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Abstract: Bacillus anthracis is a potent biowarfare agent, able to be highly lethal. The bacteria dwell in
the soil of certain regions, as natural flora. Bacteriophages or their lytic enzymes, endolysins, may
be an alternative for antibiotics and other antibacterials to fight this pathogen in infections and to
minimize environmental contamination with anthrax endospores. Upon screening environmental
samples from various regions in Poland, we isolated three new siphophages, J5a, F16Ba, and z1a,
specific for B. anthracis. They represent new species related to historical anthrax phages Gamma,
Cherry, and Fah, and to phage Wbeta of Wbetavirus genus. We show that the new phages and
their closest relatives, phages Tavor_SA, Negev_SA, and Carmel_SA, form a separate clade of the
Wbetavirus genus, designated as J5a clade. The most distinctive feature of J5a clade phages is their cell
lysis module. While in the historical phages it encodes a canonical endolysin and a class III holin, in
J5a clade phages it encodes an endolysin with a signal peptide and two putative holins. We present
the basic characteristic of the isolated phages. Their comparative genomic analysis indicates that
they encode two receptor-binding proteins, of which one may bind a sugar moiety of B. anthracis
cell surface.

Keywords: Bacillus anthracis; bacteriophages; complete genomic sequence; siphovirus; Wbetavirus;
endolysin; receptor-binding protein; arbitrium system; phage tail

1. Introduction

Anthrax is a serious, often fatal zoonotic disease caused by B. anthracis, a spore-forming
rod typically found in soil within the environment of herbivores (i.e., sheep, cattle, and
goats) [1]. Spores are extremely resistant to harsh environmental conditions, and for this
reason, they can survive in the soil for years and infect grazing animals [2]. Natural human
infections occur sporadically in developed countries, mainly in people exposed to infected
animal products (e.g., meat or hides).

B. anthracis, especially in the form of endospores, is one of the greatest biowarfare
threats because of its high morbidity and mortality rates, low infective dose, relative ease of
production, and difficulty in detection and decontamination. In the case of the intentional
release of aerosolized spores or the contamination of drinking water, there is a high risk to
national security and public health [3]. Currently, according to the CDC, the recommended
procedure in case of anthrax infection relies on broad-spectrum antibiotics or antitoxin
therapy. However, an antibiotic application can take up to 60 days and may include intra-
venous administration. Additionally, to have a chance of a full recovery, it is important to
get medical care in a short time after exposure [4]. One may suspect that B. anthracis strains
with naturally or artificially developed antibiotic resistance can be potentially used in a
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bioterrorist attack [5]. Therefore, it is of public interest to develop novel, rapid antibacterial
agents against B. anthracis, with different modes of action than those of commonly used
antibiotics. Phages and their lytic enzymes, endolysins (or lysins), may become such agents
due to their high specificity and activity against antibiotic-resistant bacteria.

B. anthracis is a member of Bacillus cereus group. Its strains have been clustered
based on genomic and physiological analysis to one of the three clades of this group [6,7].
Their feature commonly considered as differentiating and essential for pathogenicity is
the production of two exotoxins (lethal toxin and edema toxin) and poly-γ-D-glutamic
acid capsule [8]. The toxin and capsule are encoded by two separate plasmids, pXO1 and
pXO2, respectively. However, strains of other B. cereus group species with these plasmids
have been also isolated. Additionally, at the genomic level, B. anthracis is so similar to
certain other B. cereus group species that it is believed to have evolved as a separate species
only recently. Moreover, within species, B. anthracis strains show little genetic diversity,
presumably as a result of long dormancy periods in the form of endospores in soil [9]. These
features mean that the chances of finding novel specific B. anthracis-infecting phages are
limited and that certain phages infecting B. anthracis can infect also B. cereus group strains.

Previously isolated phages infecting B. cereus group members display diversity in
morphology and host range. They were classified in the past into the Siphoviridae (e.g., Wβ,
Wip2, Wip4, and Frp2), Myoviridae (e.g., Wip5, Frp1, Crookii), or Tectiviridae (e.g., Wip1 and
Htp1) families [10,11]. To date, whole genomes of over 404 Bacillus phages have been
deposited in GenBank (http://www.ncbi.nlm.nih.gov, accessed on 30 November 2021).
Sequence comparisons revealed that they belong to at least 12 highly diverse evolutionary
groups [12]. Many of them have proven utility for typing or can be potentially useful
in phage therapy or biocontrol [13]. The first B. anthracis-specific phage was isolated in
1930 from crude sewage [14]. Since then, several additional B. anthracis phages have been
isolated, among them the well-known phage Gamma [15]—a diagnostic tool to distinguish
B. anthracis from other B. cereus group members [16]. As a result of the genetic instability
and the widespread use of Gamma phage, there are now several similar, yet genetically
distinct, Gamma-like phages (e.g., temperate phage Wbeta and virulent phages Fah, LSU,
USAMRIID, and Cherry) [17,18].

Particular attention is paid to B. anthracis phage lysins that cleave the peptidoglycan
cell wall of infected bacteria to allow for the passage of infecting phage DNA or for the
release of progeny virions [19]. For example, PlyG lysin, isolated from the Gamma phage,
specifically kills both vegetative cells and germinating spores of B. anthracis isolates and
other members of the B. anthracis “cluster” of bacilli [20]. Another lysin, PlyPH, acquired
by the B. anthracis genome from a phage source, has a high degree of sequence identity of
the putative C-terminal domain with PlyG, but presumably different catalytic action. Both
enzymes share an identical range of activities, which may suggest that they may recognize
and bind the same cell wall epitope [21].

In this paper, we describe three new phages specific against B. anthracis. They can
infect and lyse only B. anthracis and none of the other B. cereus group strains tested. The
new phages show only around 69–87% identity to certain other anthrax phages. Nucleotide
sequences of their endolysins show noticeable differences from those encoded by Gamma,
Cherry, or Fah phages. The newly isolated phages could potentially find use in certain
applications, such as in B. anthracis identification and detection assays [2]. Their engineered
derivatives depleted of genomic modules essential for lysogeny might be also useful in
treating human or animal infections (likewise their endolysins), or as decontaminants or
disinfectants (of skin, surface, or clothes).

2. Materials and Methods
2.1. Bacterial Strains

A complete list of the bacterial strains used in these studies is included in Table S1.
The strains were used to determine the host range of the studied phages and they comprise
bacteria from the B. cereus group and B. subtilis ATCC 6633 strain. The list includes transi-
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tional strains from the B. cereus group (B. cereus and/or B. thuringiensis) that do not have
plasmids but have a chromosomal anthrax marker gene—Ba 813 [22]. Their origin is not
confirmed, but presumably they may have originated from B. anthracis [23].

The vaccine strain of B. anthracis 34F2 was used as a phage host strain in all experiments.
A blood Columbia agar, TSA, and TSB media were used to grow and culture the strains.

2.2. Isolation of the B. anthracis-Infecting Bacteriophages and Their Host Range Determination

Bacteriophages were isolated from environmental samples, e.g., soil and manure,
collected in different regions of Poland (J5a—south-eastern Poland, Subcarpathia; F16Ba—
north-eastern Poland, Podlasie region; z1a—central-eastern Poland, the Lublin Region).
For this purpose, environmental samples (~10 g) topped up to 35 mL with TSB medium
supplemented with MgSO4 (0.2%), were incubated overnight at 37 ◦C, with the addition of
100 µL of an overnight culture of B. anthracis 34F2 strain. The following day, the samples
were treated with 0.5 mL chloroform, put on a shaker for 30 min, and centrifuged for 30 min
at 4200× g. The supernatant was then syringe-filtered (PES 0.22 µm Millipore filter, Merck
Millipore, Burlington, MA, USA), and 15 µL of the filtrate was spotted on a lawn of B.
anthracis cells in a top layer (0.7% agar) of double-layered TSA Petri dish and incubated
overnight at 37 ◦C. Clear plaques obtained the following day were picked, suspended in
1 mL of TM buffer (50 mM Tris-Cl, 10 mM MgSO4, pH 7.5), vortexed vigorously, and plated
again on the top layer of TSA agar with the indicator B. anthracis cells on the double-layered
TSA Petri dish (this plating method was used in all further experiments). This was repeated
at least two more times to obtain a pure clone of the given phage. The individual phages
were propagated on the host strain, syringe-filtered (0.22 µm), and the lysates were used in
the following studies.

To determine the phage host range, the 10–15 µL aliquots of undiluted and diluted
lysates containing a given phage were spotted on lawns of different B. cereus group bacteria
in the TSA soft agar on the double-layered TSA Petri dish, and incubated overnight at
37 ◦C. The phage sensitivity of bacteria was assessed the next day based on the presence of
clear lysis zones and plaques.

2.3. Pulsed-Field Gel Electrophoresis (PFGE)

PFGE was performed to estimate phage genome sizes and phage preparation purity.
For this purpose, 60 µL of lysate containing phages was warmed to 54 ◦C and mixed
with 60 µL of a pre-warmed, 2% plug agarose (CleanCut, Bio-Rad, Hercules, CA, USA),
dispensed into plug molds, and solidified. The plugs were then incubated overnight at
54 ◦C with shaking, in 5 mL of PL buffer (Phage Lysis buffer—50 mM Tris, 50 mM EDTA,
1% SDS) with 25 µL of Proteinase K (20 mg/mL). The following day, the plugs were washed
3 times in 5 mL of a pre-warmed TE buffer (10 mM Tris, 1 mM EDTA, pH 8) for 15 min
each time.

PFGE was performed in 1% pulsed-field certified agarose gel (Bio-Rad), at a voltage of
180 V and 6 V/cm, using a CHEF-DR III system (Bio-Rad). The separation was performed in
0.5× TBE buffer for 16 h at 4 ◦C. Following electrophoresis, the gel was stained in ethidium
bromide (0.5 µg/mL) for 30 min.

2.4. Transmission Electron Microscopy

Lysates containing phages (17 mL each) were ultracentrifuged at 116,200× g for
2 h. The pellet was suspended in 0.1 M ammonium acetate (pH 7.5), centrifuged again
(36,440× g for 2 h at 4 ◦C), and resuspended in 50 µL of 0.1 M ammonium acetate. The
concentrated phage suspension (2.5 µL) was spotted on a 300× 300-mesh Formvar/carbon-
coated copper grid (TAAB Laboratories Equipment Ltd, Berks, England) and left for 3 min.
Excess solution was removed with filter paper, and the grids were negatively stained with
2% uranyl acetate (pH 6.8–7) for 2–3 min. After removing the excess staining solution, the
grids were dried for 15 min at room temperature. The samples were visualized in a JEM
1400 TEM microscope (JEOL Co., Tokyo, Japan) at 300,000×magnification.
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2.5. Optimal Multiplicity of Infection Assay

To determine the optimal multiplicity of infection (MOI) for phage propagation, phage
and bacteria titers were equaled, then mixed together at the following ratios: 1, 0.5, 0.1, 0.05,
and 0.01, and incubated for 15 min at 37 ◦C. After the incubation, samples were centrifuged
at 6100× g for 10 min, and the supernatant containing unabsorbed phages was discarded.
The pellets were suspended in 100 µL of LB medium and incubated for 4 h at 37 ◦C with
shaking to allow for the development of phages in infected cells. Then, the aliquots of
serially diluted and undiluted suspensions were plated on double-layered Petri dishes with
indicator bacteria, as described in Section 2.2. The plates were incubated overnight at 37 ◦C
and served to count plaques. The phage-to-bacteria ratio at which the number of plaques
obtained was the highest (optimal MOI) was used in further experiments.

2.6. Adsorption Efficiency Assay and One-Step Growth

A B. anthracis overnight culture in TSB medium was refreshed by 100× dilution
and incubated with shaking at 37 ◦C until the optical density at 600 nm (OD600) reached
0.5 (approx. 6.5 × 106 CFU/mL). After incubation, 10 mL of the bacterial culture was
centrifuged at 3000× g for 10 min at 4 ◦C. The supernatant was removed, and the pellet was
resuspended in 1 mL of LB medium. Phage stock was then mixed with the host bacteria at
MOI 0.5 and incubated at 37 ◦C for 20 min, followed by centrifugation at 5000× g for 10 min
at 4 ◦C. The supernatant with free phages was discarded, and the pellet was resuspended
in 1 mL of a fresh LB medium. This step was repeated twice. After centrifugation, the
pellet was suspended in 25 mL of a pre-warmed LB medium, and incubation at 37 ◦C with
shaking (100 rpm) was started. The samples of supernatant (100 µL) were taken out of the
suspension at every 5 or 10 min (including time zero), serially diluted, and used for plaque
assay as described in Section 2.2.

For the determination of the adsorption efficiency of each phage to bacteria, a protocol
similar to that described by Baptista et al. [24] for Bacillus phage SPP1 was adopted. An
overnight culture of B. anthracis was refreshed by 100× dilution and cultured to OD600 ≤ 0.5
at 37 ◦C with constant shaking. The phage stock was mixed with bacteria at MOI 0.5 and
vortexed. A sample of the mixture (100 µL, time zero) was immediately removed and
diluted 10 times by transferring to a tube containing 0.9 mL of ice-cold LB. The rest of the
mixture was incubated at 30 ◦C, and samples (100 µL) were taken every 5 min for up to
40 min, vortexed, mixed with 0.9 mL of ice-cold LB, and kept in ice. The tubes collected in
an ice cooler were vortexed and centrifuged at 12,000× g for 5 min. Top samples (100 µL)
of supernatants served to prepare serial dilutions, which were used for plaque assays on
the double-layered TSA Petri dish to determine the concentration of unabsorbed phages
remaining in the supernatant at each time point.

2.7. Sensitivity of Phages to Temperature and pH

The thermal stability of the phages was studied at five different temperatures (20, 37,
50, 60, and 70 ◦C). Phage titers were equaled, and 1 mL aliquots of the lysates (108 PFU/mL
in a TM buffer) were incubated at the respective temperatures for 10 min, 30 min, 60 min,
and 3 h. Each time, the withdrawn volumes (100 µL) were serially diluted in a TM buffer
and then plated using the double-layered TSA plates with indicator bacteria.

Phage sensitivity to pH was evaluated using a TM buffer adjusted with 1 M NaOH or
HCl to the following pH values: 2, 3, 4, 6, 8, 10, 12, and 13. Aliquots of 500 µL of lysates
(108 PFU/mL in a TM buffer) were suspended in 4.5 mL of the respective buffer in sterile
tubes. Tubes were incubated at room temperature for 1 h, then the suspensions were serially
diluted and plated on double-layered Petri dishes.

2.8. Genomic DNA Extraction, Sequencing and Identification of Virion DNA Termini

Genomic DNA of the purified phages was extracted using the Genomic Mini AX
Phage kit (A&A Biotechnology, Gdańsk, Poland) and digested with various restriction
endonucleases to differentiate. The DNA of selected phages was sequenced.
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Whole-genome sequencing and the initial assembly were performed at the Laboratory
of DNA Sequencing and Oligonucleotide Synthesis of the Institute of Biochemistry and
Biophysics in Warsaw. Genomic fragment libraries were constructed using a Kapa Library
Preparation kit (KAPA/Roche), following phage DNA fragmentation using nebulization.
The sequencing was performed using MiSeq (Illumina, San Diego, CA, USA). The raw
sequence reads generated were processed using the cutadapt tool (https://journal.embnet.
org/index.php/embnetjournal/article/view/200, accessed on 10 February 2018) to remove
the remaining adapters and the FastX toolkit (http://hannonlab.cshl.edu/fastx_toolkit/,
accessed on 10 February 2018) to delete low-quality data. Filtered data were assembled in
contigs using Newbler v3.0 (Roche, Basel, Switzerland).

The assembly patterns of genomic sequence reads and PhageTerm software [25] were
used to predict the termini of virion DNA molecules and DNA packaging mechanisms.
To test whether the new phages contain single-stranded cohesive ends (cos sequence),
their virion DNA molecules were treated with T4 DNA ligase and used as templates
for PCR amplifications. For J5a and F16Ba phages, two unique primers, complemen-
tary to the regions flanking the ligation sites of predicted DNA termini and similar to
those described previously by Fouts [26], (5′-GGATAAGAATAGATACTATGACC and 5′-
TCAACCTGACTAATTCAGCAGC), were used. For z1a, the 5′-CGTACCGTGCTAAACTA-
TCTACA primer was used as the latter primer. The obtained PCR products were sequenced.

Additionally, we performed DNA restriction analysis to visualize termini regions.
Digestion patterns were first predicted using a SnapGene Simulate Agarose Gel tool (Snap-
Gene 4.1.9, GSL Biotech LLC, San Diego, CA, USA). Phage DNA was digested with selected
restriction enzymes overnight and then either left untreated or heated to 55/85 ◦C for
10 min, followed by immediate cooling on ice for 15 min. DNA fragments of each sample
were separated electrophoretically in a 1% agarose gel. DNA of Lambda phage was used
as a positive control for the re-ligation and melting of 5′ cos termini. The assembled phage
DNA sequences were re-organized according to their identified ends.

2.9. Genomic Sequence Analysis and Annotation

Assembled phage sequences were annotated automatically using RAST at its Web
site (https://rast.nmpdr.org/, accessed on 15 February 2018) [27]. The annotations were
corrected manually based on the results of DNA analysis with the use of BLASTx and
NCBI RefSeq database. The closest homologs of proteins encoded by the predicted CDSs
were identified using BLASTp, BLASTx, and tBLASTn (https://blast.ncbi.nlm.nih.gov/
Blast.cgi, accessed on 20 June 2021). The proteins were queried against Viruses taxid
database or B. cereus group taxid (when no viral homologs were found). In the case of
homologs identified as encoded by bacteria, the PHASTER server was used for verifi-
cation whether their genes are in prophages (https://phaster.ca/, accessed on 12 Jan-
uary 2021) [28,29]. Additionally, protein motifs were identified with the use of PHM-
MER tool (https://www.ebi.ac.uk/Tools/hmmer/search/phmmer, accessed on 18 May
2021) [30]. Protein transmembrane domains and signal sequences were predicted with the
use of TMHMM 2.0 and SignalP 5.0 at their websites (www.cbs.dtu.dk/services/TMHMM-
2.0/ and https://services.healthtech.dtu.dk/service.php?SignalP-5.0, both accessed on
5 November 2021) [31,32]. Selected proteins were additionally analyzed with the use of
HHpred (https://toolkit.tuebingen.mpg.de/tools/hhpred, accessed on 16 December 2021)
to find their structural homologs [33,34].

BLASTn (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 20 June 2021) tool
was used to find close relatives of tested phages among phages of completely sequenced
genomes deposited in GenBank. Percentage identities between the DNA sequences of the
tested phages and their close relatives were calculated with the use of Viridic [35]. The
phylogenetic relatedness of newly isolated phages with similar phages was determined
based on genome-wide sequence similarities calculated by tBLASTx with the use ViPTree
(https://www.genome.jp/viptree/, accessed on 23 November 2021) [36], which utilizes
the original proteomic tree concept developed by Rohwer and Edwards [37]. In addition,
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the phylogenetic position of newly isolated phages among closely related phages was
determined using BioNumerics v7.6 (Applied Maths, Sint-Martens-Latem, Belgium) by
analyzing the major capsid proteins and terminase large subunits. The twelve most sim-
ilar phage genomes were used as the reference genomes in further comparative studies.
The numbers of core proteins within particular phage clades were calculated with the
use of CoreGenes 5.0 (https://coregenes.ngrok.io/, accessed on 20 June 2021) with the
bidirectional best hit algorithm and E-value 1e-05 [38,39].

Geneious Prime software version 2021.2.1 (Biomatters, Auckland, New Zealand)
was used to create a whole-genome synteny map of the newly isolated phages and their
close relatives. Nucleotide multiple sequence alignment was performed using MAFFT
7.0 program [40,41]. The corresponding proteins of tested phages and their relatives were
analyzed again using BLASTp to determine their amino acid sequence similarity, and
color-coding was used to mark the results based on the percentage identity of protein
sequences compared.

2.10. Nucleotide Sequences Accession Numbers

GenBank accession numbers: Complete genomic sequences of phages J5a, F16Ba and
z1a have been deposited in GenBank, under the accession numbers: MT745955, MT745954,
MT745956, respectively.

3. Results
3.1. Phage Host Range and Morphology

On the basis of the preliminary results of phage sequence analysis, three of the newly
isolated phages, vB_BanS-J5a, vB_BanS-F16Ba, and vB_BanS-z1a (J5a, F16Ba, and z1a),
were selected for further research.

The host range of the selected phages was investigated with the use of 51 bacterial
strains, including four virulent B. anthracis strains. Of the tested strains, all three phages
could productively lyse only cells of B. anthracis strains, as indicated by the formation of
single plaques. Notably, Bacillus sp. 813+ strains, containing anthrax chromosomal marker
gene, turned out to be insensitive to phages. All phages formed plaques of about 1 mm or
less in diameter on a layer of each of the sensitive strain cells (Figure 1). Only in the case of
phage J5a plaques could one see a faint halo zone at the border of plaques.

Figure 1. Transmission electron micrographs of (a) J5a, (b) F16Ba, and (c) z1a phage. Plaque
morphologies of each phage are shown at the upper right corner of each TEM image. For TEM, the
phages were stained with 2% uranyl acetate [42]. The scale bar corresponds to 100 nm.

https://coregenes.ngrok.io/
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Based on the analysis of TEM images, all three phages were taxonomically assigned to
the siphovirus morphotype of Caudoviricetes class (Figure 1). Their virions are composed of
a long, non-contractile tail and a head. The tails of an average length of 188 nm end with
a central tail fiber (spike), which is protruding below the baseplate (see Figure 1a). The
head diameters (58 nm on average) fit the approximate virion DNA sizes of these phages,
estimated based on their migration in PFGE (approximately 40 kb).

3.2. Adsorption Efficiency, One-Step Growth Curve, and Optimal MOI

The adsorption of all phages to their host cells started quickly upon mixing phages
with bacteria, and the adsorption efficiencies were similar (Figure 2a). About 70–85% of
phages could be adsorbed upon 30 min of phage addition to bacteria (Figure 2a, Table 1).
Results of one-step growth experiments indicated also similar latent periods and burst
sizes of all three phages (Figure 2b; Table 1).
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step growth curves.

Table 1. Comparison of adsorption efficiencies, latency times, and burst sizes of phages J5a, F16Ba,
and z1a.

Phage Adsorption (30 min) Burst Size (PFU/mL) Latent Period (min)

J5a 84.3% 20 35
F16Ba 72.4% 16.5 25

z1a 75.8% 17 30

Infection of indicator strain cells with each of the phages tested with different MOIs
showed that the highest production of phage progeny for all three phages was obtained when
phages and bacteria were mixed in the ratio 1:2; thus, MOI 0.5 was used in further experiments.

3.3. Sensitivity of Phages to Temperature and pH

All three phages were stable at pH between 3 and 11, with no statistically significant
differences between them. No phage particles remained viable upon treatment in a solution
of pH 2 and 13 (Figure 3).
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Figure 3. Survivability of phages J5a, F16Ba, and z1a upon incubation at different pHs.

All three phages appeared to be equally stable at temperatures 20 ◦C and 37 ◦C. Their
titer was slightly decreasing after prolonged incubation at 50 ◦C (Figure 4). Phage z1a was
the least stable at this temperature, and its titer decreased by about 1.5 orders of magnitude
after three hours. At 60 ◦C and 70 ◦C, a significant time-dependent decline of phage titers
could be observed in the case of all tested phages.

Figure 4. Thermal stability of phages J5a, F16Ba, and z1a.
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3.4. General Features of Phage Genomic Sequences and Identification of Virion DNA Ends

The sequence reads of J5a, z1a, and F16Ba genome library fragments assembled into
40,353, 39,355, and 38,554 bp molecules, respectively. Virion DNA molecules of all three
phages appeared to end with 5’ overhangs of CGCCGCCCC sequence as determined with
PhageTerm. The presence of cos sequences at the ends of virion DNA was consistent with
the differences in the electrophoretic migration of mildly denatured and non-denatured
restriction-digested phage DNA in a gel (Figure 5). The pattern of bands representing frag-
ments of digested phage DNA changed upon heating, revealing the denatured fragments
containing cohesive ends and derived from the fragments annealed through these ends
prior to denaturation, like in the case of the Lambda phage (Figure 5).

Figure 5. Differences in the migration pattern of denatured and non-denatured restriction fragments
of phages J5a, F16Ba, and z1a DNA upon electrophoretic separation in a 1% agarose gel. The fragments
that contain cos overhangs and migrate separately upon partial denaturation are marked with red
squares, while the products of their annealing through the cos sequences that are formed under
non-denaturing conditions are marked with green squares. (a) Phage λ DNA digested with PstI
(11,497 + 2560 = 14,057 bp). Differences in bands are visible upon DNA denaturation at 85 ◦C; (b) J5a
phage DNA digested with PacI (5448 + 2508 = 7956 bp). Different migration upon denaturation
at 85 ◦C is more clearly visible; (c) F16Ba phage DNA digested with PacI after heating at 85 ◦C
(3868 + 1877 = 5745 bp); (d) z1a phage DNA digested with PsuI (16,390 + 2203 = 18,413 bp). The
DNA ladder used was the SM0311 GeneRuler 1 kb (Thermo Scientific, Waltham, MA, USA). In
silico-predicted migration patterns are available in Supplementary Data for comparison (Figure S1).

The summary of general genomic features of phages J5a, F16Ba, and z1a is shown
in Table 2. The G+C content in the genomes of all three phages is similar to that of their
bacterial host B. anthracis (35.1%). The predicted genes can encode 63, 58, and 54 proteins,
respectively, and no tRNA.
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Table 2. Genomic features of the phages J5a, F16Ba, and z1a.

Phage Genome
Size (bp) %GC

Number of
Predicted

Genes

Closest Relative
(GenBank Acc. No.)

%
Identity

vB_BanS-J5a
(J5a) 40,353 35.17 63

Bacillus phage
Tavor_SA

(KY963369.1)
80.5

vB_BanS-z1a
(z1a) 39,355 35.10 58

Bacillus phage
Carmel_SA

(KY963371.1)
86.5

vB_BanS-F16Ba
(F16Ba) 38,554 34.84 54

Bacillus phage
Carmel_SA

(KY963371.1)
87.1

The new phages are 85.3% (J5a vs. z1a), 81.5% (F16Ba vs. z1a), and 78.0% (F16Ba vs.
J5a) identical with each other, and have a similar organization of genes in the genomes
(Figure 6). They appear to be closely related to the B. anthracis phages: Negev_SA, Carmel_SA,
and Tavor_SA. The similarity of new phages with each other and with their closest, previ-
ously described relatives is below the demarcation criteria that allow one to classify two
phages to the same species (95%) [43], indicating that each of the newly isolated phages
represents a new species.

Figure 6. Comparison of schematic genomic maps of phages J5a, F16Ba, and z1a. Genes are color-
coded based on their predicted functions.

3.5. Phylogenetic Analysis

A search of GenBank for sequences similar to those of J5a, F16Ba, and z1a revealed, in
addition to phages Negev_SA, Carmel_SA, and Tavor_SA, seven phages of genomes of
over 70% identity, including phage Wbeta, which has been classified to Wbetavirus genus
of Caudoviricetes class, and Wbeta-related phages AP631, Cherry, Fah, Carmel, and three
Gamma phage isolates (Figure 7). The genomic sequence of the next closest relative, Bacillus
phage phIS3501 of Camtrevirus genus (GenBank Acc. No. JQ062992), is identical with
the sequences of newly isolated phages only in 27–31%. Comparison of J5a, F16Ba, and
z1a sequences with the sequences of their closest relatives with the use of Viridic, which
computes pairwise intergenomic distances/similarities amongst viral genomes, revealed
that all these phages could be classified together with B. anthracis phage Wbeta to the
Wbetavirus genus, based on the phage genus demarcation criteria (70% [43], Figure 7).

Their clustering, based on the species demarcation criteria, allowed one to divide them
into 11 species (Figure 7), grouped into two further clusters that might represent two genera.
In support of that, the whole proteome-based phylogenetic tree shows the clustering of
these species into two clades (Figure 8a). Phages J5a, F16Ba, and z1a cluster together with
phages Negev_SA, Carmel_SA, and Tavor_SA, which were isolated recently in Israel [44],
but have not been analyzed in detail (8a). However, as % DNA identities between phages
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of these two clades in all cases but one exceed 70%, we propose to include all of them
in Wbetavirus genus together with phage Wbeta of this genus, and to separate them into
two clades within this genus, the J5a clade and the Wbeta clade. The distinction of two
clades among Wbeta-related phages correlates with differences between the proteomes of
phages representing each clade. While all 13 phages share only 31 predicted gene products,
the phages of Wbeta clade share 36, and the phages of J5a clade share 41 predicted gene
products as calculated with the use of CoreGenes. Phylogenetic trees based on the major
capsid protein and large terminase subunit also cluster J5a, F16Ba and z1a separately from
historical isolates Wbeta, Gamma, and Cherry (Figure 8b,c).

Figure 7. The whole-genome comparison and clustering of phages J5a, F16Ba, z1a, and their closest
relatives. The comparison and clustering were performed with the use of Viridic (Virus Intergenomic
Distance Calculator; [35]). Different shades of blue in the right half of the heatmap represent different
intergenomic similarities (in %) between the genomes of each pair compared, as indicated above
the heatmap and specified by numbers. The left half of the heatmap shows three indicator values
for each genome pair: aligned fraction of genome 1 for the genome in this row (top value), genome
length ratio for the two genomes in this pair (middle value) and aligned fraction of genome 2 for the
genome in this column (bottom value). The darker colors represent lower values as indicated above
the heatmap.
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Figure 8. Phylogenetic analysis of J5a, F16Ba, z1a, and the most closely related phages based on
whole-genome-wide sequence similarities calculated by tBLASTx with the use of ViPTree [36] (a);
major capsid protein similarities (b); terminase large subunit similarities (c). Vertical lines to the right
of the whole-genome-based phylogenetic tree in (a) mark the phages that have been already classified
to particular genera. Dotted vertical lines indicate phages that we propose here to be included in the
Wbetavirus genus. The name of the prototypical phage of this genus (Wbeta) is highlighted in green.
Phages of the proposed J5a clade are indicated with red asterisks. The branches of phylogenetic
tree that indicate their separation from the Wbeta clade phages are in red. The phylogenetic trees
(b,c) were clustered using the UPGMA method and verified by the cophenetic correlation coefficient
(BioNumerics). Evolutionary distances are shown.
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3.6. Comparative Genomic Analysis

The genome sizes of the J5a, F16Ba, and z1a phages and the organization of genes
in their genomes resemble those of their relatives from J5a and Wbeta clades. Multiple
alignment highlighted the collinearity and similar organization of functional modules
in the genomes of the tested and reference phages (Figure S2). Most of the genes are
transcribed in one direction (59 out of 63, 48 out of 54, and 53 out of 58, respectively).
Searches for the homologs of predicted gene products of J5a, F16Ba, and z1a at the amino
acid sequence and structural level and identification of their function-associated amino
acid sequence motifs allow one to functionally assign nearly 50% of these phages’ pro-
teins (Tables S2–S4 and S6–S8). Functions of a few more proteins can be predicted only
imprecisely, based on the presence in their sequences of putative transmembrane helices or
DNA-binding motifs.

The modules at the left ends of the genomes of newly isolated phages and other
wbetaviruses encode morphogenetic functions (DNA-packaging, head and tail structure
and maturation) and are almost identical (Figure S2; Tables S2–S4). The central and right
modules are more diversified. They contain several clade-specific genes and certain genes
differentiating particular phages within each clade (Figure S2).

Similarities between the predicted structures of certain products of the left module
genes that encode tail proteins and the structures of tail proteins of some other phages reveal
the putative structure of host cell recognition and penetration machinery of wbetaviruses
(see Figure 9 and Table S6). The predicted structures of the N- and C-terminal parts of
J5a_014 protein and its counterparts in other wbetaviruses are similar to the structures of N-
and C-terminal parts of distal tail proteins (Dits) of Bacillus phage SPP1, Lactococcus phage
TP901-1, and Staphylococcus virus 80alfa. The central part of these proteins is similar to the
Lactobacillus casei phage J-1 tail protein carbohydrate-binding module CBM2. Distal tail
proteins of the aforementioned phages are localized between the tail tube and tail tip and
are proposed to be a docking platform for the tail adsorption apparatus of Gram-positive
bacteria siphoviruses, forming a baseplate hub [45–48]. The central parts of Lactobacillus
casei phage J-1 Dit and Dit proteins of certain other phages of Gram-positive bacteria bind
specific sugar moieties at the surface of bacteria and play a role in the interaction with
cells of phage hosts [49,50]. Based on the aforementioned similarities, we conclude that
J5a_014 and its counterparts of other wbetaviruses function as Dit proteins of these phages.

The predicted structure of the N-terminal part of J5a_015 and its counterparts in other
wbetaviruses is similar to the structure of the N-terminal part of tail-associated lysin (Tal) of
Staphylococcus virus 80alfa [47] and the N-terminal parts of relevant proteins of certain other
phages. The predicted structure of the C-terminal part of J5a_015 is similar to the structure
of C-terminal part of the long tail fiber of Salmonella phage vB_SenMS16, the tail spike of
Acinetobacter baumannii phage vB_AbaP_AS12, the L-shaped tail fiber of Enterobacteria phage
T5, the intramolecular chaperone of endo-N-acetylneuraminidase of Enterobacteria phage
K1F tail spike, and also to the intramolecular autocatalytic protease of Mus musculus, a
chaperone protein. Intramolecular chaperone domains have been identified at the C-termini
of phage long tail fibers or tail spikes of several unrelated phages, including Enterobacteria
phages K1F and T5. They participate in the formation of a triple-β-helix fold characteristic
for these proteins, are autocleaved off the target proteins upon the completion of the folding
process, and uncover the receptor-binding domain or exopolysaccharide depolymerase
domain [51,52]. Certain proteins similar to Tal proteins at their N-terminal parts, and
assigned as Tal/RBPs, contain extensions that function as receptor-binding domains. Based
on similarities of different parts of J5a_015 protein to parts of various Tal or Tal/RBP
proteins, we conclude that J5a_015 forms a tail spike of wbetaviruses and functions as a
Tal/RBP protein.
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Figure 9. Full sequence HHpred analysis of predicted Dit (J5a_014) (a), Tal/RBP (J5a_015) (b),
and endolysin (J5a_018) (c) of J5a bacteriophage. The query sequences are shown as slider bars.
The matches to proteins or protein domains from the PDB database are shown as horizontal bars
underneath, indicating their coverage with respect to the query. The bars are labeled with the PDB
accession numbers of matching structures and color-coded according to their similarity score to the
query (from red as the most similar, through orange to green; see the associated data in Table S6).

The central module of wbetaviruses genomes contains genes whose products are
involved in host cell lysis, lysogeny control, replication, and transcription.

Holins and endolysins encoded by this module differ significantly between the phages
of J5a clade and Wbeta clade (Figure S2; Table S8). The endolysins of J5a clade phages are
about 30% larger than those of Wbeta clade phages (~351 aa residues vs. 233 aa residues),
and their sequences show weak similarity to those of Wbeta clade phages only in the region
encoding the N-acetylmuramoyl-L-alanine amidase catalytic domain (27% coverage and
23% identity). Additionally, they have a signal peptide sequence at their N-termini, while
endolysins of Wbeta clade phages do not. A search for structural homologs of phage J5a
endolysin (J5a_018) with the use of HHpred and a protein-structures database revealed
the two-domain structure of this endolysin (Figure 9a). The predicted structure of the
region that directly follows the signal peptide sequence (aa 46−192) is highly similar to the
predicted structure of N-acetylmuramoyl-L-alanine amidase domain (AmiA; 4KNK_A) of
bifunctional 1256 aa autolysin AtlA of Staphylococcus aureus, to family 2 N-acetylmuramoyl-
L-alanine amidase (PlyL) of LambdaBa02 prophage of B. anthracis (1YB0_B), and to other
lysins catalytic domains of similar activity. Residues His-265, His-370, and Asp-384, which
directly coordinate the zinc ion in AtlA, as well as the nearby residues Glu-324 and His-382,
which participate in catalysis by AtlA [53], are conserved in J5a_018. The predicted structure
of J5a_018 C-terminal moiety (aa 199-349), which should represent the cell wall-binding
domain (CBD), is highly similar to the structure of CBD of Listeria phage A500 endolysin
Ply500 (6HX0_A), Listeria phage PSA endolysin Ply (1XOV_A), and B. cereus γ-D-glutamyl-
L-diamino acid endopeptidase YkfC (3H41_A), and to CBD domains of certain other
peptidoglycan-cleaving proteins (Figure 9c; Table S6). The CBD domain of Ply500, Ply, and
YkfC comprise two copies of beta-barrel SH3b-like repeats [54,55], implying that the CBDs
of J5a clade phages endolysins also comprise two copies of beta-barrel SH3b-like repeats.

The genomic regions of J5a clade phages that in the Wbeta clade phages encode 141 aa
holins of class III that are nearly identical to the holins of Bacillus phages of Rockvillevirus
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and Camtrevirus genus (phage phIS3501, GenBank Acc. No. NC_019502, among them)
encode two smaller proteins. One of them (XpaF1, 78 aa) contains a predicted transmem-
brane domain and is similar to hemolysin XhlA 1 family proteins. Certain proteins with
XhlA family motif (pfam10779; Tables S2–S4) are cell-surface-associated hemolysins that
lyse insect granulocytes and plasmatocytes, and also rabbit and horse erythrocytes [56].
However, proteins similar to XhlA that are encoded by the Bacillus phage SPP1 and de-
fective prophage PBSX cell lysis modules, and are 35% and 33%, respectively, identical to
XhlA-like proteins of J5a clade phages (as calculated by BLASTp), function as holins [57].
Thus, we assign the holin function also to the XhlA-like proteins of J5a clade phages. The
second small protein of the J5a clade lytic module (in J5a: J5a_017, 79 aa) has two trans-
membrane domains and the C-terminal end rich in lysine residues. These features are
characteristic of class II holins [58]. In support of that, this protein is 28% identical to the
Hol44 holin of Oenococcus oeni phage fOG44 (as calculated by BLASTp), which also has two
transmembrane domains and cooperates with a signal peptide-containing endolysin in cell
lysis [59–61].

The genomic organization of regions immediately downstream of endolysin genes
also differs between J5a clade and Wbeta clade phages. In the J5a clade phages, this region
contains a gene encoding a predicted membrane protein of unknown function (J5a_019)
and, except for J5a, a gene encoding a protein with structural homologies to E. coli conjugal
transfer protein TrwB. In the Wbeta clade phages, it encodes a predicted lipoprotein.

The next diversified region is immediately downstream of the site-specific recombinase
gene (Figure S2). In the prototypical Wbeta phage, it represents the lysogeny control
module and contains five genes (wp28–wp32), including CI-like phage repressor, Cro-
like repressor, and antirepressor genes [17]. In phage Cherry and those Gamma isolates
that are obligatorily lytic relatives of Wbeta, the relevant regions contain large deletions
encompassing one or both repressor genes (CI-like and Cro-like) and three preceding genes.
None of these deletions is present in the J5a clade phages, suggesting that these phages are
able to lysogenize their hosts, at least under certain conditions.

The region preceding the CI-like repressor gene, which in Gamma and Cherry is
encompassed by the deletion, in the remaining phages encodes two proteins of the recently
identified phage arbitrium communication system, AimR and AimP [62,63]. AimR is the
intracellular pheromone receptor, which is responsible for the choice between lysis and
lysogeny, dependent on the concentration of a hexapeptide pheromone that is released by
phage-infected cells and is the product of processed AimP. Based on protein similarities,
AimR/AimP proteins of Wbeta phages are differentiated into two groups, one is repre-
sented by most of the J5a clade phages (J5a, z1a, Tavor_SA, and Carmel_SA) while the
remaining phages represent the second one. The C-terminal hexapeptides of AimP of these
two groups, which correspond to the mature arbitrium system pheromones, differ by one
amino acid residue (TIKPGG vs. EIKPGG). However, the N-terminal amino acid residues
of certain arbitrium pheromones were shown to specifically interact with AimR [64]. More-
over, the EIKPGG hexapeptide pheromone of Wbeta phage depleted of the initial E could
not replace the intact pheromone in its action [63]. This may suggest that the arbitrium
system of phages J5a, z1a, Tavor_SA, and Negev_SA senses different hexapeptides than
does the arbitrium system of other wbetaviruses analyzed in this work.

The most diversified regions of wbetaviruses are upstream of the right ends of their
virion DNA (Figure S2). They contain mostly genes of unknown function. In J5a, this
region contains eight genes whose predicted products have no homologs among proteins
of other Wbeta-related phages (Tables S2–S4). Five hypothetical J5a proteins encoded by
this region (J5a_044, J5a_045, J5a_046, J5a_049, and J5a_052), and one hypothetical F16Ba
protein (F16Ba_050) have only bacterial homologs. Analysis of bacterial genomes that
encode these homologs with PHASTER, which identifies prophage regions in bacterial
DNA, revealed that all these proteins are encoded by genes of Wbeta-like prophage regions
(Tables S2–S4). The remaining proteins of no homology to gene products of Wbeta-like
phages are similar to proteins of unknown functions of other phages.
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The rightmost gene of wbetaviruses genomes, which is predicted to encode the HNH
endonuclease (HNHE), is conserved. The predicted structure of its product appears to
be strikingly similar over its entire length to the structure of the HNHE of deep-sea ther-
mophilic bacteriophage GVE2 of Geobacillus sp. Additionally, the amino acid sequences of
wbetaviruses HNHEs are 50–51% identical to that of GVE2 HNHE, and the residues shown
to be essential for the GVE2 HNHE DNA nicking activity [65] are conserved.

4. Discussion

We present in this work the genomic and basic biological characteristics of three newly
isolated B. anthracis phages—J5a, F16Ba, and z1a. We show that they form together with
recently isolated Bacillus phages: Carmel_SA, Negev_SA and Tavor_SA a new clade of
phages that could be classified to the Wbetavirus genus together with historical anthrax
phages: Wbeta, three Gamma isolates, Fah, and Cherry (based on the genomic similarity
criteria). All these phages are closely related to the prototypical phage of this genus,
temperate phage Wbeta. Their virion DNAs end with the 5’ overhangs of identical sequence
(CGCCGCCCC) (Section 3.4; [26,66]).

The presence of intact lysis-lysogeny control modules indicates that most of the
proposed phages of Wbetavirus genus, including J5a, F16Ba, and z1a, are temperate, like
the Wbeta phage. The only lytic phages in this genus, Gamma and Cherry, acquired their
obligatorily lytic phenotype by the deletion of various regions of this module [17]. The
deletion of relevant genomic regions should also allow to obtain the obligatorily lytic
derivatives of phages J5a, F16Ba, and z1a.

While the whole-genome comparison of the newly isolated phages to phage Wbeta
and other proposed Wbetavirus genus representatives indicates the division of these phages
into two clades, the pattern of sequence similarities between functionally related products
of those genes that differ significantly in sequence in particular phages in several cases
is not clade-specific (Figure S2, Tables S5 and S8). For instance, the amino acid sequence
differences in the arbitrium system pheromone receptor AimR and its specific pheromone
suggest that the specificity of arbitrium system of four phages of J5a clade (J5a, z1a,
Carmel_SA, and Tavor_SA) is different than that of the two remaining phages of this
clade and all temperate phages of Wbeta clade. The amino acid sequence of site-specific
recombinase, as well as the DNA sequences of short regions upstream and downstream
of the recombinase genes, is highly similar in three phages of J5a clade (J5a, z1a, and
Tavor_SA) but differs from the relevant sequences of the remaining wbetaphages, which
are highly similar to each other. Possibly, the recombinases of those two sequence types
recognize different attachment sites in the genomes of their hosts.

Significant, clade-specific differences concern the cell lysis genome module of wbe-
taphages. While the phages of Wbeta clade encode the canonical, 233 aa endolysin and
the 141 aa holin of class III (similar to those of the Rockvillevirus and Camtrevirus phages),
the phages of J5a clade encode endolysin of about 351 aa with a signal peptide and two
proteins of holin features.

Endolysins of Wbeta clade phages and predicted endolysins of J5a clade phages are N-
acetylmuramoyl-L-alanine amidases (Tables S2–S4; [20,67]). Results of our analysis indicate
that the size difference between these endolysins is associated with the presence of signal
peptide in the latter and with the size difference of CBDs of these endolysins (~75 aa vs.
159 aa). Isolated endolysin of Gamma phage (PlyG) can specifically kill cells of B. anthracis
and other members of the B. anthracis cluster [20]. The C-terminal CBD of PlyG binds
specifically to the B. anthracis cell wall, namely, to secondary cell wall polysaccharides
(SCWP) [68,69]. The similarity of the predicted structure of J5a endolysin CBD to structures
of those endolysins CBDs that comprise two copies of beta-barrel SH3b-like repeats, such as
CBD of Ply500, may suggest that J5a endolysin also binds to a polysaccharide ligand. In the
case of Ply500, these SH3-like repeats were shown to be held together by means of swapped
beta-strains, which in turn permits the recognition of carbohydrate ligands [54,70]. The
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elucidation whether similar ligands can be recognized and bound by PlyG and J5a clade
endolysins requires further studies.

The presence of signal peptide (SP) in endolysins of J5a clade phages indicates differ-
ences in the lysis mediated by these phages and Wbeta clade phages. Certain phages of
Gram-positive bacteria encode endolysins that are synthesized in a form of pre-proteins
with SP and are transported through a cytoplasmic membrane to reach a cell wall by a
SecA-dependent pathway with concomitant removal of SP [60,71]. The lethal functions of
holins encoded by these phages have been postulated to fully sensitize bacteria to these
endolysins action [72]. The involvement of more than one holin in phage-mediated cell
lysis has been also described in the case of certain phages [73–75]. It may facilitate the lysis
of cells grown in different conditions or cells of different phage hosts [57].

A search for homologs of lytic proteins encoded by the phages of J5a clade indicates a
horizontal transfer of lytic module between these phages and other phages infecting strains
of various Bacillus species. While endolysins of J5a clade phages are highly similar only to
each other and to the amidase of Bacillus paranthracis strain BC478A prophage phBC6A51
(Acc. No. MCC2432590.1), their more distant orthologs are encoded by certain unclassified
Bacillus siphophages, Bacillus cereus phages of Cecivirus genus, and Bacillus thuringiensis
phages of Waukeshavirus genus. It is of notion that in the Camtrevirus genus phages, the
gene encoding holin of class III corresponding to holins of Wbeta clade phages is also
preceded by a gene encoding a protein with the XhlA 1 family motif, like in the phages of
J5a clade (see e.g., Bacillus phage phIS3501, GenBank Acc. No. NC_019502).

Phages J5a, F16Ba, and z1a exhibited lytic activity exclusively against anthrax strains
and not against other strains from the B. cereus group that were used in our studies. In
contrast, the highly specific flagship B. anthracis phage—Gamma—can infect a few B. cereus
strains in addition to B. anthracis [76–78]. Therefore, WHO suggests that for identification
or detection purposes, the Gamma phage should be used in combination with other tests,
and not as a sole means [79]. Phage Fah, which is highly similar to Wbeta and was studied
in detail by Minakhin [66], was propagated in a B. cereus strain. In the case of other anthrax
phages similar to Wbeta: Cherry, Negev_SA, Carmel_SA and Tavor_SA, there is no detailed
information on bacterial strains used for their host range analysis.

The first step that determines the infectivity of a given phage for a bacterium is the
ability of this phage to recognize and bind to this bacterium. In tailed phages, this interac-
tion involves distal phage tail components. Previous studies resulted in the identification
of phage Gamma Gp14 and the corresponding phage Wbeta Wp14 as receptor-binding
proteins [17]. Purified Gp14 bound to B. anthracis cells and retained this ability when fused
to a fluorescent protein [17,80]. Our search of the protein structural database with the use of
HHpred and tail proteins of wbetaviruses as queries allowed us to assign Gamma Gp14 and
its counterparts in other Wbeta-like phages as distal tail proteins (Dits) and to identify a
putative second RBP of these phages, assigned by us as Tal/RBP. A triad of tape-measure
protein (TMP), Dit, and Tal (Tal/RBP) is conserved in siphophages’ distal tail parts, al-
though this common scaffold may contain various functional extensions [48]. Additionally,
the assignment of Dit and Tal/RBP functions to proteins encoded by the wbetaviruses
genes that are directly downstream of the tape-measure protein gene is consistent with
the organization of genes encoding the relevant proteins in the genomes of certain other
siphoviruses. In the case of wbetaviruses, the organization of these genes appears to be the
most similar to that of Bacillus phage SPP1, where the Tal/RBP is encoded by a single gene.
However, the Dit protein of wbetaviruses is larger than that of SPP1 (496 aa vs. 253 aa) [81].
The difference in the former can be attributed to the presence in its central region of a
module similar to the second carbohydrate-binding module (CBM2) of Lactobacillus phage
J-1 Dit protein (aa 368-614 in J-1 Dit) [49]. The Dit proteins containing the internal CBM
domain(s) and assigned as evolved Dits are host recognition and adsorption parts of tails
of certain siphophages infecting Gram-positive bacteria, including Lactobacillus phages [49],
Lactococcus phages [49], and Streptococcus phages [50,82]. Results of our analysis indicate
that they are also tail components of Wbeta-like viruses.
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The most distal tail part of phage Wbeta and Wbeta-like phages including our new
isolates is a long central tail fiber (spike) (Figure 1a) (see also [17,66]), which is similar
to that of Bacillus phage TP21-l of Lwoffvirus TP21 species [83]. It has to be a product of
the gene that was previously assigned to encode a minor structural protein (J5a_015 in
J5a) [17,66]. Analysis of structural similarities of this protein with the use of HHpred and
protein structures database indicated that it corresponds to Tal/RBP proteins of certain
other siphoviruses, but has a mosaic structure. Its N-terminal region is similar to that of
the phage 80alfa Tal/RBP, the central domain has no significant structural similarity to any
proteins of known structure, while the C-terminal domain is similar to the intramolecular
chaperons of tail fibers or tail spikes of phages of Gram-negative bacteria. These chaperones
have been identified in immature tail fiber and tail spike proteins of evolutionary distant
phages [52]. They are required for the correct trimerization and folding of their native
proteins and, upon autocatalytic cleavage off, uncover the central receptor-binding or
depolymerase domains of these proteins. Siphophages of Gram-positive bacteria that target
protein receptors have a straight, central tail fiber directly attached to the tail or to the
baseplate [84]. B. anthracis protein that was identified as Gamma phage receptor is a sortase-
anchored protein, GamR [85]. We propose that the Wbeta-like phage Tal/RBP protein is
the one that is responsible for the binding to this receptor, while the Dit protein of these
phages binds an unidentified sugar moiety at the surface of B. anthracis cells. While phage
Gamma Gp14 (Dit) was shown to bind B. anthracis and sensitive B. cereus cells, whether
Gp14 binds to GamR or to other host receptors has not been studied.

We noticed that while the Dit proteins of wbetaviruses, as well as the N-terminal
and C-terminal domains of Tal/RBP proteins, are nearly identical, the central domains
of Tal/RBPs are highly diversified (Figure S3). Thus, one cannot exclude that a protein
receptor is not the same for all these phages. If the specificity of phages J5a, F16Ba, and
z1a exclusively to B. anthracis strains can be confirmed with the use of a larger collection
of B. cereus group isolates, including those that can support the propagation of certain
Wbeta clade phages, the new phages may appear to be superior over Gamma phage for the
detection of B. anthracis isolates, when depleted of their lysogeny modules. The specific
activity of our phages against B. anthracis would be their important advantage [2]. Their
tolerance to a wide range of temperatures and pHs and a short latent period, shown in
this work, support their possible utility also as anti-B. anthracis agents. A preprepared
and evaluated phage cocktail that could have bactericidal activity against most B. anthracis
strains has been suggested as an optimal anti-anthrax agent [86].
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