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Abstract: In this paper the design of the two channel opto-isolation circuit for measurements of the
differential voltage is presented. It is used to ensure high impedance of the measuring channel(s) in
the differential system to ensure the rated operation of connected voltage divider(s). Its conversion
accuracy tests are oriented to determine the ratio and phase errors introduced by a tested device under
three test conditions. The opto-isolation circuit is tested for the internal noise at various levels of
common voltage. In the next step the calibration of the zero output voltage at zero differential voltage
is tested. In the last step of the testing procedure, the values of conversion ratio and phase errors
are determined. In the first case the analysis is performed during an operation with an additional
common voltage divider when both inputs ensure high impedance. In the second case the values
of the conversion ratio and phase errors are tested in conditions when only one input ensures high
impedance. In this paper the application of the opto-isolation circuit to determine the values of
the composite error of the tested voltage divider with the rated voltage ratios equal to 15 kV:100 V,
10 kV:100 V, 5 kV:100 V is presented. Moreover, its usage to determine the values of the composite
error of the inductive voltage transformer with voltage ratio (15 kV/

√
3)/(100 V/

√
3) is shown.

Keywords: opto-isolation; high impedance; distorted primary voltage; harmonics; voltage ratio error;
phase displacement; voltage transformer; voltage divider

1. Introduction

The presence of higher harmonics in the voltages of the power grid causes instrument
transformers to be used to transform distorted voltage. Therefore, there is the necessity to
test their transformation accuracy in increased frequency ranges [1–10]. Passive voltage
dividers are widely used in testing the transformation accuracy of the instrument voltage
transformers (VT) for distorted voltage. This is due to their linear frequency response unlike
the resonance behavior of inductive VTs [11–18]. However, the resonance frequencies are
far more different for various types of inductive VTs. Therefore, their testing of the transfor-
mation of the distorted voltage is required to indicate the wideband units. The developed
device is used for measurements of the differential voltage and is required to ensure high
impedance of the input connected to the passive voltage divider, where an additional load
may lead to its inaccuracy and deterioration in the frequency response [12,14,17]. The
differential voltage is used to determine the voltage composite error of the instrument
voltage transformer [14,19]. Its values may be applied to determine the values of the voltage
error and phase displacement for transformation of the distorted voltage harmonics to
decrease the uncertainty of their evaluation in relation to the method when two voltages
from the outputs of the tested and reference dividers are compared [20]. This cost effective
solution is found to be efficient in testing transformation accuracy of the inductive voltage
transformers for distorted voltage as presented in the papers [4,14,15,20].

In this paper a two channel opto-isolation circuit designed for measurements of the
differential voltage between two passive voltage dividers or between a passive divider
and an instrument voltage transformer is presented. The opto-isolation circuit in a single
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channel is composed of high impedance (1012 Ω DC) operational amplifiers for the channel
input stage and output of the opto-coupling diode. The fast differential amplifier is used to
compare the input voltages in relation to the common voltage obtained from the common
voltage divider. The two channel opto-isolation circuit may be used for measurements of the
differential voltage. The differential voltage maximum 5V RMS is measured between both
inputs of the device at the level that does not exceed 200 V RMS. The tests are performed
over two produced units. Two types of operation are presented in the examples section.
If both channels are required to ensure high impedance, the additional voltage divider is
required to obtain the floating reference voltage at a level not exceeding 5 V in relation
to each input. In this configuration the device may be used to determine the differential
voltage between two passive voltage dividers. If a single channel is required to ensure
high impedance, one input is shorted with the common voltage input and connected to
the tested VT, while the other input is connected to the reference voltage divider. The
input used for the inductive VT does not require high impedance but it is still not less than
100 k Ω. Both types of the application are presented in detail.

2. Conversion Accuracy Tests of the Two Channels Opto-Isolation Circuit

The conversion accuracy tests are oriented to determine the ratio and phase errors
introduced by the tested device under three test conditions. The opto-isolation circuit is
tested for the internal noise at various levels of common voltage. In this condition the
inputs are shorted together while the common voltage is applied. In the next step the
opto-isolation circuit calibration of the differential voltage zero is tested. Therefore, the
inputs IN are shorted together, while different values of input and common voltages are
applied to the IN inputs and COM input. In the last step of the testing procedure developed
for the two channel opto-isolation circuit, the values of the conversion ratio and phase
errors are tested. In the first case the analysis is performed during an operation with an
additional common voltage divider when both inputs ensure high impedance. In the
second case the values of the conversion ratio and phase errors are tested in conditions
when only one input ensures high impedance because the other input is shorted with the
common voltage input.

In Figure 1a the connections diagram of the two channel opto-isolation circuit during
its conversion accuracy tests is presented. In Figure 1b the blocks diagram of the measuring
setup for testing the two channel opto-isolation circuit is shown. In Figure 1c the photo of
the measuring setup is presented.

In Figure 1a–c the following abbreviations are used:
OIC—opto-isolation circuit,
IC—internal circuit,
IN1/IN2—differential voltage inputs of the OIC,
COM—common voltage input,
AWG—arbitrary waveform generator,
PA—power amplifier,
PS—power supply (PA + AWG) [21–23],
BPS—battery power supply,
Vdiff—differential input voltage measured by the DPM,
Vout—output voltage of OIC measured by the DPM,
VCOM—common voltage of the OIC inputs IN1 and IN2 measured by the voltmeter,
DPM—digital power meter,
VD1/VD2/VDCOM—resistive–capacitive voltage divider,
R1/R2/R3—resistance of voltage dividers VD1/VD2/VDCOM,
RVar1/RVar2/RVar3—variable resistance of voltage dividers VD1/VD2/VDCOM,
CVar1/CVar2/CVar3—variable capacitance of voltage dividers VD1/VD2/VDCOM.
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OIC—opto-isolation circuit, 
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IN1/IN2—differential voltage inputs of the OIC, 
COM—common voltage input, 

Figure 1. (a) Connections diagram of the two channel opto-isolation circuit during its tests. (b) Blocks
diagram of the measuring setup for testing the two channel opto-isolation circuit. (c) Photo of the
measuring setup for testing the two channel opto-isolation circuit.

Connection 1 presented in Figure 1a is used only during the conversion accuracy tests.
Connection 2a or 2b is used to switch between the operational modes: with the additional
common voltage divider (two inputs IN1/IN2 ensure high impedance) or without this
divider but only one input ensures high impedance.
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The power supply is composed of the arbitrary waveform generator and the power
amplifier. The values of RVar1/RVar2/RVar3 and CVar1/CVar2/CVar3 of the voltage dividers are
set in order to ensure the required test values of common voltage (from 1 V to 200 V RMS)
and differential voltage (0.1 V and 1 V RMS).

The conversion ratio error (presented in (%)) of transformation of the hk-order har-
monic of the distorted voltage by the OIC is given by the equation

∆Uhk =
VOUThk −Vdi f f hk

Vdi f f hk
·100% (1)

The conversion phase error (presented in (◦)) of transformation of the hk-order har-
monic of the distorted voltage by the OIC is given by the equation

δ ϕhk = ϕVOUThk − ϕVdi f f hk (2)

ϕVdiffhk—the phase angle of the hk-order harmonic in the input voltage of the OIC in
relation to its main component, ϕVOUThk—the phase angle of the hk-order harmonic of the
output voltage of OIC in relation to the main harmonic of its input voltage.

In Figure 2 the internal diagram of the opto-isolation circuit designed to ensure high
input impedance for measurements of the differential voltage is presented.

Energies 2022, 15, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 2. Internal diagram of the opto-isolation circuit designed to ensure high input impedance for 
measurements of the differential voltage. 

In Figure 2 the following abbreviations are used: 
+/−12H—positive and negative high voltage side supply voltage, 
+/−12L—positive and negative low voltage side supply voltage, 
L—ground, 
H—high voltage potential from common voltage divider, 
K1/2—reed relay for activation of inputs IN1/2, 
TO1/2—transoptors with above 1 kV separation voltage, 
on1/2—microswitch to activate the inputs by the transoptors, 
D1/3—transmitting diodes of the opto-coupler circuit, 
D2/4—receiving diodes of the opto-coupler circuit, 
OUT—output of the opto-isolation circuit, 
W1:6—high impedance (1012 Ω DC) operational amplifiers, 
W7/8—fast differential amplifiers, 
T1:4—transistors, 
R1:15—resistors, 
Pr1:4—variable resistors. 
The W1 and W2 amplifiers are powered by high voltage side power supply, other 

amplifiers are powered by the low voltage side power supply. 
Transmitting and receiving diodes in pairs D1 and D2, D3 and D4 are mounted in a 

2.5 cm long tube. 
Resistors R1 and R2 are used to provide adequate power of the transmitting diode. 

Resistors from R8 to R10 are used to set the zero offset of the differential operational am-
plifier W7. 

Resistors R13, R14, R15, R16 and Pr4 constitute the offset voltage compensation cir-
cuit. 

Figure 2. Internal diagram of the opto-isolation circuit designed to ensure high input impedance for
measurements of the differential voltage.

In Figure 2 the following abbreviations are used:
+/−12H—positive and negative high voltage side supply voltage,
+/−12L—positive and negative low voltage side supply voltage,
L—ground,
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H—high voltage potential from common voltage divider,
K1/2—reed relay for activation of inputs IN1/2,
TO1/2—transoptors with above 1 kV separation voltage,
on1/2—microswitch to activate the inputs by the transoptors,
D1/3—transmitting diodes of the opto-coupler circuit,
D2/4—receiving diodes of the opto-coupler circuit,
OUT—output of the opto-isolation circuit,
W1:6—high impedance (1012 Ω DC) operational amplifiers,
W7/8—fast differential amplifiers,
T1:4—transistors,
R1:15—resistors,
Pr1:4—variable resistors.
The W1 and W2 amplifiers are powered by high voltage side power supply, other

amplifiers are powered by the low voltage side power supply.
Transmitting and receiving diodes in pairs D1 and D2, D3 and D4 are mounted in a

2.5 cm long tube.
Resistors R1 and R2 are used to provide adequate power of the transmitting diode.
Resistors from R8 to R10 are used to set the zero offset of the differential operational

amplifier W7.
Resistors R13, R14, R15, R16 and Pr4 constitute the offset voltage compensation circuit.
Resistors R11, R12 and Pr3 set the gain of the entire path to the required value equal to 1.
In Figure 3a,b the results of the tests of the 1st and the 2nd units of the designed

opto-isolation circuits performed to determine the RMS values of the internal noise for a
given RMS value of the common voltage at frequency from 50 Hz to 5 kHz are presented.
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Figure 3. (a) The 1st opto-isolation circuit tested to determine the RMS values of the internal noise
for a given RMS value of the common voltage at frequency from 50 Hz to 5 kHz. (b) The 2nd
opto-isolation circuit tested to determine the RMS values of the internal noise for a given RMS value
of the common voltage at frequency from 50 Hz to 5 kHz.
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The opto-isolation circuit is tested for the internal noise at various levels of common
voltage and its frequency. In these conditions the differential inputs and the common
voltage input are shorted together while the common voltage is applied. The output
voltage is measured. In the ideal circuit the value should be equal to 0. The values of the
output voltage are the same for both tested units. If the value of the common voltages are
equal to 1 V or 10 V RMS, the output voltage is constant at level 1.5 mV RMS. If the value of
the common voltage increases to 100 V RMS, the value of the output voltage increases with
a frequency from 1.7 mV RMS for 50 Hz up to 5 mV RMS for 5 kHz. The measured value of
the output voltage results not only from the different RMS values of the internal noise at
each internal opto-isolation channel but also from its phase angle between the differential
inputs of the internal operational amplifier W7.

In Figure 4a,b the results of the tests of the 1st and the 2nd units of the designed
opto-isolation circuits performed to determine the calibration of the zero output volt-
age vs frequency of the differential input voltage at various levels of common voltage
are presented.
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Figure 4. (a) The 1st opto-isolation circuit calibration of the zero output voltage vs frequency of
the differential input voltage at various level of common voltage. (b) The 2nd opto-isolation circuit
calibration of the zero output voltage vs frequency of the differential input voltage at various level of
common voltage.

The opto-isolation circuit is tested for the calibration of the zero output voltage at
various levels of common voltage and its frequency. In these conditions the differential
inputs are shorted together while the common voltage and input voltage are applied. The
output voltage is measured. In the ideal circuit the value should be still equal to 0 since
the differential voltage is equal to 0. The values of the output voltage are similar for both
tested units. If the values of the common voltages are equal to 1 V or 10 V RMS, the output
voltage is constant at level 1.7 mV RMS or 2.0 mV RMS. If the value of the common voltage
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increases to 100 V RMS, the value of the output voltage increases with a frequency from
2.2 mV RMS or 2.5 mV RMS for 50 Hz up to about 4.5 mV RMS for 5 kHz. The measured
value of the output voltage in these conditions is similar to that obtained during the test of
the internal noise. Therefore, the calibration of the zero value of the output voltage for zero
value of the differential input voltage is performed correctly.

In Figure 5a,b the 1st and the 2nd opto-isolation circuits’ conversion ratio errors under
operation with an additional common voltage divider are presented.
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In these conditions in the measuring system from Figure 1, three voltage dividers are
used. The output voltages of the VD1 and the VD2 are used to supply the differential input,
while the VDCOM is used to supply the common voltage input. Therefore, the differential
voltage between inputs IN1 and IN2 is measured in relation to the common voltage at input
COM. Both input channels are insulated by the high impedance operational amplifiers and
opto-isolation circuit of the coupling diodes.

The values of the opto-isolation circuits’ conversion ratio errors are not exceeding
±1%, while the value of the differential voltage is equal to 0.1 V RMS. Increases in the
input voltage to 1 V RMS cause an increase in the accuracy of both tested units of the
opto-isolation circuits to ±0.1%. This is due to the fact that the opto-isolation circuits’
conversion ratio errors result from the RMS value and phase shift of the internal noise
between its internal input channels. The 1st and the 2nd opto-isolation circuits’ conversion
phase error under operation with an additional common voltage divider are not exceeding
±0.5◦, while the value of the differential voltage is equal to 0.1 V RMS and 1 V RMS.
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In Figure 6a,b the 1st and the 2nd opto-isolation circuits’ conversion ratio errors under
operation without an additional common voltage divider are presented. If a single channel
is required to ensure high impedance, one input is shorted with the common voltage input,
while the other input is connected to the reference voltage divider. In these conditions in
the measuring system from Figure 1, two voltage dividers are used. The output voltages
of the VD1 are used to supply the differential input, while the VDCOM is used to supply
the common voltage input. Therefore, the differential voltage between inputs IN1 and IN2
(COM) is measured in relation to the common voltage at input IN2 (COM). Only the IN1
input channel is insulated by the high impedance operational amplifiers and opto-isolation
circuit of the coupling diodes.
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The values of the opto-isolation circuits’ conversion ratio errors are not exceeding
±0.1%, while the value of the differential voltage is equal to 0.1 V RMS and 1 V RMS. This
is due to the fact that the opto-isolation circuits’ conversion ratio errors result from the
RMS value of the internal noise of the single internal input channel. The 1st and the 2nd
opto-isolation circuits’ conversion phase error under operation with an additional common
voltage divider are not exceeding ±0.5◦, while the value of the differential voltage is equal
to 0.1 V RMS and 1 V RMS.

3. Applications of the Two Channel Opto-Isolation Circuit

In this paragraph of the paper, the application of the opto-isolation circuit to determine
the values of the composite error of the tested voltage divider with the rated voltage ratios
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equal to 15 kV:100 V, 10 kV:100 V, 5 kV:100 V is presented. The opto-isolation circuit operates
with an additional common voltage divider connected to the input COM. The input IN1 is
connected to the high potential terminal of the output of the reference voltage divider. The
input IN2 is connected to the high potential terminal of the tested voltage divider (Figure 7).
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determine the values of the composite error of the voltage divider.

In Figure 7 the same abbreviations as in Figure 1 are used and additionally:
SVT—step-up voltage transformer [20],
TVD—tested voltage divider,
RVD—reference voltage divider,
CS—current sense channel of DPM (voltage input designed to connect current probe),
V—voltage channel of DPM.
In Figure 7 the opto-isolation circuit (OIC) is used to determine the values of the

composite error of the tested voltage divider (TVD) in relation to the reference voltage
divider (RVD).

The composite error of transformation of the hk-order harmonic of the distorted voltage
∆εTVDhk by the TVD is calculated from the equation

∆εTVDhk =
UOIChk
URVDhk

·100% (3)

URVDhk—the RMS values of a given harmonic in the output voltage of the RVD,
UOIChk—the RMS values of a given higher harmonic in the output voltage of the OIC.
In accordance with analysis presented in papers [14,15,19,20], to decrease the measure-

ment uncertainty of values of voltage ratio error and phase displacement, a hk harmonic of
the output voltage UTVDhk of TVD may be calculated from the differential voltage measured
by the OIC.

UTVDhk =
√

U2
RVDhk + U2

OIChk − 2 · URVDhk· UOIChk· cos(180− ϕRVDOIChk) (4)

ϕRVDOIC—the phase angle of a given harmonic in the output voltage of the OIC in
relation to the same frequency harmonic in the reference voltage from the RVD.

The voltage ratio error (presented in (%)) of transformation of the hk-order harmonic
of the distorted voltage by TVD is given by the equation

∆UTVDhk =
UTVDhk −URVDhk

URVDhk
·100% (5)
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The phase displacement (presented in (◦)) of transformation of the hk-order harmonic
of the distorted voltage by TVD is given by the equation

δUTVD = arcsin(

√
∆ε2

TVDhk − ∆U2
TVDkh

100%
) (6)

In Figure 8a,b the determined values of the voltage ratio error and phase displacement
of the tested voltage divider at three ranges are presented.
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Figure 8. (a) Voltage ratio error of tested voltage divider at three ranges. (b) Phase error of tested
voltage divider at three ranges.

The result of the measurements show that at the range 15 kV:100 V of TVD the values
of voltage ratio error and phase displacement did not exceed ±8% and ±9◦, respectively.
The result indicates that at the range 10 kV:100 V the values of voltage ratio error and phase
displacement did not exceed ±5% and ±6◦, respectively, while, at the range 5 kV:100 V
the values of voltage ratio error and phase displacement did not exceed ±1.5% and ±1◦,
respectively. The advantage of the application of OIC in testing the VDs is that it always
ensure lower values of the measurement uncertainty than typical two channel systems,
where reference voltage and output voltage of the tested VD are compared. The increase
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in the frequency of the measured voltage results in more significant differences between
the measurement uncertainties, showing a higher advantage of the differential method.
The measurement uncertainties of the voltage ratio error and phase displacement for two
harmonics of frequency 50 Hz and 5 kHz, and their values 5.0% and 5.0◦, are equal to [20]:

→ 50 Hz: ±0.507%/±0.535◦;
→ 5 kHz: ±0.178%/±2.160◦.

The expanded combined measurement uncertainty for 5 kHz is about three-fold lower
than for 50 Hz because the measured value of the voltage’s main component at the output
of the RVD is ten-fold higher than the higher harmonic.

If the differential system is used with the designed OIC, the expanded combined
measurement uncertainties of the values of ratio error and phase displacement are equal
to [20]:

→ 50 Hz: ±0.015%/±0.013◦;
→ 5 kHz: ±0.071%/±0.137◦.

Therefore, the application of OIC to determine the values of the voltage ratio error
and phase displacement for the transformation of distorted voltage harmonics enables
decreases in the measurement uncertainty.

In the next paragraph the application of the opto-isolation circuit (OIC) to deter-
mine the values of the composite error of the inductive VT with a voltage ratio equal to
(15 kV/

√
3)/(100 V/

√
3) is presented. The OIC operates without an additional common

voltage divider. The input IN1 is connected to the high potential terminal of the output
of the reference voltage divider with voltage ratio equal to 15 kV/100 V. The input IN2 is
shorted with the common voltage input where the high potential terminal of the tested VT
secondary winding is connected. The blocks diagram of the measuring setup is presented
in Figure 9.
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Figure 9. Blocks diagram of the measuring setup for the application of the opto-isolation circuit to
determine the values of the composite error of the inductive VT.

In Figure 9 the same abbreviations as in Figures 1 and 7 are used and additionally:
TVT—tested voltage transformer,
ZL—load impedance of TVT (if required for test).
The composite error of transformation of the hk-order harmonic of the distorted voltage

by the TVT ∆εTVThk is calculated from the equation

∆εTVThk =
UOIChk
URVDhk

·100% (7)
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The hk harmonic of the secondary voltage of TVT UTVThk may be calculated from the
differential voltage measured by the OIC.

UTVThk =
√

U2
RVDhk + U2

OIChk − 2· URVDhk·UOIChk· cos(180− ϕRVDOIChk) (8)

The voltage ratio error of transformation of the hk-order harmonic of the distorted
voltage by TVT is given by the equation

∆UTVThk =
UTVThk −URVDhk

URVDhk
·100% (9)

The phase displacement of transformation of the hk-order harmonic of the distorted
voltage by TVT is given by the equation

δUTVT = arcsin(

√
∆ε2

TVThk − ∆U2
TVTkh

100%
) (10)

In Figure 10a,b the determined values of the voltage ratio error and phase displacement
of the tested voltage transformer (15 kV/

√
3)/(100 V/

√
3) are presented.
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In Figure 10 the following abbreviations are used

“50 Hz (+)” and “50 Hz (−)”—these plots present the results of the VT’s transformation
accuracy of a given harmonic with the main component of frequency 50 Hz.
“60 Hz (+)” and “60 Hz (−)”—these plots present the results of the VT’s transformation
accuracy of a given harmonic with the main component of frequency 60 Hz.
(+)—this notation means that the maximum positive values of voltage error and phase
displacement are determined
(−)—this notation means that the maximum negative values of voltage error and phase
displacement are determined.

The difference between the maximum positive values and the maximum negative
values of voltage error and phase displacement results from the nonlinear of the B(H)
curve of the tested inductive VT magnetic core and the self-generation of low-order higher
harmonics to its secondary voltage [4,20,24,25]. Therefore, these curves are different only for
the low-order higher harmonics up to about 500 Hz. The results of the measurements show
that the values of the voltage ratio error and phase displacement of TVT did not exceed
±6% and ±3.5◦, respectively. These values significantly increase with the frequency of
transformed higher harmonics. This is caused by the increase in the reactance of the winding
of TVT and the increase in their voltage. At a frequency of about 5 kHz, a resonance is
detected causing a rapid increase in the VT’s voltage error and phase displacement [26–28].

If the differential system with the designed OIC is used, or a typical two channel
system where output voltages of TVT and RVD are measured, the expanded combined
measurement uncertainties of the values of ratio error and phase displacement are equal to
those determined for TVD in the previous analyzed case. The advantage of the application
of OIC in testing the VTs is still that it ensures lower values of the measurement uncertainty
than the two channel system.

4. Conclusions

The designed opto-isolation circuit is tested for the internal noise at various levels of
common voltage and its frequency. The values of the output voltage are the same for both
tested units. If the value of the common voltages are equal to 1 V or 10 V RMS, the output
voltage is constant at level 1.5 mV RMS. If the value of the common voltage increases to
100 V RMS, the value of the output voltage increases with a frequency from 1.7 mV RMS for
50 Hz up to 5 mV RMS for 5 kHz. The opto-isolation circuit is also tested for the calibration
of the zero output voltage at various level of common voltage and its frequency. The values
of the output voltage are similar for both tested units. If the value of the common voltages
are equal to 1 V or 10 V RMS, the output voltage is constant at level 1.7 mV RMS or 2.0 mV
RMS. If the value of the common voltage increases to 100 V RMS, the value of the output
voltage increases with a frequency from 2.2 mV RMS or 2.5 mV RMS for 50 Hz up to about
4.5 mV RMS for 5 kHz. The measured value of the output voltage in this conditions is
similar to that obtained during the test of the internal noise. Therefore, the calibration of
the zero value of the output voltage for the zero value of the differential input voltage is
performed correctly. The values of the opto-isolation circuits’ conversion ratio errors do not
exceed ±1%, while the value of the differential voltage is equal to 0.1 V RMS. An increase
in the input voltage to 1 V RMS causes an increase in the accuracy of both tested units of
the opto-isolation circuits to ±0.1%, regardless of the level of the common voltage. This
is due to the fact that the opto-isolation circuits’ conversion ratio errors result from the
RMS value and phase shift of the internal noise between its internal input channels. The 1st
and 2nd opto-isolation circuits’ conversion phase error under operation with an additional
common voltage divider do not exceed ±0.5◦, while the value of the differential voltage is
equal to 0.1 V RMS and 1 V RMS.

The tests are performed over two produced units. Two types of operation are presented
in the examples section. If both channels are required to ensure high impedance, an
additional voltage divider is required to obtain the floating reference voltage at a level
not exceeding 5 V in relation to each input. In this configuration the device may be used
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to determine the differential voltage between two passive voltage dividers. If a single
channels is required to ensure high impedance, one input is shorted with the common
voltage input and connected to the tested VT, while the other input is connected to the
reference voltage divider. In order to decrease the measurement uncertainty of the values
of voltage ratio error and phase displacement, a hk harmonic of the output voltage of the
tested voltage divider or tested voltage transformer may be calculated from the differential
voltage measured by the designed opto-isolation circuit. The advantage of its application
in testing voltage transformers and dividers is that it always ensures lower values of the
measurement uncertainty than the typical two channel system, where reference voltage
and output/secondary voltage are compared.
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