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Abstract: Melatonin exerts direct neuroprotection against cerebral hypoxic damage, but the 
mechanisms of its action on microglia have been less characterized. Using both in vitro and in vivo 
models of hypoxia, we here focused on the role played by silent mating type information regulation 
2 homolog 1 (SIRT1) in melatonin’s effects on microglia. Viability of rat primary microglia or 
microglial BV2 cells and SH-SY5Y neurons was significantly reduced after chemical hypoxia with 
CoCl2 (250 μM for 24 h). Melatonin (1 μM) significantly attenuated CoCl2 toxicity on microglia, an 
effect prevented by selective SIRT1 inhibitor EX527 (5 μM) and AMP-activated protein kinase 
(AMPK) inhibitor BML-275 (2 μM). CoCl2 did not modify SIRT1 expression, but prevented nuclear 
localization, while melatonin appeared to restore it. CoCl2 induced nuclear localization of hypoxia-
inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-kB), an effect contrasted by melatonin 
in an EX527-dependent fashion. Treatment of microglia with melatonin attenuated potentiation of 
neurotoxicity. Common carotid occlusion was performed in p7 rats, followed by intraperitoneal 
injection of melatonin (10 mg/kg). After 24 h, the number of Iba1+ microglia in the hippocampus of 
hypoxic rats was significantly increased, an effect not prevented by melatonin. At this time, SIRT1 
was only detectable in the amoeboid, Iba1+ microglial population selectively localized in the corpus 
callosum. In these cells, nuclear localization of SIRT1 was significantly lower in hypoxic animals, an 
effect prevented by melatonin. NF-kB showed an opposite expression pattern, where nuclear 
localization in Iba1+ cells was significantly higher in hypoxic, but not in melatonin-treated animals. 
Our findings provide new evidence for a direct effect of melatonin on hypoxic microglia through 
SIRT1, which appears as a potential pharmacological target against hypoxic-derived neuronal 
damage. 

Keywords: cobalt chloride; rat common carotid artery occlusion (CCAO); 5-methoxy-N-
acetyltryptamine; melatonin receptors; silent mating type information regulation 2 homolog 1 
(SIRT1); amoeboid microglia; nuclear factor-kappa B (NF-kB) 
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1. Introduction 

Melatonin (5-methoxy-N-acetyltryptamine) is an endogenous neurohormone produced 
primarily by the pineal gland and mainly involved in the regulation of circadian rhythms. Aside from 
its classical action on sleep/wake cycles, melatonin has largely been shown to be a pleiotropic 
molecule [1–4] with multiple beneficial actions. In agreement, animal studies have shown melatonin 
to be an effective neuroprotectant in a number of neurodegenerative conditions such as 
hypoxia/ischemia [5–7], Alzheimer’s Disease [8], Parkinson’s Disease [9], and spinal cord injury [10]. 
Notably, clinical trials have been designed to establish the potential neuroprotective efficacy of 
melatonin in humans [11]. 

Melatonin selectively activates two G-protein coupled receptors, MT1 (or MTNR1a) and MT2 
(or MTNR1b), which differ in tissue distribution, molecular structure, and downstream pathways 
[12–15]. The MT1 isoform, in particular, has been linked to neuroprotective actions of melatonin in 
different models [16–18] and appears to be the prevalent site of action of melatonin in human fetal 
brains [17].  

Recent evidence linked melatonin’s neuroprotective effects to regulation of silent mating type 
information regulation 2 homolog (SIRT) 1 protein, a nicotinamide adenine dinucleotide (NAD)+-
dependent class III histone deacetylase [19–21]. Acting through the deacetylation of histones as well 
as several non-histonic targets, SIRT1 is implicated in neuroprotection and longevity [22,23]. 
Melatonin appears to regulate SIRT1 expression through the MT1 receptor [21]. 

Cerebral hypoxia is among the pathological conditions for which melatonin has proven 
especially effective as a neuroprotectant. Particularly relevant is the beneficial potential of melatonin 
in perinatal hypoxia. Melatonin has been previously used in association with the standard 
hypothermic therapy in newborns affected by hypoxia, with positive results [24–26]. 

In the context of hypoxia, microglial activation plays a primary role, which appears to be dual. 
On one side, restorative responses are exerted via debris clearance and removal of excitatory 
terminals from injured neurons, while, on the other, pro-inflammatory responses contribute to the 
exacerbation of neuronal injury [27,28]. Particularly interesting is the presence in the corpus callosum 
(CC) of a population of amoeboid-shaped, active microglia, which prevail early during brain 
development, later switching to a more ramified phenotype [29]. These microglia are suggested to be 
mainly involved in the physiological clearance of cellular debris and the developmental shaping of 
axonal connectivity [29,30]. Notably, in the last few years, the CC was shown to be an early and more 
common target of hypoxic damage than previously understood [31]. 

We have recently suggested that microglia may represent a feasible target for early intervention 
in different neuroinflammatory conditions [32–34]. Importantly, melatonin was shown to inhibit 
microglial pro-inflammatory polarization in hypoxic conditions in animal models [35–37]. 

Based on these premises, the aim of the present work was to explore the involvement of SIRT1 
in the effects of melatonin on microglial activation early after induction of hypoxia. To this end, we 
used both in vitro and in vivo approaches. In vitro, chemical hypoxia was induced with cobalt 
chloride (CoCl2) in rat primary microglia, BV2 murine microglial cell line, and differentiated 
neuronal-like cell line SH-SY5Y. In vivo, hypoxia was obtained by common carotid artery occlusion 
(CCAO) in p7 rats, followed by induction of anoxia. Melatonin was administered intraperitoneally at 
the end of hypoxia. Our results show that melatonin protects microglia from the hypoxic insult and 
attenuates its pro-inflammatory polarization, providing for the first time, evidence for a link between 
these effects and SIRT1 activation in microglia. In addition, our in vitro data show that melatonin’s 
action on microglia leads to an indirect beneficial action on neuronal survival.  

2. Materials and Methods  

2.1. Drugs and Reagents 

CoCl2 was purchased from Sigma-Aldrich (St. Louis, MO, USA) as a 100 mM stock solution. 
Melatonin, EX527 (Santa Cruz Biotechnologies, Santa Cruz, CA, USA) and BML-275 (Enzo Life 
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Sciences, Inc., Farmingdale, NY, USA) were dissolved in dimethyl sulfoxide (DMSO) as 10 mM stocks 
and further diluted in culture medium for experiments.  

2.2. Cell Cultures 

Mixed glial cultures were prepared from 1–3 days-old Sprague-Dawley rats (Harlan 
Laboratories, Indianapolis, IN, USA) according to an established protocol in our lab [33]. Briefly, the 
cortex was dissected, meninges removed, and tissue trypsinized (Invitrogen, Carlsbad, CA, USA) to 
a single cell suspension and filtered through a 40 μm nylon cell strainer (BD Biosciences, 
Erembodegem, Belgium). Cells were plated onto 75 cm2-flasks and maintained in Dulbecco's 
Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), penicillin (100 
U/mL)/streptomycin (100 μg/mL) at 37 °C and CO2 atmosphere. For microglial isolation, after 8–10 
d, confluent mixed cultures were shaken at 250 rpm at 37 °C for 1.5 h to collect microglia. For 
experiments, microglia or mixed glia were plated in 35 mm-dishes at a density of 2.5 million and 1 
million cells, respectively. All glial cells were used for the experiments 48 h after re-plating. 

BV2 mouse microglial cell line (ATTC, LGC Standards, Manassas, VA, USA) was grown in RPMI 
medium supplemented with 10% FBS at 37 °C and CO2 atmosphere. SH-SY5Y human neuroblastoma 
cells (ATTC) were grown in DMEM/F12 1:1 medium supplemented with 10% FBS at 37 °C and CO2 
atmosphere. Cells were differentiated by gradual serum deprivation and overnight starvation prior 
to treatments, as previously published by our group [33]. 

All medium constituents were obtained from Invitrogen. All experimental animal procedures 
were carried out in accordance with the directives of the Italian and European Union regulations for 
the care and use of experimental animals (DL116/92) and were approved by the Italian Ministry of 
Health. 

2.3. Animals 

Sprague Dawley pregnant rats were obtained from the central vivarium at the School of 
Veterinary Sciences, University of Buenos Aires. Rats were maintained at 21 ± 2 °C and 65 ± 5% 
humidity with free access to food and water, under a 12:12 h light/dark cycle (lights on 7:00 a.m.). 
Each animal was used only once, and all efforts were made to minimize the suffering of the animals 
and to reduce the number of animals used. All procedures were performed in accordance with the 
Argentina National Institute of Health Guide for the Care and Use of Laboratory Animals (Animal 
Welfare Assurance, A-3033-01/protocol#S01084) and were previously approved by the Ethics 
Committee at the University of Buenos Aires (CICUAL#4091/04). 

2.4. Model for Common Carotid Artery Occlusion (CCAO) and Treatment 

The model for CCAO used in this study has been previously developed and validated [38,39]. 
P7 male Sprague-Dawley rats were anesthetized (40 mg/kg ketamine and 4 mg/kg xylazine) and 
placed on a heat plate to keep their body temperature at constant 37 °C. The right common carotid 
artery (CCA) was exposed through an incision on the neck and was then isolated and permanently 
ligated with a 6-0 surgical silk thread (hypoxia-ischemia; HI group n = 13). The wound was then 
closed, and the pups were returned to their dams for 4–5 h to recover. Subsequently, the animals 
were subjected to a 100% nitrogen environment at 37 °C for 3 min to induce anoxia. Sham-operated 
rats (sham group n = 12) had their right CCA exposed but not ligated, and no nitrogen was applied. 
One hour after nitrogen exposure, animals were injected intraperitoneally (i.p.) with vehicle solution 
(vehicle group n = 12) or with 10 mg/kg of melatonin (melatonin group n = 13). At 24 h anoxia 
(postnatal day 8), animals were sacrificed, and their brains were collected for further analysis. 
Melatonin (Sigma) was dissolved in DMSO and diluted in normal saline to a final concentration of 
5% DMSO. 
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2.5. Viability 3-(4, 5-Dimethylthiazolyl-2)-2, 5-Diphenyltetrazolium Bromide (MTT) Assay 

One hour before the end of treatments, MTT (0.5 mg/mL; Sigma) was added to the medium and 
cells further incubated for 1 h at 37 °C. The medium was removed, and cell lysis was carried out by 
incubation with DMSO for 10 min at 37 °C. The absorbance of solubilized formazan crystals was 
measured at 545 nm with VarioskanTM Flash Multimodal Reader (Thermofisher Scientific, Waltham, 
MA, USA). 

2.6. Trypan Blue Exclusion Assay 

Cells were stained with 0.4% Trypan blue solution for 10 min and washed with PBS. The number 
of blue-stained, Trypan-permeable dead cells vs. the total number of cells were counted in five 
random fields/well under phase-contrast microscopy. 

2.7. Real-Time Polymerase Chain Reaction 

Cells were collected, and total RNA extracted using the RNeasy Plus Mini Kit (Qiagen, Milan, 
Italy). The RNA concentration was determined using Nanodrop spectrophotometer ND-1000 
(Thermofisher), and 2 μg of RNA were reverse transcribed using Superscript-VILO kit (Invitrogen) 
according to the manufacturer’s instructions. Quantitative real-time PCR was performed from 100 
ng/sample of cDNA with Rotor-Gene Q using Qiagen QuantiNova SYBR Green Real Time-PCR Kit. 
Primers are listed in Table 1. Melting curve analysis confirmed the specificity of the amplified 
products. Data were analyzed applying the ∆∆Ct method and expressed as a fold change vs. control. 

Table 1. Primers used for real-time polymerase chain reaction (PCR) amplification. 

PRIMERS Manufacturer 
Mm_Il6_1_SG QuantiTect Primer Assay (mouse) – (IL-6)_QT00098875 Qiagen 

Mm_Tnf_1_SG QuantiTect Primer Assay (mouse) – (TNF-α)_QT00104006 Qiagen 
Mm_Il1b_2_SG QuantiTect Primer Assay (mouse) – (IL-1β)_QT01048355 Qiagen 

Ribosomal Protein S18-Forward (GTTCCGACCATAAACGATGCC) 
Ribosomal Protein S18-Reverse (TGGTGGTGCCCCCGTCAAT) 

Eurofin 

2.8. Western Blot 

Cells were collected and lysed in M-PER® Mammalian Protein Extraction Reagent (Thermofisher 
Scientific) supplemented with anti-protease and anti-phosphatase cocktails (Sigma). Rat 
hippocampal and cortical tissues were isolated and lysed in radioimmunoprecipitation assay buffer 
(RIPA) buffer with anti-protease and anti-phosphatase cocktails (Sigma). Samples were sonicated, 
centrifuged at high speed for five minutes at 4 °C and protein concentration was determined by micro 
Bradford reagent (Sigma) protocol, according to the manufacturer’s instructions. Absorbance was 
measured with a VarioskanTM Flash Multimode Reader. Sodium dodecyl sulphate-poly-acrylamide 
gel electrophoresis (SDS-PAGE) was performed by loading equal amounts of protein 
extracts/experiment on pre-cast 4-20% gradient gels (Bio-Rad, Hercules, CA, USA) and followed by 
transfer to nitrocellulose membrane (Hybond ECL, Amersham Biosciences Europe GmbH, Milan, 
Italy) using a Transblot semidry transfer cell (Bio-Rad). Membranes were blocked with Odyssey 
Blocking buffer and incubated with primary antibodies overnight at 4 °C. Primary antibodies used 
were: rabbit anti-MT1 (1:300; Thermofisher, Cat. No. PA5-75749), rabbit anti-SIRT1(H300) (1:400; 
Santa Cruz, Cat. No. sc-15404), rabbit anti-NF-kBp65 (1:400; Thermofisher, Cat. No. PA1-186), rabbit 
anti-β-actin (1:5000; Sigma, Cat. No. A2066) and mouse anti- glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) (1:5000; Millipore, Billerica, MA, USA, Cat. No. MAB374). Membranes 
were then washed and exposed to appropriate IRDye® 680RD or IRDye® 800CW secondary 
antibodies (1:15000; LI-COR Biosciences, Lincoln, NE, USA) or Alexa Fluor-conjugated secondary 
antibodies (1:5000; Thermofisher) for 45 min at room temperature (RT). The detection of specific 
bands was carried out using the LI-COR Odyssey® Infrared Imaging System or the iBright FL1000 
Imaging System. Band intensity was analyzed using the ImageJ software, developed by the National 
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Institutes of Health (NIH) and in the public domain. All blots were cropped to display only specific 
bands of interest. 

2.9. Immunocytochemistry 

Fixation was carried out with ice-cold 4% paraformaldehyde (30 min), followed by 
permeabilization when necessary with 0.1% Triton X-100 on ice (10 min) and blocking in 3% bovine 
serum albumin (BSA;30 min). Incubation with primary antibodies was carried out in a 3% BSA 
solution (overnight) at 4 °C. Primary antibodies used were: rabbit anti-SIRT1(H300) (1:400; Santa 
Cruz, Cat. No. sc-15404), rabbit anti-NF-kB p65 (1:400; Thermofisher, Cat. No. PA1-186), mouse anti-
HIF-1α(H1alpha-67) (1:80; Santa Cruz, Cat. No. sc-53546). After washing, cells were incubated with 
secondary antibodies for 45 min RT, washed, and mounted with 4′,6-diamidino-2-phenylindole 
(DAPI)-containing mounting solution (both from Sigma). Secondary antibodies used were: Alexa-
Fluor 546-anti-mouse (1:300; Invitrogen), Alexa-Fluor 488-anti-rabbit (1:300; Invitrogen). Digital 
images were captured with a Zeiss Observer.Z1 microscope equipped with the Apotome.2 
acquisition system (Zeiss, Oberkochen, Germany). 

2.10. Immunohistochemistry and Cell Count 

At P8, intracardiac perfusion was performed as described previously [40]. Animals were 
anesthetized with intraperitoneal administration of ketamine 40 mg/kg and xylazine 4 mg/kg, and 
perfused intracardially with 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4. Brains were 
removed and post-fixed in the same fixative solution for 2 h at RT and then immersed overnight at  
4 °C in 0.1 M phosphate buffer, pH 7.4. Then, the brains were dehydrated through an ascending 
ethanol series and separately included in paraffin wax. 

Coronal whole brain sections (5 μm thickness) were cut with the RM2235 microtome (Leica, 
Wetzlar, Germany) and mounted onto salinized slides. Heat-induced antigen retrieval was 
performed in 10 mM sodium citrate (Sigma) and 0.05% Tween 20, pH 6. Non-specific labeling was 
blocked using 10% normal fetal bovine serum (FBS) for 30 min at RT. Double (simultaneous) 
immunofluorescence staining was performed by incubating tissue sections with the mixtures of 
primary antibodies: rabbit polyclonal anti-Iba1-AIF1 (1:700; Novus Biologicals, Centennial, CO, USA, 
Cat. No. NBP2-19019) and mouse monoclonal anti SIRT1(B7) (1:200; Santa Cruz, Cat. No. sc-74465), 
mouse monoclonal anti-Iba1(GT10312) (1:200; Thermofisher, Cat. No. MA5-27726) and rabbit 
monoclonal anti-phospho-NF-κB p65 (Ser536) (93H1) (1:1200; Cell Signaling Technology, Danvers, 
MA, USA, Cat. No. #3033). After washing in PBS+0.1%Tween (PBS-T), sections were simultaneously 
incubated for 30 min at RT with secondary antibodies (all from Thermofisher): goat Alexa-Fluor 488-
conjugated anti-rabbit (1:300) + donkey Alexa-Fluor 546-conjugated anti-mouse (1:250). After 
washing in PBS-T, slides were mounted with DAPI-containing Fluoromount mounting medium 
(Sigma). 

The number of Iba1 immunoreactive cells in different brain areas was determined in two 
slides/brain and at least eight counting frames per animal. For each photo, cells were counted in two 
squares of 200 μm by 200 μm. The number of Iba1+ cells with nuclear SIRT1 localization in the CC 
was determined in two slides/brain and at least six counting frames per animal.  

2.11. Statistical Analysis 

All in vitro data were from at least three independent experiments run at least in triplicate. For 
primary microglia, experiments were from separate isolations. In vivo experiments were carried out 
on at least three animals/group. All experimental values are presented as the mean ± SEM. Statistical 
analyses were performed, as appropriate, by Student’s t-test or one-way ANOVA followed by 
Neuman–Keuls post-hoc test using GraphPad Prism Software (GraphPad Software, San Diego, CA, 
USA). P < 0.05 was the criterion for statistical significance. 
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3. Results 

3.1. In Vitro Experiments 

3.1.1. Microglia Potentiate Neuronal Damage during Chemical Hypoxia with CoCl2 

CoCl2 toxicity was initially tested on differentiated neuronal-like cells SH-SY5Y. A 
concentration-response curve was carried out by the MTT assay, testing effects at early (5 h) and late 
(24 h) time points (Figure 1a). The results confirmed the time and concentration-dependent 
neurotoxic effects of CoCl2, which appeared significant starting at 250 μM. Based on these data, this 
concentration was used in all subsequent experiments. The MTT assay on both primary rat microglial 
cells (Figure 1b) and BV2 cells (Figure 1c) showed significant reduction of survival after 24 h of 
exposure to CoCl2. CoCl2 toxicity was confirmed by trypan blue exclusion assay both on SH-SY5Y 
cells (viable cells: CTR 84.71% ± 1.08 vs. CoCl2 58.38% ± 3.39) and BV2 cells (viable cells: CTR 96± 0.65 
vs. CoCl2 69.47 ± 3.74). To explore whether and how microglia affected neuronal susceptibility to 
hypoxia-induced injury, neuronal-like cells were co-cultured with primary microglia plated on 
transwell inserts. In the presence of microglia, CoCl2 resulted slightly but significantly in more 
toxicity, as revealed by the MTT assay (Figure 1d). A similar effect was observed when neuronal-like 
cells were exposed to conditioned medium (CM) from BV2 cells pulsed with CoCl2 for 3 h, followed 
by an 18 h-recovery to obtain CM devoid of residual CoCl2 (Figure 1e). 

 

Figure 1. CoCl2 reduces cell viability in neuronal-like and microglial cells. The time and concentration-
response curve for CoCl2 in SH-SY5Y neuronal-like cells, tested by the MTT assay (a). Effects of CoCl2 
(250 μM for 24 h) on primary microglia (b) and BV2 cell line (c). CoCl2 toxicity on SH-SY5Y in co-
culture with primary microglia (+pMG; d) or treated in conditioned medium (+CM) from CoCl2-
pulsed BV2 cells (e). Bars are mean ± SEM of at least three independent experiments. *p < 0.05 vs. own 
zero (a) or vs. respective control (c) and °p < 0.05 vs. other groups by one-way ANOVA followed by 
Newman–Keuls test for statistical significance. 

3.1.2. Melatonin Protects Microglia after Hypoxia via SIRT1 Activation 

The expression of the selective MT1 receptor in microglia was tested prior to investigating the 
effects of melatonin. Western blot analysis was carried out to ascertain the specificity of the antibody 
used (Figure 2a) and immunocytochemical analysis (Figure 2b) confirmed receptor expression in both 
primary microglia and BV2 cells. 
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Figure 2. Melatonin receptor 1 (MT1) is expressed on microglial cells. Western blot (a) and 
immunocytochemical analysis (b) of the MT1 receptor in primary microglia (pMG) and BV2 cell line. 
Representative images are shown. Scale bar = 20 μm. 

In addition, the effects of melatonin on CoCl2–induced inflammatory challenges were 
preliminarily determined. To this end, mRNA expression of interleukin (IL)-6, IL-1β, and tumor 
necrosis factor (TNF)-α was analyzed by real-time quantitative PCR after 5 h of exposure to CoCl2. 
The results confirmed that CoCl2 increased cytokine transcription (5.23 ± 1.27; 3.64 ± 0.9 and 4.5 ± 1.44-
fold change vs. C for IL-6, IL-1β, and TNF-α, respectively). These effects were prevented by melatonin 
(0.76 ± 0.14; 0.44 ± 0.04 and 1.18 ± 0.21-fold change vs. C for IL-6, IL-1β, and TNF-α, respectively). 
Accordingly, the direct addition of 1 μM melatonin in combination with CoCl2 slightly but 
significantly increased survival of both primary microglia (Figure 3a) and BV2 cells (Figure 3b). The 
involvement of SIRT1 in melatonin’s action was addressed in these conditions by selective 
pharmacological inhibition with EX527 (5 μM), which was shown to prevent melatonin’s protective 
effects in both primary microglia (Figure 3a) and BV2 cells (Figure 3b). Additionally, blockade of 
AMP-activated protein kinase (AMPK) pathway, classically linked to SIRT1 activation, with selective 
inhibitor BML-275 (2 μM) abolished melatonin’s protective effects against CoCl2 (Figure 3b). Given 
the highly superimposable responses of primary microglia and BV2 cells, the latter were used for all 
further investigations.  



Biomolecules 2020, 10, 364 8 of 21 

 
Figure 3. Melatonin protects microglia against CoCl2 toxicity via SIRT1. CoCl2 (250 μM for 24 h) 
toxicity on primary microglia (a) and BV2 cells (b) in the presence of melatonin alone (1 μM) or in 
combination with SIRT1 inhibitor EX527 (5 μM) or BML-275 (2 μM), assessed by the MTT assay. Bars 
are mean ± SEM of at least three independent experiments. *p < 0.05 vs. respective control (C), °p < 
0.05 vs. CoCl2 and #p < CoCl2 + melatonin (MEL) by one-way ANOVA followed by Newman–Keuls 
test for statistical significance. 

The responses of BV2 cells were then analyzed at an early time point (8 h) with the intention to 
precede massive cell death. Analysis of SIRT1 expression by Western blot (Figure 4a) showed that 
SIRT1 protein levels remained unchanged early (8 h) after exposure of BV2 cells to either CoCl2 alone 
or in combination with melatonin (1 μM). However, the deacetylase’s subcellular localization 
appeared modified by CoCl2, as shown by immunocytochemical imaging (Figure 4b; green). SIRT1 
was highly nuclear in control conditions, prevalently cytosolic after exposure to CoCl2, and restored 
into the nucleus by 1 μM melatonin. Notably, such an effect was precluded when SIRT1 was 
selectively inhibited with EX527 (5 μM).  

 
Figure 4. CoCl2 prevents SIRT1 nuclear translocation in microglia. In (a), Western blot analysis of 
SIRT1 expression in BV2 cells exposed to CoCl2 (250 μM for 8 h) alone, or in combination with either 
melatonin (1 μM) or melatonin + EX527 (5 μM). In (b), immunostaining of SIRT1 (green) and nuclear 
counterstaining with DAPI (blue) in BV2 cells treated with CoCl2 alone or in combination with 
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melatonin (1 μM) or melatonin + EX527 (5 μM). Bars are mean ± SEM of three independent 
experiments. Representative images are shown. Scale bar = 20 μm. 

3.1.3. Melatonin Modulates Microglial Hypoxic and Inflammatory Markers Indirectly Affecting 
Neurons during Hypoxia 

The distinctive hypoxic marker HIF-1α was analyzed by immunostaining in BV2 cells exposed 
to CoCl2 for 8 h. Results showed that CoCl2 increased nuclear localization compared to the control, 
where only a faint signal was detectable (Figure 5). In the presence of melatonin (1 μM), nuclear HIF-
1α was reduced, an effect that appeared sensitive to SIRT1 inhibition with EX527 (5 μM; Figure 5).  

 

Figure 5. CoCl2 induces hypoxia-inducible factor (HIF)-1α in microglia. Immunostaining of HIF-1α 
(red) and nuclear counterstaining with DAPI (blue) in BV2 cells following exposure to CoCl2 alone 
(250 μM for 8 h) or in the presence of melatonin (1 μM) and melatonin + EX527 (5 μM). Representative 
images are shown. Scale bar = 20 μm. 

Expression of the p65 subunit of the inflammatory marker NF-kB was analyzed by Western blot 
at the same time point (8 h). CoCl2 induced a significant increase in NF-kB expression compared to 
control. This effect was attenuated by melatonin but restored with the addition of EX527 (Figure 6a). 
Consistent with this result, immunostaining nuclear localization of NF-kBp65 was increased by CoCl2 
exposure, and such effect prevented by melatonin in an EX527-sensitive manner (Figure 6b).  
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Figure 6. Melatonin attenuates NF-kBp65 upregulation by CoCl2 in microglia. Western blot analysis 
(a) of NF-kBp65 levels in BV2 cells exposed to CoCl2 (250 μM for 8 h) alone, or in combination with 
either melatonin (1 μM) or melatonin + EX527 (5 μM). In (b), immunostaining of NF-kBp65 (green) 
and nuclear counterstaining with DAPI (blue) following exposure to CoCl2 alone (250 μM for 8 h), or 
in the presence of melatonin (1 μM) + EX527 (5 μM). Bars are mean ± SEM of three independent 
experiments. *p < 0.05 vs. control (C), °p < 0.05 vs. CoCl2 and #p < 0.05 vs. CoCl2 + MEL by one-way 
ANOVA followed by Newman–Keuls test for statistical significance. Representative images are 
shown. Scale bar = 20 μm. 

Finally, we assessed the indirect outcome of melatonin’s modulation of hypoxic microglia on 
neuronal vulnerability to hypoxia. To this end, a conditioned medium (CM) protocol was chosen 
where BV2 cells were pulsed with CoCl2, alone or in combination with drugs, and recovered in fresh 
medium devoid of drugs and thus enriched only with released factors (see the Materials and Methods 
section for detailed protocol). Results showed that exposure of neuronal-like cells to CoCl2 (24 h) in 
the presence of CM, collected from BV2 microglia pre-pulsed with CoCl2 (BV2-CM- CoCl2), 
exacerbated neuronal death at the MTT assay (Figure 7). Such potentiation of neuronal damage was 
mitigated in the presence of CM from BV2 cells pre-treated with CoCl2+melatonin (BV2-CM- 
CoCl2+MEL; Figure 6). Finally, CM derived from BV2 pre-pulsed with CoCl2 + melatonin + EX527 
(BV2-CM- CoCl2 + MEL + EX) restored full toxicity (Figure 7). 

 
Figure 7. Melatonin modifies the microglial response to CoCl2, reducing its effects on hypoxic 
neuronal damage. BV2 cells were pulsed with CoCl2 (250 μM) alone or in combination with melatonin 
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(1 μM) or melatonin+EX527 (5 μM) for 3 h, followed by washing and recovery in fresh medium devoid 
of any drug. Conditioned medium (BV2-CM) was collected after further 18 h of incubation and 
transferred to SH-SY5Y during challenge with CoCl2 (250 μM for 24 h). Neuronal-like cell viability 
was then tested by the MTT assay. Bars are mean ± SEM of three independent experiments. *p < 0.05 
vs. own control, °p < 0.05 vs. CoCl2 + MEL + EX527. Another group by one-way ANOVA followed by 
Newman–Keuls test for statistical significance. 

3.2. In Vivo Experiments 

3.2.1. Melatonin Differently Affects Microglia in the Cortex and Hippocampus of Hypoxic Rats 

Seven-day old rats were subjected to common carotid artery occlusion followed by hypoxia, as 
described in detail in the Materials and Methods section. Melatonin (10 mg/kg) was injected i.p. after 
induction of anoxia, and animals sacrificed 24 h later. Expression of selective microglial marker Iba1 
was analyzed by Western blot in ipsilateral hippocampal and cortical protein extracts of sham-
operated or hypoxic (HI) animals, treated or not with melatonin (MEL). The results showed no effects 
on Iba1 expression in the cortex (Figure 8a), while a trend of the increase was evident in the 
hippocampus, although it did not reach statistical significance (Figure 8b). Immunostaining for Iba1 
was carried out on whole-brain sections, and the number of microglial cells was determined by 
counting positive cells in the ipsilateral areas of interest. Microglia in the hippocampus appeared 
highly branched, and their number increased significantly in hypoxic animals compared to sham-
operated groups (Figure 8c). Melatonin did not appear to modify such an increase (Figure 8c). 
Interestingly, a small population of microglial cells displaying an activated amoeboid phenotype was 
evident selectively in the CC. Their number did not significantly differ between treatment groups 
(not shown). 
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Figure 8. Melatonin does not affect Iba1+ cell number in rats subjected to CCAO. Seven-day-old rats 
were subjected to sham surgery or to ligation of the right carotid artery followed by hypoxia. 
Melatonin-treated groups were subsequently injected with melatonin (10 mg/kg) and sacrificed after 
24 h. Iba1 expression in ipsilateral cortical (a) and hippocampal (b) protein extracts was evaluated by 
Western blot analysis. Microglia were labeled by immunohistochemical staining of Iba1 (green, c) 
with DAPI nuclear counterstaining (blue, c). Double positive Iba1+/DAPI+ cells were counted in the 
CA1 area of the hippocampus (HC; graph in c). Bars are mean ± SEM of at least three animals/group. 
*p < 0.05 vs. sham by one-way ANOVA followed by Newman–Keuls test for statistical significance. 
Representative images of blots and of ipsilateral HC are shown. Scale bar = 100 μm. 

3.2.2. Expression of SIRT1 Is Selectively Modified in Amoeboid Microglia of the Corpus Callosum in 
Hypoxic Rats 

Expression of SIRT1 in microglial cells was investigated by double immunostaining with Iba1 
on whole brain sections. Microglia in the hippocampus and cortex did not appear to express clearly 
detectable levels of SIRT1. Remarkably, however, amoeboid microglia in the CC (green, Figure 9) 
appeared clearly positive for SIRT1 (red; Figure 9). Moreover, SIRT1 localization was prevalently 
cytoplasmic in the hypoxic group (HI), while it appeared with a more defined nuclear localization in 
melatonin-exposed animals, both sham and hypoxic (sham + MEL and HI + MEL; Figure 9). This was 
confirmed by counting the number of amoeboid Iba1+ cells displaying nuclear SIRT1, which was 
significantly lower in hypoxic animals but restored in the presence of melatonin (graph in Figure 9).  
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Figure 9. Melatonin promotes nuclear SIRT1 localization in amoeboid microglia of the corpus 
callosum in rats subjected to CCAO. Seven-day-old rats were subjected to sham surgery or to ligation 
of the right carotid artery followed by hypoxia (HI). Melatonin (MEL)-treated groups were 
subsequently injected with melatonin (10 mg/kg) and sacrificed after 24 h. Double 
immunohistochemical staining of Iba1 (green) and SIRT1 (red) with DAPI nuclear counterstaining 
(blue) is shown. The graph reports the percentage of nuclear SIRT1+, Iba1+ microglial cells in the area. 
Representative images of ipsilateral CC are shown. Insets show magnification of cells indicated by 
the arrows. Scale bar = 50 μm. Bars are mean ± SEM of at least three animals/group. *p < 0.05 vs. sham 
and **p < 0.05 vs. HI by one-way ANOVA followed by Newman–Keuls test for statistical significance. 

Immunohistochemical analysis of pNF-kBp65 in the same area showed a defined nuclear 
localization in amoeboid microglia of hypoxic animals (HI), compared to both sham-operated and 
hypoxic melatonin-treated (sham and HI + MEL) groups (Figure 10). The number of NF-kB+/Iba1+ 
microglia was significantly increased in hypoxic animals compared to the other groups, together with 
the number of cells where it was localized in the nucleus.  
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Figure 10. Melatonin antagonises nuclear NF-kB localization in amoeboid microglia of the corpus 
callosum in rats subjected to CCAO. Seven-day-old rats were subjected to sham surgery or to ligation 
of the right carotid artery followed by hypoxia (HI) alone or with subsequent injection of melatonin 
(10 mg/kg; HI + melatonin (MEL). Animals were sacrificed after 24 h. Double immunohistochemical 
staining of Iba1 (red) and NF-kB (green) with DAPI nuclear counterstaining (blue) is shown. The 
graph reports the percentage of nuclear SIRT1+, Iba1+ microglial cells in the area. Representative 
images of ipsilateral CC are shown. Arrows indicate representative Iba+ cells with nuclear NF-kB; 
arrowheads indicate representative Iba1+ cells with extranuclear NF-kB staining. Asterisks indicate 
cells reported in the insets at higher magnification. Scale bar = 40 μm. Bars are mean ± SEM of at least 
three animals/group. *p < 0.05 vs. sham and **p < 0.05 vs. HI by one-way ANOVA followed by 
Newman–Keuls test for statistical significance. 

4. Discussion 

Melatonin is an endogenous hormone characterized by neuroprotective activities, exerted 
through multiple mechanisms. Its production is regulated by light-dark cycles, with peaks of release 
during the dark period and suppression by light [1]. Melatonin has been largely shown to protect 
against hypoxic injury with the reduction of the infarct area [5,41,42]. Noteworthy, increased 
mortality following hypoxia-ischemia has been reported in MT1 receptor knockout mice [17]. 
Melatonin’s ability to easily cross the blood-brain barrier and its safety profile make it an ideal 
candidate, especially for pediatric use against long term neurological deficits that develop following 
prenatal/perinatal hypoxia. Hypoxic-ischemic encephalopathy is, in fact, a still frequent condition 
responsible for neonatal morbidity and mortality [26]. Brain or whole-body hypothermia is currently 
the only therapeutic option offering amelioration in the prognosis, as from preclinical and clinical 
data [26,43–45]. In addition, evidence of a benefit from adjunctive therapy with melatonin has been 
described [46,47], and a recent study on melatonin safety, pharmacokinetics (PK), and dosage in the 
neonatal population reported positive results [25]. Finally, it is worth noting that a significant increase 
of melatonin was described following hypoxia both in experimental models and in human stroke, 
suggesting even the existence of an endogenous protective response on its part [48]. The detailed 
comprehension of melatonin’s mechanisms of action is hence of paramount importance. So far, 
studies on the protective activity of the hormone in hypoxia have mainly focused on direct neuronal 
effects, whereas evidence regarding melatonin’s involvement in the modulation of inflammatory 
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responses [49], as also shown by our data, prompted us to turn our attention to the effects on 
microglia that indirectly influence neurons. Microglia are, in fact early responders to hypoxic insults 
and can deeply affect neuronal vulnerability [50]. Furthermore, we aimed to explore the intriguing 
possibility that SIRT1, a deacetylase endowed with manifold protective actions and extensively 
studied in neurons [22], could be a mediator of melatonin’s effects on microglia against hypoxic 
insults.  

Melatonin has been reported to act both on selective G-protein coupled receptors and as an 
antioxidant. This latter function can be both direct, due to melatonin’s scavenger properties targeted 
in particular to mitochondria, or indirect through modulation of the expression of antioxidant 
enzymes [51–53]. In addition, melatonin has been shown to directly interact with target proteins 
modulating their function [4,54]. In our work, we first confirmed the expression of melatonin receptor 
MT1 in both primary and immortalized microglia. MT1 is coupled to Gi and Gq proteins, and its 
activation inhibits the formation of cyclic AMP, activates AMP-activated protein kinase (AMPK) 
signaling, and inhibits phospho-CREB and protein-kinase A signaling [55–57]. This isoform, in 
particular, was here chosen because of its known involvement in the neuroprotective actions of 
melatonin, as from experimental models of newborn hypoxic-ischemic brain injury [17]. In addition, 
MT1 was previously shown to mediate activation of SIRT1 in other tissues, such as the liver [58].  

In the present study, we used a previously established in vitro model of chemical hypoxia with 
CoCl2, which stabilizes the α subunit of the transcription factor HIF-1, dampening its degradation 
[59]. The main cellular responses between cobalt and low oxygen-induced hypoxia have been 
reported to be significantly similar [60]. HIF-1 upregulation takes place strictly during hypoxia to 
activate selective response genes [61–64]. Interestingly, a cell-type-specific role has been suggested 
for HIF-1, whose upregulation in glial cells appears to trigger detrimental effects [65–69]. In 
agreement, in our model, nuclear HIF-1 was highly expressed in microglia following CoCl2 exposure, 
and microglial viability was significantly reduced. Previous in vitro studies have shown microglial 
cell death in CoCl2-induced hypoxic conditions [70,71]. In line with this negative role for HIF-1, its 
myeloid-specific knock-out in mice has been shown to reduce neuronal and microglial death 
following hypoxia, lowering inflammation, and improving behavioral recovery [72]. Likewise, the 
knockdown of HIF-1 was sufficient to elicit an anti-inflammatory effect in BV2 cells exposed to CoCl2 
[72].  

Melatonin was directly protective against microglial damage, and this effect proved to be 
dependent on SIRT1 and its downstream AMPK pathway [73–75], as shown by the use of selective 
pharmacological inhibitors. Interestingly, we did not detect any variation in SIRT1 levels, but rather 
found a shift between its cytoplasmic or nuclear localization in different conditions. While the 
detrimental effects exercised by hypoxia coincided with a cytoplasmic localization, melatonin 
promoted SIRT1 presence in the nucleus, both under basal and hypoxic conditions. Hence, the 
involvement of SIRT1 in our conditions is supported by its activation state, as here determined by 
analysis of its localization, together with the effects of pharmacological inhibition. Consistent with 
this notion, the subcellular localization of SIRT1 actually accounts for its differential actions: in 
particular, nuclear SIRT1 is endowed with protective anti-inflammatory action [76], while cytoplasm-
localized SIRT1 was shown to enhance apoptosis in different cancer cell lines [77,78]. Despite 
previous reports indicating that SIRT1 levels declined following in vivo hypoxia and were restored 
by melatonin, this was observed selectively in neurons [21,79,80]. 

In order to determine if improvement of microglial survival induced by melatonin/SIRT1 was 
coupled with a direct action on the microglial inflammatory phenotype, we analyzed the effects of 
treatment on expression/localization of transcription factors HIF-1α and NF-kB. As previously 
described for HIF-1, NF-kB was also selectively detected in the nuclei in hypoxic conditions, 
consistent with its activation and polarization of microglia to sustain an incipient inflammatory 
reaction [81]. It is important to consider that both HIF-1 [82] and NF-kB [83] are direct targets of 
SIRT1, which keeps them inactivated by deacetylation. The antagonistic cross-talk between SIRT1 
and both NF-kB and HIF-1 has been demonstrated to play a role in inflammation and energy 
metabolism; perturbations in this signaling can lead to chronic inflammation [84]. In light of this, the 
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opposite compartmentalization we found for HIF-1 and NF-kB on one side and SIRT1, on the other, 
is perfectly in line with their predicted state of activation and downstream effects.  

In order to further assess the role of microglia as a target of melatonin action, we extended our 
investigation to an in vivo model of hypoxia. The permanent ligation of the common carotid artery 
represents a validated and widely used model of perinatal hypoxia. Postnatal 7-day rats were chosen 
since, at this time, the developmental stage is histologically similar to that of a 32- to 34-week 
gestation human fetus or newborn infant [85]. Aiming to analyze the effects of melatonin early during 
the development of cell damage, we chose a 24 h time-point previously shown to correspond to the 
initial phases of microglial activation, preceding full neuronal damage [86]. Among the different 
areas examined for a microglial response, only in the CA1 area of the hippocampus, we detected an 
increase in the number of microglia, an effect that, however, was not modified by melatonin. Iba1-
positive cells of the hippocampus in our conditions did not show the typical amoeboid phenotype of 
activated microglia, but rather displayed long thin processes and did not express detectable levels of 
SIRT1. Modulation of hippocampal SIRT1 by melatonin has been previously described, but it was 
confined to the neuronal cell population [79]. On the contrary, intense staining for SIRT1 was evident 
in the population of amoeboid microglia of CC, characterized by round cell bodies devoid of 
ramifications. Even more remarkably, the enzyme was nuclear in melatonin-treated, but not in 
hypoxic animals. Amoeboid microglia of the CC have been previously described as a transient 
population of active microglia physiologically involved in the early developmental stages of 
periventricular white matter [87]. Our finding in the model of hypoxia appears even more compelling 
in light of the high vulnerability to hypoxic injury described, especially for this area, in the newborn 
[7,88]. Amoeboid microglia, in particular, has in fact been shown to be implicated in the early (present 
at 3 h following injury) inflammatory response induced by hypoxia in this area of the neonatal brain, 
leading to periventricular white matter and neuronal damage as wells as disruption of the immature 
blood-brain-barrier [88–91]. On these bases, we focused our attention on this microglial population 
to confirm the ability of melatonin to affect the inflammatory response as observed in the in vitro 
model. Accordingly, the prevalently nuclear localization of NF-kB in the hypoxic group was 
indicative of a state of inflammation, a condition that was counteracted by melatonin. Our data are 
in agreement with the suggested antagonistic crosstalk between NF-kB and SIRT1 [84] and suggest 
that the fine balance between the two factors may mediate the response of CC amoeboid microglia to 
melatonin to contrast the hypoxia-induced inflammatory phenotype. In line with this, recent 
evidence from a model of perinatal hypoxia suggested that microglial HIF-1, through miRNA-210, 
targets SIRT1, reducing NF-kB deacetylation, and rescuing its inflammatory activity [92]. 

5. Conclusions 

In conclusion, we have shown in vitro that microglial SIRT1 plays a major role in response to 
melatonin following hypoxic injury and appears able to dampen the neuroinflammatory event. In 
vivo, at the early time point examined, this occured in a specific microglia subpopulation localized 
in the CC that is selectively vulnerable to hypoxia early during brain development. These findings 
overall confirm microglia as an additional target for the action of melatonin in hypoxia with a 
mechanism involving SIRT1. 
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