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1 Executive Summary 

This document contains validation information for the architecture that is described in the technical white 
paper WP-7267: Scalable AI Infrastructure. The design from that white paper was implemented by using 
the NetApp® AFF A800, an all-flash FAS system; NVIDIA® DGX-1™ servers; and Cisco® Nexus® 3232C 
100Gb Ethernet switches. We validated the operation and performance of this system by using industry-
standard benchmark tools, and, based on the validation testing results, this architecture delivers excellent 
training and inferencing performance. The results also demonstrate adequate storage headroom for 
supporting multiple DGX-1 servers. You can also easily and independently scale compute and storage 
resources from half-rack to multi-rack configurations with predictable performance to meet any machine 
learning workload requirement. 

2 Program Summary 

2.1 NetApp Verified Architecture Program 

The NetApp Verified Architecture program offers customers a verified architecture for NetApp solutions. 

With a NetApp Verified Architecture, you get a NetApp solution architecture that: 

• Is thoroughly tested 

• Is prescriptive in nature 

• Minimizes deployment risks 

• Accelerates time to market 

This document is for NetApp and partner solutions engineers and customer strategic decision makers. 

The document describes the architecture design considerations that were used to determine the specific 

equipment, cabling, and configurations that are required in a particular environment. 

2.2 NetApp ONTAP AI Solution 

NetApp ONTAP® AI Converged Infrastructure, powered by NVIDIA DGX-1 servers and NetApp cloud-

connected storage system, is an architecture that was developed and verified by NetApp and NVIDIA. It 

provides your organization with a prescriptive architecture that:  

• Eliminates design complexities 

• Allows independent scaling of compute and storage 

• Enables you to start small and to scale seamlessly 

• Provides a range of storage options for various performance and cost points 

NetApp ONTAP AI integrates NVIDIA DGX-1 servers, NVIDIA Tesla® V100 graphic processing units 

(GPUs), and a NetApp AFF A800 system with state-of-the-art networking. NetApp ONTAP AI simplifies 

artificial intelligence (AI) deployments by eliminating design complexity and guesswork. Your enterprise 

can start small and grow non-disruptively while intelligently managing data from the edge to the core to 

the cloud and back. 

Figure 1 shows the scalability of the NetApp ONTAP AI solution. The AFF A800 system has been verified 

with four DGX-1 servers and has demonstrated sufficient performance headroom to support five or more 

DGX-1 servers without impacting storage throughput or latency. Furthermore, by adding more network 

switches and storage controller pairs to the ONTAP cluster, the solution can scale to multiple racks to 

deliver extremely high throughput, accelerating training and inferencing. This approach offers the 

flexibility to alter the ratios of compute to storage independently based on the size of the data lake, the 

deep learning (DL) models that are used, and the required performance metrics. 

 

https://www.netapp.com/us/media/wp-7267.pdf
https://www.netapp.com/us/products/storage-systems/all-flash-array/aff-a-series.aspx
https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html
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Figure 1) NetApp ONTAP AI solution rack-scale architecture. 

 

The number of DGX-1 servers and AFF systems per rack depends on the power and cooling 

specifications of the rack in use. Final placement of the systems is subject to computational fluid 

dynamics analysis, airflow management, and data center design. 

3 Deep Learning Data Pipeline 

DL is the engine that enables you to detect fraud, to improve customer relationships, to optimize your 

supply chain, and to deliver innovative products and services in an increasingly competitive marketplace. 

The performance and accuracy of DL models are significantly improved by increasing the size and 

complexity of the neural network as well as the amount and quality of data that is used to train the 

models.  

Given the massive data sets, it is critical to architect an infrastructure that gives you the flexibility to 

deploy across environments. At a high level, an end-to-end DL deployment consists of three stages 

through which the data travels: the edge (data ingest), the core (training clusters and a data lake), and the 

cloud (archive, tiering, and dev/test). This is very typical in applications such as the Internet of Things 

(IoT) for which data spans all three realms of the data pipeline. 

Figure 2) Edge to core to cloud data pipeline. 

 

Figure 2 presents an overview of the components in each of the three realms: 
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• Data ingest. Data ingestion usually occurs at the edge by, for example, capturing data streaming 
from autonomous cars or point-of-sale (POS) devices. Depending on the use case, an IT 
infrastructure might be needed at or near the ingestion point. For instance, a retailer might need a 
small footprint in each store that consolidates data from multiple devices. 

• Data prep. Preprocessing is necessary to normalize and to cleanse the data before training. 
Preprocessing takes place in a data lake, possibly in the cloud, in the form of an Amazon S3 tier or in 
on-premises storage systems such as a file store or an object store. 

• Training. For the critical training phase of DL, data is typically copied from the data lake into the 
training cluster at regular intervals. The servers that are used in this phase use GPUs to parallelize 
computations, creating a tremendous appetite for data. Meeting the raw I/O bandwidth needs is 
crucial for maintaining high GPU utilizations. 

• Inference. The trained models are tested and deployed into production. Alternatively, they could be 
fed back to the data lake for further adjustments of input weights or in IoT applications the models 
could be deployed to the smart edge devices. 

• Archive, tiering. Cold data from past iterations might be saved indefinitely. Many AI teams prefer to 
archive cold data to object storage in either a private or a public cloud. 

Depending on the application, DL models work with large amounts of different types of data (both 

structured and unstructured). This difference imposes a varied set of requirements on the underlying 

storage system, both in terms of size of the data that is being stored and the number of files in the 

dataset. 

Some of the high-level storage requirements include: 

• The ability to store and to retrieve millions of files concurrently 

• Storage and retrieval of diverse data objects such as images, audio, video, and time-series data 

• Delivery of high parallel performance at low latencies to meet the GPU processing speeds 

• Seamless data management and data services that span the edge, the core, and the cloud 

Combined with superior cloud integration and the software-defined capabilities of NetApp ONTAP, AFF 

systems support a full range of data pipelines that spans the edge, the core, and the cloud for DL. This 

document focuses on solutions for the training and inference components of the data pipeline. 

4 Solution Overview 

DL systems leverage algorithms that are computationally intensive and that are uniquely suited to the 

architecture of NVIDIA GPUs. Computations that are performed in DL algorithms involve an immense 

volume of matrix multiplications running in parallel. The highly parallelized architecture of modern GPUs 

makes them substantially more efficient than general-purpose central processing units (CPUs) for 

applications such as DL, for which data processing is performed in parallel. Advances in individual and in 

clustered NVIDIA GPU computing architectures that leverage the DGX-1 server have made them the 

preferred platform for workloads such as high-performance computing (HPC), DL, and analytics. 

Providing maximized performance in these environments requires a supporting infrastructure that can 

keep NVIDIA GPUs fed with data. Dataset access must therefore be provided at ultra-low latencies with 

high bandwidth. 

4.1 Solution Technology 

This solution was implemented with one NetApp AFF A800 system, four NVIDIA DGX-1 servers, and two 

Cisco Nexus 3232C 100Gb Ethernet switches. Each DGX-1 server is connected to the Nexus switches 

with four 100GbE connections that are used for inter-GPU communications by using remote direct 

memory access (RDMA) over Converged Ethernet (RoCE). Traditional IP communications for NFS 

storage access also occur on these links. Each storage controller is connected to the network switches by 

using four 100GbE links. 



7 NetApp Verified Architecture – NetApp ONTAP AI © 2018 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved. 

 

Traditional HPC infrastructures use RDMA over InfiniBand (IB) for internode connectivity because of its 

high-bandwidth and low-latency features. As Ethernet technology reaches performance levels that were 

previously possible only with IB, RoCE enables easier adoption of these capabilities because Ethernet 

technologies are well understood and are widely deployed in every enterprise data center. Figure 3 

shows the basic solution architecture. 

Figure 3) NetApp ONTAP AI solution verified architecture. 

 

4.2 NVIDIA DGX-1 Servers 

The DGX-1 server is a fully integrated, turnkey hardware and software system that is purpose-built for DL 

workflows. Each DGX-1 server is powered by eight Tesla V100 GPUs that are configured in a hybrid 

cube-mesh topology that uses NVIDIA NVLink™ technology, which provides an ultra-high bandwidth, 

low-latency fabric for inter-GPU communication. This topology is essential for multi-GPU training, 

eliminating the bottleneck that is associated with PCIe-based interconnects that cannot deliver linearity of 

performance as GPU count increases. The DGX-1 server is also equipped with high-bandwidth, low-

latency network interconnects for multi-node clustering over RDMA-capable fabrics. 

The DGX-1 is powered by NVIDIA GPU Cloud (NGC), NVIDIA’s cloud-based container registry for GPU-

accelerated software. NGC provides containers for today’s most popular DL frameworks such as Caffe2, 

TensorFlow, PyTorch, MXNet, and TensorRT, which are optimized for NVIDIA GPUs. The containers 

integrate the framework or application, necessary drivers, libraries, and communications primitives, and 

they are optimized across the stack by NVIDIA for maximum GPU-accelerated performance. NGC 

containers incorporate the NVIDIA CUDA Toolkit, which provides the NVIDIA CUDA Basic Linear Algebra 

Subroutines Library (cuBLAS), the NVIDIA CUDA Deep Neural Network Library (cuDNN), and much 

more. The NGC containers also include the NVIDIA Collective Communications Library (NCCL) for multi-

GPU and multi-node collective communication primitives, enabling topology-awareness for DL training. 

NCCL enables communication between GPUs inside a single DGX-1 and across multiple DGX-1 servers. 
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4.3 NetApp AFF Systems 

NetApp AFF is a state-of-the-art storage system that enable you to meet enterprise storage requirements 

with the industry-leading performance, superior flexibility, cloud integration, and best-in-class data 

management. Designed specifically for flash, AFF systems help accelerate, manage, and protect 

business-critical data. 

The NetApp AFF A800 system is the industry’s first end-to-end NVMe solution. For NAS workloads, a 

single AFF A800 system supports a throughput of 25GB/s for sequential reads and 1 million IOPS for 

small random reads at sub-500µs latencies. AFF A800 systems support the following features: 

• A massive throughput of up to 300GB/s and 11.4 million IOPS in a 24-node cluster 

• 100Gb Ethernet together with 32Gb FC connectivity 

• 30TB solid-state drives (SSDs) with multi-stream write (MSW) 

• High density with 2PB in a 2U drive shelf 

• Scaling from 364TB (2 nodes) to 74PB (24 nodes) 

• NetApp ONTAP 9.4, with a complete suite of data protection and replication features for industry-
leading data management 

The next best storage system in terms of performance is the AFF A700s system, supporting a throughput 

of 18GB/s for NAS workloads and 40GbE transport. AFF A300 and AFF A220 systems offer sufficient 

performance at lower cost points. 

4.4 NetApp ONTAP 9 

ONTAP 9 is the latest generation of storage management software from NetApp that enables you to 

modernize your infrastructure and transition to a cloud-ready data center. Leveraging industry-leading 

data management capabilities, ONTAP enables you to manage and to protect data with a single set of 

tools regardless of where the data resides. Data can also be moved freely to wherever it’s needed, either 

the edge, the core, or the cloud. ONTAP 9 includes numerous features that simplify data management, 

accelerate and protect critical data, and future-proof infrastructure across hybrid cloud architectures. 

Simplify Data Management 

Data management is critical to enterprise IT operations so that appropriate resources are used for 

applications and for data sets. ONTAP includes the following features to streamline and simplify 

operations and to reduce the TCO: 

• Inline data compaction and expanded deduplication. Data compaction reduces wasted space 
inside storage blocks, and deduplication significantly increases effective capacity. 

• Minimum, maximum, and adaptive quality of service (QoS). Granular QoS controls, help you 
maintain performance levels for critical applications in highly shared environments. 

• ONTAP FabricPool. This feature provides automatic tiering of cold data to public and private cloud 
storage options including Amazon Web Services (AWS), Azure, and the NetApp StorageGRID® 
solution. 

Accelerate and Protect Data 

ONTAP delivers superior levels of performance and data protection and extends these capabilities with: 

• Performance and lower latency. ONTAP offers the highest possible throughput at the lowest 
possible latency. 

• NetApp ONTAP FlexGroup. A FlexGroup volume is a high-performance data container that can 
scale linearly up to 20PB and 400 billion files, providing a single name space that simplifies data 
management. 
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• Data protection. ONTAP provides built-in data protection capabilities with common management 
across all platforms. 

• NetApp Volume Encryption. ONTAP offers native volume-level encryption with both onboard and 
external key management support. 

Future-Proof Infrastructure 

ONTAP 9 helps you meet demanding and constantly changing business needs: 

• Seamless scaling and non-disruptive operations. ONTAP supports non-disruptive addition of 
capacity to existing controllers as well as scale-out clusters. You can upgrade to the latest 
technologies such as NVMe and 32Gb FC without costly data migrations or outages. 

• Cloud connection. ONTAP is the most cloud-connected storage management software, with options 
for software-defined storage (ONTAP Select) and cloud-native instances (NetApp Cloud Volumes 
Service) in all public clouds.  

• Integration with emerging applications. ONTAP provides enterprise-grade data services for next-
generation platforms and applications such as OpenStack, Hadoop, and MongoDB by using the same 
infrastructure that supports existing enterprise apps. 

4.5 NetApp FlexGroup Volumes 

The training dataset is usually a collection of a large number of files (potentially billions). Files can include 

text, audio, video, and other forms of unstructured data that must be stored and processed to be read in 

parallel. The storage system must store a large number of small files (potentially billions) and must read 

those files in parallel for sequential and random I/O. 

A FlexGroup volume (Figure 4) is a single namespace that is made up of multiple constituent member 

volumes and that is managed and acts like a NetApp FlexVol® volume to storage administrators. Files in a 

FlexGroup volume are allocated to individual member volumes and are not striped across volumes or 

nodes. They enable the following capabilities: 

• FlexGroup volumes enable massive capacity (multiple petabytes) and predictable low latency for 
high-metadata workloads. 

• They support hundreds of billions of files in the same namespace. 

• They support parallelized operations in NAS workloads across CPUs, nodes, aggregates, and 
constituent FlexVol volumes. 

Figure 4) NetApp FlexGroup volumes. 
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4.6 NVIDIA GPU Cloud and Trident 

NVIDIA GPU Cloud (NGC) provides a catalog of fully integrated and performance engineered Docker 

images for DL that take full advantage of NVIDIA GPUs. These images include all necessary 

dependencies such as the NVIDIA CUDA Toolkit and NVIDIA DL libraries. These images are tested, 

tuned, and certified by NVIDIA for use on NVIDIA DGX-1 servers. Further, to enable portability of images 

that leverage GPUs, NVIDIA developed NVIDIA Container Runtime for Docker, which enables you to 

mount the user mode components of NVIDIA drivers and GPUs into the Docker container at launch. 

Trident, from NetApp, is an open-source dynamic storage provisioner for Docker and Kubernetes. 

Combined with NGC and popular orchestrators such as Kubernetes or Docker Swarm, Trident enables 

you to seamlessly deploy your DL NGC container images onto NetApp storage, which provides an 

enterprise-grade experience for your AI container deployments. These deployments include automated 

orchestration, cloning for testing and development, upgraded testing that uses cloning, protection and 

compliance copies, and many more data management use cases for the NGC AI and DL container 

images. 

4.7 Cisco Nexus 3232C Network Switches 

The Cisco Nexus 3232C switch (Figure 5) is a low-latency, dense, high-performance, power-efficient 

100Gb/s switch that is designed for the data center. This compact, 1 rack unit (1RU) model offers wire-

rate layer 2 and layer 3 switching on all ports with a latency of 450ns. This switch is a member of the 

Cisco Nexus 3200 platform and runs the industry-leading Cisco NX-OS software operating system, 

providing you with comprehensive features and functions that are widely deployed. The Cisco Nexus 

3232C is a Quad Small Form-Factor Pluggable (QSFP) switch with 32 QSFP28 ports. Each QSFP28 port 

can operate at 10, 25, 40, 50, and 100Gb/s, up to a maximum of 128 ports of 25Gb/s. 

Figure 5) Cisco Nexus switches with NX-OS support for CEE standards and RoCE v1 and v2. 

 

This solution as tested consumes only half of the available ports on each network switch. Each switch 

could support up to eight DGX-1 servers with additional storage access ports to provide more GPU 

power. For even larger implementations, the Cisco Nexus 7000 supports up to 192 ports of 100GbE per 

switch. Alternatively, a leaf-spine topology could be implemented with multiple pairs of Nexus 3000 

switches that are connected into a central spine switch.  

4.8 RDMA over Converged Ethernet  

Direct memory access (DMA) enables hardware subsystems such as disk drive controllers, sound cards, 

graphics cards, and network cards to access system memory to perform data read/write without using 

CPU processing cycles. RDMA extends that capability by allowing network adapters to do a server-to-

server data transfer between application memory by using zero-copy functionality without any OS or 

device driver involvement. This approach dramatically reduces CPU overhead and latency by bypassing 

the kernel for read/write and send/receive operations.  

RoCE is the most widely deployed implementation of RDMA over Ethernet, and it leverages new 

Converged Enhanced Ethernet (CEE) standards. It is now available as a standard feature in many high-

end network adapters, converged network adapters, and network switches. Traditional Ethernet uses a 

best-effort delivery mechanism for network traffic and is not suitable for the low latency and the high 

bandwidth that are required for communications between GPU nodes. CEE enables a lossless physical-

layer networking medium and the ability to optionally allocate bandwidth to any specific traffic flow on the 

network.  

 



11 NetApp Verified Architecture – NetApp ONTAP AI © 2018 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved. 

 

For guaranteed lossless, in-order delivery of Ethernet packets, CEE networks use Priority Flow Control 

(PFC) and Enhanced Transmission Selection (ETS). PFC enables the sending of pause frames for each 

specific Class of Service (CoS), which allows you to limit specific network traffic while allowing other traffic 

to flow freely. ETS allows specific bandwidth allocation for each CoS to provide even more granular 

control over network utilization.  

The ability to prioritize RoCE over all other traffic allows the 100GbE links to be used for both RoCE and 

traditional IP traffic, such as the NFS storage access traffic that is demonstrated in this solution.  

5 Technology Requirements 

This section covers the hardware and software that was used in the validation of this solution. All the 

testing that is documented in section 7, Solution Verification, was performed with the hardware and the 

software are indicated here.  

Note: The configuration that is verified in this reference architecture is based on lab equipment availability 

and not on the requirements or the limitations of the hardware that was tested.  

5.1 Hardware Requirements 

Table 1 lists the hardware components that were used to validate this solution. The hardware 

components that you use in any particular implementation of this solution might vary based on your 

requirements. 

Table 1) Hardware requirements. 

Hardware Quantity 

NVIDIA DGX-1 GPU servers 4 

NetApp AFF A800 system 
1 high-availability (HA) pair, includes 48x 1.92TB 
NVMe SSDs 

Cisco Nexus 3232C network switches 2 

5.2 Software Requirements 

Table 2 lists the software components that are required to implement the solution. The software 

components that you use in any particular implementation of the solution might vary based on your 

requirements. 

Table 2) Software requirements. 

Software Version 

NetApp ONTAP  9.4 

Cisco NX-OS switch firmware 7.0(3)I6(1) 

NVIDIA DGX-1 operating system Ubuntu 16.04 LTS 

Docker container platform 18.03.1-ce [9ee9f40] 

Container version netapp_1.7.0.2 based on nvcr.io/nvidia/tensorflow:18.04-py2 

Machine learning framework TensorFlow 1.7.0 

Horovod 0.11.3 
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Software Version 

OpenMPI 3.1.0  

Benchmark software TensorFlow benchmarks [1b1ca8a] 

6 Solution Architecture 

This architecture has been verified to meet the requirements for running DL workloads. This verification 

enables data scientists to deploy DL frameworks and applications on a pre-validated infrastructure, 

thereby helping to eliminate risks and allowing businesses to focus on gaining valuable insights from their 

data. This architecture can also deliver exceptional storage performance for other HPC workloads without 

any modification or tuning of the infrastructure.  

6.1 Network Topology and Switch Configuration 

For this solution, RoCE is used in place of IB to provide the high-bandwidth, low-latency connectivity that 

is required for communication between DGX-1 servers. Cisco Nexus switches support RoCE by 

implementing PFC, which allows users to prioritize RoCE traffic over traditional IP traffic on a shared link 

and allows the 100GbE links to be used for both RoCE and IP at the same time.  

This architecture uses a pair of Cisco Nexus 3232C 100Gb Ethernet switches for the primary inter-cluster 

and storage access network. These switches are connected to each other with four 100Gb network ports 

that are configured as a standard port channel. This Inter Switch Link (ISL) port channel allows traffic to 

flow between the switches during host or storage system link failures. Each host is connected to the 

Nexus switches with a pair of active-passive bonds, and, to provide link-layer redundancy, each storage 

controller is connected to each Nexus switch with a two-port LACP port channel. Figure 6 shows the 

network switch-port configuration. 

Figure 6) Network switch port configuration. 
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Multiple virtual LANs (VLANs) were provisioned to support both RoCE and NFS storage traffic. Four 

VLANs are dedicated to RoCE traffic, and two VLANs are dedicated to NFS storage traffic. Four discrete 

VLANs and IP ranges are used to provide symmetrical routing for each RoCE connection, and the 

NVIDIA software stack manages these connections for bandwidth aggregation and fault tolerance. For 

storage access, this solution uses NFSv3, which does not support multipath access, so two VLANs are 

used to enable multiple dedicated NFS mounts. This approach does not provide any additional fault 

tolerance but does enable multiple links to be used to increase available bandwidth. PFC is configured on 

each switch to assign all four RoCE VLANs to the priority class, and the NFS VLANs are assigned to the 

default best-effort class. All VLANs are configured for jumbo frames with a maximum transmission unit 

(MTU) size of 9000. 

The switch-ports for DGX-1 servers are configured as trunk ports, and all RoCE and NFS VLANs are 

permitted. The port-channels that are configured for the storage system controllers are also trunk ports, 

but only the NFS VLANs are permitted. Figure 7 shows the VLAN connectivity for the DGX-1 server and 

storage system ports. 

Figure 7) VLAN connectivity for DGX-1 and storage system ports. 

 

To provide priority service for RoCE traffic, the host network adapter assigns a CoS value of 4 to traffic on 

each RoCE VLAN. The switch is configured with a QoS policy that provides no-drop service to traffic with 

this CoS value. NFS traffic is assigned the default CoS value of 0, which falls into the default QoS policy 

on the switch and provides best-effort service.  

PFC is then enabled on each DGX-1 port, which enables the switch port to send pause frames for 

specific classes of service to eliminate congestion at the switch. By using ETS to allocate 95% of the 

bandwidth to RoCE traffic in the event of congestion, this configuration allows dynamic resource 

allocation between RoCE and NFS traffic while providing priority to node-to-node communication. You 

can also modify the bandwidth allocation dynamically to optimize for workloads that require higher 

storage performance and less internode communication. 
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6.2 Storage System Configuration 

To support the storage network requirements of any potential workload on this architecture, each storage 

controller is provisioned with four 100GbE ports in addition to the onboard ports that are required for 

storage cluster interconnection. Figure 8 shows the storage system configuration. Each controller is 

configured with a two-port LACP interface group (ifgrp in Figure 8) to each switch. These interface groups 

provide up to 200Gb/s of resilient connectivity to each switch for data access. Two VLANs are 

provisioned for NFS storage access, and both storage VLANs are trunked from the switches to each of 

these interface groups. This configuration allows concurrent access from each host to the data through 

multiple interfaces, which improves the potential bandwidth that is available to each host. 

All data access from the storage system is provided through NFS access from a storage virtual machine 

(SVM) that is dedicated to this workload. The SVM is configured with a total of four logical interfaces 

(LIFs) with two LIFs on each storage VLAN. Each interface group hosts a single LIF, resulting in one LIF 

per VLAN on each controller with a dedicated interface group for each VLAN. However, both VLANs are 

trunked to both interface groups on each controller. This configuration provides the means for each LIF to 

fail over to another interface group on the same controller so that both controllers stay active in the event 

of a network failure.  

Figure 8) Storage system configuration. 

 

For logical storage provisioning, the solution uses a FlexGroup volume to provide a single pool of storage 

that is distributed across the nodes in the storage cluster. Each controller hosts an aggregate of 46 disk 

partitions, with both controllers sharing every disk. When the FlexGroup is deployed on the data SVM, a 

number of FlexVol volumes are provisioned on each aggregate and then are combined into the 

FlexGroup. This approach allows the storage system to provide a single pool of storage that can scale up 

to the maximum capacity of the array and provide exceptional performance by leveraging all the SSDs in 

the array concurrently. NFS clients can access the FlexGroup as a single mount point through any of the 
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LIFs that are provisioned for the SVM. You can increase capacity and client access bandwidth simply by 

adding more nodes to the storage cluster. 

6.3 Host Configuration 

For network connectivity, each DGX-1 is provisioned with four Mellanox ConnectX4 single-port network 

interface cards. These cards operate at up to 100Gb Ethernet speeds and support RoCE, providing a 

lower-cost alternative to IB for cluster interconnect applications. Each 100Gb port is configured as a trunk 

port on the appropriate switch, with four RoCE and two NFS VLANs allowed on each. Figure 9 shows the 

network port and VLAN configuration of the DGX-1 hosts. 

Figure 9) Network port and VLAN configuration of the DGX-1 hosts. 

 

For RoCE connectivity, each physical port hosts a VLAN interface and IP address on one of the four 

RoCE VLANs. The Mellanox drivers are configured to apply a network CoS value of 4 to each of the 

RoCE VLANs, and PFC is configured on the switches to guarantee priority lossless service to the RoCE 

class. RoCE does not support aggregating multiple links into a single logical connection, but the NVIDIA 

NCCL communication software can use multiple links for bandwidth aggregation and fault tolerance. 

For NFS storage access, two active-passive bonds are created by using a link to each switch. Each bond 

hosts a VLAN interface and IP address on one of the two NFS VLANs, and each bond’s active port is 

connected to a different switch. This configuration provides up to 100Gb of bandwidth in each NFS VLAN 

and provides redundancy in the event of any host link or switch failure scenario. To provide optimal 

performance for the RoCE connections, all NFS traffic is assigned to the default best-effort QoS class. All 

physical interfaces and the bond interfaces are configured with an MTU of 9000. 

To increase data access performance, multiple NFSv3 mounts are made from the DGX-1 server to the 

storage system. Each DGX-1 server is configured with two NFS VLANs, with an IP interface on each 

VLAN. The FlexGroup volume on the AFF A800 system is mounted on each of these VLANs on each 

DGX-1, providing completely independent connections from the server to the storage system. Although a 

single NFS mount is capable of delivering the performance that is required for this workload, multiple 

mount points are defined to enable the use of additional storage access bandwidth for other workloads 

that are more storage-intensive. 
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7 Solution Verification 

This section describes the testing that we performed to validate the operation and performance of this 
solution. We performed all the tests that are described in this section with the specific equipment and 
software listed in section 5, Technology Requirements. 

7.1 Validation Test Plan 

This solution was verified by using standard benchmarks with a number of compute configurations to 

demonstrate the scalability of the architecture. The ImageNet dataset was hosted on the AFF A800 

system by using a single FlexGroup volume that was accessed with NFSv3 by up to four DGX-1 servers, 

as recommended by NVIDIA for external storage access. TensorFlow was used as the machine learning 

framework for all the models that were tested, and compute and storage performance metrics were 

captured for each test case. Highlights of that data are presented in section 7.2, Validation Test Results. 

The following convolutional neural network (CNN) models with varying degrees of compute and storage 
complexities were used to demonstrate training rates: 

• ResNet-152 is generally considered to be the most accurate training model. 

• ResNet-50 delivers better accuracy than AlexNet with faster processing time. 

• VGG16 produces the highest inter-GPU communication. 

• Inception-v3 is another common TensorFlow model. 

Each of these models was tested with various hardware and software configurations to study the effects 

of each option on performance: 

• We tested each model with both synthetic data and the ImageNet reference dataset. Further testing 
with additional GPUs both internal to the DGX-1 and across multiple DGX-1 servers, assisted in the 
evaluation of scalability for the compute cluster and the evaluation of storage access performance. 

• We used ImageNet data with distortion disabled to reduce the overhead of CPU processing before 
copying data into GPU memory. 

• We tested each model by using Tensor cores and CUDA cores to demonstrate the performance 
improvements that the Tensor cores provide. 

• Increasing the GPU performance also had the effect of increasing storage access requirements and 
demonstrated the AFF A800 system’s ability to easily support those requirements. 

• We tested each DL model with various batch sizes. Increasing the batch size has several effects on 
the system that ultimately result in higher overall training rates, lower inter-GPU communication 
requirements, and higher storage bandwidth requirements. We tested the following batch sizes with 
each model: 

− 64, 128, and 256 for ResNet-50 

− 64 and 128 for all other models 

• Each model was tested with one, two, and four DGX-1 servers to demonstrate the scalability of each 
model across multiple GPUs that use RoCE as the interconnect (through Horovod). 

• Inference was run by using all the models with the largest batch sizes (256 for ResNet-50 and 128 for 
all other models), with 32 GPUs (Tensor cores and CUDA cores), and with ImageNet dataset. 

• All performance metrics were gathered after at least two epochs. We observed slightly better 
performance results when we ran training over multiple epochs. Each test was run five times and the 
mean of the performance metrics that we observed are reported. 

7.2 Validation Test Results 

As described previously, we conducted various tests to assess the general operation and performance of 

this solution. This section contains highlights of the compute and storage performance data that was 
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collected during those tests. Complete detailed test results are in the appendix. Note the following details 

about the data that is presented in the next subsections of this report: 

• Model training performance is measured as images per second. 

• Storage performance is measured by using throughput (MB/s) and latency (µs). The storage system 
CPU was also captured to evaluate the remaining performance capacity on the storage system. 

• Each system was tested with multiple batch sizes. Larger batch sizes increase the overall training 
throughput. Only the largest batch size that was tested for each model is shown here. Data for each 
batch size that was tested is available in the appendix: 

− ResNet-50 tests used a batch size of 256. 

− ResNet-152, Inception-v3, and VGG16 tests used a batch size of 128. 

Overall Training Throughput 

Figure 10 shows the maximum number of training images per second that was achieved with each of the 

models that were tested by using Tensor cores for maximum performance. Figure 10 compares the 

training throughput that was achieved with 32 GPUs by using ImageNet data and synthetic data for 

baseline comparison. It also shows the theoretical maximum that is achievable, in which all GPUs train 

synthetic data independently without updating parameters with each other. As shown in Figure 10, our 

achieved throughput for ImageNet data is very close to the throughput for synthetic data.  

Figure 10) Training throughput for all models. 

 

GPU Workload Performance 

The next set of data demonstrates the ability of the storage system to meet the requirements of the DGX-

1 server under a full load. Figure 11 shows the GPU utilization of the DGX-1 servers and the storage 

bandwidth that was generated when running each model by using 32 GPUs. As seen in the graph, the 

storage bandwidth starts off very high as the initial data is read from storage into the TensorFlow pipeline 

cache, and then it drops gradually as a larger portion of the dataset becomes resident in DGX-1 local 

memory over time.  

After all the data is in the local memory, storage access drops to almost nothing. The DGX-1 GPUs begin 

processing data almost immediately, and GPU utilization remains consistent throughout the test run. This 

graph shows the results for the VGG16 model with a batch size of 128, which produced the highest level 

of GPU utilization in our testing. Graphs for the other models are available in the Appendix. Note that the 

GPU utilization scale is the sum utilization of all GPUs, so, in this case with 32 GPUs tested, the 

maximum possible utilization is 3200%.  
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Figure 11) GPU utilization and storage bandwidth (VGG16). 

 

As Figure 11 shows, the GPU utilization remains above 95% for all 32 GPUs and also remains consistent 

regardless of how much data is coming from the storage system. The storage system delivers an initial 

5GB/s of data, then drops from around 2GB/s to almost nothing over the remainder of the training epoch. 

This result demonstrates that storage access is not a bottleneck to GPU performance with this workload. 

With a larger data set that exceeds local memory capacity, storage access performance would remain at 

the steady-state throughput rate until later in the training epoch. In addition, Figure 11 compares the GPU 

utilization as a function of storage bandwidth. It does not capture the time that is required for the entire 

training phase because the storage bandwidth gradually drops close to zero as the training phase 

progresses. 

Inference with GPUs 

Inferencing is the process of deploying the DL model to assess a new set of objects and making 

predictions with similar predictive accuracies as observed during the training phases. In an application 

with an image data set, the goal of inferencing is to classify the input images and to respond to the 

requesters as quickly as possible. In addition to achieving high throughput, minimizing latency becomes 

important. 

NetApp ONTAP AI was used to demonstrate inferencing and to measure throughput metrics in this 

phase. Figure 12 shows the number of images that can be processed per second during inferencing. This 

test compares the throughput that was achieved with 32 GPUs that used ImageNet data on each of the 

models that were tested by using Tensor cores and CUDA cores. With the power of NetApp ONTAP AI, 

Tensor cores can be used to classify a significant number of images instantaneously. 
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Figure 12) Inference for all models (Tensor Cores and CUDA Cores). 

 

AFF A800 System Performance with AI Training Workloads 

Storage bandwidth, latency, and CPU headroom were captured to demonstrate the storage system 

performance with each of the tested models. Figure 13 through Figure 15 show the storage system 

metrics for each model when tested with real data. These storage-focused tests were performed with 

higher batch sizes to increase the storage workload and to demonstrate the worst-case scenario. 

Note that in each metric, the total workload that is generated by each model with 32 GPUs is well within 

the performance envelope of the AFF A800 system. To provide a frame of reference for the training 

workload, an artificial workload was generated by using flexible I/O (fio) with a 64K sequential read I/O 

profile. For the workload that was generated with fio, throughput peaked at over 15GB/s, read latency 

remained well below 1ms, and CPU utilization was slightly under 50%. To achieve the maximum possible 

throughput with the limited number of DGX-1 servers that were available, additional NFS mounts and 

multiple fio jobs were used on each server. 

Note: A NetApp AFF A800 HA-pair has been proven to support up to 25GB/s under 1ms latency for 
NAS workloads. 

Figure 13) Storage bandwidth for all models. 
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Figure 14) Storage latency for all models. 

 

Figure 15) Storage CPU utilization for all models. 

 

7.3 Solution Sizing Guidance 

This architecture is intended as a reference for customers and partners who would like to implement a 

high-performance computing (HPC) infrastructure with NVIDIA DGX-1 servers and a NetApp AFF system.  

As is demonstrated in this validation, the AFF A800 system easily supports the DL training workload that 

is generated by four DGX-1 servers, with approximately 70% headroom remaining on the HA pair. 

Therefore, the AFF A800 system can support additional DGX-1 servers. For even larger deployments with 

even higher storage performance requirements, additional AFF A800 systems can be added to the 

NetApp ONTAP cluster. ONTAP 9 supports up to 12 HA pairs (24 nodes) in a single cluster and, with the 

FlexGroup technology that is validated in this solution, can provide over 20PB in a single volume. The 

dataset that we used in this validation was relatively small. However, ONTAP 9 can scale to impressive 

capacity with linear performance scalability as each HA pair delivers performance comparable to the level 

that is verified in this document. 
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For smaller DGX-1 clusters, an AFF A220 or AFF A300 system provides sufficient performance at a lower 

price point. Because ONTAP 9 supports mixed-model clusters, you can start with a smaller initial footprint 

and add more or larger storage systems into the cluster as your capacity and performance requirements 

grow.  

From a network perspective, this architecture as verified consumes only 16 of the 32 available ports on 

each Nexus 3232C switch. Each switch can support up to eight DGX-1 servers with additional storage 

access ports to significantly increase compute power without additional networking. For larger 

implementations, the Cisco Nexus 7000 supports up to 192 wire-rate 100GbE ports per switch. 

Alternatively, you can implement a leaf-spine topology with multiple pairs of Nexus 3000 switches that are 

connected into a central spine switch. 

Based on the validation testing that was performed with this AI training workload, each DGX-1 requires 

roughly 2GB/s storage throughput. Given that the AFF A800 system has the proven capability of 25GB/s 

of throughput with a similar workload generated by other means, this architecture could support nine or 

more DGX-1 servers per AFF A800 HA pair.  

8 Conclusion 

The DGX-1 server is an extremely powerful DL platform that benefits from equally powerful storage and 

network infrastructure to deliver maximum value. By combining NetApp AFF systems with Cisco Nexus 

switches, you can implement this verified architecture at almost any scale that you need, from a single 

DGX-1 paired to an AFF A220 system up to potentially 96 DGX-1 servers on a 12-node AFF A800 

cluster. Combined with the superior cloud integration and software-defined capabilities of NetApp 

ONTAP, AFF enables a full range of data pipelines that spans the edge, the core, and the cloud for 

successful DL projects. 
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Where to Find Additional Information 

To learn more about the information that is described in this document, see the following resources: 

• NVIDIA DGX-1 servers 

− NVIDIA DGX-1 servers 
https://www.nvidia.com/en-us/data-center/dgx-1/ 

− NVIDIA Tesla V100 Tensor core GPU 
https://www.nvidia.com/en-us/data-center/tesla-v100/ 

− NVIDIA GPU Cloud 
https://www.nvidia.com/en-us/gpu-cloud/ 

• NetApp AFF systems 

− AFF datasheet 
https://www.netapp.com/us/media/ds-3582.pdf 

 

https://www.nvidia.com/en-us/data-center/dgx-1/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/gpu-cloud/
https://www.netapp.com/us/media/ds-3582.pdf
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− NetApp Flash Advantage for AFF 
https://www.netapp.com/us/media/ds-3733.pdf 

− ONTAP 9.x documentation 
http://mysupport.netapp.com/documentation/productlibrary/index.html?productID=62286 

− NetApp FlexGroup technical report 
https://www.netapp.com/us/media/tr-4557.pdf 

• NetApp Interoperability Matrix: 

− NetApp Interoperability Matrix Tool 
http://support.netapp.com/matrix 

• Cisco Nexus networking 

The following links provide more information about Cisco Nexus 3232C series switches: 

− Cisco Nexus 3232C series switches 
https://www.cisco.com/c/en/us/products/switches/nexus-3232c-switch/index.html 

− Cisco Nexus 3232C configuration guide 
https://www.cisco.com/c/en/us/support/switches/nexus-3000-series-switches/products-
installation-and-configuration-guides-list.html 

− Cisco Nexus 3232C command line reference 
https://www.cisco.com/c/en/us/support/switches/nexus-3000-series-switches/products-command-
reference-list.html 

• Machine learning framework: 

− TensorFlow: An Open-Source Machine Learning Framework for Everyone 
https://www.tensorflow.org/ 

− Horovod: Uber’s Open-Source Distributed Deep Learning Framework for TensorFlow 
https://eng.uber.com/horovod/ 

− Enabling GPUs in the Container Runtime Ecosystem 
https://devblogs.nvidia.com/gpu-containers-runtime/ 

• Dataset and benchmarks: 

− ImageNet 
http://www.image-net.org/ 

− TensorFlow benchmarks 
https://www.tensorflow.org/performance/benchmarks 
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Appendix 

This section contains additional results for the tests that were performed by using this architecture. 

Training Rates for Different Batch Sizes for Each Model 

Figure 16 shows a comparison of the various batch sizes for the different training models that used the 

following components: 

• Number of GPUs: 32 (4 DGX-1 servers) 

• Cores: Tensor cores 

• Batch sizes: 64,128, and 256 for ResNet-50; 64 and128 for other models 

Figure 16) Comparison of various batch sizes for training models. 

 

Conclusion: Training throughput performance increases as the batch size increases to 256 or 128. 

Comparison of GPU Scaling for Each Model 
Figure 17 shows the GPU scaling for the different training models that used the following components: 

• Number of GPUs: 8 (1 DGX-1 server), 16 (2 DGX-1 servers), and 32 (4 DGX-1 servers) 

• Cores: Tensor cores 

• Batch sizes: 256 for ResNet-50 and128 for other models 
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Figure 17) GPU scaling for various training models. 

 

 

Conclusion: Linear GPU scaling is observed across all the training models. 

Comparison of Tensor Cores and CUDA Cores 

Figure 18 shows a performance comparison between CUDA cores and Tensor cores that used the 

following components: 

• Number of GPUs: 32 (4 DGX-1 servers) 

• Cores: Tensor cores and CUDA cores 

• Batch sizes: 256 for ResNet-50 and128 for other models 

Figure 18) Performance comparison between CUDA cores and Tensor cores. 

 

Conclusion: Tensor cores yield better performance than CUDA cores do. 
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GPU Workload for All Models 

Figure 19 through Figure 21 show the GPU utilization and bandwidth for ResNet-50, ResNet-152, and 

Inception-v3, respectively, that used the following components: 

• Number of GPUs: 32 (4 DGX-1 servers) 

• Cores: Tensor cores 

• Batch sizes: 256 for ResNet-50 and128 for other models 

Figure 19) GPU utilization and storage bandwidth for ResNet-50. 

 

 

Figure 20 shows the GPU utilization and bandwidth for ResNet-152. 

Figure 20) GPU utilization and storage bandwidth for ResNet-152. 

 

 

 



26 NetApp Verified Architecture – NetApp ONTAP AI © 2018 NetApp, Inc. All rights reserved. © 2016 NetApp, Inc. All rights reserved. 

 

 

Figure 21 shows the GPU utilization and bandwidth for Inception-v3. 

Figure 21) GPU utilization and storage bandwidth for Inception-v3. 
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