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We understand the Leontie� type stochastic di�erential equations as a special sort of Ito
stochastic di�erential equations, in which the left-hand side contains a degenerate constant
linear operator and the right-hand side has a non-degenerate constant linear operator. In the
right-hand side there is also a summand with a term depending only on time. Its physical
meaning is the incoming signal into the device described by the operators mentioned above.
In the papers by A.L. Shestakov and G.A. Sviridyuk the dynamical distortion of signals
is described by such equations. Transition to stochastic di�erential equations arise where
it is necessary to take into account the interference (noise). Note that the investigation of
solutions of such equations requires the use of derivatives of the incoming signal and the
noise of any order. In this paper for di�erentiation of noise we apply the machinery of the
so-called Nelson's mean derivatives of stochastic processes. This allows us to avoid using
the machinery of the theory of generalized functions. We present a brief introduction to
the theory of mean derivatives, investigate the transformation of the equations to canonical
form and �nd formulae for solutions in terms of Nelson's mean derivatives of Wiener process.
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Introduction

In papers [1, 2] a new approach to investigation on dynamically distorted signals is suggested
that is based on Leontie� type di�erential equations. Further development of this approach
requires taking interference (noise) into account that yields the transition to Stochastic Di�erential
Equations. Here the correspondent stochastic di�erential equation takes the form

L̃ξ(t) = M̃

∫ t

0
ξ(s)ds+ f(t) +Bw̃(t),

where L̃ is a degenerate matrix n × n, M̃ and B are non-degenerate matrices n × n, ξ(t) is
an n-dimensional stochastic process, f(t) is a smooth n-dimensional vector-function and w̃(t)
is a Wiener process in Rn. The physical meaning of these objects is as follows: f(t) is the
signal incoming into the device described by the matrices L̃ and M̃ , while B ˙̃w(t) (where ˙̃w(t) is
≪derivative≫ of Wiener process, i.e., white noise) describes the noise (interference).

The equations of such sort are called the Leontie� type stochastic di�erential equations.
The features of Leontie� type equations require dealing with the derivatives of f(t) and w(t)

of any order. In paper [3] in the simplest case, where the incoming signal is absent, B is the
unit matrix and the equation has been reduced to canonical form, the so called current velocities
(symmetric mean derivatives) of Wiener process are involved for describing the derivatives of
Wiener process. As a result some physically reasonable analytical formulae for the solutions are
obtained.
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The notion of mean derivatives was introduced by E. Nelson [4, 5, 6] for the needs of the so-
called Nelson's stochastic mechanics (a version of quantum mechanics). Later a lot of applications
of mean derivatives to some other branches of science were found. The investigation of Leontie�
type stochastic di�erential equations is a new �eld of application of mean derivatives. Note that
by general ideology of the theory of Nelson's mean derivatives the current velocities are natural
analogues of physical velocity of deterministic processes.

In this paper by the use of current velocities we investigate the general situation and do not
suppose the equation to be already reduced to canonical form. Some constructions connected to
reducing the equations to canonical form are announced in [7].

An alternative approach to investigation of Leontie� type stochastic equations, also based on
the use of current velocities, is suggested in [8].

Besides the Introduction the paper contains three Sections. The �rst one is devoted to basic
preliminary fact from the theory of mean derivatives necessary for the purpose of this article.
In Section 2 we investigate the transition of Leontie� type stochastic di�erential equations to
canonical form. In Section 3 we �nd formulae for the solutions of equations under consideration.

Throughout the paper we use Einstein's summation convention with respect to shared upper
and lower indices.

We refer the reader to [9, 10] for details on the machinery of mean derivatives.
The research is supported in part by RFBR Grants 10-01-00143 and 12-01-00183.

1. Preliminaries on the mean derivatives

Consider a stochastic process ξ(t) in Rn, t ∈ [0, l], given on a certain probability space
(Ω,F ,P) and such that ξ(t) is L1-random variable for all t.

Every stochastic process ξ(t) in Rn, t ∈ [0, l], determines three families of σ-subalgebras of
σ-algebra F :
(i) the ≪past≫ Pξ

t generated by pre-images of Borel sets in Rn by all mappings ξ(s) : Ω → Rn

for 0 ≤ s ≤ t;
(ii) the ≪future≫ Fξ

t generated by pre-images of Borel sets in Rn by all mappings ξ(s) : Ω → Rn

for t ≤ s ≤ l;
(iii) the ≪present≫ (≪now≫) N ξ

t generated by pre-images of Borel sets in Rn by the mapping
ξ(t).
All families are supposed to be complete, i.e., containing all sets of probability 0.

For convenience we denote the conditional expectation of ξ(t) with respect to N ξ
t by Eξ

t (·).
Ordinary (≪unconditional≫) expectation is denoted by E.
Strictly speaking, almost surely (a.s.) the sample paths of ξ(t) are not di�erentiable for almost

all t. Thus its �classical� derivatives exist only in the sense of generalized functions. To avoid using
the generalized functions, following Nelson (see, e.g., [4, 5, 6]) we give

De�nition 1. (i) Forward mean derivative Dξ(t) of ξ(t) at time t is an L1-random variable of
the form

Dξ(t) = lim
∆t→+0

Eξ
t (
ξ(t+∆t)− ξ(t)

∆t
) (1)

where the limit is supposed to exists in L1(Ω,F ,P) and ∆t → +0 means that ∆t tends to 0 and
∆t > 0.

(ii) Backward mean derivative D∗ξ(t) of ξ(t) at t is an L1-random variable

D∗ξ(t) = lim
∆t→+0

Eξ
t (
ξ(t)− ξ(t−∆t)

∆t
) (2)

where the conditions and the notation are the same as in (i).
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Note that mainly Dξ(t) ̸= D∗ξ(t), but if, say, ξ(t) a.s. has smooth sample paths, these
derivatives evidently coinside.

From the properties of conditional expectation (see [11] ) it follows that Dξ(t) and D∗ξ(t)
can be represented as compositions of ξ(t) and Borel measurable vector �elds (regressions)

Y 0(t, x) = lim
∆t→+0

E(
ξ(t+∆t)− ξ(t)

∆t
|ξ(t) = x)

Y 0
∗ (t, x) = lim

∆t→+0
E(

ξ(t)− ξ(t−∆t)

∆t
|ξ(t) = x) (3)

on Rn. This means that Dξ(t) = Y 0(t, ξ(t)) and D∗ξ(t) = Y 0
∗ (t, ξ(t)).

The derivatives introduced in De�nition 1, is a particular case of the objects de�ned as follows.
Let x(t) and y(t) be L1-stochastic processes in Rn, given on (Ω,F ,P). Introduce y-forward mean
derivative of x(t) by the formula

Dyx(t) = lim
∆t→+0

Ey
t (

x(t+∆t)− x(t)

∆t
) (4)

and y-backward mean derivative of x(t) by the formula

Dy
∗x(t) = lim

∆t→+0
Ey

t (
x(t)− x(t−∆t)

∆t
) (5)

where the limits must exist in L1(Ω,F ,P).

Recall that a process ξ(t) is called martingale (in our case � with respect its ≪past≫ Pξ
t ), if

for every time instants 0 ≤ s < t ≤ l the relation E(ξ(t) | Pξ
s ) = ξ(s) takes place.

Lemma 1. Let ξ(t) be a martingale with respect to its ≪past≫ Pξ
t . Then Dξ(t) = 0.

Proof. By the properties of conditional expectation Eξ
t (E(· | Pξ

t )) = Eξ
t (·). Then Eξ

t (ξ(t+∆t)−
ξ(t)) = Eξ

t (E(ξ(t+∆t)− ξ(t) | Pξ
t )) = Eξ

t (ξ(t)− ξ(t)) = 0.
2

De�nition 2. The derivative DS = 1
2(D+D∗) is called symmetric mean derivative. The derivative

DA = 1
2(D −D∗) is called anti-symmetric mean derivative .

Consider the vector �elds vξ(t, x) = 1
2(Y

0(t, x) + Y 0
∗ (t, x)) and uξ(t, x) = 1

2(Y
0(t, x) −

Y 0
∗ (t, x)).

De�nition 3. vξ(t) = vξ(t, ξ(t)) = DSξ(t) is called current velocity of ξ(t);
uξ(t) = uξ(t, ξ(t)) = DAξ(t) is called osmotic velocity of ξ(t).

For stochastic processes the current velocity is a direct analogue of ordinary physical velocity
of deterministic processes (see, e.g., [4, 5, 6, 9, 10]). The osmotic velocity measures how fast the
≪randomness≫ grows up.

By w(t) we denote the Wiener process. Recall that w(t) is a Wiener process (in our case,
with respect to its own ≪past≫ Pw

t ), if
1) its sample paths are a.s. continuous in t;
2) w(t) is a square integrable martingale with respect to Pw

t such that w(0) = 0 and
E((w(t)− w(s))2|Pw

t ) = t− s for t ≥ s.
Well-known Levi's theorem says that in addition w(t) has stationary independent Gaussian

increments and satis�es the equalities:

E(w(t)− w(s)) = 0, E((w(t)− w(s))2) = t− s
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for t ≥ s. In the other words, the increment w(t)− w(s) for t ≥ s is independent of Pw
s and has

the same distribution as w(t− s). Note that the probabilistic density ρw(t, x) of w(t) in Rn takes
the form

ρw(t, x) =
1

(2πt)
n
2

e−
x2

2t . (6)

Recall that the sample paths of w(t) are a.s. non-di�erentiable for almost all t and on every
arbitrarily small time inervals they a.s. have in�nite variation. Thus, the derivatives of w(t) in
usual sense exists only as a generalized function.

Below we often deal with the processes of the form

ξ(t) = ξ0 +

∫ t

0
β(s)ds+ w(t) (7)

where w(t) is a Wiener process. For such processes the above-mantioned �physical� properties of
current and osmotic velocities become clear from the following propositions.

Denote by ρξ(t, x) the density of process (7) with respect to Lebesgue measure λ on [0, l]×Rn.
This means that for every continuous inntegrable function f(t, x) on [0, l] × Rn the following
equality takes place: ∫

[0,l]×Rn

f(t, x)ρξ(t, x)dλ =

∫
Ω×[0,l]

f(t, ξ(t))dPdt.

Lemma 2. For porcess (7) in Rn the vector �eld uξ(t, x) is represented in the form

uξ(t, x) =
1

2
grad log ρξ(t, x). (8)

Lemma 3. For process (7) in Rn the vector �eld vξ(t, x) and the density ρξ(t, x) satisfy the
equation of continuity

∂ρξ(t, x)

∂t
= −div(ρξvξ). (9)

The proofs of Lemmas 2 and 3 in the form convenient for us, can be found in [9, 10].
For processes of more general type the above Lemmas can be generalized as follows.

Lemma 4. [12] Let ξ(t) satis�es the Ito equation ξ(t) =
∫ t
0 a(s, ξ(s))ds+

∫ t
0 A(s, x)dw(s). Then

uξ(t, x) =
1

2

∂
∂xj (α

ijρξ(t, x))

ρξ(t, x)

∂

∂xi
(10)

where (αij) is the matrix of operator AA∗.

Proof. Let f be an arbitrary smooth function on Rn with compact support. Note that f(ξ(t)) is

N ξ
t -measurable. Hence

E
(
f(ξ(t))Eξ

t (

∫ t

t−∆t
A(t, ξ(t))dw(t))

)
= E

(
f(ξ(t))

∫ t

t−∆t
A(t, ξ(t))dw(t)

)
.

Since f(ξ(t−∆t)) and
∫ t
t−∆tA(t, ξ(t))dw(t) are independent and E

∫ t
t−∆tA(t, ξ(t))dw(t) = 0, we

have

E(f(ξ(t))(

∫ t

t−∆t
A(t, ξ(t))dw(t)) = E

(
(f(ξ(t))− f(ξ(t−∆t)))(

∫ t

t−∆t
A(t, ξ(t))dw(t))

)
.
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By Ito formula f(ξ(t)) − f(ξ(t − ∆t)) =
∫ t
t−∆t(df · a(s, ξ(s)))ds + 1

2

∫ t
t−∆t tr f

′′(ξ(s))ds +∫ t
t−∆t(df ·A(s, ξ(s)))dw(s) (by · we denote the coupling of 1-forms and vectors). Thus

E

(
f(ξ(t))

∫ t

t−∆t
A(t, ξ(t))dw(t)

)
= E

(∫ t

t−∆t
(df · a(s, ξ(s)))A(s, ξ(s))dsdw(s)

+
1

2

∫ t

t−∆t
tr f ′′(ξ(s))(A(s, ξ(s)), A(s, ξ(s)))dsdw(s) +

∫ t

t−∆t
(df ·A(s, ξ(s)))A(s, ξ(s))ds

)
.

The �rst two integrals in the right-hand side equal zero. Calculations in coordinates show that
(df ·A)A = df · (AA∗).

On the other hand,

∫ T

0
E
(
f(ξ(t))uξ(t, ξ(t))

)
dt = −1

2

∫ T

0
E

(
f(ξ(t)) lim

∆t→+0
Eξ

t (

∫ t
t−∆tA(s, ξ(s))dw(s)

∆t
)

)
dt =

−1

2

∫ T

0
E(df ·AA∗)dt = −1

2

∫
Rn×[0,T ]

df ·AA∗ · ρξdt ∧ Λ =
1

2

∫
Rn×[0,T ]

f · d(AA∗ · ρξ)dt ∧ Λ =

1

2

∫
Rn×[0,T ]

f
d(AA∗ · ρξ)

ρξ
ρξdt ∧ Λ =

1

2

∫ T

0
E
(
f
d(AA∗ · ρξ)

ρξ

)
dt =

1

2

∫ T

0
E
(
f

∂
∂xj (α

ijρξ)

ρξ
∂

∂xi

)
dt.

Since this is valid for an arbitrary f as above, this means that uξ = 1
2
d(AA∗·ρξ)

ρξ
= 1

2

∂

∂xj
(αijρξ)

ρξ
∂
∂xi .

2

An alternative proof of Lemma 4 can be found in [12].
Let A as above be constant and non-degenerate. Then the matrix (αij) = (αij)−1 is well-posed

and it can be considered as the matrix of new innner product in Rn. In this case we obtain

Corollary 1.

uξ(t, x) =
1

2
Grad log ρξ(t, x) = Grad log

√
ρξ(t, x) (11)

where Grad denotes gradient with respect the inner product with matrix (αij).

Indeed, if A is constant, (αij) is constant as well, and formula (10) takes the form

uξ(t, x) =
1

2

∂
∂xj (α

ijρξ(t, x))

ρξ(t, x)

∂

∂xi
=

1

2
αij

∂
∂xj (ρ

ξ(t, x))

ρξ(t, x)

∂

∂xi
=

1

2
Grad log ρξ(t, x) = Grad log

√
ρξ(t, x).

We are using formulae (8) and (11) below.
Now consider autonomous smooth �eld of non-degenerate linear operators A(x) : Rn → Rn,

x ∈ Rn (i.e., (1, 1)-tensor �eld on Rn). Let ξ(t) be a di�usion process in which the integrand under
It�o integral is of the form A(ξ(t)). Then its di�usion coe�cient A(x)A∗(x) is a smooth �eld of
symmetric positive de�nite matrices α(x) = (αij(x)) ((2, 0)-tensor �eld on Rn). Since all these
matrices are non-degenerate and smooth, there exist the smooth �eld of converse symmetric and
positive de�nite matrices (αij). Hence this �eld can be used as a new Riemannian α(·, ·) = αijdx

i⊗
dxj on Rn. The volume form of this metric has the form Λα =

√
det(αij)dx

1 ∧ dx2 ∧ · · · ∧ dxn.
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Denote by ρξ(t, x) the probability density of random element ξ(t) with respect to the volume
form dt ∧ Λα =

√
det(αij)dt ∧ dx1 ∧ dx2 ∧ · · · ∧ dxn on [0, T ] × Rn, i.e., for every continuous

bounded function f : [0, T ]× Rn → R the relation

T∫
0

E(f(t, ξ(t)))dt =

T∫
0

∫
Ω

f(t, ξ(t))dP

 dt =

∫
[0,T ]×Rn

f(t, x)ρξ(t, x)dt ∧ Λα.

holds.

Lemma 5. For vξ(t, x) and ρξ(t, x) the equation of continuity takes the form

∂ρξ(t, x)

∂t
= −Div(vξ(t, x)ρξ(t, x)), (12)

where Div denotes the divergence with respect to Riemannian metric α(·, ·).

Proof. Here by ΛE we denote the form dx1 ∧ · · · ∧ dxn. So, Λ =
√

det(αij)ΛE .
Recall that Div(ρξvξ) = ∗−1d((ρξvξ) ⌋ Λ) where ⌋ is the interrior product of vector (ρξvξ)

and n-form Λ. But (ρξvξ) ⌋ Λ =
√

det(αij)
∑n

i=1(ρ
ξvξ)idx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn and

so Div(ρξvξ) = (ρξvξ)i√
det(αij)

∂
√

det(αij)

∂xi + ∂(ρξvξ)i

∂xi .

Specify a smooth function f(t, x) with compact support. By df we denote the di�erential
with respect to spacial coordinates: df = ∂f

∂xidx
i. Note that by coordinate calculations we get∫

[s,t]×Rn

(
df · (ρξvξ(τ, ξ(τ)))

)
dτ ∧ Λ =

∫
[s,t]×Rn

(
df · (ρξvξ(τ, ξ(τ)))

√
det(αij)

)
dτ ∧ ΛE =

−
∫
[s,t]×Rn

(
f(τ, x)

[√
det(αij)

∂(ρξvξ)i

∂xi
+ (ρξvξ)i

∂
√

det(αij)

∂xi

])
dτ ∧ ΛE =

−
∫
[s,t]×Rn

(
f(τ, x)

[
∂(ρξvξ)i

∂xi
+

(ρξvξ)i√
det(αij)

∂
√

det(αij)

∂xi

]√
det(αij)

)
dτ ∧ ΛE =

−
∫
[s,t]×Rn

(
f(t, x)

[
∂(ρξvξ)i

∂xi
+

(ρξvξ)i√
det(αij)

∂
√

det(αij)

∂xi

])
dτ ∧ Λ =

−
∫
[s,t]×Rn

(
f(τ, x)Div(ρξvξ)

)
dτ ∧ Λ.

By Ito formula

E
(
f(t, ξ(t))− f(s, ξ(s))

)
= E

(∫ t

s

∂f

∂τ
dτ +

∫ t

s
df · Y 0(τ, ξ(τ))dτ +

1

2

∫ t

s
tr f ′′(A,A)dτ

)
and by backward Ito formula

E
(
f(t, ξ(t))− f(s, ξ(s))

)
= E

(∫ t

s

∂f

∂τ
dτ +

∫ t

s
df · Y 0

∗ (τ, ξ(τ))dτ − 1

2

∫ t

s
tr f ′′(A,A)dτ

)
.
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Hence,

E
(
f(t, ξ(t))− f(s, ξ(s))

)
= E

(∫ t

s

∂f

∂τ
dτ +

∫ t

s
df · vξ(τ, ξ(τ))dτ

)
.

But

E
(∫ t

s

∂f

∂τ
dτ +

∫ t

s
df · vξ(τ, ξ(τ))dτ

)
=

∫
[s,t]×Rn

(∂f
∂τ

ρξ + [df · (ρξvξ(τ, ξ(τ)))]
)
dτ ∧ Λ =

∫
[s,t]×Rn

∂

∂τ

(
(f(τ, x)ρξ

)
dτ ∧ Λ−

∫
[s,t]×Rn

(
f(τ, x)

∂ρξ

∂τ

)
dτ ∧ Λ

−
∫
[s,t]×Rn

(
f(τ, x)Div(ρξvξ)

)
dτ ∧ Λ =

E
(
f(t, ξ(t))− f(s, ξ(s))

)
−
∫
[s,t]×Rn

(
f(τ, x)

∂ρξ

∂τ

)
dτ ∧ Λ−

∫
[s,t]×Rn

(
f(τ, x)Div(ρξvξ)

)
dτ ∧ Λ.

Thus
∫
[s,t]×Rn

(
f(τ, x)∂ρ

ξ

∂τ

)
dτ ∧ Λ +

∫
[s,t]×Rn

(
f(τ, x)Div(ρξvξ)

)
dτ ∧ Λ = 0. Since this is valid for

an arbitrary f(t, x) as above, this means that ∂ρξ

∂τ = −Div(ρξvξ).

2

An alternative proof of can be found in [6].
Since w(t) is a martingale, Dw(t) = 0, t ∈ [0, l) (see above).

Lemma 6. [See, e.g., [9, 10]] For t ∈ (0, l] the equality D∗w(t) =
w(t)
t holds.

Proof. From the de�nition of osmotic velocity uw(t, w(t)) it follows that D∗w(t) =
−2uw(t, w(t)). Since ρw(t,X) is given by formula (6), from formula (8) it follows that uw(t, x) =

−1
2 · x

t . Thus, D∗w(t) =
w(t)
t .

2

Corollary 2. DSw(t) =
w(t)
2t .

Let us turn to calculation of higher orders mean derivatives of w(t). Taking into account the
system of notation from [9, 10], we look for the k derivative as Dw, Dw

∗ or Dw
S (see (4) and (5)) of

the (k− 1)-th derivatives. This notation emphasizes that we always use the σ-algebra ≪present≫

of w(t).

Lemma 7. [See, e.g., [9, 10]] (i) Dw w(t)
t = −w(t)

t2
for t ∈ (0, l).

(ii) Dw
∗

w(t)
t = 0 for t ∈ (0, l].

(iii) Dw
S

w(t)
t = −w(t)

2t2
for t ∈ (0, l].

Proof. Indeed,

Dww(t)

t
= (

d

dt

1

t
)w(t) +

1

t
Dw(t) = −w(t)

t2

and

Dw
∗
w(t)

t
= (

d

dt

1

t
)w(t) +

1

t
D∗w(t) = −w(t)

t2
+

w(t)

t2
= 0.

Assertion (iii) follow from the last two formulae.

2
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Lemma 8. (i) Dw(w(t)
tk

) = −k w(t)
tk+1 ;

(ii) Dw
∗ (

w(t)
tk

) = −(k − 1)w(t)
tk+1

(iii) Dw
S (

w(t)
tk

) = −2k−1
2

w(t)
tk+1 .

Proof.
(i) Dw(w(t)

tk
) = d

dt
1
tk
w(t) + 1

tk
Dw(t) = −k w(t)

tk+1 + 0 = −k w(t)
tk+1

(ii) Dw
∗ (

w(t)
tk

) = d
dt

1
tk
w(t) + 1

tk
D∗w(t) = −k w(t)

tk+1 + 1
tk

w(t)
t = −(k − 1)w(t)

tk+1 ;

(iii) From the last two formulae we obtain that Dw
S (

w(t)
tk

) = −2k−1
2

w(t)
tk+1 .

2

Lemma 9. 1 For integer k ≥ 2

Dk
Sw(t) = (−1)k−1 ·

k−1∏
i=1

(2i− 1)

2k
· w(t)

tk
.

This formula is proved by induction starting from the assertions of Corollary 2, Lemma 7
(iii) and Lemma 8 (iii).

2. Leontie� type stochastic equations and their canonical form

As it is mentioned in the Introduction, the stochastic di�erential equation of Leontie� type
is a stochastic di�erential equation in Rn of the form L̃ξ(t) = M̃

∫ t
0 ξ(s)ds+

∫ t
0 f(s))ds+Bw̃(t),

where ξ(t) is a random and f(t) is a deterministic n-dimensional vectors, L̃, M̃ and B are n× n
matrices, where L̃ is degenerate (has zero determinant) while M̃ and B are non-degenerate and
w̃(t) is a Wiener process. Their physical meaning is the following: f(t) is an incoming signal into
the device described by operators L̃ and M̃ , B ˙̃w where ˙̃w(t) is white noise, is interference, and
ξ(t) is outgoing signal. The vector-function f(t) is supposed to be smooth.

If the sheaf M̃ + λL̃ is regular, one can apply the Kronecker-Weierstrass transformation
and reduce the matrices L̃ and M̃ to the quasi-diagonal form (see [13]). This transformation is
described by a pair of linear non-degenerate operators (matrices) that we denote by A = (aij) and
AR. The conjugate to A operator is denoted by A∗. In the quasi-diagonal form, under appropriate
numeration of basis vectors, in the matrix L = AL̃AR �rst along diagonal there are Jordan boxes
with zeros on diagonal, and the last matrix along diagonal is the unit one. In M = AM̃AR in the
lines corresponding to Jordan boxes, there is the unit matrix and the last block along diagonal
is a certain non-degenerate matrix. In the next section, for the sake of convenience, we present
matrices L and M in explicit form.

Denote by (·, ·) the standard inner product (Euclidean metric) in Rn. Recall that the Wiener
process w̃(t) is Gaussian with mean value 0 and covariation matrix tI, where I is the unit matrix,
i.e, with density (6) with respect to the volume form of Euclidean metric (·, ·).

Introduce the matrix C = AB. Since the matrices A and B are non-degenerate, C is non-
degenerate as well and such is also CC∗ = ABB∗A∗. Hence the inverse matrix (CC∗)−1 =
C∗−1C−1 is well-posed. Thus (see [14]), Cw̃(t) is also Gaussian with mean value 0 and covariation
matrix tCC∗ and so, with density

ρCw̃(t, x) = ((2πt)−n/2∆−1/2)exp(
−((CC∗)−1x, x)

2t
) (13)

1Note the misprint in this formula in [3] where mistakenly 2k−1 instead of 2k is set in the denominator.
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with respect to the same volume form, where ∆ is determinant of CC∗.
Introduce the new inner product (Eucliden metric) ⟨·, ·⟩ in Rn by formula ⟨X,Y ⟩ =

((CC∗)−1X,Y ).

Theorem 1. (i) For every vectors X and Y in Rn the identity ⟨CX,CY ⟩ = (X,Y ) holds. (ii)
The process w(t) = Cw̃(t) is a Wiener process in Rn with Euclidean metric ⟨·, ·⟩.

Proof. Recall that (CC∗)−1 = C∗−1C−1. Then

⟨CX,CY ⟩ = (C∗−1C−1CX,CY ) = (C−1CX,C−1CY ) = (X,Y ).

The volume form of metric ⟨·, ·⟩ di�ers from that of (·, ·) by the coe�cient ∆−1/2, i.e., the density
of Cw̃(t) with respect to the volume form of ⟨·, ·⟩ takes the form

((2πt)−n/2)exp(
−((CC∗)−1x, x)

2t
) = ((2πt)−n/2)exp(

−⟨x, x⟩
2t

). (14)

Obviously the other properties of Wiener process are satis�ed for Cw̃(t) in Rn with metric ⟨·, ·⟩.

2

Let e1, . . . , en be a natural orthonormal basis in Rn with (·, ·).

Corollary 3. Ce1, . . . , Cen is an orthonormal basis in Rn with ⟨·, ·⟩.

Corollary 4. Introduce η(t) = A−1
R ξ(t). In Rn with ⟨·, ·⟩ the Leontie� type stochastic equation

takes the form Lη(t) =
∫ t
0 Mη(s)ds+

∫ t
0 Af(s)ds+ w(t).

Taking into account formula (11), we see that the expression of current velocity for w(t)
contains Grad(C−1x,C−1x), where Grad is the gradient with respect to inner product ⟨·, ·⟩.

Lemma 10. d⟨x, x⟩ = d(C−1x,C−1x) = 2C∗−1C−1x, where d is exterior di�erential.

Lemma 11. Grad⟨x, x⟩ = Grad(C−1x,C−1x) = 2x.

The proof follows from the formula of lifting the indices

Grad(C−1x,C−1x) = CC∗d(C−1x,C−1x)

and from Lemma 10.
Hence, in Rn with ⟨·, ·⟩ formulae for current velocity and higher symmetric derivatives of

Wiener process w(t) have usual form as in Lemmas 6 � 9.

3. Solutions of Leontie� type stochastic equations

So (see Corollary 4), if the sheaf M̃ + λL̃ is regular, after the Kronecker-Weierstrass trans-
formation the Leontie� type stochastic equation in Rn with ⟨·, ·⟩ takes the form

Lη(t) =

∫ t

0
Mη(τ)dτ +

∫ t

0
Af(τ)dτ + w(t), (15)
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where η(t) = A−1
R ξ(t),

L = AL̃AR =



0 1 0 0 0 0 . . . 0 0 0 . . . 0
0 0 1 0 0 0 . . . 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 1 0 . . . 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 0 0 . . . 0
0 0 0 0 0 0 . . . 1 0 0 . . . 0
0 0 0 0 0 0 . . . 0 1 0 . . . 0
...

...
...

...
...

...
. . .

...
...

...
...

...
0 0 0 0 0 0 . . . 0 0 0 . . . 0
0 0 0 0 0 0 . . . 0 1 0 . . . 0
0 0 0 0 0 0 . . . 0 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 0 0 0 . . . 0 0 0 . . . 1



(16)

and

M = AM̃AR =



1 0 0 0 0 0 0 0 0 0 . . . 0
0 1 0 0 0 0 0 0 0 0 . . . 0
0 0 1 0 0 0 0 0 0 0 . . . 0
0 0 0 1 0 0 0 0 0 0 . . . 0
0 0 0 0 1 0 0 0 0 0 . . . 0
0 0 0 0 0 1 0 0 0 0 . . . 0
0 0 0 0 0 0 1 0 0 0 . . . 0
...

...
...

...
...

...
...

. . .
...

...
...

...

0 0 0 0 0 0 0 0 an−q
n−q an−q

n−q+1 . . . an−q
n

0 0 0 0 0 0 0 0 an−q+1
n−q an−q+1

n−q+1 . . . an−q+1
n

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 ann−q ann−q+1 . . . ann



. (17)

Everywhere below we deal with equation (15) in Rn with ⟨·, ·⟩.
It is clear (cf. (7)), that here for simplicity the initial value in (15) is supposed to be ξ(0) = 0.

Note that the solutions that we construct below, cannot satisfy this condition since they are
ill-posed at t = 0. That is why we approximate the solutions by processes that satisfy zero initial
condition but become solutions only after a certain, a priori given and arbitrarily small positive
time instant t0 > 0 (see below).

Remark 1. Rewrite (15) in the form Lη(t) − M
∫ t
0 η(s)ds − A

∫ t
0 f(s)ds = w(t). We see that

≪present≫ for the process Lη(t) − M
∫ t
0 η(s)ds − A

∫ t
0 f(s)ds coincides with the ≪present≫ for

w(t). Thus we use the latter σ-algebra for calculation of mean derivatives< i.e., we apply to (15)
the derivatives Dw, Dw

∗ or Dw
S . Note that the solutions found below, are measurable with respect

to the ≪present≫ of w(t) for every t.

Taking into account the structure of matrices (16) and (17), it is clear that (15) is decomposed
into several independent systems of equations. The one �at the bottom� corresponds to the unit
diagonal part of L and the last block of non-degenerate matrix in M . Denote the latter matrix
by K, and by ζ(t) the vector of dimension q + 1 constructed from the last q + 1 coordinates of
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η(t). Then ζ(t) is described by the equation

ζ(t) = K

∫ t

0
ζ(s)ds+

∫ t

0
Af(τ)dτ + w(t) (18)

in Rq+1. Here w(t) is a q+1-dimensional Wiener process constructed from the last q+1 coordinates
of w(t) in Rn and Af(t) is a q+1-dimensional vector constructed from the last q+1 coordinates of
Af(t). For (18) there is a well-known analytical formula of solutions: ζ(t) =

∫ t
0 e

K(t−τ)Af(τ)dτ +∫ t
0 e

K(t−τ)dw(τ).
The other systems correspond to the Jordan boxes in L and unit matrices, constructed from

the lines and columns in M . As an example, we consider (p + 1) × (p + 1) matrix (Jordan box)
N in the left upper corner of (16)

N =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
...

... . . .
...

0 0 0 0 . . . 1
0 0 0 0 . . . 0

 ,

and the corresponding unit matrix from (17). The other systems are quite analogous.
Denote by (Af)(p+1) the (p+1)-dimensional vector constructed from the �rst p+1 coordinates

of Af , by η(p+1)(t) � the (p+ 1)-dimensional vector with coordinates (η1(t), . . . , ηp+1(t))
constructed from the �rst (p+1) coordinates of η(t) and by w(p+1)(t) � the vector with coordinates
(w1(t), . . . , wp+1(t)) constructed from the �rst p + 1 coordinates of w(t). It is clear that the
coordinates of Af have the form (Af)i =

∑n
j=1 a

i
jf

j . Then η(p+1)(t) is described by the equation

Nη(p+1)(t) =

∫ t

0

(
η(p+1)(s) + (Af)(p+1)(s)

)
ds+ w(p+1)(t).

Written via coordinates, this system takes the form
0 1 0 0 0
0 0 1 0 0
...

...
...

...
...

0 0 0 0 1
0 0 0 0 0




η1(t)
η2(t)
...

ηp(t)
ηp+1(t)

 =



∫ t
0 (η

1(s) +
∑n

j=1 a
1
jf

j)ds∫ t
0 (η

2(s) +
∑n

j=1 a
2
jf

j)ds
...∫ t

0 (η
p(s) +

∑n
j=1 a

p
jf

j)ds∫ t
0 (η

p+1 +
∑n

j=1 a
p+1
j f j)ds

+


w1(t)
w2(t)
...

wp(t)
wp+1(t)

 . (19)

From the last equation of (19) we obtain∫ t

0
ηp+1(s)ds = −

∫ t

0
(

n∑
j=1

ap+1
j f j)ds− wp+1(t). (20)

Since the current velocity (symmetric mean derivative) corresponds to the physical velocity, from
this equation we �nd ηp+1(t) by applying the derivative Dw

S to both sides of the equality (see
Remark 1). Obviously application of the mean derivativesDw andDw

∗ (and soDw
S ) to the integrals

both in the left and the right-hand sides yields the same results: ηp+1(t) and
∑n

j=1 a
p+1
j f j ,

respectively. Thus we obtain that

ηp+1(t) = −
n∑

j=1

ap+1
j f j −Dw

Sw
p+1(t) = −

n∑
j=1

ap+1
j f j − wp+1(t)

2t
. (21)
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From the last but one equation we obtain

ηp+1(t) =

∫ t

0
(ηp(s) +

n∑
j=1

apjf
j)ds+ wp(t). (22)

Applying the arguments analogous to the above ones, we derive

ηp(t) = Dw
S η

p+1(t)−
n∑

j=1

apjf
j −Dw

Sw
p(t).

Substituting the expression for ηp+1(t) from (21) into the latter equality and using Lemma 7, we
obtain

ηp(t) = −
n∑

j=1

ap+1
j

df j

dt
−

n∑
j=1

apjf
j +

wp+1(t)

4t2
− wp(t)

2t
. (23)

By complete analogy, for 1 ≤ i ≤ p we obtain the recurrent formula

ηi(t) = Dw
S η

i+1(t)−
n∑

j=1

aijf
j −Dw

Sw
i(t). (24)

Taking into account Lemma 9 we derive from (24) the explicit expression for every ηi(t), 1 ≤ i ≤ p
in the form:

ηi(t) = −
p∑

k=i

 n∑
j=1

ak+1
j

dk−i+1f j

dtk−i+1

−
n∑

j=1

aijf
j

+

p+1∑
k=i+1

(−1)k−i+1

k−i∏
j=1

(2j − 1)

2k−i+1

wk(t)

tk−i+1

− wi(t)

2t
. (25)

Let us turn back to the question on zero initial values for solutions of system (19). From
the de�nition of symmetric mean derivatives it clearly follows that they are well-posed only on
open time-intervals since their construction involves both forward and backward time increments.
Taking into account formula (25), one can easily see that the solutions constructed above, have

the form of sums where some summands contain multipliers of wj(t)
tk

, k ≥ 1, type. So, the solutions
tend to zero as t → 0, i.e., at t = 0 the values do not exist.

A version of solving this problem is as follows. Specify an arbitrary small time instant t0 ∈
(0, l) and consider the function t0(t) by the formula

t0(t) =

{
t0 if 0 ≤ t ≤ t0;
t if t0 ≤ t.

In formulae (21), (23) and (24) replace the elements wj(t)
tk

by wj(t)
(t0(t))k

. After that the processes will

take zero value at t = 0 but only for t > t0 they will be the solutions of (15). Note that for two

di�erent time instants t
(1)
0 and t

(2)
0 , for t > max(t

(1)
0 , t

(2)
0 ) the values of corresponding solutions

coincide a.s.
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Ñòîõàñòè÷åñêèå äèôôåðåíöèàëüíûå óðàâíåíèÿ ëåîíòüåâñêîãî òèïà ìû ïîíèìàåì
êàê ñïåöèàëüíûé êëàññ ñòîõàñòè÷åñêèõ äèôôåðåíöèàëüíûõ óðàâíåíèé â ôîðìå Èòî,
ó êîòîðûõ â ëåâîé ÷àñòè èìååòñÿ âûðîæäåííûé ïîñòîÿííûé ëèíåéíûé îïåðàòîð, à
â ïðàâîé ÷àñòè � íåâûðîæäåííûé ïîñòîÿííûé ëèíåéíûé îïåðàòîð. Òàêæå â ïðàâîé
÷àñòè èìååòñÿ ñëàãàåìîå, çàâèñÿùåå òîëüêî îò âðåìåíè. Åãî ôèçè÷åñêèé ñìûñë � âõî-
äÿùèé ñèãíàë â óñòðîéñòâî, îïèñûâàåìîå óêàçàííûìè âûøå îïåðàòîðàìè. Â ñòàòüÿõ
À.Ë. Øåñòàêîâà è Ã.À. Ñâèðèäþêà ïîäîáíûå óðàâíåíèÿ èñïîëüçîâàíû äëÿ îïèñàíèÿ
äèíàìè÷åñêè èñêàæåííûõ ñèãíàëîâ. Ïåðåõîä ê ñòîõàñòè÷åñêèì äèôôåðåíöèàëüíûì
óðàâíåíèÿì âîçíèêàåò ïðè íåîáõîäèìîñòè ó÷åòà ïîìåõ. Îòìåòèì, ÷òî äëÿ èññëåäîâà-
íèÿ ðåøåíèé òàêèõ óðàâíåíèé íåîáõîäèìî èñïîëüçîâàòü ïðîèçâîäíûå ïðîèçâîëüíîãî
ïîðÿäêà îò ñèãíàëà è îò ïîìåõ. Â ýòîé ñòàòüå äëÿ äèôôåðåíöèðîâàíèÿ ïîìåõ ìû ïðè-
ìåíÿåì àïïàðàò òàê íàçûâàåìûõ ïðîèçâîäíûõ â ñðåäíåì ïî Íåëüñîíó îò ñëó÷àéíûõ
ïðîöåññîâ. Ýòî ïîçâîëÿåò ïðè èññëåäîâàíèè íå èñïîëüçîâàòü àïïàðàò òåîðèè îáîáùåí-
íûõ ôóíêöèé. Ìû äàåì êðàòêîå ââåäåíèå â òåîðèþ ïðîèçâîäíûõ â ñðåäíåì, èññëåäóåì
ïðåîáðàçîâàíèå óðàâíåíèé ê êàíîíè÷åñêîìó âèäó è íàõîäèì ôîðìóëû äëÿ ðåøåíèé â
òåðìèíàõ ïðîèçâîäíûõ â ñðåäíåì âèíåðîâñêîãî ïðîöåññà.

Êëþ÷åâûå ñëîâà: ïðîèçâîäíàÿ â ñðåäíåì, òåêóùàÿ ñêîðîñòü, âèíåðîâñêèé ïðîöåññ,

óðàâíåíèå ëåîíòüåâñêîãî òèïà.
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