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Ñ General-purpose-registers 
Ñ Special-purpose-registers 
Ñ FPU, MMX, XMM, YMM, ZMM 
Ñ Control registers 
Ñ Model-specific-registers 

Processor registers 



Ñ Debugging 
Ñ Execution tracing 
Ñ Performance monitoring 
Ñ Clocking 
Ñ Thermal controls 
Ñ Cache behavior 

Model-specific-registers 



Ñ Undocumented debug features 
Ñ Unlock disabled cores 
Ñ Hardware backdoors    

  (project:rosenbridge) 

Digging deeper… 



Ñ Accessing MSRs: 
Ó  Ring 0 
Ó  Accessed by address, not name 

Ô  0x00000000 – 0xFFFFFFFF 
Ó  Only a small fraction are implemented 

Ô  10s – few 100s 
Ó  64 bits 
Ó  Read with rdmsr 
Ó  Written with wrmsr 

Model-specific-registers 



/* configure fast strings and XD in MISC_ENABLE */ 
 
movl $0x1a0, %%ecx /* load msr address */ 
  
rdmsr /* read msr 0x1a0 */ 
  
/* configure new values for msr */ 
orl $1, %%eax 
orl $4, %%edx 
  
wrmsr /* write msr 0x1a0 */ 

Model-specific-registers 



“ 
Additionally, accessing some of the internal control registers can 
enable the user to bypass security mechanisms, e.g., allowing 

ring 0 access at ring 3. 
 
… 
 

For these reasons, the various x86 processor manufacturers 
have not publicly documented any description of the address or 

function of some control MSRs . 
” 

    - US 8341419  

Digging deeper… 



“ 
Nevertheless, the existence and location of the 

undocumented control MSRs are easily found by 
programmers, who typically then publish their findings for all 

to use. 
 
… 
 

The disclosure to the customer [OEMs] may result in the 
secret of the control MSRs becoming widely known, and 

thus usable by anyone on any processor. 
” 

    - US 8341419  

Digging deeper… 



“ 
The microprocessor also includes a secret key, manufactured 
internally within the microprocessor and externally invisible. 

 
… 
 

…configured to decrypt a user-supplied password using the 
secret key to generate a decrypted result 

 
in response to a user instruction instructing the microprocessor to 

access the control register. 
” 

    - US 8341419  

Digging deeper… 



Ñ  Could my processor have… 
 

 secret, 
  undocumented, 
    password protected 

 
    …registers in it, right now? 

Digging deeper… 



Ñ AMD K7, K8 
Ó  Known password protected MSRs 
Ó  Discovered through firmware RE 
Ó  32 bit password loaded into a GPR 
 

Ñ Let’s start here, as a case study 
Ó  Use a black box approach to develop  

   a more generic method 

Password protections 



movl $0x12345678, %%edi  /* password */ 
movl $0x1337c0de, %%ecx  /* msr */ 
rdmsr 
 
/* if MSR 0x1337c0de does not exist,  

 CPU generates #GP(0) exception */ 
 
/* if password 0x12345678 is incorrect,  

 CPU generates #GP(0) exception */ 

Password protections 



Ñ Challenge: 
Ó  To detect a password protected MSR,   

  must guess the MSR address    
 and the MSR password 

Ó  Guessing either one wrong gives the same result:  
 #GP(0) exception 

Ó  32 bit address + 32 bit password = 64 bits 

Password protections 



// naive password protected MSR identification 
 
for msr in 0 to 0xffffffff: 
    for p in 0 to 0xffffffff: 
        p -> eax, ebx, edx, esi, edi, esp, ebp 
        msr -> ecx 
        try: 
            rdmsr 
        catch: 
            // fault: incorrect password, or msr does not exist 
            continue 
        // no fault: correct password, and msr exists 
        return (msr, p) 

Password protections 



Ñ Even in the simple embodiment  
 (32 bit passwords) 

Ó  At 1,000,000,000 guesses per second 
Ó  Finding all password-protected MSRs  

    takes 600 years 

Password protections 



Ñ How might we detect whether  
 our processor is hiding   
 password protected registers,   
 without needing to know the   
 password first? 

Password protections 



Ñ Assembly is a high level abstraction 
Ó  CPU micro-ops execute assembly instructions 

Speculation 



Ñ Possible pseudocode for    
 microcoded MSR accesses: 

 
if msr == 0x1: 
 ... // (service msr 0x1) 
elif msr == 0x6: 
 ... // (service msr 0x6) 
elif msr == 0x1000: 
 ... // (service msr 0x1000) 
else: 
 // msr does not exist 
 // raise general protection exception 
 #gp(0) 



Ñ  Possible pseudocode for      password-
protected microcoded MSR: 

 
if msr == 0x1: 
 ... // (service msr 0x1) 

elif msr == 0x6: 
 ... // (service msr 0x6) 

elif msr == 0x1337c0de: 
 // password protected register – verify password 
 if ebx == 0xfeedface: 
  ... // (service msr 0x1337c0de) 
 else: 
  // wrong password 
  // raise general protection exception 
  #gp(0) 

else: 
 // msr does not exist 
 // raise general protection exception 
 #gp(0) 



Ñ Microcode: 
Ó  Checks if the user is accessing a   password-

protected register 
Ó  Then checks if supplied password is correct 

Ñ Same visible result to the user 
Ñ But… 

Ó  Accessing a password-protected MSR   
 takes a slightly different amount of time   than 
 accessing a non-existing MSR 

Speculation 



Ñ Non-existing MSR path (0x12345678): 
 

if msr == 0x1: 
 ... // (service msr 0x1) 

elif msr == 0x6: 
 ... // (service msr 0x6) 

elif msr == 0x1337c0de: 
 // password protected register – verify password 
 if ebx == 0xfeedface: 
  ... // (service msr 0x1337c0de) 
 else: 
  // wrong password 
  // raise general protection exception 
  #gp(0) 

else: 
 // msr does not exist 
 // raise general protection exception 
 #gp(0) 



Ñ Password-protected MSR path (0x1337c0de): 
 

if msr == 0x1: 
 ... // (service msr 0x1) 

elif msr == 0x6: 
 ... // (service msr 0x6) 

elif msr == 0x1337c0de: 
 // password protected register – verify password 
 if ebx == 0xfeedface: 
  ... // (service msr 0x1337c0de) 
 else: 
  // wrong password 
  // raise general protection exception 
  #gp(0) 

else: 
 // msr does not exist 
 // raise general protection exception 
 #gp(0) 



Ñ Password-protected MSR path is 
 different than non-existent MSR path 

Ó So timing will differ 

Speculation 



Ñ Possible to craft each path   
 to have identical execution time 

Ó  Complexities of microcode +   
 no public research attacking MSRs =  
     seems unlikely 

Speculation 



mov %[_msr], %%ecx   /* load msr */ 
  
mov %%eax, %%dr0   /* serialize */ 
rdtsc     /* start time */ 
movl %%eax, %%ebx 
  
rdmsr     /* access msr */ 
  
rdmsr_handler:    /* exception handler */ 
  
mov %%eax, %%dr0   /* serialize */ 
rdtsc     /* end time */ 
  
subl %%ebx, %%eax   /* calculate access time */ 

A timing side-channel 



Ñ Attack executed in ring 0 kernel module 
Ñ #GP(0) exception is redirected    to 

instruction following rdmsr 
Ñ System stack reset after    each 

measurement    to avoid 
specific fault handling logic 

A timing side-channel 



Ñ  Initial configuration routine measures 
 execution time of a #GP(0) exception 
 (by executing a ud2 instruction) 

Ó  Subtracted out of faulting MSR measurements 

Ñ Serialization handles out-of-order execution 
Ñ Simplicity: only track low 32 bits of timer 
Ñ Repeat sample, select lowest measurement 

A timing side-channel 



Ñ  (Video demo) 



AMD K8 



AMD K8 



Ñ Timing measurements let us speculate 
 on a rough model of    
 the underlying microcode 

Ñ Specifically, focused on   
 variations in observed fault times. 

A timing side-channel 



AMD K8 



Ñ Shows ucode identifies MSR group  
 prior to checking specific MSRs. 

A timing side-channel 



if msr < 0x174: 
 if msr == 0x0: ... 
 elif msr == 0x1: ... 
 elif msr == 0x10: ... 
 ... 
 else: #gp(0) 

elif msr < 0x200: 
 if msr == 0x174: ... 
 ... 
 else: #gp(0) 

elif msr < 0x270: 
 if msr == 0x200: ... 
 ... 
 else: #gp(0) 

elif msr < 0x400: 
 if msr == 0x277: ... 
 ... 
 else: #gp(0) 

 
 
 
 

elif msr < 0xc0000000: 
 if msr == 0x400: ... 
 ... 
 else: #gp(0) 

elif msr < 0xc0000080: 
 #gp(0) 

elif msr < 0xc0010000: 
 if msr == 0xc0000080: ... 
 ... 
 else: #gp(0) 

elif msr < 0xc0011000: 
 if msr == 0xc0010000: ... 
 ... 
 else: #gp(0) 

elif msr < 0xc0020000: 
 #gp(0) 

else: 
 #gp(0) 

 

// possible k8 ucode model 



Ñ Find the bounds checks that    
 appear to exist for no purpose 

Ó  i.e. regions explicitly checked by ucode,   
 even though there are no visible MSRs within them 

A timing side-channel 



if msr < 0x174: 
 if msr == 0x0: ... 
 elif msr == 0x1: ... 
 elif msr == 0x10: ... 
 ... 
 else: #gp(0) 

elif msr < 0x200: 
 if msr == 0x174: ... 
 ... 
 else: #gp(0) 

elif msr < 0x270: 
 if msr == 0x200: ... 
 ... 
 else: #gp(0) 

elif msr < 0x400: 
 if msr == 0x277: ... 
 ... 
 else: #gp(0) 

 
 
 
 

elif msr < 0xc0000000: 
 if msr == 0x400: ... 
 ... 
 else: #gp(0) 

elif msr < 0xc0000080: 
 #gp(0) 

elif msr < 0xc0010000: 
 if msr == 0xc0000080: ... 
 ... 
 else: #gp(0) 

elif msr < 0xc0011000: 
 if msr == 0xc0010000: ... 
 ... 
 else: #gp(0) 

elif msr < 0xc0020000: 
 #gp(0) 

else: 
 #gp(0) 

 

// possible k8 ucode model 



Ñ Timings show that there are  
 explicit ucode checks on the regions: 

Ó  0xC0000000 – 0xC000007F 
Ó  0xC0011000 – 0xC001FFFF 
Ó  … even though there are    

  no visible MSRs in those regions 

A timing side-channel 



AMD K8 



Ñ Speculate that anomalies   
 must be due to password checks 

Ó  Reduces MSR search space by 99.999% 
Ó  Cracking passwords is now feasible 

Cracking protected registers 



Ñ Simple embodiment: 
Ó  32 bit password 
Ó  Loaded into GPR or XMM register 
Ó  Use list of side-channel derived MSRs 
Ó  Continue until MSR is unlocked,   

  or all passwords are tried 

Cracking protected registers 



// side-channel assisted password identification 
 
for msr in [0xC0000000:0xC000007F, 0xC0011000: 0xC001FFFF]: 
    for p in 0 to 0xffffffff: 
        p -> eax, ebx, edx, esi, edi, esp, ebp 
        msr -> ecx 
        try: 
            rdmsr 
        catch: 
            // fault: incorrect password, or msr does not exist 
            continue 
        // no fault: correct password, and msr exists 
        return (msr, p) 

Cracking protected registers 



Ñ Cracked the AMD K8 
Ó  One day, instead of 600 years. 
Ó  Password 0x9c5a203a loaded into edi 
Ó  MSRs: 0xc0011000 – 0xc001ffff 
Ó  Check on      0xc0000000 

– 0xc000007f remains unexplained 

Cracking protected registers 



Ñ This region and password were already  
 known through firmware reverse engineering 

Ñ But this is the first approach to uncovering   
 these MSRs without first observing them in use 

Cracking protected registers 



Ñ Side-channels into microcode    
   offer a new opportunity 

Ó … so what else can we find? 

Digging deeper… 



AMD E350 



VIA C3 



VIA Nano 



Intel Atom N270 



Intel Core i5 



Ñ Cracking extensions: 
Ó  Write protected MSRs 
Ó  64 bit password in 2 32 bit registers 

Ô  Accessible from real mode 

Advanced cracking 



Ñ And… 
Ó  Failed. 
Ó  No new passwords uncovered. 

Advanced cracking 



Ñ Sometimes, that’s research. 

Conclusions 



Ñ How to explain the timing anomalies? 
Ó  More advanced password checks,    

 as described in patent literature 
Ó  MSRs only accessible in     

  ultra-privileged modes beyond ring 0 

Conclusions 



Ñ … or, something totally benign: 
Ó  Microcode checks on processor family, model, stepping 

Ô  Allow one ucode update to be used on many processors 
Ó  Timing anomalies in MSR faults on Intel processors 

 seemed to accurately align with   
 specific documented MSRs on related families 

Conclusions 



Ñ So, we’re in the clear? 

Ó  Sadly, no. 
Ó  Instruction grep through firmware databases  

  reveals previously unknown passwords: 
Ô  0x380dcb0f in esi register 
Ô  Hundreds of firmwares, variety of vendors 
Ô  Windows kernel 
Ô  Likely: unlocks processor I did not have 

Conclusions 



Ñ We’ve raised more questions    
   than we’ve answered 

Ñ But the stakes are high: 
Ó  MSRs control everything on the processor 

Ñ Research is promising 
Ó  Entirely new approach to detecting processor secrets 

The truth is out there… 



Ñ github.com/xoreaxeaxeax 
Ó project:nightshyft 
Ó project:rosenbridge 
Ó sandsifter 
Ó M/o/Vfuscator 
Ó REpsych 
Ó  x86 0-day PoC 
Ó  Etc. 

Ñ Feedback?  Ideas? 

Ñ domas 
Ó @xoreaxeaxeax 
Ó xoreaxeaxeax@gmail.com 



  


