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Abstract. The instability load for the telescopic boom of an all-terrain crane is investigated in this paper. Com-
bined with structural characteristics of the telescopic boom, each boom section is divided into several substruc-
tures, and the fixed-body coordinate system of each substructure is established based on the co-rotational method.
A 3D Euler–Bernoulli eccentric beam element of the telescopic boom is derived. On the premise of considering
the discretization of gravity and wind load, internal degrees of freedom of the substructure are condensed to
the boundary nodes, forming a geometrical nonlinear super element. According to the nesting mode of the tele-
scopic boom, a constraint way is established. The unstressed original length of the guy rope is calculated with
a given preload so as to establish the equilibrium equations of the boom system with the external force of the
guy rope and the corresponding tangent stiffness matrix. Regarding the above work, a new method for calculat-
ing the structural equilibrium path and instability load of telescopic boom structure is presented by solving the
governing equations in a differential form. Finally, the method is validated by examples with different features.

1 Introduction

An all-terrain crane is a type of mobile crane. Due to the ben-
efit of its lifting capacity and convenient mobility, it plays an
important role in many construction fields (Ja et al., 2019;
Yao et al., 2015). The telescopic boom of the all-terrain crane
is a typical slender structure composed of multiple boom sec-
tions nested in one other. Each boom section is a box-type
structure. When the telescopic boom carries a heavy load, its
overall deformation exhibits a strong geometrical nonlinear
effect. However, the integral stability of the slender structure
is poor, which is prone to causing structural instability and
result in accidents. The instability of the telescopic boom is
one of the important reasons for all-terrain crane accidents
(Neitzel et al., 2001). The instability load of the telescopic
boom is one of the core indicators that determines the lifting
capacity of all-terrain cranes. To improve the structural sta-
bility of the telescopic boom, a Y-shaped bracket is used to
change its load conditions (Yao et al., 2020). The preload is
applied to the telescopic boom through the guy rope to make
the telescopic boom produce an initial deformation before
lifting and reduces the deformation of telescopic boom dur-

ing lifting. The Y-shaped bracket, the guy rope, and the back
pull plate form the super lift system of the all-terrain crane.

In the structural instability analysis, external loads are
commonly considered to be control parameters (Wang et al.,
2015). Generally, the equilibrium path of the structures is
followed by incremental methods as the control parameters
changed. Response points, where tangent stiffness matrices
become singular, are useful in the practical engineering ap-
plications, since they are related to the structural instability.
There are generally two methods to determine the critical
point of structural instability, i.e., the direct method and in-
direct method (Shi, 1996). The direct method is to add con-
straint equations according to the characteristics of the struc-
ture at the critical point (Fujii and Okazawa, 1997; Jari et
al., 2012; Ding et al., 2014; Adnan and Mazen, 2000) and
then directly solve the critical point based on the Newton–
Raphson method. Most direct methods can converge from
the region near the critical point to the critical point, and the
point in the iterative process is not necessarily on the solu-
tion path. Most indirect methods determine whether there is
a critical point according to the sign change in the determi-
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nant value of the structural tangent stiffness matrix on the
structural equilibrium path (Bergan et al., 1978; Shi and Cr-
isfield, 1994). A considerable number of constraint strate-
gies are used to accurately determine the critical load and
limit point, including load control, state control, and different
kinds of arc length methods (Hellweg and Crisfield, 1998; Lu
et al., 2005; Athisakul and Chucheepsakul, 2007). Although
these methods have good adaptability in the structural stabil-
ity calculation, they are also faced with the problem that the
step size cannot be adjusted to achieve the required accuracy
in the calculation process (Crisfield, 1983).

A correct and effective finite element model must be es-
tablished for describing the geometrical nonlinear effect of
the telescopic boom. At present, three approaches are often
used for the finite element analysis of nonlinear solid and
structural mechanics, namely total Lagrangian (TL; Pai et
al., 2000; Nanakorn and Vu, 2006), updated Lagrangian (UL;
Yang et al., 2007; Iu and Bradford, 2010), and co-rotational
(CR) formulations (Crisfield and Moita, 1996; Felippa and
Haugen, 2005; Li, 2007). Specifically, the CR formulation is
suitable for describing the geometric nonlinearity of slender
structures whose displacements and rotations may be arbi-
trarily large, while the local deformations are small. The CR
formulations for a stability analysis of beams and shells have
been studied by many researchers (Kisu, 1997; Hsiao and
Lin, 2000; Battini and Pacoste, 2002; Verlinden et al., 2018).

Since the telescopic boom with a super lift system con-
tains a large number of components, resulting in large-scale
degrees of freedom to be solved, the CR formulation is more
suitable for a finite element modeling of such slender struc-
tures composed of multiple boom sections. The whole struc-
ture is divided into several substructures, and the mechanical
information of the internal nodes of a single sub structure is
condensed to the boundary nodes, including the stiffness ma-
trix (distributed forces), load matrix, etc. This substructure,
formed by condensation, is called the super element, which
is regarded as an individual element in the whole structural
model during the modeling or analysis procedure (Li and
Zhao, 2006). The substructure is defined by the characteris-
tic points on a single boom section, and the nodal degrees of
freedom in the substructure are statically condensed to form
a super element, which reduces the computational burden for
solving the global system variables (Mäkinen, 2007; Ghosh
and Roy, 2009; He et al., 2010; Rantalainen et al., 2013). The
precondition of adopting the static condensation method is
that the nodal displacements and rotational angles are small
in substructure, and the static condensation must be imple-
mented in local coordinate systems.

The guy rope of the all-terrain crane connects the Y-shaped
bracket and the telescopic boom head, which changes the ini-
tial deformation of the telescopic boom through a preload.
Therefore, the unstressed original length of the guy rope must
be calculated with the initial configuration of the telescopic
boom without lifting the load, and then nonlinear equilibrium
equations of the complete system can be established. Most

existing work on cables mainly focuses on calculations with
original length and without strain parameters (Jayaraman and
Knudson, 1981; Gosling and Korban, 2001; Lee et al., 2003;
Ju and Choo, 2005; Wang et al., 2015). However, calculating
the unstressed original length of the guy rope under a known
preload is necessary for the analysis of all-terrain cranes with
super lift system. This calculation method has been studied
in previous work (see Xu et al., 2022).

The purpose of this paper, therefore, is to establish the
equilibrium equations of telescopic boom of an all-terrain
crane, making use of co-rotational formulations, where a
static condensation technique for the substructures and the
nonlinear external forces from the guy rope with preload are
integrated. It needs to be clarified that the material nonlinear-
ity is not considered in this paper. After establishing the non-
linear equilibrium equations with the lifting load containing
the control parameter, the accurate tangent stiffness matrix of
the equations is derived based on the derivative of the equi-
librium equations for the structural displacements. Finally,
the load displacement curves of nodes in the telescopic boom
are obtained by solving the differential form of the equilib-
rium equations. Combined with the singularity detection of
the tangent stiffness matrix and the judgment criterion, the
instability load is obtained.

The key points of this paper are mainly reflected in two
aspects. First, the CR formulation is used to calculate the ge-
ometric nonlinear effect of the telescopic boom. Compared
with the traditional method of establishing the CR formu-
lations on each element (Wempner, 1969; Belytschko and
Hsieh, 1973), the static condensation method is used to con-
vert the corresponding substructure into a super element with
two nodes, taking into account the influence of the self-
weight and the external wind load, which has further im-
proved the traditional static condensation method with zero
external load (Przemieniecki, 1963; Bahar and Bahar, 2018).
At the same time, the proposed super element can greatly re-
duce the dimension of the structural equilibrium equations.
Second, the traditional load increment method needs to set
a fixed load increment in the process of calculating the non-
linear equilibrium equations to obtain the structural equilib-
rium path (Wang et al., 2017). If the fixed increment is set too
small, it will increase the calculation amount and reduce the
calculation efficiency (Cheng et al., 1980). If the increment is
too large, then the convergence may fail. Moreover, because
it is impossible to accurately judge the range of the critical
load in advance, the load increment is likely to directly cross
the extreme point, which will lead to the failure of searching
for the critical load. In this paper, the derivation of lifting the
load parameter from the structural equilibrium equations of
telescopic boom is converted into differential equations. With
the advantage of automatic step size adjustment in the con-
ventional differential equation solver, the function of auto-
matically adjusting the load step size according to the corre-
sponding nonlinearity of the current load state of the system
is realized. Under the premise of ensuring the convergence
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Figure 1. All-terrain crane structure.

of each step of solution, the structural equilibrium path can
be quickly tracked and the critical load can be searched.

2 Substructure of telescopic boom and static
condensation procedure

This paper takes a certain type of all-terrain crane as an ex-
ample, as shown in Fig. 1. The telescopic boom is composed
of eight boom sections, which can be combined into a boom
with a length of 100 m. The combination of different lengths
of the telescopic boom can be realized through the telescopic
mechanism. The telescopic boom is connected to the slew-
ing table with a shaft, and its luffing angle can be changed
by a luffing cylinder. The Y-shaped bracket is installed on
the first boom section of the telescopic boom. In accordance
with the structural characteristics, the length of each boom is
much larger than its section size, and the influence of shear
deformation can be ignored. Therefore, a 3D Euler–Bernoulli
beam element can be used for the finite element modeling of
the telescopic boom. The boom section modulus in tension,
bending, and torsion can be illustrated by the user-defined ac-
tual parameters of boom section (Dou et al., 2013). Unfortu-
nately, this occurs under the assumption that cross sections of
the beam element are rigid. In terms of the telescopic boom,
some special conditions in engineering need to be calculated
by establishing plate and shell element separately for local
verification.

2.1 Division of substructure and local coordinate system

Each boom section is divided into several substructures by
the hinge point of the luffing cylinder, Y-shaped bracket, and
overlap points between the boom sections, as shown in Fig. 2.

Unfortunately, the static condensation procedure cannot be
used directly for the calculation of the geometrical nonlin-
ear analysis of slender structures. However, if a co-rotational
formulation for a substructure can be given, in which the
elastic displacements and rotational angles are small, then
the static condensation technique can be implemented for
the telescopic boom structures. A substructure of the boom
section after deflection is shown in Fig. 3. Euler angles and
Cardan angles are widely used as generalized coordinates to
describe the large rotation of the substructure (Wen, 1987;
Cekus and Pawel, 2021). Due to the different rotation order
of the Euler angle and the Cardan angle, in many practical
applications in engineering, the latter is less singular than the
former in a numerical calculation. Therefore, this paper uses
Cardan angles to establish the transformation matrix between
local coordinate system and global coordinate system.

Crisfield and Moita (1996) presented a unified formula-
tion of the co-rotational approach for 3D elements with both
translational and rotational degrees of freedom (Battini and
Pacoste, 2002; Felippa and Haugen, 2005). The local coor-
dinate system of the substructure is established at one side
node of the substructure, and it is described by the global
rotational angles (Cardan angles). A single substructure is a
generalized beam element composed of multiple initially di-
vided elements, and the origin of its section coordinate sys-
tem is the node of the generalized beam element. The origin
of the section coordinate system is not consistent with the
section centroid, as shown in Fig. 3.[
g1,g2,g3

]
are base vectors of the global coordinate sys-

tem of the telescopic boom system. The position vector of
the origin of the substructure in the global coordinate system
is r1, and the right endpoint position vector is r2. Global ro-
tational angles are θ1, θ2, which are Cardan angles and can
be used to describe the spatial rotation of the substructure
coordinate system (Qi, 2008). A transformation matrix be-
tween local and global coordinate system is R1. Its column
vector can be determined by parameters θ1 =

[
α1,β1,γ1

]T
as follows:

e1 = c2c3g1+ (s1s2c3+ c1s3)g2+ (s1s3− c1s2c3)g3

e2 =−c2s3g1+ (c1c3− s1s2s3)g2+ (s1c3+ c1s2s3)g3
e3 = s2g1− s1c2g2+ c1c2g3, (1)

where s1 = sinα1, c1 = cosα1, s2 = sinβ1; c2 = cosβ1, s3 =
sinγ1, and c3 = cosγ1.
{e1,e2,e3} is a local coordinate system of a substructure.

The position vector and derivative of right endpoint are given
by the following:

r2 = r1+R1(r̂2+û2), ṙ2 = ṙ1+ω1×(r2− r1)+R1 ˙̂u2, (2)

where r̂2 is initial position vector of the right node in lo-
cal coordinate system, and û2 is a translational displacement
vector of the right node in local coordinate system. The cor-
responding virtual velocity is as follows:

δṙ2 = δṙ1+ δω1× (r2− r1)+R1δ ˙̂u2, (3)
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Figure 2. Substructures of a telescopic boom.

Figure 3. A local coordinate system of substructure.

whereω1 is the global angular velocity of the left end section.
Its conversion relationship with θ1 is as follows:

ω1 =

 1 0 sinβ1
0 cosα1 −sinα1 cosβ1
0 sinα1 cosα1 cosβ1

 α̇1
β̇1
γ̇1

 , T1θ̇1. (4)

The virtual velocity of the degree of freedom in the global
coordinate system is decomposed into three parts, i.e., the
translational virtual velocity, the rotational virtual velocity,
and the virtual velocity of the local degree of freedom in a
local coordinate system.

The global angular velocity of the right endpoint section is
given according to Eq. (4), as follows:

ω2 =

 1 0 sinβ2
0 cosα2 −sinα2 cosβ2
0 sinα2 cosα2 cosβ2

 α̇2
β̇2
γ̇2

 , T2θ̇2. (5)

According to the angular velocity superposition principle
(Qi, 2008), ω2 can be given with ω2, which is the angular
velocity in the local coordinate system, as follows:

ω2 = ω1+R1ω2. (6)

In a local coordinate system, the rotation of the section
coordinate system is small (Betsch and Steinmann, 2003),
combining Eq. (5), as follows:

ω2 = E3×3
˙
θ2 =

˙
θ2, (7)

where θ2 is the rotational angle of the right end section of the
substructure in a local coordinate system.

The virtual velocity of Eq. (6) is as follows:

δω2 = δω1+R1δ
˙
θ2. (8)

The transformation relationship between local and global
degrees of freedom needs to be given for transforming the
virtual power equations into the following algebraic equa-
tion:

û1 = 0, û2 = RT
1 (r2− r1)− (r̂2− r̂1), (9)

where û1, û2 are local translational displacement vectors in
local coordinate system. Their derivatives are as follows:

˙̂u1 = 0, ˙̂u2 = RT
1 (ṙ2− ṙ1)+RT

1 (r̃2− r̃1)ω1, (10)

where a vector with a symbol “∼” on the top is its
skew symmetric matrix. For example, if a vector a =[
a1 a2 a3

]T, then its skew symmetric matrix is ex-
pressed as follows:

ã =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 .
θ2 can be obtained according to R2, which is a rotational

matrix of section coordinate system to the local coordinate
system, as follows:

R2 = RT
1 R2. (11)

According to Eq. (8), its derivative is as follows:

˙
θ2 = RT

1 (ω2−ω1). (12)

The derivative of a substructure of nodal variables in a
global coordinate system is as follows:

q̇ =
[
ṙ1; θ̇1; ṙ2; θ̇2

]
. (13)
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Combining Eqs. (10) and (12) yields the following:

ṙ1 =
[

E3×3 03×3 03×3 03×3
]
q̇ , Tr1 q̇,

ṙ2 =
[

03×3 03×3 E3×3 03×3
]
q̇ , Tr2 q̇ (14)

ω1 =
[

03×3 T1 03×3 03×3
]
q̇ , Tω1 q̇,

ω2 =
[

03×3 03×3 03×3 T2
]
q̇ , Tω2 q̇ (15)

˙̂u1 =
[

03×3 03×3 03×3 03×3
]
q̇ , Tû1 q̇,

˙
θ1 =

[
03×3 03×3 03×3 03×3

]
q̇ , Tθ1

q̇ (16)
˙̂u2 =

(
RT

1 (Tr2 −Tr1 )+RT
1 (r̃2− r̃1)Tω1

)
q̇ , Tû2 q̇,

˙
θ2 = RT

1 (Tω2 −Tω1 )q̇ , Tθ2
q̇. (17)

The transformation relationship between the variables in
local coordinate system and global coordinate system is as
follows:

˙̂U=


Tû1
Tθ1
Tû2
Tθ2



ṙ1
θ̇1
ṙ2
θ̇2

 , Trg q̇, (18)

where ˙̂U=
[
˙̂u1;
˙
θ1; ˙̂u2;

˙
θ2

]
.

2.2 Eccentric beam element

Each boom section of the telescopic boom is a slender
box structure, and its finite element model can be built by
3D Euler–Bernoulli beam element. The nodal parameters of
Euler–Bernoulli beam elements are located at the centroid of
the section, and its linear stiffness matrix can be written as
follows:

ke =



k1 0 0 0 0 0 −k1 0 0 0 0 0
0 k2 0 0 0 k7 0 −k2 0 0 0 k7
0 0 k3 0 −k8 0 0 0 −k3 0 −k8 0
0 0 0 k4 0 0 0 0 0 −k4 0 0
0 0 −k8 0 k5 0 0 0 k8 0 k5/2 0
0 k3 0 0 0 k6 0 −k7 0 0 0 k6/2
−k1 0 0 0 0 0 k1 0 0 0 0 0

0 −k2 0 0 0 −k7 0 k2 0 0 0 −k7
0 0 −k3 0 k8 0 0 0 k3 0 k8 0
0 0 0 −k4 0 0 0 0 0 k4 0 0
0 0 −k8 0 k5/2 0 0 0 k8 0 k5 0
0 k7 0 0 0 k6/2 0 −k7 0 0 0 k6


, (19)

where k1 =
EA
Le

; k2 =
12EIz
L3
e

; k3 =
12EIy
L3
e

; k4 =
GJ
Le

; k5 =

4EIy
Le

; k6 =
4EIz
Le

; k7 =
6EIz
L2
e

; k8 =
6EIy
L3
e

. The parameters E,
A, Iy , Iz, G, J , and Le are the corresponding Young’s mod-
ulus, cross-sectional area, y-axis moment of inertia, z-axis
moment of inertia, shear modulus, polar moment of inertia,
and the length of a beam element.

The section of the telescopic boom section is symmetri-
cal about the y axis and asymmetric about the z axis, so it
belongs to a kind of eccentric beam element, as shown in
Fig. 3. However, in engineering, the selection of the nodal
parameters to reflect the section characteristics is more ap-
propriate, which can avoid the non-coincidence of nodal pa-
rameters between nested boom sections. For a single beam

element in a substructure, the nodal parameters of the nodes
at both ends in the element coordinate system are

[
ûe1;θe1

]
,[

ûe2;θe2

]
. Based on the assumption of a rigid section of the

beam element, the rotational angles of its section are con-
sistent, and the rotational angles in the element coordinate
system are small. Without losing generality, the position vec-
tor of the section centroid in the section coordinate system is[

0 y z
]T. ue1 and ue2 are displacements at centroid in

section coordinate system.

ue1 = ûe1 +Deθe1 , ue2 = ûe2 +Deθe2 , (20)

where

De =

 0 z −y

−z 0 0
y 0 0

 .
The conversion between the nodal parameters at the cen-

troid and the origin of the section coordinate system is as
follows:[

Ue1

Ue2

]
=

[E3×3 De 03×3 03×3
03×3 E3×3 03×3 03×3
03×3 03×3 E3×3 De
03×3 03×3 03×3 E3×3

]
, D

[
Ûe1

Ûe2

]
, (21)

where

Ue1 =

[
ue1

θe1

]
, Ue2 =

[
ue2

θe2

]
,

Ûe1 =

[
ûe1

θe1

]
, Ûe2 =

[
ûe2

θe2

]
.

For a beam element, the deformation virtual power of the
centroid parameters of the beam element can be transformed
into the parameters of the origin of the section coordinate
system as follows:

δwe = δU
T
e keUe = δ

˙̂UT
e k̂eÛe = δŵe, (22)

where Ue =
[

Ue1

Ue2

]
, Ûe =

[
Ûe1

Ûe2

]
. The stiffness matrix

of the eccentric beam element is k̂e = DTkeD.

2.3 Influence of gravity and wind load of substructure

During the operation of an all-terrain crane, the luffing an-
gle of the telescopic boom changes continuously, so that the
influence direction of gravity on the telescopic boom also
changes, which cannot meet the condition that the external
force of the traditional static condensation method is zero in
the internal degree of freedom. The gravity in each element
of the substructure is a uniformly distributed force. When the
static condensation method is used to condense the structural
degrees of freedom, then the self-weight of the element needs
to be dispersed to the nodes at both ends.
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The position vector of any point in the element of a sub-
structure and its derivative are as follows:

re = r1+R1(re+ue), ṙe = ṙ1− (r̃e− r̃1)ω1+R1u̇e, (23)

where re, ue are the position vector and displacements of any
point in beam element in local coordinate system, R1 is the
transformation matrix of the local coordinate system, and ω1
is angular velocity of the local coordinate system.

The rotational angles of any point in the element can be ob-
tained by the interpolation of nodal parameters at both ends
for Euler–Bernoulli beam as follows:

ue = NuUe, u̇e = Nu ˙Ue, θe = NθUe, ˙θe = Nθ ˙Ue, (24)

where Nu, Nθ are displacements and the rotational angle in-
terpolation shape function of a 3D Euler–Bernoulli beam el-
ement (Qi, 2008).

By integrating the length of the beam element, it is seen
that the virtual power of gravity has the following substruc-
ture:

δwg = δṙ
T
1 Fg + δωT

1 Tg + δ
˙̂UT
e f e. (25)

The resultant force and moment at the origin of the local
coordinate system are as follows:

Fg =meg; Tg =
1
2
meR1

(
r̃e1 + r̃e2

)
g, (26)

where g is the component of the gravitational acceleration
g in the global coordinate system, me is the mass of beam
element with length Le, and re1 and re2 are position vectors
of nodes at both ends of beam element in local coordinate
system.

Combing Eqs. (21) and (25) yields the following:

me

1∫
0

δu̇T
e dη =meδ

˙̂UT
e

1∫
0

DTNT
udη , δ ˙̂UT

e f e. (27)

Generalized forces distributed at the nodes at both ends of
the element become the following:

f e =Ggg. (28)

The gravity influence coefficient matrix is as follows:

Gg =me

 1
2

0 0 0 1
2 z −

1
2 y

1
2 0 0 0 1

2 z −
1
2 y

0 1
2 0 − 1

2 z 0 1
12Le 0 1

2 0 − 1
2 z 0 −

1
12Le

0 0 1
2

1
2 y −

1
12Le 0 0 0 1

2
1
2 y

1
12Le 0


T

. (29)

Base on the actual working conditions, the external force
on the telescopic boom during operation needs to consider
whether the influence of wind load, the factors of the boom
section shape, and boom expansion nesting have been con-
sidered. A wind load diagram is shown in Fig. 3.

In each substructure, the wind load of each element is
equivalently calculated to the origin of the local coordinate
system, and the linear density of its resultant force and re-
sultant moment is f 0 and m0. The virtual power of the wind
load in the element is as follows:

δww = δṙ
T
1 Fw + δωT

1 Tw + δ
˙̂UT
e f w, (30)

where the resultant force and moment at the origin of the
local coordinate system are

Fw = LeR1f 0; Tw = LeR1

((
1
2
r̃e1 +

1
2
r̃e2

)
f 0+m0

)
.

The physical meaning of the generalized force f w dis-
tributed at the nodes is as follows:

δ
˙̂UT
e f w = Le

 1∫
0

δ ˙̂uT
e dη

f 0

+Le

 1∫
0

δ
˙
θ

T
e ds

m0 , δ
˙̂UT
e

(
G1f 0

)
+ δ
˙̂UT
e (G2m0) , (31)

where ûe =
[
ûe1; ûe2

]
, θe =

[
θe1;θe2

]
.

The wind load influence coefficient matrix is obtained ac-
cording to Eqs. (20), (21), (24), and (31) as follows:

G1 =

 1
2
Le −y −z 0 1

2 zLe −
1
2 yLe

1
2Le y z 0 1

2 zLe −
1
2 yLe

0 1
2Le 0 0 0 1

12L
2
e 0 1

2Le 0 0 0 −
1
12L

2
e

0 0 1
2Le 0 − 1

12L
2
e 0 0 0 1

2Le 0 1
12L

2
e 0


T

(32)

G2 =

[
0 0 0 1

2Le 0 0 0 0 0 1
2Le 0 0

0 0 1 y 0 0 0 0 −1 −y 0 0
0 −1 0 z 0 0 0 1 0 −z 0 0

]T

. (33)

2.4 Static condensation of substructure and super
element

The local coordinate system is established for a substructure
in which the nodal displacements are small. The nodes in
each substructure can be divided into two groups, namely in-
ternal nodes ni and boundary nodes nb. The gravity and wind
load of all elements in the substructure have been converted
to the element nodes; therefore, the internal node degrees of
freedom of the substructure can be condensed to the bound-
ary node degrees of freedom to form a super element. In the
local coordinate system, each beam element stiffness matrix
k̂e is assembled to form the global stiffness matrix of sub-
structure and is divided into blocks according to the degrees
of freedom of boundary nodes and internal nodes.

K=
[

Kbb Kbi

Kib Kii

]
. (34)
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The deformation virtual power of a substructure can be
expressed in a local system as follows:

δwe = δ
˙̂UT
b

(
KbbÛb +KbiÛi

)
+ δ
˙̂UT
i

(
KibÛb +KiiÛi

)
, (35)

where Ûb and Ûi are the boundary and internal nodal degrees
of freedom in a substructure.

The total virtual power of gravity and wind load in sub-
structure can be written as follows:

δwf = δṙ
T
1 F0+ δω

T
1 T0+ δ

˙̂UT
bFb+ δ

˙̂UT
i

(
Gig+Fwi

)
, (36)

where Gi is the gravity influence coefficient matrix corre-
sponding to the internal node degrees of freedom in the sub-
structure. Fwi is the wind load corresponding to the internal
node degrees of freedom according to the wind load influ-
ence coefficient matrix. F0 and T0 are the resultant force and
moment when the gravity and wind load are equivalent to the
origin of the local coordinate system. Fb is the gravity and
wind load at the boundary node of the substructure.

Since the substructure boundary conditions and external
forces are independent of the internal degrees of freedom,
δ
˙̂Ui is independent, and the coefficients in the virtual power

expression are not affected by substructure assembly and ex-
ternal forces. According to the principle of virtual power,
combining Eqs. (35) and (36) can yield the following:

KibÛb+KiiÛi =Gig+Fwi . (37)

Internal degrees of freedom can be written as follows:

Ûi =K−1
ii Gig+K−1

ii Fwi −K−1
ii KibÛb. (38)

The internal nodal displacements in the local coordinate
system are small, so the elements in the stiffness matrix are
constant, and the virtual velocity of Eq. (38) is

δ
˙̂Ui = Tibδ

˙̂Ub, (39)

where the incidence matrix is

Tib =−K−1
ii Kib. (40)

Substituting Eqs. (39) and (40) into Eqs. (35) and (36)
yields the following:

δwe = δ
˙̂UT
b

(
Kbb+TT

ibKib

)
Ûb (41)

δwf = δṙ
T
1 F0+ δω

T
1 T0+ δ

˙̂UT
b

(
Fb +TT

ib

(
Gig+Fwi

))
. (42)

Considering Eqs. (14), (15), and (18), Eqs. (41) and (42)
can be written as follows:

δwe , δq̇
TFib, δwf , δq̇TFab . (43)

Figure 4. Overlap point of boom sections.

Figure 5. Boom section division.

The generalized internal and generalized external force
are, respectively, written as follows:

Fib = TT
rg

(
Kbb+TT

ibKib

)
ÛbTT

rgKeÛb (44)

Fab = TT
r1

F0+TT
ω1

T0+TT
rg

(
Fb+TT

ib

(
Gig+Fwi

))
. (45)

The substructure composed of multiple beam elements is
reduced to a super beam element expressed by degrees of
freedom at both ends, and Ke is its equivalent stiffness ma-
trix.

3 Constraints and boundary conditions of
telescopic boom

The nested connection of the telescopic boom of an all-
terrain crane is the form of a hydraulic cylinder and pin; that
is, different combinations of multiple boom sections are re-
alized successively through the telescopic hydraulic cylinder
in the first boom section. Each boom section is connected
through the boom pin at the tail, and a nylon slider is de-
signed at the tail and head of the boom section for overlap-
ping. Except for the first and last boom sections, four sections
in each boom section generate relevant constraints between
the outer and inner boom sections. The left overlap point,
right overlap point, internal overlap point, and outer overlap
point are shown in Fig. 4.

The divided substructure is a super element in each boom
section. We take three boom sections as an example, as
shown in Fig. 5.
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Figure 6. Constraint relationships of the boom sections.

3.1 Constraints between boom sections

The first two boom sections are used to explain the con-
straints between them. The connection of the two boom sec-
tions corresponds to two types of constraints, where section 1
and section 3 correspond to the rotating joint in the multi-
body theory and only have the rotational degrees of freedom
about the axis of the boom pin, and section 2 and section 4
correspond to the prismatic joint, which constrains the dis-
placements around the main axis of the section and the rota-
tional degrees of freedom around the normal part of the sec-
tion. The nodal position vectors and rotational angles in the
global coordinate system for the left and right overlap points
are rbi , αi , βi , and γi . The corresponding section coordinate
system is

{
bi1,b

i
2,b

i
3
}
, which is shown in Fig. 6.

According to the structural form of the boom pin connec-
tion, the local part can be regarded as a rigid body. dL is the
horizontal distance between the origin of the two local coor-
dinate systems in the initial configuration, as shown in Fig. 7.
The constraint equations at the boom pin connection can be
written as follows:

rb3 = rb1 + dLb
1
3, b

3
3 · b

1
1 = 0, b3

3 · b
1
2 = 0. (46)

The constraint equations at the right end of the first boom
section with sliders can be written as follows:

b4
3 · b

2
2 = 0, (rb4 − rb2 ) · b2

2 = 0, rb4 − rb2 ) · b2
3 = 0. (47)

3.2 Boundary constraints of telescopic boom

There is only an independent rotational degree of freedom
around the boom foot pin axis, which can be considered to be
the boom luffing angle. The local structure can be processed
as a rigid part, according to the actual structure at the boom
foot, as shown in Fig. 8a.

The rigid part has the same angular velocity as the local
coordinate system of the first super element. Therefore, the
luffing angle degree of freedom can be expressed by the Car-
dan angle β1 in the global coordinate system. β1 is used as

Figure 7. Overlap point of two boom sections.

the independent degree of freedom at the constraint of boom
foot pin, and the corresponding rotational matrix can be writ-
ten as follows:

Rp1 =

 cosβ1 0 −sinβ1
1

sinβ1 0 cosβ1

 . (48)

The position vector of the left end node in the global
coordinate system is rp1 , and the rotational angles are[
α1 β1 γ1

]T. The constraint equations of the boom foot
pin are

rp1 = Rp11r1, α1 = γ1 = 0. (49)

The luffing of the telescopic boom is achieved by the luff-
ing hydraulic cylinder, whose bottom and top hinge points
are, respectively, connected with the slewing table and the
first boom section, as shown in Fig. 8b. The luffing hydraulic
cylinder is regarded as a constant length constraint in the
finite element modeling and calculation. rc and θc are the
nodal variables of top hinge point, and the position vector of
top hinge point is as follows:

r t = rc+Rc1r2, (50)

where Rc is the transformation matrix at top hinge point sec-
tion, which is formed by the base vectors of the local coordi-
nate system.

The length of the luffing hydraulic cylinder under the cor-
responding luffing angle is a fixed value, rh is the position
vector of the luffing hydraulic cylinder in global coordinate
system, and the constraint equation can be written as follows:

‖r t − rb‖ = Lh. (51)

4 External force of the telescopic boom

The external nodal forces in the telescopic boom system
equations are applied to the nodes of the super element, in-
cluding the self-weight, external wind load, guy rope force,
back pull plate force, and lifting load, as shown in Fig. 9. The
first two kind of loads have been considered in Sect. 3. The
last two kind of loads can be referred to in a previous work
(Xu et al., 2022). A method for calculating the unstressed

Mech. Sci., 13, 991–1009, 2022 https://doi.org/10.5194/ms-13-991-2022



J. Xu et al.: Instability load analysis of a telescopic boom for an all-terrain crane 999

Figure 8. Foot pin and luffing hydraulic cylinder of a telescopic boom.

original length of a guy rope with known preload is derived.
After the unstressed original length of the guy rope is ob-
tained by applying the preload under the unloaded state of
the telescopic boom, the force of guy rope acting on boom
system can be calculated during the lifting process.

4.1 Guy rope force

Base on the structural characteristics of all-terrain crane, the
Y-shaped bracket remains perpendicular to the axial direc-
tion of the telescopic boom after installation and has good
stiffness. It can be considered to be a rigid part in the calcu-
lation of the telescopic boom. The Y-shaped bracket and the
guy rope are symmetrically connected on both sides.

As shown in Fig. 9a, rs1 and θ s1 are the nodal position vec-
tors and rotational angles of the Y-shaped bracket on the sec-
tion of the telescopic boom installation point. rs2 and θ s2 are
the variables of the node, which is the boom head connecting
point. eb and ewi(i=1,2) are the unit vectors of the telescopic
boom axis and Y-shaped bracket axis, respectively. rbi(i=1,2)
are the position vectors of the guide pulley in local coordinate
system. φi(i=1,2) are the azimuth of the guy rope. A single
side guy rope connection is selected for the description.

The derivative of the guide pulley’s center in the global
coordinate system is as follows:

ṙb1 = ṙs1 +ωs1 ×Rs1rb1

= ṙs1 +
(
r̃s1 − r̃b1

)
Tωs1 θ̇ s1Trb1 q̇s . (52)

Here, Rs1 is the transformation matrix at the Y-shaped
bracket installation point section, which is formed by the
base vector of the local coordinate system. Tωs1 is the coef-
ficient matrix of the angular velocity of the local coordinate

system.

q̇s =
[
ṙs1; θ̇ s1; ṙs2; θ̇ s2

]
(53)

Trb1 =

[
E3×3

(
r̃s1 − r̃b1

)
Tωs1 03×303×3

]
. (54)

The position vector of the guy rope entry point at the guide
pulley and its derivative are as follows:

rp1 = rb1+1rn1,

ṙp1 =
(

Trb1 +

[
03×3

(
r̃b1− r̃p1

)
Tωs1 03×303×3

])
q̇s , Trp1 q̇s .

(55)

Here, 1r is the radius of the guide pulley, and n1 =

1r cosφ1eb+1r sinφ1ew1.
The position vector of the guy rope connecting point at

boom head and its derivative are as follows:

rq1 = rs2 +Rs2rq1,

ṙq1 =
[
03×303×3E3×3

(
r̃s2 − r̃q1

)
Tωs2

]
q̇s , Trq1 q̇s . (56)

The loads acting on the guide pulley and the connecting
point of the guy rope are Fp1, Fp2, Fq1, and Fq2, respec-
tively, which can be calculated on the premise that the origi-
nal length of the guy rope is known under the corresponding
working conditions. The virtual power of the guy rope force
to the telescopic boom can be expressed as follows:

δwq = δq̇
T
s

(
TT
rp1

Fp1+TT
rp2

Fp2+TT
rq1

Fq1+TT
rq2

Fq2

)
. (57)

4.2 Back pull plate force

The original length of the back pull plate is known, as shown
in Fig. 9b. The forces of the plate on the connecting point
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Figure 9. Guy rope, back plate, and lifting load diagram.

of the Y-shaped bracket and the first boom section can be
calculated with the method in the literature (Xu et al., 2022).
Forces on both sides are Fj1, Fj2, Fh1, and Fh2, respectively.
rs3 and θ s3 =

[
a3 β3 γ3

]T are the nodal position vector
and rotational angles of the back pull plate at the connection
point. The hinge point at the foot of the boom is fixed axis
rotation constraint, and the independent degree of freedom is
β3. rji and rhi are the position vectors of the back pull plate
connection point in a local coordinate system.

The derivative of the connection point between back pull
plate in a global coordinate system is as follows:

ṙj1 = ṙs1 +ωs1 ×Rs1rj1

= ṙs1 +
(
r̃s1 − r̃j1

)
Tωs1 θ̇ s1

=
[
E3×3

(
r̃s1 − r̃j1

)
Tωs1

][ ṙs1
θ̇ s1

]
, Trj1

[
ṙs1
θ̇ s1

]
.

(58)

The derivative of a connection point between the back pull
plate and foot boom section in global coordinate system is as
follows:

ṙh1 = g̃2rh1β̇3 , Trh1 β̇3. (59)

The virtual power at the Y-shaped bracket connection point
is as follows:

δwj = ṙ
T
j1Fj1+ ṙ

T
j2Fj2

=
[
δṙT
s1

δθ̇T
s1

](
TT
rj1

Fj1+TT
rj2

Fj2

)
. (60)

The virtual power at the foot boom section connection point
is as follows:

δwh = ṙ
T
h1Fh1+ ṙ

T
h2Fh2 = δβ̇3

(
TT
rh1

Fh1+TT
rh2

Fh2
)
. (61)

4.3 Lifting load and single lifting rope load

As shown in Fig. 9c, rqg and rqs are the position vectors
of the equivalent action point of lifting load and lifting rope

in the local coordinate system of a boom head connection.
Fqg is the lifting load force under a corresponding working
condition. es is the unit vector of the lifting rope between the
boom guide pulley and the lifting winch. nq is the number of
lifting ropes corresponding to the lifting load, and the single
lifting rope force is as follows:

Fqs =
∥∥Fqg

∥∥
nq

es . (62)

The derivative of a lifting load action point in the global co-
ordinate system is as follows:

ṙqg = ṙs4 +ωs4 ×Rs4rqg

= ṙs4 +
(
r̃s4 − r̃qg

)
Tωs4 θ̇ s4 , Trqg

[
ṙs4
θ̇ s4

]
. (63)

The derivative of a lifting rope action point in the global co-
ordinate system is as follows:

ṙqs = ṙs4 +ωs4 ×Rs4rqs

= ṙs4 +
(
r̃s4 − r̃qs

)
Tωs4 θ̇ s4 , Trqs

[
ṙs4
θ̇ s4

]
. (64)

The virtual power of a lifting load and the single lifting rope
acting on the telescopic boom is as follows:

δwqs = δṙ
T
qgFqg + δṙT

qsFqs

=
[
δṙT
s4

δθ̇T
s4

](
TT
rqg

Fqg +TT
rqs

Fqs
)
. (65)

5 Calculation of the instability load

5.1 System equilibrium equations and tangent stiffness
matrix

Taking the degrees of freedom of the boundary nodes in each
substructure as system variables and dividing them according
to translation and rotation, the global virtual power equations
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of the telescopic boom can be obtained as follows:∑
k

(δ ˙̂uT
kf

n

k + δ
˙
θ

T
km

n
k − δṙ

T
k0Fk0− δθ̇

T
k0Mk0)

=

∑
i

(δṙT
i f

a
i + δθ̇

T
i m

a
i ), (66)

where f ai andmai are external forces and moments acting on
nodes in the global coordinate system. rk0 and θk0 are the
position vector and rotational angles of the origin of the kth
substructure coordinate system in global coordinate system.
Fk0 and Mk0 are the resultant force and moment of grav-
ity and wind load of the kth substructure on its coordinate
system origin. f

n

k and mnk are the equivalent nodal force and
moment in the kth substructure coordinate system, which can
be expressed as follows:

f
n

k =

(
Kuu
ek ûk +Kuθ

ek θk

)
− (Gu

gkg+f wk) (67)

mnk =
(

Kθu
ek ûk +Kθθ

ek θk

)
−

(
Gθ
gkg+mwk

)
, (68)

where the submatrixes Kuu
ek , Kuθ

ek , Kθu
ek , and Kθθ

ek can be ob-
tained from the condensed substructure stiffness matrix Ke.
Gu
gk and Gθ

gk can be obtained from the gravity influence co-
efficient matrix Gg . f wk and mwk are the force and moment
generated by the wind load condensed to the substructure
nodes. ûk and θk are the displacements and rotational angles
of the nodes at both end section origins in the local coordi-
nate system.

According to the transformation relationship between the
local and global coordinate system variables in Eq. (18), the
transformation matrix of the displacements and the rotational
angles of the kth substructure can be transformed into the
following:

Tkrg =
[

Tku1 Tku2 Tku3 Tku4

Tkθ1 Tkθ2 Tkθ3 Tkθ4

]
. (69)

Equation (66) can be converted into algebraic equations.
The virtual power equations of the equivalent nodal forces
and moments of the kth substructure can be transformed into
the following:

δ ˙̂uT
kf

n

k + δ
˙
θ

T
km

n
k = δṙ

T
k0

(
TT
ku1
f
n

k +TT
kθ1
mnk

)
+ δθ̇T

k0

(
TT
ku2
f
n

k +TT
kθ2
mnk

)
+ δṙT

kn

(
TT
ku3
f
n

k +TT
kθ3
mnk

)
+ δθ̇T

kn

(
TT
ku4
f
n

k +TT
kθ4
mnk

)
, (70)

where the degrees of freedom of the kth substructure in the
global coordinate system are [rk0;θk0;rkn;θkn].

The set of system variables can be defined as q. Combin-
ing Eqs. (66) and (70), the global virtual power equations of
the telescopic boom can be expressed as follows:

δq̇TF (q)= 0, (71)

where F (q) is the generalized nodal force matrix of the sys-
tem.

According to the constraints and boundary conditions be-
tween the boom sections of the telescopic boom, the non-
independent and independent degrees of freedom in the sys-
tem variables are divided as q =

[
qnd;q id

]
.

The constraint equations of the telescopic boom system
are established by combining Eqs. (46)–(47), (49), and (51),
which include the constraints between the boom sections, the
constraints between the telescopic boom and the slewing ta-
ble, and the constraints between the luffing cylinder. Without
losing generality, the constraint equations of the telescopic
boom can be expressed as follows:

8 (q)= 0. (72)

The variation constraint equations derived from Eq. (72)
are obtained as follows:

Gndδq̇nd+Gidδq̇ id = 0. (73)

The virtual variation in the non-independent degrees of
freedom can be expressed by independent degrees of free-
dom, as follows:

δq̇ =

[
−G−1

nd Gid
Eid×id

]
δq̇ id , 0dδq̇ id. (74)

Substituting Eq. (74) into Eq. (71), the transformed alge-
braic equation can be obtained from the following:

Fid = 0
T
idF (q)= 0. (75)

After the equations are transformed, the number of equa-
tions is the same as the number of independent variables, and
the number of non-independent variables is the same as the
number of constraint equations added in the system. Com-
bining Eqs. (72) and (75), the system equations for solving
the system variables can be obtained as follows:{
0T

idF(q)= 0
8(q)= 0. (76)

The above formula is a set of highly nonlinear equa-
tions, and the corresponding tangent stiffness matrix is given,
which can greatly improve the computational efficiency of
the system.

In order to obtain the tangent stiffness matrix of the sys-
tem equations, the derivative of Eq. (76) can be obtained as
follows:

Ḟ id = (0T
id(∂F(q)/∂q)

+ (∂0T
id/∂q)F(q))q̇ , (0T

idGf q +GidqF(q))q̇, (77)

where

Gfq = ∂F(q)/∂q, Gidq = ∂0
T
id/∂q. (78)

https://doi.org/10.5194/ms-13-991-2022 Mech. Sci., 13, 991–1009, 2022



1002 J. Xu et al.: Instability load analysis of a telescopic boom for an all-terrain crane

Equation (78) is related to the time derivative of the equiv-
alent nodal force and moment in the coordinate system of the
kth substructure and the time derivative of the resultant force
and moment generated by the gravity and wind load at the
origin of the local coordinate system.

˙
f
n

k =Kuu
ek
˙̂uk +Kuθ

ek
˙
θk −Gu

gkg̃Tkω0 θ̇k0 (79)

ṁnk =
(

Kθu
ek
˙̂uk +Kθθ

ek
˙
θk

)
−Gθ

gkg̃Tkω0 θ̇k0 (80)

Ḟk0 =−F̃k0Tkω0 θ̇k0, Ṁk0 =−M̃k0Tkω0 θ̇k0. (81)

Substituting the generalized force matrix F(q) into
Eq. (78) yields the following:

(∂0T
id/∂q)F(q)=−(∂GT

id/∂q)G−T
nd f nd

−GT
id(∂G−T

nd /∂q)f nd, (82)

where f nd is the corresponding submatrix of the non-
independent degrees of freedom in the generalized force ma-
trix F(q).

The time derivative of the constraint equations in Eq. (76)
can be obtained as follows:

8̇=Gndq̇nd+Gidq̇ id =
[

Gnd Gid
][ q̇nd

q̇ id

]
. (83)

Substituting Eqs. (78)–(82) into Eq. (77) and combining
the results with Eq. (83) above, the tangent stiffness matrix
of the system can be obtained.

5.2 Differential form of equilibrium equations and
instability load

The instability load of the telescopic boom of all-terrain
cranes, especially for the medium and long booms, is a key
indicator in the lifting ability. R (q) is obtained by combin-
ing Eqs. (57), (60)–(61), and (76), which consists of the guy
rope force, the back pull plate force, the generalized node in-
ternal force, and system constraint equations. The lifting load
is the variable of external force in the system equations, and
the related load is in Eq. (65). As shown in Fig. 15, since the
lifting load and the single lifting rope load do not directly act
on the node when the lifting load is a unit load, the general-
ized force related to the lifting load can be obtained, i.e., the
generalized force matrix G0 corresponding to the unit lift-
ing load. The nonlinear equilibrium equations of the system
can be established by R (q) and the generalized force matrix
G0 related to the lifting load through the virtual power equa-
tions of the assembly system. To sum up, the telescopic boom
meets the structural equilibrium under any lifting load, and
the nonlinear equilibrium equations of the telescopic boom
can be expressed as follows:

R (q)+ λG0 = 0, (84)

where q is the system variable, including nodal displace-
ments and rotational angles of all nodes in the telescopic
boom, and λ is the lifting load parameter.

For Eq. (84), in order to obtain the instability load under
the systematic consideration of structural nonlinear effects,
the conventional method is to divide the load into multiple
load steps, through the incremental method, and obtain the
corresponding node displacement under each load through
calculation, so as to establish the corresponding equilibrium
path curve. During the solution process, we monitor the curve
slope under all loads, i.e., dq

dλ . Theoretically, when the slope
is infinite, then the load corresponding to this extreme point
is the critical instability load of the structure. Therefore, it is
necessary to set a threshold value as the judgment criterion
of the instability load of the telescopic boom system, so as to
obtain the instability load.

max
(∥∥∥∥dq

dλ

∥∥∥∥/∥∥∥∥dq0

dλ0

∥∥∥∥)≥K0, (85)

where K0 is the ratio of the current state parameters to the
initial state parameters, i.e., the slope ratio of the equilibrium
path curve.

Combined with the above contents, the key point is to ob-
tain the slope of the equilibrium path curve in the process
of the changing load, and then determine the instability load
in combination with the judgment criterion. In the process
of searching for the instability load, the lifting load parame-
ter λ is an unknown variable, and then the derivative of λ in
Eq. (84) can be obtained to obtain the corresponding differ-
ential equations, as follows:[
∂R (q)
∂q

]
dq
dλ
+G0 = 0, (86)

where
[
∂R(q)
∂q

]
is the tangent stiffness matrix of the telescopic

boom, which has been obtained in Sect. 5.1. dq
dλ can reflect the

nonlinearity of the load displacement curve under the current
load.

Furthermore, the first derivative of system variables to the
lifting load can be obtained by Eq. (86), as follows:

dq
dλ
=−

[
∂R (q)
∂q

]−1

G0. (87)

With the advantage of an automatic step adjustment in
ODE113, a conventional differential equation solver of MAT-
LAB, Eq. (87) is solved to realize the function of automati-
cally adjusting the step size according to the nonlinear degree
corresponding to the current load state of the system with ini-
tial value, λ= 0. When the structure is in the linear stage, the
solution step can be automatically increased. When the struc-
ture is in the nonlinear stage, the step can be automatically
reduced. Under the premise of ensuring the convergence of
each step of solution, it can quickly track the equilibrium
path and search for the instability load. Compared with the
traditional incremental method and arc length method, this
method can greatly reduce the number of solutions and im-
prove the calculation efficiency.
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Table 1. Length parameters of boom sections.

Boom section L L4 L1 L2 L3 L4 Unit

1 15 160 −162 206 5634 11 062 12 006 mm
2 14 995 −179 185 5613 11 041 11 985 mm
3 14 870 −160 185 5613 11 041 11 985 mm
4 14 725 −160 185 5613 11 041 11 985 mm
5 14 890 −160 185 5613 11 041 11 985 mm
6 14 735 −160 185 5613 11 041 11 985 mm
7 14 570 −160 185 5613 11 041 11 985 mm
8 14 278 −160 – – – – mm

Table 2. Section parameters comparison of boom sections.

Boom section Present Ansys Contrast error

A (mm2) Iy (mm4) Iz (mm4) A Iy (mm4) Iz (mm4) A (%) Iy (%) Iz (%)

1 69 262 2.97× 1010 2.65× 1010 69 279 2.97× 1010 2.65× 1010
−0.02 0.07 −0.01

2 63 602 2.52× 1010 2.09× 1010 63 607 2.52× 1010 2.10× 1010
−0.01 0.16 −0.24

3 60 276 2.11× 1010 1.79× 1010 60 206 2.11× 1010 1.79× 1010 0.12 0.18 −0.03
4 49 624 1.53× 1010 1.31× 1010 49 625 1.53× 1010 1.31× 1010 0.00 0.32 0.11
5 44 723 1.21× 1010 1.05× 1010 44 725 1.21× 1010 1.06× 1010 0.00 0.15 −0.48
6 37 907 8.94× 109 7.89× 109 37 908 8.95× 109 7.89× 109 0.00 −0.06 0.06
7 33 473 6.80× 109 6.12× 109 33 473 6.80× 109 6.12× 109 0.00 0.00 −0.02
8 29 219 5.02× 109 4.65× 109 29 219 5.02× 109 4.65× 109 0.00 −0.07 0.00

Figure 10. Cantilever beam model.

6 Numerical examples

The relevant numerical examples in this section are calcu-
lated based on the actual structural parameters of a certain
type of all-terrain crane. The Young modulus of elasticity of
boom sections material is E = 2.1× 1011 Pa, material den-
sity is ρ = 7.85×103 kg m−3, and Poisson’s ratio is ν = 0.3.
The telescopic boom is composed of eight boom sections,
each boom section contains one boom pin and four pin holes,
and their positions along the length of the boom section are
recorded as L0, L1, L2, L3, and L4, as shown in Table 1.

In the commercial software Ansys19.1, the BEAM188 ele-
ment is used to customize the section according to the section

Figure 11. Telescopic boom combination modes.

parameters of each boom section, and the section moment of
inertia and area are calculated. The section parameters cal-
culated in this paper, and their comparison, are shown in Ta-
ble 2.
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Figure 12. Load–displacement relationship of right end node.

6.1 Example 1 of a cantilever beam about the boom
section

In this example, a cantilever beam model is taken as the cal-
culation object for relevant calculation comparison, as shown
in Fig. 10. The combination of different lengths of the tele-
scopic boom is realized by different connection modes of the
boom pin and the pin hole between boom sections. The super
element of the same boom section with different combina-
tions is different. Four connection modes are defined here,
corresponding to the lengths of different telescopic boom
combinations shown in Fig. 11.

The boom section 1 is taken as calculation model, which is
constrained as a cantilever beam. The end load is applied to
the origin of the section coordinate system. The z-direction
displacement and rotational angle around the y axis of the
right end node of four combination modes are calculated un-
der different super elements, as shown in Fig. 11.

Through the comparison of calculation results in Fig. 12, it
can be seen that, for the same boom section, when different
super elements are used, the error in calculation results is
very small, and the calculation results are consistent.

6.2 Example 2 of cantilever beam about boom section

Taking boom section 7 as the calculation model, the division
of a super element is established by the combination of mode
3, which is divided into three super elements with a total of
24 degrees of freedom. As shown in Fig. 11, the load applica-
tion mode and constraint form are established. A model con-
sistent with its section and length parameters is established in
the Ansys software, which is divided into 15 elements with a
total of 96 degrees of freedom, according to the basic length
of the subelement in a super element of this paper. The two
model diagrams are shown in Fig. 13.

Different discrete loads are applied at the section centroid
of the right end section of the model. Considering the ge-
ometrical nonlinear effect of the structure, Ansys software
sets the load step as 20 in a large displacement calculation.

Figure 13. Ansys and present finite element model of boom section
7.

The vertical z-direction displacements and rotational angles
around the y axis of the end nodes of the two models are cal-
culated. The load displacements and rotational angles com-
parison curves are shown in Fig. 14.

The calculation model is divided into several substruc-
tures, the calculation degrees of freedom are reduced
by static condensation, and the co-rotational formulation
method is used to consider the geometrical nonlinear effect
of the whole structure, which improves the efficiency of nu-
merical calculation. At the same time, through a curve com-
parison, it can be seen that the calculation results obtained by
the two different models have small errors, and the errors in
the displacements and rotational angles can meet the require-
ments of the calculation errors in engineering.
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Figure 14. Force–displacement relationship of the right end section.

Figure 15. Telescopic boom node number.

Figure 16. Nodal displacements of telescopic boom under different preloads.

6.3 Instability load of the all-terrain crane with a super
lift system

In this example, eight boom sections are assembled into a
telescopic boom, with the length being 55.5 m in accordance
with connection mode 2. The node number of the telescopic
boom is shown in Fig. 15. The preload of the guy rope is ap-
plied on the telescopic boom to resist the deformation of self-
weight before lifting the load. From the engineering point
of view, the larger the initial luffing angle of the telescopic
boom, the smaller the preload of the guy rope to overcome
the deformation will be. In this example, the luffing angle of
the telescopic boom is 83◦.

The preload is discretized from 10 to 40 kN into four
preloads for application, and the nodal displacements of the
telescopic boom relative to the horizontal and vertical direc-
tions of the initial position under different preload conditions
are obtained, as shown in Fig. 16.

Combining with the engineering practice, taking 20 kN as
the preload of the guy rope, the original length of the guy
rope is calculated, and the subsequent calculation is carried
out on this basis. In Fig. 15, the displacements of marker 1
and marker 2 points change with the increasing load, and the
final load displacement curves are shown in Fig. 17. It can be
seen from the curve that the lifting load is 6.9× 105 kg, and
the slope of the load displacement curve increases sharply at
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Figure 17. Load displacements of markers on a telescopic boom.

Figure 18. Instability loads of a telescopic boom under different preloads.

Figure 19. Telescopic boom deformation in the luffing plane and slewing plane.
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that point, which can be considered to be the critical instabil-
ity load of the telescopic boom.

In practical engineering, the critical instability load cannot
be used as the rated load of the all-terrain crane. During the
calculation, we monitor the slope change in the load displace-
ment curve of marker 1 and marker 2 points and take the ratio
of the real-time slope to the initial slope as the judgment cri-
terion, which is 3 in this calculation example. The most rea-
sonable value of this criterion needs to be selected through
a large number of calculations and tests. The instability load
curve of the telescopic boom with different preloads, and the
range of luffing angle at 70 to 85◦, is shown in Fig. 18.

It can be seen from Fig. 18 that, with the increase in
preload in the initial state, the deformation of telescopic
boom in the initial state is reduced to a certain extent, and
even the reverse bending deformation appears. At the same
time, the axial load of the telescopic boom increases, and the
instability load shows a downward trend in Fig. 18. For the
lifting capacity determined by the whole telescopic boom, it
also includes the load determined by the structural strength
of the boom. The final lifting capacity is data determined by
comprehensive factors, and the structural strength load will
be studied in follow-up research.

The preload of guy rope is 20 kN, and three lifting loads
are selected for calculation, with the lateral load ratio being
3 % of the lifting load, which acts on the boom head. The de-
formations in the luffing plane and slewing plane are shown
in Fig. 19.

7 Conclusion

The instability load of the telescopic boom of an all-terrain
crane can be obtained based on the differential form of sys-
tem governing equations. First, for each boom section, the
corresponding substructure is established by selecting rea-
sonable boundary nodes, and the internal degrees of free-
dom of the substructure are reduced by static condensation
method to form a super element. The approximately spe-
cific beam relationship between the corresponding boom sec-
tions and the boundary conditions of the telescopic boom are
given. Second, based on the proposed geometrical nonlinear
calculation method of the cable element, the nonlinear ex-
ternal force at the guy rope connection node of the telescopic
boom with initial preload is presented. The equilibrium equa-
tions of telescopic boom with the control parameters of load
are derived based on co-rotational procedures, and the tan-
gent stiffness of the equilibrium equations are formulated.
Finally, the equilibrium equations are transformed into dif-
ferential form, and the load displacement curves are illus-
trated by solving the differential equations with existing nu-
merical methods. A method to calculate the structural equi-
librium path and instability load of the telescopic boom of
the all-terrain crane with a guy rope preload is given, which

provides a certain theoretical support for the design of the
all-terrain crane.

Appendix A: Nomenclature

g1,g2,g3 Base vectors of the global coordinate sys-
tem for telescopic boom

e1,e2,e3 Base vectors of the local coordinate system
for a substructure

g Gravity acceleration in global coordinate
system

r1,r2 Current global position vectors of the two
end-section origins of a substructure

θ1,θ2 Global rotational angles of the two end-
sections of a substructure (Cardan angles)

r̂1, r̂2 Initial position vectors of the two end-
section origins for a substructure in local
coordinate system

û1, û2 Translational displacement vectors of the
two end-section origins for a substructure
in local coordinate system

ω1,ω2 Global angular velocities of the two end-
sections of a substructure

ω2 Angular velocities in local coordinate sys-
tem of a right section of a substructure

θ1,θ2 Rotational angle vectors of two end-
sections of a substructure in a local coor-
dinate system

R1,R2 Global rotational matrices of the two end-
sections of a substructure

R2 Transformation matrix between a right sec-
tion and a local coordinate system of a sub-
structure

ûe1, ûe2 Local displacement vectors of the two sec-
tion origins of a beam element in beam co-
ordinate system

ue1,ue2 Local translational displacement vectors of
the two-section centroid of a beam element
in a beam coordinate system

θe1,θe2 Local rotational angle vectors of the two
end-sections of a beam element in a beam
coordinate system

ke, k̂e Element stiffness matrix based on a section
centroid and section origin parameters

Ke Stiffness matrix of a super element
re,re Current global and initial local position

vectors of any point in a beam element
me,Le Mass per unit length and length of a beam

element
Gg Gravity influence coefficient matrix
G1,G2 Wind load influence coefficient matrix
bi1,b

i
2,b

i
3 Base vectors of the local coordinate system

of a boom section
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Tωsi Overlap point angular velocities coefficient
matrix of boom section overlap point

eb,ewi,es Telescopic boom, Y-shaped bracket, and
lifting rope axial base vectors

q Telescopic boom system variables with in-
dependent and dependent variables

0id Transformation matrix between indepen-
dent variables and system variables

8(q) Constraint equations of the telescopic
boom system

G0 Generalized force matrix corresponding to
the unit lifting load

λ Lifting load parameter
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