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Abstract: Pyrites are widely distributed in marine sediments, the morphology of which is applied as
a proxy to infer the redox conditions of bottom water, and identify diagenetic stages and hydrocarbon
leakage activities. In this review, the methods used for the morphological study of pyrite are
summarized. The textural and size characteristics of euhedral pyrite and pyrite aggregates, as the
formation and evolution mechanism of pyrite are discussed for their significance in reconstructing
the geochemical environment. The morphological study of pyrite includes shape observation, size
estimation, and surface feature analysis. Scanning electron microscope and optical microscope are
the main methods for morphological observation; transmission electron microscope and scanning
tunneling microscope are applicable to observe nanoscale morphological structures and crystal
growth on the crystal surface, and X-ray computed tomography is capable of measuring pyrite size
distribution at the scale of a micrometer. Under the marine sedimentary condition, the single crystal of
pyrite appears in cube, octahedron, dodecahedron, and their intermediates, the size of which ranges
from several nanometers to more than 100 µm. The morphology of euhedral pyrite is controlled by
temperature, pH, the chemical composition of interstitial water, etc., and might have been experienced
in later reformation processes. The pyrite aggregates occur as framboid, rod-like, fossil-infilling,
etc., characterized by the comparatively large size of several microns to several millimeters. It
is found that certain textures correspond with different formation mechanisms and geochemical
environments. Particularly, under special geological conditions, for instance, the methane leakage
and/or decomposition of gas hydrate, pyrite is anomaly enriched with morphological textures of
massive framboid cluster, rod-like aggregates, etc., and framboid is found with a large mean diameter
(>20 µm) and standard deviation (>10 µm). These typical features can be employed to ascertain the
position of the paleo sulfate methane transition zone (SMTZ).

Keywords: authigenic pyrite; morphology; cold seep; gas hydrate; marine sediment

1. Introduction

Pyrite is one of the most important authigenic minerals in marine sediment [1], es-
pecially in cold seep areas, which has been the main research target in recent centuries.
The growth time, as well as sedimentary rate, and geochemical condition controls pyrite
formation [2], and the formation process of authigenic pyrite affects the biogeochemical
cycling of iron, sulfur, oxygen, and carbon [3–6].

Previous studies revealed a sequence of morphology evolution of pyrite crystals [7]
and pyrite aggregates [8], the morphological characteristics and size distribution of pyrite
in normal marine sediment [9–11] and in sulfate–methane transition zone (SMTZ) [12–14],
the various growth conditions during pyrite formation [15]. The morphology of pyrite
provides important scientific significance for studying marine sedimentary successions,
tracking microbial activities, and diagenetic processes [9,16–18].

The textures of authigenic pyrite include cubic, octahedron, pentagonal dodecahedron,
framboids, sunflower (framboid inner core and external overgrowth), rod aggregates, and
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organism-filling aggregates. In modern marine sediment, pyrite forms under syngenetic,
diagenetic, and synsedimentary conditions, and these processes produce overgrowth and
rod-like aggregates, which are the common textures found in marine sediment [13], that
can be used to indicate past environmental conditions and methane-rich environments.
Diagenesis makes syngenetic pyrite grow continuously, thus the morphology of previously
formed pyrite may change fully or partially. Thus, pyrite in deep sediment probably has
undergone complex diagenetic reformation, and pyrite in shallow sediment may record the
synsedimentary environment which can be a better indicator of the sedimentary condition.

In anoxic marine sediments, organic matter and methane can react with sulfate in
seawater or pore water to form hydrogen sulfide by organoclastic sulfate reduction and
anaerobic oxidation of methane–sulfate reduction (AOM-SR), which then combines with
iron compounds to form iron monosulfides that finally transform into pyrite (FeS2) [19,20].
At seeps, methane is the predominant reactant which is oxidized by dissolved sulfate
within the sediment [21]. The morphology and geochemistry of pyrite are strongly affected
by methane seepage activity [13,14]. In gas hydrate-bearing sediment, the gas hydrate
destabilization and methane gas expulsion led to temporally and spatially changes in
seepage activity, accordingly, affecting the geochemical conditions. The AOM-derived
pyrite in SMTZ has an obvious pyrite signature that shows a wide range of morphologies
and mineralogical, while total sulfur (TS), total organic carbon (TOC) versus TS, sulfur
isotopic characteristics are the evidence that supported to help identify SMTZ. Generally,
pyrite is enriched in SMTZ, which has a wide size distribution and various textures [14,22].
Thus, this kind of pyrite is a reliable index for estimating methane flux oscillation in
a methane flux fluctuate environment, the anomaly of pyrite content, texture, and size
distribution is the indicator for seepage activity and gas hydrate existing.

The morphology characteristics discussed in this review concluding size, crystal
shape, late alteration texture. Despite the complex diagenetic process impeding a distinct
relationship between morphology and mineralization, the preliminary correlation between
pyrite morphology and sedimentary environment has been proposed and discussed in this
review [7].

2. Methods for Morphology Study

The methods usually used for studying the morphology of pyrite are optical mi-
croscope, scanning electron microscope (SEM), transmission electron microscope (TEM),
scanning tunneling microscope (STM), X-ray computed tomography (X-Ray CT), etc. The
resolutions of these methods are shown in Figure 1.
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Figure 1. The resolution of different methods for morphological research.

Textural observation by optical microscope is the basic method for studies of pyrite
texture with low cost but poor resolution (>0.2 µm). SEM is the most commonly used
method for observing pyrite texture, with higher resolution (generally up to 3 nm) and
relatively high cost; however, an additional pretreatment procedure is required to coat
samples with Au/C/Cr. The measurement with ore microscopy may overestimate the
size of pyrite in contrast to SEM results, while the latter may underestimate the size
compared to the actual value with an error <10% [9]. Much higher resolution imaging can
be obtained by TEM (up to 0.5 Å), which can be used to detect planar defects and thin
growth layers on pyrite crystal surface [13]. However, the sample preparation process for
TEM is complex and difficult (the thickness of the sample must below 200 nm), and will
damage the sample [23]. STM has been adopted to investigate the micro-morphology and
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structure of pyrite, which has a genetic significance and reflects various information in
thermodynamics and dynamics [24].

Size distributions are commonly measured by 2D images nowadays (SEM). However,
X-ray CT can provide a more convenient and in situ way substitute for SEM, especially
when taking mass samples. X-ray CT was mainly used to recognize large-scale structures
and study the petrophysics [25–32] in previous studies; however, X-Ray CT has been
confirmed to be a useful way to calculate the size distribution of pyrite crystals [8,33–36].

3. Shape of Single Crystal of Pyrite

Natural euhedral pyrite crystals formed extensively in marine settings, such as normal
marine sediment, marine hydrothermal environment, and microenvironment of fossils
buried in marine sediment, several typical backscattered electron (BSE) images, and sec-
ondary electron (SE) images are shown in Figure 2. Except for the individual crystal, pyrite
microcrystals are mostly found assembled as framboids [37].
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dral form [8,38,43–45], pyritohedral form [12,38,43,45–47], and intermediate [13,33,44,48,49] un-
der different marine environments, among which (O6,C5,C6,I1,I5,P5,P6) are BSE images, (O1–O5,
C1–C4,I2–I4,I6,P1–P4) are SE images.

However, in the marine hydrothermal system, cube and pyritohedron are the dominant
forms of authigenic pyrite, in modern marine sediment, octahedron, truncated octahedron
and cubo-octahedron are the predominant forms [13,38,50,51]. Few studies have reported
the cubic pyrite formation in marine sediment (<100 °C) except for seepage areas [52,53].
The summary of variations on the crystal shape of pyrite forms in marine sediment is
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shown in Figure 3, there are cube, octahedron, pyritohedron, and their intermediates.
During pyrite crystal growth, the combinations and morphologies of microcrystals are
controlled by the geochemical growth environment, such as Fe (II) and SO4

2− concentra-
tion, pH, temperature, impurities, etc. According to the experimental phenomenon, Wang
and Morse (1996) reported that the morphology of microcrystal transforms from cube to
octahedron to spherulite texture as the increase in supersaturation of Fe2+ and SO4

2− in
the reaction solution [7]. With the increase in S/Fe ratio, the number of edges of microcrys-
talline grains also increases, pyrite crystal shape transforms from {100} or {110} + {111} to
{210} + {111} [54]. The {100} becomes less stable and {111} becomes more stable with tem-
perature increasing [55]. However, the solution pH does not seem to decisively affect the
microcrystal shape transformation, and the influence of impurities on the morphology of
microcrystals is still unclear [7].
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The authigenic euhedral pyrite in marine sediment mainly forms in two ways, (1) direct
way, with the poor supplement of active organic matters and limited dissolved polysulfides,
FeS saturation degree is hard to be reached [56,57], euhedral pyrite precipitates directly.
Diagenetic or metamorphic pyrite has a larger size than sedimentary pyrite [58]. (2) Indirect
way, the framboidal precursor undergoes regrowth after being buried, the euhedral pyrite
is the product of diagenesis. Generally, in marine sediment, the large euhedral pyrite
becomes the major texture instead of framboids, suggesting the decrease in FeS2 saturation
or the weak SRB activity [59] and diagenetic process [60].

Simulation experiments have also been conducted to study the morphological proper-
ties of pyrite. Alfonso used first-principles spin-polarized DFT total energy calculations to
measure the stability of the crystal surface, reckoning that (001) is the preferential surface
under the S-lean condition, (111) is preferred under the S-rich condition [61]. It is believed
that with the increasing degree of supersaturation of iron sulfide solutions, the initially
formed cube transforms into an octahedron [7]. However, Rickard [62] proposed that with
initial high limiting supersaturation, (111) preferentially grows, subsequently, saturation
decreases and cubic planes appear.
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4. Texture of Pyrite Aggregates

The pyrite aggregates are usually found with the following textures, framboids, sun-
flower (framboid inner core and external overgrowth), rod-like aggregates [7,8,63–65].

4.1. Framboid

Framboid is the dominant texture of sedimentary pyrite in marine settings [62,65],
it is a spherical aggregate (Figure 4A–C) composed of numerous disordered cubic or
octahedral pyrite microcrystals (<2 µm) with a diameter size typically between 4 and 50 µm
diameter [7,66]. Some of the framboids are densely packed, while some are scattered [67].
There is no clear spatial relationship between the octahedral pyrite microcrystals and
the framboids.
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There is no consensus on the formation mechanisms of spherical texture. It is primarily
thought that spherical framboids inherited the structure of bacterial colonies or biogenic
spherical surfaces [70,71]. However, different models have been proposed later and proved
that the interaction forces such as electrostatic, gravitational, van der Waals, and magnetic
forces can be the cause of aggregation [65]. Nevertheless, there is sufficient evidence
showing that a high nucleation rate, and crystal growth rate ratio are necessary for framboid
formation [65,72], and framboids will be preferentially formed at a high nucleation rate [72].
With a high sulfide-producing rate which makes the FeS saturation degree easier to reach,
FeS will be precipitated first and transformed into framboidal pyrite later.

Three methods are used to study the formation kinetics of pyrite framboids, labo-
ratory synthesis experiment, sedimentation rate estimation, and simulation calculation.
A sedimentation rate was applied to estimate the formation time of framboids in the Peru
margin for the first time [9], but the result of a long formation period is contradicted by the
experimental result that pyrite framboids can be formed rapidly [73]. Rickard [74] used
the diffusion–nucleation model to simulate framboid formation time and found that sedi-
mentary pyrite framboids took around 5 days to form on average, rather larger framboids
(≥80 µm in diameter) took years to form, and smaller syngenetic framboids took 3 days
in average.

Framboid is commonly formed in euxinic seawater columns or shallow-marine sedi-
ments and is generally buried within a few centimeters thick sediments [75]. The particle
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size and content of framboidal pyrite in modern marine sediments can reflect the sedimen-
tary environment [75].

Framboidal pyrite formed in euxinic–anoxic bottom water environments and anoxic
sedimentary environments is generally with a small average diameter and a narrow size
distribution. In comparison, framboids formed in pore water of sulfidic sediment have
a larger average diameter and wider size range [76]. The framboidal size distribution is
indicative of a sedimentary environment, which will be discussed in detail in Section 7.

Cold seep activities, late diagenesis, low-grade metamorphism, and hydrothermal
events can promote the formation of pyrite framboids [48,77,78]. Framboid clusters are
ubiquitous in methane seepage or hydrate-bearing settings, which are ascribed to the
additional supply of HS produced from the efficient sulfate reduction facilitated by the
AOM and the sufficient iron supply from detrital iron minerals [67]. The texture of framboid
clusters is controlled by sedimentary structure and pore space [14]. As the result, the co-
occurrence of extremely large framboid and framboidal clusters may serve as the proxies
for the strong intensity of AOM and the position of the paleo–sulfate–methane transition
zone (SMTZ).

4.2. Sunflower

Sunflower is one of the common shapes of authigenic pyrite in marine sediment, which
is formed as the overgrowth of framboids [79], the shape of which is shown in Figure 4B,C.

In late diagenesis, tabular pyrite regrows outward along the spherical rim of the inner
framboidal core, then forms a subhedral (polygonal framboid) texture and finally appears
in a euhedral shape [79]. As the result, the sunflower texture represents intermediate stages
in the transformation of framboids into euhedral pyrites [8].

Although the framboidal pyrite that has undergone secondary growth will increase
its particle size to a certain extent, the diameter of the inner core will not change, which is
indicative of redox conditions [8].

4.3. Rod-like

The rod-like shape is the most common morphology of pyrite clusters with a size
ranging from hundreds of microns to several millimeters (Figure 4D), which usually
consists of abundant framboid clusters [13,80–82]. It is thought that the rod-like shape
is a pseudomorph after Beggiatoa and giant filamentous bacterium [53], and another
perspective is that the rod-like pyrite is formed in the gas or fluid migration channel in
sediments [13,83]. Moreover, the presentation of different pyrite textures in the inner and
outer parts of the rod-like aggregates [48], might indicate the different stages of pyritization
or recrystallization.

To sum up, the occurrence of large quantities of rod-like pyrite may suggest the
presence of methanogens, hydrocarbon migration channel, and enhanced sulfate-reducing
reaction during the formation of pyrite.

5. Textural Evolution

The textural evolution of framboids indicates the marine sedimentary environment
and geological process [18,84]. The morphology of pyrite crystal transfers from cube to
cubo-octahedron and the octahedron finally forms a spherulite texture with the increase in
supersaturation [7]. The morphological evolution of pyrite aggregates from framboid to
euhedral has been studied by experimental and field investigations [33,75,79,85]. Generally,
the following seven steps may be experienced in the formation and evolution process from
iron monosulfide microcrystals to euhedral pyrites.

(1) Iron monosulfide (FeS) nucleates;
(2) FeS transforms to greigite (Fe3S4);
(3) Homogeneous greigite microcrystals aggregate to form the framboidal texture;
(4) Some greigite microcrystals grow continuously to form colloidal pyrite;
(5) The pyrites grow radially along the spherical rim of the framboid;
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(6) The framboid is conversed to subhedral and/or euhedral pyrite while the framboidal
texture remains, and the voids in the subhedral stage (Figure 5F,G) disappear in
the euhedral stage (Figure 5H). Finally, greigite framboids have been turned into
pyrite (FeS2).

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 7 of 21 
 

 

Generally, the following seven steps may be experienced in the formation and evolution 
process from iron monosulfide microcrystals to euhedral pyrites. 
(1) Iron monosulfide (FeS) nucleates; 
(2) FeS transforms to greigite (Fe3S4); 
(3) Homogeneous greigite microcrystals aggregate to form the framboidal texture; 
(4) Some greigite microcrystals grow continuously to form colloidal pyrite; 
(5) The pyrites grow radially along the spherical rim of the framboid; 
(6) The framboid is conversed to subhedral and/or euhedral pyrite while the framboidal 

texture remains, and the voids in the subhedral stage (Figure 5F,G) disappear in the 
euhedral stage (Figure 5H). Finally, greigite framboids have been turned into pyrite 
(FeS2). 

 
Figure 5. The BSE images of proposed textural evolution [33,42]. (A) The discrete Fe3S4 grain; (B) 
The discrete Fe2S grain; (C) The disordered and irregular aggregates of pyrite microcrystals; (D) The 
regularly arranged aggregates of pyrite microcrystals; (E) The closely packed framboids; (F) The 
recrystallized pyrite with colloform overgrowth; (G) The subhedral pyrite crystal; (H) The euhedral 
pyrite crystal. 

Merinero et al. [33] found the similar pyrite textural evolution in several steps in 
marine sediments with SEM, and a similar textural evolution was observed in modern 
seafloor hydrothermal system [42]. The BSE images of the proposed textural evolution are 
shown in Figure 5. The discrete Fe3S4 grain forms in marine sediment (Figure 5A) as the 
predecessor of Fe2S (Figure 5B). The transformations from disordered and irregular 
aggregates of pyrite microcrystals (Figure 5C) to regularly arranged aggregates of pyrite 
microcrystals (Figure 5D) and closely packed framboids (Figure 5E), and from 
recrystallized pyrite with colloform overgrowth (Figure 4F) to subhedral (Figure 5G) and 
euhedral (Figure 5H) texture fit the tendency of system energy decay [42,86]. 

The morphology of pyrite is a significant and reliable evidence to understand the 
geochemical environment. The different morphologies of framboids are the reflection of 
different growth steps during continuous growth and textural development, and 
geochemical index changes simultaneously with textural evolution [33].  

6. The Texture of Pyrite Filling in Organisms 
It is quite often observed that pyrite fills in the foraminiferal chamber (Figure 6A–D) 

and biogenic silica (Figure 6E–H) with a texture of euhedral or framboid (shown in Figure 
6A,B). The infilled texture of pyrite is observed in almost all geochemical zones in marine 
sediments. However, the infilled pyrite in shallow sediments usually appears in the shape 
of framboid, with the depth increases, degree of pyritization becomes more intensive, and 
infilled euhedral pyrite is formed [87]. The large euhedral crystals near the shell of 
foraminifera or diatom were probably formed in late diagenetic process [76,88]. 

Figure 5. The BSE images of proposed textural evolution [33,42]. (A) The discrete Fe3S4 grain;
(B) The discrete Fe2S grain; (C) The disordered and irregular aggregates of pyrite microcrystals;
(D) The regularly arranged aggregates of pyrite microcrystals; (E) The closely packed framboids;
(F) The recrystallized pyrite with colloform overgrowth; (G) The subhedral pyrite crystal; (H) The
euhedral pyrite crystal.

Merinero et al. [33] found the similar pyrite textural evolution in several steps in marine
sediments with SEM, and a similar textural evolution was observed in modern seafloor
hydrothermal system [42]. The BSE images of the proposed textural evolution are shown in
Figure 5. The discrete Fe3S4 grain forms in marine sediment (Figure 5A) as the predecessor
of Fe2S (Figure 5B). The transformations from disordered and irregular aggregates of
pyrite microcrystals (Figure 5C) to regularly arranged aggregates of pyrite microcrystals
(Figure 5D) and closely packed framboids (Figure 5E), and from recrystallized pyrite with
colloform overgrowth (Figure 4F) to subhedral (Figure 5G) and euhedral (Figure 5H) texture
fit the tendency of system energy decay [42,86].

The morphology of pyrite is a significant and reliable evidence to understand the
geochemical environment. The different morphologies of framboids are the reflection of dif-
ferent growth steps during continuous growth and textural development, and geochemical
index changes simultaneously with textural evolution [33].

6. The Texture of Pyrite Filling in Organisms

It is quite often observed that pyrite fills in the foraminiferal chamber (Figure 6A–D)
and biogenic silica (Figure 6E–H) with a texture of euhedral or framboid (shown in
Figure 6A,B). The infilled texture of pyrite is observed in almost all geochemical zones in
marine sediments. However, the infilled pyrite in shallow sediments usually appears in the
shape of framboid, with the depth increases, degree of pyritization becomes more intensive,
and infilled euhedral pyrite is formed [87]. The large euhedral crystals near the shell of
foraminifera or diatom were probably formed in late diagenetic process [76,88].
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The shell of foraminifera or diatom creates a comparatively confined environment
restricting the material exchange between the inside and outside of the organism. This
confining effect makes the geochemical environment inside the foraminiferal chamber
different from that of the surrounding sediment matrix. The organic components in the
diatom [90,91] and soft part of foraminifera are degraded with the involvement of the
microorganism [92], and simultaneously sulfate-reducing bacteria (SRB) reduces SO4

2−

to H2S through the metabolism [93] and accelerates the precipitation of iron sulfide. The
microenvironment in the organism chamber becomes more reduced than the surrounding
sediment matrix by these microbial-mediated geochemical processes. In addition, biological
surfaces also act to reduce the requirement of supersaturation for Fe-sulfide formation
significantly as compared with, for example, pyrite seed [94]. In the beginning stage, the
pyrite forms by clinging to the inner surface of the foraminifer (Figure 6C), then grows in
the outside-in pattern, and finally replaces the biological shell or grows outward through
the interconnected pores (Figure 6D) [43]. It was observed that pyrite textures can be
different even in adjacent fossil cells [95].

The organism-filling pyrite may reflect the reducing microenvironment in organism
chamber and has certain limitations in indicating the diagenetic environment and preserva-
tion condition. However, the organic matrix is speculated as the regulatory factor during
the pyritization [96] and the shape of organism-filling framboids may be related to the
fossilized organic matrix-like structure [97]. The grain size of organism-filling aggregates
depends on the shell size of the organisms [14]. The growth space provided by the organism
is limited, thus under such an enclosed microenvironment, the growth of pyrite framboids
is spatially confined and euhedral pyrite has a homogeneous size [96,98].

7. Pyrite Morphology in Different Geochemical Zones in Marine Sediments

Marine sediment is the most significant “sink” of iron sulfide. Framboidal pyrite can
be formed in the synsedimentary process, very early diagenetic, late diagenesis, weak
metamorphic process, and the hydrothermal event [99,100]. It should be noted that fram-
boidal pyrite formed in the former two processes can be the proxy for the redox environ-
ment. Within the upper centimeters of marine sediments or euxinic water column, H2S
and Fe2+ are sufficient for the nucleation of monosulfide precursors and pyrite precipita-
tion [66,75,101].

Based on the classic theory of early diagenetic process in sediments, organic mat-
ter/methane will be oxidized by electron receptors such as O2, Mn4+, Fe3+, and SO4

2−,
and there is an obvious zoning sequence in the sediment depth profile. In shallow sed-
iments, organic matter degradation coupled with sulfate reduction controls the cycling
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of carbon and sulfur. In SMTZ, SO4
2−-AOM accelerates the sulfate reduction where the

product H2S promotes the pyrite precipitation, and the depth of SMTZ can shift according
to the leakage intensity. Under SMTZ, metal-derived anaerobic oxidation of methane
(metal-AOM) or metal-derived organic matter degradation dominates the geochemical
cycle of sulfur and carbon. The pyrites occurring in different sediment zones are with
obvious differences, the following mainly describes the crystal shapes and size distribution
of pyrites in these three zones, organoclastic sulfate reduction, sulfate-driven anaerobic
oxidation of methane, metal-derived anaerobic oxidation of methane and metal-derived
organic matter degradation.

7.1. Organoclastic Sulfate Reduction

The pyrite in the organoclastic sulfate reduction zone is mainly formed by two mecha-
nisms (Figure 7):

(1) Under oxic–dysoxic bottom water, the redoxcline is located under the seafloor and
pyrite forms in the early diagenetic stage under the redox boundary in marine sed-
iment. In the oxidized environment, rare framboids and pyrite crystals have been
found [9,75]. In the dysoxic or anoxic environment, framboids usually with small size
(mean diameter, MD < 10 µm); and narrow distribution range (standard deviation,
SD < 3 µm).

(2) In the sulfidic–dysoxic bottom water column, a large amount of pyrite are formed
in a relatively stable sedimentary environment with sufficient dissolved Fe, H2S and
elemental sulfur. Pyrites are formed at a high growth rate and quickly sink to the
anoxic sediments. After being settled to the marine sediment, pyrite cannot grow
into larger due to the lack of supply of elemental sulfur. Therefore, framboidal pyrite
which is formed in sulfide environment is with a small mean diameter (MD < 5 µm)
and is homogeneous in grain size [10].
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Figure 7. The model of pyrite formation in two different marine sedimentary environments.

The size distribution of framboidal pyrites is well investigated in modern marine
sediments [22,41,102]. Most framboids range from 5 to 20 µm [9], although framboids as
large as 200–250 µm have occasionally been found [103,104]. Framboidal pyrite formed in
the synsedimentary, or early diagenetic stage can indicate the redox status of the deposi-
tional environment. The connection of framboid parameters with sedimentary conditions
is shown in Table 1. It should be noted that the late diagenetic origin framboids (e.g.,
framboid aggregates as infilling of fissures and macroframboids) should be excluded from
the size statistics for deduction of sedimentary condition [2].
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Table 1. Characteristics of sedimentary framboidal pyrite used to define redox conditions (data
from [6,7,24]).

Dissolved
Oxygen (mL/L) Conditions

Framboid Parameters

Mean Diameter (µm)
Texture

[105] [9] [11]

0 Euxinic 3–5 3–6.7 2.9–10.9 Framboid dominant
0–0.2 Anoxic 4–6

3.3–11.8 3–20.9

Framboid dominant

0.2–2
Lower dysoxic 6–10 Large framboid and some crystalline pyrite
Upper dysoxic <5 Pyrite crystal dominant

2.0–8.0 Oxic No framboid, rare pyrite crystals.

7.2. Sulfate-Driven Anaerobic Oxidation of Methane

Framboid is the most common texture formed in methane seepage areas. About 50% of
sulfate is fixed in authigenic pyrite through the AOM-SR process, which is 10 times higher
than sulfate fixed by anaerobic oxidation of organic matter [93,106,107]. The following
summarized pyrite characteristics in SMTZ.

(1) A great number of authigenic pyrites are formed in SMTZ, especially framboidal
pyrites, because of the abundant organic matter and H2S supply. The content of pyrite
is obviously higher in SMTZ of hydrate occurring area than that in sediment without
gas hydrate.

(2) The size of the framboid is with a tendency to be larger (mean sizes >20 µm) and more
variable in size (standard deviations >3.0 µm).

(3) Most framboids form clusters, and sometimes overgrowth can be observed. Some of
the framboids appeared in the shape of vertically oriented rods, which might represent
the migration pathways of the strong flux of methane in sediments.

In summary, large framboidal size is generally associated with the anomaly high pyrite
content. As the result, larger framboids in sediment might suggest an enhanced AOM
activity [14].

It is found that pyrite formed by dissimilatory sulfate reduction is usually buried in
the shallow sediment, which is easy to be re-oxidized by bioturbation and turbidity activi-
ties [108,109]. On the contrary, the SMTZ at deeper depth is in a condition of less oxidizing
as the oxygen from oxidized bottom seawater is difficult to reach [106]. Authigenic pyrite
accumulated in SMTZ of gas-hydrate bearing sediment might have been stable for at least
~4400 years before the present [106].

However, in recent marine sediment, framboids have been found both under sulfidic
(e.g., modern Black Sea [20,110]) and oxic (e.g., the South China Sea [48,80]) environments.
It is because, in cold seep or gas hydrate-bearing sediment, the methane flux or gas hydrate
destabilization may induce an active seepage event. With sufficient reactive Fe, CH4,
and strong microbial-mediated AOM-SR, pyrites grow continuously and there is a size
enhancement for framboid. As shown in Figure 8, synthetic pyrite framboid formed in the
euxinic condition is with a relatively narrow size distribution (MD < 20 µm; SD < 5 µm),
diagenetic framboid formed under the oxic–dysoxic condition without the contribution of
AOM is with a larger and more variable size (MD < 20 µm; SD < 5 µm) [111], framboidal
pyrite formed in the SMTZ generally has a large mean diameter (15–80 µm) and a wide size
range (3–35 µm) [14,22,33]. The former two (synthetic framboid and diagenetic framboid
without AOM participation) usually formed in single framboids and framboids formed
in the SMTZ probably formed as clusters [14]. There is no apparent distribution pattern
of framboidal size buried in SMTZ. However, some framboidal pyrite reported in normal
marine sediment also has an SD larger than 5 µm [111], half of the framboids in gas hydrate-
bearing layers measured by Lin Q et al. and Miao et al. [14,22] have an SD less than 5 µm.
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Hence, the increment of the diameter of framboids may be a novel proxy than SD for
distinguishing AOM enhancement.
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Figure 8. The mean diameter and standard deviation of framboidal pyrites form in different marine
environment. The data of syngenetic framboid is from [9,101,104,105], early diagenetic framboid
is from [14,22,111] and framboid in SMTZ is from [14,22,33]. The orange shaded area is syngenetic
framboid, the blue shaded area is early diagenetic framboid and the pink shaded area is framboid
in SMTZ.

The size enhancement effect is not only reflected by large authigenic framboids but also
is simultaneously illustrated by overgrowth layers on previously formed pyrite associated
with organoclastic sulfate reduction in SMTZ [14]. As the result, it is noted that the mean
diameter and standard deviation of framboidal pyrite formed by AOM in cold seep or gas
hydrate-bearing sediment are usually larger than the framboids produced by organoclastic
sulfate reduction. Consequently, the anomalous size of framboidal pyrite can serve as an
index for methane leakage activity.

7.3. Metal Driven Anaerobic Oxidation of Methane

The sulfate is depleted below SMTZ, where metal-driven anaerobic oxidation of
methane (metal-AOM) and metal-driven organic matter degradation (metal-OMD) will
be the dominant pathways of pyritization [112–115]. Because of the limited burial depth
and low activity of residual TOC, metal-derived organic matter degradation could be
largely restricted in deep marine sediment [113,116]. The iron-driven AOM occurs at the
one-tenth rate of sulfate-driven AOM although it is more energetically favorable [115],
which could be attributed to the easier reaction accessibility of sulfate than solid metal
oxides. Therefore, the formation rate of pyrite in the metal-AOM zone can be much lower
than that in SMTZ accordingly, framboidal pyrite in the metal-AOM zone is supposed to
have a relatively small size as compared with euhedral pyrite. However, there are still
many questions to be addressed about the material supply, and microbial participation
mechanism of metal-AOM, and the studies on pyrite morphology within the metal-AOM
zone are few, so further investigations are needed.

In summary, as shown in Figure 9, there are no framboids and rare crystalline pyrites
buried in oxic marine sediments. Under the dysoxic condition, both diagenetic euhedral
pyrites and framboids occur in shallow sediments, and pyrite framboids might have a broad
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size range. It is found that the synthetic pyrite framboids formed in a euxinic environment
are generally small in size and have less size variation. In the zone of organoclastic sulfate
reduction, pyrite framboids scatter individually and some of them have corrosion on the
crystal face. Authigenic pyrite in SMZT generally occurs in framboids and with overgrowth
to the larger diameter (15–80 µm), such as framboid clusters and rod-like aggregates
even with a size of several millimeters. The characteristics of organism-filling pyrite are
associated with the microenvironment condition in a foraminiferal, diatom, or radiolarian
shell, which cannot be a proxy for a sedimentary environment. The rate of pyrite formation
in the metal-AOM zone is much lower than that formed in SMTZ, consequently, the pyrite
formed in the metal-AOM zone might have a relatively small size.
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8. Alteration in Later Diagenetic Processes

In the process of late diagenesis, it is generally thought that the regrowth of pyrite
framboids is limited, so the morphology and size of framboids remain stable [9]. Once
formed, only the infilling of organism shell, overgrowth or recrystallization can change
pyrite framboid over the geologic time period, so the size distribution of framboids is a
reliable and robust proxy for the understanding of the redox condition of ancient bottom
water and deciphering the sedimentary environment evolution at exceptionally high preci-
sion [2,14,107–109]. As the result, pyrite framboid can be used to interpret the evolution
of the sedimentary environment [17], and this method is even applicable to a weathered
sample that retains framboid pseudomorph [101]. Oxidized framboid which retains its
original shape and size still has environmental significance.

8.1. Oxidation
8.1.1. Abiotic Oxidation

Framboid is not the most stable form of pyrite. Under certain conditions, framboids can
be transformed into a euhedral shape, such as a truncated octahedron and/or pyritohedron.

Oxidation plays a vital role in affecting the Fe/S cycle and also changing the mor-
phology of pyrite. Numerical simulations and laboratory experiments are applied to
study the oxidizing behavior and oxidation mechanism [117–119], and observations on
natural pyrite crystals have also been conducted. It is found that redox condition, lattice
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structure, impurities, and imperfections of pyrite crystal are the factors controlling the
oxidation degree.

The oxidation of pyrite is an electrochemical process initiated by the adsorption of O2
and H2O on the surface Fe sites [120]. It is suggested that the surface atomic configuration
controls the water dissociation and electron transfer reactions, so the oxidation rate of
nano/microcrystals of pyrite with different morphologies is unequal. The initial oxidation
rates of pyrite (210) and (111) are 10–100 times greater than (100). In high humidity air, the
initial oxidation rate of pyrite (111) is greater than (210) [119].

As shown in Figure 10A, in laboratory conditions, no matter whether in a reducing or
oxidizing environment, the light grey oxidized zone of {111} is larger than {100}, indicating
that {111} is easier to be oxidized. Figure 10B illustrates the difference in oxidation degree
on the different crystal faces of a truncated octahedron in the natural environment. On
this crystal, it can be seen that (100) is smooth and (111) has pits on it, representing better
stability of (100) than that of (111). As the result, pits on pyrite planes might indicate the
experience of oxidation. Based on experiment results [117], oxidation of (100) can happen
only when it was experienced an even stronger oxidizing process.
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Figure 10. (A) The models of oxidized pyrite with different morphology under two redox conditions
modified from [117], the light gray zone is the oxidized shell and the dark gray zone is the unoxidized
pyrite core, do and dc are the thickness of the oxidation shell along the [111] and [001] direction.
(B) The SE image of differential oxidation on different crystal faces of a truncated octahedral pyrite.

Generally, the impurity level and the structural imperfections are the principal factors
accelerating the oxidation process [121]. The degree of accumulated impurities in a single
crystal is in a larger range than that in aggregates, and the low limit of impurities level
in a single crystal is approximately equal to the top limit of impurities level in pyrite
aggregates [121].

8.1.2. Biological Oxidation

Microbe-mediated oxidation of pyrite is realized by adhering to the pyrite surface and
subsequent enzymatic reactions [122]. The biofilms growing on pyrite with localized en-
richments of nitrogen, the biologically mediated microstructures such as pits and channels
on pyrite surfaces, and layers of Fe-oxides on pyrite surfaces are supportive evidence of
biological dissolution.

A two-year-long laboratory experiment shows that mainly three patterns of biological
corrosion can be developed on pyrite surface, isolated corrosion pits, pearl-string-like
chains, and channel-like corrosion structures [123], which are consistent with the etched
patterns of pyrite in sediments. The scattered corrosion pits in rounded/elongated shapes
distribute near bacteria, with a size slightly larger than bacteria. The chains of corrosion
pits can be formed in various curved shapes, which might be developed faster in the crystal
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with dislocation crystal than in the undisturbed area of a regular crystal. By chemical
corrosion, a chain-like structure is easily transformed into a channel-like structure, and
faint pits can be seen under the sunken channel. The SE images of three kinds of bacterial
corrosion patterns on pyrite surfaces are shown in Figure 11.
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Huang et al. (2019) did a lot of analyses and comparisons between framboid and
oxidized framboid through weathering, which confirms that the oxidation process would
not shrink the size of framboid and accordingly has a negligible impact on the interpretation
of the redox state of the ancient ocean [126]. Nevertheless, the geochemical information
recorded in pyrite could be the result of multiple origins during strong weathering. There-
fore, analyzing the geochemical data of this type of sample requires careful consideration.

8.2. Recrystallization and Overgrowth

It is believed that there is a strong genetic link between framboid and euhedral pyrite.
The euhedral pyrite grain may be the product of crystal lattice oriented overgrowth on
existing textural types [99]. The overgrowth layer requires a longer growth time than
framboidal pyrite, indicating a continuous H2S supply by diagenetic process. Sawlowicz
proposed three hypothetical evolutional pathways [79] (Figure 12):

(1) Tabular pyrite regrows outward along the spherical rim of inner framboid, gradually
forms a subhedral (polygonal framboid) texture and finally a euhedral texture [79].
Although the framboidal pyrite that has undergone secondary growth will increase its
particle size to a certain extent, the diameter of the inner core will not change, which
is indicative of redox conditions.

(2) Microcrystals in framboids continuously grow and the internal pores may be filled by
newly formed pyrite and colloidal pyrite, the framboid transforms into solid spherical
pyrite, which may further evolve into euhedral pyrite.

(3) When the internal material of the framboid is plastic enough to move, the regular
euhedral faces directly form via polygonal framboid.
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8.3. Redeposition

The redeposition mechanism was proposed on the basis of the contradiction between
the anoxic environment indicated by enriched framboids and the highly oxygenated condi-
tions by abundant gastropod and ostracod shells [127]. Additionally, special sedimentary
structures related to such a process can help to determine the occurrence of redeposition.
The pyrite framboid may not be deposited directly to the seafloor after formation but
suspends by attaching to an organic matter [9], moves with upwelling and advective
circulation to the upper layer of the sea, and finally is deposited and buried in other
marine sediments.

Therefore, it should be confirmed first that the pyrite forms in situ before using
it to study the paleo geochemical environment and diagenetic process. Moreover, the
morphological study of pyrite needs to consider various geochemical indexes to avoid the
misunderstanding of the marine environment made by the deviation of a single indicator.

9. Summary

The morphological characteristics of pyrite, including the shape of crystal or crys-
tal aggregate, texture, and size distribution, can be applied as proxies for studying the
geochemical environment and diagenetic process of marine sediments.

Octahedron is identified as the dominant crystal shape of authigenic pyrite in marine
sediments, while the cubic form is relatively less observed. Framboid, framboidal cluster,
and rod-like aggregate are typically found in the sulfate–methane transition zone (SMTZ),
generally being associated with intensive anaerobic oxidation of methane (AOM). In the
diagenetic process, pyrite microcrystals and framboids might have been transformed into
larger euhedral form.

Pyrite morphologies in different geochemical zones in marine sediments are different.
In the zone of organoclastic sulfate reduction, the morphological characteristics of pyrite
are controlled by the redox condition of bottom seawater and generally with small size
(<20 µm); in sulfate–methane transition zone (SMTZ) authigenic pyrite generally occurs in
the form of framboid cluster and/or rod-like aggregate and with a diameter of 15–80 µm;
in metal-AOM zone pyrite is rarely formed.

The statistical results of the size of framboidal pyrite have been widely employed for
studying the paleo marine environment. The mean diameter and standard deviation of
framboidal pyrite are generally used to determine the redox condition of bottom water. The
values of mean diameter (>20 µm) and standard deviation (>3 µm) of framboidal pyrite
can be used to identify methane leakage and/or decomposition of gas hydrate, and mean
diameter might be a more sensitive parameter than the standard deviation.
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It should be noted that the morphological characteristics of pyrite in marine sediments
might have been reformed in the process of post-deposition, by the reactions such as
oxidation, recrystallization, etc. As a result, it is better to comprehensively consider other
mineralogical, geochemical, and sedimentological data when applying morphological
information about pyrite to reconstruct the marine environment.
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