W ′(x, p; t, s) of minimal size (i.e., for which the quantity
−|λ| is maximal) is given by{

λ1 = · · · = λs = (s− n),
λs+1 = · · · = λn = (p− x p −m).

(5-5)

Proof. If W ′(x, p; t, s) is nonempty, then for any λ ∈W ′(x, p; t, s) we have

t j − xn+1− j −m
(4-4b)
≥ λt j+ j ≥ λn

(4-4a)
≥ p− x p −m

for j = 1, . . . , (n− p) and

s−m
(4-4c)
≥ λs+1 ≥ λn

(4-4a)
≥ p− x p −m,

so (5-4) holds.
Conversely, assume that (5-4) holds, and define λ via (5-5). It is immediate to

check that λ satisfies (4-4a)–(4-4c), so λ ∈W ′(x, p; t, s) and the set is nonempty.
The fact that this λ has minimal size follows from the fact that any other λ ∈
W ′(x, p; t, s) is dominant and thus satisfies λ1≥· · ·≥λs ≥ (s−n) and λs+1≥· · ·≥

λn ≥ (p− x p −m), so

|λ| ≥ s · (s− n)+ (n− s) · (p− x p −m)= (n− s) · (p− x p − s−m). �

Lemma 5.2 allows us to rewrite (5-3) in the form

reg(Ix)= max
1≤p≤n

0≤s≤t1≤···≤tn−p≤p−1
x p−xn+1− j≥p−t j

s≥p−x p

(
−(n− s) · (p− x p − s−m)−mn

+ p2
+ s · (m− n)+ 2 ·

(n−p∑
j=1

t j

))
= max

1≤p≤n
0≤s≤t1≤···≤tn−p≤p−1

x p−xn+1− j≥p−t j
s≥p−x p

(
s · (p− x p − s)+ n · (x p − p)+ p2

+ 2 ·
(n−p∑

j=1
t j

))

= max
1≤p≤n

0≤s≤p−1
x p−x p+1≥1

s≥p−x p

(
s · (p− x p − s)+ n · x p + (p− 2) · (n− p)

)
. (5-6)
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Since s≥ p−x p, we have s ·(p−x p−s)≤ 0, with equality if s= 0 or s= p−x p.
For 1≤ p ≤ n− 1, the condition x p − x p+1 ≥ 1 forces x p ≥ 1, so p− x p ≤ p− 1.
It follows that we can take s =max(0, p− x p) in order to maximize the expression
above. Likewise, if p = n and xn ≥ 1, we take s = max(0, n − xn). It follows
that when xn ≥ 1, (5-6) reduces to (5-1). However, if xn = 0 then for p = n the
conditions s ≤ p− 1 and s ≥ p− x p are incompatible, so (5-6) reduces to

reg(Ix)= max
p=1,...,n−1

x p>x p+1

(n · x p + (p− 2) · (n− p)).

To see that this is the same as (5-1) it suffices to observe that reg(Ix) ≥ nxn = 0
(which is the term corresponding to p = n).

To finish the proof of the theorem, we need to verify the last assertion. Note that
Ix is generated in degree x1+ · · ·+ xn , so it has a linear resolution if and only if

reg(Ix)= x1+ · · ·+ xn. (5-7)

When x1 = · · · = xn , (5-1) reduces to the term with p = n, whose value is nxn =

x1 + · · · + xn . For x1 − 1 = x2 = · · · = xn , the only surviving terms in (5-1) are
those with p = 1 and p = n, so we get

reg(Ix)=max(n · (x1− 1)+ 1, nxn)= n · (x1− 1)+ 1= x1+ · · ·+ xn.

Conversely, assume that (5-7) holds, and that the xi aren’t all equal. Take p minimal
with the property that x p > x p+1, so that p < n, x1 = · · · = x p and xi ≤ x p − 1 for
i > p. We have

reg(Ix)≥ n · (x p − p)+ p2
+ 2 · (p− 1) · (n− p)

= px p + (n− p) · (x p − 1)+ (n− p) · (p− 1)≥ x1+ · · ·+ xn,

with equality when xi = x p − 1 for i > p and (n− p) · (p− 1) = 0. This forces
p = 1 and x1− 1= x2 = · · · = xn , concluding the proof of the theorem.

6. Local cohomology with support in determinantal ideals

In this section, we prove our main theorem on local cohomology with support in
determinantal ideals. Recall that S = Sym(Cm

⊗Cn) denotes the polynomial ring
of functions on the space of m× n matrices, Ip ⊂ S is the ideal of p× p minors
of the generic m × n matrix, and Hp(z, w) is the character of the doubly graded
module H•Ip

(S). Recall also the definition (1-3) of hs(z) and the notation (1-4) for
Gauss polynomials.
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Theorem 6.1. For each p = 1, . . . , n, we have

Hp(z, w)=
p−1∑
s=0

hs(z) ·w(n−p+1)2+(n−s)·(m−n)
·

( n−s−1
p−s−1

)
(w2).

To prove the theorem, note that since the system of ideals {I(d p) : d ≥ 0} is
cofinal with the one consisting of powers of the ideal of p × p minors, we ob-
tain from [Eisenbud 2005, Exercise A1D.1] that for each i = 0, 1, . . . ,m · n we
have

H i
Ip
(S)= lim

−→
d

ExtiS(S/I(d p), S),

where the successive maps in the directed system are induced from the natural
quotient maps

S/I((d+1)p) � S/I(d p).

By Theorem 4.2 all these maps are injective, so the description of the character
of H i

Ip
(S) can be deduced from Theorem 4.3. Note that the partitions x to which

we apply Theorem 4.3 have the property that x1 = · · · = x p = d and xi = 0 for
i > p. Since we are interested in the limit as d→∞, we might as well assume
that x1 = · · · = x p =∞, in which case (4-4a) becomes vacuous. In what follows,
λ will always be assumed to be a dominant weight.

If s ≤ t j then s+ 1≤ t j + j for every j = 1, . . . , n− p, so we get

λt j+ j
(λ∈Zn

dom)

≤ λs+1
(4-4c)
≤ s−m

(s≤t j )

≤ t j −m;

i.e., (4-4c) implies (4-4b) (note that xn+1− j = 0 for j ≤ n − p). We conclude
that

Hp(z, w) =
∑

0≤s≤t1≤···≤tn−p≤p−1
λs≥s−n
λs+1≤s−m

[Sλ(s)F⊗ SλG]· z|λ| ·wm·n+1−p2
−s·(m−n)−2·(

∑n−p
j=1 t j )

(1-3)
=

∑
0≤s≤t1≤···≤tn−p≤p−1

hs(z) ·w
m·n+1−p2

−s·(m−n)−2·(
∑n−p

j=1 t j ),

which yields, upon setting t ′j := p− 1− t j ,

Hp(z, w) =
p−1∑
s=0

hs(z) ·w(n−p+1)2+(n−s)·(m−n)
·

∑
p−1−s≥t ′1≥···≥t ′n−p≥0

w
2·(
∑n−p

j=1 t ′j )

(1-4)
=

p−1∑
s=0

hs(z) ·w(n−p+1)2+(n−s)·(m−n)
·

( n−s−1
p−s−1

)
(w2).



1256 Claudiu Raicu and Jerzy Weyman

Acknowledgments

This work was initiated while we were visiting the Mathematical Sciences Research
Institute, whose hospitality we are grateful for. Special thanks go to Emily Witt, who
participated in the initial stages of this project. We would also like to thank David
Eisenbud, Steven Sam, Anurag Singh and Uli Walther for helpful conversations,
as well as the anonymous referee for suggesting improvements to the presentation.
Experiments with the computer algebra software Macaulay2 [Grayson and Stillman
2013] have provided numerous valuable insights. Raicu acknowledges the support
of NSF grant 1303042. Weyman acknowledges the support of the Alexander von
Humboldt Foundation and of NSF grant 0901185.

References

[Akin and Weyman 2007] K. Akin and J. Weyman, “Primary ideals associated to the linear strands
of Lascoux’s resolution and syzygies of the corresponding irreducible representations of the Lie
superalgebra gl(m|n)”, J. Algebra 310:2 (2007), 461–490. MR 2009c:17007 Zbl 1171.17002

[Akin et al. 1981] K. Akin, D. A. Buchsbaum, and J. Weyman, “Resolutions of determinantal ideals:
the submaximal minors”, Adv. Math. 39:1 (1981), 1–30. MR 82h:13011 Zbl 0474.14035

[Bruns and Schwänzl 1990] W. Bruns and R. Schwänzl, “The number of equations defining a deter-
minantal variety”, Bull. London Math. Soc. 22:5 (1990), 439–445. MR 91k:14035 Zbl 0725.14039

[Bruns and Vetter 1988] W. Bruns and U. Vetter, Determinantal rings, Lecture Notes in Math. 1327,
Springer, Berlin, 1988. MR 89i:13001 Zbl 0673.13006

[de Concini et al. 1980] C. de Concini, D. Eisenbud, and C. Procesi, “Young diagrams and determi-
nantal varieties”, Invent. Math. 56:2 (1980), 129–165. MR 81m:14034 Zbl 0435.14015

[Eisenbud 1995] D. Eisenbud, Commutative algebra: with a view toward algebraic geometry, Gradu-
ate Texts in Mathematics 150, Springer, New York, 1995. MR 97a:13001 Zbl 0819.13001

[Eisenbud 2005] D. Eisenbud, The geometry of syzygies: a second course in commutative alge-
bra and algebraic geometry, Graduate Texts in Mathematics 229, Springer, New York, 2005.
MR 2005h:13021 Zbl 1066.14001

[Fulton and Harris 1991] W. Fulton and J. Harris, Representation theory: a first course, Graduate
Texts in Mathematics 129, Springer, New York, 1991. MR 93a:20069 Zbl 0744.22001

[Grayson and Stillman 2013] D. R. Grayson and M. E. Stillman, “Macaulay 2: a software system for
research in algebraic geometry”, 2013, Available at http://www.math.uiuc.edu/Macaulay2.

[Hartshorne 1977] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Springer,
New York, 1977. MR 57 #3116 Zbl 0367.14001

[Hochster and Eagon 1971] M. Hochster and J. A. Eagon, “Cohen–Macaulay rings, invariant theory,
and the generic perfection of determinantal loci”, Amer. J. Math. 93 (1971), 1020–1058. MR 46
#1787 Zbl 0244.13012

[Lyubeznik et al. 2013] G. Lyubeznik, A. Singh, and U. Walther, “Local cohomology modules
supported at determinantal ideals”, preprint, 2013. arXiv 1308.4182

[Peskine and Szpiro 1973] C. Peskine and L. Szpiro, “Dimension projective finie et cohomologie
locale: applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck”,
Inst. Hautes Études Sci. Publ. Math. 42 (1973), 47–119. MR 51 #10330 Zbl 0268.13008

http://dx.doi.org/10.1016/j.jalgebra.2003.11.015
http://dx.doi.org/10.1016/j.jalgebra.2003.11.015
http://dx.doi.org/10.1016/j.jalgebra.2003.11.015
http://msp.org/idx/mr/2009c:17007
http://msp.org/idx/zbl/1171.17002
http://dx.doi.org/10.1016/0001-8708(81)90055-4
http://dx.doi.org/10.1016/0001-8708(81)90055-4
http://msp.org/idx/mr/82h:13011
http://msp.org/idx/zbl/0474.14035
http://dx.doi.org/10.1112/blms/22.5.439
http://dx.doi.org/10.1112/blms/22.5.439
http://msp.org/idx/mr/91k:14035
http://msp.org/idx/zbl/0725.14039
http://dx.doi.org/10.1007/BFb0080378
http://msp.org/idx/mr/89i:13001
http://msp.org/idx/zbl/0673.13006
http://dx.doi.org/10.1007/BF01392548
http://dx.doi.org/10.1007/BF01392548
http://msp.org/idx/mr/81m:14034
http://msp.org/idx/zbl/0435.14015
http://dx.doi.org/10.1007/978-1-4612-5350-1
http://msp.org/idx/mr/97a:13001
http://msp.org/idx/zbl/0819.13001
http://dx.doi.org/10.1007/b137572
http://dx.doi.org/10.1007/b137572
http://msp.org/idx/mr/2005h:13021
http://msp.org/idx/zbl/1066.14001
http://dx.doi.org/10.1007/978-1-4612-0979-9
http://msp.org/idx/mr/93a:20069
http://msp.org/idx/zbl/0744.22001
http://www.math.uiuc.edu/Macaulay2
http://www.math.uiuc.edu/Macaulay2
http://dx.doi.org/10.1007/978-1-4757-3849-0
http://msp.org/idx/mr/57:3116
http://msp.org/idx/zbl/0367.14001
http://dx.doi.org/10.2307/2373744
http://dx.doi.org/10.2307/2373744
http://msp.org/idx/mr/46:1787
http://msp.org/idx/mr/46:1787
http://msp.org/idx/zbl/0244.13012
http://msp.org/idx/arx/1308.4182
http://www.numdam.org/item?id=PMIHES_1973__42__47_0
http://www.numdam.org/item?id=PMIHES_1973__42__47_0
http://msp.org/idx/mr/51:10330
http://msp.org/idx/zbl/0268.13008


Local cohomology with support in generic determinantal ideals 1257

[Raicu et al. 2014] C. Raicu, J. Weyman, and E. E. Witt, “Local cohomology with support in ideals
of maximal minors and sub-maximal Pfaffians”, Adv. Math. 250 (2014), 596–610. MR 3122178
Zbl 06284419

[Weyman 2003] J. Weyman, Cohomology of vector bundles and syzygies, Cambridge Tracts in
Mathematics 149, Cambridge University Press, 2003. MR 2004d:13020 Zbl 1075.13007

[Witt 2012] E. E. Witt, “Local cohomology with support in ideals of maximal minors”, Adv. Math.
231:3-4 (2012), 1998–2012. MR 2964631 Zbl 1253.13019

Communicated by David Eisenbud
Received 2013-09-27 Revised 2014-02-25 Accepted 2014-03-26

craicu@nd.edu Department of Mathematics, University of Notre Dame,
255 Hurley Hall, Notre Dame, IN 46556, United States

Simion Stoilow Institute of Mathematics of the Romanian
Academy, 21 Calea Grivitei Street, 010702 Bucharest, Romania

jerzy.weyman@uconn.edu Department of Mathematics, University of Connecticut,
Storrs, CT 06269, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1016/j.aim.2013.10.005
http://dx.doi.org/10.1016/j.aim.2013.10.005
http://msp.org/idx/mr/3122178
http://msp.org/idx/zbl/06284419
http://dx.doi.org/10.1017/CBO9780511546556
http://msp.org/idx/mr/2004d:13020
http://msp.org/idx/zbl/1075.13007
http://dx.doi.org/10.1016/j.aim.2012.07.001
http://msp.org/idx/mr/2964631
http://msp.org/idx/zbl/1253.13019
mailto:craicu@nd.edu
mailto:jerzy.weyman@uconn.edu
http://msp.org




msp
ALGEBRA AND NUMBER THEORY 8:5 (2014)

dx.doi.org/10.2140/ant.2014.8.1259

Affine congruences and rational points
on a certain cubic surface

Pierre Le Boudec

We establish estimates for the number of solutions of certain affine congruences.
These estimates are then used to prove Manin’s conjecture for a cubic surface
split over Q whose singularity type is D4. This improves on a result of Browning
and answers a problem posed by Tschinkel.
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1. Introduction

The aim of this paper is to study the asymptotic behavior of the number of rational
points of bounded height on the cubic surface V ⊂ P3 defined over Q by

x0(x1+ x2+ x3)
2
− x1x2x3 = 0.

Manin’s conjecture [Franke et al. 1989], and the refinements concerning the value
of the constant due to Peyre [1995] and to Batyrev and Tschinkel [1998b], describe
precisely what should be the solution of this problem.

The variety V has a unique singularity at the point (1 : 0 : 0 : 0), of type D4.
In addition, it contains precisely six lines, which are defined by x0 = xi = 0 and
x1 + x2 + x3 = xi = 0 for i ∈ {1, 2, 3}. Rational points accumulate on these six
lines, hiding the interesting behavior of the number of rational points lying outside
the lines. We thus let U be the open subset formed by removing the six lines
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Keywords: affine congruences, rational points, Manin’s conjecture, cubic surfaces, universal torsors.
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from V . We also let H : P3(Q)→ R>0 be the exponential height, defined for a
vector (x0, x1, x2, x3) ∈ Z4 satisfying gcd(x0, x1, x2, x3)= 1 by

H(x0 : x1 : x2 : x3)=max{|x0|, |x1|, |x2|, |x3|}.

The quantity in which we are interested is then defined by

NU,H (B)= #
{

x ∈U (Q)
∣∣ H(x)≤ B

}
.

In this specific context, Manin’s conjecture states that

NU,H (B)= cV,H B (log B)6(1+ o(1)),

where cV,H is a constant which is expected to agree with Peyre’s prediction. In
a more general setting, the exponent of the logarithm is expected to be equal to
the rank of the Picard group of the minimal desingularization of V minus one. In
comparison, the number NP1,H (B) of rational points of bounded height lying on a
line satisfies NP1,H (B)= c

P1,H B2(1+ o(1)), where c
P1,H > 0.

Manin’s conjecture for singular cubic surfaces has received an increasing amount
of attention over the last years (see, for instance, [de la Bretèche and Swinnerton-
Dyer 2007; de la Bretèche et al. 2007; Le Boudec 2012a]). The interested reader is
invited to refer to [Le Boudec 2012a, Section 1] for a comprehensive overview of
what is currently known concerning singular cubic surfaces defined over Q.

Any cubic surface in P3 defined over C which has only isolated singularities and
which is not a cone over an elliptic curve can only have ADE singularities (see [Coray
and Tsfasman 1988, Proposition 0.2]). In Table 1 below, we recall the classification
over Q of cubic surfaces with ADE singularities, and we give the number of lines
contained by the surfaces. Moreover, we indicate if Manin’s conjecture is known
for at least one example of the surface of the specified singularity type by giving
the corresponding reference. Note that the difficulty of proving Manin’s conjecture
increases as we go higher in Table 1.

At the American Institute of Mathematics workshop Rational and integral points
on higher-dimensional varieties in 2002, Tschinkel posed the problem of study-
ing the quantity NU,H (B). Motivated by [Heath-Brown 2003], which deals with
Cayley’s cubic surface, Browning [2006] gave a first answer to this question by
proving that

NU,H (B)� B(log B)6,

where � means that the ratio of these two quantities is between two positive
constants. To do so, he made use of the universal torsor calculated in [Hassett and
Tschinkel 2004], which is an open subset of the affine hypersurface embedded in
A10
' Spec(Q[η1, . . . , η10]) and defined by

η2η
2
5η8+ η3η

2
6η9+ η4η

2
7η10− η1η2η3η4η5η6η7 = 0.
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Singularity type Number of lines Result

A1 21
2A1 16

A2 15
3A1 12

A2+A1 11
A3 10

4A1 9
2A1+A2 8
A3+A1 7

2A2 7
A4 6
D4 6 [this paper]

2A1+A3 5
2A2+A1 5 [Le Boudec 2012a]
A4+A1 4

A5 3
D5 3 [Browning and Derenthal 2009]

3A2 3 [Batyrev and Tschinkel 1998a]
A5+A1 2 [Baier and Derenthal 2012]

E6 1 [de la Bretèche et al. 2007]

Table 1. Cubic surfaces with ADE singularities.

In this paper, we also make use of this auxiliary variety to establish Manin’s
conjecture for V .

Universal torsors were originally introduced by Colliot-Thélène and Sansuc in
order to study the Hasse principle and weak approximation for rational varieties
(see [Colliot-Thélène and Sansuc 1976; 1980; 1987]). These descent methods have
turned out to be a very pertinent tool for counting problems. The parametrizations
of rational points provided by universal torsors have been used in the context of
Manin’s conjecture for the first time by Peyre [1998] and Salberger [1998].

It is a well-established heuristic that counting rational points on cubic surfaces
becomes harder as the number N of (−2)-curves on the minimal desingularizations
decreases (which means as we go higher in Table 1). As a consequence, our result
can be seen as a new record, since V is the first example of cubic surface with
N = 4 for which Manin’s conjecture is proved. By way of comparison, we record
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here that N is also equal to 4 for Cayley’s cubic. Previously, Manin’s conjecture
was known for only two nontoric cubic surfaces with N = 6 (see [de la Bretèche
et al. 2007; Baier and Derenthal 2012]) and two cubic surfaces with N = 5 (see
[Browning and Derenthal 2009; Le Boudec 2012a]).

Since the parametrizations of the rational points resorting to universal torsors
become extremely complicated as N decreases, it seems to the author that establish-
ing Manin’s conjecture for a cubic surface with 1≤ N ≤ 3, and even for another
cubic surface with N = 4, is an extremely difficult problem. In particular, all such
surfaces have universal torsors which are not hypersurfaces. Actually, it is not
even clear if sharp upper bounds for NU,H (B) can be obtained for surfaces with
1 ≤ N ≤ 3. As a reminder, the best result known for nonsingular cubic surfaces
(that is, with N = 0) is the upper bound

NU,H (B)� B4/3+ε

for any fixed ε > 0, which holds if the surface contains three coplanar lines defined
over Q (see [Heath-Brown 1997]).

To prove Manin’s conjecture for V , we start by establishing estimates for the
number of (u, v) ∈ Z2 lying in a prescribed region and satisfying the congruence

a1u+ a2v ≡ b (mod q) (1-1)

and the condition gcd(uv, q)= 1, where a1, a2 ∈ Z 6=0, q ∈ Z≥1 are such that a1a2

is coprime to q and b ∈ Z is divisible by each prime number dividing q . Then, the
first step of the proof consists in summing over three variables, viewing the torsor
equation as an affine congruence to which these estimates are applied.

At this stage of the proof, a very interesting phenomenon stands out. The error
term showing up in these estimates gives birth to a new congruence where the
coefficients a1 and a2 appear. However, it is not possible to give a good bound
for this quantity for any fixed a1 and a2 coprime to q. As a consequence, this
quantity has to be estimated on average over certain variables dividing a1 and a2.
More precisely, this error term is nontrivially summed over two other variables
whose squares respectively divide a1 and a2, using a result due to Heath-Brown
and coming from the geometry of numbers.

The step which makes this new congruence appear is definitely the key step of
our proof (see Lemma 2). Our method is believed to be quite new and will certainly
be useful in dealing with other diophantine problems. For instance, the methods
of Lemmas 2 and 9 are used in forthcoming work of la Bretèche and Browning
[2014], in which they study in a quantitative way the failure of the Hasse principle
for a certain family of Châtelet surfaces.

It is worth pointing out that it is very likely that our work can be adapted to yield
a proof of Manin’s conjecture for another cubic surface with a single singularity
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of type D4 but lying in the other isomorphism class over Q (there are exactly two
isomorphism classes of cubic surfaces with D4 singularity type over Q). This cubic
surface is defined over Q by

x0(x1+ x2+ x3)
2
+ x1(x1+ x2)= 0,

and the universal torsor corresponding to this problem is an open subset of the
affine hypersurface embedded in A10

' Spec(Q[η1, . . . , η10]) and defined by

η2η
2
5η8+ η3η

2
6η9+ η4η

2
7η10 = 0.

The study of the congruence (1-1) in the particular case b = 0 is expected to solve
the problem of proving Manin’s conjecture for this surface in a similar fashion.

Our main result is the following:

Theorem 1. As B tends to +∞, we have the estimate

NU,H (B)= cV,H B(log B)6
(

1+ O
(

1
(log log B)1/6

))
,

where cV,H agrees with Peyre’s prediction.

It has been checked that V is not an equivariant compactification of G2
m or

G2
a (see [Derenthal 2014, Proposition 13] and [Derenthal and Loughran 2010]).

Furthermore, let
Gd = Ga od Gm,

where d ∈ Z and the action of g ∈ Gm on x ∈ Ga is given by g · x = gd x . It can
be checked that if V were an equivariant compactification of Gd , then the number
of negative curves on its minimal desingularization would be less than or equal
to 8, which is not the case since this number is equal to 10. As a result, Theorem 1
does not follow from the general results concerning equivariant compactifications
of algebraic groups [Batyrev and Tschinkel 1998a; Chambert-Loir and Tschinkel
2002; Tanimoto and Tschinkel 2012].

The next section is dedicated to the proofs of several preliminary results. The
two following sections are devoted to the descriptions of the universal torsor and
Peyre’s constant respectively. Finally, in the remaining section we prove Theorem 1.

Throughout the proof, ε is an arbitrarily small positive number. As a convention,
the implicit constants involved in the notation O and � are always allowed to
depend on ε.

2. Preliminaries

2.1. Affine congruences. Let a1, a2 ∈ Z 6=0 be two integers, and set a = (a1, a2).
Let also q ∈ Z≥1 and b ∈ Z. We assume that a1a2 is coprime to q . Moreover, if we
let rad(n) denote the radical of an integer n ≥ 1; that is,
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rad(n)=
∏
p |n

p,

then we also assume that
rad(q)|b. (2-1)

Let I and J be two bounded intervals. We introduce the quantities

N (I,J; q, a, b)

= #
{
(u, v) ∈ I×J∩Z2 ∣∣ a1u+ a2v ≡ b (mod q), gcd(uv, q)= 1

}
, (2-2)

and

N ∗(I,J; q)=
1

ϕ(q)
#
{
(u, v) ∈ I×J∩Z2 ∣∣ gcd(uv, q)= 1

}
. (2-3)

It is immediate to check that one of the two conditions among gcd(u, q)= 1 and
gcd(v, q)=1 can be omitted in the definition of N (I,J; q, a, b). Indeed, if we omit
the condition gcd(u, q)= 1, then the conditions gcd(a2, q)= 1 and gcd(v, q)= 1
together imply that we have gcd(a1u− b, q)= 1. This last condition is seen to be
equivalent to gcd(u, q)= 1, thanks to the conditions (2-1) and gcd(a1, q)= 1.

Note that N ∗(I,J;q) is the average of N (I,J;q, a,b) over a1 or a2 coprime to q .
In Lemma 2, we show how we can approximate N (I,J; q, a, b) by N ∗(I,J; q).
We start by studying some exponential sums which will naturally appear in the proof
of Lemma 2. For q ∈ Z≥1, we let eq be the function defined by eq(x) = e2iπx/q ,
and we set for r, s ∈ Z

Sq(r, s, a, b)=
q∑

α,β=1
gcd(αβ,q)=1

a1α+a2β≡b (mod q)

eq(rα+ sβ).

Furthermore, we need to introduce the classical Ramanujan sum. For q ∈ Z≥1 and
n ∈ Z, we set

cq(n)=
q∑
α=1

gcd(α,q)=1

eq(nα)

and we recall that

cq(n)=
∑

d | gcd(q,n)

µ

(
q
d

)
d. (2-4)

Lemma 1. For any r, s ∈ Z, we have

Sq(r, s, a, b)= eq(ra−1
1 b)cq(a1s− a2r)

and, symmetrically,

Sq(r, s, a, b)= eq(sa−1
2 b)cq(a2r − a1s),
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where a−1
1 and a−1

2 denote respectively the inverses of a1 and a2 modulo q.
As a result, we have Sq(q, s, a, b)= cq(s) and Sq(r, q, a, b)= cq(r), and thus

these two quantities are independent of a and b.

Proof. The symmetry given by the map (r, s, a1, a2) 7→ (s, r, a2, a1) implies that
we only need to prove one of the two equalities. Let us prove the second one. Just
as we can omit the condition gcd(v, q) = 1 in the definition of N (I,J; q, a, b),
we can also omit the condition gcd(β, q) = 1 in the definition of Sq(r, s, a, b).
Therefore, we get

Sq(r, s, a, b)=
q∑
α=1

gcd(α,q)=1

eq(rα)
q∑
β=1

a1α+a2β≡b (mod q)

eq(sβ)

=

q∑
α=1

gcd(α,q)=1

eq(rα)eq(s(a−1
2 b− a−1

2 a1α))

= eq(sa−1
2 b)

q∑
α=1

gcd(α,q)=1

eq((r − a−1
2 a1s)α)

= eq(sa−1
2 b)cq(r − a−1

2 a1s) = eq(sa−1
2 b)cq(a2r − a1s),

as wished. �

From now on, for λ > 0 we define the arithmetic function σ−λ by

σ−λ(n)=
∑
k |n

k−λ.

Lemma 2. Let a1, a2 ∈ Z6=0, q ∈ Z≥1 and b ∈ Z, satisfying the assumptions
gcd(a1a2, q)= 1 and rad(q)|b. We have the estimate

N (I,J; q, a, b)− N ∗(I,J; q)� E(q, a),

where E(q, a)= E0(q, a)+ E1(q) with

E0(q, a)=
∑
d |q

∣∣∣µ(q
d

)∣∣∣d ∑
0<|r |,|s|≤q/2

a1s−a2r≡0 (mod d)

|r |−1
|s|−1

and

E1(q)=
(

q
ϕ(q)

)3

(log q)2.
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Proof. We detect the congruence using sums of exponentials; we get

N (I,J; q, a, b)=
q∑

α,β=1
gcd(αβ,q)=1

a1α+a2β≡b (mod q)

#
{
(u, v) ∈ I×J∩Z2 ∣∣ q |α− u, β − v

}

=

q∑
α,β=1

gcd(αβ,q)=1
a1α+a2β≡b (mod q)

1
q2

(∑
u∈I

q∑
r=1

eq(rα−ru)
)(∑

v∈J

q∑
s=1

eq(sβ−sv)
)

=
1
q2

q∑
r,s=1

Sq(r, s, a, b)Fq(r, s),

where

Fq(r, s)=
(∑

u∈I

eq(−ru)
)(∑

v∈J

eq(−sv)
)
.

Using Lemma 1, we get

N (I,J; q, a, b)=
1
q2

q∑
r,s=1

eq(ra−1
1 b)cq(a1s− a2r)Fq(r, s).

Let ‖x‖ denote the distance from x to the set of integers. If r, s 6= q , then Fq(r, s)
is the product of two geometric sums, and we therefore have

Fq(r, s)�
∥∥∥ r

q

∥∥∥−1∥∥∥ s
q

∥∥∥−1
.

Let N (I,J; q) be the sum of the terms corresponding to r = q or s = q . As stated
in Lemma 1, N (I,J; q) is independent of a1, a2 and b. Using (2-4), we get

N (I,J; q, a, b)− N (I,J; q)=
1
q2

q−1∑
r,s=1

eq(ra−1
1 b)cq(a1s− a2r)Fq(r, s)

�
1
q2

∑
d |q

∣∣∣∣µ(q
d

)∣∣∣∣d q−1∑
r,s=1

a1s−a2r≡0 (mod d)

∥∥∥∥ r
q

∥∥∥∥−1∥∥∥∥ s
q

∥∥∥∥−1

�
1
q2

∑
d |q

∣∣∣∣µ(q
d

)∣∣∣∣d ∑
0<|r |,|s|≤q/2

a1s−a2r≡0 (mod d)

q
|r |

q
|s|
.

Recall that the right-hand side is equal to E0(q, a). We have thus obtained

N (I,J; q, a, b)− N (I,J; q)� E0(q, a). (2-5)
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Since N (I,J; q) is independent of a2 and since N ∗(I,J; q) is the average of
N (I,J; q, a, b) over a2 coprime to q , averaging this estimate over a2 coprime to q
shows that

N ∗(I,J; q)− N (I,J; q)� E ′1(q),

where

E ′1(q)=
1

ϕ(q)

∑
d |q

d
∑

0<|r |,|s|≤q/2

|r |−1
|s|−1

q∑
a2=1

gcd(a2,q)=1
a1s−a2r≡0 (mod d)

1

�
1

ϕ(q)

∑
d |q

d
∑

0<|r |,|s|≤q/2

gcd(r, s, d)|r |−1
|s|−1

�
1

ϕ(q)

∑
d |q

d
∑
d ′ |d

d ′
∑

0<|r |,|s|≤q/2
d ′ |r, d ′ |s

|r |−1
|s|−1

�
1

ϕ(q)
(log q)2

∑
d |q

dσ−1(d).

Furthermore, we can check that the right-hand side is bounded by E1(q). Thus

N ∗(I,J; q)− N (I,J; q)� E1(q), (2-6)

and therefore, combining the estimates (2-5) and (2-6), we obtain

N (I,J; q, a, b)− N ∗(I,J; q)� E(q, a),

which completes the proof. �

Note that an immediate consequence of Lemma 2 is the bound

N (I,J; q, a, b)�
1

ϕ(q)
#(I×J∩Z2)+ E(q, a). (2-7)

We now introduce a certain domain S⊂ R2 where the couple (u, v) is restricted
to lie. Let X, T, A1, A2 ≥ 1. We let S= S(X, T, A1, A2) be the set of (x, y) ∈ R2

such that

A1 |x |A2 |y||A1x + A2 y− T | ≤ T 2 X, (2-8)

|A1x + A2 y− T | ≤ X, (2-9)

A1|x | ≤ X, (2-10)

A2|y| ≤ X. (2-11)

Note that the last three conditions imply that we also have

T ≤ 3X.
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Finally, we set

D(S; q, a, b)= #
{
(u, v) ∈ S∩Z2

6=0

∣∣ a1u+ a2v ≡ b (mod q), gcd(uv, q)= 1
}

and

D∗(S; q)=
1

ϕ(q)
#
{
(u, v) ∈ S∩Z2

6=0

∣∣ gcd(uv, q)= 1
}
.

We now aim to prove the following lemma.

Lemma 3. Let L ≥ 1. We have the estimate

D(S; q, a, b)− D∗(S; q)�
1
L

X3

T A1 A2ϕ(q)
+ L4 log(2X)2 E(q, a).

Proving this requires a technical result similar to [Le Boudec 2012b, Lemma 4].

Lemma 4. Let 0 < ν ≤ 1 and M0 ∈ R>0. Let Y ∈ R>0 and Y ′ ∈ R be such that
0< Y −Y ′� νM2

0 . Let also A ∈R and set M =max(|A|, Y 1/2). Let R⊂R be the
set of real numbers y satisfying

Y ′ < |y2
+ 2Ay| ≤ Y.

If M0� M then we have the bound

#(R∩Z)� ν1/2 M2
0

M
+ 1.

Proof. Without using the assumption M0 � M , the proof of [Le Boudec 2012b,
Lemma 4] shows that we have

#(R∩Z)� ν
M2

0

M
+ ν1/2 M0+ 1.

Therefore, under the assumption M0 � M , we clearly have the claimed upper
bound. �

Proof of Lemma 3. If S∩Z2
6=0 =∅ then the result is obvious. We therefore assume

from now on that S ∩ Z2
6=0 6= ∅. We let 0 < δ, δ′ ≤ 1 be two parameters to be

selected in due course, and we set ζ = 1+ δ and ζ ′ = 1+ δ′. In addition, we let U
and V be variables running over the sets {±ζ n

| n ∈ Z≥−1} and {±ζ ′n | n ∈ Z≥−1},
respectively. We define I= ]U, ζU ] if U > 0 and I= [ζU,U [ if U < 0, and define
the interval J the same way using the variable V and the parameter ζ ′. We have

D(S; q, a, b)−
∑

I×J∩Z2⊂S

N (I,J; q, a, b)�
∑

I×J∩Z2*S

I×J∩Z2*R2
\S

N (I,J; q, a, b).
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We define the quantity

D(S; q)=
∑

I×J∩Z2⊂S

N ∗(I,J; q).

We note here that since N ∗(I,J; q) is independent of a1, a2 and b, D(S; q) is also
independent of a1, a2 and b. Moreover, we have∑

I×J∩Z2⊂S

N (I,J; q, a, b)− D(S; q)�
log(2X)2

δδ′
E(q, a),

where we have used Lemma 2 and noted that the number of rectangles I×J such
that I×J∩Z2

⊂ S is at most

4
(

1+
log X
log ζ

)(
1+

log X
log ζ ′

)
�

log(2X)2

δδ′
,

since δ, δ′ ≤ 1. We have proved that

D(S; q, a, b)− D(S; q)�
∑

I×J∩Z2*S

I×J∩Z2*R2
\S

N (I,J; q, a, b)+
log(2X)2

δδ′
E(q, a).

Using the bound (2-7) for N (I,J; q, a, b), we conclude that

D(S; q, a, b)− D(S; q)�
1

ϕ(q)

∑
I×J∩Z2*S

I×J∩Z2*R2
\S

#(I×J∩Z2)+
log(2X)2

δδ′
E(q, a),

since the number of rectangles I×J satisfying I×J∩Z2 *S and I×J∩Z2 *R2
\S

is also � log(2X)2δ−1δ′−1. The sum of the right-hand side is over all the rectangles
I×J for which (ζ s1U, ζ ′s2 V )∈S∩Z2 and (ζ t1U, ζ ′t2 V )∈Z2

\S for some (s1, s2)∈

]0, 1]2 and (t1, t2) ∈ ]0, 1]2. This means that one of the inequalities defining S is
not satisfied by (ζ t1U, ζ ′t2 V ), and we need to estimate the contribution coming
from each of the conditions (2-8)–(2-11). Note that we always have the conditions

A1|U | ≤ X, (2-12)

A2|V | ≤ X. (2-13)

In what follows, we could sometimes write strict inequalities instead of nonstrict
ones, but this would not change anything in our reasoning. Let us first deal with
condition (2-8). For the rectangles I×J described above, for some (s1, s2)∈ ]0, 1]2

and (t1, t2) ∈ ]0, 1]2 we have
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ζ s1ζ ′s2 A1 |U |A2 |V |
∣∣ζ s1 A1U + ζ ′s2 A2V − T

∣∣≤ T 2 X, (2-14)

ζ t1ζ ′t2 A1 |U |A2 |V |
∣∣ζ t1 A1U + ζ ′t2 A2V − T

∣∣> T 2 X. (2-15)

These two conditions imply respectively

|A1U + A2V − T | ≤
T 2 X

A1 |U |A2 |V |
+ δA1|U | + δ′A2|V |,

and

|A1U + A2V − T |> ζ−1ζ ′−1 T 2 X
A1 |U |A2 |V |

− δA1|U | − δ′A2|V |.

Setting 1= δ+ δ′, we thus get

ζ−1ζ ′−1 T 2 X
A1 |U |A2 |V |

−1X < |A1U + A2V −T | ≤
T 2 X

A1 |U |A2 |V |
+1X. (2-16)

Going back to the variables u and v, it is immediate to check that∣∣|A1u+ A2v− T | − |A1U + A2V − T |
∣∣≤ δA1|U | + δ′A2|V | ≤1X.

Therefore, the inequality (2-16) gives

ζ−1ζ ′−1 T 2 X
A1|u|A2|v|

− 21X < |A1u+ A2v− T | ≤ ζ ζ ′
T 2 X

A1|u|A2|v|
+ 21X.

Finally, we obtain the condition

ζ−1ζ ′−1 T 2 X
A2

1 A2|v|
−41

X2

A2
1
< |u|

∣∣∣∣u+ A2

A1
v−

T
A1

∣∣∣∣≤ ζ ζ ′ T 2 X
A2

1 A2|v|
+41

X2

A2
1
. (2-17)

Since T ≤ 3X , we can apply Lemma 4 with

M0 =
X3/2

A1 A1/2
2 |v|

1/2

and ν =1. We see that the error we want to estimate is bounded by∑
(2-12),(2-13)

(2-16)

#(I×J∩Z2)� #
{
(u, v) ∈ Z2

6=0

∣∣ (2-17), |u| � X/A1, |v| � X/A2
}

�

∑
|v|�X/A2

(
11/2 X5/2

T A1 A1/2
2 |v|

1/2
+1
)
�11/2 X3

T A1 A2
+

X
A2
.

Using the symmetry between the variables u and v, we see that we also have∑
(2-12),(2-13)

(2-16)

#(I×J∩Z2)�11/2 X3

T A1 A2
+

X
A1
,
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and thus ∑
(2-12),(2-13)

(2-16)

#(I×J∩Z2)�11/2 X3

T A1 A2
+

X

A1/2
1 A1/2

2

.

We now reason in a similar way to treat the cases of the other conditions. Let us
estimate the contribution coming from condition (2-9). We see that the condition
which plays the role of (2-16) in the previous case is here

X −1X < |A1U + A2V − T | ≤ X +1X. (2-18)

Furthermore, going back to the variables u and v, we obtain

X − 21X < |A1u+ A2v− T | ≤ X + 21X. (2-19)

We therefore find that the error in this case is bounded by∑
(2-12),(2-13)

(2-18)

#(I×J∩Z2)� #
{
(u, v) ∈ Z2

6=0

∣∣ (2-19), |u| � X/A1, |v| � X/A2
}

�

∑
|v|�X/A2

(
1

X
A1
+ 1

)
�1

X2

A1 A2
+

X
A2
.

Once again using the symmetry between the variables u and v, we obtain∑
(2-12),(2-13)

(2-18)

#(I×J∩Z2)�1
X2

A1 A2
+

X

A1/2
1 A1/2

2

.

Finally, if X/A1 < 2 then it is clear that we do not have to consider the case of
condition (2-10), and if X/A1 ≥ 2 then we are going to choose δ such that X/A1

is an integer power of ζ and, as a result, we do not have to consider the case of this
condition, here either. The same reasoning holds for the choice of the parameter δ′

depending on the size of the quantity X/A2. As a consequence, we have obtained

D(S; q, a, b)−D(S; q)�11/2 X3

T A1 A2ϕ(q)
+

log(2X)2

δδ′
E(q, a)+

X

A1/2
1 A1/2

2 ϕ(q)
.

Note that if q=1 then the result of Lemma 3 is clear since D(S; 1, a, b)= D∗(S; 1)
and if q > 1 then the third term of the right-hand side is dominated by one of the
other two. We can always choose δ and δ′ such that ζ and ζ ′ are integer powers
of X/A1 and X/A2 respectively if these quantities are greater than or equal to 2;
and we can require that, given L ≥ 1,

δ, δ′ �
1
L2 .
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These choices of δ and δ′ give

D(S; q, a, b)− D(S; q)�
1
L

X3

T A1 A2ϕ(q)
+ L4 log(2X)2 E(q, a).

Since D(S; q) does not depend on a2 and D∗(S; q) is the average of D(S; q, a, b)
over a2 coprime to q , averaging the last estimate over a2 coprime to q yields

D∗(S; q)− D(S; q)�
1
L

X3

T A1 A2ϕ(q)
+ L4 log(2X)2 E1(q).

Putting these two estimates together completes the proof. �

Our next aim is to approximate the cardinality which appears in D∗(S; q) by
its corresponding two-dimensional volume. For this, we define the real-valued
function

h : (x, y, t) 7→max
{
|xy||x + y− t |, t2

|x |, t2
|y|, t2

|x + y− t |
}
. (2-20)

It is immediate to check that

S=

{
(x, y) ∈ R2

∣∣∣ h
(

A1x
X1/3T 2/3 ,

A2 y
X1/3T 2/3 ,

T 1/3

X1/3

)
≤ 1

}
. (2-21)

We also introduce the real-valued functions

g1 : (y, t) 7→
∫

h(x,y,t)≤1
dx, g2 : t 7→

∫
g1(y, t) dy.

Lemma 5. For (y, t) ∈ R×R>0, we have the bounds

g1(y, t)� t−2 and g2(t)� 1.

Proof. The bound for g1 is clear since t2
|x | ≤ 1. To prove the bound for g2, we use

the elementary result [Derenthal 2009, Lemma 5.1]. We obtain∫
|xy| |x+y−t |≤1

dx �min
{

1
|y|1/2

,
1

|y| |y− t |

}
.

Therefore, we have

g2(t)�
∫
|y|≤1

dy
|y|1/2

+

∫
|y|,|y−t |≥1

dy
|y| |y− t |

+

∫
|y|≥1,|y−t |≤1

dy
|y|3/4|y− t |1/2

.

The three terms of the right-hand side are easily seen to be bounded by an absolute
constant, which completes the proof. �

We now prove that the following result holds:
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Lemma 6. We have the estimate

D∗(S; q)−
ϕ(q)
q2

X2/3T 4/3

A1 A2
g2

(
T 1/3

X1/3

)
�

X2

A1 A2q

(
A1/2

1

X1/2 +
A1/2

2

X1/2

)
E2(q),

where
E2(q)=

q
ϕ(q)

σ−1/2(q)σ−1(q).

Proof. We start by removing the two coprimality conditions gcd(u, q) = 1 and
gcd(v, q)= 1 using Möbius inversions. We get

D∗(S; q)=
1

ϕ(q)

∑
`1 |q

µ(`1)
∑
`2 |q

µ(`2)C(`1, `2,S), (2-22)

where
C(`1, `2,S)= #

{
(u′, v′) ∈ Z2

6=0

∣∣ (`1u′, `2v
′) ∈ S

}
.

To count the number of u′ to be considered, we use the estimate

#{n ∈ Z6=0 ∩ [t1, t2]} = t2− t1+ O(max(|t1|, |t2|)1/2), (2-23)

which is valid for any t1, t2 ∈ R such that t1 ≤ t2. We obtain

C(`1, `2,S)=
∑
v′∈Z 6=0

A2`2|v
′
|≤X

(
X1/3T 2/3

A1`1
g1

(
A2`2v

′

X1/3T 2/3 ,
T 1/3

X1/3

)
+ O

(
X1/2

A1/2
1 `

1/2
1

))

=
X1/3T 2/3

A1`1

∑
v′∈Z6=0

A2`2|v
′
|≤X

g1

(
A2`2v

′

X1/3T 2/3 ,
T 1/3

X1/3

)
+ O

(
X3/2

A1/2
1 `

1/2
1 A2`2

)
.

The first bound of Lemma 5 implies that

sup
|y|≤X2/3/T 2/3

g1

(
y,

T 1/3

X1/3

)
�

X2/3

T 2/3 .

Since g1 is easily seen to have a piecewise continuous derivative, this bound, an
application of partial summation and a further use of the estimate (2-23) yield∑

v′∈Z6=0
A2`2|v

′
|≤X

g1

(
A2`2v

′

X1/3T 2/3 ,
T 1/3

X1/3

)
=

X1/3T 2/3

A2`2
g2

(
T 1/3

X1/3

)
+ O

(
X7/6

T 2/3 A1/2
2 `

1/2
2

)
.

We have finally proved that

C(`1, `2,S)=
1
`1`2

X2/3T 4/3

A1 A2
g2

(
T 1/3

X1/3

)
+ O

(
X3/2

A1`1 A1/2
2 `

1/2
2

+
X3/2

A1/2
1 `

1/2
1 A2`2

)
.
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Putting together this estimate and the equality (2-22) completes the proof. �

One of the immediate consequences of Lemmas 3 and 6 is the following result,
which corresponds exactly to the setting of the proof of Theorem 1:

Lemma 7. Let L ≥ 1 and L≥ 1. If

X
L
≤ T,

then we have the estimate

D(S; q, a, b)−
ϕ(q)
q2

X2/3T 4/3

A1 A2
g2

(
T 1/3

X1/3

)
� E,

where E = E(X, T, A1, A2, L ,L, q, a) is given by

E = L4 log(2X)2 E(q, a)+
X2/3T 4/3

A1 A2q
L4/3

(
L

L
+

A1/2
1

X1/2 +
A1/2

2

X1/2

)
E2(q).

2.2. The error term. We now turn to the investigation of the error term E(q, a′) in
the particular case where a′ = (b1c2

1, b2c2
2) for b1, b2, c1, c2 ∈ Z≥1. Recall that we

have gcd(b1b2c1c2, q)= 1. We aim to give an upper bound for the sums of E(q, a′)
over c1 and c2 in some dyadic ranges. For this, we make use of the following result,
which comes from the geometry of numbers and is due to Heath-Brown (see [1984,
Lemma 3]). Note that this result had already been used by Browning [2006] to
prove that NU,H (B) has the expected order of magnitude.

Lemma 8. Let (v1, v2, v3)∈Z3 be a primitive vector, and let W1,W2,W3 ≥ 1. The
number of primitive vectors (w1, w2, w3) ∈ Z3 satisfying the conditions |wi | ≤Wi

for i = 1, 2, 3 and the equation

v1w1+ v2w2+ v3w3 = 0
is at most

12π
W1W2W3

max{|vi |Wi }
+ 4,

where the maximum is taken over i = 1, 2, 3.

From now on, we let τ be the usual divisor function. Recall the definitions of
E(q, a′) and E1(q) given in Lemma 2. We now prove the following lemma:

Lemma 9. Let C1,C2 ≥
1
2 . We have the bound∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1

E(q, a′)� (C1C2τ(q)+ q)2ω(q)E1(q),

where the notation
∑
∗ means that the summation is restricted to integers which are

coprime to q and where i implicitly runs over the set {1, 2}.
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Proof. We have ∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1

E(q, a′)�
∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1

E0(q, a′)+C1C2 E1(q).

The first term of the right-hand side is at most∑
d |q

d
∑

0<|r |,|s|≤q/2

|r |−1
|s|−1

∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1

b1c2
1s−b2c2

2r≡0 (mod d)

1.

Let us set g = gcd(r, s, d) and s ′ = s/g, r ′ = r/g and d ′ = d/g. We have∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1

b1c2
1s−b2c2

2r≡0 (mod d)

1=
∑

1≤ρ≤d
gcd(ρ,d)=1

b1sρ2
−b2r≡0 (mod d)

∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1
ρc2≡c1 (mod d)

1

=

∑
1≤ρ≤d

gcd(ρ,d)=1
b1s′ρ2

−b2r ′≡0 (mod d ′)

∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1
ρc2≡c1 (mod d)

1

=

∑
1≤ρ≤d

gcd(ρ,d)=1
ρ2
−(b1s′)−1b2r ′≡0 (mod d ′)

∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1
ρc2≡c1 (mod d)

1,

since gcd(b1b2, d ′) = 1 and gcd(r ′, s ′, d ′) = 1, and where (b1s ′)−1 denotes the
inverse of b1s ′ modulo d ′. Using Lemma 8, we get

∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1
ρc2≡c1 (mod d)

1�
C1C2

d
+ 1.

As a consequence, we have proved that

∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1

b1c2
1s−b2c2

2r≡0 (mod d)

1� gcd(r, s, d)2ω(d)
(

C1C2

d
+ 1

)
.

Finally, we easily get
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∑
d |q

d
∑

0<|r |,|s|≤q/2

|r |−1
|s|−1 gcd(r,s,d)2ω(d)

d
�

∑
d |q

2ω(d)
∑
e |d

e
∑

0<|r |,|s|≤q/2
e |r, e |s

|r |−1
|s|−1

� 2ω(q)τ(q)σ−1(q)(log q)2

� 2ω(q)τ(q)E1(q),

and, as in the proof of Lemma 2, we obtain∑
d |q

d
∑

0<|r |,|s|≤q/2

|r |−1
|s|−1 gcd(r, s, d)2ω(d)� q2ω(q)E1(q).

As a result, we have proved that∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1

E0(q, a′)� (C1C2τ(q)+ q)2ω(q)E1(q),

which completes the proof. �

2.3. Arithmetic functions. We now introduce several arithmetic functions which
will appear along the proof of Theorem 1. We set

ϕ∗(n)=
∏
p |n

(
1− 1

p

)
, (2-24)

ϕg(n)=
∏
p |n

(
1− 1

p

)−2(
1+ 2

p

)−1
, (2-25)

and also, for a, b ∈ Z≥1,

ψa(n)=
∏
p |n
p-a

(
1− 1

p

)2(
1− 1

p−1

)
, (2-26)

and

ψa,b(n)=
{
ψa(n) if gcd(n, b)= 1,
0 otherwise.

Following the straightforward reasoning of the proofs of [Le Boudec 2012b,
Lemmas 5, 6], we easily obtain the following result:

Lemma 10. Let 0 < γ ≤ 1 be fixed. Let 0 ≤ t1 < t2, and set I = [t1, t2]. Let
g : R>0→ R be a function with a piecewise continuous derivative on I whose sign
changes at most Rg(I ) times on I . We have∑

n∈I∩Z>0

ψa,b(n)g(n)= ϒ9(a, b)
∫

I
g(t) dt + Oγ

(
σ−γ /2(ab)tγ2 MI (g)

)
,
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where
ϒ =

∏
p

ϕg(p)−1, 9(a, b)= ϕ∗(b)ϕg(ab), (2-27)

and
MI (g)= (1+ Rg(I )) sup

t∈I∩R>0

|g(t)|.

3. The universal torsor

In this section we define a bijection between the set of rational points of bounded
height on U and a certain set of integral points on the hypersurface defined in
the introduction. The universal torsor corresponding to our present problem was
first determined by Hassett and Tschinkel [2004] and then used by Browning
[2006] to prove the lower and upper bounds of the expected order of magnitude
for NU,H (B). We employ the notation used in [Derenthal 2014]. Let T(B) be the
set of (η1, . . . , η10) ∈ Z7

>0×Z3
6=0 satisfying the equation

η2η
2
5η8+ η3η

2
6η9+ η4η

2
7η10− η1η2η3η4η5η6η7 = 0, (3-1)

the coprimality conditions

gcd(η10, η1η2η3η4η5η6)= 1, (3-2)

gcd(η9, η1η2η3η4η5η7)= 1, (3-3)

gcd(η8, η1η2η3η4η6η7)= 1, (3-4)

gcd(η1, η5η6η7)= 1, (3-5)

gcd(η2η5, η3η4η6η7)= 1, (3-6)

gcd(η3η6, η4η7)= 1, (3-7)

and the height conditions

|η8η9η10| ≤ B, (3-8)

η2
1η

2
2η3η4η

2
5|η8| ≤ B, (3-9)

η2
1η2η

2
3η4η

2
6|η9| ≤ B, (3-10)

η2
1η2η3η

2
4η

2
7|η10| ≤ B. (3-11)

Lemma 11. NU,H (B)= #T(B).

Proof. It is sufficient to show that the counting problem defined by the set T(B) is
equivalent to the one described in [Browning 2006, Section 4], which we call T′(B)
and which is defined exactly as T(B) except that the condition (3-5) is replaced by
the condition |µ(η2η3η4)| = 1.
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For i = 2, 3, 4, there is only one way to write ηi = η
′

iη
′′2
i in such a way that η′i is

squarefree. Setting η′i+3 = ηi+3η
′′

i and η′1 = η1η
′′

2η
′′

3η
′′

4 , we claim that the translation
between the two counting problems is achieved via the map

S : (η1, η2, η3, η4, η5, η6, η7) 7→ (η′1, η
′

2, η
′

3, η
′

4, η
′

5, η
′

6, η
′

7).

Indeed, (3-1) and the height conditions (3-8)–(3-11) are invariant under S. Also, the
coprimality conditions (3-2), (3-3), (3-4), (3-6) and (3-7) are preserved under S, and
the condition (3-5) is replaced by the condition |µ(η′2η

′

3η
′

4)| = 1, which completes
the proof. �

4. Calculation of Peyre’s constant

Peyre [1995] gives an interpretation for the constant cV,H appearing in the main
term of NU,H (B) in Theorem 1. In our specific case, we have

cV,H = α(Ṽ )β(Ṽ )ωH (Ṽ ),

where Ṽ denotes the minimal desingularization of V . The definitions of these three
quantities are omitted (the reader should refer to [Peyre 1995] or to Section 4 of
[Le Boudec 2012a] for some more details in an identical setting). Using the work
of Derenthal, Joyce and Teitler [Derenthal et al. 2008, Theorem 1.3], it is easy to
compute the constant α(Ṽ ). We find

α(Ṽ )=
1

120
·

1
#W (D4)

=
1

23040
,

where W (D4) stands for the Weyl group associated to the Dynkin diagram of the
singularity D4. Here, we have used #W (Dn)= 2n−1n! for any n ≥ 4. In addition,
β(Ṽ )= 1 since V is split over Q. Finally, ωH (Ṽ ) is given by

ωH (Ṽ )= ω∞
∏

p

(
1− 1

p

)7
ωp,

where ω∞ and ωp are the archimedean and p-adic densities respectively. Loughran
[2010, Lemma 2.3] has shown that we have

ωp = 1+
7
p
+

1
p2 .

Let us calculate ω∞. Let x= (x0, x1, x2, x3) and f (x)= x0(x1+x2+x3)
2
−x1x2x3.

We parametrize the points of V with x1, x2 and x3. We have

∂ f
∂x0

(x)= (x1+ x2+ x3)
2,
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and since x =−x ∈ P3, we obtain

ω∞ =
1
2

∫∫∫
|x1x2x3|/(x1+x2+x3)2,|x1|,|x2|,|x3|≤1

dx1 dx2 dx3

(x1+ x2+ x3)2
.

Recall the definition (2-20) of the function h. The change of variables defined by
x1 = t2x , x2 = t2 y and x3 =−t2(x + y− t) yields

ω∞ =
3
2

∫∫∫
h(x,y,t)≤1

dx dy dt = 3
∫∫∫

t>0,h(x,y,t)≤1
dx dy dt. (4-1)

5. Proof of the main theorem

5.1. Restriction of the domain. Note that in the torsor equation (3-1) the first three
terms are at most B/η2

1η2η3η4 (by the height conditions (3-9)–(3-11)), and thus we
have

η3
1η

2
2η

2
3η

2
4η5η6η7 ≤ 3B.

From now on, for n ∈ Z≥1 we denote by sq(n) the unique positive integer such
that sq(n)2 |n and n/sq(n)2 is squarefree. Note that for two coprime integers
m, n ∈ Z≥1, we have sq(mn)= sq(m) sq(n).

We now need to show that we can assume along the proof that

η1 sq(η2η3η4)≥ B15/ log log B, (5-1)

and, in addition, that

η3
1η

2
2η

2
3η

2
4η5η6η7 ≥

B
log log B

. (5-2)

The proof of Lemma 11 shows that we can make use of the estimates in [Browning
2006, Section 6] to prove that the contributions to NU,H (B) coming from those
(η1, . . . , η10) ∈ T(B) which do not satisfy one of the two inequalities (5-1) and
(5-2) are actually negligible.

We start by proving a lemma:

Lemma 12. Let M(B) be the overall contribution to NU,H (B) coming from those
(η1, . . . , η10) ∈ T(B) such that η1 sq(η2η3η4)≤ B15/ log log B . We have

M(B)�
B(log B)6

log log B
.

Proof. Recall the notation introduced in the proof of Lemma 11. We note that the
condition η1 sq(η2η3η4)≤ B15/ log log B is equivalent to η′1 ≤ B15/ log log B .

For i = 1, . . . , 10 we let Yi be variables running over the set {2n
| n ≥−1}. By

counting the number of (η′1, . . . , η
′

10) ∈ T′(B) which satisfy Yi < |η
′

i | ≤ 2Yi for
i = 1, . . . , 10, we claim that [Browning 2006, Sections 6.1, 6.2] gives
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M(B)� B(log B)5+
∑

Yi

X1/2
0 X1/6

1 X1/6
2 X1/6

3

+

∑
Yi

max
{i, j,k}={2,3,4}

{
Y1Y2Y3Y4Y5Y6Y7Y8Y9Y10

Yk+6 max{Yi Y
2
i+3Yi+6, Y j Y

2
j+3Y j+6, Zk}

}
, (5-3)

where the two sums are over the Yi , i = 1, . . . , 10, subject to the inequalities

Y8Y9Y10 ≤ B, (5-4)

Y 2
1 Y 2

2 Y3Y4Y 2
5 Y8 ≤ B, (5-5)

Y 2
1 Y2Y 2

3 Y4Y 2
6 Y9 ≤ B, (5-6)

Y 2
1 Y2Y3Y 2

4 Y 2
7 Y10 ≤ B, (5-7)

and also
Y1 ≤ B15/ log log B, (5-8)

and where X0, X1, X2, X3 denote the left-hand sides of the inequalities (5-4), (5-5),
(5-6) and (5-7) respectively, and finally, for k ∈ {2, 3, 4}, Zk is defined by

Zk =

{
YkY 2

k+3Yk+6 if YkY 2
k+3Yk+6 ≥ Y1Y2Y3Y4Y5Y6Y7,

1 otherwise.

Let us explain briefly how the upper bound (5-3) can be deduced from Browning’s
work without making use of the condition (5-8). It is useful to note that our variables
Yi , i = 1, . . . , 10, and X j , j = 0, . . . , 3, correspond respectively to Browning’s
variables S0, U1, U2, U3, S1, S2, S3, Y1, Y2, Y3 and X4, X1, X2, X3. First, the
second term of the right-hand side of [ibid., (6.26)] is equal to

(X0 X1 X2 X3)
1/4

Y 1/2
1

(
1+

log B
(Y8Y9Y10)

1/16 max
k∈{2,3,4}

Y 1/16
k+6

)
in our notation, and is easily seen to have overall contribution B(log B)5. As a
result, the right side of [ibid., (6.29)] can actually be replaced by (in our notation)

B(log B)5+
∑

Yi

X1/2
0 X1/6

1 X1/6
2 X1/6

3 . (5-9)

Taking into account [ibid., (6.31)], we see that the right-hand side of the upper
bound in [ibid., Proposition 4] can also be replaced by (5-9). Then, we note that
the first term of the right-hand side of the upper bound in [ibid., Lemma 13] has
overall contribution B(log B)4. This implies that the right-hand side of the upper
bound in [ibid., Proposition 5] can be replaced by, in our notation,

B(log B)4+
∑

Yi

max
{i, j,k}={2,3,4}

{
Y1Y2Y3Y4Y5Y6Y7Y8Y9Y10

Yk+6 max{Yi Y
2
i+3Yi+6, Y j Y

2
j+3Y j+6, Zk}

}
.
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This concludes the proof of the upper bound (5-3).
Let us denote by N1(B) and N2(B) the respective contributions of the two sums in

(5-3). In the following estimations, the notation
∑

Ŷ j
indicates that the summation is

over all the Yi with i 6= j . We start by investigating the quantity N1(B) by summing
over Y5, Y6 and Y7 using, respectively, the conditions (5-5), (5-6) and (5-7). We get

N1(B)=
∑

Yi

Y1Y 2/3
2 Y 2/3

3 Y 2/3
4 Y 1/3

5 Y 1/3
6 Y 1/3

7 Y 2/3
8 Y 2/3

9 Y 2/3
10

� B1/2
∑

Ŷ5,Ŷ6,Ŷ7

Y 1/2
8 Y 1/2

9 Y 1/2
10 � B

∑
Ŷ5,Ŷ6,Ŷ7,Ŷ8

1�
B(log B)6

log log B
,

where we have used the condition (5-4) to sum over Y8 and the condition (5-8) to
sum over Y1. We now deal with the quantity N2(B). We only treat the case where
(i, j, k)= (2, 3, 4), since the others are all identical. Note that if Z4=Y4Y 2

7 Y10 then
N2(B)≤N1(B). Thus, we only need to deal with the case where Z4=1. In addition,
we proceed without loss of generality under the assumption that Y2Y 2

5 Y8 ≤ Y3Y 2
6 Y9.

We first use this condition to sum over Y5, and then we sum over Y7 and Y8 using
the conditions (5-7) and (5-4) respectively. We get

N2(B)�
∑

Yi

Y1Y2Y4Y5Y−1
6 Y7Y8�

∑
Ŷ5

Y1Y 1/2
2 Y 1/2

3 Y4Y7Y 1/2
8 Y 1/2

9

� B1/2
∑
Ŷ5,Ŷ7

Y 1/2
8 Y 1/2

9 Y−1/2
10 � B

∑
Ŷ5,Ŷ7,Ŷ8

Y−1
10 �

B(log B)6

log log B
,

which completes the proof of Lemma 12. �

The following lemma proves that the contribution to NU,H (B) coming from
those (η1, . . . , η10) ∈ T(B) which are subject to the stronger condition

η3
1η

2
2η

2
3η

2
4η5η6η7 ≤

B
log log B

,

is negligible.

Lemma 13. Let M′(B) be the overall contribution to NU,H (B) coming from those
(η1, . . . , η10) ∈ T(B) such that

η3
1η

2
2η

2
3η

2
4η5η6η7 ≤

B
log log B

.

We have

M′(B)�
B(log B)6

(log log B)1/6
.
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Proof. We proceed as in the proof of Lemma 12, with the same notation. We have

M′(B)� B(log B)5+
∑

Yi

X1/2
0 X1/6

1 X1/6
2 X1/6

3

+

∑
Yi

max
{i, j,k}={2,3,4}

{
Y1Y2Y3Y4Y5Y6Y7Y8Y9Y10

Yk+6 max{Yi Y
2
i+3Yi+6, Y j Y

2
j+3Y j+6, Zk}

}
, (5-10)

where the two sums are over the dyadic variables Yi , i = 1, . . . , 10, subject to the
inequalities (5-4)–(5-7) and

Y 3
1 Y 2

2 Y 2
3 Y 2

4 Y5Y6Y7 ≤
B

log log B
. (5-11)

Let us denote by N′1(B) and N′2(B) the respective contributions of the two sums in
(5-10). Combining conditions (5-4) and (5-5), we get

Y 1/4
1 Y 1/4

2 Y 1/8
3 Y 1/8

4 Y 1/4
5 Y8Y 7/8

9 Y 7/8
10 ≤ B. (5-12)

We start by bounding the contribution of the quantity N′1(B) by summing succes-
sively over Y8, Y9 and Y10 using the conditions (5-12), (5-6) and (5-7) respectively.
We deduce that

N′1(B)=
∑

Yi

Y1 Y 2/3
2 Y 2/3

3 Y 2/3
4 Y 1/3

5 Y 1/3
6 Y 1/3

7 Y 2/3
8 Y 2/3

9 Y 2/3
10

� B2/3
∑
Ŷ8

Y 5/6
1 Y 1/2

2 Y 7/12
3 Y 7/12

4 Y 1/6
5 Y 1/3

6 Y 1/3
7 Y 1/12

9 Y 1/12
10

� B5/6
∑

Ŷ8,Ŷ9,Ŷ10

Y 1/2
1 Y 1/3

2 Y 1/3
3 Y 1/3

4 Y 1/6
5 Y 1/6

6 Y 1/6
7

�
B

(log log B)1/6
∑

Ŷ7,Ŷ8,Ŷ9,Ŷ10

1�
B(log B)6

(log log B)1/6
,

where we have summed over Y7 using the condition (5-11). We now turn to the
case of the quantity N′2(B). As in the proof of Lemma 12, we only treat the case
where (i, j, k)= (2, 3, 4) and we work under the assumptions that Z4 = 1 and thus

Y4Y 2
7 Y10 ≤ Y1Y2Y3Y4Y5Y6Y7 (5-13)

and Y2Y 2
5 Y8 ≤ Y3Y 2

6 Y9. Combining conditions (5-11) and (5-13), we get

Y 2
1 Y2Y3Y 2

4 Y 2
7 Y10 ≤

B
log log B

. (5-14)
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We first use the condition Y2Y 2
5 Y8 ≤ Y3Y 2

6 Y9 to sum over Y5, and then we sum over
Y8 and Y7 using the conditions (5-4) and (5-14) respectively. We deduce

N′2(B)�
∑

Yi

Y1Y2Y4Y5Y−1
6 Y7Y8�

∑
Ŷ5

Y1Y 1/2
2 Y 1/2

3 Y4Y7Y 1/2
8 Y 1/2

9

� B1/2
∑
Ŷ5,Ŷ8

Y1Y 1/2
2 Y 1/2

3 Y4Y7Y−1/2
10

�
B

(log log B)1/2
∑

Ŷ5,Ŷ7,Ŷ8

Y−1
10 �

B(log B)6

(log log B)1/2
,

which completes the proof of Lemma 13. �

5.2. Setting up. First, we recall that we have the following condition (given at the
beginning of Section 5.1):

η3
1η

2
2η

2
3η

2
4η5η6η7 ≤ 3B. (5-15)

It is easy to check that the symmetry between the three quantities η2η
2
5, η3η

2
6 and

η4η
2
7 is demonstrated by the action of S3 on {(η2,η5,η8), (η3,η6,η9), (η4,η7,η10)}.

Throughout the proof, we will assume that

η4η
2
7 ≤ η2η

2
5, η3η

2
6.

The following lemma proves that we just need to multiply our future main term by
a factor of 3 to take this new assumption into account.

Lemma 14. Let N0(B) be the total number of (η1, . . . , η10) ∈ T(B) such that
η2η

2
5 = η4η

2
7 or η3η

2
6 = η4η

2
7. We have the upper bound

N0(B)� B(log B)3.

Proof. By symmetry, we only need to treat the case of the condition η3η
2
6 = η4η

2
7.

This equality and the condition gcd(η3η6, η4η7)=1 imply that η3=η4=η6=η7=1.
In this situation, the torsor equation is simply

η2η
2
5η8+ η9+ η10− η1η2η5 = 0.

Thus, N0(B) is bounded by the number of (η1, η2, η5, η8, η9)∈Z3
>0×Z2

6=0 satisfying

|η8η9||η2η
2
5η8+ η9− η1η2η5| ≤ B and η2

1η
2
2η

2
5 |η8| ≤ B.

Using [Le Boudec 2012a, Lemma 1] to count the number of η9 satisfying the first
of these two inequalities, we obtain

N0(B)�
∑

η1,η2,η5,η8
η2

1η
2
2η

2
5 |η8|≤B

(
B1/2

|η8|
1/2 + 1

)
� B(log B)3,
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as wished. �

Let N (B) be the overall contribution of those (η1, . . . , η10) ∈ T(B) subject to
the conditions

η4η
2
7 ≤ η2η

2
5, η3η

2
6, (5-16)

B15/ log log B
≤ η1 sq(η2η3η4), (5-17)

B
log log B

≤ η3
1η

2
2η

2
3η

2
4η5η6η7. (5-18)

Lemmas 11–14 give us the following result:

Lemma 15. NU,H (B)= 3N (B)+ O
(

B(log B)6

(log log B)1/6

)
.

The end of the proof is devoted to the estimation of N (B).

5.3. Application of Lemma 7. The idea of the proof is to view the equation (3-1)
as a congruence modulo η4η

2
7. For this, we replace η10 by its value given by the

equation (3-1) in the height conditions (3-8) and (3-11). These conditions become

|η8η9||η2η
2
5η8+ η3η

2
6η9− η1η2η3η4η5η6η7| ≤ Bη4η

2
7,

η2
1η2η3η4 |η2η

2
5η8+ η3η

2
6η9− η1η2η3η4η5η6η7| ≤ B,

and we still denote them respectively by (3-8) and (3-11). From now on, we use
the notation η = (η2, η3, η4, η5, η6, η7), and we set

η(r2,r3,r4,r5,r6,r7) = η
r2
2 η

r3
3 η

r4
4 η

r5
5 η

r6
6 η

r7
7

for (r2, r3, r4, r5, r6, r7) ∈Q6. We set

Y =
B

η2η3η4
, Z1 =

B1/3

η(2/3,2/3,2/3,1/3,1/3,1/3)
, (5-19)

and, for brevity, q8 = η2η
2
5, q9 = η3η

2
6, q10 = η4η

2
7. It is immediate to check that η

is restricted to lie in the region V defined by

V=
{
η ∈ Z6

>0 | Y (log log B)2/3 ≥ q8 Z2
1, Y (log log B)2/3 ≥ q9 Z2

1,

Z1 ≥ 3−1/3, q8 ≥ q10, q9 ≥ q10
}
. (5-20)

We fix η1 ∈ Z>0 and η ∈ V, subject to the conditions (5-15), (5-17) and (5-18)
and to the coprimality conditions (3-5)–(3-7). Let N (η1, η, B) be the number of
(η8, η9, η10) ∈Z3

6=0 satisfying the equation (3-1), the height conditions (3-8)–(3-11),
and finally the coprimality conditions (3-2)–(3-4). The goal of this section is to
prove the following lemma:
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Lemma 16. We have the estimate

N (η1, η, B)=
B2/3

η(1/3,1/3,1/3,2/3,2/3,2/3)
g2

(
η1

Z1

)
θ1(η1, η)θ2(η)+ R(η1, η, B),

where θ1(η1, η) and θ2(η) are arithmetic functions defined in (5-28) and (5-29)
respectively and ∑

η1,η

R(η1, η, B)� B(log B)5(log log B)7/3.

First, we see that since gcd(η2η5, η3η6η9) = 1 and gcd(η3η6, η2η5η8) = 1, the
equation (3-1) proves that the coprimality condition (3-2) can be replaced by
gcd(η10, η1η4)= 1. Let us remove the coprimality conditions gcd(η8, η6)= 1 and
gcd(η9, η5)= 1 using Möbius inversions; we obtain

N (η1, η, B)=
∑
k8 |η6

gcd(k8,η1η2η3η4η7)=1

µ(k8)
∑
k9 |η5

gcd(k9,η1η2η3η4η7)=1

µ(k9)Sk8,k9(η1, η, B),

where Sk8,k9(η1, η, B) is the cardinality of

{(η′8, η
′

9, η10) ∈ Z3
6=0

∣∣ η2η
2
5k8η

′

8+ η3η
2
6k9η

′

9+ η4η
2
7η10 = b, gcd(η10, η1η4)= 1,

(3-8), (3-9), (3-10), (3-11), gcd(η′8η
′

9, η1η2η3η4η7)= 1
}
,

and where we use the notation η8 = k8η
′

8, η9 = k9η
′

9 and b = η1η2η3η4η5η6η7.
From now on, we set

Z= B1/ log log B .

To take care of the error terms showing up in the application of Lemma 7, we need
to show that the summations over k8 and k9 can be restricted to k8, k9 ≤ Z3. To
do so, let N ′(η1, η, B) be the contribution of N (η1, η, B) under the assumption
k8 > Z3; that is,

N ′(η1, η, B)=
∑

k8 |η6, k8>Z3

gcd(k8,η1η2η3η4η7)=1

∑
k9 |η5

gcd(k9,η1η2η3η4η7)=1

Sk8,k9(η1, η, B).

Let us write η6 = k8η
′

6 and η5 = k9η
′

5. We notice that the equation in the definition
of Sk8,k9(η1, η, B) implies that k8k9 |η10, and thus we also write η10= k8k9ξ10. With
this notation, we get

N ′(η1, η, B)=
∑

Z3<k8≤B1/2

gcd(k8,η1η2η3η4η7)=1

∑
k9≤B1/2

gcd(k9,η1η2η3η4η7)=1

S′k8,k9
(η1, η, B),

where S′k8,k9
(η1, η, B) is the cardinality of
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(η′8, η

′

9, ξ10) ∈ Z3
6=0

∣∣ η2η
′2
5 k9η

′

8+ η3η
′2
6 k8η

′

9+ η4η
2
7ξ10 = b′, gcd(ξ10, η1η4)= 1,

(3-8), (3-9), (3-10), (3-11), gcd(η′8η
′

9, η1η2η3η4η7)= 1
}
,

where we have set b′ = η1η2η3η4η
′

5η
′

6η7. Let us split the summations over k8 and
k9 into dyadic ranges. Let us assume that K8, K9 ≥

1
2 and that K8 < k8 ≤ 2K8 and

K9 < k9 ≤ 2K9. Let us set ξ8 = k9η
′

8 and ξ9 = k8η
′

9. The height conditions (3-8),
(3-9), (3-10) and (3-11) imply respectively

|ξ8ξ9ξ10| ≤
B

K8K9
, (5-21)

η2
1η

2
2η3η4η

′2
5 |ξ8| ≤

B
K8K9

, (5-22)

η2
1η2η

2
3η4η

′2
6 |ξ9| ≤

B
K8K9

, (5-23)

η2
1η2η3η

2
4η

2
7|ξ10| ≤

B
K8K9

. (5-24)

We thus have, for K8 < k8 ≤ 2K8 and K9 < k9 ≤ 2K9,

S′k8,k9
(η1,η,B)

� #
{
(ξ8,ξ9,ξ10) ∈ Z3

6=0

∣∣ k8 |ξ9, k9 |ξ8,η2η
′2
5 ξ8+ η3η

′2
6 ξ9+ η4η

2
7ξ10 = b′,

(5-21), (5-22), (5-23), (5-24), gcd(ξ10,η1η4)= 1, gcd(ξ8ξ9,η1η2η3η4η7)= 1
}
.

Therefore, using the standard bound for the divisor function,

τ(n)� n1/ log log(3n),

for n ≥ 1, we get ∑
K8<k8≤2K8
K9<k9≤2K9

S′k8,k9
(η1, η, B)� Z2SK8,K9,

where SK8,K9 = SK8,K9(η1, η2, η3, η4, η
′

5, η
′

6, η7, B) is the cardinality of{
(ξ8, ξ9, ξ10)∈Z3

6=0

∣∣η2η
′2
5 ξ8+η3η

′2
6 ξ9+η4η

2
7ξ10=b′, (5-21), (5-22), (5-23), (5-24),

gcd(ξ10, η1η4)= 1, gcd(ξ8ξ9, η1η2η3η4η7)= 1
}
.

Setting ξ6,8 = gcd(η′6, ξ8) and ξ5,9 = gcd(η′5, ξ9), we see that ξ6,8ξ5,9 |ξ10, and we
thus obtain ∑

η1,η2,η3,η4,η
′

5,η
′

6,η7

SK8,K9 �

∑
ξ6,8,ξ5,9≤B

NU,H

(
B

K8K9ξ6,8ξ5,9

)
.
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Therefore, we can apply [Browning 2006]. We get

∑
η1,η

N ′(η1, η, B)� Z2
∑

Z3<K8<B1/2

K9<B1/2

∑
ξ6,8,ξ5,9≤B

B(log B)6

K8K9ξ6,8ξ5,9
� BZ−1/2,

which is satisfactory. Therefore, we can restrict from now on the summations over
k8 and k9 as we wished.

We note that if we allow η10=0 in the definition of the cardinality Sk8,k9(η1, η, B)
then the coprimality condition gcd(η10, η1η4)= 1 implies η1 = η4 = 1. Moreover,
the equation η2η

2
5k8η

′

8+ η3η
2
6k9η

′

9 = η2η3η5η6η7 also implies η2 = η3 = 1. These
restrictions are in contradiction with the condition (5-17), so from now on, we
allow η10 to vanish in the definition of Sk8,k9(η1, η, B). Let us now remove the
coprimality condition gcd(η10, η1η4)= 1 using a Möbius inversion. We get that the
main term of N (η1, η, B) is equal to∑

k8 |η6, k8≤Z3

gcd(k8,η1η2η3η4η7)=1

µ(k8)
∑

k9 |η5, k9≤Z3

gcd(k9,η1η2η3η4η7)=1

µ(k9)
∑

k10 |η1η4

µ(k10)Sk8,k9,k10(η1, η, B),

where Sk8,k9,k10(η1, η, B) denotes the cardinality of{
(η′8,η

′

9,η
′

10) ∈ Z2
6=0×Z

∣∣ η2η
2
5k8η

′

8+η3η
2
6k9η

′

9+η4η
2
7k10η

′

10 = b,

(3-8), (3-9), (3-10), (3-11), gcd(η′8η
′

9,η1η2η3η4η7)= 1
}
.

Since gcd(η1η4, k8k9η5η6η
′

8η
′

9) = 1, we have gcd(k10, k8k9η5η6η
′

8η
′

9) = 1. Also,
the two conditions gcd(η2η5k8η

′

8, η3) = 1 and gcd(η3η6k9η
′

9, η2) = 1 imply that
we also have gcd(k10, η2η3) = 1. We now remove the coprimality conditions
gcd(η′8η

′

9, η1η2η3)= 1 using Möbius inversions. Setting η′8 = `8η
′′

8 and η′9 = `9η
′′

9 ,
we obtain that the main term of N (η1, η, B) is equal to∑

k8 |η6, k8≤Z3

gcd(k8,η1η2η3η4η7)=1

µ(k8)
∑

k9 |η5, k9≤Z3

gcd(k9,η1η2η3η4η7)=1

µ(k9)

×

∑
k10 |η1η4

gcd(k10,k8k9η2η3η5η6)=1

µ(k10)
∑

`8,`9 |η1η2η3
gcd(`8`9,k10η4η7)=1

µ(`8)µ(`9)S(η1, η, B),

where S(η1, η, B) denotes the cardinality of{
(η′′8, η

′′

9) ∈ Z2
6=0

∣∣ η2η
2
5k8`8η

′′

8 + η3η
2
6k9`9η

′′

9 ≡ b (mod k10η4η
2
7),

(3-8), (3-9), (3-10), (3-11), gcd(η′′8η
′′

9, k10η4η7)= 1
}
.
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Note that we have replaced the equation η2η
2
5k8`8η

′′

8+η3η
2
6k9`9η

′′

9+η4η
2
7k10η

′

10= b
by a congruence.

Setting

X =
B

η2
1η
(1,1,1,0,0,0)

, T = η1η
(1,1,1,1,1,1),

and A1= k8`8η2η
2
5, A2= k9`9η3η

2
6 and recalling the equality (2-21), it is immediate

to check that (η′′8, η
′′

9) ∈ Z2
6=0 is subject to the height conditions (3-8)–(3-11) if and

only if (η′′8, η
′′

9) ∈ S∩Z2
6=0. Setting L= log log B, we see that the condition (5-18)

can be rewritten X/L ≤ T . We can therefore apply Lemma 7 with L = log B,
q = k10η4η

2
7 and a = (k8`8η2η

2
5, k9`9η3η

2
6). Recall the definitions (2-24) of ϕ∗ and

(5-19) of Z1 and also the definitions of E(q, a) and E2(q), given in Lemmas 2
and 6 respectively . We obtain

S(η1, η, B)−
ϕ∗(k10η4η7)

k8`8k9`9k10

B2/3

η(1/3,1/3,1/3,2/3,2/3,2/3)
g2

(
η1

Z1

)
� E+E′,

where

E= (log B)6 E(q, a)

and

E′ =
B2/3

k8`8k9`9k10η(1/3,1/3,1/3,2/3,2/3,2/3)
L4/3

×

(
L

log B
+

k1/2
8 `

1/2
8 η1η2η

1/2
3 η

1/2
4 η5

B1/2 +
k1/2

9 `
1/2
9 η1η

1/2
2 η3η

1/2
4 η6

B1/2

)
E2(q).

Let us estimate the contribution of these error terms. Let us start by bounding
the overall contribution of E. For this, we write η5 = k9η

′

5 and η6 = k8η
′

6, and
we let Y5, Y6 and Y7 be variables running over the set {2n

| n ≥ −1}. We define
N=N(Y5, Y6, Y7) as the sum over η′5, η

′

6, η7∈Z≥1 satisfying Y5< k9η
′

5≤2Y5, Y6<

k8η
′

6 ≤ 2Y6 and Y7 < η7 ≤ 2Y7 and the coprimality conditions gcd(η′5η
′

6, η4η7)= 1
and gcd(η′5, η

′

6)= 1, of the quantity∑
k8,k9≤Z3

gcd(k8k9,η1η2η3η4η7)=1

∑
k10 |η1η4

gcd(k10,k8k9η2η3η
′

5η
′

6)=1

∑
`8,`9 |η1η2η3

gcd(`8`9,k10η4η7)=1

(log B)6 E(q, a′),

where a′ = (k9`8η2η
′2
5 , k8`9η3η

′2
6 ). We now aim to bound the contribution of the

error term E by first estimating the quantity N and then by summing N over η1, η2,
η3 and η4 and over all the possible values for Y5, Y6 and Y7. Note that the variables
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Y5, Y6 and Y7 satisfy the inequalities

η3
1η

2
2η

2
3η

2
4Y5Y6Y7 ≤ 3B, (5-25)

η4Y 2
7 ≤ 4η2Y 2

5 , (5-26)

η4Y 2
7 ≤ 4η3Y 2

6 . (5-27)

Applying Lemma 9 to sum over η′5 and η′6 and recalling that q = k10η4η
2
7, we see

that

N� (log B)6
∑

Y7<η7≤2Y7

∑
k8,k9≤Z3

∑
k10 |η1η4

∑
`8,`9 |η1η2η3

(
Y5Y6

k8k9
+ k10η4η

2
7

)
τ(q)2 E1(q)

� Z7
∑

Y7<η7≤2Y7

τ(η1η4)τ (η1η2η3)
2τ(η1η

2
4η

2
7)

2(Y5Y6+ η1η
2
4η

2
7)

� Z12(Y5Y6Y7+ η1η
2
4Y 3

7 ).

Using the two conditions (5-26) and (5-27), we finally obtain

N� Z12η1η
1/2
2 η

1/2
3 η4Y5Y6Y7.

We now aim to sum this quantity over all the possible values for Y5, Y6 and Y7. Let
us start by summing over Y7 using the condition (5-25) and then over η1 using the
condition (5-17); we obtain∑

Yi

N� Z12
∑

η1,η2,η3,η4,Y5,Y6,Y7

η1η
1/2
2 η

1/2
3 η4Y5Y6Y7

� BZ13
∑

η1,η2,η3,η4

1

η2
1η

3/2
2 η

3/2
3 η4

� BZ−2
∑

η2,η3,η4

sq(η2η3η4)

η
3/2
2 η

3/2
3 η4

� BZ−1,

which is satisfactory. In addition, the overall contributions of the three terms of the
error term E′ are easily seen to be bounded by B(log B)5(log log B)7/3, which is
also satisfactory.

Therefore, the main term of N (η1, η, B) is equal to∑
k8 |η6, k8≤Z3

gcd(k8,η1η2η3η4η7)=1

µ(k8)

k8

∑
k9 |η5, k9≤Z3

gcd(k9,η1η2η3η4η7)=1

µ(k9)

k9

∑
k10 |η1η4

gcd(k10,k8k9η2η3η5η6)=1

µ(k10)

k10

×

∑
`8,`9 |η1η2η3

gcd(`8`9,k10η4η7)=1

µ(`8)

`8

µ(`9)

`9
ϕ∗(k10η4η7)

B2/3

η(1/3,1/3,1/3,2/3,2/3,2/3)
g2

(
η1

Z1

)
.
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Using the bound of Lemma 5 for g2, we see that this quantity is

�

∑
k8 |η6, k9 |η5

k8,k9≤Z3

1
k8

1
k9
σ−1(η1η4)σ−1(η1η2η3)

2 B2/3

η(1/3,1/3,1/3,2/3,2/3,2/3)
.

As a result, we see that if we remove the conditions k8, k9 ≤Z3 from the sums over
k8 and k9, we create an error term whose overall contribution is, for instance, seen
to be bounded by BZ−1. Thus, we have proved that we can write

N (η1, η, B)= M(η1, η, B)+ R(η1, η, B),

where ∑
η1,η

R(η1, η, B)� B(log B)5(log log B)7/3,

and

M(η1, η, B)=
B2/3

η(1/3,1/3,1/3,2/3,2/3,2/3)
g2

(
η1

Z1

)
θ(η1, η),

where

θ(η1, η)=
∑
k8 |η6

gcd(k8,η1η2η3η4η7)=1

µ(k8)

k8

∑
k9 |η5

gcd(k9,η1η2η3η4η7)=1

µ(k9)

k9

×

∑
k10 |η1η4

gcd(k10,k8k9η2η3η5η6)=1

µ(k10)

k10

∑
`8,`9 |η1η2η3

gcd(`8`9,k10η4η7)=1

µ(`8)

`8

µ(`9)

`9
ϕ∗(k10η4η7)

=
ϕ∗(η3η6)

ϕ∗(η3)

ϕ∗(η2η5)

ϕ∗(η2)
ϕ∗(η1η2η3η4η7)

2
∑

k10 |η1η4
gcd(k10,η2η3η5η6)=1

µ(k10)

k10ϕ∗(η4η7k10)
.

It is easy to check that for a, b, c ≥ 1, we have∑
k |a

gcd(k,c)=1

µ(k)
kϕ∗(kb)

=
ϕ∗(gcd(a, b))

ϕ∗(b)ϕ∗(gcd(a, b, c))

∏
p |a
p-bc

(
1− 1

p−1

)
.

Using this equality and the remaining coprimality conditions (3-5), (3-6) and (3-7)
and recalling the definition (2-26) of ψ , we see that we can write

θ(η1, η)= θ1(η1, η)θ2(η),

where
θ1(η1, η)= ψη2η3η4

(η1), (5-28)
and

θ2(η)= ϕ
∗(η2η3η4)ϕ

∗(η2η3η4η5η6η7). (5-29)
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5.4. Summation over η1. We now need to sum the main term of N (η1, η, B) over
η1 ∈ Z>0, where η1 is subject to the conditions (5-17) and (5-18) (the condition
(5-15) is implied by the definition of g2) and to the coprimality condition (3-5). We
start by proving that we can remove the restrictions that η1 satisfies the conditions
(5-17) and (5-18). Indeed, let us first assume that we have the condition

η1 sq(η2η3η4) < B15/ log log B . (5-30)

The bound of Lemma 5 for g2 implies that the main term M(η1, η, B) of N (η1, η, B)
satisfies

M(η1, η, B)�
B2/3

η(1/3,1/3,1/3,2/3,2/3,2/3)
.

Let us now sum this quantity over η7 using the condition (5-15) and then over η1
using the condition (5-30); we obtain∑

η1,η

M(η1, η, B)�
∑

η1,η2,η3,η4,η5,η6

B
η1η

(1,1,1,1,1,0)

�

∑
η2,η3,η4,η5,η6

B(log B)
η(1,1,1,1,1,0) log log B

�
B(log B)6

log log B
.

This error term is satisfactory. Let us now assume that we have the condition

η3
1η

2
2η

2
3η

2
4η5η6η7 <

B
log log B

.

Let us sum over η1 using this condition; we get∑
η1,η

M(η1, η, B)�
∑

η

B
η(1,1,1,1,1,1)(log log B)1/3

�
B(log B)6

(log log B)1/3
.

This error term is also satisfactory. We can thus remove the restrictions that η1
satisfies the conditions (5-17) and (5-18), and we proceed to sum over η1. Recall
the definition (5-20) of V. For fixed η ∈ V satisfying the coprimality conditions
(3-6) and (3-7), let N (η, B) be the sum of the main term of N (η1, η, B) over η1,
where η1 is subject to the coprimality condition (3-5). Recall the definition (2-27)
of ϒ . We now prove the following lemma.

Lemma 17. We have the estimate

N (η, B)= ϒ
ω∞

3
B

η(1,1,1,1,1,1)
2(η)+ R(η, B),

where 2(η) is a certain arithmetic function defined in (5-31) and where∑
η

R(η, B)� B(log B)5.
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Proof. Let us use Lemma 10 to sum over η1. For any fixed 0< γ ≤ 1, we obtain

N (η, B)= ϒ
B

η(1,1,1,1,1,1)
2(η)

∫
t>0

g2(t) dt

+ O
(

B2/3

η(1/3,1/3,1/3,2/3,2/3,2/3)
Zγ1 σ−γ /2(η2η3η4η5η6η7) sup

t>0
g2(t)

)
,

where

2(η)= ϕ∗(η2η3η4)ϕ
∗(η2η3η4η5η6η7)ϕ

∗(η5η6η7)ϕ
g(η2η3η4η5η6η7). (5-31)

Let us set γ = 1/2. Using the bound of Lemma 5 for g2, we deduce that the overall
contribution of this error term is∑

η

B5/6

η(2/3,2/3,2/3,5/6,5/6,5/6)
σ−1/4(η2η3η4η5η6η7)� B(log B)5,

where we have summed over η using the condition Z1 ≥ 3−1/3. Recalling the
definition of g2 and the equality (4-1), we see that∫

t>0
g2(t) dt =

ω∞

3
,

which completes the proof. �

5.5. Conclusion. It remains to sum the main term of N (η, B) over the η ∈ V

satisfying the coprimality conditions (3-6) and (3-7). It is easy to see that replacing
V by the region

V′ =
{
η ∈ Z6

>0

∣∣ Y ≥ q8 Z2
1, Y ≥ q9 Z2

1, Z1 ≥ 1, q8 ≥ q10, q9 ≥ q10
}

produces an error term whose overall contribution is � B(log B)5 log log log B.
Let us redefine the arithmetic function 2 as being equal to zero if the remaining
coprimality conditions (3-6) and (3-7) are not satisfied. Recalling Lemma 15, we
see that we have proved the following lemma:

Lemma 18. We have the estimate

NU,H (B)= ϒω∞B
∑
η∈V′

2(η)

η(1,1,1,1,1,1)
+ O

(
B(log B)6

(log log B)1/6

)
.

The end of the paper is dedicated to the completion of the proof of Theorem 1.
Let us introduce the generalized Möbius function µ defined for (n1, . . . , n6) ∈ Z6

>0
by µ(n1, . . . , n6) = µ(n1) · · ·µ(n6). We set k = (k2, k3, k4, k5, k6, k7) and we
define for s ∈ C, such that <(s) > 1,
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F(s)=
∑

η∈Z6
>0

|(2 ∗µ)(η)|

ηs
2η

s
3η

s
4η

s
5η

s
6η

s
7
=

∏
p

( ∑
k∈Z6

≥0

|(2 ∗µ)(pk2, pk3, pk4, pk5, pk6, pk7)|

pk2s pk3s pk4s pk5s pk6s pk7s

)
.

It is easy to check that if k /∈{0, 1}6 then (2∗µ)(pk2, pk3, pk4, pk5, pk6, pk7)=0 and
if exactly one of the ki is equal to 1, then (2∗µ)(pk2, pk3, pk4, pk5, pk6, pk7)�1/p,
so the local factors Fp of F satisfy

Fp(s)= 1+ O
(

1
pmin(<(s)+1,2<(s))

)
.

This proves that the function F converges in the half-plane <(s) > 1/2, which
implies that 2 satisfies the assumption of [Le Boudec 2012b, Lemma 8]. The
application of this lemma provides∑

η∈V′

2(η)

η(1,1,1,1,1,1)
= α

( ∑
η∈Z6

>0

(2 ∗µ)(η)

η(1,1,1,1,1,1)

)
(log B)6+ O((log B)5), (5-32)

where α is the volume of the polytope defined in R6 by t2, t3, t4, t5, t6, t7 ≥ 0 and

2t2− t3− t4+ 4t5− 2t6− 2t7 ≤ 1,

−t2+ 2t3− t4− 2t5+ 4t6− 2t7 ≤ 1,

2t2+ 2t3+ 2t4+ t5+ t6+ t7 ≤ 1,

−t2+ t4− 2t5+ 2t7 ≤ 0,

−t3+ t4− 2t6+ 2t7 ≤ 0.

It is easy to compute α using Franz’s additional Maple package Convex [2009].
We find α = 1/23040; that is,

α = α(Ṽ ). (5-33)

Furthermore, we have∑
η∈Z6

>0

(2 ∗µ)(η)

η(1,1,1,1,1,1)
=

∏
p

( ∑
k∈Z6

≥0

(2 ∗µ)(pk2, pk3, pk4, pk5, pk6, pk7)

pk2 pk3 pk4 pk5 pk6 pk7

)

=

∏
p

(
1−

1
p

)6( ∑
k∈Z6

≥0

2(pk2, pk3, pk4, pk5, pk6, pk7)

pk2 pk3 pk4 pk5 pk6 pk7

)
.

The calculation of these local factors is straightforward, and we find∑
k∈Z6

≥0

2(pk2, pk3, pk4, pk5, pk6, pk7)

pk2 pk3 pk4 pk5 pk6 pk7
= ϕg(p)

(
1−

1
p

)(
1+

7
p
+

1
p2

)
.
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We finally obtain ∑
η∈Z6

>0

(2 ∗µ)(η)

η(1,1,1,1,1,1)
= ϒ−1

∏
p

(
1−

1
p

)7

ωp. (5-34)

Putting together the equalities (5-32)–(5-34) and Lemma 18 completes the proof of
Theorem 1.
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