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Abstract: This paper presents two optimization methods of an interior permanent magnetic motor
(IPM). The first method is based on the non-dominated sorting genetic algorithm II (NSGA-II), while
the second one is based on the NSGA-III algorithm. The focus is on the reduction of the cogging
torque (CT), which acts upon the rotor when the IPM is not powered, and the current that flows
through the three windings is 0. The influence of the CT over the motor operation is a negative one,
inducing vibrations that are not desired. The limitation of these influences is the desired way for
improvement. The optimizations applied entailed the change of the geometrical configuration of
the stator whilst maintaining the exterior dimensions unaltered. Through this simple but robust
approach, the performance of the IPM proposed was improved.

Keywords: interior permanent magnetic motor; cogging torque; optimization

1. Introduction

The increasing frequency of use of the IPM in all areas of activity, from industrial
ones such as electric machines to household appliances like washing machines or the air
conditioning units, requires a more silent and less vibrating way of functioning to support
visual and hearing comfort for the users, Ref. [1] proposed an optimal shape design of
the iron core to reduce CT in IPM motors. Their study investigated the effects of core
geometry on the CT and provided valuable insights into improving motor performance.
The way IPM works makes it a smart choice for a multitude of machinery because the
use of permanent magnets makes it more robust from a framework point of view and
because it does not require increased accuracy when the internal components are being
built. Ref. [2] focused on torque ripple optimization by introducing skewing techniques for
field weakening operation. Their research aimed to enhance the dynamic performance of
IPM motors in various operating conditions.

The increase in efficiency of an IPM approach can be looked at from various angles—for
instance, one that entails the optimization of the rotor, another being the optimization of
the stator, or even a general optimization. Rotor optimization has also been extensively
explored. Ref. [3] considered mechanical stress in their design optimization process to
ensure the structural integrity of the rotor. Ref. [4] investigated rotor shape optimization
based on magnetization direction, aiming to improve motor efficiency and performance.
Ref. [5] proposed novel double-barrier rotor designs to reduce torque pulsation, thereby
enhancing the overall motor performance. Furthermore, advancements have been made in
winding configurations. Ref. [6] examined the application of concentrated windings in IPM
machines and its impact on motor performance. In a subsequent study, Ref. [7] conducted
parameter analysis of an IPM machine with fractional-slot-concentrated windings, focusing
on open-circuit analysis to assess its electrical characteristics. The study detailed in [8]
proposes a stator optimization focusing on the introduction of a number of dummy slots
in the stator geometry, this number being adjusted depending on what is aimed to be
improved. The general optimization of the IPM gained increased relevance in the initial
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device design process, and with the technology advancements today, through the boosting
of computational power and the use of fast computing methods, IPM complex geometries
can be perfected. Ref. [9] proposed a hybrid method for fast computation of airgap flux
and magnetic forces, enabling efficient design optimization of IPM motors. Moreover, com-
putational tools such as finite element analysis (FEA) have been utilized for modeling and
design optimization of IPM machines. Refs. [10,11] developed a computationally efficient
FEA approach in optimization. They demonstrated its efficacy in achieving accurate and
reliable results. Making use of the genetic algorithms’ great capacity to handle numerous
objective functions that have multiple constraints, it led to a considerable improvement
in the internal configuration of the IPM. Ref. [12] adopted a two-stage design approach
for multi-objective optimization of IPM motors used in compressor applications. Their
research demonstrated the effectiveness of this approach in achieving enhanced motor
performance for specific applications. Ref. [13] proposed a novel flux-concentrating rotor
design combining a Halbach Permanent Magnet (Halbach PM) array and a spoke-type IPM
machine. Their study focused on multi-objective optimization to improve motor efficiency
and torque density. Ref. [14] introduced an asymmetric interior permanent magnet syn-
chronous machine (AIPMSM), which exhibited improved torque characteristics compared
to traditional symmetric designs. Ref. [15] investigated the use of an asymmetrical V-shape
rotor configuration to enhance torque characteristics in IPM machines. Their research
showed promising results in achieving improved performance through rotor design op-
timization. An approach based on mathematical calculus makes the translation of the
IPM’s internal components into numerical equations was presented in [16], which focused
on reduction in time spent. Part of the latest trend is a method that tries to resolve the
many-objective optimization problems and details applied to the IPM optimization by the
authors of [17]. The current paper takes into account the setting-up and calibration of a
test model based on the example from [18]. Ref. [19] focuses on the sequential subspace
optimization design of a dual three-phase permanent magnet synchronous hub motor. It
specifically highlights the utilization of the NSGA-III algorithm for the optimization process.
The research provides detailed insights into the methodology, data analysis, and results,
demonstrating the effectiveness of the proposed approach in enhancing the performance of
electric motors. The authors’ contribution in the interconnection process presented in our
previous work [20] lies in the development and implementation of a novel framework that
facilitates the seamless integration and communication between designing programs (such
as computer-aided design (CAD) software), simulation tools (such as FEA software), and
optimization methods (such as genetic algorithms). This framework, which incorporates
several programs and algorithms, enables engineers to leverage the strengths of these tools,
improving the efficiency and effectiveness of the design process.

In this paper, we aim to address the issue of CT in an IPM motor through two opti-
mization methods: the NSGA-II and the NSGA-III algorithm incorporated in the system
from [20]. Our contribution lies in applying these methods to improve IPM performance by
reducing CT and consequently minimizing unwanted vibrations. By modifying the stator’s
geometrical configuration while keeping the external dimensions unchanged, we achieved
significant results in terms of CT reduction and enhancing the IPM motor’s operation.

2. Materials and Methods

The model from Figure 1a shows a halved view of the IPM, and it is characterized as
follows: 4 poles and 12 stator slots with a constant length of 0.5 mm between the stator and
the rotor. The blueprints can be found on the (b) side of the same figure, i.e., Figure 1b,
where: in black, it displays the 8 dimensions in (mm) that are subjected to optimization
where area of each winding was kept at 50 mm2; in grey, the constant dimensions in (mm)
and the total depth of 150 mm. The H–B curve describes the degree of magnetism of the
ferromagnetic material utilized in the construction of the rotor and the stator. This curve
is modelled from the data used in [18] in order to suit the requirements of the Comsol
simulation program, the characteristic is displayed in Figure 2a. On the (b) side, the
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characteristic attributed to the permanent magnets is displayed. The coercive field has
the value of Hc = 7.957 × 105 Am−1, while the permanent magnets are represented by
B0 = 1 T, the horizontal ones being oriented towards the outer layer and the vertical ones
being oriented towards the inner layer.
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Taking into account the aforementioned values, the initial model was created, corre-
lated, and calibrated with the data from [18] regarding the torque generated by the IPM 
in the no-load operation. In the first phase, in the model tackled for correlation, the opti-
mization parameters were not included (the parameters that were exemplified in black in 
Figure 1), aiming at obtaining a more precise model. To be mentioned here is the fact that 
the model is a 3D one in which the influence of the ends of windings are taken into con-
sideration, while these were not considered in the approach proposed by [18]. 

The representation of the magnetic induction map is displayed in Figure 3, where the 
two starting models are regarded. In the isometric view, only half of the IPM is shown 

Figure 1. (a) A perpendicular halved section of a 3D model, the motor shaft in black, the permanent
magnets in dark grey, the windings in orange, and the stator and rotor in light grey; (b) the 2D section
with the initial values (in mm) of the simulation model, the optimization parameters in black, the
constant values in grey.
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Figure 2. (a) The magnetization curve used for describing the behavior of the materials used for the
stator and rotor; (b) the characteristic of the permanent magnets. Here the blue line follows the curve
described by the input values, while the red marks represent the extrapolations of these values.

Taking into account the aforementioned values, the initial model was created, cor-
related, and calibrated with the data from [18] regarding the torque generated by the
IPM in the no-load operation. In the first phase, in the model tackled for correlation, the
optimization parameters were not included (the parameters that were exemplified in black
in Figure 1), aiming at obtaining a more precise model. To be mentioned here is the fact
that the model is a 3D one in which the influence of the ends of windings are taken into
consideration, while these were not considered in the approach proposed by [18].

The representation of the magnetic induction map is displayed in Figure 3, where the
two starting models are regarded. In the isometric view, only half of the IPM is shown due
to the fact that the model symmetry was used to considerably reduce (by 50%) the time
spent simulating the model.
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Figure 3. Magnetic induction map: (a) transversal and isometric views of the 1/2 of the initial
model, without the optimization parameters; (b) transversal and isometric views of the 1/2 of the
optimization model, with the angles rounded set for optimization.

In order to calculate the values of the torque, the tool used was the one available in
Comsol for force calculation based on the Maxwell stress tensor. The data obtained by this
tool regarding the torque values produced by the two IPMs compared to the existing data
are presented in Figure 4. It can be observed that for a 90◦ functioning cycle, the values
obtained are similarly scaled to those existing in [18], which demonstrates the accuracy of
the calibration of the model—not only the initial model but also the setup for improvement.
From the graph below, it can be noticed, as expected, that the functioning of the IPM in
the no-load operation in a cyclical one, the period for completion being 30◦. Taking this
into consideration, in the following undertakings, the execution will be reduced to a single
period where the average toque value is 0. Figure 5 presents torque values from 0–30◦.
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NSGA-II is an extension of the original NSGA algorithm. It employs a genetic algo-
rithm framework combined with a non-dominated sorting and crowding distance mecha-
nism to guide the search towards the Pareto front. The Pareto front represents the set of
optimal solutions in which no solution can be improved in one objective without sacrificing
performance in another.

The schematic representation of the NSGA-II algorithm is depicted in Figure 6. The
interpretation is as follows: (1) Generate an initial population of candidate solutions.
(2) Evaluate the objective function values for each candidate solution. (3) Assign a rank to
each candidate solution based on their dominance relationships. (4) Calculate the crowding
distance metric to maintain diversity within each rank. (5) Select individuals based on
their rank and crowding distance to create the mating pool. (6) Apply genetic operators
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such as crossover and mutation to create offspring solutions. (7) Create the next generation
by combining the parent and offspring solutions using elitism. (8) Repeat Steps 2–7 until
a termination condition is met (e.g., maximum number of generations or convergence
criteria) [21].
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Figure 6. The schematic representation of NSGA-II.

NSGA-III is an enhancement of NSGA-II that addresses the limitation of NSGA-II
in handling many-objective optimization problems. It introduces an improved selection
scheme and a reference point-based approach for maintaining the diversity of solutions
across the Pareto front. In Figure 7, the schematic representation of the NSGA-III algorithm
is shown. The algorithm is executed as follows: (1) Generate an initial population of
candidate solutions. (2) Evaluate the objective function values for each candidate solution.
(3) Define a set of reference points uniformly distributed on the objective space. (4) Assign
a rank to each candidate solution based on their dominance relationships. (5) Assign each
candidate solution to the nearest reference point. (6) Select a diverse set of solutions from
each reference point based on dominance and crowding distance. (7) Select individuals
from the environmental selection for reproduction to create the mating pool. (8) Apply
genetic operators such as crossover and mutation to create offspring solutions. (9) Update
the reference points based on the solutions found in the current generation. 10 Repeat Steps
2–9 until a termination condition is met [22].
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The objective is to diminish the peak-to-peak values during the execution of the no-
load operation, values that fall between 0.15 and −0.15 [Nm]. The objective functions
resulted from the analysis of the graph, and they entail the attempt to decrease the extreme
values through the seizing of the maximal and minimal values that would be used as feed
to the optimization algorithms as quantities of the objective functions.

Taking into account the definition of the optimized parameters in (mm) and con-
sidering the numbering provided in Figure 1b, the objective functions has been defined
as follows:
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The objective function f 1(p1, p2, . . . , p8) is defined to minimize the maximum value of
cogging torque within the interval [0, π/12], while the objective function f 2(p1, p2, . . . , p8) is
defined to maximize the minimum value of cogging torque within the interval [π/12, π/6].

f1(p1, p2, . . . p8) = maxextreme{y(p1, p2, . . . p8)| θ ∈ [0, π/12]}
f2(p1, p2, . . . p8) = −minextreme{y(p1, p2, . . . p8)| θ ∈ [π/12, π/6])

5.5 ≤ p1 ≤ 16
0.2 ≤ p2 ≤ 1.5
0.2 ≤ p3 ≤ 1.5

1 ≤ p4 ≤ 2
0.2 ≤ p5 ≤ 0.5
0.2 ≤ p6 ≤ 0.5
0.5 ≤ p7 ≤ 7
3 ≤ p8 ≤ 9

(1)

where y(p1, p2, . . . , p8) represents the cogging torque function with respect to the geometric
parameters p1, p2, . . . , p8; maxextreme(y(p1, p2, . . . , p8)) is the maximum value of cogging
torque in the interval [0, π/12]; and minextreme(y(p1, p2, . . . , p8)) is the minimum value of
cogging torque in the interval [π/12, π/6].

A brief description of the method employed in this paper and presented in [20] encom-
passes the following steps: designing the 3D model in SolidWorks (Dessault Systems, Paris,
France) importing the model into COMSOL Multiphysics for electromagnetic simulations,
analyzing the obtained results and evaluating the device’s performance, optimizing the
model using sorting algorithms and genetic algorithms, and modifying the geometry and
structure of the device based on the obtained results. This method streamlines the process of
designing and simulating 3D devices, enabling the rapid achievement of optimal solutions.
By employing this working method, the optimization process was undertaken.

The starting settings for both algorithms were identical ones. The number generated
was set to 5, and population was set to 50 individuals. As per the graph in Figure 5, the
function presents positive values above the horizontal axis, which leads to the intent of
minimizing these values, the objective being the reduction towards 0. For the function that
deals with negative values, when values fall below the horizontal axis, the objective is to
maximize these values with the intention of bringing them closer to 0.

3. Results
3.1. The First Optimization

The time needed for the optimization process from the first iteration to the resulted
optimized solution was 10 h and 11 min. The algorithm ran for 286 generations before
it managed to converge towards the optimal value. In Figure 8, it can be deduced that
the objective functions were stabilized after approximately 100 generations run by the
algorithm. The reduction of the objective functions values is considerable; the values drop
around 0.05 Nm.
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Figure 9 visually displays the values of the optimization parameters improved by
the algorithm. The initial configuration suffers alterations through a chamfering of the
edges, as expected, as well as elongation of the stator slots in comparison with the initial
dimensions. On the (b) side of Figure 9, a transversal section of 1/2 of the optimized model
is shown, over which a magnetic induction map was overlaid in the first step, i.e., 0◦.
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The final result for the torque values, concerning the aforementioned configuration and
regarding the execution for a period between 0–30◦ of the IPM, are highlighted in Figure 10.
The conclusion is, upon rendering the results of the graph, that there is a distortion from
the initially obtained sinusoidal shape can be observed as well as a significant decrease in
peak values, which leads to a better functioning when used in on-load operation.
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3.2. The Second Optimization

The second optimization of the initial simulation model entailed the application of
the NSGA-III algorithm as an optimization system, which ran for 306 generations over
10 h and 56 min. Moreover, the convergence occurred after approximately 100 generations,
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which can be seen in Figure 11. In this figure, the two functions converge towards the
optimal configurations around the value of 0.05 Nm, as in the previous case.
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For the consistency of the data, in Figure 12, the optimal configuration is presented in a
2D section with the mentioning of the optimized parameters. On the (b) side, the magnetic
induction map in isometric view and cross-section for the improved IPM are shown.
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Figure 12. (a) Two-dimensional section showing the values (in mm) obtained after applying NSGA-III;
(b) the magnetic induction map optimized configuration.

The final result for the torque values after applying the NSGA-III algorithm, as seen
in Figure 13, shows a major decrease vis-à-vis the initial starting values as well as a
distortion from the initially obtained sinusoidal shape. The change in shape can be seen as a
consequence of the altered parameters, with the benefit of the decrease in the peak-to-peak
torque values.
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4. Discussion

Starting from the same initial configuration, after applying both optimization systems,
a significant flattening of the CT values was achieved by modifying eight internal dimen-
sions of the stator. Figure 14 shows the magnitude by which the two new configurations
(red for NSGA-II and green for NSGA-III) reduce this characteristic compared to the initial
output (blue).
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Figure 14. The torque values of the IPM for the simulation model configuration, for the model
optimized with NSGA-II, and for the model optimized with NSGA-III during operation in the
0–30◦ ranges.

For a better understanding of the geometric differences between the configurations,
Figure 15 on the left-hand side shows an overlap of the three models, where it can be
observed that the rotor geometry remains constant, as well as the external dimensions of the
IPM. A striking similarity between the two configurations obtained through optimization
is highlighted. The right-hand side shows a detailed view of a stator slot, in which the
improved geometries are also highlighted (in red for NSGA-II and green for NSGA-III), as
well as the starting model in blue. The two configurations differ only by a small elongation
of the stator slot and a tighter curvature at the top for the model presented in red. The
differences in measured values between the initial model and the two optimized models
can also be observed, highlighted in gray in the same picture. The three parameters with
the highest influence for both algorithms in terms of improving the objective functions are
marked in black.
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Figure 15. (a) Two-dimensional section of the models; (b) detail compared to the simulation model
configuration (blue), the model optimized with NSGA-II (red), and the model optimized with NSGA-
III (green) (dimensions in mm).

5. Conclusions

Through the adjustment of specific parameters in the internal geometry of the IPM
motor, a remarkable reduction in CT was achieved. The optimized models exhibited CT
values of approximately 0.05 Nm, significantly lower than the initial model’s value of
0.15 Nm. The findings suggest that the IPM motor design has a narrow range of potential
constructive variations in terms of optimization. Despite this limitation, the vibrations
and noise generated during motor operation can still be considerably reduced. The results
indicate that the problem converges towards a specific geometric configuration, with
minimal changes observed in the shape of the stator slot across different optimization
outcomes. The study highlights the effectiveness of adjusting only eight parameters of the
internal geometry to obtain robust configurations and consistent results for both approaches.
In summary, the research demonstrates the potential for improving the performance of IPM
motors by optimizing their internal geometry. The reduction in CT and the narrow range
of constructive variations suggest that further enhancements can be made to minimize
vibrations and noise, leading to more efficient and quieter motor operation.

Further research in the field of IPM motors should focus on exploring additional design
parameters, conducting comparative analyses with alternative motor designs and noise
reduction techniques, assessing the robustness of IPM motors under varying conditions,
developing multi-objective optimization approaches, and investigating application-specific
performance. By pursuing these directions, advancements can be made in the design,
optimization, and application of IPM motors, leading to improved performance, reduced
vibrations and noise, and increased efficiency.
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