
{	domas / @xoreaxeaxeax / DEF CON 2018

The ring 0 facade:
awakening the processor's inner demons

disclaimer:
The research presented herein was conducted and completed
as an independent consultant. None of the research presented

herein was conducted under the auspices of my current
employer. The views, information and opinions expressed in
this presentation and its associated research paper are mine

only and do not reflect the views, information or opinions of my
current employer.

Ñ Christopher Domas
Ó  Cyber Security Researcher

./bio

Ñ General-purpose-registers
Ñ Special-purpose-registers
Ñ FPU, MMX, XMM, YMM, ZMM
Ñ Control registers
Ñ Model-specific-registers

Processor registers

Ñ Debugging
Ñ Execution tracing
Ñ Performance monitoring
Ñ Clocking
Ñ Thermal controls
Ñ Cache behavior

Model-specific-registers

Ñ Undocumented debug features
Ñ Unlock disabled cores
Ñ Hardware backdoors

 (project:rosenbridge)

Digging deeper…

Ñ Accessing MSRs:
Ó  Ring 0
Ó  Accessed by address, not name

Ô  0x00000000 – 0xFFFFFFFF
Ó  Only a small fraction are implemented

Ô  10s – few 100s
Ó  64 bits
Ó  Read with rdmsr
Ó  Written with wrmsr

Model-specific-registers

/* configure fast strings and XD in MISC_ENABLE */

movl $0x1a0, %%ecx /* load msr address */

rdmsr /* read msr 0x1a0 */

/* configure new values for msr */
orl $1, %%eax
orl $4, %%edx

wrmsr /* write msr 0x1a0 */

Model-specific-registers

“
Additionally, accessing some of the internal control registers can
enable the user to bypass security mechanisms, e.g., allowing

ring 0 access at ring 3.

…

For these reasons, the various x86 processor manufacturers
have not publicly documented any description of the address or

function of some control MSRs .
”

 - US 8341419

Digging deeper…

“
Nevertheless, the existence and location of the

undocumented control MSRs are easily found by
programmers, who typically then publish their findings for all

to use.

…

The disclosure to the customer [OEMs] may result in the
secret of the control MSRs becoming widely known, and

thus usable by anyone on any processor.
”

 - US 8341419

Digging deeper…

“
The microprocessor also includes a secret key, manufactured
internally within the microprocessor and externally invisible.

…

…configured to decrypt a user-supplied password using the
secret key to generate a decrypted result

in response to a user instruction instructing the microprocessor to

access the control register.
”

 - US 8341419

Digging deeper…

Ñ  Could my processor have…

 secret,
 undocumented,
 password protected

 …registers in it, right now?

Digging deeper…

Ñ AMD K7, K8
Ó  Known password protected MSRs
Ó  Discovered through firmware RE
Ó  32 bit password loaded into a GPR

Ñ Let’s start here, as a case study
Ó  Use a black box approach to develop

 a more generic method

Password protections

movl $0x12345678, %%edi /* password */
movl $0x1337c0de, %%ecx /* msr */
rdmsr

/* if MSR 0x1337c0de does not exist,

 CPU generates #GP(0) exception */

/* if password 0x12345678 is incorrect,

 CPU generates #GP(0) exception */

Password protections

Ñ Challenge:
Ó  To detect a password protected MSR,

 must guess the MSR address
 and the MSR password

Ó  Guessing either one wrong gives the same result:
 #GP(0) exception

Ó  32 bit address + 32 bit password = 64 bits

Password protections

// naive password protected MSR identification

for msr in 0 to 0xffffffff:
 for p in 0 to 0xffffffff:
 p -> eax, ebx, edx, esi, edi, esp, ebp
 msr -> ecx
 try:
 rdmsr
 catch:
 // fault: incorrect password, or msr does not exist
 continue
 // no fault: correct password, and msr exists
 return (msr, p)

Password protections

Ñ Even in the simple embodiment
 (32 bit passwords)

Ó  At 1,000,000,000 guesses per second
Ó  Finding all password-protected MSRs

 takes 600 years

Password protections

Ñ How might we detect whether
 our processor is hiding
 password protected registers,
 without needing to know the
 password first?

Password protections

Ñ Assembly is a high level abstraction
Ó  CPU micro-ops execute assembly instructions

Speculation

Ñ Possible pseudocode for
 microcoded MSR accesses:

if msr == 0x1:
 ... // (service msr 0x1)
elif msr == 0x6:
 ... // (service msr 0x6)
elif msr == 0x1000:
 ... // (service msr 0x1000)
else:
 // msr does not exist
 // raise general protection exception
 #gp(0)

Ñ  Possible pseudocode for password-
protected microcoded MSR:

if msr == 0x1:
 ... // (service msr 0x1)

elif msr == 0x6:
 ... // (service msr 0x6)

elif msr == 0x1337c0de:
 // password protected register – verify password
 if ebx == 0xfeedface:
 ... // (service msr 0x1337c0de)
 else:
 // wrong password
 // raise general protection exception
 #gp(0)

else:
 // msr does not exist
 // raise general protection exception
 #gp(0)

Ñ Microcode:
Ó  Checks if the user is accessing a password-

protected register
Ó  Then checks if supplied password is correct

Ñ Same visible result to the user
Ñ But…

Ó  Accessing a password-protected MSR
 takes a slightly different amount of time than
 accessing a non-existing MSR

Speculation

Ñ Non-existing MSR path (0x12345678):

if msr == 0x1:
 ... // (service msr 0x1)

elif msr == 0x6:
 ... // (service msr 0x6)

elif msr == 0x1337c0de:
 // password protected register – verify password
 if ebx == 0xfeedface:
 ... // (service msr 0x1337c0de)
 else:
 // wrong password
 // raise general protection exception
 #gp(0)

else:
 // msr does not exist
 // raise general protection exception
 #gp(0)

Ñ Password-protected MSR path (0x1337c0de):

if msr == 0x1:
 ... // (service msr 0x1)

elif msr == 0x6:
 ... // (service msr 0x6)

elif msr == 0x1337c0de:
 // password protected register – verify password
 if ebx == 0xfeedface:
 ... // (service msr 0x1337c0de)
 else:
 // wrong password
 // raise general protection exception
 #gp(0)

else:
 // msr does not exist
 // raise general protection exception
 #gp(0)

Ñ Password-protected MSR path is
 different than non-existent MSR path

Ó So timing will differ

Speculation

Ñ Possible to craft each path
 to have identical execution time

Ó  Complexities of microcode +
 no public research attacking MSRs =
 seems unlikely

Speculation

mov %[_msr], %%ecx /* load msr */

mov %%eax, %%dr0 /* serialize */
rdtsc /* start time */
movl %%eax, %%ebx

rdmsr /* access msr */

rdmsr_handler: /* exception handler */

mov %%eax, %%dr0 /* serialize */
rdtsc /* end time */

subl %%ebx, %%eax /* calculate access time */

A timing side-channel

Ñ Attack executed in ring 0 kernel module
Ñ #GP(0) exception is redirected to

instruction following rdmsr
Ñ System stack reset after each

measurement to avoid
specific fault handling logic

A timing side-channel

Ñ  Initial configuration routine measures
 execution time of a #GP(0) exception
 (by executing a ud2 instruction)

Ó  Subtracted out of faulting MSR measurements

Ñ Serialization handles out-of-order execution
Ñ Simplicity: only track low 32 bits of timer
Ñ Repeat sample, select lowest measurement

A timing side-channel

Ñ  (Video demo)

AMD K8

AMD K8

Ñ Timing measurements let us speculate
 on a rough model of
 the underlying microcode

Ñ Specifically, focused on
 variations in observed fault times.

A timing side-channel

AMD K8

Ñ Shows ucode identifies MSR group
 prior to checking specific MSRs.

A timing side-channel

if msr < 0x174:
 if msr == 0x0: ...
 elif msr == 0x1: ...
 elif msr == 0x10: ...
 ...
 else: #gp(0)

elif msr < 0x200:
 if msr == 0x174: ...
 ...
 else: #gp(0)

elif msr < 0x270:
 if msr == 0x200: ...
 ...
 else: #gp(0)

elif msr < 0x400:
 if msr == 0x277: ...
 ...
 else: #gp(0)

elif msr < 0xc0000000:
 if msr == 0x400: ...
 ...
 else: #gp(0)

elif msr < 0xc0000080:
 #gp(0)

elif msr < 0xc0010000:
 if msr == 0xc0000080: ...
 ...
 else: #gp(0)

elif msr < 0xc0011000:
 if msr == 0xc0010000: ...
 ...
 else: #gp(0)

elif msr < 0xc0020000:
 #gp(0)

else:
 #gp(0)

// possible k8 ucode model

Ñ Find the bounds checks that
 appear to exist for no purpose

Ó  i.e. regions explicitly checked by ucode,
 even though there are no visible MSRs within them

A timing side-channel

if msr < 0x174:
 if msr == 0x0: ...
 elif msr == 0x1: ...
 elif msr == 0x10: ...
 ...
 else: #gp(0)

elif msr < 0x200:
 if msr == 0x174: ...
 ...
 else: #gp(0)

elif msr < 0x270:
 if msr == 0x200: ...
 ...
 else: #gp(0)

elif msr < 0x400:
 if msr == 0x277: ...
 ...
 else: #gp(0)

elif msr < 0xc0000000:
 if msr == 0x400: ...
 ...
 else: #gp(0)

elif msr < 0xc0000080:
 #gp(0)

elif msr < 0xc0010000:
 if msr == 0xc0000080: ...
 ...
 else: #gp(0)

elif msr < 0xc0011000:
 if msr == 0xc0010000: ...
 ...
 else: #gp(0)

elif msr < 0xc0020000:
 #gp(0)

else:
 #gp(0)

// possible k8 ucode model

Ñ Timings show that there are
 explicit ucode checks on the regions:

Ó  0xC0000000 – 0xC000007F
Ó  0xC0011000 – 0xC001FFFF
Ó  … even though there are

 no visible MSRs in those regions

A timing side-channel

AMD K8

Ñ Speculate that anomalies
 must be due to password checks

Ó  Reduces MSR search space by 99.999%
Ó  Cracking passwords is now feasible

Cracking protected registers

Ñ Simple embodiment:
Ó  32 bit password
Ó  Loaded into GPR or XMM register
Ó  Use list of side-channel derived MSRs
Ó  Continue until MSR is unlocked,

 or all passwords are tried

Cracking protected registers

// side-channel assisted password identification

for msr in [0xC0000000:0xC000007F, 0xC0011000: 0xC001FFFF]:
 for p in 0 to 0xffffffff:
 p -> eax, ebx, edx, esi, edi, esp, ebp
 msr -> ecx
 try:
 rdmsr
 catch:
 // fault: incorrect password, or msr does not exist
 continue
 // no fault: correct password, and msr exists
 return (msr, p)

Cracking protected registers

Ñ Cracked the AMD K8
Ó  One day, instead of 600 years.
Ó  Password 0x9c5a203a loaded into edi
Ó  MSRs: 0xc0011000 – 0xc001ffff
Ó  Check on 0xc0000000

– 0xc000007f remains unexplained

Cracking protected registers

Ñ This region and password were already
 known through firmware reverse engineering

Ñ But this is the first approach to uncovering
 these MSRs without first observing them in use

Cracking protected registers

Ñ Side-channels into microcode
 offer a new opportunity

Ó … so what else can we find?

Digging deeper…

AMD E350

VIA C3

VIA Nano

Intel Atom N270

Intel Core i5

Ñ Cracking extensions:
Ó  Write protected MSRs
Ó  64 bit password in 2 32 bit registers

Ô  Accessible from real mode

Advanced cracking

Ñ And…
Ó  Failed.
Ó  No new passwords uncovered.

Advanced cracking

Ñ Sometimes, that’s research.

Conclusions

Ñ How to explain the timing anomalies?
Ó  More advanced password checks,

 as described in patent literature
Ó  MSRs only accessible in

 ultra-privileged modes beyond ring 0

Conclusions

Ñ … or, something totally benign:
Ó  Microcode checks on processor family, model, stepping

Ô  Allow one ucode update to be used on many processors
Ó  Timing anomalies in MSR faults on Intel processors

 seemed to accurately align with
 specific documented MSRs on related families

Conclusions

Ñ So, we’re in the clear?

Ó  Sadly, no.
Ó  Instruction grep through firmware databases

 reveals previously unknown passwords:
Ô  0x380dcb0f in esi register
Ô  Hundreds of firmwares, variety of vendors
Ô  Windows kernel
Ô  Likely: unlocks processor I did not have

Conclusions

Ñ We’ve raised more questions
 than we’ve answered

Ñ But the stakes are high:
Ó  MSRs control everything on the processor

Ñ Research is promising
Ó  Entirely new approach to detecting processor secrets

The truth is out there…

Ñ github.com/xoreaxeaxeax
Ó project:nightshyft
Ó project:rosenbridge
Ó sandsifter
Ó M/o/Vfuscator
Ó REpsych
Ó  x86 0-day PoC
Ó  Etc.

Ñ Feedback? Ideas?

Ñ domas
Ó @xoreaxeaxeax
Ó xoreaxeaxeax@gmail.com

