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Abstract: The current journal paper proposes an end-to-end analysis for the numerical implementa-
tion of a two-degrees-of-freedom (2DOF) control structure, starting from the sampling rate selection
mechanism via a quasi-optimal manner, along with the estimation of the worst-case execution time
(WCET) for the specified controller. For the sampling rate selection, the classical Shannon–Nyquist
sampling theorem is replaced by an optimization problem that encompasses the trade-off between
the fidelity of the controllers’ representation, along with the fidelity of the resulting closed-loop
systems, and the implementation difficulty of the controllers. Additionally, the WCET analysis
can be seen as a verification step before automatic code generation, a computational model being
provided. The proposed computational model encompasses infinite-impulse response (IIR) and
finite-impulse response (FIR) filter models for the controller implementation, along with additional
relevant phenomena being discussed, such as saturation, signal scaling and anti-windup techniques.
All proposed results will be illustrated on a DC motor benchmark control problem.

Keywords: sampling rate; closed-loop cascade control; discrete-time systems; global optimization;
rapid control prototyping; worst-case execution time; IIR filtering; FIR filtering

MSC: 93C05; 93C57; 93C62

1. Introduction
1.1. Literature Review

The problem of sampling rate choice to numerically implement a controller designed
in the continuous-time domain has significant importance. A sub-optimal value of the
sampling period represents a trade-off between the fidelity of the response, given by
a shorter sampling rate, and implementability, obtained using a larger sampling rate.
The most common manner to choose this sampling period is given by the Shannon sam-
pling theorem [1]. However, this can only be a starting point in a control context, because,
in practice, it can lead to unacceptable behavior of the discrete-time controller compared
to its continuous-time equivalent, a significant justification being the presence of quanti-
zation errors unaccounted for in the signal and system models. In the available literature,
the problem of choosing the sampling rate is specifically formulated for the purpose of
the particular control system at hand. For example, for a structure with a P-type regulator
proposed in [2], the key points used in sampling rate selection are the overshoot and the
rise time. For the case of a PID-based control structure, an optimization criterion has
been proposed in [3] to find the optimal and/or sub-optimal value of the sampling rate.
The problem of sampling rate selection for parameter estimation of an induction machine
has been solved via a metaheuristic procedure in [4]. A similar thematic is addressed in [5]
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in the case of permanent magnet synchronous motors using field programmable gate array
devices, while the rapid control prototyping principle is illustrated for discrete-time closed-
loop control of brushless DC motors in [6,7], respectively. Moreover, an important result
regarding the dependence between the stability and the performance of the closed-loop
system, and the choice of sampling rate is presented in [8].

After the first step of selecting the sampling period, an analysis regarding the practical
implementation of the proposed control structure on a microprocessor-based system should
be performed. This analysis needs to encompass several aspects which are not explicitly
modeled in the control law, such as the register word lengths of the coefficients which
directly influence the number of necessary assembly instructions, and saturation, overflow,
underflow verifications on the computed command signals. In the specific context of rapid
control prototyping (RCP), one key step before the proper code generation is to certify
if its execution abides by the time span given by the sampling period. Moreover, other
important verifications for phenomena such as underflow and overflow, or saturation and
anti-windup techniques should be also performed before the code-generation step. As such,
one important goal consists of approximating the number of software operations necessary
to implement the designed control law, mandatory in the context of hard real-time systems.
A survey of worst-case execution time computational methods is presented in the seminal
paper [9]. A simplified study applied for control system-related interrupt service routines
for state-space controller representations is presented in [10]. Another possibility for the
computational error analysis is presented in [11].

In the Control Systems domain, the linear control system field plays an important
role. Linear controller design techniques are available for both linear plants and nonlinear
process models alike. Starting from the classical proportional–integral–derivative (PID)
controller [12] towards the domain of robust controller [13–15], these techniques can be
extended for nonlinear systems via the gain-scheduling method [16] or an additional
passivity-based component [17]. Moreover, with great advantage in also coping with
disturbance rejection problems, alongside reference tracking specifications are the so-called
two-degrees-of-freedom (2DOF) control schemes [13]. In ref. [18], a 2DOF PID controller
has been proposed, where the serial compensator is a classical PID controller, while the
feedforward compensator is a PD controller, the integral effect being excluded due to the
stability requirements. For the case of unstable plants with time delays, a discrete-time
2DOF control scheme has been proposed in [19]. As such, for reference tracking, the serial
controller was designed using the H2 optimal control framework, while the feedforward
controller has been tuned by imposing the desired closed-loop transfer function. Addi-
tionally, in terms of software toolbox implementations, the robust advanced PID (RaPID)
toolbox described in [20] presents a set of possibilities to design a 2DOF PID control struc-
ture by minimizing certain error criteria, such as the integral of absolute error or integral of
time multiplied by the absolute value of error.

1.2. Contributions and Paper Structure

The current journal paper represents an extension of the conference papers [10,21],
and proposes a joint analysis on sampling time selection and execution time framing of the
microcontroller operations into the previously established optimum for the case of a 2DOF
control structure. The main contributions of the paper are:

(i) to extend the functionals initially proposed in [21] in order to encompass the fidelity
of both controllers from the 2DOF structure and of the resulting closed-loop systems,
i.e., ensuring the tracking and servo behavior of the initially designed continuous-time
controllers, along with the implementation difficulty of the proposed controllers in
terms of quantization and sampling rate span;

(ii) to formulate the optimization problem for sampling rate selection of a 2DOF control
structure without considering any further normalizations of the final functional’s
terms and propose a metaheuristic-based solution to find an optimal or quasi-optimal
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value of the sampling rate which can offer a good trade-off between implementability
and fidelity;

(iii) to extend the WCET analysis, initially proposed in [10] for the case of state-space
regulator implementations, for the case of controllers implemented as infinite-impulse
response (IIR) or finite-impulse response (FIR) filters, offering an upper bound estima-
tion of the time span necessary to perform all the operations involved in the numerical
implementation of the proposed 2DOF controller;

(iv) to offer an exhaustive analysis which can be further performed in an automatic manner
and to be integrated in our open-source MATLAB-based CACSD toolbox [22];

(v) to present an end-to-end design procedure for the case of a DC motor control prob-
lem, starting from the controller design, followed by choice of the quasi-optimal
sampling rate and the worst-case execution time analysis, finalizing with a de-
tailed discussion.

The rest of the paper is organized as follows: Section 2 presents the 2DOF structure
which will be studied, along with a mathematical background for the sampling rate choice
and worst-case execution time analysis, and a set of theoretical results and optimization
problems extended and adapted for the proposed control structure; in Section 3 a case
study consisting of an end-to-end design procedure of a 2DOF PID controller is illustrated,
while Section 4 deals with a set of conclusions and further research directions.

1.3. Notations

We denote by C(z, r) the circle with the center in z ∈ C and radius r > 0. Additionally,
P(G) and Z(G) denote the pole and zero sets of an LTI system G, respectively. An arbitrary
sampling period will be denoted Ts ≡ T > 0 throughout the paper. Continuous-time
regulators will be denoted K(s) ≡ K, while their discrete counterparts, as a function of the
sampling period will be used as KT(z) ≡ KT . The set of continuous-time systems will be
denoted by G, while the set of discrete-time systems will be denoted by GD. The standard
growth functions and their notations according to [23]:

O(g(n)) = { f (n)| ∃ c, n0 > 0 such that 0 ≤ f (n) ≤ cg(n), ∀ n ≥ n0};
Ω(g(n)) = { f (n)| ∃ c, n0 > 0 such that 0 ≤ cg(n) ≤ f (n), ∀ n ≥ n0};
Θ(g(n)) = { f (n)| ∃ c1, c2, n0 > 0 such that 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n), ∀ n ≥ n0}.

2. Mathematical Background and Proposed Extensions
2.1. Numerical Closed-Loop Control

Modern control systems make use of numerically implemented regulators to coor-
dinate continuous-time processes. The classical configuration of a numerical regulator is
presented in Figure 1. It uses sample and hold circuits as interfaces to the continuous-time
adjacent components and, as such, it imposes the zero-order hold discretization method
for the plant G. As such, define the plant discretization methodology as the mapping
(G(s), T) 7→ GT(z) ≡ G(z) ∈ GD:

GT(z) = Z
{
L−1{Gzoh,T(s) · G(s)

}}
: G×R+ → GD. (1)

with G denoting the continuous-time model set, GD being the discrete-time model set,
and with the digital-to-analog converter, i.e., zero-order hold, model:

Gzoh,T(s) =
1− e−sT

s
. (2)

For the purpose of this paper, we consider a two-degrees-of-freedom (2DOF) con-
trol structure as in Figure 2, which has an inner controller Kin(s) usually designed for
disturbance rejection, and a feedforward controller Kff(s) which provides the necessary
compensation for the steady-state tracking behavior, along with the process model with



Mathematics 2022, 10, 3449 4 of 26

disturbance, described by G(s) and Gd(s). As Kff does not influence the signal path from
the disturbance d(t) to the output y(t), the usual design workflow is to synthesize Kin and,
then, to fine-tune the transient response from r(t) to y(t) through Kff. Both continuous-time
controllers Kin(s) and Kff(s) are assumed to have the following linear and time-invariant
(LTI) state-space representations:

(Kx(s)) :

{
ẋc = AK,xxc + BK,xuc

yc = CK,xxc + DK,xuc
, x ∈ {in, ff}. (3)

Given that the continuous-time controllers Kin(s) and Kff(s) must be numerically
implemented on a microcontroller, the problem of selecting an appropriate sampling period
T ∈ (0, ∞) becomes a critical step. For a fixed sampling rate T, the discrete-time form of a
controller Kx(s) can be written as:

(Kx(z)) :

{
xk+1 = Φxxk + Γxuk

yk = CK,xxk + DK,xuk
, x ∈ {in, ff}. (4)

To compute the transition matrix Φx and the input matrix Γx, a wide selection of
discretization methods, denoted by D, can be considered, such as zero-order hold, trape-
zoidal (Tustin), forward or backward Euler, frequency-response regression and so on.
Additionally, in most situations, the output matrix remains the same as in the continuous-
time representation, but there exist cases when it may be different than its continuous-
time counterpart. As such, from a tuple of a continuous-time transfer matrix Kx(s) =
(AK,x, BK,x, CK,x, DK,x) ∈ Gand a sampling rate T ∈ R+ results an equivalent discrete-time
transfer matrix (K(s), T) 7→ KT(z) ≡ K(z) ∈ GD, where:

KT(z) = D{K(s), T} : G×R+ → GD. (5)

Figure 1. Numeric regulator KT(z) with a specified sampling rate T > 0 and its corresponding
interface consisting of a sample and hold with the analog-to-digital converter, along with the digital-
to-analog converter followed by a sample and hold circuit.

Figure 2. Two-degrees-of-freedom (2DOF) numerical control structure with components Kin(z) and
Kff(z), designed for the process models G(s) with disturbance dynamics Gd(s).
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The open-loop process model has the input-output representation:

Y(s) = Gd(s) · D(s) + G(s) ·U(s), (6)

while the closed-loop system expression becomes:

Y(s) =
Gd(s)

1 + G(s)Kin(s)
· D(s) +

G(s)(Kin(s) + Kff(s))
1 + G(s)Kin(s)

· R(s). (7)

The discrete-time equivalent closed-loop model will be:

Y(z) =
Gd(z)

1 + G(z)Kin(z)
· D(z) +

G(z)(Kin(z)+Kff(z))
1 + G(z)Kin(z)

· R(z) = Hd
cl(z)D(z) + Hr

cl(z)R(z), (8)

which represents the starting point for various control design methodologies.

2.2. Sampling Rate Optimization

The current subsection presents an extension of the work from the paper [21].

2.2.1. Linear System Sampling Background

The well-known Shannon theorem [1] states that the necessary sampling rate to avoid
information loss must be at most twice time smaller than the inverse of the continuous-time
signal’s maximum frequency component:

Ts <
Tmin

2
⇔ fs > 2 · fmax, where fmax =

1
Tmin

. (9)

Moreover, the theoretical upper bound of the frequency range after which aliasing
phenomena occur is called Nyquist frequency and is given by:

ωN =
ωs

2
= π · fs. (10)

The above-mentioned version of Nyquist-Shannon theorem for signals can be extended
to LTI systems by considering that the resulting discrete-time system must maintain all
relevant dynamics of the continuous-time system. The dynamics of a system is given
by its set of poles, one possible constraint for the sampling rate implying to be at most
twice smaller than the inverse of the real part of the minimum value of poles. However,
there are cases when the imaginary part of the poles is relevant, or even the values of the
transmission zeros, for a good representation of the system’s frequency response.

For the remainder of the paper, the sampling rate will be denoted by Ts ≡ T. The ana-
lytical relationship between the continuous-time s-plane and the discrete-time z-plane is
illustrated by the equation:

z = es·T . (11)

Considering a point s := σ+jω, with σ, ω ∈ R, the resulting corresponding complex
number is z = eσT(cos(ωT) + j sin(ωT)). As such, the left half of the complex s-plane
can be split into an infinite number of disjoint strips of height 2π

T , due to the periodical
nature of the sin(·) and cos(·) functions. The resulting primary strip contains points which
correspond to ω ∈ [−ωN , ωN ]. The s-plane to z-plane mapping causes the following
topologies of the primary strip of the s-plane:

• the imaginary axis in is mapped to the unit circle C(0, 1);
• the upper and the lower edges are both mapped to the negative axis;
• the negative real axis is mapped to the positive axis inside the unit circle;
• the interior of the primary strip is mapped in the unit disk.

When sampling an LTI controller, several remarks can be considered then the behavior
of the singularities is studied:
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(i) unstable zeros and poles tend decreasingly to the unit circle’s circumference, i.e., |z| ↘
1 and |p| ↘ 1 as T ↘ 0; for poles, this aspect is relevant when sampling systems,
as controllers generally do not employ unstable poles in their structure;

(ii) stable zeros and poles tend increasingly to the unit circle’s circumference, i.e., |z| ↗ 1
and |p| ↗ 1 as T ↘ 0, requiring additional decimal or binary digits for an accu-
rate representation.

(iii) poles and zeros from the imaginary axis in the s-domain are maintained on the
unit circle in the z-domain irrespective of the sampling period T > 0. Additionally,
integrator and derivative terms do not matter in deciding the practical sampling time.

(iv) the quantization error increases as T ↘ 0 in the case of stable closed-loop systems.

Remark 1. The quantization error mentioned in (iv) increases as T ↘ 0 as proved in [24], due
to the guaranteed steady-state error being proportional to 1

1−ρ(Φ)
, while ρ(Φ) denotes the spectral

radius of the closed-loop state matrix: Φ := Â− B̂D̂Ĉ, based on the series interconnection between
the controller and the process model matrices.

According to the previously mentioned aspects, a sub-optimal value of the sam-
pling rate must ensure a good trade-off between the fidelity of the representation of the
continuous-time controllers and their implementability difficulty. As such, we next intro-
duce a set of functionals to quantify these two aspects.

2.2.2. Proposed Functionals

To measure the similarity between a continuous-time LTI system H(s) and a discrete-
time system HT(z) over the frequency range Ω, the following functional can be defined as
SΩ

H : D→ (0, ∞), with D= G×R+:

SΩ
H (T) =

∫
Ω

(
σ(H(jω))− σ

(
HT

(
ejωT

)))2
dω, (12)

where σ(·) is the maximum singular value. Moreover, as mentioned before, the available
frequency domain is Ω = (0, ωN), ωN being the corresponding Nyquist-Shannon frequency
to the sampling rate T. Therefore, the similarity functional SH : D→ (0, ∞) becomes:

SH(T) =
∫ ω−N

0+

(
σ(H(jω))− σ

(
HT

(
ejωT

)))2
dω. (13)

However, to compute the similarity integral term SH , a discrete set from the fre-
quency range (0, ωN) → Ω = {ω = ω1 < ω2 < · · · < ωN −ωε = ω} can be considered,
the performance index being approximated as follows:

SΩ
H (T) ' ∑

ω∈Ω

(
σ(H(jω))− σ

(
HT

(
ejωT

)))2
∆ω, (14)

where ωε > 0 is a predefined threshold used to avoid the prewarping phenomenon which
ensues in the magnitude responses when ω → ωN .

Remark 2. There are several alternatives in defining the similarity between two LTI systems,
with particular interest for closed-loop connections, such as the normalized dissimilarity function
metric, described in [25], the standard ν-gap metric, with its limitations exposed in [26], or the
improved Vinnicombe ν-gap metric [27], described as:

δ(G1, G2) := max
(
δ(G1, G2), δ(G2, G1)

)
, (15)

with:

δ(G1, G2) := inf
Q∈H∞

∥∥∥∥(M1
N1

)
−
(

M2
N2

)
Q
∥∥∥∥

∞
, (16)



Mathematics 2022, 10, 3449 7 of 26

where for the reference systems G1 and G2, their right normalized coprime factorizations will
be considered: G1 := N1M−1

1 and G2 := N2M−1
2 , which in context of the proposed sampling

rate optimization problem, the differences should be computed with the subsystems applied in
G1 ≡ K(s) 7→ jω and G2 ≡ KT(z) 7→ ejωT , respectively.

To define the fixed-point implementability functional IH(T) : D → (0, ∞) which
measures the quantization implementation difficulty of the LTI system HT(z), the following
expression can be considered:

IH(T) =
1

min{||λ| − 1|, λ ∈ P(HT) ∪Z(HT)}
, (17)

with P and Zdenoting the pole and zero sets of HT , respectively, excluding singularities
from the set C(0, 1).

Alongside the previous implementability functional, an execution time cost functional
TH(T) : D→ (0, ∞) becomes necessary to limit the decrease of T ↘ 0 which would ideally
lead the similarity functional costs to zero:

TH(T) =
1
T

. (18)

A concluding functional with global effect, Jstab(H) : D → {0, ∞}, will define the
feasibility domain of the optimization problem, because it accepts or rejects a specific
sampling period value. It induces an infinitely valued constant when the numeric system
HT becomes unstable, and otherwise, defaults to no extra penalization:

Jstab(H)(T) =

{
+∞, if HT has unstable poles;

0, otherwise.
(19)

For the numerical implementation of the stability functional, a sufficiently large value
α∞ can be considered to mark the feasibility subdomain of Dwhere the system H is stable,
leading to an approximation of the original performance index:

J
α∞
stab(H)

(T) =

{
+α∞, if HT has unstable poles;

0, otherwise.
(20)

2.2.3. Optimization Problem

For the two-degrees-of-freedom control structure proposed in Figure 2 the following
functionals will be considered to formulate the optimization problem to determine the
sampling rate:

• two terms SKin(T) and SKff(T) representing the similarity between the continuous-
time and the discrete-time representations of the controllers Kin(s) and Kff(s) over the
frequency range (0, ωN);

• two terms SHr
cl
(T) and SHd

cl
(T) representing the similarity between the continuous-

time and the discrete-time representations of the resulting closed-loop systems Hr
cl(s)

and Hd
cl(s) over the same frequency range;

• the quantization implementation difficulty IKin(T) and IKff(T) of each controller
along with the execution time functional T(T);

• the stability functional Jstab(Hr
cl)
(T) of the resulting numerical closed-loop system

Hr
cl,T(z).

The first set of three terms are used to measure the fidelity between the components of
the continuous-time designed system and the resulting components in the discrete-time
domain, considering the transient and steady-state performance altering. The next set of
three terms manages to encompass the implementation difficulty of the resulting controller,
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according to the already-mentioned remarks. The last term is nothing but a correction
used to define the feasibility subdomain of D. As such, a trade-off between the first two
sets of performance indices must be established by taking into account the last feasibility
term, resulting a non-convex optimization problem. However, in order to increase the
flexibility of this optimization problem, a set of weights c1−6 can be considered as follows:
the weights c1, c2, c3, and c4 are for the fidelity measurement indices, while weights c5, c6,
and c7 are for the implementability indices, the final functional J : D→ R+ being:

J(T) = c1SKin(T) + c2SKff(T) + c3SHr
cl
(T) + c4SHd

cl
(T)c5IKin(T) + c6IKff(T) + c7T(T) +Jstab(H0)

(T). (21)

Moreover, considering the numerical approximations (14) and (20), the following
numerically implementable non-convex optimization problem occurs:

Problem 1. For an LTI plant model G(s) included in a two-degrees-of-freedom control struc-
ture with the continuous-time inner controller Kin(s) and with the continuous-time feedforward
controller Kff(s) as in Figure 2, define an ordered set of pulsations, preferably in logarithmic scale:

Ω = (ω = ω1 < ω2 < . . . < ωN −ωε = ω). (22)

Then, the functional JΩ : D→ R+:

JΩ(T) = c1S
Ω
Kin

(T) + c2S
Ω
Kff
(T)c3S

Ω
Hr

cl
(T) + c4S

Ω
Hd

cl
(T) + c5IKin(T) + c6IKff(T) + c7T(T) +J

α∞
stab(H0)

(T), (23)

with weighting terms c1−7, leads to the following quasi-optimal sampling time optimization problem:

min
T∈D

JΩ(T). (24)

Remark 3. The resulting optimization problem (24) is non-convex by nature. As such, the line-
search procedure used to solve this problem must be able to explore the whole feasible domain. One
possible solution is a metaheurisitc approach, such as particle swarm optimization (PSO) [28], which
will be used for the purpose of this paper.

2.3. Worst-Case Execution Time Analysis

The current subsection presents an extension of the work from the paper [10].

2.3.1. Execution Time Model

This subsection proposes the study of the implementation details for the case of linear
control structures, where controllers will be modeled as infinite-impulse response (IIR) and
finite-impulse response (FIR) filters. Starting from [10], a set of implementation aspects
which are treated for state-space realizations will be considered in a unified manner for
the case of transfer matrices in this paper. Additionally, this section also analyzes the
2DOF extension. The duration for each operation involved in the control structure can
significantly impact the regulator implementability.

The necessary mathematical operations to fully implement an LTI-based control law
must be formally defined. Besides the LTI-control law, the classical saturation and anti-
windup nonlinearities will be considered, which are usually related to said LTI laws.
The unary and binary mathematical operators defined in Table 1 and gathered in the
operations alphabet O := {n, a, m,s, w, l}, are considered with real operands and must
be accounted for into a microprocessor-based environment.



Mathematics 2022, 10, 3449 9 of 26

Table 1. Formal operators necessary for the implementation of LTI-based control laws.

# Operator Domain Definition Observations

1 Addition a : R2 → R a(x1, x2) = x1 + x2 bilinear

2 Multiplication m : R2 → R m(g, x) = g · x homogenous

3 Saturation sx,x : R→ R sx,x(x) =


x, if x < x;
x, if x ≤ x ≤ x;
x, if x < x,

nonlinear

4 Anti-windup wx,x : R→ R various [12,29,30] for integrators

5 Load/Store l(x) : R→ R l(x) = x bilinear

6 Null n(x) : R→ R n(x) = 0 for delays

As such, the process of computing a command signal y[k] as in Figure 1 implies a
finite and formal computational finite sequence Sc ∈ ON , where all terms are mathematical
operations as in Table 1, i.e., Sc[i] = pi ∈ O, i = 1, N, where N depends on the structure of
the controller K(z). Moreover, in order to additionally specify a set of practical hardware
specifications and constraints Hand to uniformly describe the problem, the finite sequence
can be now extended to a full sequence ScK,H ∈ O∞:

ScK,H := (p1, p2, . . . , pN , n, n, . . . ), pi ∈ O. (25)

Starting from an array ScK,H of operations as (25), we follow with a general-purpose
instruction set model. Assume a Random-Access Machine (RAM) computational model
as in [23], with deterministic operations. RAM machines have practical counterparts,
materialized through RISC machines. Reconfigurable RISC machines specialized on certain
problems have been proposed in [31]. Additionally, there is the approach of multiply
and accumulate (MAC) instructions supported in digital signal processors (DSP) [32].
Depending on the supported computer architectures of the RCP framework, relevant are
also Single Instruction stream/Multiple instruction Pipelining (SIMP) [33] constructions
with respect to single-processor architectures, or Single Instruction/Multiple Data (SIMD)
features, which allow the practical parallelization of addition and multiplication operations
for several sets of operands.

Definition 1. The hardware constraints and specification set H encompasses metadata which
imply extra operations or different approaches to the standard operations performed on the controller
signals and implementation-specific information, with various outcomes on the total execution time,
frequently found in practice being:

• reading reference signals r[k] and plant measurements y[k], all input signal reading steps
may imply preprocessing constraints in terms of sensor delays, impulse counters or data type
conversions—this equates to adding pi ∈ {n, l} steps;

• scaling operations for the input and output signals imposed by the operating point used for
plant linearization: ∆u[k] = u[k]− u0 and y[k] = y0 + ∆y[k], which equates to augmenting
the sequence set with pi ∈ {a,s, l} items;

• input and output signals scaling operations, i.e., us[k] = au · u[k] + bu and ys[k] =
ay · y[k] + by, useful especially for sensor/adapter signals, and extend the operations with
pi ∈ {a, m,s, l};

• starting from the variable base word length L of the microcontroller arithmetic registers which
allows operations to be executed in a single clock tick, each variable’s type and size should be
adequately adapted for 2× L, 4× L etc., which complicates the adding and multiplication
routines with additional pi ∈ {a, m, l} steps;

• controller gain-scheduling verifications and updates based on the value of the input signal u[k],
leading to extra pi ∈ {l};

• underflow and overflow checks for involved signals, implying saturations pi ∈ {s};
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• availability of Direct Memory Access (DMA) modules, MAC instructions, circular buffers
in opposition to linear buffering, or output bypassing, which has the advantage of discarding
pi ∈ {l} operations.

Such specifications will be quantified by scaling factors γj to the base duration of
the RISC machine model operations. Depending on the significance of the alternative
instruction, γj could be less than, equal to, or greater than one, respectively.

Therefore, a set of instructions ScK,H can be manually designed or automatically
deduced. For manual modeling, the control engineer needs to find this set for each control
law, while for automatic mode, an RCP tool can already deduce this set. Such an RCP tool
generally deals with the code generation for different environments. Now, the sequence of
operations generator procedures can be seen as a functional:

Ψ : GD ×H→ O∞, Ψ(K, H) = ScK,H. (26)

To implement the mathematical operations pi ∈ O from Table 1, the atomic assembly
instructions ai ∈ A = {NOP, MF, MS, ADD, MUL, SH, JMP, CMP} from Table 2 will represent the
starting point. It covers the basic arithmetical operations required in linear systems, with
the additivity and homogeneity properties, conditional jumps for saturations and the anti-
windup of integrator terms, forced and imposed delays through data acquisition hardware
and access to memory devices. Each arbitrary atomic assembly operation will be denoted
by a, as part of the formal set Aall the equivalent assembly instructions supported by H

for the implementation of Sc, with the RISC machine assumption that each instruction
takes a fixed clock tick value Tclk > 0. The number of ways in obtaining the resulting
assembly instructions is not unique and it further depends on the structure of H. A
straightforward example to illustrate this phenomenon is when the regulator coefficients
are stored contiguously in the memory in comparison to arbitrary and uncorrelated memory
registers. The execution time implications are obtained through different pointer operations.
To conclude, a new mathematical operator analogous to (26), tasked with the generation of
a computer-equivalent set of instructions given by the functional Sp ∈ A∞ is:

Ξ : GD ×H→ A∞, Ξ(K, H) = SpK,H, (27)

which results in an infinite sequence of atomic software instructions, but with a finite
number of them being different to NOP, located at the start of the sequence, which implement
the linear controller formula:

SpK,H := (a1, . . . , aM, NOP, NOP, . . . ), ai ∈ A. (28)

The difference between the sets Sc and Sp is that Sc contains abstract mathematical
operations pi ∈ O, and each such operation pi will be practically implemented using
equivalent ai,j ∈ Asteps, j = 1, Ni, as in the mapping:

pi 7→
(
ai,1, ai,2, · · · , ai,Ni

)
, ∀i = 1, N, (29)

the number of atomic operations different from NOP being M = N1 + N2 + · · ·+ NN .
The importance of the previously defined sequences and functionals, i.e., ScK,H, Ψ,

SpK,H and Ξ, respectively, and the implications of estimating the number of assembly
operations in a tight manner was insisted upon in the base paper [10]. Figure 3 gathers
them and illustrates their connections in an RCP context. The mapping from (K, H) to
the set ScK,H is usually performed for Model-in-the-Loop (MiL) simulations through an
application Ψ, while the mapping (K, H) 7→ SpK,H is made through Software-in-the-
Loop (SiL) testing using an application Ξ. The master RCP program, with access to both
ScK,H and SpK,H, can subsequently perform a worst-case execution time analysis on the
implementation of the digital regulator K(z) in the production hardware context H.
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Table 2. Base assembly operations ai ∈ A for a Random-Access Machine model used in an LTI-based
control system context.

# Operator Abbreviation Part of Operation Observations

1 No operation NOP n –
2 Memory fetch MF l SIMP
3 Memory store MS l SIMP
4 Add ADD a SIMP, MAC, SIMD
5 Multiply MUL m SIMP, MAC, SIMD
6 Binary shift SH m SIMP, SIMD
7 Jump JMP s, w, l –
8 Compare CMP s, w, l SIMP

Figure 3. Rapid control prototyping relationship between the formal sets and functionals necessary to
perform a worst-case execution time analysis for a regulator K(z) ∈ GD in the production context H.

Figure 4 presents the sequence diagram with the timing constraints of the discrete-
time controller K with respect to other software threads from the microcontroller, with an
illustration of the WCET of the controller interrupt service routine (ISR) thread. The main
result of the section is gathered in the following theorem.

Theorem 1. Given a numerical control law given by K ∈ GD, along with a microcontroller
specification set Hand a code-generation procedure given by a pair of MiL and SiL (Ψ, Ξ), the worst-
case execution time estimation can be computed by the following formula:

WCET(Ψ, Ξ) =
(∣∣∣SpK,H

∣∣∣+ O(1)
)
× Tclk, (30)

where
∣∣SpK,H∣∣ represents the number of atomic assembly operations ai ∈ Aas in (28), and O(1)

accounts the context switching operations for the other software threads. Additionally, the exact
bounds from O(1) depend on all other software entities running on the same microprocessor and are
not correlated with the input dimension m or the output dimension p of the numerical controller.

Figure 4. Sequence diagram illustrating the regulator K(z) interrupt service routine execution among
higher and lower priority threads for the duration of one sampling period Ts [10].
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Proof. According to the schematic representation from Figure 3, starting from the control
law K ∈ GD and the specification set H, the set ScK,H can be obtained via the MiL operator
Ψ, resulting in p1, p2, . . . , pN ∈ O. However, in order to measure each pi, the set of atomic
operations must be attached via the SiL operator Ξ: pi 7→

(
ai,1, ai,2, · · · , ai,Ni

)
, each such

atomic operation requiring exactly Tclk, leading to:

T1 ≡ t(K) =
N

∑
i=1

Ni

∑
l=1

t(ai,l) = Tclk ·
N

∑
i=1

Ni

∑
l=1

1 = Tclk ×
∣∣∣SpK,H

∣∣∣, (31)

where t(·) is the time necessary to execute an operation or a set of operations.
Additionally, a second term T2 = ∑ISR λ accumulates ISR switching and stack-

handling operations handled by the scheduler, bounded by a processor-dependent constant
λ > 0, which can be modeled as O(1)× Tclk. As such, the worst-case execution time can
now be written as:

WCET(Ψ, Ξ) = T1 + T2 =
(∣∣∣SpK,H

∣∣∣+ O(1)
)
× Tclk, (32)

which concludes the proof.

Observation 1. All possible delays caused by context switching to preemptive ISRs belonging to
measurement data processing, with the cost of O(m), are included in the input processing step and
do not remain unaccounted for in the execution time model of Theorem (30).

Two additional performance qualifiers can be employed to globally assess the con-
troller ISR implementation impact on the scheduling algorithm of the processor.

Definition 2. The processor usage level qualifier relative to a fixed sampling period T > 0 of a
discrete-time regulator K(z) ∈ GD, described in a relative manner, is defined by:

U(Ψ, Ξ, T) :=
WCET(Ψ, Ξ)

T
× 100 [%]. (33)

Definition 3. The processor idle time qualifier with respect to a fixed sampling period T > 0 of a
discrete-time regulator K(z) ∈ GD, described in absolute units, is defined by:

I(Ψ, Ξ, T) := max{0, T − WCET(Ψ, Ξ)} [s]. (34)

2.3.2. Modeling Duration of Finite and Infinite-Impulse Response Topologies

Denote by H ∈ G
p×m
D a MIMO regulator with m inputs and p outputs, thus fully

described by the expressions of m× p transfer functions Hij ∈ GD:

(H) :


Y1(z)
Y2(z)

...
Yp(z)

 =


H11(z) H12(z) · · · H1m(z)
H21(z) H22(z) · · · H2m(z)

...
. . . · · ·

...
Hp1(z) Hp2(z) · · · Hpm(z)

 ·


U1(z)
U2(z)

...
Um(z)

. (35)

Each element of the transfer matrix H, i.e., Hij, can be modeled as an infinite-impulse
response (IIR) filter or as a finite-impulse response (FIR) filter. The case where H is modeled
as a state-space representation is treated in the base conference paper [10], namely in
Algorithm 1 and Table I, respectively.

For an arbitrary discrete-time IIR transfer function H(z) of order n, define Ω(H) as
the pair:

Ω(H) := (n2, n1) =

{(⌊ n
2
⌋
, 1
)
, if n is odd;( n

2 , 0
)
, if n is even.

(36)
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Using this notation, the transfer function H(z) can be written using a series of second-
order sections and an additional first-order component, if necessary, as:

HI IR(z) =
(

b0,1z + b0,0

z + a0,0

)n1

·
n2

∏
i=1

(
bi,2z2 + bi,1z + bi,0

z2 + ai,1z + ai,0

)
= ((H1(z))

n1 ·
n2

∏
i=1

H2,i(z), (37)

with the terms from each triplet (bi,2, bi,1, bi,0) not all null, H1 known as a first-order section,
and each H2,i, with i = 1, n2 being denoted in the literature as a second-order section (SOS).

Remark 4. Second-order sections are usually described with an additional gain term multiplied
separately to the output of the transfer function as:

H2(z) = g · b2z2 + b1z + b0

z2 + a1z + a0
, g 6= 0. (38)

To not further complicate the notations, we will not explicitly write this gain term for
every second-order section, but it will be implicitly considered in the implementation and
execution time analysis.

There are multiple approaches of implementing digital biquadratic filters, a good
example being the description from the monograph [34]. Table 3 exposes the four usual
topologies, which principally implement the same input-output transfer function, but with
important differences regarding numerical stability when selecting fixed-point or floating-
point implementations. These configurations are referred to as the canonical forms: Direct
Form I, Direct Form II, Transposed Form I, Transposed Form II, which differ in the numer-
ical properties of their implementations and in the number of necessary delay elements.
As observed in the third column of the table, all biquad topologies are based on four
additions, five multiplications, and a different number of load/store operations, depending
on the definition of the internal state variables. Such implementation details are relevant
when studying particularized structures, such as in the situations treated in [35,36].

Table 3. Digital biquadratic topology implementations; all difference equations implement the same
input-output second-order transfer function, but differ through the configurations of the state signals.

IIR SOS Topology Difference Equation min
∣∣∣ScK,H

∣∣∣
Direct Form I (DFI) y[k] = g ·

(
∑2

0 biu[k−i]−∑2
1 aiy[k−i]]

)
. 4a, 6m, 12l

Direct Form II (DFII)

{
y[k] = g ·∑2

0(bi · x[k−i]);
x[k] = u[k]−∑2

1(ai · x[k−i]).
4a, 6m, 14l

Transposed Direct
Form I (TDFI)

{
y[k] = g ·∑2

0(bi · x)[k−i];
x[k] = u[k]−∑2

1(ai · x)[k−i].
4a, 6m, 14l

Transposed Direct
Form II (TDFII)


y[k] = g · (b0u[k]+x1[k−1]);
x1[k] = b1u[k]−a1y[k]+x2[k−1];
x2[k] = b2u[k]−a2y[k].

4a, 6m, 16l

The ISR model for IIR controller structures is based on the pseudocode exposed in
Algorithm 1. hlBased on the specifications for H, each line of the pseudocode will have a
set of mandatory mathematical operations, along with optional operations, which will be
accounted for in the execution time analysis model through different constant weights.
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Algorithm 1 Infinite-impulse response (IIR) filter interrupt service routine (ISR)

Input: Hij(z) as in (35), topology as in Table 3
Output: Execution time profiler for routine iirFiltIsr

1: Construct software structures H1, H2,1–H2,n2 according to (37) and Table 3
2: Initialize delays involved in second-order sections to zero
3: procedure IIRFILTISR(Ω(H),H2[ ] [, H1])
4: Read and scale u[k] from input device
5: ũ← u[k]
6: for i← 1 to n2 do
7: ũ← H2[i].call(ũ) . The output from H2[i−1] becomes input to H2[i]
8: end for
9: [ũ← H1.call(ũ)]

10: y[k] = ũ
11: Scale y[k] and write to output device
12: end procedure
13: function CALL(H, topology) . First or second-order section call method for IIR filter
14: Read input u[k]
15: Shift input delays u[k], u[k− 1] , [u[k− 2]]
16: Compute y[k] according to input topology as in Table 3
17: Shift output delays y[k], y[k− 1] , [y[k− 2]]
18: Scale by second-order section gain g
19: return y[k]
20: end function

In ref. [10], an analysis has been performed on the simplified case of a nth order IIR
SISO transfer function in a series connection, described as:

Hs
I IR(z) :=

Y(z)
U(z)

=
bmzm + bm−1zm−1 + · · ·+ b0

zn + an−1zn−1 + an−2zn−2 + · · ·+ a0
, (39)

which, by design, it can implicitly include a delay z−nd by forcing the first nd coefficients bi
to zero. Such a transfer function has its corresponding difference equation as:

y[k] = −
n−1

∑
i=0

ai · y[k− i] +
m−1

∑
j=0

bj · u[k− j]. (40)

A further particularization on the structure of Hij(z) is to consider the expression of
a FIR filter topology, which, by design, discards the previous output delays. The present
command signal y[k] will, as such, depend only on an array of delays, i.e., delay tap of
inputs u[k− i], modeled as:

HFIR(z) = g · z−nd ·
m

∑
i=0

bi · z−i ≡ g ·
N−1

∑
k=0

hk · z−k, g 6= 0. (41)

Four typical canonical forms are distinguished for FIR-type filters, namely the Direct
Form (DF), Direct Form Transposed (DFT), Symmetric and Antisymmetric [34], respectively,
with their definitions exposed in Table 4. The main difference between DF and DFT is that
for the former, the delay word lengths are that of the input signals u[k−i], while for the
latter, the delays have the word length of the accumulator variable. The Symmetric and
Antisymmetric cases make use of the linear phase of the filter through the regularity of the
first

⌊
N
2

⌋
coefficients as the symmetrical or antisymmetrical equivalents of the latter half of

the coefficients. As mentioned in the third column of the table, this has a significant impact
on the necessary multiplications and load operations involved in the implementation of
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y[k], k ≥ 0. Algorithm 2 emphasizes the corresponding SISO FIR filter ISR routine starting
from the mathematical basis of Equation (41) and information from Table 4.

Table 4. Digital FIR filter topology implementations; all difference equations implement the same
input-output Nth order transfer function, but vary through the configuration of the accumulator.

FIR Topology Difference Equation min
∣∣∣ScK,H

∣∣∣
Direct Form y[k] = g ·∑N−1

0 (h[i]u[k−i]). Na, (N+1)m, (2N+2)l

Direct Form
Transposed y[k] = g ·∑N−1

0 (h[i] · u)[k−i]. Na, (N+1)m, (2N+2)l

Symmetric

{
y[k] = g·∑bN/2c

0 h[i](u[i]+u[N−1−i]);
h[i] = h[N−1−i], i = 0, bN/2c.

Na,
(⌊

N
2

⌋
+1
)
m,(

N+
⌊

N
2

⌋
+2
)
l

Anti-
symmetric

{
y[k] = g·∑bN/2c

0 h[i](u[i]−u[N−1−i]);
h[i] = −h[N−1−i], i = 0, bN/2c.

Na,
(⌊

N
2

⌋
+1
)
m,(

N+
⌊

N
2

⌋
+2
)
l

Corollary 1. Given a MIMO transfer matrix H ∈ G
p×m
D as in (35), where each component Hij(z),

i ∈ 1, p, j ∈ 1, m can be described as an IIR filter of form (37), with second-order sections as
in Table 3 or a FIR filter of form (41), with difference equations as in Table 4, the WCET can be
computed as:

WCET(Ψ, Ξ) =

(
O(1) +

p

∑
i=1

m

∑
j=1

γij ·min
∣∣∣SpHij ,H

∣∣∣)× Tclk, (42)

with coefficients γij > 0 accounting for the hardware specifications set H from Definition 1,
each assembly operation set SpHij ,H determined individually by the RCP application, given the
microprocessor tick Tclk > 0, and O(1) depends only on the other higher-priority software threads.

Algorithm 2 Finite-impulse response (FIR) filter interrupt service routine (ISR)

Input: Hij(z) as in (41), topology as in Table 4
Output: Execution time profiler for routine firFiltIsr

1: Construct software structure HFIR with N coefficients h[i] and a Nth order delay tap
2: Initialize Nth-order input delay tap to zero
3: procedure FIRFILTISR(N,H)
4: Read and scale u[k] from input device
5: ũ← u[k]
6: Shift input delay tap
7: ỹ← H.call(ũ) . According to column 2 of Table 4
8: y[k] = ỹ
9: Scale y[k] and write to output device

10: end procedure

The proof immediately follows based on Theorem 1 by replacing the general-purpose
sequence SpK,H with its corresponding sum of subsystems Hij from the full MIMO regula-
tor K ≡ H and their definitions.

3. Case Study

The Case Study section concerns with illustrating the proposed extensions on a motor
servo control example, and will encompass the following key points: process description,
control performance specifications, continuous-time controller design, regulator discretiza-
tion methods, sampling time optimization, selection of different controller implementation
topologies along with the worst-case execution time analysis and a detailed discussion of
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the obtained results. The reason for selecting this example is that the proposed theory can
be illustrated in the same manner for a simple process model and a modest microcontroller
device setup, compared to a more complex process and an adequate microcontroller setup,
leading to similar processor workloads.

3.1. Process Model and Controller Synthesis

To illustrate the proposed theoretical techniques, we consider a numerical case study
based on a brushed direct-current (DC) motor position control system. Figure 5 shows
the closed-loop structure, emphasizing both the process model and the 2DOF regulator
structure. The motor process has a control input represented by the source voltage Va [V],
along with the disturbance load torque Td [Nm], and the output is considered to be the
angular position θ [rad]. As noticeable from the transfer function blocks, the DC motor
model has order three, and the nominal component values are listed in Table 5.

Table 5. DC motor physical parameters.

Parameter Value Parameter Value

R 2 [Ω] L 0.5 [H]

Km 0.1 [Nm·A/V2] K f 0.2 [Nm]

J 0.02 [kg ·m2/s2] Kb 0.1 [V·s/rad]

Figure 5. Closed-loop two-degree-of-freedom (2DOF) position control structure for the DC motor
system with a control voltage input Va and a disturbance load torque Td. The 2DOF structure has an
inner-loop component Kin designed for disturbance rejection and a feedforward component Kff for
good servo compensation.

The process model from its two inputs to the angular position output is described by:

Θ(s) =
1
s
· HL(s)

1 + Hr(s)HL(s)Ha(s)
· Td(s) +

1
s
· Ha(s)HL(s)

1 + Hr(s)HL(s)Ha(s)
·Va(s), (43)

with the armature transfer function Ha, along with the load component HL and the reverse
loop term Hr which denotes the back-electromotive voltage constant Kb:

Ha(s) =
Km

Ls + R
, HL(s) =

1
Js + K f

, Hr(s) = Kb. (44)

The 2DOF controller components have the proportional–integral–derivative plus
filter (PIDF) structure for Kin, while the integral term is canceled for the feedforward
controller Kff. This structure allows straightforward implementation in many industrial
contexts as such PIDF regulators can be directly acquired and there are multiple validated
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approaches in the literature for their parameter tuning [18,20]. As such, their mathematical
expressions become:

Kin(s) =
Uin(s)
R(s)

= KP + KI
1
s
+ KD

s
Tf s + 1

, (45)

Kff(s) =
Uff(s)
R(s)

= b̃ · KP + c̃ · KD
s

Tf s + 1
, (46)

with the feedforward parameters usually specified as b and c, with b̃ = −1 + b and
c̃ = −1 + c. The command signal applicable to the motor input is comprised of two
components derived from the 2DOF regulator as:

U(s) = Uin(s) + Uff(s) = Kin(s)E(s) + Kff(s)R(s). (47)

The closed-loop control specifications were selected as follows: a reference tracking
settling time of ts ≤ 1.5 [s] with an overshoot Mp ≤ 0.05 ≡ 5[%], with the rise time as
short as possible. Additionally, regarding the disturbance rejection specifications, a load
torque of 1 [Nm] must be rejected in less than td

s ≤ 1[s], i.e., its effect on the output
measurement should become less than 0.1 [rad] in the specified td

s , with a maximum
allowed disturbance of yd

max = 0.65 [rad]. The recommended approach in such designs [12]
is to tune the inner PIDF controller Kin to account for the disturbance rejection coefficients,
as K f f does not influence that control loop, as written in the discrete-time counterpart
expressions (54). The PIDF parameter tuning has been done using global optimization
methods by encompassing the desired specifications. The first iteration which covered all
disturbance rejection performances was accepted and halted the optimization procedure.
Additionally, a further optimization as been performed on the 2DOF parameters b and c
of (46) with, again, halting the procedure after the reference tracking requirements have
been fulfilled. The outcomes of the regulator tuning are illustrated in Table 6, where,
alongside the PIDF and additional PD synthesis, a separate 1DOF PIDF regulator has been
also added, to account for only the tracking response.

Table 6. Regulator designs leading to the proposed 2DOF control and their corresponding coefficients.

Regulator Kp Ki Kd Tf b c

PID (1DOF): tracking 21.0666 8.757 7.7497 0.0014717 1 1

PID (1DOF): disturbance rejection 52.6665 70.0560 7.7497 0.0014717 1 1

PID (2DOF) 52.6665 70.0560 7.7497 0.0014717 0.4 0.2

The closed-loop step responses for the reference tracking and disturbance rejection
problems are portrayed in Figure 6, showing the effects of the three controller examples
from Table 6, case in which the 2DOF structure is validated, as the obtained performance
metrics are ts ≈ 1.5[s], Mp ≈ 0[%], rise time tr ≈ 0.75 [s] and steady-state error εss = 0. As
illustrated in the figure, the 2DOF structure manages to ensure both the transient response
performances and the disturbance rejection behavior, being the only regulator from the
proposed triplet to cover both areas.
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Figure 6. Closed-loop continuous-time domain simulations; step reference responses along with
step disturbance rejections considering 1DOF regulators designed for servo tracking, disturbance
rejection, and for performance in both cases, respectively.

3.2. Sampling Rate Selection

For the discretization of the PID regulators, the forward Euler method has been
considered for the integrator term, with the approximation:

s ≈ z− 1
T

=
1− z−1

Tz−1 , (48)

while the derivative term is discretized using the backward Euler method as:

s ≈ z− 1
Tz

=
1− z−1

T
, (49)

leading to the expression of Kin:

Kin(z) = KP +
KI T
z− 1

+
KD

Tf +
Tz

z−1
, (50)

with an expression of Kff also as:

Kff(z) = b̃ · KP + c̃ · KD

Tf +
Tz

z−1
, (51)

which will be further used in the proceeding illustration of the sampling time analysis.
Starting from the continuous-time open-loop model from (43), the discrete-time equiv-

alent using the zero-order hold method becomes:

Θ(z) = Z
{
L−1{Hzoh,T(s)Haux(s)

}}
· Td(z) +Z

{
L−1{Hzoh,T(s)Ha(s)Haux(s)

}}
·Va(z), (52)

with the auxiliary notations:

Haux(s) =
1
s
· HL(s)

1 + Ha(s)HL(s)Hr(s)
, Θ(z) = Hop

dist(z) · Td(z) + Hop
servo(z) ·Va(z). (53)
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The closed-loop system’s expression thus becomes:

Θ(z) =
Hop

dist(z)

1 + Hop
servo(z)Kin(z)

· Td(z) +
Hop

servo(z)(Kff(z) + Kin(z))
1 + Hop

servo(z)Kin(z)
· R(z). (54)

By imposing the functionals SΩ
Kin

,SΩ
Kff

, IKin , IKff ,S
Ω
Hr

cl
,SΩ

Hd
cl

, T, and J
α∞
stab(H0)

from

Equation (23), two weighting sets c1–c7 were considered as in Table 7, correspond-
ing to two distinct experiments, the first numerical column designating emphasis on the
difficulty of implementation functionals, while the second numerical column coefficients
focus mainly on open-loop and closed-loop fidelity. With said coefficients, using a general-
purpose PSO implementation as specified in Remark 3 [28], the optimal implementability
sampling period becomes Topt

s,1 = 2.866× 10−3 [s], while the fidelity sampling period is

obtained at Topt
s,2 = 1.260× 10−4 [s]� Topt

s,1 . To further extend the analysis, two extra sam-
pling periods will be added in the discussion, the first representing the value obtained by
applying the classical Shannon–Nyquist theorem (9), leading to a sampling period smaller

than half the least time constant of the regulator, i.e., Ts,3 <
Tf
2 ⇒ Ts,3 = 7.0081× 10−4 [s],

while the latter relevant value is considered to be Ts,4 = Ts,1 · (1 + 0.03) = 2.9520× 10−3,
which represents a 3[%] disturbance increase on the ideal implementability sampling rate,
which causes instability in the closed-loop system. Figure 7 gathers all functionals and
their weighted sums in its six subfigures, while also marking the positions of Topt

s,1 , Topt
s,2

and Ts,3. The open and closed-loop similarity functionals J1, J2, J5, J6 are non-monotonic
with respect to a variable Ts, while the implementability functionals J3, J4, J7 are principally
monotonically decreasing. The existing exceptions appear due to numerical errors.

Figure 7. Functionals J1−J8, corresponding to SΩ
Kin

,SΩ
Kff

, IKin , IKff ,S
Ω
Hr

cl
,SΩ

Hd
cl

, T,Jα∞
stab(H0)

, respectively,

and their weighted sum as in Equation (23) for both performed experiments. Besides the imple-
mentability and fidelity cases, a classical sampling-theorem approach is illustrated.
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Table 7. Functional weighting coefficients for the two considered experiments of the DC motor
case study: main focus on implementability of the resulting controller versus the focus on fidelity
compared to the continuous-time control counterpart.

Parameter Implementability Case Value Fidelity Case Value

c1 0.1 100
c2 0.1 100
c3 2000 1
c4 2000 1
c5 0.1 300
c6 0.1 100
c7 200 1

Topt
s Topt

s,1 = 2.866× 10−3 [s] Topt
s,2 = 1.260× 10−4 [s]

There are multiple approaches for implementing the two PID regulators. Both Kin(z)
and Kff(z) can be fully encompassed into a biquadratic filter topology and, furthermore,
a first-order structure for Kff. The two main ones, given the simplicity of their structure,
would be to implement it in parallel versus in series. For the inner regulator, the parallel
topology, denoted with the superscript p can be split into three subsystems:

Kp
in(z) = Hin,1(z) + Hin,2(z) + Hin,3(z) = KP +

KI T
z− 1

+
KD(z− 1)

(Tf + T)z− Tf
, (55)

while the series topology, denoted with the superscript s, is:

Ks
in(z) =

b2z2 + b1z + b0

z2 + a1z + a0
= g · b̃2z2 + b̃1z + b̃0

a2z2 + a1z + a0
, a2 = 1. (56)

where the equivalent normalized coefficients are obtained:

b2 =
KP(Tf + T) + KD

Tf + T
; b1 =

−KP(2Tf + T) + KI T(Tf + T)− 2KD

Tf + T
; (57)

b0 =
KPTf − KI TTf + KD

Tf + T
; a1 = −

2Tf + T
Tf + T

; a0 =
Tf

Tf + T
. (58)

In the same manner, the parallel form of the feedforward regulator is adapted as:

Kp
ff(z) = b̃Hin,1(z) + c̃Hin,3(z) = b̃ · KP + c̃ · KD(z− 1)

(Tf + T)z− Tf
, (59)

with a first-order series form of:

Ks
ff(z) =

b1z + b0

z + a0
= g · b̃1z + b̃0

a1z + a0
, a1 = 1. (60)

and equivalent normalized coefficients:

b1 =
b̃KP(Tf + T) + c̃KD

Tf + T
; b0 =

−b̃KPTf − c̃KD

Tf + T
; a0 =

−Tf

Tf + T
. (61)

3.3. Execution Time Analysis

After the discretization procedure as specified by (48) and (49), using the right-hand
side notation for the coefficients in (56) and (60), the numerical values of the coefficients
become as in Table 8, using the for deduced sampling rates from Section 3.2, Topt

s,1 , Topt
s,2 ,

Ts,3, Ts,4. As observed, the gain coefficient g ≡ b2 for Kin and g ≡ b1 for Kff, respectively,
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remains invariant in this set of experiments, while the remaining non-unitary coefficients
vary with respect to Ts > 0 and necessitate increasingly more decimals as the sampling rate
tends to zero.

Table 8. DC motor case study discrete-time ideal coefficients using the deduced sampling rates.

Coefficient Topt
s,1 Topt

s,2 Ts,3 Ts,4

g: Kin(z) 5.3184815× 103 5.3184815× 103 5.3184815× 103 5.3184815× 103

b̃2: Kin(z) 1 1 1 1

b̃1: Kin(z) −1.980677 −1.999150 −1.995275 −1.980097

b̃0: Kin(z) 0.980751 0.999150 0.995279 0.980175

a1: Kin(z) −0.052546 −1.914358 −1.523809 0.005877

a0: Kin(z) −0.947453 0.914358 0.523809 −1.005877

g: Kff(z) −4.244251× 103 −4.244251× 103 −4.244251× 103 −4.244251× 103

b̃1: Kff(z) 1 1 1 1

b̃0: Kff(z) −0.985500 −0.999362 −0.996454 −0.985065

a0: Kff(z) 0.947453 −0.914358 −0.523809 1.005877

To account for the necessary word length analysis, two frequently used configurations
have been considered: the first case is to store the operands, i.e., coefficients and inputs,
states, outputs into 16-bit registers, considered the standard length for the RISC machine
hosting the 2DOF controller, followed by a set of 32-bit length registers, which will increase
the working precision, but with added execution time overhead, as modeled in continua-
tion. Given the dynamic range of the final filter gains g, this final multiplication will be
considered separately. Thus, the set H for this case study will encompass the properties:

• it has a clock tick period of Tclk =
1

1 [MHz] = 1 [µs], obtainable on standard microcon-
trollers by configurating the phase-locked loop circuit to a lower-power setting;

• implements the second-order sections using the Direct Form II for Kin and a series
connection for the first-order term Kff, denoted y[k] = f (y[k−i], u[k−i]);

• two configurations for the word lengths of the operands: 16-bit and 32-bit;
• applies saturation on output command signals y[k];
• applies anti-windup on the integrator term of Kin using the back-calculation method:

wI,I(x[k+1]) = x[k] +
[
Kw ·

(
sY,Y(y[k])− y[k]

)]
· (KiT) · u[k], (62)

with the additional parameters Kw, I, I represented using a 16-bit word length;
• the output measurement Θ is gathered as a sum of impulses, with a maximum ex-

pected frequency of fmax = 80,000 impulses per 100 [ms] time unit, and each such
impulse triggers a hardware interrupt with a 15 assembly operation stack commutation
cost; the scaling is then performed using a multiplication with a 16-bit variable;

• Kff accepts the reference signal r[k] as input, while Kin accepts the error e[k] = r[k]−Θ[k].

The mathematical operations pi ∈ O, along with their assembly instruction correspon-
dents as in (29) are detailed in Table 9, with an emphasis on each type of operation based on
its physical significance, as written in the last column. The hyperparameters γi in the case
of standard 16-bit word lengths have been considered with the value 1, denoting that each
base arithmetical operations costs only Tclk, while the values are scaled upwards for the
case when the operands exceed the word length to 32 bits. The impulse counter assembly
operation cost for Θ[k] has been computed as 80,000 ×0.1× 15× T. Additionally, Table 10
totalizes the number of assembly operations based on the previous table’s description,
along with computing the worst-case execution times for the three stable sampling rate
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values: Topt
s,1 –Ts,3. As seen from the table, the optimal sampling rate solution featuring imple-

mentability emphasis Topt
s,1 occupies the microprocessor for less than 25[%] of its capability

in either 16 or 32-bit quantizations alike, with the Shannon theorem approach Ts,3 following
with sufficient headroom in the scheduler algorithm, while the fidelity-based approach
in this case occupies the scheduler with small margins in the case of 16-bit quantizations,
and exceeds the allowed time frame in the case of the 32-bit configuration.

Table 9. Encountered operations in the implementation of the 2DOF structure for the DC motor case
study in the hypothesis of a base word length of L = 16 bits and two considered quantization levels
for the controller coefficients: 16-bit and 32-bit lengths, respectively.

pi = (#ri) pi Ks
in Kp

in Ks
ff Kp

ff
γi

16b
γi

32b Observations for K(z),H

1 l 14 18 8 13 1 2 y[k] = f (y[k−i], u[k−i])

1 a 4 5 2 3 1 2 y[k] = f (y[k−i], u[k−i])

1 m 6 5 4 4 1 6 y[k] = f (y[k−i], u[k−i])

8 s 1 1 1 1 1 2 s(y[k])

20 w 1 1 0 0 1 6 Integrator anti-windup

120× 103 × Ts a 1 1 0 0 1 1 Θ[k] impulse counter

1 m 1 1 0 0 1 6 Θ[k] scaling

1 a 1 1 0 0 1 2 e[k] = r[k]−Θ[k]

1 l 3 3 0 0 1 2 e[k] = r[k]−Θ[k]

1 l 2 2 1 1 1 2 y[k−i]← y[k−i−1]

1 l 2 2 1 1 1 2 u[k−i]← u[k−i−1]

Table 10. DC motor case study WCET analysis in the conditions from Table 9, by emphasizing the

number of assembly operations
∣∣∣SpK,H

∣∣∣ necessary to implement the 2DOF structure comprised of
Kin and Kff, along with the processor usage level for the three stable sampling rate values.

16b
Ks

in

16b
Ks

ff

16b
Kp

in

16b
Kp

ff

32b
Ks

in

32b
Ks

ff

32b
Kp

in

32b
Kp

ff∣∣∣SpK,H
∣∣∣ 77 24 81 30 246 64 250 76∣∣∣Sp{Kin,Kff},H
∣∣∣ 101 111 310 326

WCET Topt
s,1 = 2866[µs] 429[µs] 439[µs] 638[µs] 654[µs]

WCET Topt
s,2 = 126[µs] 101[µs] 111[µs] 310[µs] 326[µs]

WCET Ts,3 = 700.8[µs] 170[µs] 180[µs] 379[µs] 395[µs]

U
(

Ψ, Ξ, Topt
s,1

)
14.96[%] 15.31[%] 22.26[%] 22.81[%]

U
(

Ψ, Ξ, Topt
s,2

)
80.15[%] 88.09[%] 246.03[%] 258.73[%]

U
(

Ψ, Ξ, Topt
s,3

)
24.25[%] 25.68[%] 54.08[%] 56.36[%]

Based exclusively on the previous WCET analysis, there are several feasible solutions.
In order to decide between the three sampling rate and quantization pair configurations,
further analysis is performed on the frequency response of the Kin and Kff controllers,
along with the closed-loop responses using said controllers. As such, Figures 8 and 9,
respectively, gather the previously said behaviors. In addition to the three sampling rates,
for completeness, the fourth, unstable sampling rate Ts,4 is shared, along with the ideal
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continuous-time equivalent controllers in the frequency-response plot. In both figures,
columns one and two expose the 32-bit and 16-bit quantization configurations, respectively,
while the lines distinguish between the Kin, Kff controllers in the frequency-response figure
and reference step response compared to the step disturbance responses in the time-domain
simulation, respectively. The main conclusion drawn from this final pair of Figures is
that the considered 2DOF control scheme is sensitive to the coefficient quantization levels,
such that for Ts,2 and Ts,3, the only acceptable solution would be to use the precise 32-bit
configuration, with the exception of the implementability solution which manages to follow
the imposed closed-loop transient response specifications with a reasonable degradation of
the performances. The 16-bit quantization frequency responses for Kin(z) drastically alter
the integrator effect, which, in effect, disturbs the ability of the closed-loop motor system to
track reference signals and to reject step-like load torque disturbances.

To conclude the case study, the acceptable solutions are to consider the implementability-
based sampling rate optimum Topt

s,1 , with practically ideal behavior if a 32-bit word length
setup is acceptable, and with a small performance degradation if only the 16-bit stan-
dard word length is supported, depending also on other execution threads running in the
microprocessor, not covered in this experiment.

Further extensions, as in using more complex controllers for both the tracking regulator
and the feedforward component, considering cases such as fractional-order controllers or
2DOF robust control synthesis results can be treated in an analogous manner by splitting
such control laws into their component second-order sections and applying the theory from
Tables 3 and 4, along with Algorithms 1 and 2, respectively.

Figure 8. DC motor example regulator frequency magnitude responses; the first line gathers the
inner regulator Kin(z) with 32-bit and 16-bit quantized regulator coefficients, respectively, while the
second line gathers the feedforward controller Kff(z) in the same 32-bit and 16-bit configurations.
For completeness, the continuous-time ideal regulators Kin(s) and Kff(s) were also added alongside
their discrete-time counterparts.
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Figure 9. DC motor example closed-loop step responses using the proposed 2DOF control structure;
the first line gathers the reference tracking behavior with 32-bit and 16-bit quantized regulator
coefficients, respectively, while the second line gathers the disturbance rejection behavior in the same
32-bit and 16-bit configurations.

4. Conclusions

This paper gathered a set of analysis and design tools to determine the sampling
rate of one and 2DOF control structures using an optimization-based approach, along
with an approach of deducing a WCET for linear and time-invariant-based regulators
through a formal language model which can be implemented in an RCP software tool.
The execution time model is based on a deterministic, RISC architecture, where each
operation is quantified with the same base clock tick duration. The end-to-end DC motor
case study emphasizes the design of the controllers for the widely used benchmark system,
by also focusing on the proposed framework.

Future work will concern on an online sampling rate optimization, as it is necessary
in linear-parameter varying and linear-time variant models, along with the study and
analysis of the continuity property of the regulator coefficient quantization effects as a
function of the sampling rate. The problem of process controllability loss is also known in
the literature and will be investigated for variable sampling rates in subsequent research.
The mathematical framework proposed and extended in this paper will be included in
the software toolbox initially proposed by the authors in [22], with the great advantage
of obtaining an end-to-end solution for RCP, starting from the continuous-time controller
design up to the optimal numerical implementation of said controller on a microprocessor-
based system with a given set of specifications. A separate theoretical direction would be to
investigate the link between sampling rate T > 0 and quantization step Q > 0 to guarantee
that the minimum imposed performances are also fulfilled in the discrete domain.
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Abbreviations
The following abbreviations are used in this manuscript:

2DOF Two-Degrees-of-Freedom
ADC Analog-to-Digital Converter
DAC Digital-to-Analog Converter
DC Direct Current
DMA Direct Memory Access
ISR Interrupt Service Routine
LMI Linear Matrix Inequality
LTI Linear and Time-Invariant
MAC Multiply-Accumulate
MiL Model-in-the-Loop
MIMO Multi-Input Multi-Output
NP Non-deterministic Polynomial-time
PID Proportional–Integral–Derivative
PIDF Proportional–Integral–Derivative with Lowpass Filter
RAM Random-Access Machine
RCP Rapid Control Prototyping
SiL Software-in-the-Loop
SOS Second-Order Section
SIMD Single Instruction/Multiple Data
SIMP Single Instruction Stream/Multiple Instruction Pipelining
SISO Single-Input Single-Output
WCET Worst-Case Execution Time
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