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Abstract: Free-space optical (FSO) communication is expected to play an indispensable role with
high data rates and low system complexity in beyond fifth-generation (B5G) networks. However,
infrequent adverse weather conditions can incapacitate its performance. The combination of FSO
and radio frequency (RF) has emerged as an effective alternative for meeting the growing need
for high data rates in wireless communication networks. Unmanned aerial vehicles (UAVs) are
also anticipated to play an instrumental role in B5G networks due to their flexible movement and
deployment. In this paper, a UAV-aided hybrid FSO/RF backhauling system using a matching
game theory (GT) and reinforcement learning (RL) framework is investigated. We deploy a UAV to
provide a user offloading service to an already existing ground base station (GBS), which is facing a
reduced backhaul capacity due to weather attenuation (e.g., fog). It is considered that the GBS has
a pre-installed FSO backhaul connection to a macro-base station (MBS). However, during adverse
weather conditions, the FSO backhaul is severely affected, compromising the reliability of the FSO
link. With the reduced FSO backhaul capacity, the GBS needs an additional backhaul link to support
its backhaul data transmission to the destination MBS. As a result, instead of building an expensive
permanent parallel RF link for the rare foggy situation, a UAV can be hired to serve a portion of the
users, thereby reducing the GBS load. The users perform a matching game-based procedure to select
the base station (BS) of their choice to maximize their utility. The UAV is deployed at an optimal
altitude, and the bandwidth partition between the GBS and the UAV is optimized to maximize the
system throughput using RL. Real weather data from the cities of Edinburgh and London in the U.K.
are used to evaluate the performance of the system. The numerical results show the superiority and
effectiveness of the proposed scheme compared to conventional methods.

Keywords: free space optics (FSO); matching game theory (GT); reinforcement learning (RL);
unmanned aerial vehicle (UAV)

1. Introduction

Data rates on the order of terabits per second are expected as wireless technology
evolves beyond fifth-generation (B5G) networks. To properly evaluate the B5G wireless net-
works, new technical requirements, dynamic communication scenarios, and performance
indicators are introduced [1]. Unmanned aerial vehicles (UAVs) have been widely proposed
to support existing networks in providing wireless communication services anywhere and
at any time to enable flexible movement, powerful computing, etc. [2]. In addition to the
rising demand for UAVs, relay stations and small cells are expected to be widely deployed
to improve mobile data coverage, necessitating high-speed backhauling. To address these
issues, free-space optical (FSO) communication has been identified as a promising wireless
technology for high-capacity, cost-effective, and energy-efficient communication networks
with data rates comparable to optical fiber links [3,4]. The FSO link’s wireless functionality
offers a suitable communication system for both dense urban and rural locations as well as
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areas prone to fiber cut failures. In fact, FSO systems are expected to be critical in emerging
network architectures such as cell-free technology [5].

However, practical FSO systems face some limitations and challenges, such as pointing
and misalignment loss due to building sways, turbulence-induced intensity fluctuation
(also known as scintillation), and adverse weather conditions such as fog and snow [6,7].
In particular, FSO links can be severely hampered by a fog event, which is a relatively
long-lasting yet infrequent phenomenon. In contrast, fog has practically a nominal impact
on radio frequency (RF) systems; therefore, one possible solution is to build hybrid FSO/RF
links [8]. However, given the increasing demand for FSO links and the massive expansion
of cell sites, it is reasonable to assume that not all FSO links can have parallel RF transmis-
sion links for various reasons such as the high link expense. Moreover, adverse weather
conditions such as fog are not frequent in many geographical areas. For example, official
weather data from the Meteorological Office of the United Kingdom show that the city of
Edinburgh experienced only 86 h of fog events (visibility < 1 km) from January 2016 to
June 2017, which is only almost 0.65% of the specified duration [6]. To this end, temporary
solutions can be envisaged rather than permanent, expensive RF links.

Motivated by the growing demand for UAV deployment as relays, we propose a
UAV-aided user offloading scheme using matching game theory (GT) and reinforcement
learning (RL), in particular Q-learning. This approach can enhance the throughput of a
ground base station (GBS) to the macro-base station (MBS) supported by a fog-troubled
FSO backhaul link. The UAV can establish a temporary RF backhaul link (e.g., millimeter
wave) with the MBS in adverse weather conditions. The UAV relay offloads users from the
coverage area of the GBS. The FSO channel condition determines the optimal placement
of the UAV, which defines the coverage ratio of the GBS and UAV to maximize the end-
to-end network throughput. As the adverse weather event passes, the UAV may be
withdrawn and the GBS can resume regular operation without a UAV relay. We refer to
our proposed scheme as capacity-aware UAV deployment and resource allocation (CURE)
and its suboptimal version as cell-edge-based UAV deployment (CUDE). We also compare
the performance of the proposed scheme with the state-of-the-art schemes, which include
GBS-only (GBSO), e.g., traditional FSO backhauling without UAV, and Cell association
with range expansion (CARE).

Related Work and Contribution

The emergence of UAV technologies has created new potential for a wide range of
applications [9]. Under many network scenarios, UAVs are becoming more popular for
user offloading. For instance, the authors of [10] evaluated the impact of UAV altitude
and transmit power, as well as the offload portion, on the user’s downlink sum rate,
assuming that UAV to user links are line-of-sight (LoS) channels. To provide downlink data
offloading in some areas of a BS, the work in [11] temporarily deployed UAVs. The method
utilizes contract theory to model the situation, where the BS manager must develop an
optimal contract to maximize its own revenue. By jointly optimizing the UAV’s trajectory,
bandwidth allocation, and user partitioning, Lyu et al. [12] proposed an aerial mobile BS
to offload data traffic for cell-edge users. In [13], the heterogeneous UAV-enabled data
offloading is modeled in an innovative framework to dynamically estimate user status
information and determine the UAV scheduling strategy, whose purpose is to lower the
user data queue length while extending the working time of the UAV.

Machine learning (ML)-based optimization solutions are increasingly considered in
the context of UAV-assisted networks. For instance, reference [14] discussed various ML
methods for developing UAV-assisted radio access networks, with a special emphasis
on supervised ML and RL procedures with high-speed backhaul links (e.g., FSO). Fan
et al. [15] investigated the UAV-enabled traffic offloading problem under a mixed user
traffic scenario, where delay-sensitive user traffic and delay-insensitive user traffic are
jointly considered, and a deep neural network-powered genetic algorithm is used to
obtain the optimal association between the UAVs and the ground systems. The authors
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of [16] used a multiarmed bandit-based offload path selection scheme to address the
issue of decentralized data offloading in an edge UAV swarm. This is to reduce the
complexities of a single UAV repeatedly producing and processing large amounts of
application-specific data. In UAV networks, a combination of ML and GT is also regarded
as a promising technique. For example, Gao et al. [17] proposed a game-based multi-
agent deep deterministic policy gradient approach for optimizing the trajectory of multiple
UAVs while taking into account users’ offloading delay, energy efficiency, and the use of
an obstacle avoidance system. The work in [18] adopted a novel game-theoretic and RL
framework for computational offloading in a multi-service provider mobile edge computing
network. Li et al. [19] investigated a joint optimization of beamforming and beam-steering
in multi-UAV millimeter wave networks considering LoS communication for UAVs, where
beamforming and beam-steering optimizations were carried out using an ML-inspired
algorithm and a mean field GT scheme, respectively.

Several studies have considered UAVs for offloading, capacity enhancement, and
relaying services. However, only a few studies have addressed both UAV-assisted networks
and FSO backhauling to provide network service. The study in [20] investigated the
3D deployment and resource allocation of a UAV in a hotspot area to maximize access
link throughput given constraints on user quality-of-service (QoS), FSO backhaul link
capacity, and total bandwidth and power. However, the backhaul constraint is eased by
assuming an ideal, high-capacity FSO backhaul. To maximize the network throughput,
the authors of [21] considered the association between aerial and terrestrial terminals,
transmit power, and the deployment of multiple UAVs, wherein backhaul-to-relay and
relay-to-user communications employed FSO and RF links, respectively. In [22], a hovering
UAV-based serial FSO decode-and-forward relaying system that considers various types of
channel impairments is investigated to improve system performance by optimizing the
beam width, field of view, and UAVs’ locations. Ajam et al. [23] proposed a UAV-aided
communication system with RF access links to mobile users and an FSO backhaul link
to analyze the end-to-end system performance of a network in terms of the ergodic sum
rate by optimizing the placement of UAV that serve as buffer-aided and non-buffer-aided
relays. By jointly designing the FSO and RF links and the UAV altitude, the study in [24]
maximized the system-level energy efficiency, which is equivalently expressed as the ratio
of the UAV’s multicasting rate over the optics BS transmit power, subject to the UAV’s
sustainable operation and reliable backhauling constraints. The work in [25] investigated
the 3D location of the drone BS, user association, and bandwidth allocation policy between
the MBS and the drone BS in order to minimize the total average latency ratio of all users
while maintaining each user’s QoS requirement. However, these studies have not taken into
account the weather’s impact on FSO backhaul, which is crucial in the FSO link availability
and consequently impacts the UAV deployment.

This work can be considered as one of the pioneering studies toward hybrid FSO/RF
networks under the umbrella of B5G networks, which are envisioned to integrate a
combination of FSO, UAVs, and high-speed RF (e.g., millimeter wave) technology for
diverse scenarios. The main contributions of this study are stated below.

Contributions: The main contributions of this study are stated below.

• We investigate a scenario where a UAV provides user offloading service to a GBS,
which has an FSO backhaul connection to the MBS. Specifically, the objective is to
maximize the network’s overall end-to-end throughput with the aid of a UAV when
the GBS’s FSO backhaul link is not reliable due to adverse weather conditions. We
propose an FSO backhaul-aware matching GT and RL-based solution for optimal
user association and overall network throughput maximization. The users decide for
themselves which BS (GBS or UAV) they would like to be associated with to increase
their utility (data rate).

• The paper proposes a two-layer system, where a matching GT technique is employed
at the lower layer to associate users with the GBS or UAV that maximizes their
utility. The system is then trained using RL to optimize the UAV’s altitude and
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bandwidth partitioning based on the weather conditions. The proposed scheme does
not require users to be aware of other players’ actions, which can greatly reduce the
communications overhead. In addition, once the training is completed, the system can
quickly obtain optimal parameters (altitude and bandwidth partition) for any random
user distribution.

• Lastly, the proposed hybrid network framework is evaluated under different weather
conditions including realistic weather statistics from the cities of Edinburgh and
London in the UK. The results clearly indicate the supremacy of the proposed approach
over GBS-only and two other benchmark user association schemes.

We organize the rest of this article as follows. The system model of the proposed
UAV-aided hybrid FSO/RF network is presented in Section 2. The problem formulation and
resource allocation using a matching GT and RL framework are detailed in Section 3. The
complexity and convergence analysis of the proposed scheme are also given in Section 3.
Some numerical results are presented in Section 4, and results based on practical weather
measurements are also discussed in Section 4. Finally, the paper is concluded in Section 5.

2. System Model

The schematic of the proposed system for high-speed wireless backhauling of a GBS
is shown in Figure 1. We assume that a preinstalled FSO link exists between the GBS and
the MBS. In the context of B5G, the GBS could be in the same coverage area as MBS, e.g.,
heterogeneous network or in a remote location, e.g., relay station. FSO-based wireless
backhauling solutions are very reliable and offer high achievable data rates in more frequent
normal weather conditions. So, in addition to the existing FSO link, installing a parallel
high-speed RF link between GBS and MBS just for occasional use in adverse weather events
is redundant, expensive (e.g., RF licensing costs), and difficult to maintain considering the
large number of anticipated BSs in B5G. When the FSO backhaul capacity drops below
a minimal threshold Cth because of the adverse weather conditions, e.g., fog events, the
GBS would like to maximize the utilization of its licensed sub-6 GHz spectrum W in the
downlink. It takes advantage of the UAV’s services to help some users by letting the
UAV use some portion of W, which should be efficiently shared between the two BSs. In
addition, the UAV can establish a temporary LoS link for backhaul with any nearby node,
including the MBS. Owing to its higher capacity and active beam steering, millimeter wave
backhauling outperforms sub-6 GHz backhauling across the RF spectrum [26]. Hence, it is
assumed that the UAV establishes a backhaul link to the MBS using an ideal high-speed
directional millimeter wave link.

Due to the increased density of BS nodes in B5G, it is impractical to equip every GBS
node with an expensive and difficult-to-maintain parallel high-speed RF backhaul. As a
result, it is anticipated that a UAV is equipped with a high-performance millimeter-wave
transceiver designed to operate in the scenarios such as depicted in Figure 1. Millimeter-
wave communications using the large bandwidth over 28 GHz is promising for high-rate
UAV transmissions [27]. It is also worth pointing out that instead of the MBS, the UAV can
also establish a backhaul connection with any nearby RF node, which might not have an LoS
connection possibility with the GBS. Note that this assumption is justified because the foggy
conditions have a negligible impact on RF signals. Hence, the system could now be referred
to as a hybrid FSO/RF backhauling system, since both FSO and RF technologies are used
at the backhaul links, i.e., FSO backhaul for the GBS and millimeter wave backhaul for the
UAV. As the fog event passes, the UAV may be withdrawn because the FSO backhaul link
of the GBS can resume regular operation. Furthermore, we assume that in the downlink,
both BSs use omnidirectional antennas. Next, a brief description of the channel models
is provided.
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Figure 1. The proposed system model for UAV-aided user offloading in adverse weather conditions.

2.1. FSO Channel Model

Given that the FSO link employs intensity modulation direct detection (IM/DD), the
received electrical signal expression can be written as

so = ρgohoxo + zo, (1)

where ρ is the responsivity of the photodetector, go refers to the average channel gain,
ho denotes the random turbulence-induced intensity fading, xo is the transmitted optical
intensity, so is the received electrical signal and zo is zero-mean real Gaussian noise with
variance σ2

o . Note that we use the subscript ‘o’ to denote the optical link. The signal-
independent Gaussian noise zo in (1) arises from thermal noise as well as the shot noise
induced by the ambient light. The average gain go could be expressed as [6,28]

go =

[
erf

( √
πd

2
√

2φLSD

)]2

× exp (−ϑLSD), (2)

where the first and second terms are the geometric loss due to the divergence of the
transmitted beam and the atmospheric loss due to scattering and absorption, respectively.
The receiver aperture diameter is denoted by d, φ is the beam divergence angle, LSD is the
distance between the source and the destination, and ϑ is a weather-dependent attenuation
coefficient determined based on the Beer–Lambert law. The relationship between ϑ and the

visibility V in km can be expressed as ϑ = 3.91
V

(
λo

550 × 10−9

)−ξ
[29], where ξ is the weather

condition-based size distribution of the scattering particles. It can be expressed as a function
of the visibility distance as [30]

ξ =



1.6, V > 50 km
1.3, 6 km < V < 50 km
0.16V + 0.34, 1 km < V < 6 km
V − 0.5, 0.5 km < V < 1 km
0, V < 0.5 km.

(3)

The log-normal distribution and the Gamma–Gamma distribution are two common
methods for modeling the turbulence-induced intensity fluctuation ho. We use the Gamma–
Gamma distribution, which can characterize the intensity function under a variety of
turbulence situations as [6,31]

fo(ho) =
2
(
ᾱβ̄
)(ᾱ+β̄)/2

Γ(ᾱ)Γ(β̄)
ho
(ᾱ+β̄)/2−1Kᾱ−β̄

(
2
√

ᾱβ̄ho

)
, (4)

where Γ(.) denotes the Gamma function, and Kp(.) is the modified Bessel function of the
second type. The parameters ᾱ and β̄ are defined as [32]
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ᾱ =

[
exp

(
0.49f2(

1 + 0.18κ2 + 0.56f12/5
)7/6

)
− 1

]−1

,

β̄ =

exp

 0.51f2
(

1 + 0.69f12/5
)−5/6

(
1 + 0.9κ2 + 0.62κ2f12/5

)5/6

− 1


−1

,

where f2 = 0.5C2
nk7/6L11/6

SD , κ2 = kd2/4LSD and k = 2π/λo. Note that C2
n is the turbu-

lence refraction structure parameter. The achievable rate (channel capacity lower bound)
conditioned on the random channel gain ho for the IM/DD FSO channel described in (1)
can be stated as [6,33]

Co =
Wo

2
log2

(
1 +

eρ2g2
oh2

oζ2
o

2πσ2
o

)
, (5)

where Wo is the optical bandwidth, e is the base of natural logarithm and ζo represents the
optical transmission power of the FSO node (e.g., MBS).

Strong atmospheric turbulence is highly unlikely during a fog event due to their
inverse correlation [34], but it cannot be totally ignored. It is worth noting that due to a
very small coherence time (i.e., rapid changes), UAV deployment and resource allocation
are unable to respond to channel capacity fluctuations caused by scintillation. To cope
with this problem and to encounter the impact of turbulence on the proposed system, we
use a sliding window averaging strategy [6,35] to smooth out the rapid FSO link capacity
fluctuations. Note that a window with a longer interval than the scintillation coherence time
(which is on the order of milliseconds) should be used so that the average FSO link capacity
can accurately reflect long-term weather conditions. The average FSO link capacity is
measured over the window interval, which is estimated as C̄o = E[Co], where E[.] denotes
the ensemble expectation. The GBS can monitor the condition of the FSO link and calculate
C̄o every window interval. When C̄o falls below a certain threshold, Cth, the services of a
UAV may be required to offload some users—in the worst case, all users due to the total
non-functionality of the FSO link. To ensure that the GBS can respond quickly to changing
weather conditions, the window interval should be significantly shorter than the time-scale
of the weather changes, which is on the order of hours.

2.2. RF Channel Model
2.2.1. Air to Ground Channel

The wireless air-to-ground (AtG) channel between a UAV and a ground user is primar-
ily composed of two components: the LoS component and the non-LoS (NLoS) component.
The probability of establishing an LoS link between a user and the UAV with an elevation
angle of θ (in degrees) is given by [10]

Pak
L (θ) =

1
1 + ω1 exp

(
−ω2[θ −ω1]

) , (6)

where ω1 and ω2 are constant parameters which depend on the carrier frequency and the
communication environment. In addition, θ = 180

π × sin−1
(
H
dak

)
is the elevation angle

between the kth user and the UAV with dak =
√
(xk − xa)2 + (yk − ya)2 +H2, the total

distance between kth user and the UAV, which has an altitudeH. Then, the average path
loss (PL) Lak can be expressed as [36,37]
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

Lak = Pak
L (θ) · LLOS

ak
+
[
1− Pak

L (θ)
]
· LNLOS

ak ,

LLOS
ak = Γ1

(
4π fcdak

c

)η

,

LNLOS
ak = Γ2

(
4π fcdak

c

)η

,

(7)

where fc is the carrier frequency, c denotes the speed of light and η is the PL exponent.
The PL values of the LoS and NLoS components are represented by LLOS

ak and LNLOS
ak , re-

spectively. In addition, Γ1 and Γ2 denote the additional PL, which depends on the type of
communication environment.

2.2.2. Ground-to-Ground Channel

The GBS-to-user channels are only considered NLoS because the elevation angle
between them is small. In effect, there is a high probability of NLoS links, which defines
the PL as [11]

Lsk = Γ2

(
4π fcdsk

c

)η

, (8)

where dsk =
√
(xk − xs)2 + (yk − ys)2 +H2

s is the GBS to user distance, and Hs denotes
the altitude of the GBS.

2.3. Cell-Edge-Based UAV Altitude

In a traditional UAV deployment technique [38–41], the edge user (cell-edge) is con-
sidered while positioning the UAV to enhance the QoS of the farthest users. At an optimal
elevation angle θedge, the coverage radius is maximized for a predefined PL value. Equiva-
lently, there is an optimal altitude at which the PL at the cell-edge is minimized for a given
radius. LetHedge denote the optimal altitude that minimizes the PL at the cell-edge and rs
be the coverage radius of the area in Figure 1. Hence, by taking the partial derivative of (7),
an equation of the critical point could be developed as [41]

∂rs

∂Hedge
=

πHedge

9ln(10)
+

rsω1ω2Γde(−ω2[θedge−ω1])(
ω1e(−ω2[θedge−ω1])+1

)2 = 0, (9)

where Γd = (Γ1 − Γ2) and θedge =
180
π arctan(

Hedge
rs

) is the elevation angle of an edge user.
Therefore, cell-edge-based optimal UAV altitudeHedge can be obtained from (9), which is
widely adopted to determine the optimal altitude in UAV networks. It is worth noting that
the UAV altitude obtained from (9) serves as a benchmark for the proposed model and a
backhaul-aware UAV altitude optimization is performed in Section 3.2.

2.4. User Distribution and Cell Association

We assume that K users are uniformly and independently distributed in the coverage
area using a homogeneous Poisson point process, which is obtained through a spatial point
process. Let K = {1, 2, ..., K} denote the set of users andM = {a, s} be the set of two BSs
(UAV and GBS). We employ a widely used cell association strategy known as reference
signal received power (RSRP) [42] for the initial user association because of the flexibility it
provides to users. The policy allows the kth user to be associated with the BS m that has the
strongest RSRP ζmk as

m∗ = arg max
m∈M

, ζmk, ∀k ∈ K, ∀m ∈ M. (10)

In addition, it is considered that the users can only be associated with one BS. To this
end, a user association matrix K̂ can be developed as
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xmk =

{
1, if kth user associates with BSm,
0, otherwise.

(11)

It is important to note that for the proposed model, an initial user association policy is
given in (10) and a backhaul-aware optimal policy is devised in Section 3.1.

3. Problem Formulation and Resource Allocation

In this paper, we assume that bandwidth W is shared between the two BSs based on a
bandwidth allocation factor Ψ that can be adjusted to efficiently manage the bandwidth
partition. Hence, Wa = ΨW is the bandwidth used by the UAV and Ws = (1− Ψ)W is
allocated to the GBS. Consider that both GBS and UAV broadcast at fixed transmit powers
of ζs

T and ζa
T, respectively. Thus, the data rate achieved by the kth user associated with the

GBS can be calculated as

R̂s
k =

Ws

Ks
log2

(
1 +

ζs
T/Lsk

Np

)
, (12)

where Ks is the user-load for the GBS and Np denotes the power of additive white Gaussian
noise (AWGN). However, an unreliable backhaul can limit the user data rate and also incur
delay. The rate constraint directly impacts the network throughput, whereas the delay
constraint is critical for control signalling deadlines [43]. In this paper, we only consider the
backhaul rate limitation which is caused by the weather attenuation. As a result, when the
total access link throughput exceeds the FSO backhaul capacity, the user rate in (12) cannot
be guaranteed. To this end, the effective throughput of the kth user could be expressed as

Rs
k =


R̂s

k if ∑Ks
k=1 R̂

s
k ≤ C̄o

R̂s
kC̄o

∑Ks
k=1 R̂s

k

if ∑Ks
k=1 R̂

s
k > C̄o.

(13)

Note that the fog-based attenuation is negligible for RF below 100 GHz frequencies [44];
hence it is assumed that the UAV can establish a reliable millimeter wave (e.g., 28 GHz)
backhaul with capacity C̄r which is always sufficient to support the UAV’s access link
throughput, i.e., ∑Ka

k=1 Ra
k ≤ C̄r. Then, the data rate of the kth user offloaded to the UAV

could be calculated as follows

Ra
k =

Wa

Ka
log2

(
1 +

ζa
T/Lak

Np

)
, (14)

where Ka denotes the number of users offloaded to the UAV. Once the user association is
completed, the sum throughput of UAV and GBS are, respectively, given as
ΦUAV = ∑Ka

k=1R
a
k and ΦGBS = ∑Ks

k=1R
s
k.

The proposed backhaul-aware system’s goal is to maximize the total end-to-end
throughput by optimizing the user’s BS selection, the bandwidth partition Ψ between BSs,
and the altitude H of the UAV. More formally, the following optimization problem P0
is formulated

(P0) : max
K̂,Ψ,H

ΦGBS + ΦUAV

s.t. xmk = {0, 1}, ∀m, k, (15)
2

∑
m=1

xmk = 1, ∀k, (16)

0 ≤ Ψ ≤ 1, (17)

Hmin ≤ H ≤ Hmax, (18)
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where constraints (15) and (16) ensure that each user must connect to only one BS. The
constraints (17) and (18) represent the range of values for the bandwidth partition factor
Ψ and UAV altitudeH , respectively. The value ofHmax could be regarded as equivalent
to Hedge in (9) because the UAV cannot provide better service above this altitude. Note
that the association matrix K̂ can be influenced by UAV altitude and bandwidth partition,
while the optimal value of Ψ would be different at different altitudes and vice versa. Hence,
problem P0 is intractable owing to the interactions and coupled relationship between user
association, UAV deployment, and bandwidth partition.

One efficient approach to solve P0 is to employ a hierarchical framework that com-
bines GT and RL. The proposed framework decouples P0 into two-layer hierarchical
sub-problems. Firstly, problem P1 (lower layer) presented in Section 3.1 deals with the
backhaul-aware user association between the GBS and the UAV for a predefined Ψ and
H. This problem is solved by adopting a matching GT approach to provide an optimal
user association in which users select the BS that offers a better utility (rate). Next, the
second sub-problem P2 (upper layer) presented in Section 3.2 leverages RL to obtain the
UAV altitude H and bandwidth partition Ψ that maximize the total system throughput
according to the prevailing weather conditions. In essence, the objective of P2 is to acquire
an optimal combination of bandwidth partition and UAV altitude denoted as Ψopt and
Hopt, respectively. P2 is iteratively solved by calling P1 for each combination of Ψ andH
until the convergence is reached (total network throughput is maximized), which occurs at
the optimum combination Ψopt andHopt. It is worth noting that the values of these optimal
combinations could be different for different weather-dependent attenuation coefficients
ϑ, hence making the RL process even more crucial, as will be shown and discussed in
Section 4. Figure 2 depicts a visual representation of the hierarchical structure for solving
P0 employing the matching GT and RL in Sections 3.1 and 3.2, respectively.

Figure 2. The framework for solving the problem of optimal user association, UAV deployment, and
bandwidth partition.

3.1. Matching Game Formulation

The potential to model individual, independent decision makers with interactional
strategies makes GT particularly appealing for analyzing wireless network performance.
In contrast to conventional methods, GT can be used to construct robust and efficient
distributed algorithms to address technical problems in UAV-assisted networks. Distributed
solutions based on GT can help to reduce communication signal overhead [45]. In particular,
the matching GT [46] can be used to provide solutions for combinatorial problems of
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matching players in two disjoint sets to investigate how different types of rational and
selfish players form dynamic and thus useful relationships.

It is worth noting that the proposed model completely matches a user association
problem in which each user would like to be associated with the BS that maximizes its
throughput. However, one can see from (13) and (14) that the achievable user rates also
depend on the existing user load on the BSs. Thus, a coupled relationship between the
entities needs to be solved. To obtain a tractable solution, the BS-user association problem
could be modeled as a one-to-many matching game. To this end, the goal of the first
sub-problem P1 is to maximize the end-to-end sum rate of both BSs by optimizing users’
BS selection with fixed values of Ψ andH. The first sub-problem is formulated as follows

(P1) : max
K̂

ΦGBS + ΦUAV

s.t. (15), (16). (19)

Note that the objective in P1 could be achieved by developing a user association matrix
where each user is allowed to be associated with the BS that offers a higher transmission
rate. The weather attenuation condition can also affect user association and achievable user
throughput, and the matching GT could provide an adaptive solution that responds to the
prevailing weather.

In this game, we have two disjoint sets of players, the set of users K and the set of BSs
M. Note that each user k ∈ K could be associated with one BS m ∈ M at a time. To this
end, the matching cell association problem is determined by the tuple (K,M,Zm,�K,�M)
, where �K= {�k}k∈K and �M= {�m}m∈M define the preference list of users’ and BSs,
respectively. Note that � denotes the preference notation and Zm is the quota vector of
the BSs. One can note that in adverse weather, all users might want to switch to the UAV.
In favorable weather, the opposite could happen. Hence, limiting the number of user
associations with the BSs could be counterproductive. Thus, it is assumed that the quota
vector Zm can house up to K users for both BSs. In the matching GT, if a particular user is
matched to a BS, it can be also interpreted as the BS being matched to that user [47]. The
matching is mathematically defined as follows.

Definition 1. A utility matching function U represents the BS–user association problem which
can be expressed as a function from the set K ∪M into the set K ∪M such that

• |U (k)| ≤ 1 and U (k) ∈ M∪∅;
• |U (m)| ≤ Zm, ∀m ∈ M;
• m ∈ U (k) if and only if U (m) = k.

where U (.) is the matching outcome and |U (.)| denotes its cardinality.

Definition 2. A matching U with link (k, m) ∈ U is considered to be stable if there exists no
matching U k

m,m′
such that the kth user favors BS m to m

′
(or vice versa), ∀k ∈ K or BS m prefers

user k
′

to k, ∀m ∈ M. In addition, a matching could be blocked by the BS (i.e., the user is not
permitted to change BS) for a BS–user pair (U (m), m) if U (m) 6= k and k �m U (m).

Hence, an outcome of a stable matching is a bilateral assignment to all players. An
iterative matching permits the kth user to iterate its matching if and only if it is beneficial in
terms of the attained utility Uk. Specifically, the users build their preferences relation based
on the achievable throughput using both BSs. For any kth user and the two BSs m, m′ ∈ M,
m 6= m′, two possible matches exist, U ,U ′ ∈ K ∪M, m = U (k), m′ = U ′(k). To this end,
we have the following properties:

m�km′ ⇔ Uk(m) > Uk(m′)

⇔ Rm
k > Rm′

k (20)
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where m�km′ indicates that the user k ∈ K prefers BS m as opposed to BS m′ due to a
higher achievable throughput (utility) with BS m. In addition, for BS m and any two users
k, k′ ∈ K, k 6= k′, two possible matches exist, U ,U ′ ∈ K ∪M, k = U (m), k′ = U ′(m), and
we have the following properties:

k�mk′ ⇔ Um(k) > Um(k′)

⇔ Rm
k > Rm

k′ (21)

One can note from (20) and (21) that the matching preferences of the players are related
to their utilities, which are governed by the achievable data rates defined in (13) and (14).

Iterative Matching Game Procedure

Algorithm 1 outlines the proposed iterative matching procedure, which involves
iterative matching until network-wide stability is attained. All users are initially assumed
to be associated with the BS with the highest RSRP. Each user creates a list of preferred
BSs and requests to be associated with their preferred BS. Both BSs also construct their
preference lists depending on the total rate they offer to the associated users. Each BS
also gives a ranking score to the users based on their preference list. Note that the user
preference relations are interdependent, as they are influenced by the existing matching
(i.e., the individual user data rate could change with a change in user load on the BS). This
type of matching is categorized as matching with peer effects [48]. Users would only seek a
change in serving BS if the other BS provided a better data rate. Additionally, the BS agent
approves the request if the requesting user increases the BS’s overall ranking; otherwise,
it rejects it. Usually, a user would not request a change of BS which needs to be blocked,
as under the proposed scheme, increasing the user’s data rate also increases the BS rate
and the ranking score. The blocking mechanism would only be activated if an abnormal
request is received. The procedure is iteratively updated, and the algorithm returns a stable
matching U ∗ when no user would like to change its association. It is worth emphasizing
that an outcome of Algorithm 1 could vary if the weather condition changes i.e., change
in ϑ.

Algorithm 1: Optimal User Association Using Iterative Matching Game
Initialize: User association based on RSRP in (10),
All users create a preference list � k over both BSs
Both BSs create a preference list � m over all users
Result: Convergence to a stable matching U ∗
while an iterative matching exists U k

m,m′ such that k prefers m′to m, (k, m) ∈ U do
Each user k contacts their preferred BS m
BSs rank the users in decreasing order
if rank(Km + 1) > rank(Km) then

Discard the user from the preference list � m ;
Associate the applicant user to BS m

′
;

Discard BS m from preference list � k ;
else

BS m
′

blocks the proposal of user k ;
end
Users ∀k rebuild a fresh preference list � k on current matching
BSs ∀m rebuild a fresh preference list � m on current matching

end
Stable matching: U ∗ which gives K̂, Φ̄UAV , Φ̄GBS

Note that Algorithm 1 is guaranteed to converge to a final matching for the given
weather attenuation from any initial user association. There are only two BSs; we can
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determine a fixed number of user transfers in the network, and each user only intends to
change BS if it improves its data rate. That is, with the specified parameters Ψ andH, it is
clear that in a network with a fixed number of users and BSs, user gain is always limited,
meaning users could only conduct a finite number of transfers to maximize their gain. The
number of transfers are mainly dictated by the weather attenuation coefficient ϑ. Hence,
the while loop of Algorithm 1 is guaranteed to terminate after a certain number of steps
when no user could improve their data rate. The convergence ensures the stability of the
association, as no user would have a desire to deviate from their final BS–user association.

3.2. Resource Optimization Using Reinforcement Learning

Note that Algorithm 1 solves P1 to maximize the network sum throughput using the
matching GT method and produces Φ̄GBS and Φ̄UAV , the end-to-end network throughput
of the GBS and the UAV, respectively. This is achieved by supplying a fixed combination
of bandwidth partition factor Ψ, and the UAV altitude H as the optimization problem
involving these parameters becomes intractable due to coupled relationships. However,
it is crucial to determine the optimal values of both Ψ and H, as both parameters could
significantly impact not only the user association but also the individual user rates and
total network throughput. We need to iteratively invoke Algorithm 1 to optimize the
sum of Φ̄GBS and Φ̄UAV . Since a nearly optimal solution necessitates a large number of
iterations, we exploit RL to obtain a joint optimization ofH and Ψ by periodically invoking
Algorithm 1 to optimize the sum of Φ̄GBS and Φ̄UAV . To this end, the optimization problem
P2 is presented as

(P2) : max
Ψ,H

Φ̄GBS + Φ̄UAV

s.t. (17), (18). (22)

In RL, an agent continuously interacts with the environment, taking various actions
in response to new conditions (states) presented by the environment. The agent obtains
a reward from the environment after completing an action. The reward can be positive if
the action was desirable or negative (e.g., a penalty) if the action was unfavorable. One of
the most popular RL methods is Q-learning [49] in which the agent learns the action–value
function Q, which represents the expected reward against a state–action pair (st, at). It
is considered that the UAV agent takes both actions (modifying the UAV altitude and
bandwidth partition). This assumption simplifies the model because the UAV must act
according to weather attenuation and the GBS and UAV need minimal communication.
For instance, the UAV would share the bandwidth partition parameter while the GBS only
needs to share its total end-to-end throughput values in return after each iteration. To this
end, the state–action value function of the UAV agent could be iteratively updated as

Q(st+1, at+1)← Q(st, at) + α[rt+1 + ν max
a

Q(s′t, a′t)], (23)

where α and ν represent the learning rate and discount factor, respectively. In this paper,
UAV functions as an agent for the Q-learning model, which is composed of four compo-
nents: states, actions, rewards, and the Q-value. The objective of Q-learning is to develop a
policy that maximizes observed rewards over the duration of the agent’s interactions. Note
that we employ Q-learning because we could formulate the problem with a finite state and
action space and because it is an efficient algorithm for this type of problem. If the state
space was large, we could have used other RL methods such as deep Q-network (DQN),
which approximates Q-values for state–action pairs using a deep neural network (DNN).
Figure 3 depicts the working principle of RL in the proposed framework.
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Figure 3. The working principle of reinforcement learning.

3.2.1. State Representation

The UAV agent employs a state model comprised of $ = (HUAV , ΨUAV), where
HUAV is the altitude of UAV and ΨUAV denotes the bandwidth partition between the UAV
and GBS. The state for a UAV deployment can be denoted as HUAV : {Hmin, ...,Hmax},
ΨUAV : {Ψmin, ..., Ψmax}.

3.2.2. Action Space

The agent carries out an action at ∈ A at each step, which comprises a combination of
altitudeH (increase or decrease) and bandwidth partition Ψ (increase or decrease) based
on the decision policy V , which is determined in the Q-table, Q(st, at).

3.2.3. State Transition Model

A transition from st to st+1 having reward rt at action at is characterized by the
conditional transition probability p(st+1, rt|st, at). By exploiting Q-learning, we aim to
maximize the long-term reward Jt for the given weather attenuation condition, which can
be stated as

Jt = E

[
∞

∑
n=0

νnrt+n

]
, (24)

where ν is the discount factor and the reward is calculated based on the objective function
in P2 as explained below.

3.2.4. Rewards

Without loss of generality, the reward function is formulated by the total network
throughput Φ̄s = Φ̄GBS + Φ̄UAV for the given weather attenuation. If the action that the
UAV carries out at current time t can improve Φ̄s, then the UAV receives a positive reward.
The UAV agent receives a negative reward otherwise. Hence, the reward function can be
stated as [50]

rt =


1, if Φ̄s,new > Φ̄s,old,
−0.1, if Φ̄s,new = Φ̄s,old,
−1, if Φ̄s,new < Φ̄s,old.

(25)

Algorithm 2 outlines the complete RL approach for solving P2. The plot in Figure 4
depicts the algorithm’s convergence for the use-case of V = 0.8 km. It is worth noting that
the algorithm converges in approximately 1800 episodes, each of which has 250 steps.

Remark 1. It is also worth noting that the system is trained for random user distributions with
uniform statistics, while the convergence for a more predictable user distribution is expected to be
substantially faster. After training, the model can quickly determine optimal valuesHopt and Ψopt
for any user distribution. (The non-uniform and clustered user distribution will be considered in
future work.)
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Figure 4. Convergence of the Q-Learning algorithm; based on our experiments, it converges within
around 1800 episodes.

Algorithm 2: Q-Learning Algorithm for UAV Deployment and Resource Parti-
tion Optimization

Input : Altitude lowerHmin and upperHedge bounds,
Bandwidth allocation factor
Lower Ψmin and upper Ψmax bounds,
Coverage radius R, episodes N , steps T

Output : Q-table containing Q(s, a) values defining optimal policy π∗,
Optimal UAV altitudeHopt,
Optimal bandwidth allocation factor Ψopt

initialize;
Altitude valuesHmin toHedge with step size δh
Bandwidth factor Ψmin to Ψmax with step size δΨ
Learning rate α← 0.1
Discount factor ν← 0.95
Exploration factor ε← 1
Init. Q-table for all state-action pairs Q(s, a)← 0
for episode← 0 : N do

Reset state s0 ← (Hmin, Ψmin)
for t← 0 : T do

a ←
{

arg maxa Q(st, at), prob. 1− ε,
randoma Q(st, at), prob. ε,

Compute reward rt+1 for action a using P2
Update Q-table for st, at, rt+1 combination:
Q(st+1, at+1)← Q(st, at) + α[rt+1 + ν max

a
Q(s′t, a′t)]

end

Update value of epsilon ε← ε− ε

N − 1
end

3.3. Additional Performance Metric

The main goal of the proposed scheme is to maximize the end-to-end system through-
put and allow users to associate with the preferable BS. However, we could also consider
other important metrics to evaluate and compare the performance of the systems. To this
end, we employ Jain’s fairness index, which is an important measure of fairness, and it is
defined as [51,52]

Q =
(∑K

k=1Rk)
2

K ∑K
k=1R2

k

, (26)
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where Rk represents the data rate of the kth user, irrespective of its associated BS. In
comparison to other measures, Jain’s index has a fairness criterion that considers all system
users, not only the users that are allocated minimal resources. Note that Q lies in the range[

1
K , 1
]

where Q =1 corresponds to the fairest allocation; i.e., every user receives the same
data rate.

3.4. Complexity and Convergence Analysis

The computational complexity of the Q-learning algorithm scales linearly with the
number of states and the number of actions [53]. The complexity of the proposed Algorithm 2
is the same as Q-learning, which is O(SA). Since our action-space consists of only four
actions, the complexity could be reduced to only O(S). Note that we can obtain a tradeoff
between the accuracy and model complexity when the discretization of state-space is
appropriately chosen. The complexity of the matching GT-based Algorithm 1 depends
on the number of user association transfers T. Therefore, the complexity of the proposed
framework is O(ST). Moreover, studies have proved that both Q-learning [53] and the
matching game [47] are guaranteed to converge if sufficient iterations are provided.

4. Numerical Results and Discussion

In this section, we present some simulation results for our proposed system as an appli-
cation of user offloading during the adverse weather conditions as plotted in Figure 1. Unless
otherwise stated, the values of the system parameters used for the numerical simulations are
listed in Table 1. The AWGN noise power is assumed to be Np =−90 dBm [10,54]. In addition,
a moderate turbulence condition with C2

n = 1.7× 10−14m−2/3 [55] is considered. The
minimum threshold capacity Cth of the FSO link corresponds to the weather-attenuation
coefficient ϑ = 10 dB/km.

Note that CUDE is a suboptimal CURE scheme with lower complexity. That is,
the UAV deployment (i.e., altitude) under the CUDE scheme is based on (9), while the
bandwidth partitioning factor Ψ is optimized to maximize the total network throughput,
and it follows the same matching GT procedure as the CURE scheme. The benchmark
CARE model uses a bias parameter for cell range expansion (CRE) [56] to encourage user
association with the UAV. The CRE technique virtually increases the user’s received power
by adding a bias value to balance the user load and improve the system’s performance.
Otherwise, almost all users would like to be associated with the GBS under the maximum
RSRP policy since the transmit power of UAV is practically lower than that of GBS. It
is worth noting that the CARE scheme does not consider the backhaul condition, and it
employs an equal bandwidth (i.e., W

K ) allocation policy to all users.
Firstly, we plot the individual BS throughput and user association probability as a

function of weather attenuation coefficient ϑ for the proposed CURE scheme in Figure 5.
Note that user association probability could be defined as the ratio of the number of users
connected to a specific BS to the total number of users. One can see that both individual BS
throughput and user association probability are an increasing and decreasing function of the
weather attenuation coefficient ϑ for the UAV and GBS, respectively. That is, as ϑ increases,
the capacity of the FSO backhaul diminishes, causing an increasing number of users to
migrate from the GBS to the UAV, which illustrates the importance of UAV deployment
during an infrequent foggy weather situation. In addition, Figure 6 shows the optimal
UAV altitude Hopt and bandwidth allocation factor Ψopt against an increasing weather
attenuation coefficient ϑ. As the weather deteriorates, the UAV is assigned more bandwidth
resources so that it could offload more users and increase total system throughput; also, as
the FSO backhaul becomes less reliable, the UAV’s altitude is increased to cover the entire
cell. As the optimal value of both parameters varies, it emphasizes the need for optimizing
these parameters with regard to a particular weather attenuation condition.
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Figure 5. Individual BS throughput and user association probability as a function of increasing
weather-attenuation coefficient for CURE model.

Table 1. Simulation parameters.

FSO Link [6]

Parameter Symbol Value

FSO wavelength λo 1550 nm

Receiver diameter d 5 cm

Beam divergence φ 3.5 mrad

Refraction structure index C2
n 1.7 × 10−14 m−2/3

Responsivity ρ 0.5V−1

Noise variance σ2
o 10−14A2

Transmit power ζo 20 dBm

Bandwidth Wo 1 GHz

Link distance LSD 1000 m

RF Link (Downlink) [10,11]

Parameter Symbol Value

Carrier frequency fc 2 GHz

Bandwidth W 20 MHz

Number of users K 300

GBS transmit power ζs
T 30 dBm

UAV transmit power ζa
T 20 dBm

Pathloss exponent η 2

Additional path loss LoS, NLoS Γ1, Γ2 3 dB, 23 dB

Environment parameter ω1, ω2 12.08, 0.11

AWGN noise power Np −90 dBm
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Figure 6. Optimal UAV altitude and bandwidth partition between two BSs as a function of increasing
weather-attenuation coefficient ϑ for the proposed CURE model.

We illustrate the user association between the GBS and the UAV for the proposed
CURE scheme under three low-visibility conditions for the conventional case in Figure 7
wherein the transmit power of GBS is higher than the UAV i.e., ζs

T > ζa
T. The users associ-

ated with the GBS and the UAV are represented by the blue and orange dots (100 trials),
respectively. Under a low visibility situation in Figure 7a,b, the UAV tends to cover the
majority of users in the middle of the coverage region, whereas the GBS covers some users
closer to the origin and at the edges. This is particularly interesting because due to the
relatively high weather attenuation at visibility V = 0.8 km, the GBS backhaul cannot
support many users which are offloaded to the UAV. More interestingly, since the UAV’s
access link is weaker than that of the GBS (due to its lower transmit power) despite a better
UAV–user LoS channel, it hovers at an intermediate altitude to cover users in the middle of
the cell. In fact, this inhibits the use of exclusive inner and outer ring coverage (e.g., [10])
for the GBS and UAV, respectively, when the GBS backhaul is not reliable. However, as
the visibility increases further in Figure 7c to 0.9 km, the GBS backhaul is relatively more
reliable, but it is not entirely capable of supporting all access traffic. Thus, the UAV is
pushed to cover users in the center rather than at the edges due to the UAV’s limited
transmit power, and it also hovers at a low altitude (e.g., 184 m).

On the other hand, when the transmit power of both the BSs is comparable in Figure 8
(equal in this case, ζs

T = ζa
T), the GBS’s coverage shrinks to a small region close to the origin.

Note that this situation is not practical because UAVs have limited power and their transmit
power is usually not comparable to that of a GBS; rather, these results are plotted to show
how the system behaves when both BSs have comparable transmit powers. One can note
that in all three visibility scenarios presented in Figure 8, the UAV covers most of the cell
(outer region) because it has a better channel and same transmit power level that offers
an advantage; therefore, more users would like to be associated with the UAV. However,
the UAV would tend to fly at a higher altitude to cover the entire cell, which allows the
users closer to the origin to prefer GBS compared to the UAV. As visibility improves, the
altitude of the UAV increases because the GBS with a more reliable backhaul can support
more users closer to the origin, and the UAV serves the majority of the users away from the
origin to maximize total network throughput.



Drones 2023, 7, 74 18 of 23

(a) V = 0.7 km (b) V = 0.8 km (c) V = 0.9 km

Figure 7. Three–dimensional (3D) coverage map and UAV altitude for three low-visibility regimes
when ζs

T > ζa
T; the blue and orange dots represent users associated with the GBS and UAV, respec-

tively.

(a) V = 0.7 km (b) V = 0.8 km (c) V = 0.9 km

Figure 8. Three–dimensional (3D) coverage map and UAV altitude for three low visibility regimes
when ζs

T = ζa
T; the blue and orange dots represent users associated with the GBS and UAV, respec-

tively.

The results in Figure 9 show the superior system throughput performance of the
proposed CURE scheme over the conventional user association methods. It is evident that
the proposed suboptimal CUDE model exhibits closer performance to the CURE scheme
compared to the other benchmark cases. However, the performance limitation is caused
by the traditional UAV placement method (edge user-based UAV deployment) despite the
implementation of a backhaul-aware user association policy. One can note that the CARE
scheme’s performance, in both cases of 5 dB and 10 dB of added power for CRE, deteriorates
as the weather attenuation increases. This is because the user association disregards the FSO
link reliability and only cares about access link conditions. As expected, the performance
of GBSO increasingly deteriorates as the weather attenuation increases, because the FSO
backhaul becomes more unreliable as ϑ increases. The proposed CURE scheme achieves
the best total system throughput performance and offers users the flexibility to choose their
preferred BS to enhance their user experience. However, it is worth assessing the impact
of this objective on the fairness of the users. To do this, we employ the widely used Jain’s
fairness index Q, as outlined in (26). The results in Figure 10 clearly illustrate that the
proposed CURE scheme offers good fairness results to the users, while the fixed altitude
case of the proposed model (i.e., CUDE, which is also backhaul-aware but with a fixed
UAV altitude) leads in terms of fairness performance. It is worth noting here that the Jain’s
fairness index evaluates the disparity of the data rates within an individual scheme. That
is, if a scheme has very low system throughput (e.g., GBSO in Figure 9), it can still be very
fair if all the users have comparable data rates. The GBSO scheme is a classic illustration of
this situation, as shown in Figure 10.
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Figure 9. Total system throughput of all the models versus the weather-dependent attenuation
coefficient ϑ of the FSO link.

Figure 10. Fairness performance of all the schemes under four low-visibility conditions.

We now evaluate how our system would perform in a realistic channel model that
uses climate data from the cities of Edinburgh and London. Figure 11 plots the histogram
of hourly visibility for Edinburgh and London as reported by the United Kingdom Me-
teorological Office for January 2019 to June 2020, totaling Htot = 13,106 h (Edinburgh),
Htot = 13,128 h (London). As can be seen, the probability of fog events (visibility < 1 km)
which can severely deteriorate the FSO link’s performance is very small. Because FSO links
function well most of the time, fixed hybrid FSO/RF links with permanent or backup RF
links are not necessarily the most cost-effective and practical solution all the time [6]. To
this end, it encourages researchers to come up with short-term solutions such as the one
proposed here. These approaches might play a significant role in B5G networks where
UAVs can offload traffic from the BS during rare low-visibility situations.

Figure 11. Hourly visibility histogram for Edinburgh and London from January 2019 to June 2020.
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We use fog events to simulate the total system throughput using the hourly visibility
data, with low visibility hours Hfog of 87 and 56 for Edinburgh and London, respectively.
Figure 12 demonstrates that the proposed CURE scheme outperforms the other systems,
including the GBSO, CUDE, and CARE scheme during the fog events in both cities. When
visibility is near 1 km, the CUDE and CARE schemes rarely perform comparably to the
proposed CURE scheme. On the other hand, the CURE scheme performs well throughout
the fog events in both London and Edinburgh, even when the counterpart models perform
poorly. For example, during fog hour 26 and 30 in Edinburgh and London, respectively, the
GBSO’s throughput is almost zero, while the CURE scheme still offers better throughput
compared to the CUDE and CARE scheme in both Edinburgh and London.

(a) Edinburgh

(b) London

Figure 12. The end-to-end system throughput of the proposed and benchmark schemes versus the
fog hours in Edinburgh and London from January 2019 to June 2020.

5. Conclusions

A novel hybrid FSO/RF system based on the matching game theory and RL is pro-
posed in this study with the use of UAV-assisted user offloading. Originally, only the GBS
is serving the coverage area, and no UAV is assumed to be involved. However, when the
infrequent adverse weather strikes to impair the FSO link’s availability, the GBS can be
augmented by a UAV. It helps to establish a dual-hop RF link to maintain its throughput to
the MBS by using a portion of the RF spectrum from the GBS node. The problem is solved
using a layered framework, where the user association is performed using a matching-game
while the UAV’s altitude optimization and bandwidth resource sharing with the GBS are
optimized using RL. Numerical simulations demonstrate that the proposed approach can
considerably increase the system’s total throughput under the adverse weather conditions
when compared to the FSO-only and other benchmark schemes. A realistic channel based
on Edinburgh and London weather records was used to evaluate the proposed system’s
performance; the proposed system showed a significant increase in throughput which
can increase the network availability over the other schemes. With the expected expo-
nential growth of FSO nodes in B5G networks, the findings of this study motivate the
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development of temporary and practical UAV-assisted FSO backhaul solutions. These
condition-aware hybrid FSO/RF systems will optimize the network performance during
rare weather situations, which considerably hamper the FSO link’s capacity.
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