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PREFACE

The pseudo-Anosov theory of taut foliations

The purpose of this book is to give an exposition of the so-called “pseudo-
Anosov” theory of foliations of 3-manifolds. This theory generalizes Thurston’s
theory of surface automorphisms, and reveals an intimate connection between
dynamics, geometry and topology in 3 dimensions. Some (but by no means
all) of the content of this theory can be found already in the literature, espe-
cially [236], [239], [82], [95], [173], [73], [75], [72], [31], [33], [35], [40] and [37],
although I hope my presentation and perspective offers something new, even
to the experts.

This book is not meant to be an introduction to either the theory of folia-
tions in general, nor to the geometry and topology of 3-manifolds. An excellent
reference for the first is [42] and [43]. Some relevant references for the second
are [127], [140], [230], and [216].

Spiral of ideas

One conventional school of mathematical education holds that children should
be exposed to the same material year after year, but that each time they return
they should be exposed to it at a “higher level”, with more nuance, and with
gradually more insight and perspective. The student progresses in an ascending
spiral, rising gradually but understanding what is important.

This book begins with the theory of surface bundles. The first chapter is both
an introduction to, and a rehearsal for the theory developed in the rest of the
book. In Thurston’s theory, this is a kind of branched linear algebra: train tracks
and measured foliations reduce automorphisms of surfaces to Perron-Frobenius
matrices and algebraic weights. The key to this approach is that the dynamics
is carried by Abelian groups and groupoids: train tracks with one dimensional
leaves carry transverse measures parameterized by manifold charts, and the dy-
namical system generated by a single pseudo-Anosov element can be diagonal-
ized near fixed points in these co-ordinate systems. In Nielsen’s more primitive
version of this theory, cruder topological tools like the Hausdorff topology and
order structures on transversals are important. When we return to these ideas at
a “higher dimension”, we run up against laminations without transverse mea-
sures, non-Hausdorff 1-manifolds, and “recurrent” branched surfaces which
carry nothing. The linear algebra does not survive (except in the best cases),
but the cruder topological tools prove more resilient.
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Unifying themes

This book is not written from a single, unified, coherent perspective. The theory
of taut foliations, and their relation to geometric structures on 3-manifolds is
incomplete, and one should not be too eager to stuff it into a narrow framework.
Under René Thom’s classification system, it deserves to be denoted by a baby’s
crib

denoting “live mathematics”, allowing change, clarification, completing of proofs
(or development of better proofs), objection, refutation. Of course, I have at-
tempted to make the arguments presented in this book as complete and self-
contained as space allows; but sometimes subtle issues are better treated by
giving examples (or counterexamples) than by general nonsense.

And yet, there are a number of themes which are significant and are re-
peated again and again throughout the book. One is the importance of geome-
try, especially the hyperbolic geometry of surfaces. Another is the importance of
monotonicity, especially in 1 dimensional and co-dimensional dynamics. A third
theme is combinatorial approximation, using finite combinatorical objects such as
train-tracks, branched surfaces and hierarchies to carry more complicated con-
tinuous objects.
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Aims and scope

A principal aim of this book is to expose the idea of universal circles for taut foli-
ations and other dynamical objects in 3-manifolds. Many sources feed into this
idea, and I have tried to collect and present some of them and to explain how
they work and fit together. Some of these sources (Dehn, Moore, Poincaré) are
very old; others are very new. Their continued vitality reflects the multiplicity
of contexts in which they arise. This diversity is celebrated, and there are many
loose threads in the book for the reader to tease out and play with.

One of the most significant omissions is that I do not give an exposition of
the many important developments in the theory of genuine laminations, mainly
carried out by Dave Gabai and Will Kazez, especially in the trio of papers [92],
[95] and [94].

Another serious omission is that the discussion of Fenley’s recent work re-
lating pseudo-Anosov flows and (asymptotic) hyperbolic geometry is cursory,
and does not attempt to explain much of the content of [79] or [78]. One sort
of excuse is that Fenley’s program is currently in a period of substantial excite-
ment and activity, and that one expects it to look very different even by the time
this book appears in print.

This book can be read straight through (like a “novel”) or the reader should
be able to dip into individual chapters or sections. Only Chapter 7 and 8 are
really cumulative and technical, requiring the reader to have a reasonable fa-
miliarity with the contents of the rest of the book.

The ideal reader is me when I entered graduate school: having a little bit of
familiarity with Riemann surfaces and cut-and-paste topology in dimension 2
and 3, and a generalized fear of analysis, big technical machinery, and noncon-
structive arguments. Low-dimensional topology in general has a very “hands-
on” flavor. There are very few technical prerequisites: one can draw pictures
which accurately represent mathematical objects, and one can do experiments
and calculations which are guided by physical and spatial intuitions. The ideal
reader must enjoy doing these things, must be prepared to be guided by and to
sharpen these intuitions, and must want to understand why a theorem is true,
beyond being able to verify that some argument proves it. I think ideal readers
of this kind must exist; I hope this book finds some of them, and I hope they
find it useful.

Danny Calegari. Pasadena, September 2006
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SURFACE BUNDLES

The purpose of this chapter is to survey the Thurston theory of surface auto-
morphisms and geometric structures on their mapping tori. We will empha-
size those parts of the theory which will be generalized to arbitrary taut fo-
liations in the remainder of the book. The exposition in this chapter is some-
what curt. We give few indications of the proof of the main lemmas and the-
orems, since rigorous and thorough treatments are easily available in many
sources: [230], [234], [71], [47] and [193] are standard references.

1.1 Surfaces and mapping class groups

A surface is a 2-dimensional topological manifold. Throughout this chapter, we
will only consider orientable surfaces. We typically only consider closed sur-
faces, though the theory we develop applies (with some modification) to sur-
faces of finite type. Here a surface is said to be of finite type if it is homeomorphic
to a closed surface with finitely many points removed. It should be remarked
that the analogues of the theorems in this chapter for surfaces of finite type are
vital for many important applications.

FIG. 1.1. The first few closed, orientable surfaces

The group of self-homeomorphisms of S is denoted Homeo(S).

1.1.1 The compact-open topology

We want to think of Homeo(S) as a topological group — i.e. a topological space
for which group multiplication and inverse are continuous maps. The correct
topology is the compact-open topology.

Definition 1.1 Let X, Y be topological spaces and let Map(X, Y) denote the set
of continuous maps from X to Y. The compact-open topology on Map(X, Y) is the
topology generated by open sets of the form

UK,U := {ϕ ∈Map(X, Y) |ϕ(K) ⊂ U}

1



2 SURFACE BUNDLES

where K ⊂ X is compact, and U ⊂ Y is open.

Homeo(S) inherits a subspace topology from Map(S, S) with the compact-
open topology, and in this way becomes a topological group. The definition
of the compact-open topology is somewhat opaque. In practice, one uses the
following standard fact:

Lemma 1.2 Let X, Y, Z be Hausdorff topological spaces, and let Map(Y, Z) have the
compact-open topology. Suppose Y is locally compact. Then a map f : X → Map(Y, Z)
is continuous if and only if the associated map F : X ×Y → Z defined by

F(x, y) := f (x)(y)

is continuous.

See e.g. [124] for a proof.
We denote the path component of the identity map by Homeo0(S). From

Lemma 1.2 we see that Homeo0(S) can be characterized as the subgroup of
Homeo(S) consisting of maps isotopic to the identity.

1.1.2 Smooth and PL structures

If S comes equipped with a smooth or piecewise-linear structure, it makes sense
to talk about the (topological) group of self-diffeomorphisms or piecewise-linear
self-homeomorphisms which we denote by Diffeo(S) and PL(S) respectively. Sim-
ilarly, it makes sense to define Diffeo0(S) and PL0(S) as the respective path
components of the identity.

Arbitrary homeomorphisms of surfaces can be approximated by smooth or
PL maps. Technically, given ǫ > 0 andφ ∈ Homeo(S) there is a (PL or smooth)
homeomorphismϕ ∈ Diffeo(S) or PL(S) such that for any p ∈ S,

dS(φ(p),ϕ(p)) < ǫ

See e.g. [167], Chapter 6 for a proof in the PL case. One says under these cir-
cumstances thatφ andϕ are ǫ-close.

Given any compact surface S, for any δ > 0 there is an ǫ > 0 such that any
smooth or PL homeomorphismϕ : S→ S which isǫ-close to the identity map is
(smoothly or PL) isotopic to the identity through homeomorphisms which are
δ-close to the identity. Ultimately, this fact rests on the 2-dimensional Schönflies
theorem.

It follows that any homeomorphism φ ∈ Homeo(S) is isotopic into either
PL(S) or Diffeo(S), and furthermore that any map I → Homeo(S) can be ap-
proximated by a map I → Diffeo(S) or I → PL(S). Consequently the inclusions

Diffeo(S) →֒ Homeo(S), PL(S) →֒ Homeo(S)

induce isomorphisms on π0.
Because of this fact, we will feel free to work in whichever category is most

convenient for our purposes, usually stating theorems and lemmas in the topo-
logical category, and proving them in the smooth or PL category.
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1.1.3 Essential loops and hierarchies

Complicated surfaces can be cut open along suitable embedded arcs and loops
into simpler ones. The right kinds of arcs and loops to cut along are the essential
ones.

Definition 1.3 An embedded loop α ⊂ S is essential if it does not bound a disk
or cobound an annulus together with a component of ∂S. A properly embedded
arc β ⊂ S is essential if there is no other arc γ ⊂ ∂S such that β ∪ γ is an
embedded circle which bounds a disk in S.

Ifα and β are essential loops in S which intersect, after a small perturbation
we can assume they intersect transversely. Some intersections α ∩ β might be
spurious: a bigon is a properly embedded disk D ⊂ S whose interior is disjoint
from α ∪ β, and whose boundary consists of two arcs, one in α and one in β.
By isotoping either α or β across D, one may eliminate at least two points of
intersection of α with β. After finitely many such isotopies, one may assume
there are no bigons; we say in this case thatα and β intersect efficiently.

Similarly, ifα is an essential loop andβ is an essential arc, we say they inter-
sect efficiently if they do not cobound a bigon.

Ifα andβ are essential arcs, a semi-bigon is a properly embedded disk D ⊂ S
whose interior is disjoint fromα ∪β and whose boundary consists of three arcs,
one inα, one in β, and a third in ∂S. Again, by isotoping either α or β across D
by proper isotopy, one may eliminate at least one point of intersection.

Lemma 1.4 Letα,β be essential loops or arcs in S. Ifα and β are properly homotopic,
they are properly isotopic.

Proof We treat the case of essential loops. We suppose first that after eliminat-
ing bigons by an isotopy, α and β intersect efficiently.

Let Ŝ be the covering space of S corresponding to the image of α in π1(S).

Then Ŝ is an annulus. Let α̂, β̂ denote the lifts of α and β to Ŝ. If α̂ and β̂ are
disjoint, they cobound a surface in Ŝ which is contained in an annulus and has
two boundary components, and is therefore itself an annulus, which projects
homeomorphically to an embedded annulus in S. So α and β are isotopic in
this case.

Otherwise, α̂ and β̂ intersect in Ŝ. Since they have algebraic intersection
number zero, they intersect in an even number of points, so we may find an

embedded arc τ ⊂ α̂ with endpoints on β̂ and interior disjoint from β̂. Then

∂τ bounds two embedded arcs σ ,σ ′ whose union is β̂, and the union of τ with
one of them (without loss of generality, with σ) is homotopically inessential in

Ŝ, and therefore bounds a disk D. Some arcs of α̂ might intersect the interior of
D, but they can only cross ∂D along τ , and must leave again. Therefore some
innermost such arc cobounds a bigon with a subarc of τ . This bigon projects to
an embedded bigon in S, contrary to assumption.

The case of essential arcs is similar. 2



4 SURFACE BUNDLES

Let S be a connected surface of finite type, and non-positive Euler charac-
teristic. Then S can be cut open along an essential embedded loop or proper
essential arc α1 into a (possibly disconnected) surface S1, and each component
of S1 either has smaller genus or bigger Euler characteristic than S. After finitely
many such cuts, one is left with a collection of disks.

Such an inductive decomposition

S
α1
; S1

α2
; · · · αn

; Sn =
⋃

i

Di

is called a hierarchy (see e.g. [127]).
By using hierarchies, we can prove the following theorem of Baer [9]:

Theorem 1.5. (Baer) Let S be a closed surface. Then a self homeomorphismφ of S, is
isotopic to the identity if and only if it is homotopic to the identity.

Proof We give a sketch of a proof whenφ is smooth.
Let D denote the closed disk. Suppose φ : D → D is smooth and fixes ∂D.

Then by using the implicit function theorem, we can isotopφ to someφ′ which
fixes a collar neighborhood N of ∂D. Conjugatingφ′ by a 1-parameter family of
dilations of D which contract D−N to a point, we isotopφ′ to the identity (this
is called Alexander’s trick).

Now, suppose φ : S2 → S2 is smooth and orientation-preserving. After an
isotopy, we can assume φ fixes a neighborhood of some point p, so we reduce
to the previous case.

So we assume S admits a nontrivial hierarchy and is not an annulus. Let
φ : S → S be homotopic to the identity. Let α1 be the first essential loop or arc
in a hierarchy. Then φ(α1) is homotopic to α1, so by Lemma 1.4, it is isotopic
to α1. After a further isotopy, we can assume φ fixes α1 pointwise, so we can
decompose S alongα1 into a new surface S1, to which φ restricts.

Let Ŝ be the cover of S corresponding to π1(S1), and let H : S1 × I → S be a

homotopy from φ|S1
to Id|S1

in S. Then H lifts to Ĥ : S1 × I → Ŝ. Since Ŝ and
S1 are homotopic, this implies that φ|S1

is homotopic to Id|S1
in S1. The proof

follows by induction. 2

1.1.4 The Mapping Class Group

In any topological group, the path component of the identity is a normal sub-
group. We can therefore form the quotient group

MCG(S) := Homeo(S)/Homeo0(S)

which is called the Mapping Class Group of S.
We denote the subgroup of MCG(S) consisting of orientation-preserving

homeomorphisms by MCG+(S).
Since homotopic maps induce isomorphic actions on π1, we have the fol-

lowing observation:
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Lemma 1.6 Suppose φ1 ,φ2 ∈ Homeo(S) represent the same element in MCG(S).
Then the induced (outer) automorphisms (φ1)∗, (φ2)∗ of π1(S) are equal.

It follows that there is an induced homomorphism

ρ : MCG(S)→ Out(π1(S))

Lemma 1.7 Let φ : S→ S be a proper homotopy equivalence. Ifα is an essential loop
or arc in S, thenφ(α) is properly homotopic to an essential loop or arc.

Proof The lemma will be proved if we can characterize essential loops or arcs
in terms of algebraic properties of their image in π1(S). Ifα is an essential loop,
then S can be cut along α into a simpler (possibly disconnected) surface; by
van-Kampen’s theorem, it follows that π1(S) admits the structure of an amal-
gamated free product or HNN extension, where the amalgamating subgroup is
isomorphic to Z.

For any finitely generated group G and any nontrivial decomposition of G
as an amalgamated free product or HNN extension, there is an associated non-
trivial minimal action of G on a tree T, for which the quotient graph T/G has
a single edge. If X is a finite CW complex which is a K(G, 1), we can build a

G-equivariant map from X̃ to T cell by cell, which covers a map X → T/G.
See [218] for details.

If X is a surface, we can put this map in general position by a homotopy, so
that the preimage of a generic point on the edge is a 1-manifold. By homotoping
inessential loops off this preimage, we can ensure that the preimage is a single
essential loop. It follows that for any description of π1(S) as a nontrivial HNN
extension or amalgamated free product over a cyclic subgroup, the homotopy
class of the loop generating the amalgamating subgroup contains an embedded
representative.

The case of arcs is proved similarly (e.g. by doubling). 2

Remark When we discuss hyperbolic structures on surfaces, we will see an-
other proof of this lemma.

The following theorem, proved originally by Dehn and rediscovered and
published by Nielsen [186], connects the mapping class group with algebra:

Theorem 1.8. (Dehn–Nielsen) Suppose S is a closed orientable surface of genus g ≥
1. Then ρ is an isomorphism. Otherwise, ρ is an injection, with image equal to the
subgroup of Out(π1(S)) consisting of automorphisms which permute the peripheral
subgroups.

Proof Since the universal cover of S is contractible, S is a K(π , 1), and any
outer automorphism φ is realized by a homotopy equivalence from S to itself,
which by abuse of notation we also denote by φ. Further, if this automorphism
permutes peripheral subgroups, the homotopy equivalence may be taken to
permute boundary components of S.
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Let α1 be the first loop or arc in a hierarchy for S. By Lemma 1.7, we can
modify φ by a proper homotopy so that φ takes α1 to an essential loop or arc.
π1(S) splits over the cyclic group generated byα1, and similarly over the cyclic
group generated by φ(α1), so φ restricts to a proper homotopy equivalence
from S − α1 to S − φ(α1). By induction on the length of the hierarchy, φ is
properly homotopic to a homeomorphism. This shows that ρ is surjective.

Injectivity follows from Theorem 1.5. 2

See e.g. [210] for a more detailed discussion. This theorem “reduces” the
study of MCG(S) to group theory. In practice, however, one uses this theorem
in order to use 2-dimensional topology to study Out(π1(S)).

1.1.5 Dehn twists

The usual combinatorial approach to understanding MCG(S) is by means of
Dehn twists.

Definition 1.9 Let γ ⊂ S be an oriented simple closed curve. We parameterize
γ by S1 = R/2πZ and let A = S1 × [0, 1] be a parameterized regular neighbor-
hood of γ. A Dehn twist in γ, denoted by τγ, is the equivalence class in MCG(S)
represented by a homeomorphism supported on A, which is given in terms of
co-ordinates (θ, t) on A by the formula

τγ((θ, t)) = (θ− 2π t, t)

The equivalence class of τγ in MCG(S) only depends on the isotopy class
of γ, and is trivial unless γ is essential. If α,β are two essential simple closed
curves, there is an obvious identity

τβτατ
−1
β

= ττβ(α)

Using this identity repeatedly, Dehn twists along complicated curves can be
expressed as products of Dehn twists in simpler curves. An element of MCG(S)
which leaves the isotopy class of every essential simple closed curve invariant
is the identity. Using these two facts, Dehn showed in [56] that MCG(S) is gen-
erated by Dehn twists in a finite collection of essential loops.

Theorem 1.10. (Dehn [56]) Let S be a closed oriented surface of genus g. Then MCG(S)
is generated by Dehn twists in finitely many curves.

Lickorish ( [152]) later improved this theorem to show that MCG(S) is gen-
erated by Dehn twists in the 3g− 1 simple closed curves shown in Fig. 1.2.

McCool [159] gave a (mostly) algebraic proof that MCG(S) is finitely pre-
sented. Hatcher and Thurston [126] found a presentation more obviously re-
lated to topology. Both arguments proceed by finding a finite, connected 2-
complex whose fundamental group is isomorphic to MCG(S).

A fact which is apparent in Hatcher and Thurston’s presentation is that rela-
tions in MCG(S) are all consequences of a small number of relations supported
in subsurfaces S′ ⊂ S of genus at most 2.
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FIG. 1.2. MCG(S) is generated by Dehn twists in 3g − 1 curves; this figure
illustrates the case g = 3

Example 1.11. (Braid relation) Let α,β be two essential simple closed curves
on S. Ifα and β are disjoint, then τα and τβ commute. Ifα and β are transverse,
and intersect in exactly one point (so that a regular neighborhood of α ∪β is a
punctured torus), then τα and τβ obey a “braid relation”:

τατβτα = τβτατβ

Example 1.12. (Lantern relation) Let S be the 4-holed sphere, obtained from
the unit sphere in R3 by removing neighborhoods of the vertices of an inscribed
regular tetrahedron. Let α,β,γ be essential simple closed curves which are the
intersections of S2 with the three co-ordinate planes. These curves separate the
four holes into two pairs in three different ways. The lantern relation is the
relation in the relative mapping class group MCG(S, ∂S) which says that the
product τατβτγ is equal to a product of twists in the four boundary curves.

We will not emphasize the algebraic structure of MCG(S) in the sequel.

1.2 Geometric structures on manifolds

According to Thurston, a model geometry (G, X) is a manifold X together with
a Lie group G of diffeomorphisms of X, such that the following conditions are
satisfied:

1. X is connected and simply connected

2. G acts transitively on X with compact point stabilizers

3. G is maximal with respect to these properties

For M a closed topological manifold, a (G, X)-structure on M is a homeo-
morphism

ϕ : M→ X/Γ

where Γ is a free, discrete, cocompact, properly discontinuous subgroup of G.
To rule out uninteresting examples, one usually adds to the definition of a
model geometry the conditition that at least one closed manifold with a (G, X)-
structure should exist.

Since the point stabilizers of G are compact, each such X admits a G-invariant
metric. For such an X, a (G, X)-structure on M is just a Riemannian metric on
M which is locally isometric to X.
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1.2.1 Model geometries in dimension 2

In dimension 2, after possibly rescaling the metric, X must be a space of constant
curvature S2, E2, H2. We say that M is spherical, Euclidean or hyperbolic respec-
tively. The classical uniformization theorem says that each surface S is confor-
mally equivalent to a surface of constant curvature, unique up to isometry if
χ(S) 6= 0, and unique up to similarity otherwise.

We try in the sequel to use the notation S for a topological surface, and Σ for
a surface with some kind of additional geometric structure.

1.2.2 Model geometries in dimension 3

In dimension 3 there are more possibilities for X, which can be classified in
terms of the dimension of the point stabilizers in Isom(X). These point stabi-
lizers are isomorphic to closed subgroups of O(3) and are therefore either 3 di-
mensional, 1 dimensional, or 0 dimensional. The classification was discovered
by Thurston, and the list is as follows:

1. Spaces of constant curvature S3, E3, H3. These are the spaces whose point
stabilizers are 3 dimensional.

2. Product spaces S2 ×R, H2 ×R and twisted product spaces Nil, ˜SL(2, R).
These are the spaces whose point stabilizers are 1 dimensional.

3. Solv geometry Sol. This space has 0 dimensional point stabilizers.

The last three geometries are themselves 3 (real) dimensional Lie groups.

1.2.3 Geometrization

The main goal of Thurston’s geometrization program is to show that all irreducible
3-manifolds can be decomposed (“reduced”) along some canonical collection
of incompressible tori and Klein bottles into pieces which admit a geometric
structure. This part of the program has recently been carried out by Grigori
Perelman, using PDE methods (i.e. Ricci flow) and geometric analysis. See [119],
[197], [199] and [198] for details.

A secondary, but very important goal of the program, is to reconcile this
view of 3-manifolds as geometric objects with the many other views of 3-manifolds;
these include combinatorial descriptions such as Dehn surgery on links in S3, han-
dlebody decomposition, branched covers over universal links, etc. and dynami-
cal descriptions, such as foliated spaces, pseudoconvex boundaries of symplectic
4-manifolds, etc.

One class of 3-manifolds for which a very satisfying reconciliation of per-
spectives is available is the class consisting of surface bundles over S1. For the
remainder of the chapter, we will concentrate on this class of manifolds and the
close connection between dynamics and geometry.

See [235] or [216] for more details and a thorough discussion of the ge-
ometrization program and 3-dimensional geometries.
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1.3 Automorphisms of tori

We will now see how our discussion of mapping class groups is enriched by the
inclusion of geometric ideas. The simplest interesting case is that of the torus.

Let T denote the standard 2-dimensional torus. Then π1(T) = Z⊕ Z. Since
this group is Abelian, we have an equality

Out(π1(T)) = Aut(π1(T))

Any automorphism of Z⊕ Z is determined by what it does to a pair of basis
elements. With respect to such a basis, an automorphism can be expressed as a
2× 2 integral matrix. It follows that we have

Out(π1(T)) = Aut(π1(T)) = GL(2, Z)

and MCG+(T) = SL(2, Z). Let φ ∈ MCG+(T). Under this identification, φ
corresponds to a 2× 2 matrix

φ→
(

a b
c d

)

where a, b, c, d ∈ Z and det(φ) = 1. The eigenvalues of φ are λ, λ−1 for some
λ ∈ C where

tr(φ) := a + d = λ+ λ−1

Since the trace of φ is real, if λ, λ−1 are not real, they are both on the unit
circle, and therefore |tr(φ)| < 2. Since a and d are integers, in this case we have
either tr(φ) = 0 in which case φ4 = Id or else tr(φ) = ±1, and φ6 = Id. In
particular, such aφ has finite order.

If λ = λ−1 = 1, then either φ = Id, or else φ is conjugate to a matrix of the
form

φ ∼
(

1 n
0 1

)

Notice that such a φ fixes the vector (1, 0). Topologically, such an element φ
preserves the isotopy class of one of the loops which generates π1(T). Such a
φ is said to be reducible. If λ = λ−1 = −1, then either φ = −Id, or else φ is
conjugate to a transformation which takes the vector (1, 0) to its inverse; we
say this is reducible too.

Finally, if the eigenvalues are real, and λ > 1 > λ−1 say, thenφ has two dis-
tinct eigenvectors e±. Let F± be the linear foliations of T by lines parallel to e±.
Then the linear representative of φ takes leaves of F± to themselves, stretching
the leaves of F+ by a factor of λ, and stretching the leaves of F− by a factor of
λ−1. For some choice of Euclidean structure on T, these two foliations may be
taken to be perpendicular. Such a homeomorphism is then said to be Anosov.

Summarizing, we have the following theorem:

Theorem 1.13. (Classification of toral homeomorphisms) Let T be a torus, and
let φ ∈ Homeo+(T). Then one of the following three alternatives holds:
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1. φ is periodic; that is, some finite power ofφ is isotopic to the identity

2. φ is reducible; that is, there is some simple closed curve in T which is taken to
itself byφ, up to isotopy

3. The linear representative ofφ is Anosov

1.4 PSL(2, Z) and Euclidean structures on tori

Every Riemannian metric on T is conformally equivalent to a unique flat metric,
up to similarity. The set of all such flat metrics is parameterized by Teichmüller
space. We first define this space as a set, deferring a discussion of its topology
until later.

Definition 1.14 The Teichmüller space of the torus, denoted T(T), is the set of
equivalence classes of pairs ( f , Σ) where Σ is a torus with a flat metric, f : T →
Σ is an orientation-preserving homeomorphism, and

( f1, Σ1) ∼ ( f2, Σ2)

if and only if there is a similarity i : Σ1 → Σ2 for which the composition i ◦ f1 is
homotopic to f2.

The map f as above is called a marking. MCG+(T) acts on T(T) by changing
the marking:

φ( f , Σ) = ( f ◦φ−1, Σ)

Notice that every flat torus admits an isometry of order 2 which acts as multi-
plication by −1 on π1(Σ). Identifying MCG+(T) with SL(2, Z), we see that the
action of SL(2, Z) on T(T) factors through the quotient

PSL(2, Z) := SL(2, Z)/± Id

Let ( f , Σ) ∈ T(T). The E2 structure on Σ defines a representation π1(Σ) →
Isom(E2) which is unique up to conjugacy, and with image contained in the
subgroup of translations of E2. After choosing an isometric identification of E2

with C, we may identify the group of (orientation preserving) isometries of E2

with C ⋊ S1 and the group of (orientation preserving) similarities of E2 with
C ⋊ C∗.

Pulling back this representation by f , we get a representation ρΣ : π1(T)→
C. We fix a basis m, l for π1(T), where m is the image of a meridian, and l the
image of a longitude. After conjugation in the group of similarities of E2, we may
assume that ρΣ(m) = 1. Since f is an orientation preserving homeomorphism,
ρΣ(l) = x + iy where y > 0. Conversely, any complex number x + iy satisfying
y > 0 determines a marked flat torus up to similarity, and we may therefore
identify T(T) with the open upper half-plane in C, which is sometimes denoted
H.
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With respect to this identification of T(T) with the upper half-plane, the
action of PSL(2, Z) is given by

(
a b
c d

)
· z =

az + b

cz + d

The quotient
M(T) := H/PSL(2, Z)

is called the Moduli space of Euclidean structures on T. It admits a natural struc-
ture as a hyperbolic orbifold, with a single cusp and two orbifold points, and
orbifold fundamental group isomorphic to PSL(2, Z).

Every conjugacy class in PSL(2, Z) is represented by a free homotopy class
of loop in M(T). If this loop can be pulled tight to an orbifold point, the corre-
sponding conjugacy class has finite order. If it is homotopic into a neighborhood
of the cusp, the corresponding conjugacy class is reducible. Otherwise the loop
can be pulled tight to a geodesic representative, and the corresponding conju-
gacy class is Anosov. If λ is the larger eigenvalue of the Anosov automorphism,
the length of the geodesic loop is 2 log(λ).

1.5 Geometric structures on mapping tori

Given a homeomorphism φ : T → T, we can form the mapping torus Mφ

which is the quotient of the product T × I obtained by gluing the top T × 1 to
the bottom T × 0 byφ. That is,

Mφ = T × I/(s, 1) ∼ (φ(s), 0)

We study the relationship between the geometry of Mφ and the dynamics
of φ. If φ : T → T has finite order (and therefore order 2, 3, 4 or 6) it preserves
either a square or a hexagonal Euclidean metric on T. It follows that the gluing
map can be realized as an isometry of T × I, giving the mapping torus Mφ a
Euclidean structure.

If φ : T → T is reducible, preserving a simple closed curve γ, then γ × I ⊂
T× I glues up underφ to give a closed, π1-injective torus or Klein bottle in Mφ.

Ifφ : T → T is Anosov, with invariant foliations F±, then the automorphism
φ of Z⊕Z extends linearly to an automorphism of R⊕R which is conjugate to
the diagonal automorphism

φ ∼
(
λ 0
0 λ−1

)

Let Sol denote the 3-dimensional solvable Lie group which is an extension of
abelian groups

0→ R2 → Sol→ R→ 0

where the conjugation action of the generator t of the R factor acts on the R2

factor by the matrix
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t−1

(
v1

v2

)
t =

(
et 0
0 e−t

)(
v1

v2

)

Then the fundamental group π1(Mφ) is the extension

0→ Z2 → π1(Mφ)→ Z→ 0

and this short exact sequence includes into the short exact sequence defining
Sol in such a way that the generators of R2 become the eigenvectors e± of the
automorphism φ, which includes into R byφ→ log(λ).

This exhibits π1(Mφ) as a lattice in Sol, and induces a Sol structure on Mφ.
Summarizing, we have the following theorem:

Theorem 1.15. (Geometrization for mapping tori of tori) Let φ : T → T be a
homeomorphism of the torus. Then the mapping torus Mφ satisfies the following:

1. Ifφ is periodic, Mφ admits an E3 geometry

2. Ifφ is reducible, Mφ contains a reducing torus or Klein bottle

3. Ifφ is Anosov, Mφ admits a Sol geometry

In fact, if φ is reducible, then Mφ admits a Nil geometry, modeled on the
3-dimensional real Heisenberg group; but in order to emphasize the analogies
with higher genus S, we choose to state the theorem in this form.

1.6 Hyperbolic geometry

In order to discuss surfaces of higher genus, we must first recall the elements of
hyperbolic geometry, especially in two dimensions.

1.6.1 The hyperbolic plane

In the Poincaré disk model of H2, we identify H2 with the interior of the unit disk
D in R2. In this model, the hyperbolic length element dH is conformally related
to the Euclidean length element dE by the formula

dH =
2dE

(1− r2)

where r denotes (Euclidean) distance to the origin.
In this model of hyperbolic geometry, conformal automorphisms of the unit

disk correspond to hyperbolic isometries of H2, and the geodesics are straight
lines and arcs of circles which are perpendicular to the circle ∂D. A polygon
with geodesic sides is ideal if all its vertices lie on ∂D; such a polygon is neces-
sarily convex.

If P is an ideal polygon, the double of P, denoted DP, is a complete hyper-
bolic surface of finite area and finite type. The area of such a surface Σ is related
to its genus and number of punctures by the Gauss–Bonnet formula:

area(Σ) = (4g− 4 + 2p)π = −2πχ(Σ)

If P has n sides, then DP is a sphere with n punctures, so the area of DP is
(2n− 4)π , and the area of P is (n− 2)π . We therefore make the convention that
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FIG. 1.3. The Farey tessellation of H2 by ideal triangles

for a (possibly noncompact) hyperbolic surface Σ with finite area and geodesic
boundary, The Euler characteristic of Σ is equal to

χ(Σ) = −area(Σ)

2π

i.e. it is equal to the usual Euler characteristic of the underlying topological
surface, minus half the number of ideal vertices.

Isometries of H2 extend naturally to homeomorphisms of the closed unit
disk, and there is an induced action of Isom(H2) on ∂D by real projective trans-
formations. Under the isomorphism

Isom+(H2) ∼= PSL(2, R)

we can make an identification of spaces with PSL(2, R) actions

∂D ∼= RP1

We refer to ∂D as the circle at infinity of hyperbolic space, and typically de-
note it by S1

∞
. We also sometimes refer to S1

∞
as the ideal boundary of H2.

There are many other models of hyperbolic geometry, some conformal and
some not. We mention the following:

1. The Klein model: H is the interior of the unit disk D in the Euclidean
plane. Geodesics in H are the restriction of Euclidean geodesics to D. If
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p, q lie on a geodesic γ which intersects ∂D at p∞, q∞ then the signed
hyperbolic distance between p and q is the log of the cross-ratio

[p∞, p, q, q∞] :=
|p∞ − q| · |p− q∞|
|p∞ − p| · |q− q∞|

2. The upper half-space model: H is the subset of C consisting of complex
numbers with positive imaginary part. Geodesics are vertical straight lines
and semicircles orthogonal to the real line. The metric is conformal in this
model, the hyperbolic and Euclidean length elements are proportional:

dH =
dE

y

3. The Lorentz model: H is the main sheet of the hyperboloid consisting of
vectors v ∈ R3 with 〈v, v〉 = −1 with respect to the quadratic form

〈v, w〉 := v1w1 + v2w2 − v3w3

The hyperbolic distance between v and w is given by the formula

d(v, w) =
√
〈v−w, v−w〉

1.6.2 Coarse geometry of the hyperbolic plane

Unlike Euclidean or spherical geometry, many significant geometric properties
of hyperbolic geometry persist under drastic metric deformations of a certain
kind. In this section we recall some of the basic machinery of coarse geometry,
and its application to Gromov hyperbolic spaces and groups.

Recall the following definitions:

Definition 1.16 A complete metric space is proper if it is locally compact. A met-
ric space is geodesic if any two points may be joined by an isometrically embed-
ded arc (i.e. a geodesic).

For the sake of simplicity, all the metric spaces that we consider in this section
will be proper geodesic spaces.

Metric spaces are stiff and inflexible, with (too) many local invariants. The
category of metric spaces and isometries is substantially enriched by expanding
the class of admissible maps between spaces from isometries to quasi-isometries:

Definition 1.17 Let X, Y be two metric spaces, with metrics dX , dY respectively.
A (not necessarily continuous) mapφ : X → Y is called a quasi-isometric embed-
ding if there are constants k ≥ 1,ǫ ≥ 0 such that for all p, q ∈ X we have an
estimate

1

k
dX(p, q)−ǫ ≤ dY(φ(p),φ(q)) ≤ kdX(p, q) +ǫ

If there is some δ such that every point in Y is within distance δ ofφ(X), we say
φ is a quasi-isometry.



HYPERBOLIC GEOMETRY 15

Informally, quasi-isometric embeddings are bilipschitz on a large scale. If we
want to stress the constants k,ǫ we will also talk about (k,ǫ) quasi-isometries.
By abuse of notation, we will sometimes absorb the additive constant into the
multiplicative one, and refer to k quasi-isometries, by which we mean (k, 1) quasi-
isometries as above.

The relation of quasi-isometry is an equivalence relation on isometry classes
of metric spaces. When we discuss geometric properties of a metric space which
only depend on the quasi-isometry class of the metric, then we say euphemisti-
cally that we are doing coarse geometry.

Coarse geometry is very well suited for the study of combinatorial group
theory. Groups are transformed into metric spaces via their Cayley graphs.

Example 1.18 Let G be a group with finite generating set S. Let CS(G) denote
the Cayley graph of G with respect to S. Then we may make CS(G) into a proper
geodesic metric space by setting the length of every edge equal to 1.

The utility of this example, and the power of coarse geometry, comes from
the following elementary but fundamental facts, first explicitly observed by
Milnor [165]:

Lemma 1.19 Let S1, S2 be two finite generating sets for G. Then CS1
(G) and CS2

(G)
are quasi-isometric.

It follows that we may speak unambiguously about the quasi-isometry type of
a (finitely generated) group G.

Lemma 1.20 Let G act freely and cocompactly by isometries on a proper geodesic met-
ric space X. Then X is quasi-isometric to G.

These lemmas let one move back and forth between groups and spaces.

One of the most important coarse geometric properties of a metric space is
Gromov hyperbolicity.

Definition 1.21 A geodesic metric space X is δ-hyperbolic for δ ≥ 0 if for all
geodesic triangles pqr, every point on the edge pq is within distance δ from the
union of the edges qr and rp. A geodesic metric space is Gromov hyperbolic if it
is δ-hyperbolic for some δ.

Observe that trees are 0-hyperbolic. Informally, hyperbolic spaces are those
that from a long way off look like trees. With this definition, a hyperbolic group
G is one whose Cayley graph is δ-hyperbolic for some δ. One also says such a
group G is δ-hyperbolic or word-hyperbolic.

Example 1.22 Free groups are hyperbolic.

Example 1.23 The hyperbolic plane with its usual metric is δ-hyperbolic for

δ = sinh−1(1) ≈ 0.881373587

To see this, observe that every geodesic triangle in H2 is contained in some
ideal triangle. All ideal triangles are isometric, so it suffices to consider some
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fixed triangle. In an ideal triangle, the distance from the “midpoint” of a side to

each of the other two sides is sinh−1(1), and every other point is at least as close
to one of the other sides. By Lemma 1.20, it follows that π1(S) is a hyperbolic
group whenever S is a closed surface of genus ≥ 2.

Because the concept is so useful, we reserve the name quasigeodesic for a
quasi-isometric embedding φ : R → X and the name quasigeodesic ray for a
quasi-isometric embeddingφ : R+ → X.

The so-called Morse Lemma (see e.g. [116]) shows that δ-hyperbolic groups
and spaces can be effectively probed with quasigeodesics:

Lemma 1.24. (Morse Lemma) Let X be a δ-hyperbolic space. Then for every k,ǫ
there is a universal constant C(δ, k,ǫ) such that every (k,ǫ)-quasigeodesic segment
with endpoints p, q ∈ X lies in the C-neighborhood of any geodesic joining p to q.

Moreover, quasigeodesity is local:

Definition 1.25 Let C ≥ 0 be given. A mapφ : R→ X is locally (k,ǫ)-quasigeodesic
on the scale C if the restriction of φ to each segment of length C is a (k,ǫ) quasi-
geodesic embedding.

Lemma 1.26. (Gromov) Let X be a δ-hyperbolic space. Then for every k,ǫ there is a
universal constant C(δ, k,ǫ) such that every map φ : R → X which is a local (k,ǫ)-
quasigeodesic on the scale C is a (global) (2k, 2ǫ)-quasigeodesic.

See [116], § 7 for a proof.

Example 1.27 Let P : R → H2 be piecewise geodesic. For any ǫ > 0 there is
a T > 0 such that if every segment has length ≥ T, and if the angle between
successive segments is ≥ ǫ, then P is a (global) quasigeodesic.

In particular, the union of two geodesic rays in H2 with the same initial point
and distinct (ideal) endpoints is a quasigeodesic, although the constants depend
on the angle between the rays.

The small scale geometry, and even the small scale topology of a metric
space is not preserved under the relation of quasi-isometry. Fortunately, there is
a very natural functor from quasi-isometry types of metric spaces to topological
spaces:

Construction 1.28. (Gromov) To a δ-hyperbolic proper metric space X we may
associate the ideal boundary (also known as the Gromov boundary) ∂X, defined
as follows.

As a set, ∂X is the set of equivalence classes of quasigeodesic rays, where
r ∼ r′ if each is contained in the T-neighborhood of the other, for some T (which
might depend on r, r′). By Lemma 1.24 and properness, every equivalence class
[r] contains a geodesic ray s which can be taken to satisfy s(0) = x0 for some
(arbitrary) basepoint x0 ∈ X.



GEODESIC LAMINATIONS 17

To define the topology, suppose that ri is a sequence of geodesic rays in X
with ri(0) = x0. Then [ri] → [r] in ∂X if and only if every subsequence of ri

contains a further subsequence which converges in the compact-open topology
to a geodesic ray s with s ∼ r.

It turns out that ∂X is metrizable, and only depends on the quasi-isometry
type of X, up to homeomorphism. Furthermore, if X is proper, ∂X is compact,
and quasi-isometric embeddings X → Y induce continuous maps ∂X → ∂Y. In
particular, any self quasi-isometry of X induces a self-homeomorphism of ∂X.

Example 1.29 The ideal boundary of a tree T is homeomorphic to the space of
ends of T. If T is an infinite n-regular tree where n > 2 this space is homeomor-
phic to a Cantor set.

Example 1.30 The ideal boundary of H2 is the circle at infinity S1
∞

.

See [116] or [23] for proofs and a more detailed discussion.

1.7 Geodesic laminations

To state and prove the analogues of Theorem 1.13 and Theorem 1.15 for more
complicated surfaces S, we must introduce the notion of a pseudo-Anosov au-
tomorphism. Some excellent references for the material in this and subsequent
sections are [230], [196] or [71].

The basic idea in studying the action of an automorphism φ of a (higher
genus) surface S is to find some kind of essential 1 dimensional object in S
which is preserved (up to some suitable equivalence relation) by φ. There are
several more or less equivalent objects of this kind; amongst the most important
are geodesic laminations, train tracks and singular foliations. We will discuss each
of these in turn.

1.7.1 Hyperbolic structures on surfaces

Let S be a surface of finite type with χ(S) < 0. Then by the uniformization
theorem, we can find a hyperbolic structure on S in every conformal class of
metric, which is complete with finite area. The set of all marked hyperbolic
structures on S is parameterized by a Teichmüller space, just as in the case of
tori. As before, we define T(S) as a set before discussing its topology.

Definition 1.31 Let S be a closed surface of genus ≥ 2. The Teichmüller space of
S, denoted T(S), is the set of equivalence classes of pairs ( f , Σ) where Σ is a
hyperbolic surface, f : S → Σ is an orientation-preserving homeomorphism,
and

( f1, Σ1) ∼ ( f2, Σ)

if and only if there is an isometry i : Σ1 → Σ2 for which the composition i ◦ f1

is homotopic to f2.
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One definition of the topology on T(S) is that ( fi, Σi) → ( f , Σ) if there are
a sequence of 1 +ǫi bilipschitz maps ji : Σi → Σ such that ji ◦ fi is homotopic
to f , where ǫi → 0. With respect to this topology, T(S) is path connected, and
homeomorphic to an open ball of dimension 6g− 6.

One can define local parameters on T(S) in a number of natural ways:

Example 1.32. (Gluing polygons) LetΣ be a hyperbolic surface of genus g. Pick
a point p ∈ Σ and a configuration of 2g geodesic arcs with endpoints at p which
cut up Σ into a hyperbolic 4g-gon P.

A hyperbolic triangle is uniquely determined up to isometry by its edge
lengths — i.e. the angles are determined by the lengths. An n-gon with edge
lengths assigned has n − 3 degrees of freedom. The polygon P satisfies extra
constraints: the edges are glued in pairs, so there are only 2g degrees of freedom
for the edges. Moreover, the sum of the angles is 2π , so there are 4g− 4 degrees
of freedom for the angles. Finally, the choice of the original point p on Σ involves
2 degrees of freedom, giving a total of

2g + (4g− 4)− 2 = 6g− 6

Example 1.33. (Representation varieties) A hyperbolic structure on Σ is deter-
mined by a representation ρ : π1(Σ) → PSL(2, R) up to conjugacy. Consider
the standard presentation of π1(Σ) with 2g generators and 1 relation. Since
PSL(2, R) is 3-dimensional, the generators give 6g degrees of freedom. The re-
lation imposes three constraints, and the action of conjugation has (generically)
3 dimensional orbits, leaving a total of 6g− 6 parameters.

Example 1.34. (Fenchel–Nielsen co-ordinates) A hyperbolic surface Σ of genus
g can be decomposed along 3g − 3 geodesics into 2g − 2 hyperbolic pairs of
pants. A hyperbolic pair of pants is uniquely determined up to isometry by 3
parameters, the lengths of the geodesic boundary components. This gives 3g− 3
global parameters on T(S), called length parameters.

When the pairs of pants are glued up, each geodesic along which we glue
contributes one degree of freedom corresponding to the group of isometries
of a circle. This gives an additional 3g− 3 twist parameters. Note that the twist
parameters are globally well-defined once we choose a marking for Σ.

There is a nice exposition of Fenchel–Nielson co-ordinates in Chapter B of
[14].

Let Σ denote a closed hyperbolic surface of genus ≥ 2, and let α ⊂ Σ be an
essential simple closed curve. Let α̃ denote the preimage of α in the universal

cover Σ̃. Then Σ̃ is homeomorphic to a plane, and α̃ is a locally finite union of

properly embedded lines in Σ̃. Since Σ is hyperbolic, Σ̃ is isometric to H2. We

denote the ideal circle of Σ̃ by S1
∞

(Σ̃) to stress the dependence on Σ.
The hyperbolic structure and the orientation on Σ determine a faithful ho-

momorphism
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ρ : π1(Σ)→ PSL(2, R)

unique up to conjugacy. Since Σ is closed, for every nontrivial α ∈ π1(Σ), the
image ρ(α) has two distinct real eigenvalues, and the associated eigenspaces

correspond to two distinct fixed points of α in S1
∞

. Since det2(ρ(α)) = 1, one
of the eigenvalues has absolute value > 1, and one has absolute value < 1. The
corresponding fixed points ofα are attracting and repelling respectively.

1.7.2 Straightening simple closed curves

Every connected component α̃i of α̃ is stabilized by some gi ∈ Isom(H2) in the

deck group of the covering Σ̃ → Σ, and gi fixes two points p±i in S1
∞

. If li is the

unique hyperbolic geodesic joining p±i , then by compactness of α, the line α̃i

is contained in a bounded neighborhood of li, and therefore itself limits to the
points p±i . In this way, one sees that the system of properly embedded lines α̃

determines a family of pairs of distinct unordered points in S1
∞

.
Let M denote the space of pairs of distinct unordered points in S1

∞
. Topolog-

ically, M may be obtained from S1× S1 by removing the diagonal, and dividing
by the involution which exchanges the factors. M is homeomorphic to an open
Möbius band. We have seen that a simple closed curve α determines a closed
subset Kα ⊂ M (for more details, one can skip ahead to § 2.1).

Two pairs k1, k2 ∈ M are linked if the corresponding four points in S1 are
distinct, and the points in k1 separate the points in k2. If two pairs of points in
S1

∞
are linked, any pair of properly embedded arcs in D which span them must

intersect. Since α̃ is embedded, it follows that the set Kα is pairwise unlinked.
Conversely, if two pairs of points in S1

∞
are unlinked, the geodesics in H2

which span them are disjoint. It follows that the system of geodesics in H2 with
endpoints in Kα is embedded. Consequently, this family of geodesics covers a
simple closed geodesic on Σ which we denote by αg. Note that αg is isotopic to
α, by Lemma 1.4.

FIG. 1.4. The geodesic representativeαg is in the same isotopy class asα

This construction can be generalized as follows: if α1, . . . ,αn is a finite col-
lection of disjoint, nonparallel essential simple closed curves in Σ, then the
geodesic representatives α1

g, . . . ,αn
g of their homotopy classes are embedded

and disjoint, and isotopic as a family to theαi.
Now, for anyα, the set of endpoints in S1

∞
of components of α̃ is dense in S1

∞
.
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The action of π1(Σ) on this set can be recovered from the conjugation action of
π1(Σ) on the set of its cyclic subgroups, and therefore does not depend on the
choice of hyperbolic structure.

Since the action of π1(Σ) on S1
∞

(Σ̃) is continuous for any choice of hyper-
bolic structure on Σ, it follows that the action of π1(Σ) on S1

∞
does not depend

on the choice of hyperbolic structure on Σ, up to topological conjugacy. So if

φ : Σ→ Σ′

is a homeomorphism between two hyperbolic surfaces, there is an induced
homeomorphism

φ∞ : S1
∞

(Σ̃)→ S1
∞

(Σ̃′)

which intertwines the action of π1(Σ) andφ∗(π1(Σ)) = π1(Σ
′).

Note that definingφ∞ as above implicitly requires a choice of basepoint for
Σ, Σ′ in order to correctly identify elements of fundamental groups. Different
choices give different possibilities for φ∞, which differ by composition with
elements of π1(Σ) on the right and elements of π1(Σ

′) on the left.

Remark We used a hyperbolic structure on Σ to construct S1
∞

(Σ̃) together with
the action of π1(Σ) on it. In fact, it is possible to construct this space directly
from a topological surface S. Given an essential simple closed curve α ⊂ S,

form the preimage α̃ in S̃ ≈ R2. The set of ends E of components of α̃ admits
a natural circular ordering which comes from the embedding of α̃ in the plane,

and which is preserved by the deck group of S̃. A circularly ordered set admits
a natural topology, called the order topology, which we will define and study
in Chapter 2. Then the completion of E with respect to the order topology is a

space together with a π1(S) action, which is conjugate to S1
∞

(S̃). What does this
construction give if S is a torus?

Remark The circle S1
∞

(Σ̃) can also be recovered from the coarse geometry of

Σ̃. Given any path metric on Σ, there is an induced path metric on Σ̃. Differ-

ent choices of path metric on Σ give rise to metrics on Σ̃ which are equivalent

up to quasi-isometry, and are δ-hyperbolic for suitable δ. Then S1
∞

(Σ̃) may be

identified with the ideal boundary of the δ-hyperbolic metric space Σ̃. The deck

group π1(Σ) acts on Σ̃ by isometries, which induce homeomorphisms of the
ideal boundary.

In fact, with respect to the word metric for some generating set, the Cayley

graph of π1(Σ) is quasi-isometric to Σ̃. It follows that (outer) automorphisms

of π1(Σ) induce quasi-isometries of Σ̃, and restrict to homeomorphisms of S1
∞

.
Since simple and non-simple loops can be distinguished by linking data in S1

∞
,

this implies that any automorphism of π1(Σ) permutes the set of classes which
are represented by embedded essential loops. This gives an alternate proof of
Lemma 1.7 and the Dehn–Nielsen Theorem.
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1.7.3 Pairs of simple closed curves

Let α and β be essential simple closed curves in Σ. Suppose that α and β are

not isotopic. Denote their preimages in Σ̃ by α̃, β̃ and the components of their

preimages by α̃i, β̃ j. After an isotopy we may eliminate bigons, and assume α

and β intersect efficiently. Suppose some α̃i, β̃ j cobound a bigon. Since bigons
are simply connected, this covers an embedded bigon cobounded by α and β,
contrary to assumption.

Since α and β are not isotopic, the endpoints of α̃i and β̃ j are disjoint in
S1

∞
. Two properly embedded arcs in the disk in general position with distinct

endpoints and which do not cobound any bigon, can intersect in at most one
point, and do so if and only if their respective pairs of endpoints are linked in
S1.

It follows that the geodesic representativesαg,βg intersect in the same com-
binatorial pattern as α,β, and therefore this combinatorial pattern is indepen-
dent of the choice of hyperbolic structure. We summarize this as a lemma:

Lemma 1.35 Letα,β be non-isotopic essential simple closed curves in Σ. Thenα and
β may be individually isotoped so that they intersect efficiently. Any efficient config-
uration is isotopic as a pair to the configuration of the geodesic representatives αg,βg

with respect to any hyperbolic structure on Σ.

Warning 1.36 Suppose α,β,γ are essential simple closed curves in Σ which

meet pairwise efficiently. Three preimages α̃i, β̃ j, γ̃k may intersect pairwise. In

this case, the configuration of α̃i ∪ β̃ j ∪ γ̃k is not determined by the order of
their endpoints in S1

∞
, and the configuration of the geodesic representatives

αg,βg,γg might (and typically will) depend on the choice of hyperbolic struc-
ture on Σ.

1.7.4 Geodesic laminations

The concept of a geodesic lamination is a natural generalization of the concept
of a simple closed geodesic.

Definition 1.37 Let Σ be a hyperbolic surface. A geodesic lamination Λ on Σ is
a union of disjoint embedded geodesics which is closed as a subset of Σ. The
geodesics making up Λ are called the leaves of Λ.

The decomposition of a geodesic lamination into its constituent leaves is
part of its defining data. However, for a geodesic lamination Λ in a finite area
hyperbolic surface Σ, the leaves are just the path components of Λ, and there-
fore we lose no information by regarding Λ as a subspace of Σ. In fact, Λ is
nowhere dense in such a Σ, and has 0 measure. If we want to be careful, we will
distinguish between the lamination Λ and the support of Λ.

Warning 1.38 If Σ is an infinite area hyperbolic surface (e.g. Σ = H2), then a
geodesic lamination Λ on Σ is not necessarily determined by its support.
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Example 1.39 The hyperbolic plane H2 is the support of a geodesic lamination
consisting of all geodesics with one endpoint on some fixed p ∈ S1

∞
. As p varies,

the laminations vary but their support does not.

Since the leaves of a geodesic lamination are disjoint, pairs of leaves which
are close at some point are almost parallel there. It follows that ifΛ is a geodesic
lamination, there is a cover of Σ by open sets Ui called product charts such that
for each i, there is a product structure on the intersection

Ui ∩Λ ≈ Ci × I

where Ci is a closed subset of I. On the overlap of two product charts, these
product structures are compatible, in the obvious sense. In each product chart,
the closed set Ci is called the leaf space of Λ∩Ui, or more informally the local leaf
space of Λ.

Definition 1.40 A geodesic lamination Λ is minimal if every leaf is dense in Λ.

If we partially order the set of nonempty geodesic laminations in Σ by inclu-
sion, minimal laminations correspond to minimal elements of the partial order.
By Zorn’s lemma, every geodesic lamination contains a minimal sublamina-
tion. Note that two minimal laminations are either equal or have no leaves in
common.

Example 1.41 A simple closed geodesic is a minimal geodesic lamination.

A maximal collection of disjoint embedded simple closed geodesics in a sur-
face of genus g has 3g− 3 components. The following Lemma generalizes this
fact to collections of geodesic laminations:

Lemma 1.42 Let Σ be a closed surface of genus g. Then Σ admits at most 3g − 3
disjoint geodesic laminations, with equality only if all laminations are simple closed
geodesics.

Proof LetΛ = ∪iΛi be a finite union of geodesic laminations in Σ. Without loss
of generality, we can assume that each Λi is minimal. Then Λ is itself a geodesic
lamination.

Each component C of Σ−Λ is an open surface. It inherits a path metric from
Σ. The completion with respect to this metric is called the path closure of C, and is
a surface (possibly with ideal points) with geodesic boundary, which we denote
by C. Observe that each Λi contains at least two connected components of the
boundary of the path closure of Σ−Λ.

Some components of ∂C might be closed geodesics, and some might be infi-
nite geodesics. Any two infinite geodesics which are asymptotic are contained
in the same Λi. By doubling C, we get a finite area hyperbolic surface with
punctures; the area of such a surface is equal to −2πχ, by the Gauss–Bonnet
formula.

It follows that if some C is homeomorphic to the interior of a closed surface
with n ≥ 3 boundary components, then the area of C is at least 2π(n− 2) with
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equality if and only if C is genus 0 with n closed boundary components, and if
n = 1, 2 then the area of C is at least 2πn with equality if and only if C is genus
1 with 1 or 2 closed boundary components. Since the area of Σ is (4g− 4)π , the
lemma follows. 2

Geodesic laminations are generalizations of simple closed geodesics. For a
hyperbolic surface Σ, we let L(Σ) denote the set of geodesic laminations in Σ. If
Σ is compact, every geodesic lamination is also compact.

Definition 1.43 Let X be a compact metric space, and let H(X) denote the set
of closed subsets of X. Then H(X) is itself a compact metric space with respect
to the Hausdorff metric, denoted dH, defined by

dH(K1, K2) = max

(
sup
p∈K1

dX(p, K2), sup
q∈K2

dX(K1, q)

)

The associated topology is called the Hausdorff topology, and depends only on
the topology on X.

The Hausdorff topology gives L(Σ) a topology by restriction; with respect
to this topology, L(Σ) is compact and totally disconnected.

If Λ is a geodesic lamination in Σ, the preimage Λ̃ of Λ in Σ̃ is also a geodesic

lamination. We can associate to Λ̃ the system of pairs of endpoints of leaves in
S1

∞
, and obtain a closed subset KΛ ⊂ M whose points are unlinked.
The order structure on this system of pairs of points, together with the (topo-

logical) action of π1(Σ) on S1
∞

allows one to reconstruct the lamination Λ. As
in the case of simple closed curves, the reconstruction of Λ from the bound-
ary data varies continuously as a function of the hyperbolic structure on Σ. We
summarize this discussion as a lemma:

Lemma 1.44 If Σ, Σ′ are two hyperbolic surfaces, and φ : Σ → Σ′ is a homeo-
morphism, then there is an induced homeomorphism between the respective spaces of
geodesic laminations

φ∗ : L(Σ)→ L(Σ′)

which depends only on the homotopy class ofφ.

Example 1.45 Let φ : Σ → Σ be a homeomorphism. Let γ be a simple closed
geodesic on Σ. Thenφ∗(γ) is just the geodesic representative of the isotopy class
of the essential simple closed curve φ(γ).

It follows that we can discuss abstract geodesic laminations on a topological
surface Σ without specializing to a fixed hyperbolic structure, just as one can
discuss abstract algebraic varieties without specializing to a fixed ground field.

Definition 1.46 A geodesic lamination Λ ⊂ Σ is full if complementary regions
are all finite sided ideal polygons.
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If a geodesic lamination Λ is not full, some boundary curve of a tubular
neighborhood of Λ is essential. Note that any two full geodesic laminations
have nonempty intersection.

The following theorem is a first draft of a generalization of Theorem 1.13 to
higher genus surfaces. The content of the theorem is due to Nielsen, see [186].
For us, it will be an intermediate step in the proof of Theorem 1.78, due to
Thurston. The following proof is essentially due to Nielsen, but the combina-
torial discussion which follows it is streamlined somewhat; compare with [47].
It is significant that the proof of this theorem does not use the concept of trans-
verse measures. This is the approach that will more easily generalize to the setting
of taut foliations; see especially the proof of Theorem 9.12 in § 9.2.

Theorem 1.47 Let φ ∈ MCG(Σ). Then one of the following three possibilities must
hold:

1. φ has finite order in MCG(Σ)
2. There is some finite disjoint collection of simple geodesics γ1 , . . . ,γn which are

permuted by φ∗ (in this case we sayφ is reducible)

3. φ∗ preserves a full minimal geodesic lamination Λ.

Proof We supposeφ does not have finite order in MCG(Σ). Then there is some
simple closed geodesic γ such that the iterates

γi := φi
∗(γ)

do not form a periodic sequence.
For, otherwise, we can choose γ, δ transverse and filling — i.e. such that com-

plementary regions to γ ∪ δ are disks. Since some finite power of φ∗ fixes both
γ and δ, it must fix each complementary region, and is therefore homotopic to
the identity.

So we can choose γ such that the iterates γi defined as above are not peri-
odic. Now, for any fixed hyperbolic structure on Σ, and for any constant T, there
are only finitely many simple closed geodesics on Σ with length ≤ T. It follows
that the length of the γi eventually increases without bound. On the other hand,
for any fixed n, we have a formula for the cardinality of the intersection

#{γi ∩ γi+n} = Kn < ∞

where Kn is independent of i.
Now, L(Σ) is compact, so we can extract a subsequence ni for which

γni
→ Λ′

in the Hausdorff topology. We let Λ be a minimal sublamination of Λ′.
Suppose Λ is a simple closed geodesic. Since Λ ⊂ Λ′, and Λ′ is the Haus-

dorff limit of the γni
whose lengths increase without bound, it follows that
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for sufficiently large i, the γni
contain arbitrarily long segments which spiral

around a tubular neighborhood of Λ′. If Λ′ intersects φn
∗(Λ

′) transversely for
some n, then γni

and γni+n will have arbitrarily many points of intersection,
contrary to our earlier estimate. This contradiction shows that Λ and φn

∗(Λ)
do not cross transversely for any n. By Lemma 1.42, φi∗(Λ) = Λ for some
0 < i ≤ 3g− 3 and we are done in this case too.

So we may assume without loss of generality that Λ is not a simple closed
geodesic. Since it is minimal, no leaf of Λ is isolated. It follows that the set
of points where φ∗(Λ) and Λ cross transversely contains no isolated points.
If this set is nonempty, it is uncountable. In this case, since Λ is contained in
the Hausdorff limit of the γni

, and since transverse intersections of geodesics
are stable under perturbation, the cardinality of γni

∩ γ1+ni
is unbounded as

i→ ∞, contradicting our earlier estimate.
This contradiction implies that Λ and φ∗(Λ) have no transverse intersec-

tions (although they may be equal) and by a similar argument, the same is true
of Λ and φn∗(Λ), for any n. By Lemma 1.42, there is some 0 < i ≤ 3g− 3 such
thatφi

∗(Λ) = Λ.
If Λ is not full, some boundary curve of a tubular neighborhood of Λ is

essential in Σ. By construction, this boundary curve is periodic, and disjoint
from its translates, so we are done. Otherwise, Λ is full, and thereforeφ∗(Λ) is
equal to Λ. 2

A careful combinatorial analysis reveals more details aboutΛ. Letφ,γ,Λ be
as above. Since Λ is minimal and full, γ is transverse to Λ. Since Λ is minimal,
γ must cross every leaf. Let P be a complementary polygon to Λ, and let l be

a boundary leaf of P. Let P̃ denote a lift of P to Σ̃, and let l̃ ⊂ Λ̃ be the corre-

sponding lift of l. Let γ̂ be a component of the preimage of γ which crosses l̃.
Since φ∗ fixes Λ, after replacing φ∗ by a finite power if necessary, we can as-

sume φ∗ fixes every boundary leaf of Λ. Letφ∞ ∈ Homeo(S1
∞

(Σ̃)) be some lift

of φ which fixes l̃. Note that φ∞ fixes the vertices of P̃ pointwise. Let I ⊂ S1
∞

be the interval bounded by l̃ and which intersects no other vertex of P̃. Since

Λ is minimal, l̃ is a limit of a sequence of leaves l̃i, each of which intersects the

interior of I. None of the l̃i share an endpoint with l̃; we will defer the proof of
this fact until Lemma 1.53.

Since φ∞ fixes l̃, the iterates φi
∞

(γ̂) must cross l̃ for every i. On the other
hand, by the definition of γ and Λ, this sequence of geodesics contains a sub-

sequence which converges to a leaf m of Λ̃. Observe that m must share an end-

point with l̃. Since m cannot cross any other edge of P̃, it follows that the other

endpoint of m is in the closure of I. Since the l̃i converge to l̃ but do not share an

endpoint, it follows that m and l̃ must actually coincide. Furthermore, it follows
that at least one endpoint of I is an attracting fixed point for the dynamics of
φ∞ on I.
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In fact, if one endpoint of I is attracting forφ∞, then both endpoints of I must

be attracting for φ∞, or else φ∞(l̃i) would intersect l̃ j transversely for suitable
i, j. We deduce from this thatφ∞ must have other fixed points in the interior of
I with (partially) repelling dynamics.

Lemma 1.48 φ∞ as above has a single repelling fixed point in each such interval I.

Proof Suppose not, so that there is a maximal closed interval J contained in the
interior of I whose endpoints are fixed byφ∞. By applying negative powers of

φ∞ to the l̃i, we see that the endpoints of J are the endpoints of another leaf n

of Λ̃.
By applying Theorem 1.47 to φ−1 in place of φ, we see that φ∗ preserves

two geodesic laminations, and in fact that some sequence of iterates of φ−1 ap-
plied to γ converges to a full minimal geodesic lamination which we denote
temporarily by Λ′. By the earlier discussion, φ−i

∞
(γ̂) converges to a leaf m′ of

Λ̃′ which is asymptotic at one end to n. But minimal laminations which con-
tain leaves which are asymptotic are equal, so Λ is equal to Λ′, contrary to the

fact that m′ crosses leaves l̃i transversely. This contradiction shows that J must
consist of at most a single point, and proves the lemma. 2

We relabelΛ and Λ′ as Λ±, and refer to Λ+ as the stable lamination ofφ, and
Λ− as the unstable lamination.

The dynamics of φ are seen to be particularly
simple after lifting to the universal cover. Each

lift φ∞ of φ stabilizing a lift P̃ of a comple-
mentary polygon P to Λ+ has finitely many at-

tracting fixed points which are the vertices of P̃,
and the same number of repelling fixed points,

which are the vertices of an ideal polygon Q̃
which projects to a complementary polygon Q

to Λ−. In the figure, P̃ is “dashed” and Q̃ is
“solid”.

One sees from this dynamical picture that for every simple geodesic γ, the
iterates φi

∗(γ) converge to Λ+ as i → ∞, and converge to Λ− as i → −∞,
possibly together with finitely many proper leaves which are diagonals of com-
plementary regions. Since the length of the φi∗(γ) increases without bound as
i → ∞, it follows that φ∗ stretches long subarcs of Λ+ by a definite amount.
In fact, iterates of φ∗ stretch all sufficiently long arcs in Λ+ at a constant rate
λ > 1, and for any essential simple closed curve γ,

lim
i→∞

length(φi+1
∗ (γ))

length(φi∗(γ))
→ λ
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This is the most purely topological description of the pseudo-Anosov dynam-
ics of an automorphism φ which is neither finite order nor reducible.

1.7.5 Measured laminations

For the next few sections, our discussion is especially brief. For proofs, we direct
the reader to [196], [230] or [71].

Definition 1.49 An (invariant) transverse measure µ for a geodesic lamination
Λ is a non-negative Borel measure on the local leaf space of Λ in each product
chart which is compatible on the overlap of distinct charts.

If τ is transverse to Λ, then we can write τ as a disjoint union of transversals
τ = ∪iτi where each τi is contained in a local product chart Ui. Let Ui ∩ Λ ≈
Ci × I and let π i : Ui ∩ Λ → Ci denote the (local) projection to the leaf space.
Then µ assigns a Borel measure µi to each Ci, so we may define

µ(τ) = ∑
i

µi(π
i(τi))

Here we are implicitly assuming that τi ∩ Λ → Ci is 1-1 for each i, or else we
should interpret π i(τi) with multiplicity.

We will sometimes define a transverse measure implicitly by giving its value
on each transversal.

Example 1.50. (Hitting measure) Let γ be a simple closed geodesic. Then γ ad-
mits an atomic transverse measure called hitting measure, for whichµ(τ) is equal
to the cardinality of µ ∩ τ for each transversal τ .

Example 1.51 Let Λ be geodesic lamination, and let γ ⊂ Λ be an infinite em-
bedded geodesic in Σ. Pick a basepoint p ∈ γ, and for each T > 0 let NT(p)
denote the geodesic subarc of γ with length 2T and center p. For each transver-
sal τ and each T > 0 define

µT(τ) =
#{τ ∩ NT(p)}

2T

Then for some subsequence Ti → ∞ the µT converge to a nontrivial transverse
measure on Λ.

We define the support of µ to be the set of leaves contained in the support of
some (and therefore every) µi in some product chart. For any Λ,µ the support
of µ is a sublamination of Λ. We say µ has full support if the support is equal to
Λ.

Example 1.52 If Λ is minimal, it admits a transverse measure which is neces-
sarily of full support, as in Example 1.51.

Using transverse measures, we can now prove:
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Lemma 1.53 LetΛ be a minimal lamination on a compact hyperbolic surface Σ. Ifγ,γ′

leaves of Λ are asymptotic, then they are boundary leaves of the same complementary
subsurface.

Proof Lift to H2. Then γ,γ′ lift to γ̃, γ̃′ which share a common endpoint. If they
are not both boundary leaves of the same complementary surface, then there is
a transversal τ with endpoints on γ̃, γ̃′ which intersects an uncountable number

of leaves of Λ̃. If µ is an invariant transverse measure for Λ, then µ(τ) > 0.
Since γ̃, γ̃′ are asymptotic, there is an arbitrarily short transversal τ ′ with

endpoints on γ̃, γ̃′ which intersects the same leaves as τ , and therefore µ(τ ′) =
µ(τ). On the other hand, since Λ is minimal, µ has no atoms, and therefore
by compactness of Σ for every ǫ there is a δ such that all transversals σ with
length(σ) ≤ δ satisfy µ(σ) ≤ ǫ. This contradiction proves the lemma. 2

If µ is a transverse measure, t ·µ is a transverse measure for any t > 0. Sim-
ilarly, any convex combination of transverse measures is a transverse measure.
Let Ui be a finite family of product charts for Λ with leaf spaces Ci, and let µi

be the measure on Ci associated to µ. The space of measures on each Ci, topol-
ogized with the weak-* topology, is locally compact. It follows that the set of all
invariant transverse measures supported by a given Λ is the cone on a compact
convex space (called a Choquet simplex), whose extremal points correspond to
mutually singular measures. These extremal invariant measures are said to be
ergodic. See [200].

Remark We will see, when we come to discuss the relationship between mea-
sured laminations and weighted train tracks, that for a geodesic lamination Λ
in a closed hyperbolic surface, the space of invariant transverse measures sup-
ported by Λ is the cone on a finite dimensional (Euclidean) simplex. On the
other hand, the reasoning in the paragraph above is valid for more general ab-
stract laminations, which do not come with an embedding into a manifold. We
will encounter such abstract laminations in Chapter 6.

We denote the set of all fully measured geodesic laminations on Σ by ML(Σ).

Definition 1.54 A laminationΛ is uniquely ergodic if it admits a unique invariant
transverse measure, up to projective equivalence.

It is instructive to observe that there are examples of laminations Λ which
are minimal but not uniquely ergodic. This means that they admit mutually
singular invariant transverse measures with full support!

It is easier to produce an example of such a lamination Λ which lives in the
unit tangent bundle UTΣ than in Σ itself.

Example 1.55 We define inductively a string of 1’s and 2’s by the following
procedure:

1. Define S1 = 2
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2. For any stringσ of 1’s and 2’s define the complement of σ , denoted c(σ), to
be the string obtained from σ by substituting 2 for each 1, and 1 for each
2. E.g. c(122122) = 211211

3. For n > 1, define Sn to be the string

Sn = Sn−1c(Sn−1)c(Sn−1) · · · c(Sn−1)

where there are f (n)− 1 copies of c(Sn−1), and f (n) is chosen such that
f (2) = 4, and

∏
n

f (n)− 1

f (n)
= r > 1/2

Then Si is the initial string of Si+1 for each i, and the limit S∞ has the following
properties:

1. Any finite string which appears in S∞ appears with density bounded be-
low by some positive constant

2. The proportion of 2’s in Sn is at least r for n odd and at most 1− r for n
even

Let Σ be a genus 2 surface, obtained as the union of two 1-holed tori T1, T2.
Let r be an infinite geodesic ray in Σ obtained from S∞ as a union of loops in
the Ti representing (1, 1) curves, where the first two loops are in T2, then one
loop in T1, and so on according to the “code” S∞. Then r can be pulled tight to
a unique geodesic ray, with respect to any hyperbolic structure on Σ. (Compare
with Example 1.27)

Now, r might not be embedded, but it lifts to an embedded ray in the unit
tangent bundle UTΣ. Let r denote the closure of r in UTΣ. Then the set of com-
plete bi-infinite lines in r is an abstract 1-dimensional lamination in UTΣ, which
we denote by Λ. Note that for a generic choice of a basepoint (in Σ) for r, we
have Λ = r − r. Property (1) implies that Λ is minimal. Property (2) implies
that every leaf contains two sequences of segments whose normalized hitting
measures converge to invariant transverse measures µ1 ,µ2 such that if m1, m2

are meridians on T1, T2, respectively, then

µi(m j) ≥ r if i = j and µi(m j) ≤ 1− r otherwise

In particular, these measures are not proportional, and Λ is minimal but not
uniquely ergodic.

Veech [245] gave a similar but more complicated example which can be re-
alized by an embedded lamination in a genus 2 surface.

Such examples arise from the tension between geometry and measure the-
ory. Informally, in a hyperbolic surface, geometric correlations decay exponentially,
whereas measurable correlations decay linearly. So one can build laminations in
which leaves are dense without being equidistributed, and this is the source of the
failure of unique ergodicity.
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Remark The measured lamination Λ constructed in Example 1.55 projects to
an “immersed” measured lamination in Σ. Such objects are called geodesic cur-
rents, and their theory is developed e.g. in [18].

1.7.6 Intersection number

For j = 1, 2 let Λ j,µ j be a pair of transverse measured geodesic laminations.
The intersection Λ1 ∩ Λ2 may be covered with mutual product charts Ui, for
which

Λ1 ∩Λ2 ∩Ui ≈ C1
i × C2

i

where the C
j
i are the local leaf spaces of Λ j in Ui.

Then the measures µ
j
i on C

j
i determine a product measure µ1

i × µ2
i on C1

i ×
C2

i which defines a global measure µ1 ×µ2 on Λ1 ∩Λ2.

Definition 1.56 LetΛ j,µ j be as above. The intersection number of the (measured)
laminations Λ1,Λ2 is defined by

i(Λ1,Λ2) :=
∫

Λ1∩Λ2

d(µ1 ×µ2)

(here our notation suppresses the dependence of i(·, ·) on the measures µ j)

If Λ1 and Λ2 contain a common sublamination Λ, define

i(Λ1,Λ2) = i(Λ1/Λ,Λ2/Λ)

In particular, i(Λ,Λ) = 0 for any Λ.

Example 1.57 Forα,β simple closed geodesics with their hitting measure, i(α,β)
is the cardinality of the intersection of efficient representatives ofα,β.

Intersection number defines a bilinear map

i : ML(Σ)×ML(Σ)→ R+

We topologize ML by the weakest topology for which this map is continuous.
With respect to this topology, ML is homeomorphic to a positive cone in R6g−6.

The set of measured laminations consisting of finitely many simple closed
geodesics, weighted with some multiple of the hitting measure, is dense in
ML(Σ). One way to see this is to observe that the support of any measure is
contained in leaves which are recurrent; i.e. for a.e. leaf l in the support of a
transverse measure µ, and for any open set U ⊂ Σ which intersects l, the set of
points l ∩U is unbounded in l in either direction; this is really just a simple case
of the Poincaré Recurrence Theorem (see e.g. [204]) applied to the geodesic flow
on Σ. In particular, arbitrarily long segments of l can be well-approximated by
long simple geodesics, and one can therefore efficiently approximate most of
the mass of a measured lamination in this manner.

A more direct and simple proof uses the relationship between measured
laminations and weighted train tracks; we defer this argument until Lemma 1.73.
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Warning 1.58 The set of laminations consisting of finitely many simple closed
geodesics is not dense in L(Σ) in the Hausdorff topology.

If φ : Σ→ Σ′ is a homeomorphism, then there is an induced map

φ∗ : ML(Σ)→ ML(Σ′)

which agrees with the previous definition of φ∗ on supports, and which pre-
serves intersection number. It follows that if S is a topological surface of genus
at least 2, then we may unambiguously define ML(S) and i : ML(S)×ML(S)→
R+.

Example 1.59 Suppose Λ+ is the stable lamination of some φ ∈ MCG(S). The
space of measures with support contained in Λ+ is a cone on a compact (Cho-
quet) simplex. The map φ∗ acts projectively on this simplex, and has a fixed
point. So there is an invariant transverse measure µ+ for Λ+, and

φ∗(Λ+,µ+) = (Λ+, λµ+)

where λ > 1 is the same λ that we constructed at the end of §1.7.4.

The space PML(S) of projective measured laminations is the quotient

PML(S) := (ML(S)− 0)/R+

which is homeomorphic (as a space) to a sphere of dimension 6g− 7; see [230]
for a proof.

By Example 1.59 we see that any φ ∈ MCG(S) which is not finite order or
reducible has at least two fixed points in PML(S).

Lemma 1.60 Let Λ± be the stable and unstable laminations of φ, with projectively
invariant measures µ±. Suppose φ∗ multiplies µ+ by λ > 1. Then φ∗ multiplies µ−

by λ−1.

Proof Suppose φ∗ multiplies µ− by λ′. By abuse of notation, we denote the
measured stable and unstable laminations just by their supports Λ±.

SinceΛ± are transverse, i(Λ+,Λ−) 6= 0. Since intersection number of geodesics
is preserved byφ, we have

i(Λ+,Λ−) = i(φ∗(Λ+),φ∗(Λ−)) = i(λ ·Λ+, λ′ ·Λ−) = λλ′ · i(Λ+,Λ−)

and therefore λ′ = λ−1. 2

1.7.7 Length functions

Letα ⊂ S be an essential simple closed curve. For each ( f , Σ) ∈ T(S) the image
f (α) is isotopic to a unique geodesic ( f (α))g. Let

ℓα : T(S)→ R+

be the function whose value on ( f , Σ) is the length of ( f (α))g. We identify α
with the element of ML(Σ) with support equal to α and measure the hitting
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measure. We extend ℓ by linearity to simple geodesics with arbitrary measures,
and by continuity to all of ML(S):

ℓ : T(S)×ML(S)→ R+

This function induces the same topology on T(S) as we defined in §1.7.1.

Thurston used ℓ to define an embedding from T(S) into the space RML(S) of
linear functions on ML(S). After quotienting by R∗, the map ℓ descends to an

embedding of T(S) into the projective space PRML(S). The function i defines an

embedding of PML(S) in PRML(S), where it compactifies the image ℓ(T(S)).
With its subspace topology inherited from this embedding, the union

T(S) ∪PML(S)

is homeomorphic to a closed ball of dimension 6g− 6, and the action of MCG(S)
on T(S) extends continuously to this closed ball. This justifies the description of
PML(S) as the Thurston boundary of T(S).

See [230] for details.

1.8 Train tracks

Train tracks were introduced by Thurston in [230]. They are a very useful tool
which in many ways reduces the study of MCG(S) to combinatorics and linear
algebra. Similar ideas were introduced earlier by Dehn and Nielsen.

Definition 1.61 A train track τ is a finite embedded C1 graph in a surface S with
a well-defined tangent space at each vertex.

Said another way, a train track is just a graph with a combing at each vertex.
Near each vertex, if one orients the tangent space locally, one can distinguish
between incoming and outgoing edges. It is important to note that we do not
insist that this local orientation should extend to a global orientation on τ .

FIG. 1.5. A train track on a genus 2 surface

Since a train track τ is C1, it has a well-defined normal bundle, and a regular
neighborhood N(τ) of τ in S can be foliated by intervals which are transverse
to τ .
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1.8.1 Carrying maps

One train track τ is said to carry another train track τ ′ if τ ′ can be isotoped
(preserving the C1 structure) so that at the end of the isotopy, τ ′ is transverse to
the intervals in this I-bundle structure on N(τ). We write τ ′ - τ in this case.

Collapsing each fiber of the I bundle structure defines a map from N(τ) to
τ . (Technically, this collapse defines a new quotient surface in which the image
of N(τ) is a train track, and the pair (quotient surface, quotient train track) can
be identified with the pair (S, τ) in a canonical way up to isotopy). If τ carries
τ ′, then after isotopy and projection, we get a map from τ ′ to τ which is an
immersion with respect to the C1 structure. We call this the carrying map.

Two fundamental operations on train tracks are splitting and shifting, illus-
trated in Fig 1.6 below. The inverse of these operations are examples of carrying
maps, of a very simple kind.

↓ shift
split−−→

ր

ց

FIG. 1.6. Splitting and shifting

1.8.2 Weights

Definition 1.62 τ is recurrent if for every edge e of τ there is a simple closed
curve c ⊂ S which is carried by τ such that under the carrying map, e is con-
tained in the image of c.

If α is a union of disjoint simple closed curves in S (a multicurve) which is
carried by τ , thenα determines a weight on τ , which is to say a map wα from the
edges of τ to the non-negative integers. The value of wα on an edge e is just the
number of preimages in α of a point in e under the carrying map. Notice that
the sum of wα on incoming edges is equal to the sum of wα on outgoing edges
at each vertex, with respect to a choice of local orientation. The set of such linear
equalities on weights, one for each vertex of τ , are called the switch conditions.

Construction 1.63 Let τ be a train track, and let w be an integral weight, satisfy-
ing the switch conditions at each vertex. For each edge e of τ , put w(e) parallel
copies of e in a tubular neighborhood N(e), transverse to the normal foliation.
At each vertex, glue the ends of these intervals together in pairs, in such a way
that the resulting 1-manifold is embedded. The result is a multicurve which is
carried by τ .
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In general, we define a weight on τ to be an assignment of a non-negative real
number to each edge, subject to the switch conditions. Thus the set of weights
W(τ) carried by τ is a convex cone in a real vector space, whose integral points
correspond to multicurves carried by τ . Notice that τ admits a weight satisfying
the switch conditions which is positive on each edge if and only if it is recurrent.

If τ carries τ ′, any weight w′ on τ ′ descends to a weight w on τ as follows:
if c : τ ′ → τ is the carrying map, for an edge e of τ and a generic point p ∈ e,
the preimage c−1(p) = q1 , . . . , qn consists of points in the interiors of edges
e′1, . . . , e′n of τ ′. Then define

w(e) = ∑
i

w′(e′i)

The fact that w′ satisfies the switch conditions for τ ′ implies that w is well-
defined, and satisfies the switch conditions for τ .

A weight can be pushed forward under any carrying map, but only certain
kinds of splitting are compatible with any given weight.

1.8.3 Essential train tracks

The complementary regions to a train track τ are (open) surfaces. Let R be a
complementary region to τ , and R the closure of R in the path topology. Then
there is a map from ∂R to τ which is a local embedding. At each vertex of τ in
the image of ∂R, the incident edges of ∂R either join together to form a smooth
edge, or else they make a cusp singularity. As with ideal polygons, we define
the Euler characteristic of R to be equal to the usual Euler characteristic of the
underlying topological surface, minus 1/2 the number of cusps.

With this definition, for any smooth subsurface S′ ⊂ S tiled by comple-
mentary regions, the Euler characteristic of S′ can be recovered from the Euler
characteristic of the constituent tiles:

χ(S′) = ∑
R⊂S′

χ(R)

We say that τ is essential if every complementary region has negative Euler
characteristic, and full if every complementary region is a disk with at least three
cusps. We also refer to such disks as ideal triangles, ideal quadrilaterals, etc.

Remark Some authors reserve the adjective “full” for train tracks whose com-
plementary regions are all ideal triangles.

Any simple closed curve carried by an essential train track is (homotopi-
cally) essential in S. For, otherwise, c bounds a disk D which can be tiled by a
finite collection of complementary regions to τ . But then

1 = χ(D) = ∑
R⊂D

χ(R) < 0

which is a contradiction.
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It is a theorem of Thurston that for any closed, oriented surface S with
χ(S) < 0, one can construct finitely many recurrent, essential train tracks τ1, . . . , τn

which carry every essential multicurve (this is the train track analogue of the
compactness of L(Σ)). The weights supported by a given train track can be
thought of as a manifold chart, in which the weights corresponding to multic-
urves are an integer lattice. The finitely many charts associated to each of the τi

piece together to give a cone over a sphere of dimension 6g− 7 where g is the
genus of S.

See [230] or [196] for details.

1.8.4 Laminations are carried by train tracks

Every geodesic lamination Λ is carried by some train track:

Construction 1.64 Let Λ be an abstract geodesic lamination on Σ. Fix a hyper-
bolic structure on Σ. Then for any sufficiently small ǫ, the open ǫ neighborhood
N(Λ) of Λ in Σ can be foliated by intervals transverse to Λ, as follows. For
p ∈ N(Λ)−Λ, we say p ∼ q if q is the point on Λ closest to p. If there are two
closest points q1 , q2 then q1 ∼ p ∼ q2. The leaves of the foliation of N(Λ) are
the equivalence classes generated by ∼.

Collapsing these intervals to points collapses N(Λ) to a graph, which admits
the structure of a train track τ in such a way that the collapsing map is a carrying
map on any geodesic segment contained in Λ.

The train track τ obtained by this procedure will depend on the choice of
(sufficiently small) ǫ and the hyperbolic structure on Σ. Generally speaking, as
ǫ is decreased, the train tracks undergo a sequence of splittings; in the limit as
ǫ goes to zero, one recovers the original lamination.

By varying the hyperbolic structure or ǫ, one sees that any two train tracks τ
obtained by Construction 1.64 are related by a finite sequence of splittings and
shiftings and their inverses.

If Λ is measured by µ, then Construction 1.64 defines a weight wµ on τ , as
follows. Let c : Λ → τ denote the carrying map. If p is a point in the interior of
an edge e, define

wµ(e) = µ(c−1(p))

One can check that this is well-defined. If µ has full support, then wµ is positive
on every edge, and τ is recurrent.

By means of this construction, one can prove an analogue of Theorem 1.47
for train tracks. This theorem is due to Thurston and is the second step towards
the proof of Theorem 1.78. For details, one should consult [230] or [196]:

Theorem 1.65 Let φ be a homeomorphism of Σ. Suppose that φ is not reducible, and
does not have finite order in MCG(Σ). Then there is some full essential recurrent train
track τ so thatφ(τ) is equivalent to τ , up to splitting and shifting.
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Proof By Theorem 1.47,φ∗ preserves a minimal geodesic lamination Λ+ with
disk complementary regions. By Construction 1.64, Λ+ is carried by some es-
sential train track τ . The hyperbolic metric g on Σ pushes forward to a hyper-
bolic metric φ∗(g) on Σ for which φ(Λ+) is a geodesic lamination, carried by
φ(τ). As we deform the hyperbolic metric fromφ∗(g) back to g through a fam-
ily of hyperbolic metrics gt where t ∈ [0, 1], the laminationφ(Λ+) deforms back
to Λ+ through a family of (gt-) geodesic laminations Λt. Construction 1.64 as-
sociates a train track τt to each Λt. As t goes from 0 to 1, φ(τ) deforms back to
τ , undergoing splits, shifts and their inverses at a discrete set of intermediate
values of t.

Since Λ+ is minimal, it admits an invariant transverse measure µ of full
support, which pushes forward to a weight wµ on τ . Since wµ is positive on
every edge, τ is recurrent. 2

A sequence of splits and shifts and their inverses taking τ to φ(τ) induces
an automorphism φ∗ of the space of weights W(τ). With respect to a basis con-
sisting of the edges of τ ,φ∗ can be expressed as an integral matrix P.

If φ∗, τ are as in Theorem 1.65 then P is non-negative. This is because the
automorphism φ∗ uniformly stretches the leaves of Λ+, and uniformly com-
presses the leaves ofΛ−. This has the effect of pulling oppositely oriented cusps
of complementary regions to τ away from each other, and contracting the dis-
tance between (almost parallel) leaves; combinatorially, this corresponds to a
collapse which is inverse to a splitting move. A collapse is represented by a
non-negative integral matrix, and so is a composition of collapses.

A non-negative matrix preserves the sector of real projective space con-
sisting of points with non-negative homogeneous co-ordinates; this sector is
a closed ball, so the Brouwer fixed-point theorem implies that there is a non-
negative real eigenvector (called a Perron–Frobenius eigenvector) for P with pos-
itive eigenvalue λ > 1. Note that since P is integral, λ is algebraic. The eigen-
vector determines a non-negative weight w on τ such that

φ∗(w) = λw

Of course, w = wµ from before.
Notice that both P and P−1 are integral; it follows that both λ and λ−1 are

algebraic integers. In particular, λ is a rational integer if and only if λ = 1, and P
is reducible in this case.

Example 1.66 Let Σ be a 1-punctured torus. We will illustrate the effect of a
sequence of Dehn twists, elementary collapses, and isotopies, and observe that
the result is carried by a train track τ with three branches. With respect to a
basis for the weights supported by τ , φ can be represented by the matrix

φ ∼
(

2 1
1 1

)

which has largest eigenvalue
√

5+3
2 and eigenvector (1,

√
5−1
2 ).
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Topologically, let τ be the train track depicted in Fig 1.7. Let φ be obtained
by a composition of twists, collapses, and isotopies, as follows.

First, perform a positive Dehn twist τm in a meridian:

τm isotopy

FIG. 1.7. τm composed with an isotopy

Then we perform a positive Dehn twist τl in a longitude, and collapse:

τl collapse

FIG. 1.8. τl composed with a collapse

Finally, a shift composed with an isotopy restores the original train track:

shift isotopy

FIG. 1.9. a shift and an isotopy

Explicit formulae for the action of MCG(S) on train track charts are given in
the Addendum of [196].

1.9 Singular foliations

A foliation is a way of filling up a manifold with disjoint submanifolds (called
leaves) of lower dimension. For instance, the plane is foliated by horizontal lines.
A foliation on a surface is a decomposition which looks topologically like the
horizontal foliation of the plane in small open charts (see Chapter 4 for a more
substantial discussion).

Definition 1.67 A singular foliation F on a surface S is a foliation in the comple-
ment of finitely many points pi, known as the singularities. Near each singular-
ity, there is an open neighborhood such that the leaves of F look like the level

sets in C of the function Im(zni/2) = constant for some natural number ni ≥ 3,
where we choose co-ordinates so that the singular point is at 0.



38 SURFACE BUNDLES

Away from the singularities of F, the surface S may be covered by product
charts Ui where Ui ≈ I × I in such a way that leaves of F ∩ Ui are taken to
factors point× I. Thus, as with geodesic laminations, we define the local leaf
space of F in a product chart.

FIG. 1.10. A (nonsingular) leaf in a singular foliation on a genus 2 surface. The
foliation has two singular points of index 4.

Singular foliations are closely related to geodesic laminations:

Construction 1.68 Let F be a singular foliation on a hyperbolic surface Σ. Then
each nonsingular leaf of F is isotopic to a unique embedded (typically noncom-
pact) geodesic representative. The closure of the union of these geodesics is a
geodesic lamination Λ.

Lemma 1.69 For a closed surface S one must have

∑
i

2− ni

2
= χ(Σ)

for every singular foliation.

Proof The Euler characteristic of S is the obstruction to finding a trivialization
of the tangent bundle. By multiplicativity, this is twice the obstruction to finding
a trivialization of the projective tangent bundle. Away from the singularities,
the tangent lines to F define such a trivialization; thus the Euler characteristic
may be computed by summing up local contributions from the singular points.

2

It follows that there are at most 4g− 4 singular points on any singular folia-
tion.

1.9.1 Transverse measures

Definition 1.70 An (invariant) transverse measure µ for a (codimension one) sin-
gular foliation F is a non-negative Borel measure on the local leaf space of F in
each product chart, which is compatible on the overlap of distinct charts.
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We only consider singular foliations with transverse measures of full sup-
port and no atoms. As with transverse measures for geodesic laminations, such
a measure assigns a non-negative number µ(τ) to each transversal τ which is
countably additive under disjoint union, and invariant under a homotopy from τ

to τ ′ during which every point in τ stays in a fixed leaf of F.
We also call a pair (F,µ) a measured (singular) foliation. There is an intimate

relationship between weighted train tracks and measured singular foliations.

Construction 1.71 Let τ be a full, recurrent, essential train track and let w ∈
W(τ) be positive on every edge. We show how to associate naturally a mea-
sured singular foliation (F,µ) to the pair (τ , w).

For each edge e of τ , let Re be a Euclidean rectangle with height w(e) and
arbitrary width. The switch conditions ensure that at each vertex, the sum of the
heights of the rectangles Rei

for the incoming edges ei is equal to the sum of the
heights of the rectangeles Re j

for the outgoing edges e j, so we may glue these

rectangles up along all vertical edges. After this gluing, each boundary compo-
nent of the resulting surface is a finite sided polygon; such an n-sided polygon
can be collapsed to an n-prong singularity. The resulting surface is (singularly)
foliated by the horizontal lines on each rectangle Re, and is tranversely mea-
sured via the height co-ordinate in each rectangle.

FIG. 1.11. A Riemann surface obtained by gluing Euclidean rectangles. After
trimming and an isotopy, the new surface has heights which are propor-
tional to the old

Example 1.72 Let τ be the projectively invariant weighted train track from Ex-
ample 1.66. Then τ has three branches, with weights

1,

√
5− 1

2
,

√
5 + 1

2

We can build a punctured torus out of three Euclidean rectangles R1, R2, R3

with heights equal to the weights of the corresponding branches, by gluing
their vertical edges together suitably. The punctured torus inherits a (singu-
lar) measured foliation. Splitting open the train track (and adjusting the result-
ing weights) induces an operation on the resulting surface called trimming; see
Fig. 1.11.

More generally, if τ is not full, some complementary regions might be more
complicated than polygons. If T is a connected surface with nonempty bound-
ary, T deformation retracts to a graph called a spine. Any two spines for T are
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related by collapsing or expanding a sequence of embedded arcs joining two
vertices; this operation on a spine is called a Whitehead move, and the equiva-
lence relation it generates is called Whitehead equivalence. If T has cusp singular-
ities along its boundary, we can define a spine for T to be a properly embedded
graph in T− cusps to which T properly deformation retracts. It makes sense to
define equivalence up to Whitehead moves for spines of surfaces with cusps.

If (τ , w) is a weighted train track which is not full, we build (F,µ) by glu-
ing Euclidean rectangles as in Construction 1.71, and sewing in a copy of a
spine for each complementary region. If (τ , w) gives rise to a measured folia-
tion (F,µ), the set of singular leaves of F form a graph, made from spines of
complementary regions to τ . If τ is related to τ ′ by elementary splits and shifts,
then (F′,µ′) is related to (F,µ) by Whitehead moves on the singular graph. By
analogy with measured geodesic laminations, we define the space MF(S) of
singular measured foliations on S up to Whitehead equivalence, and its projec-
tivization PMF(S).

A (measured) singular foliation F may be further split open to a (measured)
geodesic lamination, as in Construction 1.68. This procedure inverts Construc-
tion 1.64 and defines a natural equivalence between measured foliations and
measured laminations. The identification of MF with ML lets us define a topol-
ogy on MF. Also, compare with Construction 1.63.

We thus have a relationship between weighted essential train tracks up to
equivalence, measured laminations, and measured foliations up to equivalence.
A measured lamination (Λ,µ) can be collapsed to a weighted train track (τ , w).
A weighted train track gives instructions to build a measured singular foliation
(F,µ) by gluing Euclidean rectangles, and sewing in spines. And a measured
singular foliation can have its nonsingular leaves straightened to give a mea-
sured lamination. See Fig 1.12.

collapse glue rectangles

straighten leaves

FIG. 1.12. The relationship between measured laminations, weighted train
tracks and measured singular foliations

It makes sense to collapse a lamination to a train track, and to straighten a
singular foliation to a lamination, without reference to a transverse measure.
It follows that different elements of ML(Σ) with the same support are carried
by the same train track. In particular, the set of invariant transverse measures
carried by a geodesic lamination is the cone on a finite dimensional simplex, as
claimed earlier. Note that under this identification, the space ML inherits a nat-
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ural PL structure, with co-ordinates coming from weights in train-track charts.
Since rational weights are dense in the space of weights carried by any train
track, one obtains the following observation:

Lemma 1.73 Laminations consisting of finitely many weighted simple closed geodesics
are dense in ML.

1.9.2 Transverse pairs

The leaves of a measured singular foliation define a local co-ordinate on a sur-
face S. Suitable pairs of singular foliations define parameterizations of S.

Definition 1.74 A transverse pair of singular foliations F± on S are a pair of singu-
lar foliations F+, F− with the same singular set, satisfying the following local
conditions. Near each regular point, we may choose complex co-ordinates so
that the leaves of F+ are the level sets of Im(z) and the leaves of F− are the level
sets of Re(z). Similarly, at each singular point pi of index ni ≥ 3 we may choose

complex co-ordinates so that the leaves of F+ are the level sets of Im(zni/2) and

the leaves of F− are the level sets of Re(zni/2).

FIG. 1.13. Singular points of order 3,4,5

A pair of transverse measures µ± for F± assign lengths to integral curves
in leaves of F±, where a segment l contained in a leaf of F+ is transverse to
F−, and therefore has “length” µ−(l). If µ± have no atoms and full support, the
sum µ+ +µ− defines a genuine length function, analogous to an L1 metric on a
2 dimensional vector space.

1.10 Quadratic holomorphic differentials

Definition 1.75 A semi-Euclidean structure on a surface Σ is a Euclidean cone
manifold structure, whose cone locus consists of finitely many points pi at which
the cone angle is niπ for some natural number ni ≥ 3.

If a transverse pair of singular foliations F± admit nonsingular transverse
invariant measures, then integration with respect to these measures gives local
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Euclidean co-ordinates on Σ away from the branch points pi, and Σ inherits a
natural semi-Euclidean structure.

Away from the singularities, a semi-Euclidean structure on a surface Σ is
an example of a (non-maximal) (G, X)-structure where X = E2 and G = R2 ⋊
Z/2Z where the R2 factor is the group of translations, and Z/2Z acts as multi-
plication by −1.

One obtains therefore (locally) away from the singularities, a developing
map to E2 which is unique up to translation and multiplication by −1, and
which is an immersion. After identifying E2 with C, one can pull back the dif-
ferential dz2 on C to Σ via this developing map to define a holomorphic quadratic
differentialφ(z)dz2 (i.e. a holomorphic section of the square of the canonical bun-
dle) on the underlying Riemann surface of Σminus the singularities. In fact, the
differentialφ(z)dz2 extends holomorphically over the singularities of the semi-
Euclidean structure. Near a singular point of order m + 2, the functionφ(z) can
be expressed in terms of a local co-ordinate z as a convergent power series

φ(z) = zm + azm+1 + . . .

where m ≥ 1.
The transverse measures are given in terms of φ by integrating the length

elements |Im(
√
φ(z))dz| and |Re(

√
φ(z))dz|.

The set of holomorphic quadratic differentials on a given Riemann surface
form a complex vector space, whose dimension may be computed by using the
Riemann–Roch formula.

As we already remarked, a holomorphic quadratic differential is an element
of H0(Σ, K⊗2) where K is the bundle of holomorphic 1-forms. By the Riemann–
Roch theorem (see e.g. [112]),

dim(L(−K))− dim(L(2K)) = 1− g + deg(−K)

For a complex line bundle E, L(E) denotes the complex vector space of holo-
morphic sections of E, where we write the group operation on complex line
bundles (i.e. tensor product) additively, so that dim(L(2K)) is the number we
are trying to compute.

A section of−K is a holomorphic vector field on Σ. If g > 1 there are no such
vector fields. For, if there were, one could integrate and get a nontrivial family
of holomorphic self-maps from Σ to itself, and by uniformizing, a nontrivial
family of isometries of the corresponding hyperbolic surface. Since there are
only countably many closed geodesics on such a surface, each geodesic must be
preserved setwise. A typical long (immersed) geodesic cuts up Σ into arbitrarily
tiny polygons which must each be preserved, so no such family exists. It follows
that dim(L(−K)) = 0, and

dim(L(2K)) = g− 1 + 2g− 2 = 3g− 3
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So the space of singular Euclidean structures on a fixed underlying Riemann
surface is parameterized by the nonzero vectors in a complex vector space of
(complex) dimension 3g− 3.

Suppose Σ is a Riemann surface of genus g, andθ is a holomorphic quadratic
differential on Σ. For each t ∈ R we can define a new Riemann surface Σt home-
omorphic to Σ as follows. The differential θ defines local holomorphic charts
(Ui,ϕi) on Σ away from the singularities, by definingϕi to be exactly the class
of local holomorphic mapsϕi : Ui → C such that

ϕ∗i (dz2)|Ui
= θ|Ui

For each t ∈ R, let ψt : C→ C be the map defined by

ψt(x + iy) = etx + ie−ty

Then define a new holomorphic atlas in the complements of the singularities of
θ by (Ui,ϕ

t
i) where

ϕt
i = ψt ◦ϕi

This holomorphic atlas extends uniquely over the singularities to define a new
Riemann surface Σt.

Let M(S) denote the moduli space of holomorphic structures on a topologi-
cal surface S of genus g. LetΣ1, Σ2 ∈M(S) and letφ : Σ1 → Σ2 be an orientation
preserving diffeomorphism. Then we define the dilatation of φ pointwise by

µ =
∣∣∣φz

φz

∣∣∣

where φz and φz denote ∂φ
∂z and ∂φ

∂z respectively. Since φ is an orientation pre-
serving diffeomorphism, 0 ≤ µ < 1 pointwise. Define K(φ) by the formula

K(φ)− 1

K(φ) + 1
= sup

p
µp

Then the Teichmüller distance from Σ1 to Σ2 is defined to be

dT(Σ1, Σ2) =
1

2
inf
φ

log K(φ)

It turns out that this defines a geodesic metric on Mg called the Teichmüller
metric, and the families Σt for t ∈ R as defined above are exactly the geodesics
in this metric.

Let T(S) denote the space of marked holomorphic structures on S. That is,
T(S) consists of pairs ( f , Σ) up to equivalence ( f1, Σ1) ∼ ( f2, Σ2) if there is a
holomorphic map i : Σ1 → Σ2 for which i ◦ f1 is homotopic to f2. Then MCG(S)



44 SURFACE BUNDLES

acts on T(S) with quotient M(S), and the Teichmüller path metric lifts to a
global geodesic metric on T(S). This exhibits T(S) as the (orbifold) universal
cover of M(S), and shows that the orbifold fundamental group π1(M(S)) of
moduli space is isomorphic to MCG(S).

The uniformization theorem identifies T(S) with the Teichmüller space of
marked hyperbolic structures on S defined earlier, and justifies our notation.
The topology on T(S) induced by dT is the same as the topology induced by
the function ℓ. Note that the Riemann–Roch theorem gives another method to
count the dimension of T(S).

See [97], [149] or [139] for more about quadratic holomorphic differentials
and Teichmüller theory.

1.11 Pseudo-Anosov automorphisms of surfaces

We are now ready to define pseudo-Anosov automorphisms.

Definition 1.76 A map φ ∈ MCG(S) is pseudo-Anosov if there are a transverse
pair of transversely measured singular foliations F±,µ± of S where µ± have no
atoms and full support, and there is a real number λ > 1 > λ−1 such that φ
takes leaves of F+ to leaves of F+ and similarly for F−, and multiplies the µ+

length of curves by λ, and the µ− length by λ−1.

Note that if S is a torus, then an Anosov automorphism is an example of
a pseudo-Anosov automorphism with no singularities. On a closed surface S
with χ(S) < 0, any foliation must have some singularites.

Example 1.77 Let T be a torus. Then T admits a Euclidean structure, and we
may suppose thatφ ∈ Homeo(T) is a linear Anosov automorphism of T. Let q
be a periodic point under φ, and let Q = ∪iφ

i(q) be the (finite) orbit of q. Let

S′ = T − Q. Then φ restricts to an automorphism of Σ′. Let Ŝ′ be a finite cover

of S′, and let Ŝ be obtained from Ŝ′ by filling in the removed points. Then Ŝ is a

branched cover of T, with branch locus contained in Q. Since π1(Ŝ′) has finite

index in π1(S′), some finite power φn of φ lifts to an automorphism of Ŝ′ and

extends to an homeomorphism of Ŝ. Thenφn : Ŝ→ Ŝ is pseudo-Anosov.
To see this, observe that the linear foliations F± of T invariant underφ lift to

a transverse pair of singular foliations F̂± on Ŝ. The mapφn permutes the leaves

of F̂±, and expands them by factors λn and λ−n respectively, with respect to the
path metric pulled back from the Euclidean metric on T.

Elements φ ∈ MCG(S) correspond to free homotopy classes of loops in
M(S). Ifφ ∈MCG(S) has finite order, then the corresponding loop in M(S) can
be pulled tight to an orbifold point. It follows thatφ preserves some hyperbolic
metric on S up to isotopy, and thereforeφ is isotopic to an isometry of a hyper-
bolic surface Σ. Such an isometry necessarily has finite order in Homeo(Σ).

Ifφ ∈ MCG(Σ) has infinite order, then we have seen that eitherφ preserves
some multicurve up to isotopy (i.e. it is reducible) in which case the correspond-
ing loop in M(S) can be homotoped out of any compact region of M(S), or it
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preserves a transverse pair of singular foliations F± and preserves the projec-
tive class of invariant transverse measures µ±, multiplying µ+ by λ and µ− by
λ−1 for some real algebraic unit λ > 1. It follows in the second case that we
can exhibit some representative of the isotopy class of φ as a pseudo-Anosov
map, and the corresponding loop in M(S) can be homotoped to a Teichmüller
geodesic. The length of the Teichmüller geodesic is the logarithm of the expan-
sion factor λ.

Summarizing, we have Thurston’s classification theorem for surface home-
omorphisms (see [234]):

Theorem 1.78. (Thurston, Classification of surface homeomorphisms) Let Σ be
a closed, orientable surface of genus at least 2, and let φ ∈ Homeo+(Σ). Then one of
the following three alternatives holds:

1. φ is periodic; that is, some finite power ofφ is isotopic to the identity

2. φ is reducible; that is, there is some finite collection of disjoint essential simple
closed curves in Σ which are permuted up to isotopy by φ

3. φ is pseudo-Anosov; that is, someψ isotopic toφ acts on Σ by a pseudo-Anosov
automorphism

Remark Bers first used the “curve shortening” argument and the relationship
between M(S) and MCG(S) to give a direct proof of Thurston’s classification
theorem via Teichmüller theory. Bers’ proof is found in [16].

1.12 Geometric structures on general mapping tori

As with toral automorphisms, we can form the mapping torus Mφ by

Mφ = Σ× I/(s, 1) ∼ (φ(s), 0)

Mφ has the structure of a fiber bundle

Σ→ Mφ → S1

and there is a corresponding short exact sequence of groups

0→ π1(Σ)→ π1(Mφ)→ Z→ 0

which represents π1(Mφ) as an HNN extension. If φ∗ denotes the action of φ
on π1(Σ), then a presentation for π1(Mφ) is

π1(Mφ) = 〈π1(Σ), t | t−1αt = φ∗(α) for eachα in π1(Σ)〉
As in the case of toral automorphisms, there is an intimate relationship be-

tween the dynamics ofφ and the geometry of Mφ (see [237]):

Theorem 1.79. (Thurston, Geometrization of surface bundles) Let Σ be a closed
surface of genus at least 2, and letφ ∈ Homeo(Σ). Then the mapping torus Mφ satisfies
the following:
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1. Ifφ is periodic, Mφ admits an H2 ×R geometry

2. Ifφ is reducible, Mφ contains some embedded essential tori or Klein bottles

3. Ifφ is pseudo-Anosov, Mφ admits an H3 geometry

The first two cases are exactly analogous to the toral case. A finite order au-
tomorphism of a surface of negative Euler characteristic preserves a hyperbolic
metric on the surface. The suspension of this metric gives an H2 ×R geometry
on the mapping torus. A reducible automorphism of a surface permutes a col-
lection γi of simple closed curves; the suspension of these curves can be glued
up by a map isotopic to φ to give a collection of essential tori and Klein bottles
in Mφ, along which Mφ can be cut and decomposed into simpler pieces.

However, the third case is much more subtle, and there is no easy way to see
the hyperbolic geometry implicitly in the dynamics ofφ, or conversely. What is
easy to see is that Mφ admits a singular Sol metric — i.e. one which looks locally
like a semi-branched cover (i.e. a cover of degree n/2) of Sol.

1.13 Peano curves

Although it is difficult to see the dynamics of φ implicitly in the hyperbolic ge-
ometry of Mφ, this dynamics is much more evident if one looks at the geometry
of the universal cover together with the action of π1(Mφ) there.

Since Mφ is hyperbolic, we can identify its universal cover with hyperbolic
3-space

M̃φ = H3

We denote the representation inducing the action of π1(Mφ) on the ideal

sphere S2
∞

by

ρgeo : π1(Mφ)→ Homeo(S2
∞

)

There is another view of M̃φ which comes from the foliated structure of Mφ.
The foliation of Σ × I by surfaces Σ × point descends to a foliation of Mφ by

surfaces which are the fibers of the fibration over S1. This gives M̃φ the structure
of an open solid cylinder

M̃φ = Σ̃×R

The universal cover of each fiber Σθ is quasi-isometric with its pulled back in-
trinsic metric to the hyperbolic plane H2, and can therefore be compactified by
its ideal boundary, which is a topological circle S1

∞
.

The circle S1
∞

can just as well be thought of as the ideal boundary of the
group π1(Σ) with its word metric. The group π1(Mφ) acts on π1(Σ) in the obvi-
ous way: the subgroup π1(Σ) acts on the left by multiplication, and the element
t acts by φ∗. Left multiplication induces an isometry with respect to the word
metric, whereas the automorphism φ∗ merely induces a quasi-isometry. In any
case, this action of π1(Mφ) on π1(Σ) induces an action on the ideal boundary
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S1
∞

(π1(Σ)) by homeomorphisms. The fibration from Mφ to S1 induces a homo-
morphism from π1(Mφ) to Z which can be thought of as a subgroup of trans-
lations of R. These two actions of π1(Mφ) on 1-manifolds can be put together

to give a (product respecting) action of π1(Mφ) on S1 ×R which partially com-

pactifies the action on the open cylinder Σ̃×R.
The action of π1(Mφ) on R is not very interesting. All the interesting infor-

mation is already contained in the action on S1
∞

. We denote the representation
inducing this action by

ρfol : π1(Mφ)→ Homeo(S1
∞

)

Theorem 1.80. (Cannon–Thurston, Continuity of Peano map [44]) Suppose Mφ

is a hyperbolic surface bundle over S1 with fiber Σ and monodromy φ. Then there is a
continuous surjective map

P : S1
∞
→ S2

∞

which is a semiconjugacy between the two natural actions of π1(Mφ). That is, for each
α ∈ π1(Mφ),

P ◦ ρfol(α) = ρgeo(α) ◦ P

FIG. 1.14. An approximation to the sphere-filling curve P
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Since the image of S1
∞

under P is closed and invariant under the action of
π1(Mφ), it is equal to the entire sphere S2

∞
; that is, it is a Peano curve, or sphere-

filling map.

Remark The most subtle part of Theorem 1.80 is to prove continuity of P. A
straightforward estimate (see Example 10.40) shows that P exists as a measur-
able map and is continuous a.e., but to prove continuity everywhere one must
establish a suitable relationship between natural families of open neighbor-
hoods of points in S1

∞
and natural families of open neighborhoods of their im-

ages in S2
∞

. Such neighborhoods are constructed using the laminationsΛ±. This
picture has been generalized considerably by Fenley, especially in [73], [75], [72]
and [78]. We will return to Fenley’s program in Chapter 10.

The fact that P is sphere-filling is disconcerting, but it is not the whole story.
More interesting is the fact that P can be approximated by embeddings in a natural
way.

1.14 Laminations and pinching

We now show how to recover the dynamics of φ from the geometry of Mφ.
For the sake of pedagogy, we only give a brief sketch of the relevant objects,
constructions and theorems, deferring precise details until subsequent chapters.

Let Σ̃ be a copy of the universal cover of a fiber in the universal cover

M̃φ = H3 of Mφ. Then Σ̃ is a properly embedded plane, and we may take

the intersection with a big sphere S2
t centered at some basepoint 0 ∈ Σ̃ ⊂ H3.

Then each S2
t can be identified with S2

∞
by radial projection, and the embedded

curves S1
t = Σ̃∩ S2

t converge geometrically to the Peano limit P(S1
∞

). Moreover,

identifying each S1
t ⊂ Σ̃with the unit tangent circle to Σ̃ at 0 by the exponential

map, we can think of each S1
t as a parameterized circle Pt(S1

∞
), so that P is the

limit of the Pt as maps.
Define a positive pair to be a pair of elements p, q ∈ S1, and a choice, for each

Pt, of an arc γt from Pt(p) to Pt(q) whose interior is disjoint from Pt(S1) and
contained on the positive side, and which satisfies

lim
t→∞

length(γt) = 0

We denote a positive pair by (p, q, {γt}). Now, if (p1, p2, {γt}) is one posi-
tive pair and (q1, q2, {δt}) is another, then either {p1, p2} and {q1 , q2} are un-
linked as copies of S0 in S1, or else all four points are mapped to the same point
by P. The reason is that if {p1, p2} and {q1 , q2} are linked in S1, then γt and
δt lying on the same side of the image of Pt must intersect. Since their lengths
converge to 0 as t→∞, the claim follows.

The positive pairs generate an equivalence relation on S1, whose closure we
denote by ∼+. Similarly, we can define ∼− in terms of negative pairs.

A choice of hyperbolic structure on Σ lets us identify Σ̃ with H2. To each
equivalence class c of ∼± we associate the convex hull of c, defined to be the
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smallest closed convex subset of H2 whose closure in H2 ∪ S1
∞

contains c. One
way to obtain this set is as the intersection of all half-planes in H2 whose closure
contains c. The boundary of this convex hull consists of a family of geodesics. As
one varies over all equivalence classes c, the geodesics one obtains are disjoint.
By taking the union, we obtain a geodesic lamination:

Λ̃∼± =
⋃

c

∂(convex hull of c)

Then the laminations Λ̃∼± are π1(Σ)-invariant, and cover geodesic lami-
nations Λ∼± on Σ. The punchline of this story is that the laminations Λ∼±
constructed from the geometry of M are the same as the laminations Λ± con-
structed in Theorem 1.47 from the dynamics of φ andφ−1.

One may invert this construction, and show that the Peano map P can be
recovered (topologically) from the laminations Λ±. The laminations Λ± are a
stereoscope which let us perceive the 3-dimensional geometry of M encoded
by ρgeo, in the two dimensional topology of a surface bundle, encoded by ρfol.

The theory developed in this chapter for the analysis of surface bundles can
be generalized in many ways. In fact, developing some of these generalizations
is one of the main goals of this book. We have seen how the structure of a fi-
bration Σ → M → S1 reduces a 3-manifold M to a 2-manifold Σ together with
a dynamical system generated by the monodromy φ. Ideal geometry lets us
reduce dimension further to the action of a group π1(M) on a circle S1

∞
. The

relationship between S1
∞

and S2
∞

can be encoded in a pair of laminations Λ±.
In the sequel, a fibration will be generalized to a taut foliation, the circle S1

∞

will be generalized to a universal circle, and the laminations Λ± will be gen-
eralized to a pair of universal laminations. By suspension, train tracks become
branched surfaces, singular foliations become pseudo-Anosov flows, and so
forth. Not every aspect of the surface theory can be generalized, and not ev-
ery aspect which can be has been. On the other hand, this generalized pseudo-
Anosov theory, such as it is, contains new phenomena, new examples and new
applications which enrich and complement the two dimensional theory, and
present many opportunities for further development and research by those who
work and play with 3-manifolds and related objects.
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THE TOPOLOGY OF S1

In this chapter we establish basic properties of the point set topology of S1

which will be used throughout the rest of the book. We are mainly interested
in the following three (related) topics:

1. Laminations and laminar relations

2. Monotone maps and families

3. Groups of homeomorphisms of I and S1

The treatment of laminations and monotone maps is self-contained, and de-
velops some notation and machinery which is used in Chapter 7 and Chapter 8;
this takes up roughly § 2.1 through § 2.4. The theory of groups of homeomor-
phisms of the interval and the circle is by contrast a vast topic, and we only de-
velop a small part of it in the remainder of the chapter, concentrating especially
on homological aspects of the theory. This will lead us directly to bounded coho-
mology and a number of associated topics such as rotation numbers, amenable
groups, uniform perfectness and so on. Some of this material is surveyed in [20]
and [105].

Throughout this chapter, we adhere to the convention that all circles and
intervals are oriented, and all homeomorphisms between them are orientation-
preserving unless we explicitly say otherwise.

2.1 Laminations of S1

We begin by formalising the discussion in § 1.7.2.

Definition 2.1 We let S0 denote the 0 sphere; i.e. the discrete, two element set.
Two disjoint copies of S0 in S1 are homologically linked, or just linked if the points
in one of the S0’s are contained in different components of the complement of
the other. Otherwise we say they are unlinked.

Note that the definition of linking is symmetric.

Definition 2.2 A lamination Λ of S1 is a closed subset of the space of unordered
pairs of distinct points in S1 with the property that no two elements of the lam-
ination are linked as S0’s in S1. The elements of Λ are called the leaves of the
lamination.

The space of unordered pairs of distinct points in S1 may be thought of as a
quotient of S1 × S1 − diagonal by the Z/2Z action which interchanges the two
factors. Topologically, this space is homeomorphic to a Möbius band. One way

50
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to see this is by using projective geometry. In the Klein model, the hyperbolic

plane is the interior of a round disk in RP2. The exterior of this closed disk is an
open Möbius band. A point p in the complement of the disk lies on two straight
lines which are tangent to the boundary of the disk, and thereby determines an
unordered pair of points. This parameterization is a bijection. See Fig. 2.1.

FIG. 2.1. In projective geometry there is a duality between geodesics in D and

points outside D. The set of points outside D in RP2 is an open Möbius band.

Under this parameterization, a closed union of S0’s corresponds to a closed

subset S of RP2 − D. The set of S0’s is unlinked if and only if, for any two
distinct points s1, s2 ∈ S, the straight line through s1 and s2 intersects D.

We recall from Chapter 1 the definition of a geodesic lamination:

Definition 2.3 A geodesic lamination Λ on a complete hyperbolic surface Σ is a
union of disjoint embedded geodesics which is closed as a subset of Σ.

A geodesic lamination of Σ pulls back to define a geodesic lamination of H2.
Geodesic laminations of H2 and laminations of S1 are essentially equivalent
objects, as Construction 2.4 shows:

Construction 2.4 Let Λ be a lamination of S1. We think of S1 as the bound-
ary of H2 in the unit disk model. Then we construct a geodesic lamination of
H2 whose leaves are just the geodesics whose endpoints are leaves of Λ. We
will sometimes denote this geodesic lamination by Λgeo. Conversely, given a

geodesic lamination Λ of H2, we get a lamination of the ideal boundary S1
∞

whose leaves are just the pairs of endpoints of the leaves of Λ.

There is another perspective on circle laminations, coming from equivalence
relations. The correct class of equivalence relations for our purposes are upper
semicontinuous decompositions.
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FIG. 2.2. A geodesic lamination of H2 in the Poincaré disk model

Definition 2.5 A decomposition of a topological space X is a partition into com-
pact subsets. A decomposition G is upper semicontinuous if for every decompo-
sition element ζ ∈ G and every open set U with ζ ⊂ U, there exists an open set
V ⊂ U with ζ ⊂ V such that every ζ ′ ∈ G with ζ ′ ∩ V 6= ∅ has ζ ′ ⊂ U. The
decomposition is monotone if its elements are connected.

Observe that for Hausdorff spaces X, a decomposition G is upper semicon-
tinuous if and only if the set of pairs (x, y) for which x and y belong to the same
decomposition element is closed in X× X.

A proper map from a Hausdorff space X to a Hausdorff space Y induces
a decomposition of X by its point preimages which is upper semicontinuous.
Conversely, the quotient of a Hausdorff space by an upper semicontinuous de-
composition is Hausdorff, and the tautological map to the quotient space is
continuous and proper. See e.g. [134].

Definition 2.6 An equivalence relation ∼ on S1 is laminar if the equivalence
classes are closed, if the resulting decomposition is upper semicontinuous, and if
distinct equivalence classes are unlinked as subsets of S1. That is, if S0

1, S0
2 ⊂ S1

are two S0’s which are contained in distinct equivalence classes, then they are
not homologically linked in S1.
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We now show how to move back and forth between circle laminations and
laminar relations.

Construction 2.7 Given a laminar equivalence relation ∼ of S1, we think of S1

as the ideal boundary of H2. Then for every equivalence class [p] of ∼ we form
the convex hull

H([p]) ⊂ H2

and the boundary of the convex hull

Λ([p]) = ∂H([p]) ⊂ H2

We let Λ denote the union over all equivalence classes [p]:

Λ =
⋃

[p]

Λ([p])

Then the fact that the equivalence classes are unlinked implies that the geodesics
making upΛ are disjoint. Moreover, the fact that∼ is upper semicontinuous im-
plies that Λ is closed as a subset of H2. That is, it is a geodesic lamination, and
determines a lamination of S1 by Construction 2.4.

Conversely, given a lamination Λ of S1, we may form the quotient Q of S1

by the equivalence relation which collapses every leaf to a point. This is not
necessarily Hausdorff; we let Q′ denote the Hausdorffification, i.e. the maximal
Hausdorff quotient space of Q. Then the map from S1 to Q′ induces an upper
semicontinuous decomposition of S1. Moreover, this equivalence relation is ob-
viously unlinked; in particular, it is laminar.

We abstract part of Construction 2.7 to show that every subset K ⊂ S1 gives
rise to a lamination, as follows

Construction 2.8 Let K ⊂ S1 be arbitrary. Think of S1 as ∂H2, and let H(K) ⊂
H2 be the convex hull of the closure of K in S1. Then the boundary ∂H(K) is a
geodesic lamination of H2, which determines a lamination of S1 by Construc-
tion 2.4. We denote this lamination of S1 by Λ(K).

Of course “move back and forth” is not quite right; the two parts of Con-
struction 2.7 are not really inverse to each other in the typical case.

Example 2.9 Suppose Λ is a geodesic lamination, and suppose that there is
some point p ∈ S1 common to at least 3 leaves. If ∼ denotes the correspond-
ing laminar relation, and Λ∼ denotes the geodesic lamination obtained from∼,
then every point p ∈ S1 is contained in at most two leaves of Λ∼.

Example 2.10 Suppose∼ is a laminar relation, and there is some interval I ⊂ S1

contained in a single equivalence class of ∼. If Λ∼ denotes the geodesic lami-
nation obtained from ∼, then no endpoint of a leaf of Λ∼ ends in the interior
of I. Then if ∼′ denotes the laminar relation obtained from Λ∼, no two distinct
points in the interior of I are in the same equivalence class of ∼′.
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The utility of Construction 2.7 is its naturality. If G is some group and

ρ : G→ Homeo+(S1)

is some G-action on a circle, then if G preserves Λ it also preserves the laminar
relation ∼ obtained from Λ, and vice versa.

2.2 Monotone maps

Definition 2.11 Let S1
X , S1

Y be homeomorphic to S1. A continuous mapφ : S1
X →

S1
Y is monotone if it is degree one, and if it induces a monotone decomposition

of S1
X, in the sense of Definition 2.5.

Note that the target and image circle should not necessarily be thought of as
the same circle.

Equivalently, a map between circles is monotone if the point preimages are
connected and contractible. Said yet another way, a map is monotone if it does
not reverse the cyclic order on triples of points for some choice of orientations
on the target and image circle.

Example 2.12 Let J be a closed interval contained in S1. The map to the quotient
circle in which J is crushed to a point is monotone.

Definition 2.13 Let φ : S1
X → S1

Y be monotone. The gaps of φ are the maximal

open connected intervals in S1
X in the preimage of single points of S1

Y. The core
of φ is the complement of the union of the gaps.

Note that the core of φ is exactly the subset of S1
X where φ is not locally

constant.
Recall that a set is perfect if no element is isolated.

Lemma 2.14 Let φ : S1
X → S1

Y be monotone. Then the core ofφ is perfect.

Proof The core ofφ is closed. If it is not perfect, there is some point p ∈ core(φ)
which is isolated in core(φ). Let p± be the nearest points in core(φ) to p on
either side, so that the open oriented intervals p−p and pp+ are gaps of φ. But
then by definition,

φ(p−) = φ(p) = φ(p+) = φ(r)

for any r in the oriented interval p−p+. So by definition, the interior of this
interval is contained in a single gap of φ. In particular, p is contained in a gap
of φ, contrary to hypothesis. 2

It follows that the set of points in core(φ) which are nontrivial limits from
both directions is dense in core(φ).

Example 2.15. (The Devil’s Staircase) It makes sense to define the core and gaps
for a monotone map from the interval to itself. Let f : [0, 1]→ [0, 1] be the func-
tion defined as follows. If t ∈ [0, 1], let

0 · t1t2t3 · · ·
denote the base 3 expansion of t. Let i be the smallest index for which ti = 1.
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Then f (t) = s is the number whose base 2 expansion is

0 · s1s2s3 · · · si00 · · ·

where each s j = 1 if and only if t j = 1 or 2 and j ≤ i, and s j = 0 otherwise. The
graph of this function is illustrated in Fig 2.3.

The core of this map is the usual middle third Cantor set.

FIG. 2.3. The Devil’s Staircase is the graph of a monotone map from the interval
to itself whose core is the middle third Cantor set.

It will be important in the sequel to understand families of monotone maps.

Definition 2.16 Let B be a topological space, and E a circle bundle over B. A
monotone family of maps is a continuous map

φ : S1 × B→ E

which covers the identity map on B, and which restricts for each b ∈ B to a
monotone map of circles

φb = φ|S1×b : S1 × b→ Eb

We denote a monotone family by the triple (E, B,φ).

Lemma 2.17 Let (E, B,φ) be a monotone family. Then the family of subsets {core(φb)}
vary lower semicontinuously as a function of b ∈ B, in the Hausdorff topology. That is,
if x ∈ core(φb), then there are points xi ∈ core(φbi

) such that xi → x.
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Proof Let x ∈ core(φb). By Lemma 2.14 it follows that there is some sequence
of distinct points xi → x such that φb(xi) 6= φb(x j) for each i, j. It follows that
for each i there is a k such that φbK

(xi) 6= φbK
(xi+1) for all K ≥ k. In particular,

the core of φbK
contains some point between xi and xi+1. The lemma follows.

2

Conversely, it follows that the closure of the union of gaps of φb varies up-
per semicontinuously as a function of b. An alternate proof of Lemma 2.17 uses
the fact that the closures of gaps are exactly the nontrivial elements in the de-
composition of S1 × B induced byφ.

Definition 2.18 Let (E, B,φ) be a monotone family. Let X ⊂ B be a subspace.
Define

core(X) =
⋃

b∈X

core(φb)

Notice that we define core(X) to be the closure of the union of the cores ofφb

over all b ∈ X, and not simply the ordinary union. This is important to keep in
mind; we will refer to this construction in the sequel when we discuss universal
circles.

Theorem 2.19 Let (E, B,φ) be a monotone family, and suppose X, Y are path con-
nected subsets of B. Suppose for each x ∈ X and y ∈ Y that core(φx) and core(φy)
are unlinked. Then core(X) and core(Y) are unlinked.

Proof Since core(φx) and core(φy) are unlinked for each pair x ∈ X, y ∈ Y, it
follows that core(φx) is contained in the closure of a single gap of core(φy), and
vice versa.

We claim for every x ∈ X that core(φx) is contained in the closure of the same
gap of core(φy). For, let g be a gap of φy, and let Tg ⊂ X be the set of points
t for which core(φt) ⊂ g. Since g is closed, by lemma 2.17 the set Tg is closed.
Moreover, by Lemma 2.14, distinct gaps have disjoint closures, and therefore if
g1, g2 are distinct gaps, Tg1 and Tg2 are disjoint. Let x1, x2 ∈ X be arbitrary, and
let γ be a path in X from x1 to x2. Then γ is decomposed into closed subsets
which are the intersections γ ∩ Tg as g varies over the gaps of φy. But there are
only countably many gaps of φy. On the other hand, any decomposition of an
interval into countably many closed subsets has only one element, by a theorem
of Sierpinski [219]. It follows that Tg = X, and every core(φx) is contained in the
same gap g of φy. We can therefore label g unambiguously as gy, and similarly
construct gy′ for every other y′ ∈ Y.

Now, as y varies in Y, the closures of gaps gy do not vary continuously, but
merely upper semicontinuously. In particular, if yi → y then

lim
i→∞

gyi
⊂ gy

for every Hausdorff limit. Since each gyi
is a closed arc, the same is true of each

Hausdorff limit. For each such discontinuous limit, i.e. where limi→∞
gyi
6= gy,
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we interpolate a 1-parameter family of closed arcs from limi→∞
gyi

to gy which
are all contained in gy. Let G denote the union of the set of arcs gy with y ∈ Y
and the arcs in the interpolating families. Then G is a connected subset of the
space of closed arcs in S1. It follows that the intersection

⋂

γ∈G

γ =
⋂

y∈Y

gy

is a connected arc, which contains core(X), and whose interior is in the comple-
ment of core(Y).

So core(X) and core(Y) are unlinked, as claimed. 2

2.3 Pullback of monotone maps

Given two monotone maps with the same target, φZX : S1
Z → S1

X and φYX :

S1
Y → S1

X, a pullback completes this pair of monotone maps to a commutative
square:

S1
W

φWZ−−−−→ S1
Z

φWY

y φZX

y

S1
Y

φYX−−−−→ S1
X

Pullbacks always exist.

Construction 2.20 In the torus T := S1
Y × S1

Z let K be the subset

K := {(y, z) ∈ S1
Y × S1

Z | φYX(y) = φZX(z)}
Then T − K is an open annulus, whose path completion T − K has two bound-
ary components which we call the upper and lower hulls of K respectively; by
abuse of notation, we denote these ∂K±.

Then both ∂K+ and ∂K− are circles which complete the commutative square,
where the projections onto the S1

Y , S1
Z factors of T define the two structure maps.

Here is an explanation of this construction. For each point x ∈ S1
X , we denote

the preimage in S1
Y by Ix(Y) and the preimage in S1

Z by Ix(Z). For all but count-

ably many points x ∈ S1
X , Ix(Y) and Ix(Z) are single points. We may define

Ix(W) to be a single point for such x. If Ix(Y) is a point and Ix(Z) is an interval,
define Ix(W) to be equal to Ix(Z), and letφWY collapse Ix(W) to the point Ix(Y).
Define Ix(W) similarly when Ix(Z) is a point and Ix(Y) is an interval.

If Ix(Y) and Ix(Z) are both intervals, we define Ix(W) to be their union,
joined end to end. The structure map φWY collapses Ix(Z), and the structure
map φWZ collapses Ix(Y), thought of as subintervals of Ix(W). The only ques-
tion is which way to order these intervals in Ix(W): in ∂K+ we have Ix(Y) first
and then Ix(Z), and in ∂K− we order them the other way around.

If we need to distinguish between these two pullbacks, we will call ∂K+ the
left pullback, and ∂K− the right pullback.
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Remark Pullbacks as we have defined them are not really a (fibered) product
in the category of circles and monotone maps. For instance, the structure maps
from the left pullback never factor through the right pullback unless they are
equal.

Conversely, given S1
W and a pair of monotone mapsφWZ : S1

W → S1
Z,φWY :

S1
W → S1

Y, we can ask for monotone maps from S1
Y and S1

Z to a circle S1
X

which complete the commutative square above. This data, if it exists, is called a
pushout.

In general, pushouts need not exist. For example, let S1
W be the union of a

northern and a southern hemisphere, and letφWZ,φWY quotient out the north-
ern and the southern hemisphere respectively. Then any pushout would have
at most one point.

2.3.1 Monotone equivalence of group actions

Because the construction of a (left or right) pullback is natural, it commutes with
group actions.

Definition 2.21 Let G be a group, and φYX : S1
Y → S1

X a monotone map. Two
group actions

ρX : G → Homeo+(S1
X), ρY : G → Homeo+(S1

Y)

are said to be semi-conjugate if

φYXρY(g) = ρX(g)φYX

for all g ∈ G.
The equivalence relation on the class of all G actions on circles generated by

semi-conjugacy is called monotone equivalence.

Because of the naturality of pullback, we have the following lemma:

Lemma 2.22 Two G-actions

ρX : G → Homeo+(S1
X), ρY : G → Homeo+(S1

Y)

are monotone equivalent if and only if there is some S1
Z, and a G-action

ρZ : G → Homeo+(S1
Z)

which is semi-conjugate to both ρX and ρY via monotone maps φZX : S1
Z → S1

X and

φZY : S1
Z → S1

Y.

2.4 Pushforward of laminations

Laminations of S1 can be pushed forward by monotone maps.
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Definition 2.23 Let Λ be a lamination of S1
X , and φ : S1

X → S1
Y a monotone

map. Thenφ induces a map from unordered pairs of points in S1
X to unordered

pairs of points in S1
Y. We let φ(Λ) denote the image of Λ in the complement of

the diagonal.

Lemma 2.24 Let φ : S1
X → S1

Y be monotone, and let Λ be a lamination of S1
X . Then

φ(Λ) is a lamination of S1
Y.

Proof The map φ induces a continuous map from S1
X × S1

X → S1
Y × S1

Y which
takes the diagonal to the diagonal. It follows that the image of Λ is closed in
S1

Y × S1
Y − diagonal. It remains to show that it is unlinked. But monotone maps

do not reverse the cyclic order of subsets; the claim follows. 2

Laminations can also be pulled back by monotone maps.

Definition 2.25 Let Λ be a lamination of S1
Y, and φ : S1

X → S1
Y a monotone

map. Then Λ determines a laminar relation ∼Y on S1
Y, by Construction 2.7. Let

∼X be the equivalence relation on S1
X whose equivalence classes are the preim-

ages of equivalence classes in ∼Y. Then ∼X is a laminar relation, and induces a
lamination of S1

X by Construction 2.7 which we denote φ−1(Λ).

The proof that ∼X is laminar follows immediately from the fact that φ is
monotone.

2.5 Left-invariant orders

The material in the next few sections borrows substantially from [36].
Up to this point we have treated concepts like linear and circular orders

on an informal basis. In the next few sections, we develop the theory of order
structures on sets and groups with more care.

Definition 2.26 Let G be a group. A left invariant order on G is a total order <
such that, for allα,β,γ in G,

α < β if and only if γα < γβ

A group which admits a left invariant order is said to be left orderable.

We may sometimes abbreviate “left orderable” to LO. Note that a left or-
derable group may admit many distinct left invariant orders. For instance, the
group Z admits exactly two left invariant orders. In general, the group of auto-
morphisms of G acts on the set of left orderings. If a left ordering is invariant
under the action of the group of inner automorphisms, then it is invariant un-
der right multiplication, and is said to be bi-invariant. A group which admits a
bi-invariant order is said to be bi-orderable.

The following lemma gives a characterization of left orderable groups:

Lemma 2.27 A group G admits a left invariant order if and only if there is a disjoint
partition of G = P ∪ N ∪ Id such that P · P ⊂ P and P−1 = N.
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Proof If G admits a left invariant order, set P = {g ∈ G : g > Id}. Conversely,
given a partition of G into P, N, Id with the properties above, we can define a
left-invariant order by setting h < g if and only if h−1g ∈ P. 2

Notice that Lemma 2.27 implies that any nontrivial LO group is infinite, and
torsion free. Notice also that any partition of G as in Lemma 2.27 satisfies N ·
N ⊂ N. For such a partition, we sometimes refer to P and N as the positive and
negative cone of G respectively.

LO is a local property. That is to say, it depends only on the finitely generated
subgroups of G. We make this precise in the next two lemmas. First we show
that if a group fails to be left orderable, this fact can be verified by examining a
finite subset of the multiplication table for the group, and applying the criterion
of Lemma 2.27.

Lemma 2.28 A group G is not left orderable if and only if there is some finite symmet-
ric subset S = S−1 of G with the property that for every disjoint partition S− Id =
PS ∪ NS, one of the following two properties holds:

1. PS ∩ PS
−1 6= ∅ or NS ∩ NS

−1 6= ∅
2. (PS · PS) ∩ NS 6= ∅ or (NS · NS) ∩ PS 6= ∅

Proof Firstly, it is clear that the existence of such a subset contradicts Lemma 2.27.
So it suffices to show the converse.

The set of partitions of G − Id into disjoint sets P, N is just 2G−Id which is
compact with the product topology by Tychonoff’s theorem. By abuse of nota-
tion, if π ∈ 2G−Id and g ∈ G− Id, we write π(g) = P or π(g) = N depending
on whether the element g is put into the set P or N under the partition corre-
sponding to π .

For every element α ∈ G− Id, define Aα to be the open subset of 2G−Id for
which π(α) = π(α−1). For every pair of elementsα,β ∈ G− Id with α 6= β−1,
define Bα,β to be the open subset of 2G−Id for which π(α) = π(β) but π(α) 6=
π(αβ).

Now, if G is not LO, then by Lemma 2.27, every partition π ∈ 2G−Id is
contained in some Aα or Bα,β. That is, the sets Aα , Bα,β are an open cover of

2G−Id. By compactness, there is some finite subcover. Let S denote the set of
indices of the sets Aα , Bα,β appearing in this finite subcover, together with their
inverses. Then S satisfies the statement of the lemma. 2

Remark An equivalent statement of this lemma is that for a group G which is
not LO, there is a finite subset S = {g1, · · · , gn} ⊂ G − Id with S ∩ S−1 = ∅
such that for all choices of signs ei ∈ ±1, the semigroup generated by the g

ei
i

contains Id.
To see this, observe that a choice of sign ei ∈ ±1 amounts to a choice of

partition of S ∪ S−1 into PS and NS. Then if G is not LO, the semigroup of
positive products of the PS must intersect the semigroup of positive products
of the NS; that is, p = n for p in the semigroup generated by PS and n in the
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semigroup generated by NS. But this implies n−1 is in the semigroup generated
by PS, and therefore so too is the product n−1 p = Id.

Remark Given a finite symmetric subset S of G and a multiplication table
for G, one can check by hand whether the set S satisfies the hypotheses of
Lemma 2.28. It follows that if G is a group for which there is an algorithm to
solve the word problem, then if G is not left orderable, one can certify that G is
not left orderable by a finite combinatorial certificate.

The next lemma follows directly from Lemma 2.28:

Lemma 2.29 A group G is left orderable if and only if every finitely generated sub-
group is left orderable.

Proof We use the A, B notation from Lemma 2.28.
First, observe that a left ordering on G restricts to a left ordering on any

finitely generated subgroup H < G.
Conversely, suppose G is not left orderable. By Lemma 2.28 we can find a fi-

nite set S satisfying the hypotheses of that lemma. Let H be the group generated
by S. Then Lemma 2.28 implies that H is not left orderable. 2

Remark To see this in more topological terms: observe that there is a restriction
map

res : 2G−Id → 2H−Id

which is surjective, and continuous with respect to the product topologies. It
follows that the union of the sets res(Aα), res(Bα,β) with α,β ∈ S is an open

cover of 2H−Id, and therefore H is not left orderable.

We now study homomorphisms between LO groups.

Definition 2.30 Let S and T be totally ordered sets. A map φ : S → T is
monotone if for every pair s1 , s2 ∈ S with s1 > s2, either φ(s1) > φ(s2) or
φ(s1) = φ(s2).

Let G and H be left orderable groups, and choose a left invariant order on
each of them. A homomorphism φ : G → H is monotone if it is monotone as a
map or totally ordered sets.

LO behaves well under short exact sequences:

Lemma 2.31 Suppose K, H are left orderable groups, and suppose we have a short
exact sequence

0→ K→ G → H → 0

Then for every left invariant order on K and H, the group G admits a left invariant order
compatible with that of K, such that the surjective homomorphism to H is monotone.

Proof Let φ : G → H be the homomorphism implicit in the short exact se-
quence. The order on G is uniquely determined by the properties that it is re-
quired to satisfy:
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1. If φ(g1) 6= φ(g2) then g1 > g2 in G if and only if φ(g1) > φ(g2) in H

2. Ifφ(g1) = φ(g2) then g−1
2 g1 ∈ K, so g1 > g2 in G if and only if g−1

2 g1 > Id
in K

This defines a total order on G and is left–invariant, as required. 2

Definition 2.32 A group G is locally LO-surjective if every finitely generated
subgroup H admits a surjective homomorphism φH : H → LH to an infinite
LO group LH .

A group G is locally indicable if every finitely generated subgroup H admits a
surjective homomorphism to Z. In particular, a locally indicable group is locally
LO-surjective, though the converse is not true.

The following theorem is proved in [30]. We give a sketch of a proof.

Theorem 2.33. (Burns–Hale) Suppose G is locally LO-surjective. Then G is LO.

Proof Suppose G is locally LO-surjective but not LO. Then by the Remark fol-
lowing the proof of Lemma 2.28, there is some finite subset {g1, . . . , gn} ⊂
G − Id such that, for all choices of signs ei ∈ ±1, the semigroup of positive
products of the elements g

ei
i contains Id. Choose a set of such gi such that n is

smallest possible (obviously, n ≥ 2). Let G′ = 〈g1, . . . , gn〉. Then G′ is finitely
generated. Since G is locally LO-surjective, G′ admits a surjective homomor-
phism to an infinite LO group

ϕ : G′ → H

with kernel K. By the defining property of the {gi}, at least one gi is in K since
otherwise there exist choices of signs ei ∈ ±1 such thatϕ(g

ei
i ) is in the positive

cone of H, and therefore the same is true for the semigroup of positive products
of such elements. But this would imply that the semigroup of positive products
of the g

ei
i does not contain Id in G′, contrary to assumption. Furthemore, since

H is nontrivial andϕ is surjective, at least one g j is not in K.
Reorder the indices of the gi so that g1, . . . , gk /∈ K and gk+1, . . . , gn ∈ K.

Let P(H) denote the positive elements of H. Since the gi with i ≤ k are not in

K, it follows that there are choices δ1, . . . , δk ∈ ±1 such that ϕ(g
δi
i ) ∈ P(H).

Moreover, since n was chosen to be minimal, there exist choices δk+1, . . . , δn ∈
±1 such that no positive product of elements of g

δk+1

k+1 , . . . , gδn
n is equal to Id.

On the other hand, by the definition of gi, there are positive integers ni such
that

Id = g
n1δi(1)

i(1)
· · · gnsδi(s)

i(s)

where each i( j) is between 1 and n. By hypothesis, i( j) ≤ k for at least one j.
But this implies that the image of the right hand side of this equation underϕ
is in P(H), which is a contradiction. 2

Theorem 2.33 has the corollary that a locally indicable group is LO.
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2.6 Circular orders

The approach we take in this section is modeled on [239], although an essen-
tially equivalent approach is found in [100].

We first define a circular ordering on a set. Suppose p is a point in an ori-
ented circle S1. Then S1 − p is homeomorphic to R, and the orientation on R
defines a natural total order on S1 − p. In general, a circular order on a set S is
defined by a choice of total ordering on each subset of the form S− p, subject
to certain compatibility conditions which we formalize below.

Definition 2.34 Let S be a set. A circular ordering on a set S with at least 4 ele-
ments is a choice of total ordering on S− p for every p ∈ S, such that if <p is
the total ordering defined by p, and p, q ∈ S are two distinct elements, the total
orderings <p , <q differ by a cut on their common domain of definition. That is,
for any x, y distinct from p, q, the order of x and y with respect to <p and <q

is the same unless x <p q <p y, in which case we have y <q p <q x. We also
say that the order <q on S− {p, q} is obtained from the order <p on S− p by
cutting at q.

If S has exactly three elements S = {x, y, z}, we must add the condition that
y <x z if and only if z <y x. Note that this condition is implied by the condition
in the previous paragraph if S has at least four elements. To understand the
motivation for the terminology, consider the operation of cutting a deck of cards.

Example 2.35 The oriented circle S1 is circularly ordered, where for any p, the
ordering <p is just the ordering on S1− p ∼= R induced by the orientation on R.

Definition 2.36 A set with three elements x, y, z admits exactly two circular or-
ders, depending on whether y <x z or z <x y. In the first case, we say the triple
(x, y, z) is positively ordered and in the second case, we say it is negatively ordered.

We also refer to a positively ordered triple of points as anticlockwise and a
negatively ordered triple as clockwise, by analogy with the standard circular or-
der on triples of points in the positively oriented circle.

A circular ordering on a set S induces a circular ordering on any subset
T ⊂ S. If Tα is a family of subsets of S which are all circularly ordered, we
say the circular orderings on the Tα are compatible if they are simultaneously
induced by some circular ordering on S.

It is clear that a circular ordering on a set S is determined by the family
of circular orderings on all triples of elements in S. Conversely, the following
lemma characterizes those families of circular orderings on triples of elements
which arise from a circular ordering on all of S:

Lemma 2.37 Suppose S is a set. A circular ordering on all triples of distinct elements
on S is compatible if and only if for every subset Q ⊂ S with four elements, the circular
ordering on triples of distinct elements of Q is compatible. In this case, these circular
orderings are uniquely compatible, and determine a circular ordering on S.
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Proof A circular ordering on triples in S defines, for any p ∈ S, a binary rela-
tion <p on S− p by x <p y if and only if the triple (p, x, y) is positively ordered.
To see that this binary relation defines a total ordering on S− p, we must check
transitivity of <p. But this follows from compatibility of the circular ordering
on quadruples Q. It is straightforward to check that the total orders <p and <q

defined in this way differ by a cut for distinct p, q. 2

Definition 2.38 Let C1, C2 be circularly ordered sets. A map φ : C1 → C2 is
monotone if for each c ∈ C2 and each d ∈ φ−1(c), the restriction map between
totally ordered sets

φ : (C1 −φ−1(c), <d)→ (C2 − c, <c)

is monotone.

There is a natural topology on a circularly ordered set for which monotone
maps are continuous.

Definition 2.39 Let O, < be a totally ordered set. The order topology on O is the
topology generated by open sets of the form {x|x > p} and {x|x < p} for all
p ∈ O. Let S be a circularly ordered set. The order topology on S is the topology
generated on each S− p by the (usual) order topology on the totally ordered set
S− p, <p.

We now turn to the analogue of left ordered groups for circular orderings.

Definition 2.40 A group G is left circularly ordered if it admits a circular order as
a set which is preserved by the action of G on itself on the left. A group is left
circularly orderable if it can be left circularly ordered.

We usually abbreviate this by saying that a group is circularly orderable if it
admits a circular order.

Example 2.41 A left orderable group G, < is circularly orderable as follows: for
each element g ∈ G, the total order <g on G− g is obtained from the total order
< by cutting at g.

Definition 2.42 The group of orientation-preserving homeomorphisms of R is
denoted Homeo+(R). The group of orientation-preserving homeomorphisms
of the circle is denoted Homeo+(S1).

An action of G on R or the circle by orientation-preserving homeomorphisms
is the same thing as a representation in Homeo+(R) or Homeo+(S1). We will
see that for countable groups G, being LO is the same as admitting a faithful
representation in Homeo+(R), and CO is the same as admitting a faithful rep-
resentation in Homeo+(S1). First we give one direction of the implication.

Lemma 2.43 If G is countable and admits a left-invariant circular order, then G ad-
mits a faithful representation in Homeo+(S1).
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Proof Let gi be a countable enumeration of the elements of G. We define an
embedding e : G→ S1 as follows. The first two elements g1, g2 map to arbitrary
distinct points in S1. Thereafter, we use the following inductive procedure to
uniquely extend e to each gn.

Firstly, for every n > 2, the map

e :
⋃

i≤n

gi →
⋃

i≤n

e(gi)

should be injective and circular order preserving, where the e(gi) are circularly
ordered by the natural circular ordering on S1. Secondly, for every n > 2, the
element e(gn) should be taken to the midpoint of the unique interval comple-
mentary to

⋃
i<n e(gi) compatible with the first condition. This defines e(gn)

uniquely, once e(gi) has been defined for all i < n.
It is easy to see that the left action of G on itself extends uniquely to a contin-

uous order preserving homeomorphism of the closure e(G) to itself. The com-

plementary intervals Ii to e(G) are permuted by the action of G; we choose an
identificationϕi : Ii → I of each interval with I, and extend the action of G so
that if g(Ii) = I j then the action of g on Ii is equal to

g|Ii
=ϕ−1

j ϕi

This defines a faithful representation of G in Homeo+(S1), as claimed. 2

Remark Note that basically the same argument shows that a left orderable
countable group is isomorphic to a subgroup of Homeo+(R). Notice further
that this construction has an important property: if G is a countable left- or
circularly ordered group, then G is circular or acts on R in such a way that some
point has trivial stabilizer. In particular, any point in the image of e has trivial
stabilizer.

Short exact sequences intertwine circularity and left orderability:

Lemma 2.44 Suppose
0→ K→ G → H → 0

is a short exact sequence, where K is left ordered and H is circularly ordered. Then G
can be circularly ordered in such a way that the inclusion of K into G respects the order
on G− g for any g not in K, and the map from G to H is monotone.

Proof Let φ : G → H be the homomorphism in the short exact sequence. Let
g1, g2, g3 be three distinct elements of G. We define the circular order as follows:

1. If φ(g1),φ(g2),φ(g3) are distinct, circularly order them by the circular
order on their image in H

2. If φ(g1) = φ(g2) but these are distinct from φ(g3), then g−1
2 g1 ∈ K. If

g−1
2 g1 < Id then g1, g2, g3 is positively ordered, otherwise it is negatively

ordered
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3. If φ(g1) = φ(g2) = φ(g3) then g−1
3 g1, g−1

3 g2, Id are all in K, and there-

fore inherit a total ordering. If g−1
3 g1 < g−1

3 g2 < Id in K (after possibly
relabeling) then g1, g2, g3 are positively ordered in G.

One can check that this defines a left-invariant circular order on G. 2

Here our convention has been that the orientation-preserving inclusion of R
into S1 − p is order-preserving.

We will show that for countable groups, being LO or CO is equivalent to
admitting a faithful representation in Homeo+(R) or Homeo+(S1) respectively.
But first we must describe an operation due to Denjoy [60] of blowing up or
Denjoying an action.

Construction 2.45. (Denjoy) Let ρ : G → Homeo+(S1) be an action of a count-
able group on S1. For convenience, normalize S1 to have length 1. Let p ∈ S1 be
some point. Let O denote the countable orbit of p under G, and letφ : O→ R+

assign a positive real number to each o ∈ O such that ∑o∈Oφ(o) = 1. Choose
some point q not in O, and define τ : [0, 1]→ S1 to be an orientation-preserving
parameterization by length, which takes the two endpoints to q. Define σ :
[0, 1]→ [0, 2] by

σ(t) = t + ∑
o∈O:τ−1(o)≤t

φ(o)

Thenσ is discontinuous on τ−1(O), and its graph can be completed to a contin-
uous image of I in [0, 1]× [0, 2] by adding a vertical segment of length φ(o) at
each point τ−1(o) where o ∈ O. Identify opposite sides of [0, 1]× [0, 2] to get a
torus, in which the closure of the graph of σ closes up to become a (1, 1) curve
which, by abuse of notation, we also refer to asσ . Notice that projection πh onto
the horizontal factor defines a monotone map fromσ to S1.

Then the action of G on S1 extends in an obvious way to an action on this
torus which leaves the (1, 1) curve invariant, and also preserves the foliations
of the torus by horizontal and vertical curves. Up to conjugacy in Homeo+(σ),
the action of G on σ is well-defined, and is called the blown-up action at p. The
pushforward of this blown–up action under (πh)∗ recovers the original action
of G on S1; that is, the two actions are related by a monotone map, and are
semi-conjugate.

With this construction available to us, we demonstrate the equivalence of
CO with admitting a faithful representation in Homeo+(S1).

Theorem 2.46 Let G be a countable group. Then G is left (resp. circularly) ordered if
and only if G admits a faithful homomorphism to Homeo+(R) (resp. Homeo+(S1)).
Moreover, the action on R or S1 can be chosen so that some point has a trivial stabilizer.

Proof In Lemma 2.43 we have already showed how a left or circular order
gives rise to a faithful action on R or S1. So it remains to prove the converse.

Let φ : G → Homeo+(R) be faithful. Let pi be some sequence of points
such that the intersection of the stabilizers of the pi is the identity. Some such
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sequence pi exists, since G is countable, and any nontrivial element acts non-
trivially at some point. Then each pi determines a (degenerate) left–invariant
order on G, by setting g >i h if g(pi) > h(pi), and g =i h if g(pi) = h(pi). Then
we define g > h if g >i h for some i, and g = j h for all j < i.

The definition of a circular order is similar: pick some point p ∈ S1, and
suppose that the stabilizer stab(p) is nontrivial. Then stab(p) acts faithfully on
S1 − p = R, so by the argument above, stab(p) is left orderable and acts on R.
In fact, we know stab(p) acts on R in such a way that some point has trivial sta-
bilizer. Letϕ : stab(p) → Homeo+(R) be such a representation. We construct
a new representationφ′ : G → Homeo+(S1) from φ by blowing up p as in Con-
struction 2.45. The representationφ′ is monotone equivalent to φ; that is, there
is a monotone map π : S1 → S1 satisfying

π∗φ′ = φ

Let C ⊂ S1 be the set where the monotone map π is not locally constant — i.e
the core of π . We will modify the action of G on S1 − C as follows. Note that
G acts on C by the pullback under π of the action on S1 by φ. We extend this
action to S1 − C to define φ′′. Let I be the open interval obtained by blowing
up p. We identify I with R, and then let stab(p) act on I by the pullback of ϕ
under this identification. Each other component Ii in S1 − C is of the form g(I)
for some g ∈ G. Choose such a gi for each Ii, and pick an arbitrary (orientation
preserving) identification ϕi : I → Ii, and define φ′′(gi)|I = ϕi. Now, for any

g ∈ G, define g|Ii
as follows: suppose g(Ii) = I j. Then g−1

j ggi ∈ stab(p), so

define
φ′′(g)|Ii

=ϕ jϕ(g−1
j ggi)ϕ

−1
i : Ii → I j

It is easy to see that this defines a faithful representationφ′′ : G → Homeo+(S1),
monotone equivalent toφ, with the property that some point q ∈ S1 has trivial
stabilizer.

Now define a circular order on distinct triples g1, g2, g3 by restricting the
circular order on S1 to the triple g1(q), g2(q), g3(q). 2

Notice that in this theorem, in order to recover a left- or circular order on
G from a faithful action, the only properties of R and S1 that we used was that
they were ordered and circularly ordered sets respectively.

With this theorem, and our lemmas on short exact sequences, we can deduce
the existence of left- or circular orders on countable groups from the existence
of actions on ordered or circularly ordered sets, with left orderable kernel.

Theorem 2.47 Suppose a countable group G admits an action by order preserving
maps on a totally ordered or circularly ordered set S in such a way that the kernel K is
left orderable. Then G admits a faithful, order preserving action on R or S1, respectively.

Proof We discuss the case that S is circularly ordered, since this is slightly more
complicated. Since G is countable, it suffices to look at an orbit of the action,
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which will also be countable. By abuse of notation, we also denote the orbit
by S. As in Lemma 2.43, the set S with its order topology is naturally order iso-
morphic to a subset of S1. Let S denote the closure of S under this identification.
Then the action of G on S extends to an orientation-preserving action on S1, by
permuting the complementary intervals to S. It follows that the image of G in
Homeo+(S1) is CO, with kernel K. By Lemma 2.44, G is CO. By Theorem 2.46,
the proof follows.

The construction for S totally ordered is similar. 2

2.7 Homological characterization of circular groups

Circular orders on groups G can be characterized homologically. There are at
least two different ways of doing this, due to Thurston and Ghys respectively,
which reflect two different ways of presenting the theory of group cohomology.
In the next few sections we study circularly orderable groups using tools from
ordinary homology and its more sophisticated variant, bounded cohomology.

First, we recall the definition of group cohomology. For details, consult any
reasonable textbook on homological algebra, for instance [156].

Let G be a group. The homogeneous chain complex of G is a complex C∗(G)h

where Cn(G)h is the free abelian group generated by equivalence classes of (n +
1)-tuples (g0 : g1 : · · · : gn), where two such tuples are equivalent if they are in
the same coset of the left diagonal action of G on the co-ordinates. That is,

(g0 : g1 : · · · : gn) ∼ (gg0 : gg1 : · · · : ggn)

The boundary operator in homogeneous co-ordinates is very simple, defined
by the formula

∂(g0 : · · · : gn) =
n

∑
i=0

(−1)i(g0 : · · · : ĝi : · · · : gn)

The inhomogeneous chain complex of G is a complex C∗(G)i where Cn(G)i is the
free abelian group generated by n-tuples ( f1, . . . , fn). The boundary operator in
inhomogeneous co-ordinates is more complicated, defined by the formula

∂( f1, . . . , fn) = ( f2, . . . , fn) +
n−1

∑
i=1

(−1)i( f1, . . . , fi fi+1, . . . , fn)

+ (−1)n( f1, . . . , fn−1)

The relation between the two co-ordinates comes from the following bijec-
tion of generators

(g0 : g1 : · · · : gn)→ (g−1
0 g1, g−1

1 g2, . . . , g−1
n−1gn)

which correctly transforms one definition of ∂ to the other. It follows that the
two chain complexes are canonically isomorphic, and therefore by abuse of no-
tation we denote either by C∗(G), and write an element either in homogeneous
or inhomogeneous co-ordinates as convenient.
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Definition 2.48 Let G be a group, and let R be a commutative ring. The group
homology of G is the homology of the complex C∗(G)⊗R, and is denoted H∗(G; R).
The group cohomology of G is the homology of the adjoint complex Hom(C∗(G), R),
and is denoted H∗(G; R).

If R = Z, we abbreviate these groups to H∗(G) and H∗(G) respectively. If
G is a topological group, and we want to stress that this is the abstract group
(co)homology, we denote these groups by H∗(Gδ) and H∗(Gδ) respectively (δ
denotes the discrete topology). By the way, in examples, we will be interested in
the case where G is a group of homeomorphisms of S1 or I. Since we care about
abstract group homomorphisms into and out of G, it is important to study G
with the discrete topology, which might otherwise seem a bit obscure.

We give a geometrical interpretation of this complex. The simplicial realiza-
tion of the complex C∗(G) is a model for the classifying space BG, where G has
the discrete topology. For any topological group G, the space BG is uniquely
determined up to homotopy by the property that there is a contractible G bun-
dle over BG, called EG. Note that for a discrete group G, the space BG is just
a K(G, 1). If G is discrete and torsion free, a model for EG is the complete sim-
plex on the elements of G. In this case, since G is torsion free, it acts freely and
properly discontinuously on this simplex, with quotient BG. If we label vertices
of EG tautologically by elements of G, the labels on each simplex give homo-
geneous co-ordinates on the quotient. If we label edges of EG by the difference
of the labels on the vertices at the ends, then the labels are well-defined on the
quotient; the labels on the n edges between consecutive vertices of an n-simplex,
with respect to a total order of the vertices, give inhomogeneous co-ordinates.

The cohomology of the group Homeo+(S1) is known by a general theorem
of Mather and Thurston (see [227] or [240] for details and more references):

Theorem 2.49. (Mather, Thurston) For any manifold M, there is an isomorphism of
cohomology rings

H∗(Homeo(M)δ ; Z) ∼= H∗(BHomeo(M); Z)

where BHomeo(M) denotes the classifying space of the topological group of homeo-
morphisms of M, and the left hand side denotes the group cohomology of the abstract
group of homeomorphisms of M.

For any topological group G, there is a continuous map Gδ → G and an
induced map BGδ → BG. In the case that G = Homeo(M), it is this natural map
between classifying spaces that induces the Mather–Thurston isomorphism.

For M = S1, the topological group Homeo+(S1) is homotopy equivalent to
a circle. To see this, let p ∈ S1 be arbitrary, and let Gp < Homeo+(S1) denote the
stabilizer of p. Then Gp is a closed subgroup, and there is a fibration of spaces

Gp → Homeo+(S1)→ S1

The group Gp is isomorphic to Homeo+(I), by identifying I with S1 cut open
at p. A trick due to Alexander shows that Gp is contractible, as follows. For
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each t ∈ [0, 1] let φt : [0, 1] → [0, t] be the obvious linear map. Given f ∈
Homeo+(I), define ft = φt fφ−1

t ∈ Homeo+([0, t]) and extend ft by the iden-
tity to an element of Homeo+(I). Then f 7→ ft defines a deformation retraction
of Gp to the identity. It follows that the map defined above from Homeo+(S1)

to S1 is a homotopy equivalence. The inverse maps S1 to the group of rotations.
Now, S1 = U(1) has classifying space CP∞. It follows that BHomeo+(S1) is

homotopy equivalent to CP∞, and therefore there is an isomorphism of rings

H∗(Homeo+(S1); Z) ∼= Z[e]

where [e] is a free generator in degree 2 called the Euler class.
We now give an algebraic characterization of the Euler class.

Definition 2.50 For any group G with H1(G; Z) = 1, there is a universal central
extension

0→ A→ Ĝ → G → 0

where A is abelian, with the property that for any other central extension

0→ B→ G′ → G → 0

there is a unique homomorphism from Ĝ → G′, extending uniquely to a mor-
phism of short exact sequences.

A non-split central extension G′ can be characterized as the universal central
extension of G if and only if G is perfect (i.e. H1(G; Z) = 1) and every central
extension of G′ splits. Central extensions of any group G by an abelian group H
are parameterized by elements of H2(G; H). See Milnor [166] for more details.

For G = Homeo+(S1), the universal central extension is denoted ˜Homeo+(S1),
and can be identified with the group of all lifts of all elements of Homeo+(S1)

to Homeo+(R) under the covering map R → S1. The center of ˜Homeo+(S1)
is isomorphic to Z, and can be identified with the group of integer translations
on R, and the class of this Z extension is called the Euler class. Every element
of Homeo+(S1) has Z lifts, and different lifts differ by an element of the center.
It turns out that this extension satisfies the universal property, and this class is
the generator of H2(Homeo+(S1); Z). This can be summarized by a short exact
sequence

0→ Z→ ˜Homeo+(S1)→ Homeo+(S1)→ 0

The following construction is found in [239]. An equivalent construction is
given in [142].
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Construction 2.51. (Thurston) Let G be a countable CO group. Let

ρ : G→ Homeo+(S1)

be constructed as in Theorem 2.46. For each triple g0, g1, g2 ∈ G, define the
cochain

c(g0 : g1 : g2) =





1 if g0(p), g1(p), g2(p) are positively ordered

−1 if g0(p), g1(p), g2(p) are negatively ordered

0 if g0(p), g1(p), g2(p) are degenerate

It is clear that c is well-defined on the homogeneous co-ordinates for C2(G).
The fact that the circular order on triples of points in S1 is compatible on

quadruples is exactly the condition that the coboundary of c is 0 — that is, c is
a cocycle, and defines an element [c] ∈ H2(G; Z).

Note that this construction is invertible: the data of a cocycle c as above is
exactly the data necessary to define a circular order on G.

Notation 2.52 If we want to emphasize that c depends on the representation
ρ, we denote it by cρ. If we want to emphasize that it depends on the point
p, we write cρ(p). In the sequel, we will sometimes confuse homogeneous and
inhomogeneous co-ordinates, so that

cρ(p)(g1, g−1
1 g2) = c(Id : g1 : g2)

The following (related) construction is found in [100]:

Construction 2.53. (Ghys) Let G be a countable CO group. Let

ρ : G→ Homeo+(S1)

be constructed as in Theorem 2.46. By abuse of notation, we identify G with

its image ρ(G). Let Ĝ denote the preimage of G in the extension ˜Homeo+(S1).

There is a section s : G → Ĝ uniquely determined by the property that s(g)(0) ∈
[0, 1). For each pair of elements g0, g1 ∈ G, define the cochain

e(g0, g1) = s(g0g1)
−1s(g0)s(g1)(0)

Then one can check that e is a cocycle on C2(G) in inhomogeneous co-ordinates,
and defines an element [e] ∈ H2(G; Z). Moreover, e takes values in {0, 1}.

Again, this construction is invertible: the data of e can be used to construct

a left invariant order on the extension Ĝ, which descends to a circular order on
G.

The following lemma can be easily verified; for a proof, we refer to [239]
or [142].
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Lemma 2.54. (Ghys, Jekel, Thurston) Let G be a countable circularly ordered group.
The cocycles e, c satisfy

2[e] = [c]

Moreover, the class [e] is the Euler class of the circular order on G.

Actually, the restriction to countable groups is not really necessary. One can
define the cocycles c, e directly from a circular order on an arbitrary group G.
This is actually done in [239] and [100]; we refer the reader to those papers for
the more abstract construction.

Theorem 2.55 Let G be a circularly ordered group with Euler class [e] ∈ H2(G; Z).
If [e] = 0, then G is left ordered. In any case, the central extension of G corresponding
to the class [e] is left orderable.

Proof We prove the theorem for G countable; the general case is proved in
[100].

From the definition of s in Construction 2.53 and Lemma 2.54, we see that e
is the obstruction to finding some (possibly different) section G → Ĝ which is

a homomorphism. But Ĝ is a subgroup of the group Homeo+(R). Now, every
finitely generated subgroup of Homeo+(R) is left orderable, by Theorem 2.46.
It follows by Lemma 2.29 that the entire group Homeo+(R) is left orderable; in

particular, so is Ĝ. 2

These cocycles occur naturally in many different contexts. One example
comes from classical analytic number theory.

Example 2.56. (Dedekind eta function) The Dedekind eta function, defined for
q = e2π iz where z is in the upper half-plane of C, is given by the product formula

η(q) = q
1

24

∞

∏
n=1

(1− qn)

and is a modular form of (fractional) weight 1/2. That is, the differentialη(z)dz1/4

on the upper half-plane is invariant under the fractional linear action of the
group PSL(2, Z). Rigorously, let O denote the (2, 3, ∞) orbifold, which is the
quotient of the upper half-plane by the action of PSL(2, Z). Then the bundle K
of holomorphic 1-forms on O has a trivialization away from the orbifold points,

and so it makes sense to take a 4-th root K1/4 of this bundle there. Then η exists
as a section of a certain 4-th root K1/4.

There is a related function φ : PSL(2, Z) → Z defined as follows. Let A ∈
PSL(2, Z) be represented by the matrix

(
a b
c d

)
. Then

φ(A) =
12

π i
(log η(Az)− log η(z)−µ(A))
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where µ(A) = 1
2 log

(
cz+d

i sign(c)

)
if c 6= 0, and µ(A) = 0 if c = 0. By the modular

property of η, the formula above is an integer. The subtlety is which branch of
the logarithm to take.

A is represented by a homotopy class of loop on the orbifold O. Lifting to
H2, this loop is represented by a relative homotopy class of path. The Farey
tessellation (see Fig. 1.3) is the tessellation of H2 by ideal triangles consisting of
the triangle with vertices at 0, 1, ∞ (with co-ordinates in the upper half-space
model) together with its translates by elements of PSL(2, Z). Each edge of this
tessellation has a well-defined “midpoint” which is a translate of the point i by
some element of PSL(2, Z). The dual graph to the Farey tessellation is an infinite
trivalent tree, and unless A has finite order, its action on this tree has a unique
invariant axis on which A acts as a translation. This axis determines a sequence
of ideal triangles through which the lift of the loop must necessarily pass.

Letting i be a basepoint, the element A determines a piecewise geodesic path
γA in H2 from i to A(i), which in each triangle of the Farey tessellation joins the
midpoints of two sides. The path γA covers a piecewise geodesic loop in O
which by abuse of notation we also denote γA which determines the “correct”
branch of the logarithm. Topologically, φ represents an obstruction to pulling
this loop over the orbifold points and contracting it in the underlying topologi-
cal space of O, which is homeomorphic to a disk, and thereforeφ is proportional
to the winding number around the orbifold points. Since η(i) is nonzero, there
is no contribution from the order 2 point; in fact, φ is just the winding number
of γA around the order 3 orbifold point.

Homologically, we have that PSL(2, Z) ∼= Z/2Z ∗Z/3Z and therefore

H2(PSL(2, Z); Z) = Z/6Z

is torsion, generated by the Euler class. The Thurston cocycle c is twice the gen-
erator, and can be written as the coboundary of a unique rational 1-cochain,
which measures winding number around the orbifold points; in short, we have

c = −1

3
δ(φ)

Notice that c = 2e vanishes mod 2, coming from the fact that the formula for φ
is well defined mod 6 independent of which branch of the logarithm is taken.
Geometrically, ifα,β ∈ PSL(2, Z) then there is an (oriented) piecewise geodesic
triangle ∆(α,β) made from segments γα ,β(γβ),γαβ in O which is covered by

a piecewise geodesic triangle in H2 with vertices at i,α(i),β(i), and c counts
the winding number of ∂∆ around the order 3 orbifold point in O. This “trian-
gle” is almost degenerate, except possibly in a single ideal triangle of the Farey
tessellation, where it might join the midpoints of the sides. It follows that the
“winding number” is 0 if the triangle is degenerate, or±3 otherwise depending
on its orientation.
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There is another (more 3-dimensional) way to find the correct branch of the
logarithm, due to Ghys [106]. Givenα ∈ PSL(2, Z) let gα be the geodesic repre-
sentative in H2/PSL(2, Z). The unit tangent bundle of H2/PSL(2, Z) is a Seifert
fibered space, which is topologically just the complement of the (right-handed)
trefoil knot in S3. A geodesic in H2/PSL(2, Z) lifts to a knot Kα in S3 − trefoil,
andφ(α) is just the linking number of Kα with the trefoil.

Dedekind [54] gave another formula for φ in terms of what are now called
Dedekind sums.

If a, c are coprime integers, then

φ(A) =

{
b
d if c = 0
a+d

c − 12 sign(c)s(a, c) if c 6= 0

where

s(a, c) =
|c|−1

∑
k=1

((
k

c

))((
ka

c

))

where for any real x, ⌊x⌋ = biggest integer ≤ x, and ((x)) = x− ⌊x⌋ − 1/2.
Also, see [145] for a more detailed discussion, and an elementary definition

of φ in terms of the Farey tessellation, related to the topological description in
terms of winding numbers.

2.8 Bounded cohomology and Milnor–Wood

Construction 2.51 and Construction 2.53 do more than give an explicit repre-
sentative cocycle of the Euler class; they verify that this cocycle has a further
additional property, namely that the Euler class is a bounded cocycle on G. For a
general introduction to bounded cohomology, consult [115].

Definition 2.57 Suppose R = R or Z. Define an L1 norm on Ci(G)⊗ R in the
obvious way by

∥∥∥∑
j

s j(g0( j) : g1( j) : · · · : gi( j))
∥∥∥

1
= ∑

j

|s j|

Dually, there is an L∞ norm on the bounded elements in Hom(Ci(G); R); i.e. the
subspace consisting of homomorphisms of finite L∞ norm, which we denote by
Homb(Ci(G); R). The coboundary takes cochains of finite L∞ norm to cocycles
of finite L∞ norm, and therefore we can take the cohomology of the subcomplex
consisting of bounded cochains. This cohomology is denoted H∗b (G; R) and is
called the bounded cohomology of G.

The norm ‖ · ‖∞ induces a pseudo-norm on H∗b (G; R) as follows. Givenα ∈
H∗b (G; R), the norm of α, denoted ‖α‖∞, is the infimum of ‖c‖∞ over cocycles
c with [c] = α. For the sake of brevity, we sometimes denote the (pseudo)-norm
ofα by ‖α‖,
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When we do not make coefficients explicit, the norm of a bounded cocycle
refers to its norm amongst representatives with R coefficients.

Remark Note that H∗b is not a Banach space with respect to ‖ · ‖ unless δC∗b is a

closed subspace of the bounded cocycles Z∗b . The subspace δC1
b is always closed,

but for i > 1 the subspace δCi
b might not be closed, and Hi+1

b is not always a
Banach space. So in general, ‖ · ‖ is only a pseudo-norm on H∗b . See [221].

If X is a topological space, one can also define H∗b (X; R) to be the homology
of the complex of bounded singular cochains on X. One readily shows that
H∗b (X; R) only depends on the homotopy type of X, and

H∗b (G; R) = H∗b (K(G, 1); R)

for groups G.
The theory of bounded cohomology lets us organize several distinct ideas

which we discuss in the next few pages.

2.8.1 Amenable groups

A discrete group G is amenable if there is a G-invariant mean π : L∞(G)→ R of
norm 1, where G acts on L∞(G) by

g · f (h) = f (hg)

for all g, h ∈ G and f ∈ L∞(G).
Recall that a linear functional is said to be a mean if it maps the constant

function f (g) = 1 to 1 and maps non-negative functions to non-negative num-
bers. If G acts measurably on a compact space X, one may take an exhaustion
of G by finite subsets Gi such that π of the indicator function of Gi converges to
1, and define measures µi on X by choosing a point p ∈ X and defining

µi =
1

|Gi| ∑
g∈Gi

δgp

where δgp is the Dirac measure supported on gp. By G-invariance of the mean,
any weak limit µ of the µi is a G-invariant probability measure on X.

There are many simple examples of amenable groups:

1. Abelian groups are amenable

2. Finite groups are amenable

3. Extensions of amenable groups by amenable groups are amenable

4. Increasing unions of amenable groups are amenable

5. Any group obtained from finite and abelian groups by iterated extension
and increasing union is called elementary amenable. The first examples of
amenable groups which are not elementary were found by Grigorchuk
[113]
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Example 2.58. (Grigorchuk–Maki [114]) Let T be an infinite valent regular rooted
tree. Each vertex vw is encoded by a finite string w of integers; the root corre-
sponds to the empty string. For each vertex vw, let Tw denote the subtree of
T consisting of edges below vw. We fix for each string w a “standard” isomor-
phism of rooted trees from T to Tw taking v∅ to vw. An end in T is encoded by an
infinite string of integers, whose prefixes correspond to a sequence of vertices
which exits the end. With respect to the lexicographic ordering, the set of ends
is ordered.

Let Γ be a group generated by elements A, B, C, D of Aut(T). We give the
action of these elements on finite strings w of integers, corresponding to vertices
of T. The element A adds 1 to the first integer, and leaves the rest of the string
alone:

A(iw) = (i + 1)w

The elements B, C, D are defined recursively, and depend on the parity of the
first integer, which is either even (denoted by e) or odd (denoted by o):

B(ew) = eA(w), B(ow) = oC(w)

C(ew) = eA(w), C(ow) = oD(w)

D(ew) = ew, D(ow) = oB(w)

By reducing each integer mod 2 one obtains an action of a quotient group on an
infinite rooted binary tree. This quotient group is torsion, and also has interme-
diate growth. One can think of Γ as a kind of Artinization of this torsion group;
see [113].

The group Γ preserves the lexicographical ordering on the set of ends of T,
and is therefore itself left-orderable, and can be embedded in Homeo+(I). Note
that if Tn denotes the rooted subtree of T whose vertices are encoded by strings
of length ≤ n, then Tn is infinite of finite diameter, and the restriction of Γ to Tn

is n-step solvable.

Finally, the group Γ has growth of type between e
√

n and en0.991
and is amenable

but not elementary amenable.

There is an interesting interaction between amenability and left-orderability:

Theorem 2.59. (Witte-Morris [251]) Let G be a left-orderable amenable group. Then
G is locally indicable.

Proof Since we only want to prove G is locally indicable, without loss of gen-
erality we may assume G is finitely generated, and therefore countable.

Given a group G, let O(G) denote the set of left invariant orders on G. This
set may be topologized by taking as basic (proper) open sets those subsets of
the form

Ug1g2 = {left invariant orders < for which g1 < g2}
This is the same topology that O(G) inherits as a subset of 2G−Id (compare with
Lemma 2.28). The complement of O(G) in 2G−Id is open by Lemma 2.28, so
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O(G) is compact. G acts on O(G) by conjugation, which permutes the basic
open sets and is therefore an action by homeomorphisms. Since the orders in
O(G) are left invariant, the action of G on O(G) can equivalently be thought of
as an action by right multiplication. If < is a left invariant order, and g ∈ G, we
denote the result of right-multiplication by g on < by subscript:

< ◦ g =<g

There is an involution on O(G) which reverses the order of any two elements;
we denote this involution by ι. On basic sets, this acts by

ιUg1g2 = Ug2g1

This involution commutes with the action of G. Note that for any distinct g1, g2,
the sets Ug1g2 and Ug2g1 are disjoint, and their union is equal to O(G).

Since G is amenable, it preserves a probability measureµ on O(G). Then µ+
ι∗µ is G-invariant, and positive on every basic set. By the Poincaré Recurrence
Theorem, for every cyclic subgroup 〈g〉 of G and every measurable set A ⊂ G,
almost every order < in A is recurrent; i.e. <gn∈ A for infinitely many positive
n.

Since G is countable, there are only countably many basic open sets and
countably many cyclic subgroups of G. Therefore after throwing away a subset
of O(G) of zero measure, we may find an order <∈ O(G) which is recurrent
for every cyclic subgroup Z < G, in the sense that if <∈ Ug1g2 and g ∈ G then
<gn∈ Ug1g2 for infinitely many positive n. We fix this order in the sequel.

Claim 1: For every α,β ∈ G with α > Id there is an arbitrarily large positive
integer n such thatαβn > βn.

This follows by recurrence of the action of β with respect to the open set
UIdα . Similarly, we have

Claim 2: If β > α thenαβn−1 < βn for infinitely many n.

This follows immediately as in Claim 1 by recurrence of the action of βwith
respect to the open set Uαβ.

These two claims together imply local indicability. To see this, let H < G
be finitely generated, and construct as in Theorem 2.46 a faithful action on R
associated to < for which there is a point p ∈ R such that g > h if and only
if g(p) > h(p). Without loss of generality, we assume there is no global fixed
point. By Claim 1, ifα,β > Id and if limn→∞β

n(p) = q we must have

α(q) = lim
n→∞

αβn(p) ≥ lim
n→∞

βn(p) = q

where the inequality for the limits holds because it holds for infinitely many n.
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Suppose further that α(r) = r for some p < r < q. Then by replacing β
by some power of β if necessary, we can assume β(p) > α(p) so by Claim 2
above,αβn−1 < βn for infinitely many positive n. By taking a limit, this implies
α(q) ≤ q. Putting these two facts together, we have shown that when α,β > Id
and limn→∞α

n(p) ≤ limn→∞β
n(p) = q < ∞ then q is fixed by both α and β.

By induction, if α1, . . . ,αn is a finite family of elements, all with αi(p) > p
and such that limn→∞α

n
i (p) = qi then everyαi fixes max qi.

Suppose that for some β the set fix(β) is nonempty and contains a maximal
element q > p. Without loss of generality, we can assume β(r) < r for all r > q.
Since there is no global fixed point for the action of H, there is some α with
α(p) > q. Then for any positive n, we have βnα(p) > q. On the other hand, let
I be an open interval whose infimum is q. Thenα(I) lies above q, and therefore
for sufficiently large positive n, βn movesα(I) arbitrarily close to q, and in par-
ticular inside I. It follows that there is q′ ∈ fix(βnα) with q′ > q. Putting these
two facts together, we see that βnα is positive, and fix(βnα) contains a least
positive element q′ which is greater than q. We deduce that q′ ∈ fix(β), contrary
to the definition of q. This contradiction shows that if β fixes some point q > p
then its fixed point set is unbounded in the positive direction.

Since H has no global fixed point, if β has a fixed point q then some con-
jugate βα has a fixed point α(q) > p. This implies that the fixed point set of
βα , and therefore that of β, is unbounded in the positive direction; similarly, if
fix(β) is nonempty, then fix(β) is unbounded in the negative direction.

We deduce that the subset N of H consisting of elements with fixed points
is a normal subgroup, and every finitely generated subgroup has a common fixed
point. It follows that H/N is a nontrivial quotient with a left invariant order
whose associated action is free. To define this order, observe that if hN is a non-
trivial coset, then every coset representative in H moves all sufficiently positive
points in the same direction; this direction defines an order on H/N.

A classical Theorem of Hölder, which we will prove in the sequel as The-
orem 2.90, says that a finitely generated group which acts freely on R is free
abelian, and the proof follows. 2

Remark Claim 1 implies that for every α,β > Id there is a positive n such
that αβn > β. A left invariant order with this property is called Conradian. It
is known that a group is locally indicable if and only if it admits a Conradian
left-invariant order. Note that a bi-invariant order is necessarily Conradian, and
therefore a bi-orderable group is locally indicable.

Remark Special cases of Theorem 2.59 were proved in [153]. In particular,
these special cases apply to all left orderable groups of subexponential growth,
such as the Grigorchuk–Maki example.

Concerning amenable groups and bounded cohomology, one has the follow-
ing fundamental theorem, obtained originally by Johnson in [143]:
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Theorem 2.60 Suppose f : Y → X is a regular covering with amenable covering
group G. Then the induced map

f ∗b : H∗b (X; R)→ H∗b (Y; R)

is injective and isometric with respect to the norm ‖ · ‖.
Proof Since G is amenable, there is a projection A from the complex C∗b (Y) of

bounded cochains on Y to the complex C∗b (Y)G of G-invariant bounded cochains

on Y. Since G is a covering group, there is a natural identification of C∗b (Y)G with
C∗b (X). This projection commutes with δ, and is a left inverse to the cochain ho-
momorphism f ∗b : C∗b (X)→ C∗b (Y) induced by the covering map. 2

It follows that H∗b (G; R) = 0 for G amenable. Also see [115], or [133] for a dif-
ferent point of view.

2.8.2 Milnor–Wood inequality

By contrast with amenable groups, free groups and more generally word hyper-
bolic groups have nonvanishing second bounded cohomology. In fact except for
some elementary exceptions, the dimension of H2

b is uncountable ( [69]).

Example 2.61. (de Rham cocycles) Let M be a closed hyperbolic manifold. Let
α be a 1-form on M, and define an (inhomogeneous) 1-cochain cα : π1(M)→ R
by choosing a basepoint, and integrating cα over the geodesic representative of
each element. By the Gauss-Bonnet formula and Stokes’ theorem, the cobound-
ary δcα is a bounded 2-cocycle with norm at most π‖dα‖. On the other hand, if
α is non-zero, the 1-cochain cα is unbounded, and therefore δcα is nontrivial in
H2

b (π1(M)).

Milnor first observed in [164] that the Euler class of a principle GL+(2) bun-
dle is a bounded class. This fact was generalised to GL+(n) bundles by Sullivan
( [224]), but it was Wood in [252] who first saw how to generalise it to bundles
whose (discrete) structure group is an arbitrary subgroup of Homeo+(S1). In
the language of bounded cohomology, what became known as the Milnor–Wood
inequality can be expressed as follows:

Theorem 2.62. (Milnor–Wood) Let G be a circularly ordered group. Then the Euler
class [e] of G is an element of H2

b (G) with norm ‖[e]‖ ≤ 1
2 .

Proof Let e be the cocycle constructed by Ghys. Then e− 1
2 is homologous to

e, and has norm ≤ 1
2 . 2

A very important special case is the fundamental group of a closed surface
of genus ≥ 1.

Corollary 2.63 Let S be an orientable surface of genus ≥ 1, and let ρ : π1(S) →
Homeo+(S1) be some representation with Euler class eρ ∈ H2(S; Z). Then

|eρ([S])| ≤ −χ(S)
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Proof If S is a torus, then S admits a self-map of any positive degree, so the
fundamental class [S] may be represented by a chain with arbitrarily small L1

norm.
If S is a surface of genus ≥ 2. Then S is hyperbolic. In a hyperbolic sur-

face, chains can be straightened. That is, each singular simplex can be replaced
by the unique totally geodesic simplex with the same endpoints in the same
(relative) homotopy class of map. This produces a homologous chain with to-
tally geodesic simplices with the same L1 norm. A geodesic triangle in hyper-
bolic space has area bounded above by π , which is achieved only by ideal tri-
angles. By Gauss-Bonnet, the hyperbolic area of S is −2πχ(S). It follows that
‖[S]‖ ≤ −2χ(S) and we are done. 2

Remark If ρ : π1(S) → PSL(2, R) < Homeo+(S1) is the holonomy represen-
tation of a hyperbolic structure on S, then |eρ([S])| = −χ(S), so Theorem 2.62
and Corollary 2.63 are sharp.

2.9 Commutators and uniformly perfect groups

Recall that a group G is perfect if the commutator subgroup [G, G] is equal to
G. Equivalently, G is perfect if every element can be written as a product of
commutators. A group is uniformly perfect if there is a uniform constant n such
that every element of G can be written as a product of at most n commutators.
We will show in Theorem 2.66 that Homeo+(S1) is uniformly perfect. For such
groups, there is a relationship between ordinary and bounded cohomology.

Lemma 2.64 Let G be uniformly perfect. Then the natural map H2
b (G) → H2(G) is

injective.

Proof We work with inhomogeneous co-ordinates. Supposeα is a bounded 2-
cocycle, and α = δµ for some 1-cocycle µ. Since G is uniformly perfect, there
is some positive n independent of g such that every g ∈ G can be expressed as a
product

g = [g1, h1] · · · [gn, hn]

with gi, hi ∈ G. Now, for any word w in elements of G, let wi denote the ith
letter, and w>i the suffix of w consiting of letters which come after wi. We have
an equality

µ(w) = ∑
i

µ(wi)−∑
i

α(wi, w>i)

On the other hand, for each i we have an equality

µ(gi) +µ(g−1
i ) = µ(Id)−α(gi, g−1

i )

and similarly for hi. It follows that we can express µ(g) as a sum of 2n terms
of the form µ(Id) together with 6n terms of the form α(·, ·). From this we can
estimate

|µ(g)| ≤ 2n|µ(Id)|+ 6n‖α‖
which shows that µ is a bounded 1-cocycle. 2
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Compare with [158].

Theorem 2.65 Every element of Homeo+(I) is a commutator.

Proof Let h ∈ Homeo+(I) be arbitrary. Then fix(h) is closed, and h is conjugate
to a translation on each connected component Ui ⊂ I − fix(h). But a translation
on R is the commutator of two dilations centered at different points. Define hi

to agree with h on Ui and be the identity elsewhere. Then identifying Ui with R
exhibits hi as a commutator of elementsαi,βi with support equal to Ui. Then

h = ∏
i

hi = ∏
i

[αi,βi] = [ ∏
i

αi, ∏
i

βi ]

since
[αi,α j] = [βi,β j] = [αi,β j] = Id

when i 6= j. 2

Theorem 2.66 Every element of Homeo+(S1) is a product of at most two commuta-
tors.

Proof Let h ∈ Homeo+(S1) be arbitrary. If h fixes some point p, then the re-
striction of h to S1 − p is conjugate to some element of Homeo+(I) acting on
the interior of I. It follows from Theorem 2.65 that h is a commutator.

Otherwise, let p be arbitrary, and let q ∈ S1 be a point other than p or h(p).
Then there is some g ∈ Homeo+(S1) which fixes q and moves h(p) to p. By the
discussion above, g is a commutator. Moreover, gh fixes p and therefore by the
discussion above, gh is also a commutator. The claim follows. 2

Using Theorem 2.49 and Lemma 2.64 we can calculate H2
b for Homeo+(I)

and Homeo+(S1):

Corollary 2.67 H2
b (Homeo+(I); R) = 0 and H2

b (Homeo+(S1); R) = R.

The generator of H2
b (Homeo+(S1); R) is of course the (real) Euler class.

Example 2.68. (Uniform perfectness for diffeomorphisms) The group Diffeo+(I)
is not perfect, since there are obvious surjective homomorphisms to R defined
by taking the logarithm of the derivative of an element at either endpoint. In
fact, for any n, if Cn denotes the subgroup of Diffeo+(I) consisting of smooth
diffeomorphisms which are tangent to Id at the endpoints to order n, then tak-
ing the (n + 1)st term of the Taylor expansion at an endpoint defines an (addi-
tive) homomorphism to R.

On the other hand, let C∞ denote the subgroup of Diffeo+(I) consisting of
smooth diffeomorphisms which are infinitely tangent to the identity at the end-
points.

Sergeraert proved the following theorem in [217]:

Theorem 2.69. (Sergeraert, [217]) The group C∞ is perfect.
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In [242], Tsuboi showed that C∞ is uniformly perfect. In fact, every element
of C∞ can be written as a product of at most eight commutators. On the other
hand, we will see from Theorem 2.119 that C∞ is actually locally indicable, and
therefore contains no perfect nontrivial finitely generated subgroups!

2.9.1 Stable commutator length

Lemma 2.64 is by no means optimal.

Definition 2.70 Given a group G and an element g ∈ [G, G], the commutator
length of g, denoted cl(g), is the minimum number of commutators in G whose
product is g. More generally, given g with some power contained in [G, G], the
stable commutator length of g, denoted scl(g), is defined to be

scl(g) = lim inf
n→∞

cl(gn)

n

A theorem of Bavard [13] gives the definitive relationship between stable
commutator length and second bounded cohomology:

Theorem 2.71. (Bavard) Let G be a group. Then the natural map from H2
b (G; R) to

H2(G; R) is injective if and only if the stable commutator length vanishes on [G, G].

Example 2.72. (Irreducible lattices) Stable commutator length vanishes on all
of SL(n, Z) when n ≥ 3. More generally, stable commutator length vanishes on
[Γ , Γ] when Γ is an irreducible lattice in a semisimple Lie group of real rank at
least 2. Note that with this hypothesis [Γ , Γ] is finite index in Γ . See [29].

Example 2.73. (PL+(I)) In [39] it is shown that if G is any subgroup of PL+(I)
then the stable commutator length of G vanishes on [G, G]; as a corollary, one
obtains a new proof of the classical theorem of Brin–Squier [24] that PL+(I)
does not contain a nonabelian free subgroup.

We now describe a fundamental relationship between two-dimensional topol-
ogy and two-dimensional (bounded) homological algebra.

Suppose G is equal to π1(X) for some space X. A conjugacy class of element
g in G corresponds to a free homotopy class of loop γg in X. Representing g as a
product of n commutators is the same as finding a map from a once-punctured
genus n surface into X whose boundary maps to γg. So commutator length
measures genus, and stable commutator length measures “stable genus”.

On the other hand, given γg in X which is homologically trivial over R,
one can consider real valued 2-chains C = ∑i riσi for which ∂C represents the
fundamental class of γg . Dual to the L∞ norm on cochains, there is an L1 norm

on chains. For C as above, the L1 norm of such a chain is just ∑i ri. The filling
norm of g, denoted fill(g), is the infimum of the L1 norm of finite chains C as
above. Note that in dimension 2, bounded cohomology and L1 homology are
dual; see the Remark following Definition 2.57.

Stable commutator length and filling norm give two natural homological
measures of the algebraic complexity of an element g. It is an obvious question
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to ask how these two tools are related. A very satisfying answer is given by
another theorem of Bavard. We discuss this now.

A surface S in X with boundary γg has negative Euler characteristic unless
g is trivial. Since S has a nonempty boundary, it can be triangulated with 1 −
2χ(S) triangles. Since Euler characteristic is multiplicative under coverings, by
pushing down a triangulation of covering spaces we obtain a naive estimate

fill(g) ≤ 4 scl(g)

If we give S a hyperbolic metric then any (homological) triangulation can be
straightened, following Thurston [230]; i.e. each singular simplex mapping into
S can be replaced with the geodesic (singular) simplex which has the same ver-
tices. By the Gauss–Bonnet formula, any (homological) triangulation of S has
at least −2χ(S) triangles, so this estimate is sharp. This is the trick we used in
Corollary 2.63.

Conversely, the support of a finite 2-chain is a triangulated 2-complex K
which is mapped into X with weights on the simplices. Each (oriented) edge
determines a sign on the (oriented) triangles which bound it. With these signs,
the algebraic sum of weights on adjacent triangles sums to zero for each edge
which does not lie onγg. The collection of edges therefore imposes a set of linear
equalities on the weights on the triangles, and since the weight on the “free
boundary”γg is rational, our initial assignment of weights can be approximated
by an assignment of rational weights which is compatible on the edges. After
multiplying through by a large integer to cancel denominators, we can make the
weights integral and glue triangles in pairs across edges (compatibly with signs)
to obtain a map from a surface S into X whose boundary maps to a multiple of
γg.

S might have multiple boundary components, which we denote by γi. If
there is more than one boundary component, each H1(γi; Z) injects into H1(S; Z),
so in this case there exists a surjective homomorphism φ : π1(S) → Z which is
injective on each γi. It follows that we can find an arbitrarily large finite cover

Ŝ of S whose boundary maps to an arbitrarily large multiple of γg , but with
the same number of boundary components as S. By gluing rectangles to con-

nect different boundary components of Ŝ together (i.e. band-summing), we can
produce a new surface with one boundary component, which (projectively) ap-
proximates in L1 our original filling 2-chain arbitrarily closely.

This construction lets one move efficiently between filling chains and maps
of surfaces, and one obtains one form of Bavard’s Duality Theorem:

Theorem 2.74. (Bavard’s Duality Theorem) Let G be a group, and let g ∈ [G, G].
Then

fill(g) = 4 scl(g)

Remark Bavard’s theorem is usually stated in terms of a duality between sta-
ble commutator length and (homogeneous) quasimorphisms. Quasimorphisms
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and filling norm are are related in an obvious way by ordinary L1–L∞ duality
and the Hahn–Banach theorem, so this statement of Bavard’s theorem is just the
usual Bavard Duality Theorem without the “duality” part. Of course there are
more details to the proof of Bavard’s theorem than are suggested in the sketch
above; one should consult Bavard’s very readable paper [13].

2.10 Rotation number and Ghys’ theorem

There is more information contained in the Euler class when we move from
cohomology with real coefficients to cohomology with integer coefficients. Clas-
sically, the Euler class of a circularly ordered group can be understood in terms
of Poincaré’s rotation number; see [203].

Definition 2.75. (Rotation number) Let α ∈ Homeo+(S1). We lift α to some
α̃ ∈ Homeo+(R). Define the rotation number rot(α) by

rot(α) = lim
n→∞

α̃n(0)

n
mod Z

Rotation number on Homeo+(S1) satisfies the following easily verified prop-
erties:

1. rot is a continuous (in the compact-open topology) class function

rot : Homeo+(S1)→ S1

2. rot is multiplicative under taking powers; i.e. rot(αn) = n · rot(α) for all
α and all n ∈ Z.

3. If rot(α) = 0, then there is some α̃ with a bounded orbit. It follows that α̃
has a fixed point in R, and thereforeα has a fixed point in S1. The converse
of this is clear. More generally,α has a fixed point of order q if and only if
rot(α) is rational, of the form p/q.

4. The subset of Homeo+(S1) containing elements with rot ∈ Q/Z contains
an open, dense set.

Only the last point perhaps needs some discussion. An element with a ra-
tional rotation number has a periodic orbit and conversely; since S1 is compact,
every orbit of any homeomorphism accumulates somewhere, so elements with
periodic orbits are obviously dense. Now if α has a periodic orbit p, we can
blow up the orbit of p and insert an action with an attracting periodic orbit in
the resulting gaps. Attracting orbits are stable, so we are done.

Example 2.76. (Arnol′d tongues) A straightforward example of the greedy be-
haviour of rational rotation numbers is due to Arnol′d [8].

Let
Va,b(x) = x + a + b sin(2πx) mod Z

where a and b are positive, and b is sufficiently small that V is a homeomor-
phism. For each a, the map Va,0 is just a rigid rotation with rotation number a.
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For each positive fixed b, the map a → rot(Va,b) is continuous and monotone,
but is locally constant on countably many open intervals, one for each ratio-
nal number. The interior in the a–b plane of the preimage of a rational number
p/q is called an Arnol′d tongue, which gets narrower as b → 0, limiting on the
point (p/q, 0). The bigger the denominator q is, the thinner the “tongue” and the
sharper it approaches the a-axis; see Fig. 2.4. Also see § 4.11 and Theorem 4.58.

FIG. 2.4. Arnol′d tongues for the family x→ x + a + b sin(2πx)

We say that two elements α,α′ ∈ Homeo+(S1) are monotone equivalent if
they define monotone equivalent actions of Z on S1 (recall Definition 2.21). It
is clear that monotone equivalentα,α′ have the same rotation number. The fol-
lowing converse was essentially known to Poincaré:

Theorem 2.77. (Poincaré) rot is a complete invariant of the monotone equivalence
class ofα.

We will prove a generalization of this theorem, due to Ghys, below.
For a group G, consider the short exact sequence of cochains:

0→ C∗b (G; Z)→ C∗b (G; R)→ C∗(G; S1)→ 0

This gives a long exact sequence of cohomology groups. For any group G, a 1-
cocycle is a homomorphism to R; in particular, it is either unbounded or trivial.
It follows that H1

b (G; R) = 0. So the long exact sequence takes the form

0→ H1(G; S1)→ H2
b (G; Z)→ H2

b (G; R)→ H2(G; S1)→ · · ·

For any amenable group G, we have H∗b (G; R) = 0, by Theorem 2.60. So for

G = Z, we get H2
b (Z; R) = 0 and S1 = H1(Z; S1) ∼= H2

b (Z, Z). Any element

α ∈ Homeo+(S1) determines an action of Z on S1, by sending the generator of
Z to α. The cocycle e associated to this action therefore determines an element
in H1(Z, S1) = S1 which is precisely the rotation number ofα.
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This fact can be suitably generalized to arbitrary countable groups G. For
any such G, there is a precise relationship between circular orders on G and
bounded cohomology, given by the following theorem of Ghys:

Theorem 2.78. (Ghys [100]) Let G be a countable group. Then there is a natural
equivalence between homomorphisms of G to Homeo+(S1) up to monotone equiva-
lence and cohomology classes [e] ∈ H2

b (G; Z) represented by cocycles e taking values
in {0, 1}.
Proof If ρ : G → Homeo+(S1) is an action, we get a cocycle e taking values
in {0, 1} by Construction 2.53. This construction depends on a choice of a base-
point p ∈ S1, but different choices of basepoint give rise to (boundedly) coho-
mologous cocycles. An explicit formula is given in Lemma 2.84 for the cocycle
c instead of e; the formula for e is similar.

Conversely, such a cocycle determines a circular order on G, and therefore
an action ρe : G → Homeo+(S1), by Lemma 2.43. If e1, e2 represent the same
element of H2

b (G; Z), we will construct a monotone equivalence between ρe1

and ρe2 .
Since e1 and e2 are homologous, the rotation numbers of ρe1(g) and ρe2(g)

are equal, for all g ∈ G. Moreover, since the images of e1 and e2 in H2(G; Z) are
equal, we get a canonical isomorphism between the two central extensions of G
obtained by taking the preimages of ρei

(G) in Homeo+(R) under the covering

map R→ S1.

Let G̃ denote this (isomorphism class of) central extension, and

ρ̃ei
: G̃ → Homeo+(R)

the associated representations.
We define a monotone map m : R→ R as follows. For all p ∈ R, define

m(p) = sup
g∈G

ρ̃e2(g)−1ρ̃e1(g)(p)

Note that since the (R-valued) rotation numbers of ρ̃e1(g) and ρ̃e2(g) are equal
for any g, we have |m(p)− p| ≤ 1; in particular, m is well-defined. Note also
that while m is typically not continuous, it is monotone, and therefore we can
make it continuous by blowing up R at points of discontinuity. So after possibly
replacing ρe1 and ρe2 by semiconjugate actions, we can assume m is continuous.

Now, for all h ∈ G,

m(ρ̃e1(h)(p)) = sup
g∈G

ρ̃e2(g)−1ρ̃e1(gh)(p)

= sup
gh−1∈G

ρ̃e2(gh−1)−1ρ̃e1(g)(p)
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= ρ̃e2(h) sup
gh−1∈G

ρ̃e2(g)−1ρ̃e1(g)(p) = ρ̃e2(h)m(p)

so m intertwines the representations ρ̃e1 and ρ̃e2 . Since m commutes with the

center of G̃, the map m descends to a monotone map from S1 to itself which
intertwines ρe1 and ρe2 and shows that the associated representations are mono-
tone equivalent, as claimed. 2

See [100] for details. In the special case that G is any amenable group, the
exact sequence gives H1(G; S1) = H2

b (G; Z) i.e. actions of G on S1 up to mono-

tone equivalence are parameterized by homomorphisms of G to S1. To see this
another way, observe that since G is amenable, any action by G on S1 preserves
a probability measure µ. After blowing up atoms of µ to intervals and blowing
down complementary gaps, we see that the action is monotone equivalent to
an action which preserves a probability measure without atoms and of full sup-
port; such an action is of course topologically conjugate to an action by rigid
rotations. The following is a restatement in our language of material contained
implicitly in [133]:

Theorem 2.79. (Hirsch–Thurston) Let G be amenable. Then any action of G on S1

by homeomorphisms is monotone equivalent to an action by rotations.

2.11 Homological characterization of laminations

Many of the subgroups of Homeo+(S1) we will consider throughout this book
preserve extra structure. SupposeΛ is a lamination of S1, and Γ < Homeo+(S1)
a group which preserves Λ, in the sense that it permutes the set of leaves. We
can interpret this in homological terms, compatibly with the discussion in § 2.7.

Construction 2.80 Suppose we are given ρ : G → Homeo+(S1). Suppose fur-
ther that we are given distinct points p, q ∈ S1 with trivial stabilizer. Then we
define

hρ(p, q)(g) =





1 if p, g(p), q are positively ordered

−1 if p, g(p), q are negatively ordered

0 if p, g(p), q are degenerate

The relationship between h and c is straightforward:

Lemma 2.81 There is a formula

cρ(p)(g1, g2) = hρ(p, g2(p))(g1)

for all p ∈ S1 and all g1, g2 ∈ G.

Proof This follows immediately from the definitions. 2

Here we are using the notation described in Notation 2.52.
Moreover, invariant laminations are encoded in a straightforward algebraic

property of h:
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Lemma 2.82 For any two points p, q ∈ S1, pq is a leaf of a lamination invariant under
G with trivial stabilizer if and only if

hρ(p, q)(g)+ hρ(q, p)(g) = 0

for all g ∈ G.

Proof If pq is a leaf ofΛ, then for any g ∈ G, g(pq) is either equal to pq (possibly
with opposite orientation) or else is contained in the closure of one component
of S1 − {p, q}. In either case, the formula follows. Conversely, if the formula
follows for all g, pq does not link any of its translates. It follows that the orbit of
pq under G is unlinked, and its closure is an invariant lamination. 2

Definition 2.83 hρ(p, q) as above is a laminar cochain.

Note the antisymmetry of a laminar cochain when evaluated on leaves as its
defining characteristic. The next lemma describes the homological relationship
between h and c.

Lemma 2.84 Suppose h, c are laminar cochains and circular cocycles respectively. Then
there is a formula

cρ(p)(g1, g2)− cρ(q)(g1, g2) = δmρ(p, q)(g1, g2)

where

mρ(p, q)(g) =
1

2

(
hρ(p, q)(g)− hρ(p, q)(g−1)

)

Proof The proof follows by examining the (finite) possible combinatorial con-
figurations of p, q and their translates by g1 and g2. 2

Note that mρ can be recovered from cρ uniquely by the fact that it is a bounded
1-cochain. For, any other m′ with the same coboundary as m differs from m by
a 1-cocycle, which is to say a homomorphism to Z. But such a homomorphism
is either trivial or unbounded, and the claim follows.

2.12 Laminar groups

Definition 2.85 A group G < Homeo+(S1) is laminar if there is a nontrivial
lamination Λ on S1 which is preserved by G. We take Λ to be part of the struc-
ture of a laminar group.

Example 2.86 By blowing up an orbit, any countable group action on S1 is
monotone equivalent to an action that preserves a nontrivial lamination.

This example suggests that one should be interested in laminar groups G
which act minimally. The following example of Kovačević gives a general pro-
cedure to “hide” nonminimal laminar groups in minimal laminar groups.
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Example 2.87. (Kovačević [148]) Let G countable act minimally on S1, and let
the induced representation be denoted by ρ : G → Homeo+(S1). Blow up an
orbit Gp, and let Λ be the lamination of S1 whose leaves are exactly the pairs
of points which are endpoints of blown-up intervals corresponding to points
in Gp. After blow up, G acts on S1 by ρ′ : G → Homeo+(S1). Realize Λ as
the boundary data of a geodesic lamination Λg of H2, and let K be the group

of isometries of H2 generated by reflection in the leaves of Λg, and let K+ be
the index 2 subgroup consisting of orientation-preserving isometries. Let Γ =
ρ′(G) ∗ K+. Then Γ preserves a discrete lamination Λ′ of H2 which contains Λg

as a discrete sublamination. Notice that Γ acts minimally. If ρ(G) is a torsion-
free subgroup of PSL(2, R), then this example has the interesting property that
every element of Γ is topologically conjugate to a Möbius element, but the whole
group Γ is not conjugate to a subgroup of PSL(2, R).

A similar but real-analytic example was constructed in [184].

New actions may be obtained from old by flips:

Construction 2.88 Suppose G acts on S1 by some representation

σ : G→ Homeo+(S1)

in such a way that σ(G) preserves a lamination Λ. Extend Λ to a lamination of
the disk D which by abuse of notation we also denote Λ. Let P be a complemen-
tary region to Λ. We “cut” D along P and along each translate σ(g)P for g ∈ G.
Then reverse the orientation on P and all its translates, and glue back sides by
some orientation-reversing map. This gives a new disk D and a new lamination
ΛP with the same set of leaves as Λ, so there is an induced action of G on ΛP

which extends to a new representation

σP : G → Homeo+(S1)

which we call the flip of σ along P.

Note thatσP = σσ(g)P up to conjugacy, for any P and any g ∈ G, so that this
operation depends only on the equivalence class of complementary region P.
Moreover, (σP)P = σ and (ΛP)P = Λ for any P, again up to conjugacy.

This construction gives 2n distinct conjugacy classes of representations of G
in Homeo+(S1), where n is the number of orbit equivalent classes of comple-
mentary regions.

At the homological level, there is a decomposition of the Euler class e of σ :

e =
n

∑
i=1

ei

such that if ePi denotes the Euler class of σPi , then

ePj = e− 2e j
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Example 2.89 Suppose S is a surface, and Λ is a geodesic lamination on S
whose complementary regions are ideal polygons P1, . . . , Pn. Let ρ : π1(S) →
Homeo+(S1) be the representation coming from the natural action on the ideal

circle of S̃. Each Pi lifts to an equivalence class of ideal polygons complementary

regions in S̃. If [S] denotes the fundamental class of S, then for an appropriate
choice of orientation,

e([S]) = χ(S)

and
ePj([S]) = χ(Pj)

for each j.
In particular, if every Pi is an ideal triangle, then χ(Pi) = −1/2, and one can

realize every Euler class allowed by the Milnor–Wood inequality (Theorem 2.62)
by flips of ρ along Pi’s.

Flips were first introduced by Goldman in his thesis [109]; see also [40].

2.13 Groups with simple dynamics

In the next few sections, we survey certain classes of groups and group actions
on R and S1, collecting together some basic facts, examples and constructions
for use in later chapters.

The following theorem of Hölder [135] is classical:

Theorem 2.90. (Hölder [135]) Let G < Homeo+(R) and suppose for all nontrivial
g ∈ G that g has no fixed points. Then G is abelian.

Proof The idea of the proof is very simple: let g ∈ G have no fixed points, so
that g translates every point in the positive direction. Then g−1 translates every
point in the negative direction and the same is true of any conjugate hg−1h−1.
If the product ghg−1h−1 is nontrival, then it translates every point in the same
direction; without loss of generality, the positive direction. This means that the
conjugate hg−1h−1 translates points in the negative direction less than g trans-
lates them in the positive direction; i.e. h “shrinks” all sufficiently long intervals
by a definite amount. By the contraction mapping theorem, this implies that h
has a fixed point, and we obtain a contradiction. We flesh out this sketch below.

Fix some positive g ∈ G. Then g is conjugate to a translation, so we choose
co-ordinates on R for which g(p) = p + 1 for all p.

Claim: For any r ∈ R, and n ∈ Z and any h ∈ G we have an inequality

n− 1 ≤ h(r + n)− h(r) ≤ n + 1

To see this, suppose h(r + n)− h(r) > n + 1 for some r, n. Then

h−1g−n−1hgn(r) > r
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and therefore h−1g−n−1hgn(s) > s for all s, because no nontrivial element of G
has fixed points. But this means h(s + n)− h(s) > n + 1 for all s, and therefore

h stretches the length of all sufficiently long intervals by at least n+1
n − ǫ for

any positive ǫ. By the contraction mapping theorem, this implies that h has a
fixed point, contrary to assumption. A similar argument establishes the other
inequality and proves the claim.

Now for any h ∈ G we define r(h) ∈ R by

r(h) := lim
n→∞

hn(p)− p

n

By the claim, this limit exists, and is independent of the choice of p. Moreover,
also by the claim above, r is a class function, so for any h, r(hg−1h−1) = −1. If
there is some s ∈ R with h(s + 1)− h(s) = 1 then

ghg−1h−1(h(s + 1)) = h(s + 1)

and therefore ghg−1h−1 has a fixed point and by assumption is equal to the
identity. Otherwise, replacing h by h−1 if necessary, we must have h(s + 1) −
h(s) < 1 for all s ∈ R. By the claim, h(s + 1)− h(s) must be arbitrarily close to
1 for all s sufficiently close to ±∞. It follows that for any N there is some point
s ∈ R for which [g, h]n(s) is arbitrarily close to s for all n ≤ N, and therefore we
can conclude r([g, h]) = 0.

But for any f ∈ G, if f 6= Id then for some n (possibly negative) f n(p) >
p + 1 and therefore g−1 f n(p) > p and so f n(s) > s + 1 for all s, and |r( f )| ≥ 1

|n| .
So we can conclude in every case that [g, h] = Id. Since g and h were arbitrary,
G is abelian. 2

Remark The map r constructed in the proof of Theorem 2.90 is actually an
injective homomorphism from G to R.

Corollary 2.91 Let G < Homeo+(S1) and suppose for all nontrivial g ∈ G that g has
no fixed points. Then G is abelian.

Proof Let G̃ be the preimage of G in ˜Homeo+(S1). Then G̃ acts on R without

fixed points, and therefore by Theorem 2.90, G̃ is abelian. Since G̃ is a central
extension of G, it follows that G is abelian. 2

Theorem 2.92 Suppose that G < Homeo+(R) and suppose for all nontrivial g ∈ G
that fix(g) is compact. Then G is locally indicable.

Proof The defining property of G is inherited by subgroups, so without loss
of generality, we assume G is finitely generated. Let g1, . . . , gn denote the gen-
erators of G. We will show that G admits a nontrivial homomorphism to R.
Since the defining property of G is inherited by finitely generated subgroups,
the conclusion will follow.
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Since fix(gi) is compact for all i, it follows that for each i there is some
ri such that gi has no fixed points on (ri, ∞). For each i, after replacing gi

by g−1
i if necessary, we can fix co-ordinates on R such that gi(s) = s + 1 for

all sufficiently large s. Suppose for some j and some n that with respect to
this choice of co-ordinates, g j(s + n) − g j(s) > n + 1 for infinitely many s →
∞. Then g−1

j g
−(n+1)
i g jg

n
i (s) > s for infinitely many s → ∞ and therefore

g j(s + n)− g j(s) > n + 1 for all sufficiently large s. This property defines a par-
tial order ≺ on the generating set and their inverses, where in this case gi ≺ g j.

Note that g j ≺ gi implies g−1
i ≺ g−1

j . If i is such that g j, g−1
j � gi for all j, then

after choosing co-ordinates on R such that gi(s) = s + 1 for all sufficiently large
s, it follows that we can estimate

n− 1 < g j(s + n)− g j(s) < n + 1

for any g j for all sufficiently large s, and similarly for g−1
j . We define

r(g) := lim
n→∞

(
lim sup

s→∞

gn(s)− s

n

)

Then as in the proof of Theorem 2.90, r is well-defined and defines a homomor-
phism to R for which r(gi) = 1. 2

Remark It is possible to give a much shorter proof of Theorem 2.92 as follows.
Since fix(g) is compact for all nontrivial g ∈ G, we can define a bi-invariant
order on G by setting g > Id if and only if g(p) > p for all sufficiently positive
p ∈ R.

Any bi-invariant order is Conradian, and any group with a Conradian left-
invariant order is locally indicable, as we saw in the proof of Theorem 2.59.

Example 2.93 The action of the Affine group Aff+(R) of the line has the defin-
ing property of the groups in Theorem 2.92. This group is solvable, and can be
written as an extension of GL+(1, R) = R+ by the group R of translations of R:

0→ R→ Aff+(R)→ GL+(1, R)→ 0

Example 2.94 Let PL+(I) denote the group of PL homeomorphisms of the in-
terval, fixed at the endpoints. Let G < PL+(I) be finitely generated. For each
g ∈ G the fixed point set fix(g) is a finite union of points and intervals, so the
same is true for fix(G). Let p ∈ ∂ fix(G), and suppose without loss of generality
that p is isolated in fix(G) from above.

Define a homomorphism ρ : G→ R by

ρ(g) = log g′(p)

where the derivative is taken from above. Then ρ is nontrivial. Since G was
arbitrary, PL+(I) is locally indicable.
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2.14 Convergence groups

We saw that for a diffeomorphism φ between Riemann surfaces, the dilatation

could be defined as sup |φz
φz
| with respect to a local holomorphic co-ordinate z.

More generally, for a map f : X → Y between metric spaces, we define

K f (x) := lim
ǫ→0

sup

{
dY( f (x), f (p))

dY( f (x), f (q))

∣∣∣ dX(x, p) = dX(x, q) = ǫ

}

Then f : X → Y is K-quasiconformal if K f (x) ≤ K for almost every x. A group
G of homeomorphisms of a manifold M is a quasiconformal group if there is a
uniform K such that every g ∈ G is K-quasiconformal.

If the group G of conformal self-maps of a closed manifold M is not itself
compact, then it is known that M is homeomorphic to a sphere (c.f. [190]). More
generally, if for some K there is a noncompact group G of K-quasiconformal
homeomorphisms of M, then M is homeomorphic to a sphere. Thus one is led
naturally to the question of which quasiconformal subgroups of Homeo(Sn) are
conjugate to conformal groups. In dimension 2, one has the following theorem
of Sullivan (c.f. [226]):

Theorem 2.95. (Sullivan) Let G < Homeo+(S2) be a quasiconformal group. Then
G is quasiconformally conjugate into PSL(2, C).

We give a sketch of the proof, following Tukia [243].
The first part of the proof is to find some kind of “measurable” conformal

structure which is invariant by G. Roughly speaking, one proceeds as follows.
A conformal structure on a manifold M (in the ordinary sense) is a choice of Rie-
mannian metric up to scale — i.e. two metrics g1, g2 define the same conformal
structure if there is a smooth nowhere zero function f such that f g1 = g2. With
respect to a local choice of co-ordinates, a conformal structure can be thought of
as a map from an open set U ⊂ M to the space S of positive definite symmetric
n× n matrices with determinant 1.

The space of such matrices is isomorphic to the coset space SL(n, R)/SO(n, R)
and carries a natural invariant Riemannian metric of curvature ≤ 0. For each
p ∈ M, we let Sp denote the space of conformal structures on Tp M. We choose
a Riemannian metric, and therefore a conformal structure on M. Each g ∈ G
which is smooth at g−1(p) determines a conformal structure sg(p) ∈ Sp by
pushing forward by the map dg : Tg−1(p) → Tp. The union S(G)(p) ⊂ Sp of the

sg(p) is a subset of Sp; the quasiconformal condition on G implies that this is a
bounded subset. Since Sp carries a natural metric of curvature ≤ 0 one can find
a smallest (round) disk Dp with S(G)(p) ⊂ Dp ⊂ Sp and let σ(p) be the center
of this disk. Thenσ defines a measurable map to S (locally), and can be thought
of as defining a measurable conformal structure on M which is invariant by G.
This part of the construction makes sense in any dimension.

In dimension 2, the data ofσ is enough to define a quasiconformal conjugacy
to the standard (round) conformal structure on S2, by means of the Ahlfors–Bers
measurable Riemann mapping theorem [3].
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In dimension 3 and higher, there are examples of quasiconformal groups
which are not quasiconformally conjugate to conformal groups, examples which
are not topologically conjugate to conformal groups, and even examples which
are not abstractly isomorphic to conformal groups (see e.g. [81]). In dimension
1, the natural analogue of a quasiconformal homeomorphism is a quasisymmet-
ric homeomorphism, which may be defined implicitly as the extension at infinity
of a quasiconformal self-map from H2 to itself.

Quasisymmetric homeomorphisms are tricky to work with; in the context of
subgroups of Homeo+(S1) there is a more useful, purely topological property
which characterizes conformal group actions.

Definition 2.96 A group G < Homeo+(S1) is a convergence group if it has the
convergence property, i.e. whenever gi ∈ G are distinct, one can pass to a sub-
sequence gni

which either converge uniformly to some homeomorphism of S1,

or else there are points a, b ∈ S1 such that the gni
converge uniformly outside

neighborhoods of b to the constant map

gni
→ a

Remark Observe that if G is a convergence group, every nontrivial element
has at most two fixed points, and if some element has exactly two fixed points,
the element must be topologically conjugate to a hyperbolic element of PSL(2, R).
An element with no fixed points either has finite order or acts minimally and is
therefore conjugate to a rotation. For, if g ∈ G has a proper minimal set K ⊂ S1

then if I ⊂ S1 − K is one of the complementary intervals, powers of g shrink
the length of I. On the other hand, g is semi-conjugate to an irrational rota-
tion; it follows that the subgroup generated by g does not have the convergence
property. This contradiction shows that no proper closed invariant subset K can
exist, and therefore every element of G is topologically conjugate to an element
of PSL(2, R) acting on S1 in the standard way.

Of course it makes sense to define convergence group actions on more com-
plicated spaces than S1.

Example 2.97 Any subgroup of PSL(2, R) is a convergence group.

Since the convergence property is purely topological, the conjugate of any
convergence group is a convergence group:

Example 2.98 If G < PSL(2, R) and f ∈ Homeo+(S1) is arbitrary, the conjugate
G f is a convergence group.

The converse is known as the Convergence Group Theorem.

Theorem 2.99. (Gabai, Casson–Jungreis Convergence Group Theorem) A sub-
group G of Homeo+(S1) is conjugate into PSL(2, R) if and only if it is a convergence
group.
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Compare with Example 2.87.
If G is indiscrete, its closure in Homeo+(S1) is a locally compact topological

group, and the proof of Theorem 2.99 follows by the proof of Hilbert’s 5th prob-
lem [131]. In the discrete case, Tukia [243] proved Theorem 2.99 except when G
contains a torsion element of order ≥ 3, and the general case was proved by
Gabai [86] and independently by Casson and Jungreis [46].

The idea of Tukia’s argument in the discrete case is to find an invariant axis,
equivalently a leaf with nontrivial stabilizer, whose translates by G are a dis-
crete lamination. In a convergence group, the stabilizer of a leaf is evidently
abelian, by Hölder’s Theorem 2.90; in a discrete group, it is cyclic. This exhibits
G as an HNN extension or amalgamated free product over a cyclic subgroup,
and by induction, one exhibits G as a surface group, and the action as a geomet-
ric action. It is clear from this strategy why the argument cannot work in general
if G has torsion: a hyperbolic triangle orbifold contains no essential embedded
curve.

Gabai’s argument is to find a configuration of nonsimple arcs in the disk
which is invariant under G in order to decompose the action into a simpler
action. The fundamental problem is exactly that of Warning 1.36 — the con-
figuration of three hyperbolic geodesics in H2 is not determined topologically
by the circular order of their endpoints. Gabai’s solution is to choose a leftmost
configuration; that is, after choosing an orientation for the arcs which is invari-
ant under the action of G, one tries to “push” every arc to the left as much as
possible, while keeping its endpoints fixed, until every configuration of mutu-
ally intersecting arcs is resolved. Under the hypothesis that the action has the
convergence property, one shows that the combinatorial configuration of every
finite subset of arcs eventually stabilizes, and one obtains an extension of the
action to D.

Casson and Jungreis’ argument is to study the action of G on the space T ≈
S1 ×R2 of (positively) ordered triples of distinct points in S1. If G is discrete
in Homeo+(S1), the convergence condition implies that the action of G on T
is discrete, and one obtains a quotient 3-manifold T/G with a cyclic central
subgroup. The aim is to show that T is Seifert-fibered, thereby exhibiting G as a
surface (orbifold) group. To do this, one needs only to find some infinite braid B
in T which is invariant under G and which is trivial in S1 ×R2, in the sense that
it is properly isotopic to a product S1 × K for some discrete set K ⊂ R2. In this
case, T− B covers a 3-manifold with torus boundary whose fundamental group
contains a cyclic central subgroup. Such a 3-manifold is Haken, and therefore
known to be Seifert-fibered by work of Waldhausen, Gordon and Heil (see e.g.
[215]); T/G is obtained by adding back a fiber, and the conclusion follows. If
g ∈ G is an element of finite order (the case left open by [243]) then the circle
S1 → T defined by θ → (θ, g(θ), g−1(θ)) and its translates by G form a locally
finite braid in T. The substance of [46] is a complicated combinatorial argument
to show that this braid is trivial.
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Generalizing in a different direction, Bowditch [21] showed that the conver-
gence property actually characterizes hyperbolicity:

Theorem 2.100. (Bowditch) Suppose a group G acts by homeomorphisms on a per-
fect metrizable compactum X, and suppose the induced action on the space of distinct
triples of points in X is properly discontinuous and cocompact. Then G is word hyper-
bolic, and there is a G-equivariant homeomorphism of X onto ∂G.

2.15 Examples

Which countable groups are LO or CO? Of course, Theorem 2.46 gives one
kind of answer to this question: they are precisely the countable subgroups of
Homeo+(R) and Homeo+(S1) respectively. In this section we will discuss some
important classes of “naturally occurring” groups which are neither LO or CO,
and some other important classes of groups which are LO or CO.

The discussion below is not entirely self-contained. We prefer to give illus-
trative examples of the kinds of phenomena that arise, referring to the literature
for proofs of more general results.

We first discuss non-existence results.

Example 2.101. (SL(3, Z)) No finite index subgroup of SL(3, Z) is left-orderable.
The following proof is due to Dave Witte-Morris.

Let Γ < SL(3, Z) have finite index. We let zi, i = 0, . . . , 5 denote the standard
generators of SL(3, Z), so that [zi , zi+1] = Id and [zi−1, zi+1] = z±1

i where the
sign depends on the parity of i.

Since Γ has finite index in SL(3, Z), there is some d > 0 such that zd
i ∈ Γ for

all i. Let Γd be the group generated by such zd
i . Note that [zmd

i−1, znd
i+1] = z±mnd

i .
We will show that Γd, and therefore Γ itself, is not left-orderable.

We write a ≫ b if either a > bi for all i ∈ Z, or a−1 > bi for all i ∈ Z. Note
that the relation≫ is transitive.

Now suppose [a, b] = ck for some nonzero k ∈ Z, and [a, c] = [b, c] = Id.
Then either a ≫ c or b ≫ c. For, replacing the elements by their inverses if
necessary, we may assume a, b, ck ≥ Id. Now, either a ≫ c or else a < ci for
some i. Replace ci by c to reduce the index. Then Id < ca−1, b, ca so for all
positive r,

Id < (ca−1)3rb3(ca)3r = c3ra−3rb3a3rc3r = b3[b−3, a−3r]c6r = b3c−3r = (bc−r)3

Since this is true for all r > 0, b > cr for all r > 0 so b≫ c.
But applying this to each zd

i in turn shows that zd
i ≫ zd

i , which is a contra-
diction.

More generally, Witte-Morris shows that if Γ is a subgroup of finite index in
SL(n, Z) with n ≥ 3 then every action of Γ on R or S1 factors through a finite
group. In fact, this result remains true if one replaces SL(n, Z) by any simple
algebraic Q-group of Q-rank at least 2. See [250] for details.
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Example 2.102. (Weeks manifold) The Weeks manifold W is the closed, ori-
entable hyperbolic 3-manifold of smallest known volume. It can be obtained
by (5/1), (5/2) surgery on the Whitehead link, and its fundamental group has
a presentation

π1(W) ∼= 〈a, b | bababAb2 A, ababaBa2B〉
where A = a−1 and B = b−1.

If π1(W) were left orderable, we could assume without loss of generality
that a > 1. Suppose further that b > 1. There are two further possibilities:
either aB > 1 in which case

1 = (abab).(aB).a.(aB) > 1

or else bA > 1 in which case

1 = (baba).(bA).b.(bA) > 1

which gives us a contradiction in either case. It follows that if a > 1, then b < 1.
But in this case, B > 1. On the other hand,

1 = BR−1
1 b.R2 = BaB2a2Ba2B > 1

so we arrive at a contradiction in this case too. It follows that π1(W) is not
left orderable. In fact, similar calculations show that of the 128 closed hyper-
bolic 3-manifolds in the Hodgson–Weeks census of volume < 3 which are
Z/2Z-homology spheres and whose fundamental group is generated by two
elements, at least 44 of them are not LO. (See [40] and the table in § 6.6)

Moreover, in [40], it is shown that π1(W) is not circularly orderable. To see
this, observe that H2(M; Z) = Z/5Z⊕ Z/5Z so that the Euler class of a poten-
tial circular ordering has order 5, and therefore some index 5 normal subgroup
of π1(W) would be left orderable. Now, all such subgroups turn out to be iso-
morphic. Further, a more complicated calculation, similar to that above, shows
that none of these subgroups are left orderable. The claim follows.

Example 2.103. (Surgery on torus bundles) This example is taken from [208],
and is due to Roberts-Shareshian-Stein. Let Mm be the punctured torus bundle
over S1 with monodromy (

m −1
1 0

)

Let M(p, q, m) be the manifold obtained from Mm by p/q Dehn filling on its
torus cusp. Then a presentation for π1(M(p, q, m)) is given by

π1(M(p, q, m)) = 〈a, b, t | at = abam−1, bt = a−1, tp[a, b]q = 1〉

For ease of notation, we let G(p, q, m) = π1(M(p, q, m)). The main theorem
of [208] is that if m is negative, and p > 2q ≥ 1, then G(p, q, m) is not left-
orderable; in fact, any homomorphism from G(p, q, m) to Homeo+(R) is trivial.
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We prove this in stages. Our argument closely follows that of [208]. First, it
suffices to show that any orientation-preserving action on R has a global fixed
point. Now, suppose to the contrary that there is some action without a global
fixed point.

Note that the first two relations imply that t and [a, b] commute. Further-
more, the last relation implies that t and [a, b] have the same fixed point set.
Since p, q are coprime, it is easy to see that t and [a, b] are both contained in the
same cyclic subgroup of G. Algebraically, this cyclic subgroup is the image of
the peripheral Z⊕ Z of π1(Mm) in π1(M(p, q, m)). Now, since bt = a−1, we see
that G is generated by 〈t, a〉 or equivalently by 〈t, b〉. It follows that t cannot fix
any fixed point of either a or b. Now, suppose t has some fixed point r. Then r
is also fixed by [a, b], and without loss of generality, an(r) > r for all n > 0, and
an(r) < r for all n < 0. Since bt = a−1 and t fixes r, it follows that bn(r) < r for
all positive n, and bn(r) > r for all negative n. Then

r = [a, b](r) = aba−1b−1(r) = abam−1a−mb−1(r)

Since at = abam−1 and t fixes r, it follows that abam−1(r) > r. Similarly, if m is
negative, a−m(r) > r. Finally, b−1(r) > r. It follows that [a, b](r) > r, contrary to
assumption. This contradiction shows that t has no fixed point, so without loss
of generality, we assume t(r) > r for all r, and therefore [a, b](r) < r for all r.

Without loss of generality, we may assume therefore that t is translation by
q and [a, b] is translation by −p on R. Now, suppose that a fixes some point, say
0. Then b fixes q and abam−1 fixes −q.

Then
aba−1b−1(q) = aba−1(q) = abam−1a−m(q)

But a−m(q) > 0 since a fixes 0, and therefore abam−1a−m(q) > −q since abam−1

fixes −q. Hence

aba−1b−1(q) > −q

But by hypothesis, aba−1b−1(q) = q− p < −q since p > 2q ≥ 1. This contra-
diction shows that a and therefore b have no fixed points.

An element without fixed points is unambiguously positive or negative, de-
pending on whether it moves every point in the positive or negative direction.
If such an element is positive, then so are its conjugates, and its inverse is neg-
ative. Suppose a is positive. Then am is negative, b is negative, and aba−1 is
negative (being a conjugate of b). But abam−1 is a conjugate of a, and therefore
positive. On the other hand,

abam−1 = aba−1am

and is therefore both positive and a product of negative elements, which is a
contradiction. If a is negative, we similarly obtain am is positive, b is positive,
aba−1 is positive, and abam−1 is negative. Thus we get a contradiction in this
case too.
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This exhausts the possibilities, and shows that G(p, q, m) is not left-orderable.
For large m, and suitable p, q the manifold M(p, q, m) is hyperbolic; these were
the first known examples of closed hyperbolic 3-manifolds without left-orderable
fundamental groups.

Example 2.104. (Small cancellation groups) Let G be a group with a presenta-
tion of the form

G = 〈x, y | w1, w2〉
where w1 is a word in x and y, and w2 is a word in x and y−1. Such a G ad-
mits no nontrivial homomorphism to Homeo+(R) except in some very special
elementary cases. On the other hand, if the words w1 and w2 are sufficiently
long and generic, small cancellation theory implies that G is word-hyperbolic.
See [116] for some of the theory of small cancellation groups.

Example 2.105. (Property (T)) A group G is said to satisfy Kazhdan’s property
(T) if every unitary representation with almost invariant vectors (i.e. unit vectors
moved an arbitrarily small amount by arbitrarily large compact subsets of G)
has nonzero invariant vectors (i.e. fixed points for the action of G). This property
is equivalent to an “infinitesimal” property (FH) introduced by Serre, which
says that for any unitary representation θ of G on a Hilbert space, H1(G,θ) is
trivial; see [53] for details.

In [180], Navas, developing ideas due to Reznikov and others ( [206], [205])
shows that for any countable group G with property (T), any action of G on

S1 by C3/2+ǫ diffeomorphisms factors through a finite group. The idea of the
proof is to construct a nontrivial cohomology class [s] in H1(G,θ) where θ is
the natural representation of G on the space L of L2 functions K : S1 × S1 → C
satisfying

K(x, y) + K(y, x) = 0

where g ∈ G acts on this space by

(θ(g)K)(x, y) := K(g(x), g(y)) · (g′(x)g′(y))1/2

The nontrivial cocycle s is “formally” the coboundary of the function

t(x, y) :=
1

2 tan( x−y
2 )

Explicitly:

s(g)(x, y) :=
(g′(x)g′(y))1/2

2 tan( g(x)−g(y)
2 )

− 1

2 tan( x−y
2 )

The key point is that (under the analytic hypothesis on G), the cocycle s is in L2,
whereas t is not.
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If G has property (T), then the cocycle s is trivial in cohomology; i.e. there is
some K(x, y) ∈ L for which the form

µK :=


 1

2 tan
(

x−y
2

) − K(x, y)




2

dxdy

is invariant under G. One can think of µK as a G-invariant measure on the space
M of unordered pairs of points in S1; in other words, a geodesic current (see
[18]). This current vanishes on “lines”: i.e. µ(a × [b, c]) = 0 for all a, b, c ∈ S1.
Since K is in L2 while t is not, this measure is dominated near the diagonal by t.
In particular, µK satisfies the following property: if R is a rectangle in M (i.e. a
subset of the form [a, b]× [c, d]) then

µK(R) =

{
∞ if R intersects the diagonal

finite if R avoids the diagonal

At this point there is a “trick” to finish the argument. This trick was first
observed by Witte-Morris, simplifying an earlier argument by Navas. If the im-
age of G in Homeo+(S1) is not abelian, then there is a nontrivial g ∈ G which
fixes a point. By pulling back to a 3-fold cover of S1, we obtain an action of a

finite extension Ĝ of G. Since Ĝ is a finite extension of G, it also has property (T),
and therefore preserves some geodesic current which by abuse of notation we
denote by µK. Moreover, by construction it contains an element ĝ whose fixed
point set has at least three components. We suppose that

ĝ(a) = a, ĝ(b) = b, ĝ(c) = c

where these points are chosen to be distinct, and to have the property that on
the interval (a, b) (which does not contain c) the point b is attracting and a is
repelling for the action of ĝ. For each integer n, we define

Rn = (a, gn(x))× (b, c)

for some fixed x ∈ (a, b). Then Rn ⊂ Rn+1, and g(Rn) = Rn+1 for each n. By the
invariance of µK, the measure of Rn+1 − Rn is equal to 0 for each n. However,

0 = ∑
n

µK(Rn+1 − Rn) = µK

(
⋃

n

Rn+1 − Rn

)
= µK ((a, b)× (b, c)) = ∞

This contradiction shows that the image of G in Homeo+(S1) is abelian after
all. Since G has property (T), this image is finite.

Note that t(x, y) has an interpretation in hyperbolic geometry as sinh /2
of the distance from the origin to the hyperbolic geodesic joining x, y ∈ S1

∞
.
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Morally, if s is trivial in cohomology, the action of G on S1 cannot distort hyper-
bolic distances too much; consequently the image of G is a convergence group,
and therefore by Theorem 2.99 conjugate into PSL(2, R). A countable subgroup
of PSL(2, R) with property T is finite cyclic.

Remark The cocycle s in Example 2.105 appears in [205], where it arises in con-
nection with Hilbert–Schmidt operators and polarizations on Hilbert spaces; we
will briefly touch on this area at the start of Chapter 10 when we discuss uni-
versal Teichmüller space.

Example 2.106. (Relative (T)) The group Z2 ⋊ SL(2, Z) is an extension of a CO
group by an LO group, and is therefore itself CO. This group has property (T)
relative to unitary representations in which Z2 acts nontrivially (see e.g. [154]
for details); this is reflected in the fact that any faithful representation of this
group into Homeo+(S1) is semi-conjugate to an action in which Z2 acts trivially.

In fact, let G be the Euclidean triangle orbifold subgroup of Z2 ⋊ SL(2, Z)
which is an extension

1→ Z2 → G → Z/3Z→ 1

or as a presentation,

G = 〈a, b, c | a3 = b3 = c3 = abc = Id〉

G is amenable, so by Theorem 2.79 every action on Homeo+(S1) is semi-conjugate
to an action by rotations; i.e. an action which factors through a homomorphism
to S1. Since H1(G; Z) = Z/3Z⊕Z/3Z there are essentially two such nontrivial
actions up to outer automorphism and changing the orientation on S1. In one
action, the rotation numbers of a, b, c are 0, 1/3, 2/3 up to permutation. Since
semiconjugacy preserves rotation number, one of these elements had rotation
number zero in the original (semiconjugate) action. But if an order three element
has rotation number zero, it is the identity, so such an action is not faithful. In
the other action, the rotation numbers of a, b, c are 1/3, 1/3, 1/3 (up to a change
of sign, mod Z). This action arises from a homomorphism G→ Z/3Z associated
to the expression above of G as an extension. The kernel of this action is exactly
the Z2 subgroup. It follows that the Z2 has a common fixed point in this action.
Since Z2 is normal, fix(Z2) is invariant under the entire group Z2 ⋊ SL(2, Z).
By blowing down complementary gaps, we obtain a semiconjugate action in
which Z2 acts trivially.

Note that a similar argument can be used to study actions on S1 of groups
G which contain big amenable subgroups with small H1.

This observation (but not this argument) is due to Tsuboi. Compare with
Example 2.101 and Example 2.105.

Example 2.107. (Irreducible lattices) Ghys generalized Example 2.101 and Ex-
ample 2.106 as follows. Suppose Γ is an irreducible lattice in a semi-simple Lie
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group of real rank at least 2 of the form SL(2, R)k × G where G has no SL(2, R)
factor. Then Ghys showed that any action of Γ on S1 which does not factor
through a finite group is monotone equivalent to an action obtained by pro-
jecting onto one of the SL(2, R) factors. In particular, if k = 0, every action on
S1 has a finite orbit. The idea is to study parabolic (and therefore amenable)
subgroups P of Γ and the invariant measures they preserve, much as in Exam-
ple 2.106 above.

See [104] for details. Note by Example 2.72, the natural map from H2
b (Γ; R)→

H2(Γ; R) is injective when Γ has no SL(2, R) factors. If H2(Γ; R) = 0, which hap-
pens in many cases, one obtains another (quite different) proof that every action
factors through a finite group.

We now discuss existence results.

Example 2.108. (1-relator groups) Let G = 〈a1, . . . , an|r〉where r is not a proper
power (this condition ensures that G is torsion-free). Then every finitely gener-
ated subgroup of G is either free or a 1-relator group (see e.g. [157]). It follows
that G is locally indicable, and therefore left-orderable.

In fact this is a special case of a theorem of J. Howie [136] which says that
the class of locally indicable groups is closed under the formation of “1-relator
products”; i.e. if A, B are locally indicable, and r is a cyclically reduced word in
the free product A ∗ B of length at least 2 which is not a proper power, then the
quotient A ∗ B/〈r〉 is locally indicable (and therefore left-orderable). Here 〈r〉
denotes the normal closure of r.

Example 2.109. (locally indicable 3-manifold groups) The following example
is due to Boyer-Rolfsen-Wiest [22]. Let M be a compact irreducible 3-manifold
with H1(M; Z) 6= 0. Then π1(M) is locally indicable. For, every finitely gener-
ated subgroup G of π1(M) determines a cover MG of M. If MG is a finite sheeted
cover, the transfer map on cohomology shows that H1(MG; Z) 6= 0. If MG is an
infinite sheeted cover, MG is homotopy equivalent to a compact manifold with
boundary (by the Scott core theorem) and therefore either MG is contractible, or
H1(MG; Z) 6= 0. Since H1 measures homomorphisms to Z, this shows π1(M) is
locally indicable, and therefore left orderable. Note that this result is also proved
by Howie in [136].

An example intermediate between this example and the previous one is a
3-manifold obtained by attaching a single handle to S× I. Such manifolds were
shown to have locally indicable 3-manifold groups by Hempel [128].

Example 2.110 If M is an irreducible 3-manifold and there exists some non-
trivial homomorphism ρ : π1(M) → G where G is LO, then the preceding
example shows ker(ρ) is LO, since every finitely generated subgroup of ker(ρ)
has infinite index in π1(M), and therefore determines a covering space of M
which is homotopic to a compact 3-manifold with boundary.

Example 2.111 An irreducible 3-manifold M whose fundamental group is CO
has a finite index subgroup which is LO. To prove this, observe that either the
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Euler class e of the circular ordering has infinite order, in which case |H2(M; Z)| =
∞, and by Poincaré duality, H1(M; Z) 6= 0; or else e has finite order, and the re-
striction of e to some finite index subgroup of π1(M) becomes trivial. Then the
CO on this finite index subgroup lifts to a LO.

Example 2.112. (Galois conjugate embeddings) Suppose M is a closed hyper-
bolic 3-manifold, so that M = H3/Γ where Γ < PSL(2, C) is a discrete faithful
subgroup, isomorphic to π1(M). Mostow rigidity implies that Γ is conjugate
into PSL(2, K) for K some number field — i.e. some finite algebraic extension of
Q.

Suppose K admits a real place, i.e. a Galois embedding σ : K → R. Then σ
induces a faithful representation π1(M) → PSL(2, R). Now, PSL(2, R) is a CO

group, since it acts faithfully on RP1 = S1. It follows that π1(M) is CO, and
therefore virtually LO.

Note if M fibers over S1, we get another action of π1(M) on the circle at
infinity of a fiber. The mod 2 reduction of these two Euler classes are equal,
since they are detected by the signs of the traces of elements of π1(∂M) after
lifting the representation to SL(2, C) (note: the mod 2 reduction can only be
nontrivial if M has boundary, in which case one defines relative Euler classes).
But in this case the Euler classes themselves are necessarily different. See [38]
for details.

Example 2.113. (Braid groups) Braid groups (on finitely many strands) are all
LO. The quotient of a braid group by its center is CO. More generally, if K is any
totally disconnected compact subset of R2, the mapping class group of R2 − K
is circularly orderable. See e.g. [57] or [36] for details

Example 2.114. (Punctured Mapping Class Groups) Let S′ be a closed surface
minus a point p, and let S be the surface obtained from S′ by adding back p.
There is a short exact sequence

0→ π1(S, p)→MCG(S′)→ MCG(S)→ 0

where the map from MCG(S′) to MCG(S) just fills in the puncture (our notation
stresses the base point in π1).

Let S̃ denote the universal cover of S. Givenϕ ∈ Diffeo(S) fixing the point p,

a lift ofϕ to a diffeomorphism of S̃ is determined by a choice of a lift of the base-
point p, that is by an element of π1(S, p). In this way one can identify MCG(S′)
with π0 of the group of diffeomorphisms of S̃ which cover diffeomorphisms of
S.

A diffeomorphism ψ̃ of S̃ which covers a diffeomorphism of S is necessarily
a quasi-isometry, and therefore extends continuously to a homeomorphism of

S1
∞

(S̃). If two such diffeomorphisms ψ̃1, ψ̃2 are π1(S)-equivariantly homotopic,

their graphs in S̃× S̃ are a finite Hausdorff distance apart, and therefore they
induce the same homeomorphism of S1

∞
. We obtain therefore a natural faithful

action of MCG(S′) on S1
∞

(S̃), and observe that this group is CO.
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Example 2.115. (Bounded orbit) Let G be a subgroup of Diffeo1
+(R2) with a

bounded orbit. Then G is CO. On the other hand, there exist torsion-free sub-
groups of Diffeo1

+(R2) which are not CO. See [36].

Example 2.116. (Amalgamated free products) Suppose G = A ∗C B, where C
includes into A by iA and into B by iB. Then G acts minimally on a tree T such
that point stabilizers are conjugate into A or B, and edge stabilizers are conju-
gate into C. If v is a vertex with stabilizer equal to A, then the edges incident to
v are in bijection with the cosets of iA(C) in A. If the action by left multiplica-
tion of A on A/iA(C) preserves a circular order on this set, and similarly for the
action of B on B/iB(C), then one can define a natural invariant circular ordering
of the edges incident to each vertex. This circular ordering at edges induces a
circular ordering on the set E of ends of T, and therefore a circular ordering on
G.

For example, if A, B, C are cyclic then the cosets A/iA(C) and B/iB(C) are
finite cyclic, and naturally circularly ordered. The group SL(2, Z) is of this kind,
by the isomorphism

SL(2, Z) ∼= (Z/4Z) ∗Z/2Z (Z/6Z)

with the obvious inclusions of the amalgamating group into the two factors.
Here the set of ends of T is in natural bijection with Q ∪∞ which includes in

the circle RP1 = R ∪∞ in the obvious way.

Example 2.117. (Thompson’s groups F and T) In unpublished notes, R. Thomp-
son defined and studied some very interesting groups of homeomorphisms of
I and S1. He called these groups F and T respectively.

Thompson’s group F is the group of piecewise linear dyadic homeomor-
phisms of I, and T is the group of piecewise linear dyadic homeomorphisms of
S1. A dyadic rational is a number of the form p/2n for integral p and n, and a PL
homeomorphism f of [0, 1] or R/Z is dyadic if it takes dyadic rationals to dyadic
rationals, and if df is discontinuous only at finitely many dyadic rationals and
takes on values which are integral powers of 2 elsewhere.

Both F and T are finitely presented. Since F is a PL group of homeomor-
phisms of I, it admits a surjective homomorphism to Z⊕Z, by taking the loga-
rithms of the derivatives at the two endpoints. It turns out that T is simple, and
the commutator subgroup of F is also simple.

The group F was the first known example of a torsion-free infinite dimen-
sional FP∞ group (i.e. a K(F, 1) is infinite dimensional, but can be chosen to
have only finitely many cells in each dimension). It does not contain a (non-
abelian) free group, but is not elementary amenable, and does not satisfy any
laws.

See [45] for a detailed introduction to these groups, and to a third group V
of homeomorphisms of a Cantor set.

In Chapter 7 we will see that if a 3-manifold M admits a taut foliation, then
π1(M) is circularly orderable, coming from a universal circle for the foliation.
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2.16 Analytic quality of groups acting on I and S1

So far we have confined our discussion entirely to the topological category.
There are at least two reasons for this: firstly, most of the natural constructions
we have discussed above do not make sense in the smooth category, and sec-
ondly, the kinds of group actions on circles which arise in the context of foliation
theory on 3-manifolds are rarely smoothable.

In this section, for the sake of completeness, we briefly survey some ele-
ments of the theory of Diffeo+(I) and Diffeo+(S1). A more thorough reference
is [183].

2.16.1 Harmonic measure

The first observation is that the analytic quality of an arbitrary group action on
a compact 1-manifold cannot be too bad.

Theorem 2.118. (Harmonic measure) Let X be either I or S1, and let G be a finitely
generated subgroup of Homeo+(X). Then the action of G is topologically conjugate to
a Lipschitz action.

Proof If G is not minimal, add a finite number of generators to make it mini-
mal. Let g1, . . . , gn be a fixed symmetric generating set for G, where we make
the unusual convention that g1 = Id. Let p ∈ (0, 1), and define a family of
probability measures µi on I as follows.

Define µ0 = δp, the Dirac measure supported on p. Then for each i, define

µi =
1

n ∑
i

(gi)∗(µi−1)

Let µ be a weak limit of the measures µi. Observe that for each i > 0 and each
generator g j,

d(g j)∗µi

dµi
≤ 1

n

It follows that the same estimate holds true for µ. Since the action of G is min-
imal, µ has no atoms and full support. So we can define a metric on I or S1 by
integrating µ. With respect to this metric, the action of G is Lipschitz. 2

The measure µ defined in the proof of Theorem 2.118 is called a harmonic
measure for the action of G. The ability to integrate measures into metrics is
peculiar to 1-dimensional dynamics; no comparable theorem holds in higher
dimensions.

2.16.2 Thurston stability theorem

The first obstruction to improving a group action from Lipschitz to C1 is the
Thurston stability theorem.

Let Homeo+
0 (I) be the group of germs of Homeo+(I) at 0. For each positive

integer n, let In denote the interval [1/n, 1/(n + 1)]. For each n, let ϕn : I →
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In be some orientation-preserving homeomorphism. Then there is a diagonal
embedding

∆ : Homeo+(I)→ Homeo+(I)

defined by

∆(g) =
∞

∏
n=1

(ϕn)∗(g)

Note that the composition of ∆ with restriction defines an embedding of the
group Homeo+(I) into Homeo+

0 (I)

The situation for Diffeo+(I) is very different. Let Diffeo+
0 (I) denote the group

of germs of Diffeo+(I) at 0. A simple form of the Thurston stability theorem in di-
mension 1 is the following:

Theorem 2.119. (Thurston stability theorem [228]) The group Diffeo+
0 (I) is locally

indicable.

Proof There is an endpoint homomorphism ρ : Diffeo+
0 (I)→ R defined by

ρ(g) = log g′(0)

Let H be a finitely generated subgroup of Diffeo+
0 (I). If ρ|H is nontrivial, we are

done. So we assume that H is in the kernel of ρ.
The idea of the proof is now as follows. Let h1, . . . hm be a generating set for

H. Let xi → 0 be some sequence of points. If we rescale the action near xi so that
every h j moves points a bounded distance, but some hk(i) moves points distance
exactly 1, then the rescaled actions vary in a precompact family. It follows that
we can extract a limiting nontrivial action, which by construction will be an
action by translations. In particular, H is indicable, as claimed.

Now we make this more precise. Each generator hi can be expressed near 0
as a sum

hi(x) = x + y(hi)(x)

where |y(hi)(x)| = o(x) and satisfies y(hi)
′|0 = 0. For each ǫ > 0, let Uǫ be an

open neighborhood of 0 on which |y(hi)
′| < ǫ and |y(hi)(x)| < |x|ǫ. Now, for

two indices i, j the composition has the form

hi ◦ h j(x) = x + y(h j)(x) + y(hi)(x + y(h j)(x))

= x + y(h j)(x) + y(hi)(x) + O(ǫy(h j)(x))

In particular, the composition deviates from x + y(hi)(x) + y(h j)(x) by a term
which is small compared to max(y(hi)(x), y(h j)(x)).

Now, choose some sequence of points xi → 0. For each i define the map
vi : H → R where vi(h) = y(h)(xi). Let wi = sup j≤m |vi(h j)|, and define

v′i(h) = vi/wi. It follows that the functions v′i are uniformly bounded on each
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h ∈ H, and therefore there is some convergent subsequence. Moreover, by the
estimate above, on this subsequence, the maps v′i converge to a homomorphism
v′ : H → R. On the other hand, by construction, there is some index j such that
|v′i(h j)| = 1. In particular, the homomorphism v′ is nontrivial, and H surjects
onto a nontrivial free abelian group, and we are done. 2

Using this theorem, we can give examples of groups and group actions
which are not conjugate to C1 actions.

Example 2.120. (Bergman [15]) Bergman gave the first example of a left order-
able group which is not locally indicable. Note that any such example gives rise
to a nonsmoothable group action on I.

The example arises from hyperbolic geometry. Let Γ be the universal central
extension of the (2, 3, 7) triangle orbifold group. A hyperbolic triangle group is
naturally a subgroup of PSL(2, R) and is therefore CO; it follows that its uni-
versal central extension Γ is LO. Geometrically, Γ is the fundamental group of
the (orbifold) unit tangent bundle of the (2, 3, 7) hyperbolic triangle orbifold. A
presentation for Γ is

Γ = 〈a, b, c, t | a2 = b3 = c7 = t, abc = t〉

Then H1(Γ; Z) = 0 so Γ is not locally indicable. On the other hand, the natural
(real analytic) action of Γ on R compactifies to a (topological) action on I. It
follows that this action cannot be made C1 at either endpoint.

2.16.3 Solvable groups and dynamics

The interplay between group dynamics and analytic quality is very subtle, and
already between C1 and C2 many diverse phenomena arise, especially related
to abelian, and more generally solvable groups.

The most straightforward way to distinguish C1 and C2 actions is by means
of Kopell’s Lemma. In the sequel, we will denote by Diffeor

+(I) the group of Cr

orientation-preserving diffeomorphisms of I. Here, if r is an integer, this should
be construed in the usual way. If r = n +α where n is an integer andα ∈ (0, 1)

then f ∈ Diffeor
+(I) is n-times differentiable, and f (n) is continuous with a

Hölder modulus of continuity of exponentα. That is, there is a constant C such
that for all p, q ∈ I,

| f (n)(p)− f (n)(q)| ≤ C|p− q|α

Example 2.121. (commuting elements and Pixton actions) Nancy Kopell estab-
lished the following fundamental fact:

Theorem 2.122. (Kopell Lemma [147]) Let f ∈ Diffeo2
+(I) and h ∈ Homeo+(I).

Suppose that f and h commute, and that f has no fixed points in (0, 1). If h is C2 on
[0, 1) and fixes some point in (0, 1), then h = Id.



108 THE TOPOLOGY OF S1

Proof Since f is C2, the function log | f ′| is Lipschitz and therefore has bounded
variation on I. It follows that for any a, b ∈ I contained in a single fundamental
domain for f , we can estimate

∞

∑
i=0

∣∣∣log | f ′( f i(a))| − log | f ′( f i(b))|
∣∣∣ ≤ K1

for some constant K1 which does not depend on a and b. In particular, we get
an a priori estimate

1

K2
≤
∣∣∣∣
( f n)′(a)

( f n)′(b)

∣∣∣∣ ≤ K2

for some constant K2, independent of a, b or n.
Now, if we differentiate g f n = f ng using the chain rule, we get an equality

( f n)′(x)

( f n)′(g(x))
=

g′(x)

g′( f n(x))

Since h has a fixed point p in (0, 1), if h 6= Id, it has a fixed point which is
attracting on at least one side, and we can assume x is close to p and on the
attracting side. Set g = hm where m is large, so that g′(x) is very close to 0. Now
choose n much larger than n, so that f n(x) is very close to 0. Since the fixed
points of hm accumulate on 0, and since h is C1, we must have (hm)′(0) = 1 and
therefore (hm)′( f n(x)) is close to 1 for m fixed and n sufficiently big. It follows
that the right hand side can be made arbitrarily small; but this contradicts the a
priori bounds for the left hand side. 2

On the other hand, there is no analogue of this theorem in C1. One has the
following construction due to Pixton [201]. Choose a sequence pi → 0 where

f (pi) = pi+1 and let h be C∞ and supported on [p1, p0] where it is conjugate to
a translation. Define

h =
∞

∏
i=−∞

f ih f−i

Obviously, h is C∞ in (0, 1) if f is. We would like to choose f and the pi in such
a way that f and h are both tangent to first order to the identity at 0.

First, we choose the pi so that the ratios

|pi − pi+1|
|pi−1− pi|

→ 1

as i→ ∞, for instance by choosing the pi equal to the harmonic series pi = 1/i.
We now choose f in such a way that f expands the intervals where (h− Id)′ is
very small, and contracts the intervals where (h− Id)′ is larger. With a suitable
choice, the action of h on the intervals [pi+1, pi], rescaled by a factor 1/|pi −
pi+1|, converge in a C1 manner to the identity on [0, 1]; for details, see [201].
This example is therefore C1 but cannot be made C2, by Kopell’s Lemma.
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Observe that a consequence of Kopell’s Lemma is that intervals of support

of commuting elements of Diffeo2
+(I) are either equal or have disjoint interiors.

For, suppose [ f , h] = Id and there is p ∈ ∂fix( f ) which is not fixed by h. Let J
be the subinterval of I bounded by limn→∞ hn(p) and limn→−∞ hn(p). Then J
is invariant under both h and f , but h has no fixed points in J whereas f does.
By Kopell’s Lemma, f |J = Id, contrary to the assumption that p ∈ ∂fix( f ).

Using this, one can also prove the following theorem of Plante-Thurston:

Theorem 2.123. (Plante-Thurston [202]) Every nilpotent subgroup of Diffeo2
+(I) is

abelian.

Proof Let G be nilpotent. By restricting the domain of G if necessary, we may
assume that G has no global fixed points in the interior. Without loss of general-
ity, we assume that G is finitely generated, and is at most degree 2, so that [G, G]
is in the center of G. Let g ∈ G be arbitrary, and suppose that J is a component
of the support of g.

If every element of [G, G] fixes J pointwise, then the image of G in Diffeo+(GJ)
is abelian, where GJ denotes the orbit of J under G. Conversely, suppose there
is some h ∈ [G, G] which does not fix all of J. Since [h, g] = Id it follows that J
is a component of the support of h. Since h is in the center of G, J is invariant
under G, and the image of G in Diffeo+(J) acts freely. By Hölder’s Theorem (i.e.
Theorem 2.90), the image of G in Diffeo+(J) is abelian. It follows that the image
of G in Diffeo+(support(g)) is abelian. Since g was arbitrary, G is abelian, and
we are done. 2

For a more thorough exposition of these and related ideas see [181] or [70].

Example 2.124. (subgroups of intermediate growth) More recently, especially
in the work of Navas, it has become clear that it is worthwhile to study degrees
of differentiability of group actions intermediate between C1 and C2.

In [182], Navas shows that the Grigorchuk–Maki group Γ from Example 2.58
can actually be made to act on I by C1 diffeomorphisms. On the other hand, he
shows the following:

Theorem 2.125. (Navas) For allα > 0, every finitely generated subgroup of Diffeo1+α
+ (I)

with sub-exponential growth is virtually nilpotent.

More generally, Navas’ argument applies to subgroups of Diffeo1+α
+ (I) with-

out free semigroups on two generators. The starting point is the fact that any
subgroup of Homeo+(I) without a free semigroup on two generators has very
constrained dynamics.

One says that two elements of Homeo+(I) are crossed on a subinterval [u, v]
if one of them fixes the points u and v but no other point in [u, v], whereas the
other element takes either u or v into the interior (u, v). Crossed elements in
dynamics of 1-manifolds are intimately related to resilient leaves in the theory of
foliations; we will return to this topic briefly in Chapter 4.

A group with subexponential growth contains no crossed elements. One has
the following theorem of Solodov:
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Theorem 2.126. (Solodov [220]) A finitely generated subgroup Γ < Homeo+(I)
without crossed elements preserves a (necessarily infinite) Radon measure on the in-
terior (0, 1).

To prove this, one first argues that there is a nonempty minimal closed set X
for Γ in (0, 1) (here is where the “finitely generated” hypothesis is used). If X
is discrete, a sum of delta measures on X suffices. Otherwise, X is monotone
equivalent to an (open) interval. A minimal action of Γ on an interval without
crossed elements must be free; it follows by Hölder’s Theorem 2.90 that the
action on X is semi-conjugate to an action by translations, and a Radon measure
is easily constructed in this case too.

Using this Radon measure, one obtains a nontrivial homomorphism from Γ

to R, and deduces the existence of global fixed points for the kernel of this ho-
momorphism. Roughly, one inductively obtains a kind of “level structure” for
Γ . The absence of crossed elements lets one construct many disjoint intervals
which are permuted by the elements at a fixed level of Γ . Under the hypothesis
on the differentiability of Γ , these intervals cannot shrink too fast under transla-
tion by elements of the group; consequently, if there are too many intervals, one
obtains a contradiction. Roughly speaking, one shows Γ is solvable, with de-
gree of solvability uniformly controlled by the exponentα. A solvable group of
intermediate growth is actually virtually nilpotent, and the proof is done. The
Grigorchuk–Maki group, being in a precise sense a limit of solvable groups (i.e.
the quotient groups acting on the finite diameter trees Tn; see Example 2.58), is
obtained as a geometric limit of C1+α solvable group actions, and one obtains
an (optimal) logarithmic modulus of continuity for the derivatives.

2.16.4 Godbillon–Vey cocycle

The theory of Diffeo+(S1) diverges from that of Homeo+(S1) even at the ho-
mological level.

Definition 2.127 The Godbillon–Vey cocycle is a 2-cocycle g on Diffeo+(S1) de-
fined as follows. Let α1,α2 ∈ Diffeo+(S1) be arbitrary. We think of α1,α2 as
smooth maps S1 → S1. Let ϕi = logα′i , thought of as smooth R-valued func-

tions on S1. Then define

g(α1,α2) =
∫

S1
ϕ1 ◦α2dϕ2

Geometrically, we can think ofϕ1 ◦α2 andϕ2 as the co-ordinates of a smooth
map

(ϕ1 ◦α2,ϕ2) : S1 → R2

Then g(α1,α2) is the (signed) area enclosed by the image of this circle. Note
that for this definition to even make sense, α1,α2 must be of sufficient analytic
quality.
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Given two maps f1, f2 : S1 → R, let A( f1, f2) denote the (signed algebraic)
area enclosed by the circle in R2 whose co-ordinates are f1 and f2. Then A is
bilinear and invariant under smooth reparameterizations

A( f1, f2) = A( f1 ◦ h, f2 ◦ h)

for any h ∈ Diffeo+(S1), and satisfies

g(α1,α2) = A(ϕ1 ◦α2,ϕ2)

To see that g is a cocycle, we calculate

δg(α1,α2,α3) = g(α2,α3)− g(α1 ◦α2,α3) + g(α1,α2 ◦α3)− g(α1,α2)

= A(ϕ2 ◦α3,ϕ3)− A(ϕ1 ◦α2 ◦α3 +ϕ2 ◦α3,ϕ3)

+A(ϕ1 ◦α2 ◦α3,ϕ2 ◦α3 +ϕ3)− A(ϕ1 ◦α2,ϕ2) = 0

This geometric definition is due to Bott-Thurston [19].

There is a significant literature devoted to the interaction of dynamics with
the Godbillon–Vey invariant. One of the highlights of this theory is the follow-
ing theorem of Duminy–Sergiescu:

Theorem 2.128. (Duminy–Sergiescu [61]) Let G be a finitely generated subgroup
of Diffeo+(S1) without crossed elements. Then the Godbillon–Vey class in H2(G; R)
is trivial.

In [101], Ghys showed how to modify the Godbillon–Vey cocycle to extend it
to group actions of somewhat less regularity; explicitly, he showed that one can
extend the cocycle to piecewise smooth actions. Ifα1 andα2 are merely piecewise
smooth, thenϕ1 ◦α2 andϕ2 are continuous and well-defined away from finitely
many singular points. By blowing up these singular points to intervals, and
interpolating the map linearly on these intervals, one may extendϕ1 ◦α2,ϕ2 to
a piecewise smooth map of all of S1 to R2. Ghys’ modified cocycle measures the
signed algebraic area enclosed by this piecewise smooth curve.

In the special case that G < PL+(S1), the maps ϕ1 ◦α2,ϕ2 are piecewise
constant away from the singularities, and the image is a polygon.

Note that a given topological action might be topologically conjugate to both
a smooth and a PL action. Ghys [101] constructed a metric on S1 for which the
standard action of the fundamental group of a genus g hyperbolic surface Σg on

its ideal circle is contained in PL+(S1). Moreover, the derivatives take values in
the group of powers of the algebraic number

λg = 2g2 − 1 + 2g
√

g2 − 1

It follows that the Godbillon–Vey class, evaluated on the fundamental class of

Σg, is an integer multiple of 1
2 (log λg)2. In fact, in [121], in an explicit calculation,

it was determined that the value of the invariant is −4(g + 1)(log λg)2.
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More representations of π1(Σg) into PL+(S1) are obtained by covering maps
Σg → Σh. In particular, by considering the 2-fold cover Σ3 → Σ2 Ghys observed

that one obtains two distinct monomorphisms from π1(Σ3) into PL+(S1), which
are topologically conjugate (since they are both conjugate to the geometric ac-
tion coming from a hyperbolic structure), but for which the PL Godbillon–Vey
invariants are different.

The question of extending the Godbillon–Vey invariant to actions of the least
possible analytic quality has been pursued by many authors, including notably
[137], [241] and others.



3

MINIMAL SURFACES

We here review the theory of minimal surfaces, especially in 3-manifolds. Mono-
tonicity properties of codimension one minimal surfaces, e.g. barrier surfaces,
the maximum principle etc. complement the role of monotonicity in the theory
of groups of homeomorphisms of 1-manifolds. When we come to study taut fo-
liations in earnest in Chapter 4, we will see that both kinds of monotonicty are
tightly entwined, and lead to a rich and beautiful theory.

For more of the theory of Riemannian geometry, see [246] or [144]. For more
details of the theory of minimal surfaces, see [51].

3.1 Connections, curvature

We recall some of the basic elements of Riemannian geometry.

Definition 3.1 Let M be a smooth manifold. A connection on M is a linear map

∇ : Γ(TM)⊗R Γ(TM)→ Γ(TM)

which we denote by

∇XY := ∇(X, Y) ∈ Γ(TM)

for vector fields X, Y on M, satisfying the following properties:

1. ∇ is C∞-linear (i.e. tensorial) in the first factor. i.e.

∇ f XY = f∇XY

for all smooth functions f on M.

2. ∇ satisfies a Leibniz rule with respect to the second factor. i.e.

∇X f Y = X( f )Y + f∇XY

Since ∇ is tensorial in the first factor, we also write

∇X ∈ Γ(TM)⊗ Γ(T∗M)

and

∇YX = ιY∇X

where ι denotes contraction of vector fields with 1-forms.

113
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It is easy to check that the value of ∇XY at a point p depends only on the
value of X at p, and the germ of Y along any smooth path c : [0, 1] → M with
c′(0) = X.

For such a path c, the general theory of ODEs implies that for any vector
v ∈ Tc(0)M there is a unique vector field Y along c with Y(0) = v satisfying

∇c′Y ≡ 0

Such Y is said to be obtained from v by parallel transport along c. Note that par-
allel transport determines a linear map

Pc : Tc(0)M→ Tc(1)M

for each smooth path c, by the formula

Pc(Y(0)) = Y(1)

for each parallel vector field Y. A path c : [0, 1]→ M is a geodesic if it is autopar-
allel:

∇c′c
′ ≡ 0

If M is a Riemannian manifold with inner product 〈·, ·〉 on TM, we say a
connection is metric if

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉

for all vector fields X, Y, Z. Equivalently, a connection is metric if parallel trans-
port along any path c induces an isometry from Tc(0)M to Tc(1)M.

A metric induces an identification TM ∼= T∗M. So a connection induces a
dual connection

∇∗ : Ω1(M) = Γ(T∗M)→ Γ(T∗M)⊗ Γ(T∗M)

Composing with antisymmetrization, we get a map

∧ ◦ ∇∗ : Ω1(M)→ Ω2(M)

A connection is said to be torsion free if

∧ ◦∇∗ = d

In terms of ∇, this is equivalent to the condition

∇XY−∇YX − [X, Y] ≡ 0

for all vector fields X, Y.
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Definition 3.2 Let M be a Riemannian manifold. The Levi-Civita connection is
the unique connection on M which is both metric and torsion free. It is deter-
mined uniquely by the formula

〈∇XY, Z〉 =
1

2
{X〈Y, Z〉−Z〈X, Y〉+Y〈Z, X〉− 〈X, [Y, Z]〉+ 〈Z, [X, Y]〉+ 〈Y, [Z, X]〉}

It is straightforward to check that∇ defined in this way is metric and torsion
free, and that these two properties determine∇ uniquely.

Definition 3.3 For any two vector fields X, Y, the curvature is the C∞(M)-linear
map

R(·, ·) : Γ(TM)⊗ Γ(TM)→ Γ(End(TM))

defined by the formula

R(X, Y) = ∇X∇Y −∇Y∇X −∇[X,Y]

Tensoriality of R follows from a straightforward calculation.

Definition 3.4 For any vectors X, Y ∈ Tx M spanning a 2-plane X ∧ Y, the sec-
tional curvature of X ∧Y, denoted K(X ∧Y), is defined by

K(X ∧Y) =
〈R(X, Y)Y, X〉
‖X ∧Y‖

where ‖X ∧Y‖ denotes the area of the parallelogram in Tx M spanned by X and
Y.

For a surface S, there is only one plane passing through each point p ∈
S. The sectional curvature is therefore a function which we denote by K. This
function has an interpretation in terms of the growth rate of balls in S. For p ∈ S,
let r > 0 be smaller than the injectivity radius of S at p. Then there is an estimate

area(BS
r (p)) = π

(
r2 − K(p)r4

12

)
+ o(r4)

where BS
r (p) denotes the ball of radius r about p in S.

There is a precise global relationship between the curvature and the topol-
ogy of a closed surface, called the Gauss–Bonnet theorem:

Theorem 3.5. (Gauss–Bonnet) Let S be a closed surface with sectional curvature
K(p) at each point p. Then

∫

S
K(p)darea = 2πχ(S)

If S ⊂ M is a submanifold, the Riemannian metric on M induces a Rieman-
nian metric on S. If ∇ denotes the Levi-Civita connection on M, for any vector
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fields X, Y on S we may define ∇⊤XY to be the orthogonal projection of ∇XY

to TS. One may check that ∇⊤ defines a connection on S which is both met-
ric (for the induced metric) and torsion free, and therefore coincides with the
Levi-Civita connection on S.

We also denote the difference by

∇⊥ := ∇−∇⊤

and verify that it is a tensor:

∇⊥X f Y = X( f )Y + f∇XY− X( f )Y− f∇⊤XY = f∇⊥XY

3.2 Mean curvature

Let S be a smoothly embedded surface in a Riemannian 3-manifold M. Our in-
tuition tells us that a minimal surface should be a critical point for area, amongst
all smooth variations. We now make this idea precise.

Let p ∈ S, let U ⊂ S be an open set containing p, and let e1, e2 ∈ Γ(TS|U)
be a pair of orthonormal vector fields which span TS near p. Suppose further
than S is co-oriented. Then the co-orientation determines a section ν ∈ Γ(TM|S)
which is the unit normal vector field to S in the positive direction.

Given a unit vector v ∈ TpS, let γ denote the unique geodesic in S and γM

the unique geodesic in M through p with

γ′(0) = (γM)′(0) = v

These curves have the same tangent vector at p, so we can take their covariant
derivatives in the direction of v at p. Define µ(v) to be the difference of these
two covariant derivatives:

µ(v) = ∇v(γ
′ − (γM)′)|p

Since γM is a geodesic in M, ∇v(γM)′ = 0 and therefore

µ(v) = ∇vγ
′

Similarly, since γ is a geodesic on S,

∇⊤v γ′ = 0

so µ(v) is perpendicular to S, and therefore proportional to ν.
In fact, recalling the notation ∇⊥ = ∇−∇⊤, we have

∇⊥v c′ = µ(v)

for all smooth curves c : [0, 1]→ S with c′(0) = v.
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The inner product 〈µ(v),ν〉 is called the curvature of S in the direction v. This
curvature can be interpreted as a variation of energy, as follows. Let γ(t, s) be a
variation of γ = γ(0, s) with

∂γ
∂t

(0, s) = ν

i.e. γt := γ(t, ·) is obtained from γ by flowing along the normal vector field ν.
For each t, let E(γt) denote the energy of the curve γt. We calculate:

d

dt
E(γt)

∣∣∣
t=0

=
1

2

∫

γ

∂
∂t

〈∂γ
∂s

(t, s),
∂γ
∂s

(t, s)
〉

dl
∣∣∣
t=0

=
∫

γ

〈
∇ ∂

∂t

∂γ
∂s

(t, s),
∂γ
∂s

(t, s)
〉

dl
∣∣∣
t=0

since ∇ is metric

=
∫

γ

〈
∇ ∂

∂s

∂γ
∂t

(t, s),
∂γ
∂s

(t, s)
〉

dl
∣∣∣
t=0

since ∇ is torsion-free

= −
∫

γ

〈∂γ
∂t

(t, s),∇ ∂
∂s

∂γ
∂s

(t, s)
〉

dl
∣∣∣
t=0

since ∇ is metric, and 〈ν,γ′〉 ≡ 0

= −
∫

γ
〈ν,µ(γ′)〉dl

The average of this curvature over the unit tangent bundle UTpM is called
the mean curvature vector µ(p) of S at p. As a vector field along S,

µ = ∇e1e1 +∇e2e2

Note that µ at a point does not depend on the choice of orthonormal basis e1 , e2

and therefore µ is well-defined on all of S. Infinitesimally, µ is the average vari-
ation of the energy of a unit length curve through p under the normal vector
flow.

More generally, let St with t ∈ (−ǫ,ǫ) be a 1-parameter family of smooth
embeddings of S in M, normalized so that

dSt(p)

dt

∣∣∣
t=0

= f (p)ν

for all p — i.e. so that the integral curves of the variation are normal to S at
t = 0. Let St := S(t, r, s) where r, s are local co-ordinates at a point p ∈ S.
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Then one can calculate

darea(St)

dt

∣∣∣
t=0

=
∫

S

∂
∂t

√〈∂S

∂r
,

∂S

∂r

〉〈∂S

∂s
,

∂S

∂s

〉
−
〈∂S

∂r
,

∂S

∂s

〉2
drds

∣∣∣
t=0

To simplify notation, we introduce the convention that a subscript is short

for a partial derivative. E.g.∇t = ∇ ∂
∂t

and Sr = ∂S
∂r .

It is convenient to choose so-called isothermal co-ordinates locally on S; i.e.
co-ordinates s, r so that 〈Ss, Sr〉 = 0 and |Ss| = |Sr| pointwise. The existence
of such co-ordinates follows from the fact that any smooth surface is locally
conformally isomorphic to an open subset of R2. We can normalize these co-
ordinates so that at p, the term under the square root is equal to 1, and the
integrand simplifies to

〈∇tSr , Sr〉‖Ss‖2 + 〈∇tSs, Ss〉‖Sr‖2 + 2〈Sr, Ss〉(〈∇tSr, Ss〉+ 〈Sr,∇tSs〉)

Moreover, at p, the terms ‖Ss‖2 and ‖Sr‖2 are equal to 1, and 〈Sr, Ss〉 = 0. From
this and the fact that ∇ is torsion free, it follows that this integrand is equal to

〈∇rSt, Sr〉+ 〈∇sSt, Ss〉

Since ∇ is metric, and St is orthogonal to Sr, Ss everywhere on S, this is equal
to

−〈St,∇rSr〉 − 〈St,∇sSs〉 = −〈 fν,µ〉
One therefore obtains the first variation formula:

darea(St)

dt

∣∣∣
t=0

= −
∫

S
〈 fν,µ〉darea

In particular, S is a critical point for area amongst all smooth variations if and
only if the mean curvature of S vanishes identically. Moreover, the variation
satisfying dSt/dt = µt can be thought of as the gradient flow for area on the
space of embeddings of S in M. Such a variation, if it exists, is called the mean
curvature flow of S, and it has many beautiful properties.

We therefore take the vanishing of mean curvature to be the formal defi-
nition of a minimal surface; note that this definition makes sense for surfaces
which are immersed or noncompact, or both.

For higher dimension and codimension submanifolds, one can talk about
the mean curvature in the direction of an arbitrary normal vector field ν. A
similar computation shows that a submanifold is a critical point for volume if
and only if the mean curvature vanishes in the direction of every normal vector
field.

3.3 Minimal surfaces in R3

There are many famous minimal surfaces in R3.
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Example 3.6 In R3 with its Euclidean metric, a surface S is minimal if and only
if the co-ordinate functions x, y, z are harmonic; i.e. d∗d(x) ≡ 0 on S, and sim-
ilarly for y and z, where d∗ is the adjoint of d with respect to the metric on S.
Since every harmonic function on a compact surface is constant, this implies
that there are no compact minimal surfaces in R3.

Classical examples of complete minimal surfaces in R3 are

1. The plane

2. The helicoid, given parametrically by

f (s, t) = (t cos(s), t sin(s), s)

3. The catenoid, given parametrically by

f (s, t) = (cosh(s) cos(t), cosh(s) sin(t), s)

FIG. 3.1. A helicoid and a catenoid

Example 3.7 Some minimal surfaces are periodic. A famous doubly-periodic
example in R3 is Scherk’s surface, defined implicitly by

ez cos(x)− cos(y) = 0

or parametrically by

f (s, t) = (s, t, log(cos(t) sec(s)))

Definition 3.8 For a smooth surface S ⊂ R3 the Gauss map takes each point p
to its unit normal in the unit sphere S2.

With respect to the conformal structure that S and S2 inherit from R3, one can
think of them as Riemann surfaces. Then the condition that S be minimal is
equivalent to the Gauss map being holomorphic or antiholomorphic.
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FIG. 3.2. Scherk’s doubly-periodic surface

As a corollary, the reflection principle for holomorphic functions implies that
if S is a minimal surface with boundary on a straight line segment l, then if S
denotes the result of rotating S through angle π about l, the union S ∪ S is a
smooth minimal surface.

Example 3.9. (Weierstrass representation) There is a very convenient parame-
terization of a minimal surface in R3 in terms of holomorphic data, called the
Weierstrass representation. Let S be a Riemann surface, let g be a meromorphic
function on S, and let ω be a holomorphic 1-form, such that ω has a zero of
order 2m exactly where g has a pole of order m.

Define functions xi on S by integrating:

x1 = Re

(∫ z 1

2
(1− g2)ω

)

x2 = Re

(∫ z i

2
(1 + g2)ω

)

x3 = Re

(∫ z
gω

)

Then x : S → R3 is a conformal parameterization of a minimal surface pro-
viding the periods of the three integrals above are purely imaginary; moreover,
every minimal surface in R3 admits such a parameterization. Here the function
g is actually the composition of x with the Gauss map from x(S) to S2, with
respect to the standard stereographic complex co-ordinate on S2.

Note that the condition on the zeros and poles ofω and g ensures the regu-
larity of the surface and of the parameterization; omitting it leads to a notion of
generalized minimal surface.
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Many minimal surfaces have simple descriptions in terms of the Weierstrass
representation, including

1. Enneper’s surface. This is a complete immersion of C into R3, given by
the parameterization S = C, g(z) = z,ω = dz

2. Schwartz’ surface. This is defined by the parameterization g(z) = z,ω =

(1− 14z4 + z8)−1/2dz. The function (1− 14z4 + z8)−1/2 is single valued

on the 2-fold branched cover S of CP1 with branch points at the vertices of
a regular cube. However, the periods of the Weierstrass integrals on S are
not purely imaginary, and define a Z3 cover S of S on which the param-
eterization is globally well-defined. The image x(S) is a triply-periodic
complete embedded minimal surface of infinite genus in R3.

3. Chen–Gackstatter surface. This surface is obtained by “inserting a handle”
into the Enneper surface. It is defined on the Riemann surface S defined
algebraically by

w2 = z(z2 − 1)

Geometrically, S is the “square” torus; i.e. the unique elliptic curve over

C with an order 4 symmetry. The parametrization is given by ω = zdz
w

and g = Bwz where B = Γ(1/4)√
6 Γ(3/4)

. This particular constant B is chosen to

ensure that the periods of the integrals are all imaginary, and the repre-
sentation is well-defined. See [188] or [12] for more details

Example 3.10. (Finite total curvature) For a complete immersed minimal sur-
face S ⊂ R3 the total curvature of S is the integral

∫
S |K|darea (note: some au-

thors define the total curvature to be twice this value). The surface S is said to
have finite total curvature if this number is finite. In this case, Osserman ( [192])
showed that S is proper and can be conformally completed to a closed Riemann
surface S by adding finitely many points corresponding to the ends of S. More-
over, the Weierstrass data extends meromorphically to all of S; in particular, the
total curvature of S is equal to the degree of the Gauss map times 4π .

3.4 The second fundamental form

There is another interpretation of mean curvature, involving the second funda-
mental form, which we now define. Since ∇⊥ is tensorial, for any two vector
fields e1, e2 on S, the inner product

A(e1, e2) := 〈ν,∇⊥e1
e2〉 = 〈ν,∇e1e2〉

is also tensorial (i.e. C∞(M)-linear) in e1 and e2. Moreover, since ∇ is torsion
free, A is symmetric in e1 and e2. So A defines a symmetric bilinear form on TpS
at each point p.

Using the metric to identify TS with T∗S pointwise, we can think of Ap

as an endomorphism of Tp S. The mean curvature is the trace of Ap. Another
important invariant, the extrinsic curvature, is defined to be the determinant of
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Ap. The intrinsic metric on S and on M determine sectional curvatures KS, KM

on the tangent plane TpS. In general, we have Gauss’ formula:

Lemma 3.11. (Gauss) For a surface S in M, if KS, KM denote the sectional curvatures
of TS as measured in S and M respectively, and if A denotes the second fundamental
form of S, then

KS = KM + det(A)

For a minimal surface, the trace tr(A) ≡ 0. Since A is symmetric, we have an

identity det(A) = − 1
2 |A|2 where |A|2 denotes the sum

|A|2 = ∑
i, j

|A(ei, e j)|2

with respect to any orthonormal basis ei. It follows that for a minimal surface,
we have the formula

KS = KM −
1

2
|A|2

In particular, we see the very important fact that the sectional curvature of S at
a point p is smaller than the corresponding sectional curvature of M along Tp S,
for S a minimal surface. By the Gauss–Bonnet formula, this implies that the
area of small disks in S is at least as large as a disk of similar radius is a surface
of constant curvature KM. The monotonicity formula is a generalization of this
observation. In R3, this says that for any minimal surface S properly immersed
in the ball BR(p) of radius R about p, the function

r→ area(S ∩ BR(p))

r2

is nondecreasing for 0 ≤ r ≤ R. If S is smoothly embedded at p, then the limit-
ing value of this function as r→ 0 is π . Note (and this is the key point!) there is
no a priori control on the topology of S in the ball BR(p). A similar estimate holds
for a minimal surface in any Riemannian 3-manifold M.

Remark For a smooth surface S in H3, there is a “Gauss map” defined as fol-
lows. To each point p ∈ S, associate the unit normal νp ∈ TpH3. Let γp be the
hyperbolic geodesic with γ′p(0) = νp. Then γp is asymptotic to a unique point

G(p) ∈ S2
∞

. The assignment p→ G(p) defines the hyperbolic Gauss map

G : S→ S2
∞

Bryant shows [28] that G is conformal if and only if S is totally umbilic (in which
case G is orientation-reversing) or S has mean curvature identically equal to 1
(in which case G is orientation-preserving). Here a surface is said to be umbilic
at a point p if A(p) is proportional to 〈·, ·〉 on TpS, and a surface is said to be
totally umbilic if it is umbilic at every point. Constant mean curvature 1 surfaces
in H3 are also known as Bryant surfaces.
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3.5 Minimal surfaces and harmonic maps

If M, N are Riemannian manifolds, and f : M→ N is a smooth map, the energy
density of f is the function

e( f ) : M→ R+

defined as follows. Since M, N are Riemannian, for each point x ∈ M, the map
df (x) : Tx M → Tf (x)N is a map between inner product spaces. As such, the L2

norm squared of df (x) is defined, and equal to the trace

‖df (x)‖2
2 = tr(df (x)∗df (x))

where df (x)∗ : Tf (x)N → Tx M is the adjoint of df (x). Then set

e( f )(x) = ‖df (x)‖2
2

Said another way, we can think of df as a section of the bundle

df ∈ Γ(T∗M⊗ f ∗TN)

The Riemannian metrics on M and N induce an inner product on T∗M and on
TN respectively, and therefore on T∗M⊗ f ∗TN. Then e( f ) is just

e( f ) = 〈df , df 〉

Definition 3.12 Let f : M → N be a smooth map between Riemannian mani-
folds. The energy of f is the integral

E( f ) =
1

2

∫

M
e( f )dvolM

Suppose ft is a smooth variation of f . Without loss of generality, we can let
ft(x) be a geodesic in N for each fixed x. So there is a section ψ of f ∗(TN) such
that

ft(x) = exp f (x)(tψ(x))

We calculate
d

dt
E( ft)

∣∣∣
t=0

=
1

2

∫

M

∂
∂t
〈dft, dft〉dvolM

∣∣∣
t=0

=
∫

M
〈df ,∇ ∂

∂t
dft〉dvolM

∣∣∣
t=0

Now, dft = ∑i
∂ ft

∂xi
⊗ dxi, where xi are local co-ordinates on M. Since∇ is torsion-

free, and ∂
∂t and ∂

∂xi commute for each i, this integral is equal to

=
∫

M
〈df , ∑

i

∇ ∂
∂xi
ψ⊗ dxi〉dvolM
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By integrating by parts, and using the fact that ∇ is metric, this is equal to

= −
∫

M
∑

i

〈∇ ∂
∂xi

df ,ψ⊗ dxi〉dvolM

= −
∫

M
〈trace(∇df ),ψ〉dvolM

It follows that f is a critical point for energy if and only if trace(∇df ) ≡ 0.
This calculation motivates the following definition

Definition 3.13 A map f : M → N between Riemannian manifolds is harmonic
if

∆ f ≡ 0

where ∆ is the operator

∆ f = trace(∇df )

Example 3.14 If N is Rn with its usual Riemannian metric, then ∆ reduces to
the ordinary Laplacian d∗d for Rn-valued functions.

If M is a submanifold of N, the inclusion map j is the identity. So

dj = ∑
i

θi ⊗ ei

where ei is an orthonormal basis for TM ⊂ TN, and θi is a dual basis for T∗M.
It follows that

∆ j = trace(∇dj) = ∑
i

∇ei
ei

which is the mean curvature vector field.

Corollary 3.15 An isometric immersion f : M → N is harmonic if and only if it
represents a minimal submanifold of N.

3.6 Stable and least area surfaces

Note that a minimal surface, as defined above, is merely a critical point for area,
and need not be least area in its isotopy class, even infinitesimally. This moti-
vates the following definitions.

Definition 3.16 A surface S in a Riemannian 3-manifold M is

1. locally least area if it is a local minimum for area with respect to all smooth,
compactly supported variations

2. globally least area if it is a minimum for area amongst all smooth surfaces
in its isotopy class

3. calibrated if there is a closed 2-form ω on M with ‖ω‖ = 1 such that ω
restricts to the area form on S
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Here the norm ‖ω‖ is the supremum of the pointwise operator norm of ωx,
thought of as an element of (Λ2Tx M)∗. Said another way, the norm of ω is the
supremum of the values it takes on oriented unit 2-vectors.

Any subsurface of a globally least area surface is locally least area, and a
locally least area surface is minimal.

As before, let St with t ∈ (−ǫ,ǫ) be a 1-parameter family of smooth embed-
dings of S in M, normalized so that

dSt(p)

dt

∣∣∣
t=0

= f (p)ν

for some smooth function f . Suppose further that S = S0 is a minimal surface.
We also assume that s, r are isothermal co-ordinates on S; i.e. 〈Ss, Sr〉 = 0 and
|Ss| = |Sr| pointwise.

By differentiating the first variation formula and using the fact that S is min-
imal, one obtains

d2area(St)

dt2

∣∣∣
t=0

=
∫

S

d
dt (· · · )√

〈Sr, Sr〉〈Ss, Ss〉 − 〈Ss, Sr〉2

where

(· · · ) = 2〈Ss, Sr〉〈St,∇sSr〉 − (〈Sr, Sr〉〈St,∇sSs〉+ 〈Ss, Ss〉〈St,∇rSr〉)

Note that by suitably scaling co-ordinates at some p ∈ S, we can assume |Ss(p)| =
|Sr(p)| = 1 and therefore the expression under the square root is equal to 1 at
some arbitrary point p.

Now,

d

dt

∣∣∣
t=0

(2〈Ss, Sr〉〈St,∇sSr〉) = −4〈St,∇sSr〉2 + 2〈Ss, Sr〉(· · · )

The second term is equal to 0 by our choice of isothermal co-ordinates. Also,

d

dt

∣∣∣
t=0

(〈Sr, Sr〉〈St,∇sSs〉) = 2〈∇tSr, Sr〉〈St,∇sSs〉
+〈Sr, Sr〉 (〈∇tSt,∇sSs〉+ 〈St,∇t∇sSs〉)

and similarly with Ss and Sr exchanged.
We will evaluate this expression pointwise, after a suitable change of co-

ordinates. If we substitute Ss → f Ss, Sr → f Sr for some smooth f with f (p) =
1, we calculate

〈∇tSt, f∇s f Ss〉 = 〈∇tSt, f 2∇s Ss〉+ 〈∇tSt, f Ss( f )Ss〉

〈St,∇t f∇s f Ss〉 = 〈St,∇t( f 2∇sSs + f Ss( f )Ss)〉
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But 〈St, f Ss( f )Ss〉 is identically zero, so

〈∇tSt, f Ss( f )Ss〉 = −〈St,∇t( f Ss( f )Ss)〉

Hence we obtain

〈∇tSt, f∇s f Ss〉+ 〈St,∇t f∇s f Ss〉 = f 2(〈∇tSt,∇sSs〉+ 〈St,∇t∇sSs〉)
+2 f f ′〈St,∇sSs〉

Now, 〈Sr, Sr〉 = 〈Ss, Ss〉, and moreover∇sSs +∇rSr is proportional to the mean
curvature which vanishes pointwise since S is minimal; hence the 2 f f ′ term
vanishes after summing contributions. Moreover,

∇t∇sSs = ∇s∇sSt − R(Ss, St)Ss

and similarly for ∇t∇rSr. So we are free to choose co-ordinates at p in which
∇s∇s +∇r∇r = ∆S, i.e. the metric Laplacian on S, evaluated on sections of the
normal bundle, thought of as the trivial R-bundle over S.

Finally, if we choose Ss, Sr to be eigenvectors of principle curvatureκ1,κ2 of
length 1 at p, then ∇sSr = ∇r Ss = 0 and ∇sSs = κ1/2,∇rSr = κ2/2. For a
minimal surface, κ1 +κ2 = 0 so putting this all together, one obtains the second
variation formula for minimal surfaces

d2area(St)

dt2

∣∣∣
t=0

= −
∫

S
〈 fν, L fν〉darea

where L is the so-called Jacobi operator (also known as the stability operator)

L f = ∆S f + |A|2 f + Ric(ν) f

where Ric(ν) is the Ricci curvature on M in the direction ν.

The Morse index of a compact minimal surface S is the number of positive
eigenvalues for the stability operator L, counted with multiplicity. A minimal
surface is stable if its Morse index is zero. This is equivalent to the condition that
the second derivative of area with respect to a normal variation is non-negative.
A locally least area surface is therefore stable.

The metric Laplacian is negative self-adjoint, and the Jacobi operator is ob-
tained from it by adding a 0th order perturbation, namely the scalar field |A|2 +
Ric(ν). By the usual Harnack-type inequality for elliptic second-order opera-
tors, the largest eigenspace for L is one dimensional, and the eigenvector of
largest eigenvalue cannot change sign. Moreover, the spectrum of L is discrete
(counted with multiplicity), and therefore it has only finite dimensional positive
eigenspaces (see e.g. [51] for details).

We deduce the following corollaries:
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Corollary 3.17 Let Σ be a stable minimal surface in a 3-manifold M without bound-

ary, and with a trivial normal bundle. Then the preimage Σ̃ is stable in any cover M̃ of
M.

Proof By passing to a further cover if necessary, we may assume the cover is

regular. Suppose φ̃ is a compactly supported non-negative variation in some

cover which reduces area. Define φ = ∑γ γ∗(φ̃) where γ ranges over the deck

group of the cover. Then φ is non-negative, locally finite, and covers a com-
pactly supported variationφ of Σ which reduces area. 2

Example 3.18 The hypothesis that the normal bundle is trivial is essential in

this corollary. For example, a great RP2 in a round RP3 is a stable minimal
surface, but is double-covered by a great S2 in a round S3 which is minimal but
unstable.

Corollary 3.19 Let S be minimal. Then a sufficiently small neighborhood of any point
p ∈ S is stable.

This is perfectly analogous to the fact that a geodesic in a Riemannian manifold
is locally distance minimizing.

Suppose S is a compact stable minimal surface. Integrating by parts, we
obtain the so-called stability inequality:

∫

S
(Ric(ν) + |A|2) f 2darea ≤

∫

S
|∇ f |2darea

for any reasonable variation f (e.g. Lipschitz with compact support) on S.
If S is closed, we can take f = 1 in the formula above. It follows that if

Ric(M) > 0, M admits no stable minimal surfaces at all. In fact, Schoen-Yau
showed how to control the topology of a stable minimal surface just from a
bound on the scalar curvature:

Theorem 3.20. (Schoen-Yau [214]) Let M be a compact, oriented 3-manifold with
positive scalar curvature. Then M contains no compact immersed stable minimal sur-
faces of positive genus.

Proof We suppose to the contrary that S is a stable minimal surface. We choose
an orthonormal frame e1 , e2, e3 locally near the image of S, so that e1 , e2 are tan-
gent to TS and e3 is normal. We let Ri j be the sectional curvature of M in the
direction of the 2-vector ei ∧ e j. Let hi j be the coefficients of the second funda-
mental form; i.e.

hi j = 〈∇ei
e3 , e j〉

Note that hi j is symmetric in i and j. Since S is minimal, h11 + h22 = 0 pointwise.
Since S is stable,

∫

S
(R13 + R23 +

2

∑
i, j=1

h2
i j) f 2darea ≤

∫

S
|∇ f |2darea
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for all reasonable f . We set f = 1 and obtain

∫

S
(R13 + R23 +

2

∑
i, j=1

h2
i j)darea ≤ 0

The intrinsic curvature K of S is equal to the sum of the intrinsic curvature
of M and the extrinsic curvature of S. That is,

K = R12 + h11h22 − h2
12

and therefore

K = R12 − h2
11 − h2

12 = R12 −
1

2

2

∑
i, j=1

h2
i j

Substituting this in the stability inequality gives

∫

S
(R13 + R23 + R12 − K +

1

2

2

∑
i, j=1

h2
i j)darea ≤ 0

But R13 + R23 + R12 is equal to the scalar curvature, which is pointwise positive,
by hypothesis. Also, by Gauss–Bonnet,

∫

S
−K = −2πχ(S) ≥ 0

since the genus of S is positive, and we obtain a contradiction. 2

For a fixed metric on M, the stability inequality lets us obtain a priori lower
bounds on KS in terms of the local geometry of M. One of the most useful such
bounds is a theorem of Schoen:

Definition 3.21 For r > 0 and p ∈ M, define

Kp,r := sup
q∈Br(p)

|KM|(q) + |∇KM|(q)

Theorem 3.22. (Schoen [213]) Let M be a closed 3-manifold, and S a stable minimal
surface. Given r ∈ (0, 1] and a point p ∈ S such that the ball Br(p) ∩ S has compact
closure in S, then there is a constant C depending only on Kp,r such that

|A|2(p) ≤ Cr−2

Moreover, there is a constant ǫ > 0 also depending only on Kp,r and the injectivity
radius of M at p such that S ∩ Bǫr(p) is a union of embedded disks.

By scaling R3 by a dilation, one obtains the following corollary in R3:
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Corollary 3.23. (Schoen) Let S be a stable minimal surface in R3 which compactly
contains Br(p) for some p ∈ S, r > 0. There is an absolute constant C such that

|A|2(p) ≤ Cr−2

One deduces from this that a complete stable minimal surface in R3 has
vanishing curvature, and is therefore a plane.

The monotonicity formula lets one bound the local area of S from below in
terms of KM. For stable surfaces, Schoen’s Theorem gives a bound in the other
direction. Together these facts are the source of many compactness results for
stable and least area surfaces.

Example 3.24 Let S be a complete stable minimal surface in a hyperbolic 3-
manifold. Since H3 has constant curvature −1, the Ricci curvature is constant:

Ric(ν) ≡ −2

By suitable choice of test functions in the stability inequality, one deduces that
a complete stable minimal surface in a hyperbolic 3-manifold has sectional cur-
vature bounded below by −2 everywhere.

We now show that the condition of being calibrated implies locally least
area.

Lemma 3.25 A calibrated surface is locally least area.

Proof Let R ⊂ S be a compact subsurface. If S′ is obtained from S by replacing
R by some homologous surface R′ with ∂R = ∂R′ then

area(R) =
∫

R
ω =

∫

R′
ω ≤ area(R′)

since the condition on ‖ω‖ implies that pointwiseω agrees with the area form
on the orthogonal complement of ker(ω), and has absolute value strictly less
on all other tangent planes. The lemma follows. 2

In fact, the same argument shows that a compact calibrated surface is glob-
ally least area.

Example 3.26. (Minimal graphs) LetΩ ⊂ R2 be an open set, and let u : Ω→ R
be a function whose graph S ⊂ R3 is a minimal surface. Letω be the 2-form on
Ω×R which satisfies

ω(X, Y) = det(X, Y, N)

for all X, Y ∈ R3, where

N =
(−ux,−uy, 1)√

1 + |∇u|2

Thenω is a calibration of S.
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Observe if Ω = R2, then u(Ω) is a complete stable minimal surface in R3,
which, as we have already observed, must be a plane. That is, the only minimal
graphs defined on all of R2 are flat planes. This fact is known as Bernstein’s
Theorem (see e.g. [51] or [192]).

Example 3.27. (Wirtinger’s inequality) On CPn with the Fubini-Study metric,
the Kähler formω calibrates any complex curve. More generally, powers of the
Kähler form calibrate any complex submanifold. It follows that such submani-
folds are all globally least area in their homology classes.

3.7 Existence theorems

A vast amount of literature exists concerning existence results for minimal sur-
faces in 3-manifolds.

The first general existence result is the following (see e.g. [192] for a proof):

Theorem 3.28. (Douglas,Rado) Let Γ ⊂ R3 be an arbitrary Jordan curve. Then
there is a simply-connected (generalized) immersed minimal surface bounded by Γ .

Here the adjective “generalized” does not rule out isolated branch points, either
in the surface or in its parameterization. We give a sketch of a proof.

Proof Given a monotone parameterization f : S1 → Γ , there is a unique har-
monic extension F : D → R3, with energy E( f ). For simplicity’s sake, we as-
sume Γ is rectifiable so that E( f ) is finite for some f . Suppose fi is a sequence
of monotone maps for which E( fi) converges to the infimal energy I. After pre-
composing with a Möbius transformation, one can assume that the maps fi are
constant on three arbitrary points on S1. Under these hypotheses, the condi-
tion that E( fi) is bounded implies that the sequence fi is equicontinuous, and
has a subsequence which converges to a limit f∞. The harmonic extensions Fi

converge uniformly to F∞ which realizes the infimum of energy. If F∞ is not
a conformal parameterization of its image, we can reduce the energy by pre-
composing with a quasiconformal map whose Beltrami differential has support
contained in the interior of D, contradicting the definition of F∞. It follows that
F∞ is a conformal parameterization of its image, possibly away from isolated
branch points, and its image is therefore a generalized minimal surface.

If F∞ is not a homeomorphism, it is constant along some interval I ⊂ S1. By
the reflection principle, we can extend F∞ to a domain obtained by reflecting
D across I. But this minimal surface is constant on an interval in the interior,
which is absurd; it follows that F∞ is actually a homeomorphism. 2

This theorem was generalized to the case that Γ is a homotopically trivial curve
in an arbitrary Riemannian 3-manifold, by Morrey.

It turns out that the interior regularity of the solution is as good as one could
hope for. The following facts are pertinent:

1. (Osserman, Gulliver [191], [117]): The least-area disk bounded by an arbi-
trary contractible Jordan curve Γ in a Riemannian 3-manifold M is regular
(i.e. contains no branch points)
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2. (Nitsche [187]): A real analytic Jordan curve Γ in R3 with total curvature
at most 4π bounds a unique simply-connected minimal surface

3. (Almgren–Thurston [5]): For any ǫ > 0 and any positive integer g, there
exists an unknotted Jordan curve Γ in R3 with total curvature at most
4π +ǫ for which any embedded minimal surface bounded by Γ must have
genus at least g

4. (Ekholm–White–Wienholtz [64]): If Γ is a Jordan curve in R3 with total
curvature at most 4π then any minimal surface with boundary Γ is em-
bedded up to and including the boundary, with no interior branch points

For more general immersed surfaces, one has the following theorem:

Theorem 3.29. (Schoen-Yau [214]) Let M be a compact Riemannian manifold, and
S a surface of genus≥ 1. Let f : S→ M be a continuous map. If f induces an injection
on π1, then there is a minimal immersion

h : S→ M

so that h induces the same map on π1 as f . If π2(M) = 0, then h can be chosen
homotopic to f .

Note that a similar theorem applies when M is allowed to have any dimen-
sion, except that in this case, h might only be a branched immersion. The method
of proof is actually very similar to the proof of Theorem 3.28 except that one
does not know the conformal type of the parameter surface in advance. We
give a very brief sketch of the proof.

For any given marked conformal structure c on S, one can find a harmonic
map fc : S → M in the correct homotopy class. As one varies the marked
conformal structure c, the maps fc vary. If one could find a global minimum for
fc, the associated map fc would actually be conformal, and therefore the image
would be a minimal surface, by Corollary 3.15.

So let ci be a sequence of marked conformal structures on S for which the
energy of fci

converges to the infimum. The first step is to consider the image
ci of the ci in the moduli space of (unmarked) conformal structures on S. If
the ci are not precompact in moduli space, the conformal structures ci contain
a subsequence in which some neck undergoes a “pinch”; i.e. some essential
annulus Ai must have a very large modulus with respect to ci. On the other
hand, if γi denotes the core of Ai, then there is a lower bound on the length of
fci

(γi), independent of i, and therefore as i → ∞ the energy of fci
blows up

along Ai. This shows that the ci are contained in a compact subset of moduli
space. Schoen and Yau show that if K is a compact subset of moduli space,
and fc is an energy-minimizing harmonic map with c ∈ K, then the map fc

is Hölder continuous with a constant and exponent which depend only on the
energy of fc, and the compact subset K, independent of the marking implied by c.
In particular, the sequence fci

above is equicontinuous, and some subsequence
converges to a branched minimal immersion.
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As in the case of disks, if M is a 3-manifold, branch points do not occur,
and the minimal surface is smoothly immersed. Together with Theorem 3.20
this implies that if M is a closed oriented 3-manifold whose fundamental group
contains a surface subgroup of genus at least 1, then M does not admit a metric
of positive scalar curvature.

Note that the condition that f is π1 injective is actually stronger than is
needed for the argument. In fact, one just needs f to be injective on conjugacy
classes in π1 represented by embedded loops in S, since these are the loops that
degenerate under a neck pinch. If S is a surface of genus 1, this can be achieved
by insisting that the image of π1(S) contains a non-cyclic abelian group. Hence,
a closed oriented 3-manifold whose fundamental group contains a non-cyclic
abelian group does not admit a metric of positive scalar curvature.

For spheres, one has to be slightly more careful. In the homotopy category,
one has the following theorem:

Theorem 3.30. (Sacks-Uhlenbeck, Meeks-Yau) Let M be a closed 3-manifold such
that π2(M) is nonzero. Then amongst the set of all smooth maps from S2 to M repre-
senting nontrivial elements of π2(M), there is a map f of least area. Furthermore, f is
either a smooth embedding, or a double cover of a smoothly embedded projective plane.

There is another approach to constructing minimal surfaces via geometric
measure theory. Since one deals directly with surfaces and not maps, one obtains
embeddedness results:

Theorem 3.31. (Meeks-Simon-Yau [160]) Let M be a closed orientable irreducible
3-manifold. Then every incompressible surface S is isotopic to a globally least area
minimal surface.

For embedded spheres, one gets a similar statement:

Theorem 3.32. (Meeks-Simon-Yau [160]) Let M be a closed orientable 3-manifold.
Suppose M is reducible. Then there is a globally least area essential embedded sphere.

The proofs are beyond the scope of this survey to summarize. However,
Hass and Scott developed an “elementary” approach to these theorems, which
we will discuss briefly in the sequel.

3.8 Compactness theorems

Let M be a compact Riemannian 3-manifold, and let Si be a sequence of embed-
ded minimal surfaces in M. Suppose there are uniform global bounds area(Si) ≤
C1 and pointwise bounds |ASi

|2 ≤ C2 for some constants C1 , C2. Since M is
compact, there is a uniform upper bound on the sectional curvature of M, and
therefore the Si have two-sided curvature bounds. Suppose p ∈ M is an ac-
cumulation point of the Si, and let v ∈ Tp M be a limit of normal vectors to
the Si. Then for a sufficiently small ball B, whose radius depends only on C2
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and the curvature of M and the injectivity radius of M at p, there exists a sub-
sequence S′i of the Si and local co-ordinates on B such that suitable sheets of
S′i ∩ B can be expressed as a family of graphs of functions over a fixed planar
domain for which one has uniform bounds on the first and second derivatives.
After passing to a further subsequence, by the Arzela-Ascoli theorem, these sur-
faces converge locally to a C1 limiting surface S. Elliptic regularity implies that
higher derivatives of S are controlled by the first derivative, so S is actually C∞

and the convergence of the S′i is C∞, and therefore S is a minimal surface.
If one replaces pointwise curvature estimates with integral curvature esti-

mates, one still obtains some very strong compactness results. Define the total

curvature of S to be the integral
∫

S
1
2 |AS|2. Then one has the following theorem

of Choi-Schoen:

Theorem 3.33. (Choi-Schoen, [49]) Let M be a 3-manifold, and Si ⊂ M a sequence
of complete embedded minimal surfaces of genus g with

area(Si) ≤ C1

and ∫

Si

1

2
|ASi
|2 ≤ C2

Then there exists a finite set of points P ⊂ M and a subsequence S′i that converges

uniformly in the Cl topology for any l < ∞ on compact subsets of M− P to a minimal
surface S ⊂ M. The subsequence also converges to S in the Hausdorff metric on com-
pact subsets of M. Moreover, S is smooth in M, has genus at most g, and satisfies the
same area and total curvature bounds as the Si.

Note that there is no assumption that M should be compact. In particular,
this theorem is interesting even in the case M = R3.

The idea is to look at points p ∈ M with the property that for every r > 0,

lim sup
i→∞

sup
q∈Br(p)∩Si

|K(Si)(q)| · d(q, ∂Br(p))2 = ∞

where Br(p) denotes the ball of radius r about p. Away from such points, one
has uniform total area and pointwise curvature bounds, so it is straightforward
to obtain convergence on a subsequence Si → S. Fix a small r and a point
p as above, and for each i let qi realize the supremum of this function, and
let ri = d(qi, ∂Br(p)). By rescaling the sequence of surfaces Si ∩ Bri/2(qi) by

|K(Si)(q)|−1/2 as i → ∞ one obtains a precompact sequence which converges
on some subsequence to a complete nonflat embedded minimal surface in R3

with finite topology and finite total curvature. The total curvature of such a sur-
face is a positive integral multiple of 4π . Moreover, total curvature is invariant
under rescaling. It follows that there are at most C2/4π such points p. Further-
more, the ends of a complete embedded minimal surface in R3 with finite total
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curvature are all asymptotically flat; it follows that S can actually be completed
to a smooth minimal surface by adding these points p.

Observe that as a minimizing sequence Si approaches the limit S, some
topology might “pinch off” and disappear at the points p. It follows that if the
surfaces Si are incompressible and contained in the same isotopy class, then such
pinching cannot occur.

Much more sophisticated compactness results for sequences of surfaces with-
out area or curvature bounds are obtained by Colding and Minicozzi, as sum-
marized in [51].

3.9 Monotonicity and barrier surfaces

A surface S ⊂ ∂M is mean convex if the mean curvature vector field on S either
vanishes or points inwards (i.e. into M) at every point. Such surfaces act as
barriers for minimal surfaces in M, and let us extend some of the results of § 3.7
to 3-manifolds with boundary.

Example 3.34 Minimal surfaces are themselves mean convex on either side. A
surface whose second fundamental form is definite is mean convex (on one
side).

The relationship between minimal surfaces and mean convex surfaces is
analogous to the relationship between harmonic functions and subharmonic
functions. In fact, this is more than an analogy: in R3, the co-ordinate functions
of a minimal surface are harmonic, and those of a mean convex surface are
subharmonic. By the mean value property for harmonic functions, a minimal
surface in R3 which intersects a mean convex surface at a point must either be
equal to it (in which case the mean convex surface was already minimal) or it
must crash through to the “positive” side. This observation generalizes easily
to an arbitrary 3-manifold, and demonstrates the strict barrier property of mean
convex surfaces:

Lemma 3.35 Suppose S ⊂ ∂M is mean convex, and M ⊂ N where N is a closed
3-manifold. Let T ⊂ N be a minimal surface. Suppose there is a point p ∈ S ∩ T such
that for some open neighborhood U of p, there is containment

T ∩U ⊂ M

Then T = S.

Because of this barrier property, also called the maximum principle, from the
point of view of existence of minimal surfaces, a 3-manifold whose boundary is
mean convex is just as good as a closed 3-manifold. The following theorem of
Meeks and Yau shows how mean convexity can be used to give a strengthened
solution of the classical Plateau problem.

Theorem 3.36. (Meeks-Yau) Let M be a 3-manifold with mean convex boundary,
and let γ be a simple closed curve in ∂M which is null-homotopic in M. Then γ is
bounded by a least area disk, and any such disk is properly embedded.
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See [161] and [162] for details. An important special case of this theorem
applies when M is a convex subset of R3.

Using Theorem 3.36 and Theorem 3.33, we can now give an outline of a
proof of Theorem 3.31 and Theorem 3.32 following Hass and Scott [123]. We
treat the case of finding an essential sphere; the case of an essential surface of
higher genus is very similar.

We define

F = {piecewise smooth embedded S2 in M which do not bound a B3}

and let I = inf{area(S) | S ∈ F}. Suppose Si ∈ F is a sequence with area(Si)→
I. The idea is to replace the Si with a new sequence of surfaces in F whose area
also converges to the infimum, but for which one has good local convergence
properties.

Cover M by small balls B1, . . . , Bn such that for all i, the boundary ∂Bi is
strictly convex, and any least area disk in M with boundary in ∂Bi is embedded
in Bi. We assume that each Si is transverse to each ∂B j, by perturbing the B j

slightly if necessary.
In the simplest case, we assume Si ∩ B1 = Di which is a disk with ∂Di = Γi

for some simple closed curve Γi. If we let D′i be a least area disk in M with
∂D′i = Γi, then D′i ⊂ B1 so we can replace Si by S′i := Si − Di ∪ D′i.

In general, Si ∩ B1 is a union of planar surfaces. In this case, we replace
Si ∩ B1 with a collection of least area disks spanning the curves of intersection
Si ∩ ∂B1. This produces a new surface which is a union of embedded spheres
Σ1, . . . , Σk. Obviously, each Σ j satisfies area(Σ j) ≤ area(Si) and moreover, at
least one component does not bound a 3-ball, or else Si would have been inessen-
tial; call this component S′i. Then limi→∞

area(S′i) = I and moreover, each S′i
intersects B1 in least area disks. By Schoen’s Theorem 3.22 these least area disks
have a priori lower curvature bounds on compact subsets and uniform upper
area bounds, so there is a subsequence Si,1 which converges on interior(B1) to
a union of least area disks (which might be empty).

Now consider the intersections Si,1 ∩ B2. We form new surfaces S′i,1 by re-
placing Si,1 ∩ B2 by least area disks and choosing an essential connected com-
ponent, as before. Let Si,2 be a subsequence which converges on interior(B2) to
a union of least area disks which we denote T2.

Observe that Si,2 ∩ (B1 − B2) ⊂ Si,1 ∩ (B1 − B2) and therefore converges on
B1 − B2 to a smooth surface T1. We would like to show that T1 ∪ T2 is smooth
on all of B1 ∪ B2, and is therefore a smooth minimal surface. If T1 ∪ T2 were con-
tinuous and piecewise smooth but not smooth, its area could be reduced locally
by a small isotopy. This isotopy could then be approximated by isotopies of the
sequence Si,2 which reduce the area a definite and uniform amount, contrary to
the fact that area(Si,2) → I. So it suffices to show that T1 ∪ T2 is a continuous
surface along ∂B1 ∩ B2.
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It turns out that the difficult case occurs when different components of ∂Si,2∩
B1− B2 accumulate on a single point p ∈ ∂B1∩ B2. This means that distinct local
components of Si,2 ∩ B1 − B2 accumulate near p. But in this case, the maximum
principle implies that the component of T1 containing p is a limit of distinct
“sheets” of Si,2 ∩ B1 − B2 which both limit to a single surface. If the sheets of
Si,2 ∩ B2 are also distinct near p, then this single surface can be continued across
∂B1 ∩ B2 and we are done. Otherwise, distinct sheets D1

i , D2
i of Si,2∩ B1− B2 can

be joined by an arc di in Si,2 ∩ B2 such that length(di) → 0 and di → p. Let Di

be a subdisk of Si,2 obtained by taking a union of D1
i , D2

i and a small annular
neighborhood of the arc di. The area of Di can be reduced locally by a definite
amount by a local move as illustrated in Fig. 3.3, contrary to the definition of
the Si,2.

FIG. 3.3. A local move reduces area

So in fact T1 ∪ T2 is smooth in B1 ∪ B2. Applying the same argument in-
ductively to B3, B4, . . . , Bn we get a family Si,n ∈ F which converges piecewise
smoothly in M to a smooth embedded surface T. For large i, Si,n is transverse
to the fibers of the normal bundle to T. So Si,n covers T, and therefore T is ei-
ther an essential minimal sphere in F with area(T) = I, or a one-sided essential

minimal RP2 with area(T) = I/2.



4

TAUT FOLIATIONS

In this chapter we introduce the main objects of interest in this book: taut folia-
tions. Before we discuss such objects however, we must quickly review some of
the basic elements of the theory of foliations.

4.1 Definition of foliations

Manifolds come clothed in a variety of structures: smooth, PL, quasiconformal,
symplectic, Kähler, and so forth. A foliation is a kind of clothing for a manifold,
cut from a stripy fabric.

FIG. 4.1. A foliation is a kind of clothing, cut from a stripy fabric.

4.1.1 Cocycles

Topologically, one can describe such a structure in terms of cocycles. For us, the
data of a foliation will consist of an open covering of M by 3-balls Ui together
with trivializations of each Ui as a product

Ui = D2 × [0, 1]

where the factors D2×point are called plaques, in such a way that on the overlap
of two charts Ui ∩U j, the product factors D2 × point agree. That is, the inter-
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section Ui ∩U j has a trivialization as a product in such a way that the plaques
in Ui ∩U j are contained in plaques of Ui and U j respectively.

In terms of co-ordinates, there are maximal intervals Ii, I j ⊂ [0, 1] and a
transition function

ϕi j : Ii → I j

so that the plaque D2 × t ⊂ Ui intersects U j in a subdisk of the plaque D2 ×
ϕi j(t). These transition functionϕi j obviously satisfy a cocycle condition

ϕkiϕ jkϕi j = Id

on the domain of definition.
Informally, the plaques are the “stripes” in the fabric, and one insists that

the stripes on each local chart match up compatibly on the overlaps. We refer to
such charts as product charts.

Each plaque intersects each neighboring product chart in a unique plaque;
the union of these intersecting plaques is a surface which can be developed
from chart to chart. A maximal path-connected union of plaques is called a leaf
of the foliation. In this way the structure of a foliation allows us to decompose
M into a union of leaves.

A leaf λ has two natural topologies: the path topology, with respect to which
it is a complete, typically noncompact surface; and the subspace topology which
it inherits as a subset of M. When λ is closed as a subset of M, these topologies
coincide.

4.1.2 Co-orientations

Foliations can be co-oriented or not, and leaves can be oriented or not. In each
product chart, one may choose a co-orientation on the local leaf space, and an
orientation on the plaques. In the overlaps, any such choices will either agree
or disagree; this data defines a 1-cocycle on M with values in Z/2Z. The group
H1(M; Z/2Z) parameterizes homomorphisms from π1(M) to Z/2Z, and it fol-
lows that any foliation can be oriented and co-oriented after passing to a cover
of index at most 4 in which the two orientation cocycles pull back to trivial
cocycles.

Because of this fact, in the sequel we will usually restrict our focus to folia-
tions and manifolds which are both oriented and co-oriented, unless there is a
compelling reason to work more generally. Note that laminations do not enjoy a
similar property. For example, if Λ is a geodesic lamination on a surface S with
a triangle complementary region, no lift of Λ in any cover of S is co-orientable.

4.1.3 Smooth distributions

For a smooth foliation F, the tangent space TF to the foliation defines a 2 di-
mensional distribution on M. Conversely, a 2 dimensional distribution which is
tangent to a foliation is said to be integrable. A distribution ξ is integrable if and
only if through every point p there is a unique germ of an embedded surface λ
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such that Tλ = ξ where it is defined. In particular, the condition of integrability
is local. Any distribution ξ can be written locally as ker(α) for some nonsingu-
lar 1-form α. The following theorem of Frobenius characterizes integrability in
terms of such local differential data:

Theorem 4.1. (Frobenius) Let ξ be a 2-dimensional distribution on a 3-manifold M.
The following are equivalent:

1. ξ is integrable

2. Ifα is a 1-form satisfying ker(α) = ξ locally, thenα ∧ dα = 0

3. The space Xξ of vector fields on M tangent to ξ is closed under Lie bracket

Proof Suppose first that Xξ is closed under Lie bracket. We let X1, X2 span ξ
locally. With respect to a set of local co-ordinates x1, x2, x3, we write

Xi =
3

∑
j=1

X
j
i

∂
∂x j

for i = 1, 2. The matrix X
j
i has rank 2 at each point, since the Xi span ξ. So after

a permutation of the co-ordinates if necessary, we can assume the square matrix

X
j
i |i, j≤2 is nonsingular locally, with inverse matrix (Xi

j)
−1. Then define

Yi =
2

∑
i=1

(Xi
j)
−1Xi

The vector fields Y1 , Y2 still span ξ locally. Moreover, they are of the form

Yi =
∂

∂xi
+ Y3

i

∂
∂x3

for suitable functions Y3
i . It follows that

[Y1 , Y2] =

(
Y3

1

∂Y3
2

∂x3
−Y3

2

∂Y3
1

∂x3

)
∂

∂x3

But by hypothesis, [Y1 , Y2] is spanned by Y1 and Y2, so the vector field [Y1 , Y2]
must vanish identically. That is, the vector fields Y1 and Y2 define commuting
flows on M. We may therefore define the leaves of a foliation F tangent to ξ
locally by flowing the integral curves of Y1 along integral curves of Y2. This
shows that (3) implies (1).

Now, if ξ is integrable, then in a foliation chart, the leaves can be taken to
be level sets of some local height function f . It follows that we can write ξ =
ker(df ) locally. Ifα is any other form with ker(α) = ξ locally, then α = gdf for
some smooth g. Then

α ∧ dα = gdf ∧ dg ∧ df ≡ 0

and (1) implies (2).
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Finally, if α ∧ dα = 0 and X1, X2 are locally defined vector fields satisfying
α(X1) = α(X2) = 0, we choose a local vector field Z satisfying α(Z) ≡ 1, and
compute:

0 = α ∧ dα(X1, X2, Z) = α(Z) ∧ dα(X1, X2)

= X1α(X2)− X2α(X1)−α([X1, X2]) = −α([X1, X2])

so (2) implies (3). 2

This theorem generalizes in a straightforward manner to foliations of arbi-
trary dimension and codimension; see e.g. [246] or [42] for a precise statement
and proof.

4.2 Foliated bundles and holonomy

The following example illustrates a basic relationship between representations
and certain simple kinds of foliations.

Example 4.2. (Foliated circle bundles) Let Σ be a surface, and ρ : π1(Σ) →
Homeo(S1) a representation. Then we can form the product

Ẽ = Σ̃× S1

and let π1(Σ) act on this by

α(s,θ) = (α(s),ρ(α)(θ))

The quotient E = Ẽ/π1(Σ) projects onto Σ by forgetting the second factor, and
the fiber over every point is a copy of S1. Thus, E is a circle bundle over Σ.

Moreover, it is clear that the action of π1(Σ) on Ẽ preserves the foliation

by planes Σ̃ × point, and therefore this foliation descends to a foliation of E,
transverse to the circle fibers, that is, a foliated circle bundle.

A foliated circle bundle satisfies the unique path lifting property in the follow-
ing sense: given p in Σ and q in the fiber S1

p over p, and given a mapφ : I → Σ

with φ(0) = p, there is a unique lift φ̃ : I → E with φ(0) = q and φ̃(I) con-

tained in a leaf of the foliation. To see this, first lift I to Σ̃ and then use the global

product structure on Ẽ = Σ̃ × S1 to lift I to Ẽ. Finally, project from Ẽ to E to
obtain the desired lifting.

As in the general theory of fiber bundles (see [138]) we say that two foliated
circle bundles E1 , E2 over Σ are isomorphic if there is a homeomorphism H :
E1 → E2 taking one foliation to the other, which covers the identity map on Σ.

Such a homeomorphism is determined by its values on the fiber over a base-
point p, by the unique path lifting property. Conversely, any homeomorphism
h : S1 → S1 determines a conjugate representation ρh : π1(Σ) → Homeo(S1)
and an isomorphic bundle. Thus there is a correspondence between foliated cir-
cle bundles up to isomorphism and representations of π1(Σ) into Homeo(S1) up to
conjugacy.
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One can define foliated bundles over more complicated spaces with more
complicated fibers in the obvious way. However, when the fiber F is not com-
pact, such foliated bundles will not typically satisfy the unique path lifting
property. Let F→ E→ B be a bundle with foliation F transverse to the fibers. A
necessary and sufficient condition for E to satisfy the unique path lifting prop-
erty is that for each leaf λ of F the natural projection from λ to B should be a
covering map. This property is called completeness, and one defines a complete
foliated bundle to be a bundle with this property. Then as in the case of circle
bundles, we have the following theorem:

Theorem 4.3 Let B and F be manifolds. Then the set of complete foliated F bundles
over B up to isomorphism is in natural bijection with the set of homomorphisms from
π1(B) to Homeo(F) up to conjugacy.

Many foliated bundles which occur in nature are not complete. In such bun-
dles, paths can be uniquely lifted for a short while, but in general, not indefi-
nitely. Note that what is lacking is not the uniqueness of the lift, but the global
existence: a lifted path that we are trying to extend might simply fall off the edge
of a fiber F.

Now, let F be a foliation of M, and let λ be a leaf of F. For the moment, we
assume F is at least C1. The exponential map defines an immersion from the
unit normal disk bundle N(λ) of λ to M. We may pull back F by this immersion
to give N(λ) the structure of a foliated bundle, whose zero section is the leaf λ.
Now, paths may be lifted uniquely for a short while, but typically a lifted path
will eventually fall off the edge of N(λ), and can be continued no further. The
closer the initial point of the lifted path is to the zero section, the further the
path can be lifted; thus the bundle lets us define the germ of a representation
of π1(λ) into the group of homeomorphisms of a transversal, up to conjugacy.
This is called the holonomy representation.

If F is not C1, we may also define holonomy by using the local product struc-
ture of a foliation. If λ is a leaf of F and γ ⊂ λ is a sufficiently short path, then
we can find a local product chart U containing γ. If τ0, τ1 are two transversals to
γ at the endpoints, then the natural product structure on the chart determines a
homeomorphism

h : τ0|U → τ1|U
called the holonomy transport along γ.

If γ is a longer path, we can cover it with charts Ui as above, and get a
sequence of identifications

h0 : τ0|U0
→ τ1|U0

, . . . , hi : τi|Ui
→ τi+1|Ui

By restricting to smaller neighborhoods as necessary, the composition gives a
map h from the germ of τ0 at γ(0) to the germ of τi+1 at γ(1).

If γ′ is homotopic rel. endpoints to γ, this homotopy can be broken up into a
sequence of homotopies with support contained in small product charts. Since
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the identification hi : τi|Ui
→ τi+1|Ui

only depends on the chart Ui, we see that
the map h′ induced by holonomy transport along γ′ between germs agrees with
the map h induced by γ, and therefore that holonomy transport is well-defined
on relative homotopy classes.

Let M be compact, and let τ = ∪iτi be a finite collection of transversals
which intersects every leaf of M. Let π1(F, τ) denote the groupoid of homotopy
classes rel. endpoints of paths contained in leaves of F with endpoints contained
in τ . Then we have shown the following:

Theorem 4.4. (Holonomy transport) Holonomy transport defines a homomorphism
H from π1(F, τ) to the groupoid of germs of self homeomorphisms of τ .

One can use holonomy transport to tame a foliation in a neighborhood of a
simply connected leaf. The most important example of this concept is the Reeb
stability theorem, which lets us completely understand foliations of closed 3-
manifolds which contain spherical leaves:

Theorem 4.5. (Reeb stability) Let F be a co-oriented foliation of M such that some
leaf λ is a sphere. Then M is S2 × S1, and the foliation F is the product foliation by
spheres.

Proof Since π1(λ) = 1, holonomy transport is trivial along paths in λ. Since λ
is compact, some neighborhood of λ is foliated as a product, and therefore the
set of spherical leaves is open.

Now, it is true quite generally for codimension one foliations that a limit
of closed leaves is closed. For, suppose λi → λ where each λi is closed. Since
M is compact, H2(M; Q) is finite dimensional, and therefore the subspace L of
H2(M; Q) generated by the homology classes [λi] is generated by some finite set,
which we may take to be λ1, . . . , λn. If λ is not closed, we will see in Lemma 4.24
that there is a circle γ transverse to F, which intersects λ and which can be taken
to lie in any open neighborhood of λ. In particular, we may choose γ in the
complement of the λi for i ≤ n:

γ ⊂ M−
n⋃

i=1

λi

Since λi → λ, it follows that γ intersects λN transversely for some N ≫ n,
but does not intersect any λi with i ≤ n. Since F is co-oriented, all the points
of intersection γ ∩ λN have the same sign, and therefore [λN ] is essential in
homology. On the other hand, since γ is disjoint from the λi with i ≤ n, we see
that [λN ] is not contained in L, contrary to the definition of L. This contradiction
shows that λ is closed.

Since λi → λ and λ is closed, some λi is contained in a union of product
charts covering λ. For such a λi, projection along normal curves defines a cov-
ering map from λi to λ. Since the λi are spheres, and since F is co-oriented, λ
is also a sphere. So we have shown that the set of spherical leaves in F is both
open and closed, and therefore every leaf is a sphere. The result follows. 2
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Remark The property of being a closed leaf is preserved under finite covers.
It follows that the set of closed leaves in a codimension one foliation is closed,
whether or not the foliation is co-oriented. This fact, and the argument in Theo-
rem 4.5 which proves it, is due to Novikov [189].

Example 4.6. (Harmonic measure) The following example is due to Thurston
[239].

Let M be a complete hyperbolic n-manifold which is homotopic to a closed
surface S. Let E be the circle bundle over M coming from the action of π1(M)

on its ideal circle S1
∞

(S̃), and let π : E → M be the projection. The bundle E
admits a codimension one foliation F coming from the action, as in Example 4.2

One can define a harmonic measure on the foliated bundle E — that is, a trans-
verse measure on F with the property that along a path on a leaf of F which cov-
ers a random walk on M, the transverse measure of an infinitesimal transversal
is preserved on average by holonomy transport. Such measures are constructed
in generality by Lucy Garnett [98]; compare with § 2.16.1.

Under these conditions, the transverse measures can be integrated to a met-
ric on the circle fibers of E which we normalize so that each circle has length
2π . With this metric, let X be the positive unit vector field on each circle. Then
there is a unique 1-form α on E with TF = ker(α) and such that α(X) = 1.
Since F is a foliation, α ∧ dα = 0, and we write dα = −β ∧α where ιXβ = 0;
i.e.β can be thought of as a 1-form on leaves of F, which measures the logarith-
mic derivative of the transverse measure under holonomy. Since the transverse
measure is harmonic, |β| pushes down locally under the projection π : E → M
to a function on M which is the logarithmic derivative of a harmonic function.

Let φt be the flow on E generated by X. For each x ∈ E the subspace of
T∗x E consisting of vectors v with v(X) = 1 is a natural affine space for T∗

π(x)
M.

After choosing a basepoint, we can identify these two spaces, and define γ(t) ∈
T∗
π(x)M to be the image of φ∗t (α) under this identification. Different choices of

basepoint give different choices for γ which differ by a translation. Different
choices of x on a fixed fiber give parameterizations of γwhich differ by rotation.

So the area 1
2

∫
γ ∧ dγ enclosed by γ in T∗

π(x)
M is well-defined, independent of

choices.
Note that by using Cartan’s formula

LX(α) = ιXdα + dιX(α) = α(X)β = β

we see that the tangent to γ is β, under our identification of T∗x E with T∗
π(x)

M.

The bundle E can be given an orthogonal connectionω by averagingα; i.e.

ω =
1

2π

∫ 2π

0
φ∗t (α)

The curvature of this connection measures the extent to which averaging and
holonomy transport fail to commute; as a formula,
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dω =
1

2π

∫ 2π

0
φ∗t (−β ∧α) =

1

2π

∫
γ ∧ dγ

which is equal to 1
π

times the area enclosed by γ.
A positive harmonic function on Hn has a logarithmic derivative which is

bounded pointwise by (n− 1). The “worst case” is the harmonic extension of
a “Dirac” function, concentrated at a single point at infinity, and every other
harmonic function is a weighted average of these extreme examples. It follows
that length(γ) (which is equal to

∫ |φ∗tβ|) is at most 2π(n− 1), and therefore
the absolute value of the curvature of the connection ω is pointwise bounded
by (n − 1)2. Note that if n = 2 this gives another proof of the Milnor–Wood
inequality; i.e. Theorem 2.62.

If n = 3 this implies by Gauss–Bonnet that the area of an incompressible
surface S in a hyperbolic 3-manifold is bounded from below by −2πχ(S)/4.
Note that by Schoen’s estimate (Example 3.24) a stable minimal representative
of S has area at least twice this large.

4.3 Basic constructions and examples

In this section we collect for the convenience of the reader some elementary
facts and constructions concerning codimension one foliations of 3-manifolds.
There is considerable overlap of our list with [87]; with a few exceptions, most
of these constructions are “well known” in the foliation community, and cannot
be easily attributed to any particular person.

Example 4.7. (Reeb component) Let H be the closed upper half-space in R3 fo-
liated by horizontal planes. The dilation α : p → 2p acts properly discontinu-
ously on H − 0, and the quotient

S = H − 0/〈α〉

is a closed solid torus.
The foliation of H by horizontal planes is preserved by α, and therefore de-

scends to a foliation F of S tangent to ∂S. Note that all the leaves of F in the
interior of S are planes, which limit on the boundary torus leaf. The foliated
pair (S, F) is called a Reeb component. Like worms in an apple, Reeb components
bore through otherwise healthy foliated 3-manifolds, rendering them inedible.

The construction of a Reeb component has an analogue in any dimension,
and produces a codimension 1 foliation of S1 × Dn−1 tangent to the boundary.
If n = 2 we refer to the component as a Reeb annulus.

Example 4.8. (spiral leaves) Let M be a manifold, and N a compact codimen-
sion 0 submanifold. Let S ⊂ M− N be a properly embedded surface. Then for
each circle component (∂S)i of ∂S we choose a combing of S near ∂N so that
the tangent space to S along ∂S is contained in the tangent space T∂N. Let E de-
note a product neighborhood ∂N× I of ∂N in M−N. We suppose that we have
chosen co-ordinates on the interval I so that ∂N × 0 = ∂N. We take countably
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FIG. 4.2. A Reeb component with the top sliced off

many parallel copies of ∂N of the form ∂N× 1
n as n ranges over the positive in-

tegers. Then S is transverse to each ∂N× 1
n , and we can take an oriented sum of

the result (see Construction 5.3 for more details). This produces a noncompact
surface S′ which agrees with S outside E, and which “spirals” around ∂N. This
operation is often the first step in extending a foliation F of N, tangent to ∂N, to
a foliation of all of M.

Example 4.9. (spinning) Spinning is closely related to the operation of spiralling
a leaf. Let M be a 3-manifold with boundary a torus T, and let F be a foliation
of M which is transverse to T. Suppose further that we can choose a product
structure on T = S1 × S1 in such a way that leaves of F|T are transverse to the
point× S1 factors. Such a product structure will not always exist; the obstruc-
tion is that F|T might contain Reeb annuli. If there are no such Reeb annuli,
the foliation F|T has the structure of a foliated circle bundle over S1, which is
determined up to conjugacy by the monodromy α ∈ Homeo+(S1).

Let N1(T) be a tubular neighborhood of T with the structure of a product

N1(T) = S1 × S1 × [0, 1]

so that T = S1 × S1 × 0. Let φ1 : N1(T) → N1(T) be the homeomorphism,
fixed on the boundary, which performs a Dehn twist in each annulus point×
S1 × [0, 1]. This operation takes the leaves of F and wraps them once around T.
For each integer n let Nn(T) be the tubular neighborhood

Nn(T) = S1 × S1 × [0, 1/n]

and let φn : Nn(T) → Nn(T) be a homeomorphism defined analogously to
φ1. Observe that the infinite composition φ = · · ·φ3φ2φ1 is well-defined on
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M − T. The result gives a foliation φ(F) of M − T whose leaves accumulate
along T, and which can be extended to a foliation F′ of M by adding T as a leaf.
We can extend this foliation to a manifold M′ obtained by doing a Dehn filling
on T, by adding a Reeb component.

FIG. 4.3. A foliation suitably transverse to a boundary torus can be spun
around it

Notice that the holonomy of F′ along T is generated by two commuting
elements α̂,β where β contracts leaves towards T, and α̂ is the “suspension”
of α by β. By Kopell’s Lemma (i.e. Theorem 2.122), the resulting foliation can
never be C2 if α has fixed points but is not the identity. Conversely, if α is C∞

conjugate to a rotation, this operation can be done smoothly and F′ will be C∞

near T.

Example 4.10. (smooth filling) The following construction shows how to fill in
a foliation over a solid torus smoothly. Suppose M is a 3-manifold containing a
solid torus S, and suppose F is a foliation of M− S such that F|∂S is a foliated
circle bundle with monodromy α ∈ Diffeo∞

+ (S1).
The group Diffeo∞

+ (S1) is simple; in fact, a general theorem of Thurston says
that for any closed manifold X, the group of orientation-preserving diffeomor-
phisms of X isotopic to the identity is simple; see [11] for a proof. It follows that
every element can be written as a product

α = ρ1ρ2 · · ·ρn

where each ρi is C∞ conjugate to a rotation. In fact, a theorem of Herman ( [129])
implies that we can take n = 2 in this factorization.

Let P be a disk with n holes. Construct a foliated circle bundle over P whose
monodromy around the outer boundary component isα, and whose monodromy
around the inner boundary components is ρi. The total space of this bundle is
P × S1 which can be inserted into S so that the foliations match up smoothly
along ∂S. The complement S− P× S1 consists of n solid tori, and the foliation
can be smoothly spun around each boundary as in Example 4.9 by the hypothesis
on the ρi. Finally, we add n Reeb components.
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Example 4.11. (Lickorish) The following example, due to Lickorish [151], shows
that if Reeb components are allowed, every 3-manifold contains a foliation by
surfaces.

Let M be a closed 3-manifold. Then it is known that M contains a fibered
link L — i.e. a knot such that there is a fibrationφ : M− N(L)→ S1.

One such construction is as follows: given a Heegaard splitting M = H1 ∪ϕ
H2, by Theorem 1.10 we can write the gluing mapϕ as a word in the standard
generators of the mapping class group of ∂H1:

ϕ : τ1 ◦ τ2 ◦ · · · ◦ τn

where each τi is a positive or negative Dehn twist in one of a family of “stan-
dard” simple closed curves in the surface of genus g. Here it is convenient to use
Lickorish’s system of 3g− 1 curves; see Fig. 1.2. It follows that M is obtained
from S3 by ±1 surgery on a family of unknots K1, . . . , Kn where each Ki is a cir-
cle in one of a family of 3g− 1 standard foliated annuli in S3. These components
form a braid B = ∪iKi which wraps once around an unknot J. It follows that
L = B∪ J is a fibered link in M. See Fig. 4.4.

J

A1

A2

A3

A3g−2

A3g−1

FIG. 4.4. Any orientable 3-manifold of Heegaard genus g is obtained by inte-
gral surgery along a collection of components parallel to the cores of the
annuli Ai in the figure. These components form a braid which wraps once
around the curve J.

There is an obvious foliation of M− N(L) by the fibers of φ. The structure
this induces on M is known as an open book. We can spin this foliation around
∂N(L) as in Example 4.9, and then fill in N(L) with Reeb components to get a
foliation on all of M.

It turns out that if L is a fibered link in M with more than one component,
we can produce a new fibered link L′ with fewer components than L, at the cost
of raising the genus of the fiber. This can be achieved, for instance by plumbing
with a Hopf band; see § 5.8.1 for details. By induction, we can produce a fibered
knot in M, and therefore a foliation with a single Reeb component.

Example 4.12. (closed 1-form) Letα be a closed, nonsingular 1-form on a closed
3-manifold M. Then ker(α) is integrable. Note that if α has rational periods —
i.e. [α] defines an element of H1(M; Q) — then a suitable multiple of α is in
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H1(M; Z) and defines a map from M to S1 by integration. Since α is nonsin-
gular, this map is a fibration, and M fibers over S1. More generally, since the
condition of being nonsingular is open, we can perturb α by adding an arbi-
trarily small harmonic form so that it has rational periods. Thus the class of
closed 3-manifolds which admit closed, nonsingular 1-forms is exactly the class
of 3-manifolds which fiber over S1.

Example 4.13. (branched cover) Suppose M is foliated by F, and L is a link in
M transverse to F. Let N → M be a branched cover, with branch locus con-
tained in L. Then F pulls back to a foliation on N. This construction is very
useful for producing examples of foliations on hyperbolic manifolds: if M− L
is hyperbolic, then any branched cover of M with sufficiently large ramification
index along each component of L will be hyperbolic.

Example 4.14. (blowing up leaves) This example is the foliated analogue of Den-
joy’s Construction 2.45 for group actions on S1. The construction can be per-
formed chart by chart. Let F be a codimension 1 foliation, and λ a leaf of F. Fix
a finite cover of M by product charts Ui.

For each product chart U we choose product co-ordinates U ≈ D2 × [0, 1].
We parameterize the plaques of F ∩U as Dt, t ∈ I, and let O ⊂ I denote the
set of values for which Dt ⊂ λ. Then O is countable, and we can choose some
function φU : O → R+ such that ∑t∈OφU(o) = 1. Then define a discontinuous
but monotone map σU : [0, 1]→ [0, 2] by

σU(t) = t + ∑
o∈O,o≤t

φU(o)

and let SU ⊂ [0, 2] be the closure of the image σU([0, 1]). We define a new
foliation of U as a product D2 × [0, 2], and let LU denote the closed union of
plaques D2 × SU .

Now, if Ui, U j are two such product charts, then there are intervals

[s−i , s+
i ], [s−j , s+

j ] ⊂ [0, 1]

and a homeomorphism

ϕi j : [s−i , s+
i ]→ [s−j , s+

j ]

such that the plaques D2 × s in Ui, with s ∈ [s−i , s+
i ] match up with the plaques

D2 ×ϕi j(s) in U j.
With respect to the new product structure on Ui, for each j we define transi-

tion mapsϕ′i j such that

ϕ′i js = σU j
ϕi jσ

−1
Ui

(s)

for each s ∈ SUi
, and extend it linearly on the complementary intervals [0, 2]−

SUi
. Then it is clear that the transition functions satisfy a cocycle condition
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ϕ′kiϕ
′
jkϕ
′
i j = Id

on their domain of definition, when Ui ∩ U j ∩ Uk is nonempty. These transi-

tion functions therefore define a new foliation F′ in which the union of plaques
L = ∪ULU is a closed set of leaves, and for which the complement F′ − L is
homeomorphic to a product λ× (0, 1). Topologically, we have “blown up” the
leaf λ, replacing it by a product, and inserted this product into the foliation
where λ was. Such an I-bundle is sometimes called a product pocket or just a
pocket. Note if F is not necessarily co-orientable, and λ is 1-sided, the blow up
operation replaces λ with a corresponding twisted I-bundle over λ.

One may further perturb the product λ× I, replacing it by a nontrivial foli-
ation corresponding to a conjugacy class of representation

π1(λ)→ Homeo+(I)

Geometrically, this corresponds to choosing gluing mapsϕ′i j with different choices

of extensions over the complementary intervals [0, 2]− SUi
. See Example 4.2 for

more details.

Example 4.15. (tangential surgery) Suppose M is a 3-manifold foliated by F,
and γ is a simple closed curve contained in a leaf λ of F. Let N(γ) be a solid
torus neighborhood of γ in M. The restriction of TF to γ is a trivial I-bundle,
and we may push γ off itself along this bundle to define a natural longitude for
∂N(γ). With respect to this choice of basis, let M1/n denote the result of (1/n)

Dehn surgery on M along γ. Then M1/n admits a natural foliation F′ obtained
from F as follows.

Let A be a closed annulus neighborhood of γ in λ, and let N = M/A. Then
N is an open manifold, and inherits a path metric from M. Let N be the closure
of N in this path metric. The boundary ∂N is a torus, which admits a natural
decomposition into two annuli A+ and A− corresponding to the positive and
negative sides of A in M. There is a natural projection N → M which collapses
A± to A, and this projection implicitly defines a homeomorphism i : A+ →
A−. We let i′ be the composition of i with an n-fold Dehn twist along the core
of A−. Then the result of gluing A+ to A− by i′ is a manifold homeomorphic
to M1/n together with a foliation F′ which agrees with M, F outside a tubular
neighborhood of γ.

Topologically, the pair M1/n, F′ has been obtained from M, F by cutting open
along the leaf λ and regluing after doing an n-fold Dehn twist along γ.

Example 4.16. (cut and shear) Let F be a foliation of M, and let Σ be an em-
bedded union of circles contained in a leaf λ. Let Σ × I be transverse to F

with Σ × 0 = Σ. It might happen that Σ × I is foliated as a product. Then
we can cut open M along Σ × I and reglue the sides by some automorphism
(s, t) → (s, f (t)) for some homeomorphism f : I → I. Typically, the effect of
this is to change the homeomorphism type of F. For instance, Σmight pair with
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some simple [γ] ∈ H1(λ; Z). In this case, after performing this cut and shear
operation, the holonomy around a representative loop γ will be composed with
the germ of f at 0.

Foliated pockets Σ× I as above can be obtained by blowing-up. For exam-
ple, if F is a codimension one foliation of a 3-manifold M, and λ is a non simply-
connected leaf, we can find an essential simple loop Σ ∈ λ. By blowing up λ, we
can find a new foliation F′ with a copy of Σ× I foliated as a product. By cutting
and shearing along such annuli, product pockets can be perturbed to nontrivial
pockets.

Example 4.17. (Thurston) This example is due to Thurston [229]. Let ξ be a 2-
plane field on M. We show how to produce a foliation Fξ of M whose tangent
plane field is homotopic to ξ. By the way, since the construction is completely
local, it does not depend on either M or ξ being orientable.

Let τ be a triangulation which is fine enough so that for each simplex ∆, the
restriction ofξ to ∆ is almost constant, and the edges are transverse toξ. A local
co-orientation of ξ defines a total ordering on the vertices of each simplex, up
to the ambiguity of sign. After subdividing if necessary, we can assume that τ
admits an anti-orientation; i.e. a choice of orientation for each simplex such that
the orientation on neighboring simplices disagrees (an anti-orientation is really
just a two-coloring of the simplices). For each ∆i, the boundary ∂∆i is a sphere.

FIG. 4.5. If ∆ is a totally-oriented simplex, the boundary can be foliated by leaf-
wise-affine foliations which spiral almost from the top to the bottom vertex.
A positive transversal which spirals sufficiently quickly can still spiral (al-
most) from top to bottom.

We produce a codimension one foliation Fi of each ∂∆i with two singular
points, which are the top and bottom vertex. In a small annular neighborhood of
these singular points, there is a foliation by concentric circles. Outside these tiny
annuli, the foliation Fi spirals from the top to the bottom vertex in the clockwise
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direction if ∆i is positive, and the anticlockwise direction if ∆i is negative. Notice
that the sense of the spiralling is well-defined if the total ordering of the vertices
of ∆ is reversed.

If ∆i and ∆ j share a face, the foliations Fi and F j do not necessarily agree
on this face. But because the spiraling on adjacent simplices has opposite sense,
we can tilt both foliations so that they agree, without disturbing the sense of
the spiraling on either face. More explicitly, tilting Fi down in the clockwise
direction as seen from ∆i will seem like tilting it down in the anticlockwise
direction as seen from ∆ j. It follows that we can find such foliations Fi of each
simplex which agree on adjacent faces. Because of the structure of each Fi near
the top and bottom vertex of each simplex, we can extend this to a foliation F

on a neighborhood N(τ2) of the 2-skeleton of τ .
Such a foliation obviously cannot be extended over the 3-cells as it stands,

by the Reeb stability Theorem (i.e. Theorem 4.5). For each ∆i, let Bi denote the
region in ∆i not foliated by F. Note that each Bi is a closed ball, and the foliation
F|∂Bi

spirals from a single local minimum to a single local maximum.
We would like to produce an arcαi which exits the top of Bi, stays transverse

to F, and then enters the bottom of Bi. In order to do this, the arcαi must spiral
around N(∂∆i) in the clockwise direction (if ∆i is positive with respect to the
anti-orientation) faster than the spiralling of F|∂∆i

. Thus, even though the arcαi

moves positively relative to F, it moves negatively overall in the simplex, and
can be joined up to the negative end of Bi.

There is a subtlety, which is that the foliation F is locally trivial in a neigh-
borhood of the vertices at the top and bottom of ∆i, so one cannot use the spi-
ralling of F|∂∆i

alone. There is a trick: let ∆ j be a simplex with the property that
the top vertex of ∆i is one of the two “middle” vertices of ∆ j. The arc αi starts
by spiralling downwards around N(∂∆ j) until it returns to N(∂∆i) in a region
where F|∂∆i

spirals. Then spiral around F|∂∆i
until it gets sufficiently close to the

bottom vertex of ∆i. Then find another simplex ∆k with the property that the
bottom vertex of ∆i is one of the two “middle” vertices of ∆k, and spiral down-
wards around F|∂∆k

until it can enter Bi from below. This is the construction of
αi.

We drill a closed neighborhood N(αi) of each arc αi out of the foliated re-
gion. For each i, the union N(αi) ∪ Bi is a solid torus which is a component of
the complement of F. Moreover, sinceαi is transverse to F, for a suitable choice
of N(αi) we can assume that F is transverse to ∂(N(αi) ∪ Bi), and induces a
1-dimensional foliation of this torus without Reeb annuli. It follows that we
can spin F around this torus as in Example 4.9, and then fill in the gaps with
Reeb components to obtain a new foliation Fξ . Or, we can fill in the gaps as in
Example 4.10 if we want Fξ to be C∞. By construction, TFξ is homotopic to ξ.

Remark The fact that the arc αi is not contained in N(∆i) but must spiral
around neighboring simplices to exit and enter Bi, is a somewhat subtle point
which is overlooked in some expositions of Example 4.17 in the literature.
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Remark There is a technical issue involved in finding a “fine enough” triangu-
lation, relative to a given plane field ξ. This issue is addressed for any dimen-
sion and codimension by Thurston’s method of jiggling.

Example 4.18. (monkey saddles) Let λ be a leaf of F a codimension one foli-
ation with a pair of embedded loops α1,α2 ⊂ λ which intersect in a single
point. We blow up λ to a product λ × I, and then cut and shear this product
along α1 × I to get F′. We can perturbα2 to be transverse to F′ and then take a
branched cover along α2. Near the branch locus, a perturbed pocket looks like
a saddle if the branch index is 2, or a monkey saddle for higher index. The reason
for the strange terminology comes from the idea that a monkey saddle (with
branch index 3) is a surface which a monkey can straddle with both legs and a
tail. See Fig. 4.6 for an example of a monkey saddle of index 3.

FIG. 4.6. Monkey saddles can be stacked like chairs, and used to fill up ideal
polygon bundles over S1.

Example 4.19 A special case of Example 4.18 is to take a product A× I where A
is a (noncompact) annulus, foliate it by a foliation F with contracting holonomy
along the meridian of A, and take an n-fold cover over a curve homotopic to the
meridian, which is transverse to F. This produces a foliation Fn of a product P×
I where P is an ideal 2n-gon, for which the leaves in the interior of P× I are all
planes, which limit on boundary annuli ∂P× I. This foliation is co-oriented. The
induced co-orientations on the boundary components point alternately inward
and outward. By cutting along a 2n-gon and twisting, we get foliations of many
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ideal polygon bundles which can be inserted to fill up gaps in partially foliated
3-manifolds.

Example 4.20. (scalloping troughs) Suppose M is a manifold with boundary,
and F is a foliation of M which is tangent to ∂M. Let λ be a leaf of F ∩ ∂M
and suppose that γ ⊂ λ is an embedded loop with contracting holonomy. Let
N(γ) be a tubular neighborhood ofγ. Then ∂N(γ) has two components ∂±N(γ)
where ∂+N(γ) is contained in λ and ∂−N(γ) is a properly embedded annulus
in the interior of M. If we let M′ = M−N(γ) then F restricts to a foliation of M′

which is tangent to ∂M away from ∂−N(γ) where it is transverse. The foliation
of F|∂−N(γ) is topologically a Reeb foliation of an annulus. We say that M′ is
obtained from M by scalloping a trough.

We may take several foliated manifolds with boundary, scallop troughs along
several embedded loops, and then glue up the exposed annuli in such a way
that the Reeb foliations glue compatibly.

Example 4.21. (creating Reeb annuli) Let M be a manifold with a boundary
torus T ⊂ ∂M. Let F be a foliation which is transverse to ∂M along T. Let λ
be a leaf of F, and let A be an embedded annulus in M transverse to F, which
interpolates between a curve α ⊂ T which is transverse to F|T , and β ⊂ λ

which has contracting holonomy on the side opposite to A. We may drill out
a neighborhood N(A) of A. This has the effect of pushing the curve β out to
∂M and then scalloping a trough as in Example 4.20, thereby producing a Reeb
component of F|∂M.

Example 4.22. (surgering with saddles) A Reeb annulus in the boundary of a
foliated manifold M can be “capped off” with a solid torus, by the inverse of a
scalloping operation. The foliation extends to the solid torus, and has contract-
ing holonomy around the boundary curve corresponding to the core of the Reeb
annulus. Suppose M is a foliated manifold with boundary a torus T = ∂M, such
that F|T is a union of parallel Reeb components T = R1 ∪ · · · ∪ Rn. Let ai denote
the circles of F|T which are the boundaries of the Ri, so that ∂Ri = ai−1 ∪ ai. We
assume that no ai bounds a disk leaf of F.

We further assume F is co-oriented; this implies that the number of Reeb
components is even. Let Si be the solid torus which caps off Ri, so that Si has
boundary ∂Si which is a union of two annuli ∂±Si, and ∂−Si is the annulus
which is glued up to Ri. The result of this attaching is a manifold homeomorphic
to M, and the resulting foliation has concave cusp singularities along the ai. See
Fig. 4.7.

We will show how this manifold can be Dehn filled with a solid torus S,
foliated as an ideal polygon bundle or twisted bundle, by monkey saddles as in
Example 4.19.

We assume that the meridian of S is not isotopic to the core circle of the
Reeb components. With its foliation, the boundary of S consists of annulus
leaves, and annulus regions transverse to the monkey saddle leaves. The an-
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FIG. 4.7. Alternating Reeb annuli on a boundary torus can be capped off by the
inverse of scalloping. The resulting manifold has concave cusp singularities,
and can be Dehn filled (after a suitable blowup) with monkey saddles.

nulus leaves of ∂S are glued up to the ∂+Si; it remains to glue up the cusps of
the monkey saddles.

Each ai is a boundary leaf of some leaf λi of F. We blow up each λi, replacing
it with a product interval λi × I. By hypothesis, no λi is a disk. We insert the
cusps of the monkey saddles into ai × I. This gives a foliation of ∂λi × I which
we would like to extend over the entire product region λi× I. This extension can
be accomplished by finding a representation ρ : π1(λi) → Homeo+(I) which
agrees with the given holonomy along ai.

If λi is noncompact, π1(λi) is free, and ai may be taken to be a generator, so
there is no obstruction to the extension. If λi is non-planar, an extension exists,
by Theorem 2.65. Otherwise, λi is planar and compact, with at least 2 boundary
components. We blow up the boundary leaves of S to make some room near the
∂+Si; this inserts product annulus× I regions between the monkey saddles and
the ∂+Si. Note that the monkey saddles are contained in an open submanifold
which we denote E, which is obtained as a union

E = S ∪i λi × I

and whose boundary ∂E has finitely many components made from unions of
three kinds of pieces:

λi × 0, λi × 1, ∂+S j

Then we insert a section σ : λi → λi × I which is near λi × 1 along one
boundary component of λi, near λi × 0 along the other boundary components,
and extend the surfaceσ(λi) indefinitely by spinning it around ∂E, as in Exam-
ple 4.8. The result splits up E into smaller submanifolds, and replaces a single
compact surface λi with multiple boundary components, by a union of non-
compact surfaces with fewer boundary components. After adding finitely many
such spun leaves, there is no obstruction to extending the monkey saddles in-
definitely, and obtaining a foliation on the Dehn filled manifold M ∪ S.

This example should be compared with a similar construction in [87].
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Remark Example 4.21 and Example 4.22 are very powerful in combination. By
suitable blowups, the construction in Example 4.22 can be extended to situa-
tions when F|∂M contains a mixture of Reeb annuli and foliated I-bundles. If F

is not co-orientable, and the number of Reeb annuli in a boundary component
is odd, then the method only works when the meridian of the filling torus ho-
mologically intersects the cores of the Reeb annuli a nonzero even number of
times.

Example 4.23. (noncompact leaves) Suppose M is compact, and λ a leaf of F

which is noncompact. Then there is some local product chart U which λ inter-
sects infinitely many times. In particular, there is some transversal τ to F from
λ to itself. Let γ be an embedded path in λ joining the endpoints of τ . Let U be
a product chart containing a neighborhood of γ, and suppose we parameterize
U so that τ intersects U in a pair of vertical transversals τ±, one on the positive
side of γ, and one on the negative side (recall our convention that foliations are
co-oriented). Let R be the rectangle γ × I on the negative side of γ foliated by
vertical transversals, so that one component τ− of τ ∩U is γ(0)× I. Then we
can isotop τ− to some new τ ′ by

τ ′(t) = (γ(t), t)

Then (τ − τ−) ∪ τ ′ is an embedded closed loop transverse to λ.
Observe that what is really essential here is not that λ is noncompact, but

that it is non-closed, so that it accumulates somewhere. That is, we have proved
the following lemma:

Lemma 4.24 Let λ be a non-closed leaf of a codimension one foliation F in a manifold
M. Then there is an embedded circle in M transverse to F which intersects λ.

Having obtained an embedded circle transverse to any non-closed leaf, one
may then drill it out, take branched covers, or modify the foliation along it in
some suitable way.

4.4 Volume-preserving flows and dead-ends

We are now ready to specialize our discussion to the class of taut foliations:

Definition 4.25 A codimension one foliation F of M is taut if for every leaf λ of
F there is a circle γλ transverse to F which intersects λ.

Note by Lemma 4.24 that a foliation without closed leaves is taut.

Lemma 4.26 Suppose F is a taut foliation of a compact, connected manifold M. Then
there is a single circle γ transverse to F which intersects every leaf.

Proof Any transverse loop intersects an open union of leaves, so by compact-
ness there are finitely many loops γi where 1 ≤ i ≤ n whose union intersects
every leaf. We choose the collection so that n is minimal.

For each index i, let Mi be the open submanifold of M consisting of leaves
which intersect γi. If Mi ∩ M j is nonempty for some i 6= j then by definition
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there is a leaf λ of F and a path σ ⊂ λ running from γi to γ j. Define γ to be the
composition of arcs

γ = γi ∗σ ∗ γ j ∗σ−1

and observe that without loss of generality, we can take the arcs σ to be em-
bedded. The loop γ is not yet transverse to F, but it is at least monotone. As in
the proof of Lemma 4.24, we may perturb γ in a neighborhood of its tangent
subsegments in such a way that it is transverse to F, and the result is a loop γ′

which is transverse to F and which intersects every leaf in Mi ∪M j. This lets us
reduce the number of transverse loops by 1, which is contrary to the hypothesis
of minimality.

It follows that the Mi are all disjoint. Since the Mi are open and M is con-
nected, we must have n = 1. 2

Intuitively, a foliation is taut if any two points can be joined by an oriented
transversal. Complementary to the idea of a taut foliation is the notion of a dead
end:

Definition 4.27 Let F be a foliation of M. A dead end component is an open sub-
manifold N ⊂ M with N 6= M which is a union of leaves of F, such that there
is no properly immersed lineα : R→ N transverse to F.

Thus a dead end is a subset of a foliated manifold with the property that a
transversal which enters can never again exit.

Lemma 4.28 A foliation F is taut if and only if it contains no dead end components.
If N is a dead end component, then N − N consists of a union of two-sided torus and
Klein bottle leaves of F.

Proof For simplicity, assume first F is co-oriented. Suppose λ is a leaf which
intersects no transverse circle. Then λ does not recur in any foliation chart, and
therefore λ is closed.

Pick a side of λ and call it the positive side. Define Nλ to be the union of all
points p ∈ M for which there is an (oriented) transversal to F from the positive
side of λ to p. Then Nλ is an open union of leaves which by the defining property
of λ does not contain λ. Moreover, it does not contain points q arbitrarily close to
λ on the negative side, or else we could “continue” a transversal from λ to q until
it hits λ, and then homotop it until it gave a closed loop transverse to λ. Hence
Nλ is a closed union of leaves with boundary components λi, where λ1 = λ.
By hypothesis, there is no transverse arc from λ1 to any λi. Moreover, if there
were a transverse arcα from some λi to λ j, then we could find a transverse arc
β from λ toα(t) with t small, then the composition α ∪β would be a transverse
arc from λ1 to λ j, contrary to assumption. Since F is co-oriented, there is no
transverse arc in Nλ from any λi to itself. So Nλ is a dead end component.

Moreover, it is clear that the co-orientation points inwards at every bound-
ary leaf of Nλ, or else we could find a transversal from λ1 to λi. It follows that
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Nλ is a compact 3-manifold with a nowhere vanishing vector field which points
inwards along ∂Nλ, and therefore

χ(∂Nλ) = 0

If some component of ∂Nλ is a sphere or projective plane, the Reeb stability the-
orem implies that some double-cover of M is foliated as a product by spheres,
and therefore F is taut. It follows that all boundary components are tori or Klein
bottles. This completes the proof if F is co-oriented.

If F is not co-oriented and λ is a closed leaf intersecting no transverse circle,
we can still build Nλ as before. If λ is one-sided, there is no transversal α from
λ to itself, or else by moving the endpoint around λ, we could make α close
up to a circle. Similarly, if Nλ contains a one-sided leaf, we can get a transversal
from λ to itself. It follows that for at least one choice of the positive side of λ, the
restriction of F to Nλ is co-oriented, and Nλ is a dead end component bounded
by tori and Klein bottles as before. 2

Suppose F is co-oriented. If F is taut, then there is a map

φ : S1 → M

transverse to F, which intersects every leaf. This map φ extends to an immer-
sion of an open solid torus

φ : D2 × S1 → M

where each fiber point× S1 is transverse to F. Since φ(S1) intersects every leaf
of F, we can homotop φ while keeping it transverse so that any given point
p ∈ M may be chosen to lie in the image of φ. That is, given any p ∈ M there is
some φp : S1 → M which is tranverse to F, and homotopic to φ through maps
of circles which are transverse to F, and which satisfies

p ∈ φp(S1)

In fact, since a circle has codimension 2 in a 3-manifold, after a generic perturba-
tion, we may take the mapsφp to be embeddings. As before, the mapsφp extend
to smooth embeddings of open solid tori which are foliated by transverse cir-
cles.

If M is compact, then we can cover M by finitely many such embedded
open solid tori which we enumerate as φi(D2 × S1). Let θD be a 2-form on the
closed unit disk D which is positive on the interior of D, and which vanishes
identically on ∂D. The projection D2 × S1 → D2 pulls back θD to a closed 2-
form θ on D2 × S1 which is positive on the tangent space to each D2 × point.
Pushing forward these forms by the embeddingsφi, we get finitely many closed
2-forms on M, which we denote by θi. Set

θF = ∑
i

θi
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Since we are assuming F is co-orientable, θF is a smooth, closed 2-form which
is strictly positive on TF at every point.

Since M is 3-dimensional, ker(θF) is 1-dimensional at every point, and there-
fore defines a 1-dimensional distribution ξ transverse to F.

Now, let α be a smooth, nondegenerate 1-form satisfying ker(α) = TF. We
define a 3-form µ by the formula

µ = θF∧α
Sinceα is nondegenerate, and θF is positive on ker(α) pointwise, the 3-form µ

is nondegenerate, and therefore defines a volume form on M.
We let X be the unique section of the line bundle ξ satisfying α(X) = 1.

Since ξ is transverse to TF = ker(α) pointwise, such a smooth section X exists.
Note that iXθF vanishes identically, since X is a section of ker(θF). Then we can
calculate using Cartan’s formula:

LX(µ) = iXdµ + diXµ = diXθF∧α = dθF = 0

That is, the flow generated by X preserves the volume form µ.
Conversely, if Nλ is a dead end component of F, recall that the co-orientation

vector field may be chosen to point inwards along all the boundary compo-
nents. It follows that any transverse flow takes Nλ properly inside itself. But
this implies that such a transverse flow cannot preserve a volume form on M.
Putting this together, we have proved the following theorem:

Theorem 4.29 Let F be a co-orientable foliation of M. Then F is taut if and only if
there is a flow transverse to F which preserves some volume form on M.

4.5 Calibrations

Just as for surfaces, we can introduce the idea of a calibrated foliation.

Definition 4.30 Let M be a Riemannian 3-manifold, and let F be a foliation. A
calibration for F is a closed 2-form ω with ‖ω‖ = 1 which restricts to the area
form on TF.

The proof of Lemma 3.25 applies directly to leaves of a calibrated foliation F,
and one concludes that a leaf λ of F is a minimum for area amongst all smooth
surfaces λ′ which are homologous to λ by a compactly supported homology. As
a corollary, one deduces the following theorem:

Theorem 4.31. (Rummler, Sullivan) Let F be a taut foliation of M. Let gF be any
Riemannian metric on leaves of F which varies smoothly on M, for which the leafwise
area form is θF. Then there is a smooth metric g on M for which leaves of F are least
area surfaces, and such that g|TF = gF.

Proof Let ξ = ker(θF), and let gK be any positive inner product on ξ. Then
take g to be the direct sum

g = gK ⊕ gF

Then the form θF is a calibration for F, and the result follows. 2
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Remark For this theorem to make sense, one must assume a certain amount of
regularity for F. It turns out that C2 regularity is sufficient.

Remark To generalize this theorem to foliations of higher codimension, one
needs the algebraic technique of purification of forms. The idea is to find forms
which can be used to calibrate leaves of F with respect to one dimensional vari-
ations. That is, they restrict to the volume form on leaves, they have kernel
which is as large as possible, and they are “relatively closed in codimension 1”.
For such a formω, one can construct a Riemannian metric such that for every
leaf λ, and for every section ν of the normal bundle over λ,ω calibrates λ locally
in the submanifold obtained by exponentiating ν. See [42] or [225] for details.

Theorem 4.31 illustrates a kind of duality between minimal surfaces and vol-
ume preserving flows. A combinatorial analogue of this duality is the classical
“min. cut — max. flow theorem” which says that in a directed graph, the max-
imum number of pairwise disjoint directed paths joining two vertices is equal
to the minimum number of elements in a set which separates the two vertices
(i.e. which “cuts” every path that joins them).

This duality principle is very robust, and has many manifestations.

Example 4.32. (Combinatorial volume preserving flows) Let F be a taut folia-
tion of M, and let τ be a triangulation of M which is in normal form with respect
to F. That is, for every simplex ∆ of τ there is a product chart U with ∆ ⊂ U
such that U is topologically conjugate to the product foliation of R3 by horizon-
tal planes in such a way that ∆ is conjugate to an affine simplex with vertices at
distinct heights (see § 5.1.2 for a discussion of normal surfaces).

A co-orientation on F determines an orientation on the 1-skeleton τ1 of τ ,
turning it into a directed graph. We suppose that this directed graph is recurrent;
that is, there is a directed path from any vertex to any other vertex. Note that
recurrence certifies the tautness of F. Then by recurrence, for every edge e of τ1

there is a directed loop Se contained in τ1 which runs over e. We let {Se} be a
finite set of such loops, one for each edge e. Then we define a weight w from
the edges to the positive integers, defined by setting w(e) to be equal to the sum
over all edges e′ of the number of times that Se′ runs over e. At each vertex, the
sum of the weights over the incoming edges is equal to the sum of the weights
over the outgoing edges; one can think of this weight as a kind of (nondeter-
ministic) combinatorial volume preserving flow, with mass concentrated along
τ1. For any normal surface S we define the “area” of S to be the sum

area(S) = ∑
e

w(e) · |e ∩ S|

where |e ∩ S| denotes the cardinality of the set e ∩ S. A generic leaf λ of F is a
normal surface. If R ⊂ λ is a compact normal subsurface, then the geometric
intersection number |e ∩ R| is equal to the algebraic intersection number 〈e, R〉
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since all the intersections have the same sign. On the other hand, the algebraic
area

algebraic area(S) = ∑
e

w(e) · 〈e, R〉

is just the homological intersection number of [R] with ∑e[Se], and therefore is
independent of the relative homology class of R. That is, if R′ is another normal
surface with ∂R = ∂R′ and which represents the same element of H2(M, ∂R; Z)
then

area(R′) ≥ algebraic area(R′) = algebraic area(R) = area(R)

and thus leaves of F are combinatorially area minimizing.
This combinatorial estimate on areas is often just as useful as Theorem 4.31

for applications, and in fact can be sometimes used in situations where Theo-
rem 4.31 does not apply (e.g. because of insufficient regularity). See [32] or [90]
for examples.

Example 4.33. (Symplectic filling) Let M be a 3-manifold with a plane field ξ.
An almost complex structure J is a section of the bundle Aut(ξ) satisfying J2 =
−1. The pair (ξ , J) is called a CR structure on M. Letα be a 1-form with ker(α) =
ξ. Then the CR structure is said to be

1. strictly pseudo-convex ifα ∧ dα > 0 everywhere

2. pseudo-convex ifα ∧ dα ≥ 0 everywhere

3. Levi flat ifα ∧ dα = 0 everywhere

In the first and second cases,ξ defines a positive contact structure and a positive
confoliation on M respectively (see [67] for definitions). In the third case, ξ is
tangent to a foliation F.

A Riemannian 2n-manifold W is said to be almost Kähler if it admits a sym-
plectic form ω and an almost-complex structure J which are compatible with
each other and with the metric, in the sense that for any vectors X, Y

〈X, Y〉 =ω(X, JY), 〈JX, JX〉 = 〈X, X〉

Given J, one defines the Nijenhuis tensor N by

N(X, Y) := [JX, JY]− J[JX, Y]− J[X, JY]− [X, Y]

Then a fundamental theorem of Newlander-Nirenberg says that an almost Kähler
structure is Kähler in the usual sense if and only if N vanishes. See [185] for de-
tails.

If there is an embedding i : M→W where W is an almost Kähler manifold,
so that di|ξ is complex linear, then the Levi form measures the mean (real) normal
curvature along complex tangent lines. The three conditions above correspond
to the various cases when the Levi form is non-negative on ξ.

Pseudo-convex and Levi flat CR structures provide boundary conditions
for pseudo-holomorphic curves in almost Kähler manifolds analogous to those
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provided by mean convex boundaries for minimal surfaces in Riemannian man-
ifolds (compare § 3.9).

Note that the sign of the Levi form does not depend on the metric on W, but
just on the symplectic structure. Thus one is interested in finding a symplectic 4-
manifold (W,ω) with ∂W = M such thatω is positive on ξ; such a pair (W,ω)
is called a symplectic filling of (M,ξ).

Suppose that M is a surface bundle over S1 with fiber S and monodromy
φ ∈ MCG(S). If the genus of S is at least 3, then MCG(S) is perfect. One short
proof of this is due to Harer:

By Theorem 1.10 we know that MCG(S) is generated by Dehn twists about
nonseparating curves. Each such twist is conjugate to every other (since there
is only one topological type of essential nonseparating curve, up to homeomor-
phism). It follows that H1(MCG(S); Z) is generated by the image t of a twist
about a nonseparating curve. Then if the genus of S is at least 3, one can find a 4-
holed sphere in S with each boundary component a nonseparating curve. Recall
from Example 1.12 that in the mapping class group of this 4-holed sphere one
has the lantern relation abcd = xyz where a, b, c, d are twists about the boundary
curves, and x, y, z are twists about the three embedded curves which separate
the boundary components into two subsets of 2. The image of this relation in
H1(MCG(S); Z) is t4 = t3, so t = 0 and we are done.

Since MCG(S) is perfect, we can write φ as a product of commutators. Cor-
respondingly, we may find a punctured surface F and an S bundle over F with
boundary M. A surface bundle over a surface carries a natural symplectic struc-
ture, and this construction shows that M as above is symplectically fillable.

Remark Although MCG(S) is perfect for g(S) ≥ 3, it is not uniformly per-
fect. This follows from the fact that the ordinary cohomology H2(MCG(S); R)
is 1-dimensional, whereas the bounded cohomology H2

b (MCG(S); R) is infinite
dimensional, together with an application of Lemma 2.64. See [68] and [17] for
details.

Remark Recently, Eliashberg [66] has shown by an explicit construction that
every taut foliation F except for the product foliation on S2× S1 is symplectically
fillable.

4.6 Novikov’s theorem

In this section we derive some topological consequences from the existence of a
taut foliation. The prototypical example is the classical theorem of Alexander.

Theorem 4.34. (Alexander) Every tame sphere in R3 bounds a ball.

Proof Let F denote the foliation of R3 by horizontal planes. Let S be a tame
sphere in R3. Since S is tame, we can perturb S by an isotopy to be in general
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position. In particular, the height function z : S → R should be a Morse func-
tion. We decompose S into a finite collection of connected pieces

S = S1 ∪ S2 ∪ · · · ∪ Sn

where each Si contains exactly one critical point of z, and its boundary circles
are horizontal. See Fig. 4.8.

FIG. 4.8. The pieces in Alexander’s decomposition of a sphere in R3

If Si contains a maximum or minimum, it is a disk. If it contains a saddle,
it is topologically a pair of pants, but there are two possibilities for the way in
which this pair of pants is embedded in R3 up to level-preserving isotopy. In
either case, for each saddle Si, at least one of the pant cuffs is innermost in its
horizontal plane.

The proof proceeds by induction on the number of saddle pieces. If there
are no saddle pieces, there is a unique maximum and minimum disk, and S is
obviously standard. If there is a saddle piece Si, we look at an innermost cuff
α ⊂ ∂Si and consider the horizontal disk D bounded by α. It is possible that
there are some nontrivial circles S ∩ D. Let β ⊂ S ∩ D be an innermost such
circle, bounding a subdisk D′. We can cut S along β, and glue in two parallel
copies of D′ to obtain two new spheres T1, T2. By construction, the sum of the
number of saddle pieces in the Ti is equal to the number of saddles in S. More-
over, by construction, one of the innermost spheres, say T1, does not contain Si.
It follows by induction that T1 bounds a standard ball, and since it is innermost,
we can contract it to a neighborhood of D′ by an isotopy in R3 − T2. In particu-
lar, S is isotopic to T2. By induction, we can eliminate inner circles of D∩ S until
α is innermost. It follows that the subset of S bounded by an innermost cuff of a
pair of pants is isotopic to a horizontal disk spanned by that cuff. We can cancel
the saddle in the pair of this pants with the center of this horizontal disk, and
thereby reduce the number of saddles by one. By induction, all saddle pieces
can be eliminated, and therefore S is standard. 2

The proof of Alexander’s theorem is a model for deriving information about
surfaces in foliated manifolds. One puts a surface S into a foliated manifold
(M, F) somehow and then argues, using properties of S and of F, that the com-
plexity of F|S is, or can be made, as simple as possible. There are two gen-
eral methods for achieving this: either one can use geometry to find a simple
representative of S directly, or one can start with an arbitrary representative
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in general position, and try to cancel critical points in pairs by means of local
modifications.

The most important theorem of this kind is due to Novikov [189]. However,
the results that Novikov obtained are not optimal, and important improve-
ments were obtained by other people, notably Rosenberg [211]. We state and
prove the theorem in a way which incorporates Rosenberg’s results.

Theorem 4.35. (Novikov, Rosenberg) Let F be a taut foliation of M. Suppose M is
not finitely covered by S1 × S2. Then the following properties are satisfied:

1. M is irreducible

2. leaves are incompressible; i.e. the inclusion λ → M induces a monomorphism
π1(λ)→ π1(M)

3. every loop γ transverse to F is essential in π1(M)

Proof Suppose M is reducible. Choose a Riemannian metric for which F is
minimal. By Theorem 3.32, there is a least area essential embedded sphere in
M which we denote by Σ. The intersection of Σ with F defines a (singular)
foliation on Σ. Locally, the leaves of F are the level sets of a height function.
Since Σ and F are minimal, either Σ is contained in a leaf of F, or else there are
no local extrema of this height function restricted to Σ by the barrier property
of minimal surfaces.

It follows that Σ is everywhere transverse to F, and the restriction of F to Σ
has only saddle and generalized saddle singularities. We can calculate the Euler
characteristic of Σ as a sum of local contributions at each singularity. At a local
maxima or minima, the contribution is 1, and at a local saddle or generalized
saddle, the contribution is −n, where n is the degeneracy of the critical point.
It follows that χ(Σ) is negative, which is a contradiction. We conclude that Σ
is actually contained in a leaf of F, and is therefore equal to a leaf of F. By the
Reeb stability theorem, (M, F) is covered by the product foliation of S2 × S1.
This establishes the first property.

The second and third properties can be treated by a uniform argument. Let
γ be a loop in M which is either transverse to or tangent to F. If γ bounds
a (possibly immersed) disk D, we can put this disk in general position with
respect to F in such a way that F|D is either tangent to, or transverse to ∂D. We
want to argue, similarly to the case of a sphere Σ, that D can be homotoped rel.
boundary until all local maxima/minima of F|D are cancelled, and thereby get
a contradiction to χ(D) = 1.

Now, in a neighborhood of each local minimum or maximum p, the foliation
F|D looks locally like a “bullseye”; that is, the leaves of F|D near the singular
point p are a family of concentric circles St, t ∈ (0, 1) which foliate a neighbor-
hood of p as a product. Moreover, in this sufficiently small neighborhood, each
St bounds a disk Et in a leaf λt. The set of circles in F|D which bound immersed
disks in leaves of F is clearly open; thus we are led to consider what happens
when we pass to a limit point of such an open family of circles. Now, the circles
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St limit to some S1 ⊂ D which is a possibly immersed (in D) circle, contained in
a leaf l of F|D. If l is not singular, then of course S1 = l; otherwise, S1 will con-
sist of a union of segments which run between saddle singularities. The circles
St have bounded length, converging to length(S1).

The key conceptual step in the argument is to show that the family Et also
limits to an immersed disk E1. Since the leaves λt are least area surfaces, we may
estimate the area of the disks Et from the length of their perimeters length(St).
For, in a compact manifold M, for any constant T, the set of contractible loops
with length ≤ T is compact, and therefore there is a uniform upper bound on
the area of a least area immersed disk that any such loop bounds. It follows
that there is a uniform upper bound on area(Et). On the other hand, also by
compactness, there are two-sided bounds on the curvature of leaves of F, and
a uniform lower bound on the injectivity radius. It follows that the Et contain
a convergent subsequence which converges to an immersed disk E1 ⊂ λ1 with
∂E1 = S1. Since leaves vary continuously on compact subsets, a posteriori one
sees that the Et converge to E1.

If l is not singular, then ∂E1 = l. Since E1 is a disk, the holonomy near l is
trivial, and therefore we can continue the family of circles to some open neigh-
borhood past l. In this way, we see that we can continue the family of circles
which bound immersed disks in leaves of F either until we reach a singular leaf
of F|D, or until we get to ∂D. In particular, this implies that ∂D must necessar-
ily be contained in a leaf of F, and bounds a subdisk in that leaf. Observe that
this would complete the proof of the theorem. So it remains to understand what
happens when l is singular.

If l is singular, we show how to perform surgery to replace D with another
disk D′ which agrees with D near ∂D, and which has at least one fewer critical
points than D. By general position, we can assume l contains exactly one saddle
singularity q. The circles St with t < 1 are locally on the same side of the leaf
through q, and therefore the St can only approach q from at most two (opposite)
corners; i.e. the picture locally must be as in Fig. 4.9.

FIG. 4.9. Two possibilities for S1 when l is singular

In the first case, S1 is immersed in D and meets itself at q. But in this case S1

decomposes into a union of two nonsingular arcs S1 = α∪β both of which have
both endpoints at q. Without loss of generality we can assume β is “innermost”
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in D, and bounds a subdisk D2 of D. Such a region must contain a maximum
or minimum singularity p′ somewhere in its interior, since χ(D2) is positive.
We can repeat the process with p′ in place of p. Since there are only finitely
many critical points in D, this process must terminate at some finite step. It
follows that without loss of generality, we can assume that S1 is embedded in D
(though not necessarily in M, of course). That is, the St approach the saddle q
from exactly one corner.

The procedure to modify D is conceptually simple: we cut out the subdisk of
D bounded by S1, and replace it by E1. This produces a new disk D1. Then we
homotop D1 in such a way that for each point p ∈ D1, the track of p under the
homotopy stays in a leaf of F, and in the process of this homotopy, shrink E1 to a
point in λ1. This will be the disk D′. One sees that the foliation F|D′ is obtained
from that of F|D by quotienting the subdisk bounded by S1 to a point. Thus
topologically, D′ has only maxima or minima and saddle tangencies with F,
and has one fewer local minimum or maximum and one fewer saddle tangency
than D. See Fig. 4.10.

FIG. 4.10. Cut out a subdisk of D and replace it by E1 and then homotop to
cancel a local maximum with a saddle contained in S1

We now describe this surgery procedure in detail. Let F ⊂ λ1 be a compact
subsurface containing the image of E1, and let U ⊂ M be a neighborhood of F
foliated as a product F× [−1, 1] by F. Let D2 ⊂ D1 be D1∩U. Then D2 is a collar
neighborhood of E1, and we can think of D2 − E1 as an immersed annulus. Let

i : S1 × [0, 1]→ U

denote this immersion, where i(S1× 0) = ∂E1. With respect to the local product
structure on U, we write i as

i : S1 × [0, 1]→ F× [−1, 1]

and denote the components of this map as i1 : A → F and i2 : A → [−1, 1].
Since E1 is an immersed disk in F × 0, it follows that there is a homotopy G :
S1 × [0, 1] → F such that G(θ, 0) = i1(θ, 0) and G(·, 1) : S1 → F is a constant
map. By the homotopy extension property, we may extend G to

G : S1 × [0, 1]× [0, 1]→ F

so that
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G(θ, 0, t) = i1(θ, t)

and
G(θ, s, 1) = i1(θ, 1)

(i.e. G is the constant homotopy on the upper boundary S1 × 1). Then

(G, i2) : S1 × [0, 1]× [0, 1]→ F× [0, 1]

can be extended by the constant homotopy outside D2 to give the desired ho-
motopy from D1 to D′.

After finitely many surgeries of this kind, we can remove all saddle tangen-
cies of F|D, and be left with a disk D bounding γ for which F|D is a foliation by
concentric circles, which all bound immersed disks in their respective leaves. In
particular, ∂D is contained in a leaf of F, and bounds an immersed disk in this
leaf. This proves the theorem. 2

Remark If γ is transverse to F and bounds an embedded disk D with D ∩ γ =
∂D, then one can take a branched cover of M over γ to produce a manifold
N which is reducible (unless M is S3) and which also admits a taut foliation.
Hence the existence of such γ are ruled out by the first part of the proof.

Conversely, if M is tautly foliated and Σ is any immersed sphere, we can
homotop Σ to be in general position with respect to F, and then inductively
cancel singularities by further homotopy until Σ is homotoped into a leaf. Thus
the second part of the proof shows that π2(M) is trivial without invoking the
sphere theorem.

Corollary 4.36 Let M admit a taut foliation F, and suppose M is not covered by S2 ×
S1. Then π1(M) is infinite, and every leaf of F̃ is a properly embedded plane in M̃.

Proof Since F is taut, there is a circle γ transverse to F and intersecting every
leaf. Then γ and all its powers are nontrivial in π1(M), and therefore π1(M) is
infinite.

Every leaf of F̃ is simply-connected. If some leaf were a sphere, some leaf of
F would also be a sphere, and therefore the Reeb stability theorem would show
that M is (finitely covered by) S2 × S1.

If some leaf λ of F̃ were not properly embedded, it would intersect some

product chart in M̃ in at least two plaques. It follows that we could find a closed

loop in M̃ transverse to F̃, intersecting λ. But this loop would necessarily be
homotopically trivial, thereby violating Theorem 4.35. 2

Historical Remark Novikov proved his theorem in [189] not merely for taut
foliations, but in fact for the broader class of Reebless foliations. If F is a Reebless
foliation, we cannot find a metric on M for which all leaves of F are minimal
unless F is actually taut. On the other hand, Novikov did not quite show that
a manifold M with a taut foliation is irreducible; rather he showed that either
M = S2 × S1, or π2(M) is trivial.
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It was Rosenberg [211] who showed more generally that any 3-manifold
foliated by planes is irreducible, by generalizing Alexander’s proof of the irre-
ducibility of R3. Rosenberg’s argument showed that if M is a 3-manifold which
is not finitely covered by S2× S1 then if M admits a taut foliation, the universal
cover of M is irreducible, and therefore M is too.

Sullivan ( [223], [225]) pioneered the use of minimal surfaces to streamline
some arguments in classical foliation theory, including Novikov’s theorem. A
technical issue which we have skirted in the proof given above, and which was
not really given a satisfactory treatment until the paper of Hass [122], is that one
can assume that the singularities of a minimal surface with respect to a minimal
foliation are isolated. Such an isolated singularity might be degenerate (i.e. not
Morse) but the index will always be negative, by the maximum principle.

In our argument above, we used minimal surfaces to deduce that whenever
we can find a family of circles which converge uniformly to a limit, then if the
circles bound disks leafwise, the disks also converge uniformly to a limit. If one
does not assume that F is minimal, one is left to analyze the situation in which
there is a 1-parameter family of immersed circles St in leaves λt such that St

bounds a disk Et ⊂ λt for t ∈ [0, 1), but S1 is homotopically essential in λ1.
Such a loop S1 in a leaf of a codimension one foliation F is called a vanishing
cycle.

In general, if a codimension one foliation F in a 3-manifold M contains a
vanishing cycle, a very delicate argument shows that it contains an embedded
vanishing cycle. Novikov showed how the existence of an embedded vanishing
cycle implies that F contains a Reeb component.

Precisely, Novikov showed:

Theorem 4.37. (Novikov) Let F be a codimension one foliation of a 3-manifold M.
Suppose F does not contain a Reeb component. Then π2(M) is trivial, every leaf of F

is incompressible, and every transverse loop is essential in π1(M).

By Lemma 4.28, if F is Reebless and M is atoroidal, then F is actually taut,
and a posteriori one knows that we can find a metric on M for which leaves of F

are minimal.
An excellent exposition is contained in [42].

Remark The proof of Theorem 4.35 shows that if F is a codimension one foli-
ation (in any dimension) and some transverse loop γ is homotopically inessen-
tial, then there is a vanishing cycle with trivial holonomy on one side and non-
trivial holonomy on the other. In particular, if F is real analytic, no such loop
can exist. This observation is due to Haefliger, and it implies that a 3-manifold
admitting a real analytic codimension one foliation has infinite fundamental
group. For example, S3 admits no real analytic codimension 1 foliation at all!

4.7 Palmeira’s theorem

Let G denote the foliation of R2 by horizontal lines. Let D ⊂ R2 be an open disk.
Then D is homeomorphic to R2, and the restriction G|D pulls back to a foliation
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of R2 by lines.
Conversely, suppose F is a foliation of R2 by lines. If some line l is not prop-

erly embedded, then it recurs in some region, and we can find a pair of points
p, q ∈ l which can be joined by a very short transversal τ . By smoothing the
ends of τ , we can find a smooth circle γ consisting of the segment of l from p
to q together with τ . This embedded circle bounds an embedded disk D. Since
χ(D) = 1, F|D must contain a singularity, contrary to hypothesis. This contra-
diction implies that the lines of F are properly embedded, and therefore separat-
ing.

If D ⊂ R2 is generic, the singularities of F|∂D are isolated. Since leaves are
properly embedded, we can find finitely many leaves whose restrictions to D
separate it into pieces on which the restriction of F is one of a finite number of
combinatorial types. The dual graph of this decomposition is a tree, so there are
no obstructions to constructing a topological conjugacy between F|D and G|E
for some disk E ⊂ R2. By taking an exhaustion of F by disks Di, and a corre-
sponding nested family Ei ⊂ R2, one shows that F is topologically conjugate to
a foliation of the form G|E∞

for some open disk E∞ ⊂ R2.

We now return to taut foliations. Let F be a taut foliation of M, and let F̃

be the induced foliation on the universal cover M̃. The following theorem of
Palmeira [194] shows that one can apply dimensional reduction to understand

the topology of F̃:

Theorem 4.38. (Palmeira [194]) Let F be a taut foliation of M, and suppose M is not

finitely covered by S2 × S1. Then M̃ is homeomorphic to R3, and F̃ is conjugate to a
product foliation (R2 , F)×R where F is a foliation of R2 by lines.

In particular, we may reason about the topology of (M̃, F̃) by appealing to
two-dimensional pictures. Notice that Palmeira’s theorem implies that every

leaf λ of F̃ divides M̃ into two open half-spaces which are both homeomorphic
to open balls. By contrast, an arbitrary properly embedded smooth R2 in R3

may be “wild at infinity”:

Example 4.39 Let A be a Fox-Artin arc in S3, which is tame except at one end-
point p. Let R3 = S3 − P and let A′ ⊂ R3 be the restriction of A to R3. Then
A′ is a tame, properly embedded, half-open arc in R3. The boundary of a reg-
ular neighborhood ∂N(A′) is a properly embedded plane in R3, However, the
complement R3 − N(A′) is not simply-connected at infinity.

Remark Palmeira’s theorem actually holds for arbitrary dimension: if Mn is
simply-connected, and admits a codimension one foliation F whose leaves are
all homeomorphic to Rn−1, then the pair M, F is homeomorphic to a product
(R2, F)×Rn−2 where F is a foliation of R2 by lines.

As remarked earlier, the leaf space L of F̃ is a simply-connected 1-manifold; of
course, the caveat is that this manifold may not be Hausdorff. A co-orientation on
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F determines a co-orientation on F̃, and therefore an orientation on embedded
intervals contained in L.

In [194], Palmeira also showed that for a 3-manifold M̃ foliated by planes,
the foliation is determined up to conjugacy by the topology of the leaf space.
An analogous theorem holds in any dimension ≥ 3, but is false in dimension 2.

FIG. 4.11. Two non-isomorphic foliations of R2 with the same leaf space. After
taking the product with R, these foliations become isomorphic.

Example 4.40 A rectangle foliated by two alternating Reeb components has the
same leaf space as a rectangle foliated by two Reeb components with the same
orientation, but the foliations are not isomorphic. However, after taking a prod-
uct with R, these foliations become isomorphic. See Fig. 4.11

We define a partial order < on L by λ < µ if and only if there is a posi-

tively oriented transversal from λ to µ in F̃ (equivalently, if there is an oriented
embedded interval in L from λ to µ).

If we have neither µ < λ nor µ < λ, we say µ and λ are incomparable. Taut
foliations are distinguished by the branching behavior of L.

Definition 4.41 Let F be a taut foliation of M, and let L be the leaf space of F̃.
Then

1. F is R-covered if L = R

2. F has one-sided branching in the negative direction (resp. positive direction)
if it is not R-covered, and if for any two leaves µ1 ,µ2 ∈ L there is λ ∈ L
with µi < λ (resp. µi > λ)

3. F has two-sided branching if it is not R-covered, and does not have one-
sided branching.

Two-sided branching is the generic case for taut foliations of 3-manifolds,
but there are many important examples of R-covered foliations and foliations
with one-sided branching.
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Example 4.42 Let M fiber over S1, and let F denote the foliation by fibers. Then
F is R-covered.

Example 4.43 Let M fiber over S1 with fiber F, and let F denote the foliation by
fibers. Let γ, δ be two knots which are transverse to F, such that γ winds once
around S1 and δ winds twice around. Let M′ be obtained from M by drilling
out tubular neighborhoods of δ and γ. Then ∂M′ is the disjoint union of two
tori, and the restriction of F to each boundary component is a product foliation
by circles. Let N be obtained by gluing the two boundary components of M′

together in such a way that the foliations match up, giving a foliation G of N.
Let T ⊂ N be the torus obtained from ∂M′ after the identification. Then π1(N)
is an HNN extension with vertex group isomorphic to π1(M′) and edge group
isomorphic to π1(T). The universal cover of N is homeomorphic to R3, and the

foliation G̃ is conjugate to a product foliation. To see this, observe that Ñ is ob-

tained from copies of M̃′, one for each coset of π1(M′) in π1(N). The foliation

G̃|
M̃′ is a product foliation, since G restricted to M′ is a foliation by thrice punc-

tured copies of F; i.e. M′ fibers over S1, and the foliation by fibers is G|M′ . These

copies of M̃′ are glued together along copies of T̃ foliated as a product; since the
graph of gluings is a tree, a trivialization on each piece can be extended globally

over Ñ.
Now, let α be a knot transverse to G which intersects T transversely in one

point, and let N′ be obtained from N by taking a branched cover over α. If α̃

denotes the inverse image of α in Ñ, then α̃ consists of a union of properly
embedded lines. The foliation G admits a projectively invariant transverse mea-
sure, which agrees with a transverse measure pulled back from S1 on M′, but
which is multiplied by a factor of 2 whenever one takes holonomy around a
loop which is homologically dual to T. It follows that for a suitable choice ofα,

one end of each component of α̃ is properly embedded in the leaf space L of G̃,
but the other end is not. In particular, the foliation G′ of N′ obtained by pulling
back G under the branched cover has one-sided branching.

If µ,ν are incomparable but project to the same point in the Hausdorffifica-
tion of L, we say they are nonseparated. For instance, there might be a sequence
λt of leaves with t ∈ [0, 1) such that both µ and ν are limits of λt as t → 1. In
this case we say µ,ν are adjacent nonseparated leaves. Note that leaves may be
nonseparated but not adjacent.

Example 4.44 A foliation by alternating Reeb components contains leaves which
are nonseparated but not adjacent. We fix notation as follows. Let F be the foli-
ation of R2 by connected components of the subsets lc defined by the equation

(y− c) sin(x) = 1

and their closures. For each i, the vertical line

λi = {(x, y) | x = π i}
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is a leaf of F. Moreover, if |i− j| = 1, then λi , λ j are nonseparated and adjacent,
and if |i− j| 6= 1 they are nonseparated and not adjacent. This foliation is dou-
bly periodic, and descends to a foliation of T2. By taking the product with S1,
we get a foliation of T3. See Fig. 4.12.

FIG. 4.12. A foliation by alternating Reeb components contains leaves which
are nonseparated but not adjacent.

It is important for some applications to deal directly with L and not with its
Hausdorffification. For instance, there is no analogue of the following lemma
for a (topological) R-tree:

Lemma 4.45 Let L be the leaf space of F̃ where F is taut. Let λ ∈ L be arbitrary, and
let I, J be two open embedded intervals in L which contain λ. Then I ∩ J is an open
interval in L.

Proof The projection from M̃ to L is continuous, so the preimages of I and J

are open submanifolds M̃I , M̃J of M̃ which are connected unions of leaves of

F̃. Their intersection is therefore an open submanifold N which is a union of

leaves. Since M̃ is simply-connected, N is connected. All the leaves making up

M̃I are comparable, and similarly for M̃J , so the same is true of N. So the image
of N under the projection to L is an open interval. 2

Example 4.46. (Hyperbolic 3-manifolds with no taut foliations) One can study
group actions on simply-connected non-Hausdorff 1-manifolds, using robust
notions from arboreal topology such as separation, projection, axes, etc. Given a
group G, one can investigate the question of whether there is a simply-connected
1-manifold L and a homomorphism G → Homeo(L) without a global fixed
point; we call such actions nontrivial. Note that one serious complication in
such an investigation is the sheer profusion of the set of simply-connected 1-
manifolds up to homeomorphism, and the lack of a useful parameterization or
characterization of this set.
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If M is a 3-manifold containing a taut foliation F, the leaf space L is simply-
connected, and π1(M) acts on L by homeomorphisms and without fixed points.
In a tour de force, Roberts, Shareshian and Stein give examples in [209] of some
hyperbolic 3-manifold groups which admit no nontrivial actions on simply-
connected 1-manifolds. These were the first known examples of hyperbolic 3-
manifolds which do not admit taut foliations.

The examples are a subset of the manifolds M(p, q, m) described in Exam-
ple 2.103 which satisfy a further parity condition: namely that m and p are odd.

Call a compact simply-connected 1-manifold small if it has only finitely many
non-Hausdorff points, and if its Hausdorffification is a finite simplicial tree.
Such a 1-manifold can be characterized up to homeomorphism by only a finite
amount of combinatorial data. If L is the leaf space of a taut foliation, and we
are given a pair of points p, q ∈ L, the axis of p and q is the intersection of the
family of all arcs in L joining p to q. Given a finite subset Q ⊂ L, the union of
the axes of the 2-element subsets of Q is a small submanifold of L which we call
the span of Q in L. Given a group G, one can study finite subsets H of G and
consider the possible small 1-manifolds which arise as the spans of the orbits
Hp for some point p in a leaf space L. By considering the combinatorial possi-
bilities carefully, one may sometimes be able to rule out the existence of such
an L admitting a nontrivial G action. Such arguments typically involve a huge
amount of combinatorial complexity, and it would seem natural to try to find a
suitable schema to carry them out automatically by computer.

4.8 Branching and distortion

There is a very important relationship between the topology of L and the geom-

etry of leaves of F̃, which we now discuss.

As we have shown, for F taut, leaves of F̃ are properly embedded in M̃;

that is, for each leaf λ of F̃, the intersection of λ with any compact K ⊂ M̃ is
compact. We may reinterpret this properness in terms of a comparison between

the intrinsic metric dλ in λ, and the extrinsic metric d
M̃
|λ in M̃. Namely, the

properness of the embedding of λ in M̃ is equivalent to the existence of a proper
function

f : λ×R+ → R+

which induces an increasing homeomorphism f (p, ·) : R+ → R+ for each p ∈
λ, such that for any two points p, q ∈ λ, we have an estimate

dλ(p, q) ≤ f (p, d
M̃

(p, q))

Informally, for any radius r, the ball BM̃
r (p) ⊂ M̃ intersects λ in a set which

is contained in the ball Bλ
f (r)(p) ⊂ λ. Here for each X, BX

r (p) denotes the ball of

radius r about p in X, with respect to the geodesic path metric on X.
One might ask to what extent the function f depends on the variable p. If it

does not, we say λ is uniformly properly embedded. More generally,
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Definition 4.47 The foliation F̃ is uniformly properly embedded if there is a proper

function f : R+ → R+ such that for each leaf λ of F̃, and any two points p, q ∈ λ,
we have an estimate

dλ(p, q) ≤ f (d
M̃

(p, q))

The following simple lemma characterizes the branching of L in terms of
uniform properness.

Lemma 4.48 Let F be a taut foliation of M. Then F̃ is uniformly properly embedded

in M̃ if and only if L is Hausdorff (and therefore homeomorphic to R).

Proof Suppose F̃ is not uniformly properly embedded. We assume that L is
Hausdorff, and we obtain a contradiction. If F is not uniformly properly em-

bedded, there exists a sequence pi, qi ∈ λi of pairs of points on leaves λi of F̃

such that d
M̃

(pi, qi) ≤ t but d
λ̃i

(pi, qi) → ∞. By compactness of M, we can find

elementsαi ∈ π1(M) and a subsequence such that

αi(pi)→ p

Since d
M̃

(pi, qi) ≤ t, the same is true of d
M̃

(αi(pi),αi(qi)), and therefore after

passing to another subsequence, we may assumeαi(qi)→ q such that

d
M̃

(p, q) ≤ t

By hypothesis, L is Hausdorff, and therefore there is a single leaf λ of F̃ such that

p, q ∈ λ. Join p to q by an arc γ. Since F̃ is topologically a product foliation by
planes, there is a tubular neighborhood N(γ) of γ which is foliated as a product

by disks which are the intersections of leaves of F̃ with N(γ). Sinceαi(λi) → λ

on compact subsets of λ, for large i we can approximate γ by an arc γi ⊂ λi of
length comparable to γ. It follows that

lim
i→∞

dλi
(pi, qi) ≤ lim

i→∞

length(γi) = length(γ)

thereby contradicting the definition of pi, qi. This contradiction shows that if L

is Hausdorff, then F̃ is uniformly properly embedded.

Conversely, suppose L is not Hausdorff, and λi → λ, λ′. That is, there are

leaves λ, λ′ of F̃, and a sequence λi such that λi converges to both λ and λ′ on
compact subsets (of λ, λ′ respectively). Choose p ∈ λ, q ∈ λ′, and pi, qi ∈ λi with

pi → p, qi → q

If each pi could be joined to qi by an arc γi ⊂ λi of length bounded by a con-
stant t, then some subsequence of the γi would converge to a rectifiable arc γ

of length bounded by t, joining p to q and contained in a single leaf of F̃. This
contradiction proves the claim. 2



174 TAUT FOLIATIONS

Remark For each leaf λ of F̃, let M̃λ denote the subspace of M̃ contained on

the positive side of λ, and M̃λ the subspace of M̃ contained on the negative
side of λ. Then a similar argument to the above shows that if F has one-sided

branching, so that F̃ branches only in the negative direction, say, then leaves λ

of F̃ are uniformly properly embedded in the subspaces M̃λ with their induced
path metrics.

The following corollary lets us do coarse geometry with leaves of R-covered
foliations.

Lemma 4.49 Suppose F is an R-covered foliation of M. Then for any t > 0 there are

constants K,ǫ such that for any leaf λ of F̃, λ is (K,ǫ) quasi-isometrically embedded in

its t neighborhood Nt(λ) ⊂ M̃ with respect to its induced path metric.

Proof Let p, q ∈ λ and suppose γ is a rectifiable path in Nt(λ) joining p to q.
Parameterize γ by arclength, so that p = γ(0) and q = γ(length(γ)). For all
integers i ≤ r let pi = γ(i). Then for all i, there is p′i ∈ λ with d

M̃
(pi, p′i) ≤ t. It

follows that for all i,
d

M̃
(p′i, p′i+1) ≤ 2t + 1

Since F is R-covered, F̃ is uniformly properly embedded by lemma 4.48 with
respect to some proper function f . Then for all i,

dλ(p′i, p′i+1) ≤ f (2t + 1)

and therefore
dλ(p, q) ≤ (length(γ) + 1) f (2t + 1)

2

Remark For any taut foliation F, the fact that any transverse loop to F is ho-

motopically nontrivial means that every leaf of F̃ intersects a foliation chart in

M̃ in exactly one plaque. Since M is compact, it can be covered by finitely many
foliation charts, each of which has bounded geometry. It follows that for some

positive t, there are constants K,ǫ such that every leaf λ of F̃ is (K,ǫ) quasi-
isometrically embedded in Nt(λ). The point of Lemma 4.49 is that such K,ǫ can
be found for any t.

We have established some basic properties of taut foliations. In the remain-
der of the chapter, we will survey some important constructions and special
classes of taut foliations, and fit them into our general framework.

4.9 Anosov flows

Example 4.50 Let G be a Lie group, and let H be a subgroup which is also a
submanifold. The manifold G is foliated by cosets gH of H, and has a transverse
structure modeled on the action of G on G/H.
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Suppose Γ is a discrete subgroup of G, acting on the left. Then the foliation
of G by cosets gH descends to a foliation of the quotient Γ\G. These also have
a transverse structure modeled on the action of G on G/H, since this foliation
locally resembles the foliation on G.

For example, let G = Isom(Hn) and H the stabilizer of some point in the
sphere at infinity Sn−1. Then G/H ≈ Sn−1 and the action of G on this sphere is
by Möbius transformations. If Γ is a discrete subgroup of Isom(Hn), the quotient
space Γ\G is isomorphic to the bundle of frames of some hyperbolic n-orbifold.

We discuss the 2-dimensional case in some more detail. PSL(2, R) is double-
covered by SL(2, R). The group PSL(2, R) can also be identified with the group
of isometries of hyperbolic 2-space H2. It acts transitively on the unit tangent
bundle UTH2 with trivial point stabilizers, and therefore we may (non canoni-
cally) identify these two spaces.

The Lie algebra sl(2, R) is spanned by vectors X, Y, H represented by trace-
free matrices

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)

so that

[H, X] = 2X, [H, Y] = −2Y, [X, Y] = H

In particular, the subspace spanned by X, H is a Lie subalgebra, and the left-
invariant vector fields of the same name are tangent to an integrable 2-plane
field tangent to a foliation Fws. Similarly for the subspace spanned by Y, H,
which determines a foliation Fus.

The subgroup etH acts by translation along a geodesic axis γ, whereas the
groups etX and etY are the groups of parabolic stabilizers of the two endpoints of
γ. If we identify H2 with the upper half space — i.e. the set of complex numbers
with positive imaginary part — and the circle at infinity with R ∪∞, then γ is
the “vertical” geodesic from 0 to ∞.

In particular, the subgroup B+ of PSL(2, R) corresponding to the leaf of Fws

passing through the identity is exactly the affine group of R, the stabilizer of ∞,
and the leaf of Fwu passing through the identity corresponds to the conjugate
affine group B− stabilizing the point 0.

Note that B+ is the subgroup of upper-triangular, and B− the subgroup of
lower-triangular matrices of PSL(2, R).

Since B+ is exactly the stabilizer of a single point in the circle at infinity S1
∞

of H2, the coset space PSL(2, R)/B+ can be identified with S1
∞

. In particular, the
foliation Fws has leaf space homeomorphic to a circle, and each leaf λp of Fws

corresponds to a point p ∈ S1
∞

. The correspondence is as follows: λp consists

of the unit vectors in H2 which are tangent to geodesics which are asymptotic
to p in the forward direction, and similarly, the leaf of Fwu corresponding to
a point p ∈ S1

∞
consists of unit vectors in H2 tangent to geodesics which are

asymptotic to p in the backward direction. In particular, the two foliations differ
by right multiplication by the matrix
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Fwu = FwsR, R =

(
0 1
−1 0

)

The flow on PSL(2, R) given by right-multiplication by etH is called the geodesic
flow. This is an example of what is called an Anosov flow, with (weak) stable and
unstable foliations Fws, Fwu.

If Γ is a discrete subgroup of PSL(2, R), then M = Γ\PSL(2, R) can be iden-
tified with the unit tangent bundle of a hyperbolic surface or orbifold Σ. The
foliations Fws, Fwu descend to foliations on M, the (weak) stable and unstable
foliations of the geodesic flow on Σ.

In higher dimensions, there is a submersion from the bundle of orthonormal
frames of an orbifold to its unit tangent bundle given by forgetting all but the
first vector of the frame. The pullback of the stable foliation of the geodesic flow
is the quotient of the foliation of G by gH to Γ\G.

This example motivates the definition of an Anosov flow.

Definition 4.51 An Anosov flow φt on a 3-manifold M, with orbit space the 1-
dimensional foliation X, is a flow which preserves a continuous splitting of the
tangent bundle

TM = Es ⊕ Eu ⊕ TX

which is invariant under the time t flowφt, and such thatφt uniformly expands
Eu and contracts Es. That is, there are constants µ0 ≥ 1,µ1 > 0 so that

‖dφt(v)‖ ≤ µ0e−µ1t‖v‖ for any v ∈ Es, t ≥ 0

and
‖dφ−t(v)‖ ≤ µ0e−µ1t‖v‖ for any v ∈ Eu, t ≥ 0

The 1-dimensional foliations obtained by integrating Es and Eu are called the
strong stable and strong unstable foliations, and we denote them Xss, Xsu respec-
tively.

Note that there always exists an adapted metric with respect to which µ0

can be taken to be equal to 1. The analytic quality of this metric depends on the
regularity of the flow and the regularity of the decomposition.

Example 4.52 Let φ : T → T be an Anosov diffeomorphism of a torus. Then
there is an Anosov (suspension) flow on the associated mapping torus Mφ. If
we think of Mφ as Γ\G where G is Sol, then the flow is induced by right multi-
plication by an R subgroup of Sol which splits the short exact sequence

0→ R2 → Sol→ R→ 0

Note that the splitting of M is only assumed to be continuous. There are many
important examples where the flow X is as smooth as desired, yet the splitting is
not C1. In the event that the splitting is C1, integrability of TX⊕ Es and TX⊕ Eu

follows just from invariance. However, for X Anosov, the bundles TX⊕ Es and
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TX⊕ Eu are nevertheless integrable for geometric reasons. For each flowline γ,
the integral leaf of TX ⊕ Es containing γ consists of all orbits which are even-
tually always contained in any neighborhood of γ under the forward flow, and
the integral leaf of TX ⊕ Eu containing γ consists of all orbits which are even-
tually always contained in any neighborhood of γ under the backward flow.
See [132] for details.

It follows that the bundles TX⊕Es and TX⊕Eu are tangent to 2-dimensional
foliations called the weak stable and weak unstable foliations of the flow, denoted
Fws, Fwu respectively. Note that the leaves of Fws and Fwu are as smooth as X; it
is the transverse structure which is typically no better than Hölder continuous.

Example 4.53 Let M be a 3-manifold, and let F be the weak stable foliation of
an Anosov flow X. Let γ be a periodic orbit. Then we can cut out a tubular
neighborhood N(γ) of γ so that the restriction of F to ∂N(γ) contains a pair of
Reeb annuli. We can extend this foliation over all but one of the Dehn fillings of
∂N(γ), by the method of Example 4.22.

Anosov flows satisfy many important topological properties; we enumerate
some of them here.

Example 4.54. (Shadowing) Let M be a closed manifold, and let X be a (unit
speed) Anosov flow. Then for sufficiently small ǫ > 0 there is δ(ǫ) > 0 with
δ(ǫ)→ 0 as ǫ → 0 such that if γ : I → M satisfies ‖γ′(t)‖ = 1 and 〈γ′(t), X〉 ≥
1 − ǫ then γ is δ close in the C1 metric to a flowline of X. Similarly, a map
γ : S1 → M satisfying similar hypotheses is δ close to a periodic flowline.

As a corollary, if X is recurrent, periodic orbits are dense. This holds for
instance when X is volume preserving. In general, X preserves some probability
measure, and periodic orbits will be dense in the support of the measure; in
particular, an Anosov flow on a closed manifold always contains some periodic
orbit.

Anosov flows also satisfy a stability property, closely related to the shad-
owing property. Let f be any diffeomorphism which is C1 close to the time 1
map of the Anosov flow. Then f has an invariant foliation homeomorphic to
the orbit foliation for the original flow. Moreover, if h is the homeomorphism
between the two foliations, the distance (in the C0 norm) between h and the
identity goes to 0 as the C1 distance between f and the time 1 map of the flow
goes to 0. See [132].

The theory of Anosov flows is very sensitive to the analytic quality of the
splitting. Ghys showed in [103] that every volume preserving Anosov flow with
a C2 splitting is conjugate to either Example 4.50 or Example 4.52, or a finite
cover or quotient of these. In particular, the 3-manifold underlying the flow
must be either a torus bundle over S1 or Seifert fibered. By contrast, Anosov
flows with less regularity can be found on many hyperbolic 3-manifolds. Some-
what amazingly, it is often possible to perform Dehn surgery on periodic orbits
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of an Anosov flow to obtain a new flow on the surgered manifold! This pro-
duces many subtle and interesting examples; see [110] and [74] for more details,
and other important results.

Remark One can define an Anosov flow φt on a manifold of any dimension,
meaning just thatφt preserves a splitting TM = Es ⊕ Eu ⊕ TX where Eu is uni-
formly expanded, and Es is uniformly contracted by the flow. The main exam-
ples are the geodesic flow on a negatively curved manifold (already discussed
in [7]) and suspensions of Anosov diffeomorphisms of manifolds.

Remark Since an Anosov flow expands leaves of the unstable foliation, and
contracts leaves of the stable foliation, neither foliation can contain a compact
leaf. It follows that both Fws and Fwu are taut.

4.10 Foliations of circle bundles

As we established in Example 4.2, a representation from a surface group into
Homeo(S1) determines a foliated circle bundle E over Σ. Since the leaves of the
foliation are transverse to every circle of the bundle structure, this foliation is
taut.

Example 4.55 Let λ be a co-oriented geodesic lamination on Σ, and let E be a
circle bundle over Σwith π : E→ Σ the projection. Suppose we can extend λ to
a co-oriented geodesic lamination λ, all of whose complementary regions in Σ
are ideal 2ni-gons, for various integers ni ≥ 2.

Then Λ = π−1(λ) is a system of annuli in E whose complementary regions
are ideal polygon bundles over S1. Since these polygon bundles have an even
number of sides, they may be filled in with monkey saddles, as in Example 4.18
to give a taut foliation F of E, containing Λ as a closed union of leaves. The
leaves of Λ are said to be vertical.

Every leaf of F−Λ is transverse to the circle fibration; such leaves are said
to be horizontal.

More generally, we can define horizontal and vertical leaves of a taut foli-
ation in a Seifert fibered space. For such foliations, there is the following fun-
damental theorem of Brittenham [25] which generalizes an earlier theorem of
Thurston:

Theorem 4.56. (Thurston, Brittenham) Let E be a Seifert fibered space over an orb-
ifold Σ, and let F be a taut foliation of E. Then there is an isotopy of F so that after the
isotopy, every leaf of F is either vertical or horizontal. Moreover, if every leaf is hori-
zontal, F arises via the foliated bundle construction from a representation ρ : π1(Σ)→
Homeo(S1), unique up to conjugacy.

Since E is fibered by circles, we can decompose E into a union of fibered
solid tori, each of which contains at most one singular fiber, which are glued
together along fibered annuli in their boundaries.
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The proof is achieved by a “straightening” procedure, whereby the restric-
tion of F to each such fibered solid torus is inductively simplified until the de-
sired normal form is achieved. A reference is [25]. For an introduction to Seifert
fibered spaces, see [168].

For E a circle bundle over Σ, the proof is somewhat easier, and the straight-
ening can be achieved by a minimal surface argument. This special case was
treated by Thurston in his thesis, under the additional hypothesis that the folia-
tion be C2, in which case one obtains the stronger conclusion that vertical leaves
can be ruled out. In this case, the Milnor-Wood inequality puts restrictions on
the Euler class of a foliated bundle, and one obtains nonexistence results for C2

taut foliations on circle bundles of sufficiently high Euler class relative to the
Euler characteristic of the base surface. We sketch a proof of Theorem 4.56 for
circle bundles.

Proof Choose a metric on E for which leaves of F are minimal surfaces. Let
σi be a complete set of reducing curves for Σ. Note that the existence of the σi

is the one place where we use the hypothesis that E is a circle bundle, and not
merely a Seifert fibered space. Let Si := π−1(σi) be the corresponding system
of vertical incompressible tori, and let S denote the union. Then S is a (discon-
nected) incompressible surface, so we can find a locally least area minimal sur-
face representative S′ of its isotopy class, by Theorem 3.31. Such a surface has
only saddle and generalized saddle singularities with F. On the other hand,
each component S′i satisfies χ(S′i) = 0 and therefore the restrictions of the fo-
liation F|S′i are nonsingular. By the barrier property of minimal surfaces, S′ is

transverse to F.
Let τi be another complete set of reducing curves for Σ, which together with

the σi, fill Σ, and let Ti := π−1(τi) be the corresponding system of vertical in-
compressible tori with union T. Again, the T can be isotoped to T′ with compo-
nents T′i which are simultaneously transverse to F.

Now if σi, τ j intersect essentially, so must S′i , T′j. Since these tori are both in-

compressible and locally least area, each circle of intersection must be essential
in both S′i and in T′j or else we could reduce area by disk exchange plus the

round-off trick. It follows that S′i ∩ T′j consists of a union of parallel essential

curves in each, which for homological reasons must be in the isotopy class of
the fibers of the circle fibration. If S′i ∪ T′j bound an essential bigon × S1 then

again we could reduce area by annulus exchange plus round-off. It follows that
no such product bigon regions exist, and therefore the configuration of S′ ∪ T′

is isotopic to that of S ∪ T.
Each complementary region to S′ ∪ T′ is a solid torus P. The restriction of F

to ∂P induces a foliation FP. Since F is taut, every leaf of F ∩ P is either a disk
or an annulus. Annuli in different solid tori Pi piece together to make vertical
leaves; the complementary regions are solid tori foliated as products by disks,
so we can fill these solid tori by circle fibers transverse to the disks, which piece
together in different Pi to make horizontal leaves. 2
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Remark Note that every vertical leaf is foliated by circles of uniformly bounded
length. It follows that the conformal type of each vertical leaf (thought of as a
Riemann surface) is parabolic — i.e. its universal cover is uniformized by C. In
particular, if every leaf of F is conformally hyperbolic, Theorem 4.56 implies
that F can be isotoped to be transverse to the circle fibration.

Remark It is worth noting that Brittenham’s method of proof extends imme-
diately to treat essential laminations, which we will discuss in Chapter 6.

4.11 Small Seifert fibered spaces

In this section, we briefly examine the special case of taut foliations in small
Seifert fibered spaces. For a basic introduction to Seifert fibered spaces, see [168].

Let M be a Seifert fibered space, and let Σ be the base orbifold. M admits a
foliation transverse to the fibers whenever there is a representation

ρ : π1(Σ)→ Homeo+(S1)

with suitable Euler class. When the underlying space of Σ is not a sphere, Eisen-
bud, Hirsch and Neumann [63] completely answered the question of when such
representations exist in terms of criteria involving standard invariants of the
Seifert fibration. If Σ is hyperbolic and admits suitable geodesic laminations, M
supports more taut foliations with a mixture of horizontal and vertical leaves,
constructed as in Example 4.55.

On the other hand, the problem of constructing taut foliations becomes more
complicated when the underlying topological space of Σ is a sphere. We con-
sider the case that Σ is a triangle orbifold — that is, a sphere with three singular
points. If Σ is a (not necessarily hyperbolic) triangle orbifold, M is said to be a
small Seifert fibered space. In this case, Theorem 4.56 implies that a taut foliation
of M is necessarily horizontal.

Let Σ be a triangle orbifold, and a1, a2, a3 ∈ Σ the three singular points.
Over each ai, the Seifert fibration has a singularity of type pi/qi for suitable
integers pi, qi. This means that a nearby nonsingular fiber winds around a solid
torus neighborhood of the singular fiber like a pi, qi curve on a torus. Let N
be M minus the three singular fibers. Then N is an S1 bundle over a thrice-
punctured sphere. A taut foliation of M restricts to a horizontal foliation of N,
which determines a representation

ρ : F2 → Homeo+(S1)

where F2, the free group on two generators, is the fundamental group of the
thrice punctured sphere. Let αi ∈ F2 be the elements corresponding to small
loops around the boundary punctures. Then a presentation for F2 is

F2 = 〈α1,α2,α3 | α1α2α3 = Id〉
In order to fill in the foliation F of N coming from ρ over the punctures,

each ρ(αi) must be topologically conjugate to a rotation with rotation number
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pi/qi. In this case one obtains a 3-manifold M′ which Seifert-fibers over Σ with
the same number and type of singular fibers; however, the Euler number of M′

might be different from that of M.
We show how to calculate this Euler number. For each i, let α̂i be a lift of αi

to Homeo+(R) with rotation number pi/qi (now thought of as taking values in
R, and not in R/Z). Sinceα1α2α3 = Id, the composition α̂1α̂2α̂3 is a translation
x → x + n where n is the Euler number (compare with Construction 2.53). By
the choice of lifts, n is positive. Since each pi/qi < 1, we must have n < 3,
and therefore M admits no taut foliation unless the Euler number is either 1
or 2. Note that changing the orientation of S1 replaces each pi with qi − pi and
interchanges Euler numbers 2 and 1. Therefore, without loss of generality, we
assume the Euler number of M is 1 in the sequel.

Definition 4.57 Let 0 < µ1 ,µ2,µ3 < 1. We say that the tuple (1,µ1,µ2,µ3) is
realizable if there are αi ∈ Homeo+(S1) which are topologically conjugate to
rotations, with rot(αi) = µi, such that the product α1α2α3 = Id with Euler
number 1.

Jankins and Neumann in [141], building on the earlier work in [63], stud-
ied the problem of determining which tuples (1,µ1,µ2,µ3) are realizable. To
state their results, we first consider the special case in which the elements are
chosen to lie in PSL(2, R). Here we think of PSL(2, R) both as the group of
orientation-preserving isometries of H2 and as a group of analytic homeomor-
phisms of its ideal circle. Let αi be a hyperbolic rotation with center pi, and
let T be the geodesic triangle spanned by the pi. Then the composition α1α2α3

is equal to Id if and only if the angles of T at the pi are equal to πµi. By the
Gauss-Bonnet formula, such a (possibly degenerate) geodesic triangle exists if
and only if ∑i µi ≤ 1.

Now let φn : S1 → S1 denote the n-fold cover, and let Gn denote the sub-
group of Homeo+(S1) which cover elements of PSL(2, R) under the covering
map. Ifα′i ∈ Gn are three elements with rotation numbers µ′i , then theαi project
to elementsαi ∈ PSL(2, R) with rotation numbers µi, where

µ′i =
µi + pi

n

for some integers 0 ≤ pi < n, where 0 < µi < 1 as before.
Ifα′1α

′
2α
′
3 = Id then α1α2α3 = Id. Moreover, if the Euler number of the αi is

e, then

∑
i

pi + e = n or 2n

In particular, the tuple (1,µ′1,µ′2 ,µ′3) is realizable by elements in Gn under
two circumstances: if ∑i µi ≤ 1 and ∑i pi = n − 1, or if ∑i(1 − µi) ≤ 1 and

∑i pi = n− 2. In the second case, ∑i µi might be as big as 3, and therefore ∑i µ
′
i

can be as big as 1 + 1
n while still having Euler number 1.
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Jankins and Neumann conjectured, and proved in many cases, that the only
tuples realizable by elements of Homeo+(S1) are those allowed by the con-
structions above; we refer to this system of inequalities as the Jankins-Neumann
inequalities.

FIG. 4.13. The “Jankins-Neumann Ziggurat”; the subset of the unit cube in R3

consisting of tuples satisfying the Jankins-Neumann inequalities

Finally, Naimi proved this conjecture in [178]:

Theorem 4.58. (Naimi) A tuple (1,µ1,µ2,µ3) is realizable in Homeo+(S1) if and
only if it satisfies the Jankins–Neumann inequalities.

It follows that a tuple is realizable in Homeo+(S1) if and only if it is realiz-
able in Gn for some n. Together with the work of [63], [141] and Theorem 4.56,
one can obtain a complete set of necessary and sufficient conditions for a Seifert
fibered space to admit a taut foliation.

The subset of the unit cube in R3 consisting of realizable triples is quite com-
plicated (see Fig. 4.13), and reveals another “facet” of the fractal structure of the
integral bounded cohomology of a free group, and the greedy behavior of ra-
tional numbers in 1-dimensional dynamics (compare with Example 2.76).
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FINITE DEPTH FOLIATIONS

In this chapter we introduce the very important class of finite depth foliations.
Amongst all taut foliations, those of finite depth are perhaps the best under-
stood, from virtually every point of view. As developed by [82], [173], [72]
and [75], there is a very precise and powerful structure theory for such folia-
tions, parallelling in many ways the structure theory of Haken manifolds. Note
that throughout this chapter we assume that all foliations are oriented and co-
oriented.

The most important feature of the class of finite depth foliations is their abun-
dance. We shall see in this chapter that an irreducible 3-manifold M admits a
finite depth taut foliation if and only if H2(M) is nonzero.

Our purpose in this book is not to treat the myriad applications of finite
depth foliations to 3-manifold topology (mostly via surgery theory) but rather
to treat them as an important and concrete class of examples.

Definition 5.1 A leaf λ of a foliation F is of depth 0 if it is closed. If λ− λ consists
of leaves of depth at most n, then λ is of depth (at most) n + 1. If every leaf of F

is of depth at most n for some minimal n, F is depth n. If F is depth n for some
finite n, we say F has finite depth.

Observe that with this definition, a Reeb component has finite depth.

FIG. 5.1. Part of a typical leaf of F|H−N(γ)

Example 5.2 Let H be a product S × I where S is a genus 2 surface. We can
foliate H as a product. Then we can cut along a non-separating annulus, and
shear the foliation so that the holonomy around a transverse loop γ ⊂ S has
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no fixed points in I. Topologically, the leaves are all infinite cyclic covers of S,
which spiral around one handle, and form a discrete set of levels in the other
handle.

We can scallop out a trough N(γ) near γ, as in Example 4.20. After scal-
loping out N(γ), the foliation is transverse to the boundary along ∂−N(γ),
where it is topologically conjugate to a Reeb foliation of an annulus. We double
H− N(γ) along the annulus ∂−N(γ). Let M be the manifold so obtained. Then
∂M has three components, two of genus 2 and one of genus 3. M comes with
a depth 1 foliation F, whose leaves all limit on all three boundary surfaces. M
can be doubled to obtain a finite depth foliation on a closed manifold. Part of a
typical leaf of F|H−N(γ) is illustrated in Fig. 5.1.

5.1 Addition of surfaces

For the benefit of the reader, and in order to fix notation, we recall some stan-
dard constructions in the the PL theory of 3-manifolds.

5.1.1 Oriented sum

Given two oriented embedded surfaces S1, S2 in M, we may perturb them an
arbitrarily small amount so that they are in general position — i.e. they are
transverse, and intersect in a finite collection of circles. Once they are in such a
position, we may perform the operation of oriented sum:

Construction 5.3 Let S1, S2 be two oriented surfaces in M in general position.
Then S1 ∩ S2 is a finite collection of circles γ1 ∪ · · · ∪ γn. For each γi, choose
a small solid torus neighborhood N(γi), which intersects each of S1, S2 in an
annulus. We cut out these two intersecting annuli, and glue back two embedded
annuli into each solid torus in such a way that the resulting surface is oriented.

+ −

−

+

FIG. 5.2. A cross-section of a local resolution.

We call the resulting surface S the oriented sum of S1 and S2. A cross-section
of this operation is depicted in Fig. 5.2.

Oriented sum has the following important properties: it is additive with re-
spect to both Euler characteristic, and class in H2(M; Z).
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5.1.2 Normal sum

Definition 5.4 Suppose M is triangulated. An embedded surface S ⊂ M is nor-
mal if it does not pass through any vertices of the triangulation, if it is transverse
to every edge of the triangulation, and if for each simplex ∆, the intersection
S ∩ ∆ is homeomorphic to the intersection of an affine simplex with a finite
collection of affine planes in general position.

The components of S ∩ ∆ are all polyhedral disks, and are classified by the
way in which they separate the vertices of S into two subsets. There are four
triangle pieces which separate one vertex from the rest, and three quadrilateral
pieces which separate the vertices into two pairs. Note that two distinct quadri-
lateral types cannot be realized by disjoint disks, so any normal surface inter-
sects each simplex in at most one quadrilateral type. See Fig. 5.3.

FIG. 5.3. Four normal triangles and a normal quadrilateral

Suppose the triangulation of M consists of n simplices. A normal surface
S determines a non-negative integral vector in Z7n whose components count
the number of normal disks of each kind in each simplex. Conversely, a non-
negative vector in Z7n determines a normal surface, unique up to isotopy, if and
only if it satisfies some finite family of integral linear equalities (compatibility
on neighboring simplices) and inequalities (at most one quadrilateral type per
simplex). Thus the set of normal surfaces in a 3-manifold is the set of integral
lattice points in the cone over a (rational) polyhedron.

Construction 5.5 If S, T are normal surfaces with vectors vS, vT, and if S and T
have compatible quadrilateral types in each simplex, then vS + vT is an admis-
sible vector, and represents a normal surface called the Haken sum or normal sum
of S and T.

If M is irreducible, any incompressible surface S is isotopic to a normal sur-
face. See [118] for details.

5.2 The Thurston norm on homology

In [232], Thurston introduced a very effective tool for studying essential sur-
faces in 3-manifolds — a norm on H2(M; R). The discussion in § 5.2 and § 5.3 is
based largely on [232].
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5.2.1 H2(M; Z)

For M an orientable 3-manifold, Poincaré duality gives an isomorphism

H1(M; Z) ∼= H2(M; Z)

Since the circle S1 is a K(Z, 1), there is another isomorphism

H1(M; Z) ∼= [M, S1]

where as usual, [M, S1] denotes the set of homotopy classes of maps from M to
S1.

In differential geometric terms, a closed one-form α with integral periods
defines a map φ from M to S1 as follows. First choose a basepoint p, and for
every other q ∈ M, let γq be a path from p to q. Then we can defineφ(q) by

φ(q) =
∫

γq

α mod Z

If γ′q is another path from p to q, and γ′q denotes the same path with opposite
orientation, then ∫

γq

α −
∫

γ′q
α =

∫

γq∪γ′q
α ∈ Z

soφ is well-defined as a map to S1 = R/Z.
Note that for different choices of basepoint p, the resulting mapsφ differ by

a rotation of S1.
Suppose α′ is homologous to α, and let φ′ : M → S1 be the map defined

by integrating α′ in place of α. Then there is a smooth function f so that α′ =
α + df . Define

φt(q) = φ(q) + t( f (q)− f (p)) mod Z

and observe thatφt is a homotopy fromφ toφ′.
It follows that we have defined a map

∫
: H1(M; Z)→ [M, S1]

independent of the apparent choices involved.
Conversely, given a smooth map f : M → S1 we can define a 1-form on M

by f ∗(θ) where θ is the angle form on S1. If f0 and f1 are homotopic smooth
maps, then we can find a smooth map F : M× I → S1 such that F|M×0 = f0

and F|M×1 = f1. Pulling back θ via F to F∗(θ), we see that f ∗0 (θ) and f ∗1 (θ) are
cohomologous, so that pullback defines a map

[M, S1]→ H1(M; Z)

which is inverse to
∫

.
In the Poincaré dual picture, the preimage f−1(t) of a regular value t ∈ S1

defines a smoothly embedded two-sided surface S such that [S] ∈ H2(M; Z)
corresponds to the class [ f ] in [M, S1] under the two isomorphisms above.
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5.2.2 Minimal genus

One may ask for a representative S of [S] of minimal genus.

Definition 5.6 The Thurston norm of a class [S] ∈ H2(M; Z), denoted ‖[S]‖, is
defined to be

‖[S]‖ = inf
S

∑
Si⊂S

max(0,−χ(Si))

where the infimum ranges over embedded surfaces S representing [S], and the
Si are the connected components of S.

Notice that for M irreducible, all embedded spheres are homologically triv-
ial.

Lemma 5.7 Let M be irreducible. Then norm-minimizing representatives are incom-
pressible.

Proof Suppose S is norm-minimizing and compressible. Letγ be an embedded
loop in S bounding a compressing disk D. If γ is non-separating, the result of
compressing S along D to produce S′ is to increase the Euler characteristic by 2.
Since M is irreducible, S′ is not a sphere, and therefore its norm is strictly less
than that of S. If γ is separating, the result of compression is two surfaces S1, S2

where
χ(S1) + χ(S2) = χ(S) + 2

Since M is irreducible, neither of the Si is a sphere, and therefore the result of
compression has stricly lower norm. 2

At the moment, the term Thurston norm is just a name. This name is justified
in part by certain properties which we will establish now.

Lemma 5.8 Suppose M is irreducible. The Thurston norm satisfies the following prop-
erties:

1. If S1, S2 are norm–minimizing representatives of [S1], [S2] then

‖[S1] + [S2]‖ ≤ ‖[S1]‖+ ‖[S2]‖

2. For n a positive integer, there is an equality

‖n[S]‖ = n‖[S]‖

Proof If S1, S2 are norm-minimizing they are incompressible, by Lemma 5.7.
We put them in general position with respect to each other. If some circle of
intersection is inessential in M, then it must be inessential in both S1 and S2.
Let γ be some such circle; then γ bounds disks D1 in S1 and D2 in S2, which
together form a sphere in M which is necessarily homotopically inessential. An
innermost such sphere bounds an embedded ball in M disjoint from S1 and S2,
so one of the surfaces may be pushed across this ball, eliminating a circle of
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intersection. It follows that if the number of circles of intersection is minimal,
every such circle is essential in both S1 and S2.

Since S1 and S2 are oriented, we can resolve the circles of intersection by
oriented sum in such a way that the resulting surface S is oriented compatibly.
Then S is contained in a neighborhood of the union S1 ∪ S2, and homologically
represents the sum

[S] = [S1] + [S2]

Moreover, the Euler characteristic of S is equal to χ(S1) + χ(S2).
Suppose S contains a spherical component. This component is made up

from subsurfaces of S1 and S2. By reasons of Euler characteristic, some sub-
surface is a disk. But this implies that some circle of intersection is inessential,
contrary to the construction above. It follows that S can contain no spherical
component, and therefore

‖[S]‖ ≤ ‖[S1]‖+ ‖[S2]‖

and we have proved (1).
If S′ represents n[S], there is a map f : M → S1 and a regular value p ∈ S1

for which S′ = f−1(p). Let φn : S1 → S1 be the covering map of degree n.
Then f lifts to fn : M → S1 such that f = φn fn. Then φ−1

n (p) = {pi} and each
Si = f−1

n (pi) represents [S]. That is, S′ can be partitioned into n subsurfaces,
each of which represents the homology class [S]. If S′ is norm-minimizing, then
each of these subsurfaces is norm minimizing, and we have ‖n[S]‖ = n‖[S]‖,
proving (2). 2

Using property 2. from Lemma 5.8, we see that the norm ‖ · ‖ can be ex-
tended linearly to elements of H2(M; Q). Using property 1. we see that it has a
unique continuous extension to H2(M; R). This extension is called the Thurston
norm. Of course, it is only a pseudo-norm in general, since it can take the value
0 on a nontrivial class [S] represented by a union of tori. If M is atoroidal, every
representative of a nontrivial homology class has strictly negative Euler charac-
teristic. So we can conclude:

Corollary 5.9 Let M be an irreducible and atoroidal 3-manifold. Then ‖ · ‖ is a norm
on H2(M; R).

5.2.3 The unit ball is a polyhedron

The most important property of the Thurston norm, however, is a stability prop-
erty: for any nonzero homology class A and any other class A′ whose projective
representative is sufficiently close to A, there is an equality

‖tA + (1− t)A′‖ = t‖A‖+ (1− t)‖A′‖

for all 0 ≤ t ≤ 1. In particular, if S, S′ are norm-minimizing representatives of
the homology classes A, A′ respectively, then for any non-negative integers m, n
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the oriented sum of m parallel copies of S and n parallel copies of S′ is norm-
minimizing. Another way of formulating this result is in terms of the geometry
of the unit ball of the Thurston norm.

Theorem 5.10. (Thurston) Let M be atoroidal. The unit ball of the Thurston norm is
a finite sided polyhedron.

Proof We indicate the proof in the case that the rank of H2(M; R) is 3; the
general case is completely analogous. In this case, the unit ball of the Thurston
norm is a compact convex polyhedron in H2(M; R) = R3.

We note that the proof is completely formal, and can be derived from the
following axioms for ‖ · ‖:

1. The function ‖ · ‖ is a norm on a finite dimensional R-vector space H.

2. H contains a canonical Z-lattice, and the function ‖ · ‖ takes on integral
values on integer lattice points in H.

The proof below shows that the unit ball for any such norm is a finite-sided
polyhedron.

Let A, B, C be an integral basis for H2(M; Z). The norm ‖ · ‖ takes on integral
values on A, B, C and therefore defines an integral linear function I(A, B, C)
with associated hyperplane I(A, B, C) = 1. If we let Bi = iA + B, the integral
linear functions I(A, Bi, C) define hyperplanes I(A, Bi, C) = 1 whose slopes
are monotone increasing as a function of i, and which intersect the rays through
A, B, C in a discrete set of slopes. It follows that the functions I(A, Bi, C) are
eventually constant; that is, I(A, Bi, C) = I(A, B j, C) for all i, j ≥ n. Similarly, if
we define C j = jA + C, the integral linear functions I(A, Bi, C j) are eventually
constant for i, j ≥ n.

A

BC

A + B

2A + B
A + C

2A + C

3A + C

3A + B + C

5A + B + 2C

FIG. 5.4. The sequence of hyperplanes definined by integral inequalities is
eventually constant.

Now we start to move the projective ray Bi towards the midpoint of the pro-
jective interval spanned by A and C j, and consider the integral linear functions
I(A, Bi + kC j + kA, C j) for fixed i, j ≥ n and k → ∞. As before, the associated
hyperplanes eventually have constant slope. It follows that these hyperplanes
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are eventually tangent to the boundary of the unit ball of ‖ · ‖ in the entire pro-
jective simplex spanned by A, Bi + kC j + kA, C j; see Fig. 5.4 for an example.

Since A, B, C can lie in arbitrary projectively rational classes, it follows that
the unit ball of the Thurston norm is the intersection of half-spaces determined
by integral linear inequalities. Since the set of hyperplanes defined by integral
linear inequalities is discrete away from the origin, it follows that the boundary
is defined by only finitely many such inequalities; in particular, the unit ball is a
finite sided polyhedron, as claimed.

This method of proof obviously generalizes easily to the case of higher rank
homology. 2

Remark Thurston norm minimizing surfaces are incompressible, and there-
fore can be normalized relative to any fixed triangulation of M. The map from
the space of normal surfaces in M to homology classes is piecewise linear, with
respect to the natural polyhedral structure on the space of normal surfaces. So
for Thurston norm minimizing normal surfaces representing sufficiently close
projective homology classes, the normal sum of any positive integral linear
combination is also norm minimizing, when it is defined.

5.3 Geometric inequalities and fibered faces

Lemma 5.11. (Roussarie,Thurston) Suppose F is taut, and S is an immersed in-
compressible surface. Then S can either be homotoped into a leaf, or it can be homotoped
to intersect F in only saddle tangencies.

Proof By Theorem 4.31, we can find a metric on M for which every leaf of F

is a minimal surface. By Theorem 3.29, S is homotopic to an immersed minimal
representative. Such a S can only have saddle singularities with respect to F, as
required. 2

Historical Remark Roussarie and Thurston actually proved an analogous the-
orem for the more general class of Reebless foliations. They showed that any
immersed incompressible surface could be homotoped to intersect F in only
saddle or circle tangencies. The proof is basically a PL argument, and relies
on Novikov’s theorem for Reebless foliations. Since in this book we are pre-
occupied with taut foliations, we give the shorter minimal surfaces proof of
Lemma 5.11, which is due to Hass [122]. Note that for M atoroidal, any Reeb-
less foliation is taut.

Now, suppose S has been isotoped to have only saddle tangencies with F.
Each saddle singularity gets a sign, depending on whether the co-orientations
to S and F agree at that point. Then define

Ip(S) = number of positive saddle intersections

and
In(S) = number of negative saddle intersections
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Lemma 5.12 If e(TF) denotes the Euler class of TF, then

e(TF) ∩ [S] = In − Ip

Furthermore,

−χ(S) = Ip + In

Proof The map i : S → M pulls back TF to a bundle i∗TF over S. In general,
if E → M is a vector bundle over a closed, oriented manifold M, the Euler class
of E is the cohomology class (on M) which is Poincaré dual to the (oriented)
zero locus of a generic section M → E. In our context, the number e(TF) ∩ [S]
is equal to the number of zeroes of a generic section of this bundle, counted
with signs. Such a section, away from the singularities σ(S) of S, is given by
a vector spanning the common 1-dimensional (oriented) subspace of TF ∩ TS.
As one winds once around a saddle singularity in S, this vector field twists
once around the circle, with respect to the obvious local trivialization of UTS.
At a positive tangency, the direction of winding disagrees, and at a negative
tangency, the direction of winding agrees.

The foliation F ∩ S defines a vector field on S which is nonsingular away
from the saddle points, where it has index −1. By the Poincaré–Hopf formula,
the Euler characteristic of S is equal to −1 times the number of such singulari-
ties. 2

Corollary 5.13. (Thurston) Let F be a taut, co-orientable foliation of M, and S an
immersed oriented surface. Then

|e(TF) ∩ [S]| ≤ ‖[S]‖

with equality if and only if S is either homotopic into a leaf of F, or is homotopic to a
surface, all of whose tangencies with F are saddle tangencies with the same sign.

Proof If S is compressible, we can reduce ‖S‖ by compression. Otherwise, ap-
ply Lemma 5.11 and Lemma 5.12. 2

Remark Technically, the minimal surfaces proof of Lemma 5.11 only applies
when F is C2, so that Theorem 4.31 can be invoked. For C0 foliations, one can
work with normal surfaces and combinatorial volume preserving flows, as in
Example 4.32. Gabai [90] gave a normal surfaces proof of Lemma 5.11 without
any transverse smoothness assumptions on F, along these lines.

If S is everywhere transverse to F, then the intersection with leaves of F

induces a 1-dimensional nonsingular foliation of S. A closed surface which ad-
mits a nonsingular 1-dimensional foliation has vanishing Euler characteristic; it
follows that S is a torus.

We see from Corollary 5.13 that a closed leaf of a taut foliation is Thurston
norm minimizing. In fact, we see that a leaf of a taut foliation is norm minimiz-
ing even amongst immersed surfaces representing a given homology class.



192 FINITE DEPTH FOLIATIONS

Remark This fact, that a closed leaf of a taut foliation is Thurston norm mini-
mizing, is the analogue in calibrated geometry of the phenomenon of positivity
in algebraic geometry: roughly speaking, when all intersections are (homologi-
cally) positive, algebraic information can be promoted to geometric information.
As remarked earlier, the role of positivity in the leafwise geometry of taut folia-
tions is dual to the role of monotonicity in the transverse geometry.

We turn now to surfaces which are fibers of fibrations. By Corollary 5.13, a
fiber of a fibration is norm minimizing in its homology class. In fact, it turns out
that the set of such fibered homology classes, for a fixed 3-manifold, has a very
simple description in terms of the Thurston norm.

Lemma 5.14 Suppose M fibers over S1 with fiber S, and χ(S) < 0. Then ‖ · ‖ =
|e(F) ∩ ·| on some neighborhood of [S] in H2(M; R).

Proof The foliation F defined by a fibration over S1 is tangent to the kernel
of a closed non-singular 1-form α with integral periods. Choose some 1-forms
α1, . . . ,αk which generate H1(M; R). Then for sufficiently small ǫ, any form

α′ = α +ǫ1α1 + · · ·+ǫkαk

with |ǫi| ≤ ǫ is nonsingular. Moreover, when it has rational periods, it can be
scaled to get a nonsingular form with integral periods, which defines a fibration
of M over S1, determining a foliation F′ with TF′ close to TF. In particular,
e(F′) = e(F) for small ǫ. If [A] defines the homology class of a fiber of F′, then

e(F) ∩ [A] = e(F′) ∩ [A] = ‖[A]‖

2

Compare with Example 4.12. This lemma says that fibering is (homologi-
cally) stable. It has many analogues in symplectic and complex geometry. The
following theorem, by contrast, is global in scope, and reveals much deeper in-
formation about the interaction of topology with homology in 3-manifolds:

Theorem 5.15. (Thurston) The set of rays in H2(M; R) corresponding to fibrations
of M over S1 is precisely the set of rational rays intersecting a (possibly empty) union
of open top-dimensional faces of the unit ball of the Thurston norm.

Proof Suppose S is a norm-minimizing surface on a ray intersecting a top-
dimensional face which also intersects some fibered ray, with associated folia-
tion F. Then

e(F) ∩ [S] = ‖[S]‖ = ‖S‖
Therefore, S can be isotoped to be transverse to F, away from finitely many sad-
dle singularities which are all positive in sign.

In particular, we can find a nonsingular vector field X near S which is trans-
verse to both S and to F. Let β be a Thom form for S; that is, a closed form with
support contained in a tubular neighborhood of S, such that the class ofβ in H1



SUTURED MANIFOLDS 193

is dual to the class of S in H2. Since X is transverse to S, we may choose β so
that β(X) > 0 in a tubular neighborhood of S, and β(X) ≥ 0 everywhere. Then
the form tβ+ sα pairs positively with X everywhere, and is therefore nonsin-
gular. Moreover, this form is closed. For sufficiently large t/s, such a form is
arbitrarily close (projectively) to the ray through S. When t and s are rational,
the kernel of this form defines the leaves of a fibration. 2

As a result of this theorem, it makes sense to refer to fibered faces of the unit
ball of the Thurston norm.

Construction 5.16 Here is another, more combinatorial view of the construc-
tion in Theorem 5.15. Let F be a (disconnected) surface representing some large
multiple s of the fiber of F, and T a (disconnected) surface consisting of t paral-
lel copies of S. Then we can assume F, T are in general position with respect to
each other, and we can choose a metric on M so that the angle between normals
to F, T is uniformly bounded above by some small angle. In particular, we can fix a
triangulation independent of s, t, such that the F, T are all normal surfaces with
respect to this triangulation.

Since the angle between normals to F and T is uniformly bounded above,
they contain the same kind of quadrilateral pieces in each simplex of the tri-
angulation. It follows that we can do a normal sum operation on F and T to
produce a new normal surface U. If F contains enough copies of the fiber so
that the complementary regions are all evidently I-bundles, the same is obvi-
ously true for U; in particular, U is the fiber of a fibration over S1.

The construction in Example 4.8 can be thought of as a kind of limit of Con-
struction 5.16, as one reaches the edge of a fibered face. At the limit, one takes
T to consist of infinitely many parallel copies of S which accumulate on the
“limit” surface S. If we are lucky, the operation above makes sense in this limit
and shows that the complement M− S fibers over S1 (with disconnected fiber);
i.e. we have exhibited S as a leaf of a depth 1 foliation. It is this combinatorial
construction which will be generalized in the sequel when we discuss Gabai’s
theorems.

5.4 Sutured manifolds

Definition 5.17 A sutured manifold is a pair (M,γ) consisting of M, a compact,
oriented 3-manifold, together with a disjoint union

γ = A(γ) ∪ T(γ) ⊂ ∂M

where A(γ) is a union of pairwise disjoint annuli, and T(γ) is a union of pair-
wise disjoint tori. The interior of each component of A(γ) contains an oriented
core curve. Every component of R(γ) = ∂M− int(γ) is oriented, and it decom-
poses into R+(γ), R−(γ) where the signs on the components of R(γ) denote
whether the orientation agrees or disagrees with the orientation it inherits as
a subsurface of the boundary of the oriented manifold M. The components of
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γ are called the sutures, and the orientation of the R±(γ) must agree with the
orientation of the core curves of the annuli components they bound.

Definition 5.18 A sutured manifold (M,γ) is taut if M is irreducible, and R(γ)
is Thurston norm minimizing in H2(M,γ).

A sutured manifold structure is analogous to a pared manifold structure (see
[230], [238]), the difference being that in a sutured manifold, the complement
of the sutures carry a sign which is essential for keeping track of homological
information. Pared manifolds arise naturally in the inductive construction of
hyperbolic structures on Haken manifolds; similarly, sutured manifolds arise
naturally in the inductive construction of taut foliations on manifolds satisfying
the appropriate homological conditions.

Example 5.19 Let M be a 3-ball, and γ = A(γ) a single annulus in ∂M.

Example 5.20 Let M be a solid torus, and A(γ) a pair of (2, 1) curves in the
boundary, with opposite orientations. Then R+(γ) and R−(γ) are isotopic by
an isotopy which sweeps out M as a product. If we think of M as an unknotted
solid torus embedded in S3 in the obvious way, then the union of the cores of
the annuli are the (4, 2)-torus link (with a non-standard orientation!) and R±(γ)
are Seifert surfaces for this link.

Example 5.21 Let K be an oriented knot or link in S3, and R a Seifert surface.
Let M be the manifold R× I and obtain the sutured manifold

(M,γ) = (M, ∂R× I)

Example 5.22 If (M,γ) is a sutured manifold embedded in a closed, oriented
manifold N, then (N − int(M),γ) is sutured. Note that the components R±(γ)
are the same in either case, but the labels ± on them are interchanged.

5.5 Decomposing sutured manifolds

Like Haken manifolds, taut sutured manifolds can be inductively decomposed
into simpler and simpler pieces which are themselves taut sutured manifolds,
until ultimately one is left with a finite collection of the simplest possible su-
tured manifolds, namely products surface× I. To describe this decomposition,
we must first say what kinds of surfaces a sutured manifold can be cut along.

Let (M,γ) be a sutured manifold, and S a properly embedded surface in
M such that for every component λ of S ∩ γ, λ must be a properly embedded
nonseparating arc, a simple closed curve in an annular component A of γ in
the same homology class as the oriented core of A, or a homotopically nontrivial
curve in a toral component of γ.

Moreover, if λ and δ are distinct components of S ∩ γ in the same torus
component T of γ, then λ and δ represent the same homology class in H1(γ).
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Such a surface S defines a sutured manifold decomposition, denoted

(M,γ)
S
; (M′,γ′)

where M′ = M− int(N(S)) and

γ′ = (γ ∩M′) ∪ N(S′+ ∩ R−(γ)) ∪ N(S′− ∩ R+(γ))

R+(γ′) = ((R+(γ) ∩M′) ∪ S′+)− int(γ′)

R−(γ′) = ((R−(γ) ∩M′) ∪ S′−)− int(γ′)

Morally, the cores of the sutures ofγ′ are the union of the boundary components
of S with the cores of the sutures of γ’, where one does an arc exchange at each
transverse crossing of ∂S with the cores of the sutures of γ to define the cores of
the sutures of γ′, using the orientation on each circle to make the correct choice
of arc exchange.

Definition 5.23 A sutured manifold (M,γ) is decomposable if there is a sequence
of decompositions

(M,γ)
S1
; (M1,γ1)

S2
; · · · Sn

; (Mn,γn) = (S× I, ∂S× I)

Such a decomposing sequence is called a sutured manifold hierarchy.
If S is a disjoint union of disks, and each Si is a single disk, we call this

decomposition a disk decomposition, and say (M,γ) is disk decomposable. If L ⊂
S3 is an oriented knot or link, and R a Seifert surface for L, we say R is disk
decomposable if the complementary sutured manifold (S3 − int(N(R)), N(∂R))
is disk decomposable.

The following theorem of Gabai [82], guarantees the existence of a sutured
manifold hierarchy under a suitable homological hypothesis:

Theorem 5.24. (Gabai [82]) Let (M,γ) be a connected taut sutured manifold, where
M is not a rational homology sphere, and M contains no essential tori. Then there is a
sutured manifold hierarchy such that Si ∩ ∂Mi−1 is nonempty if ∂Mi−1 is nonempty,
and for every component V of R(γi), Si+1 ∩ V is a union of k ≥ 0 parallel oriented
nonseparating simple closed curves or arcs.

We give only the outline of a proof here. For details, one should consult [82]
or [212].

Proof The proof is by induction. At each stage, the decomposing surface Si

can be chosen to be Thurston-norm minimizing in H2(Mi−1,γi−1; R), which is
nontrivial either by hypothesis at the first stage, or because ∂Mi−1 is nonempty
at some subsequent stage. Decomposing a taut sutured manifold along such a
surface preserves tautness. However, not every choice of decomposing surface
will do.
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One defines an appropriate complexity c(M,γ) for (M,γ) a taut sutured
manifold. The actual complexity function is quite complicated, but it is possi-
ble to give an idea of the main ingredients. A sutured manifold (M,γ) can be
decomposed along a family of disjoint essential nonparallel disks {D1, . . . , Dn}
called complexity disks into a handlebody part and a non-handlebody part. The
non-handlebody part is a finite union of ∂-incompressible manifolds M1, . . . , Mk,
each of which meets at most one Di. One further distinguishes between the Mi

of the form P× I for some closed surface P, and those which are not products.
This part of the decomposition involves no choices. The higher genus handle-
body part is decomposed further into solid pairs of pants, and the small genus
handlebody part is decomposed into balls in a standard way. One further in-
sists that the ∂Di meet the sutures s(γ) transversely, and that the decomposi-
tion is chosen to minimize the number of components of intersections of the
Di with the sutures. There are many possible choices of such families of mini-
mal complexity disks, coming both from the nonuniqueness of decomposition of
a handlebody, and from the combinatorial configurations of disks and sutures.

The first part of the complexity function is the number of disjoint incom-
pressible and ∂-incompressible nonparallel surfaces in the union of the non-
product boundary-incompressible Mi pieces. The finiteness of this number is
just usual Haken finiteness (see e.g. [140]), the first step in the proof of the exis-
tence of an (ordinary) hierarchy for a Haken manifold. The rest of the complex-
ity function encodes the pattern of intersection of disks with components of the
decomposition, and the complexity of the intersection of the sutures with the
decomposition.

This complexity function is arranged so that it vanishes precisely on a dis-
joint union of products, and can be thought of as a measure of how far (M,γ)
deviates from being a product.

The set of possible values of the complexity function as above is evidently
well-ordered. The next main step is to show that it decreases under a suitable
non-trivial decomposition. This involves starting with an initial choice of de-
composing surface S, and modifying it suitably. The details of this process are
quite intricate, and we refer the interested reader to [82].

Since the set of values of the complexity function is well-ordered, one can
find a terminating decomposition sequence which produces a collection of prod-
uct pieces at the end. 2

Warning 5.25 One subtle issue is that the decomposing surfaces at each stage
are not necessarily boundary incompressible, merely boundary incompressible “rel.
sutures”. There are well-known examples of infinite hierarchies (in the usual
sense) whose splitting surfaces are incompressible but not boundary incom-
pressible; see e.g. [140]. This is the reason why one must consider a more sub-
tle complexity function than the one usually considered in the proof of Haken
finiteness.
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5.6 Constructing foliations from sutured hierarchies

Sutured manifolds let us correctly define tautness for co-oriented foliations of
3-manifolds with boundary.

Definition 5.26 A foliation F of a sutured manifold (M,γ) is taut if

1. F is co-oriented and components of R(γ) are leaves, whose transverse
orientations agree with labels R±(γ).

2. γ is exactly equal to the subset of ∂M transverse to F, and the foliation
induced by F on each component S of γ is transverse to the fibers of a fi-
bration of S over S1. In particular, this foliation contains no Reeb annulus.

3. Each leaf of F meets either a closed transverse circle or a compact, prop-
erly embedded transverse arc with one endpoint in R+(γ) and the other
in R−(γ).

Theorem 5.24 produces many examples of sutured manifold hierarchies.
Gabai’s existence theorem relates these structures to taut foliations:

Theorem 5.27. (Gabai’s existence theorem [82]) Suppose M is connected, and (M,γ)
has a sutured manifold hierarchy

(M,γ)
S1
; (M1,γ1)

S2
; · · · Sn

; (Mn,γn) = (S× I, ∂S× I)

so that no component of R(γi) is a compressing torus. Then there exist taut, trans-
versely oriented foliations F0, F1 of M such that the following hold:

1. F0 , F1 are tangent to R(γ).

2. F0 , F1 are transverse to γ.

3. If H2(M,γ) is nonzero, then every leaf of F0 and F1 nontrivially intersects a
transverse closed curve or a transverse arc with endpoints in R(γ). However, if
∂M is nonempty and is equal to either R+(γ) or R−(γ) then this holds only for
interior leaves.

4. There are no Reeb annuli on Fi|γ for i = 0, 1.

5. F1 is C∞ except possibly along toral components of R(γ) or S1 if ∂M is empty.

6. F0 is of finite depth.

In particular, a sutured manifold (M,γ) other than B3 or S2× S1 with nonzero
H2(M,γ; R) is taut if and only if it admits a taut foliation. Note that Theo-
rem 5.27, together with Corollary 5.13 gives necessary and sufficient conditions
for a 3-manifold with boundary to admit a co-orientable finite depth foliation.

In what follows, we give an outline of the ideas involved in the construction
of the foliations F0, F1. The constructions are very similar; we indicate briefly
where relevant the special subtleties of each case.

Proof The first step of the proof is to replace the sutured manifold hierarchy
by another hierarchy with more desirable properties. In particular, we require
the following condition: If V is a component of R(γi−1) then either
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1. Si ∩V is a set of parallel nonseparating oriented simple closed curves or
arcs, or

2. ∂V 6= ∅, and Si ∩V is a set of oriented properly embedded arcs such that
|λ ∩ Si| = |〈λ, Si〉| for each component λ of ∂V.

One proves a “preparation lemma” to show that these conditions can be satis-
fied.

Having modified our hierarchy suitably, the idea of the proof is to construct
by induction a taut foliation Fi on (Mi,γi) satisfying the desired conditions,
and then to modify Fi slightly and show how to extend it to a foliation on
(Mi−1,γi−1). The base step of the induction is simple: at the last stage of the
decomposition, we have a product (S× I, ∂S× I). This can be given the prod-
uct foliation Fn whose leaves are just S× p, p ∈ I.

To go from Fi to Fi−1, there are three distinct cases to consider, coming from
the preparation lemma.

Case 1: ∂Si is contained in a union of toral sutures: ∂Si ⊂ T(γi−1).

In this case, we obtain Mi−1 by gluing S+
i to S−i . The foliation Fi of Mi obvi-

ously extends to a foliation Fi−1 of Mi−1.

S+
i −→

←− S−i ⊂ R(γi)

A(γi) ⊃ A −→

FIG. 5.5. Glue up S+
i to S−i to obtain Q

Case 2: ∂Si is contained in a component V of R(γi).

For simplicity, we treat the case that ∂Si consists of a single circle. We first
glue up S+

i to S−i to obtain a manifold Q. Let R be the component of R(γi) con-

taining S−i . Note, since Si is homologically essential in Mi−1, that ∂R and ∂S+
i
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are the two boundary components of an annular suture A ⊂ A(γi) correspond-
ing to the circle ∂Si. See Fig. 5.5.

Then Q contains a boundary component C equal to the union A ∪ R− S−i .

The foliation Fi induces a foliation on Q. This foliation is tangent to R− S−i and
transverse to A, with a convex singularity along one component of ∂A, and a
concave singularity along the other component.

A

The “exposed” annulus A is transverse
to Fi, and the restriction Fi|A is a foli-
ated interval bundle over S1. The annu-
lus A can be spiralled around R− S−i a
countably infinite number of times be-
fore limiting on V, thereby producing
the foliation Fi−1.

We now show how to spiral A around R− S−i to obtain Fi−1. By our prepa-
ration lemma, V is closed and ∂Si is homologically essential in V; i.e. ∂Si rep-
resents a nontrivial element of H1(V). Let α ∈ H1(V) be Poincaré dual to the

class corresponding to ∂Si, and let Ṽ be the Z-cover of V determined by the
class α. Let γ be a lift of ∂Si to this cover, which divides V into V±. Extending
the foliation Fi to Fi−1 is essentially the same thing as extending a representa-
tion

ρ∂ : π1(∂V+)→ Homeo+(I)

(i.e. the holonomy around the boundary component determined by the restric-
tion of Fi to A) to a representation

ρV : π1(V+)→ Homeo+(I)

Since V+ is open, π1(V+) is free, and there is no obstruction to producing such
an extension.

Technically, we extend the representation ρV over one fundamental domain
of V+ at a time. As j ranges over the non-negative integers, let Vj denote the
corresponding fundamental domain, so that V0 has one boundary component
on γ, and each Vj is glued up to Vj−1 and Vj+1 along translates of γ. Note that

each Vj is homeomorphic to R− S−i . The representation π1(V0)→ Homeo+(I)

determines a foliated I bundle B0 over R− S−i with two foliated boundary an-
nuli. One annulus can be glued up to the annulus A, and the other annulus
is exposed. The representation π1(V1) → Homeo+(I) determines another foli-
ated I bundle B1 over R− S−i with two foliated boundary annuli. One annulus
can be glued up to the exposed annulus of B0, and so on inductively. The Bi are
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stacked up, one on top of the other, and they get thinner and thinner so that the
sum of their widths converges and the union limits on the surface V.

In order to guarantee that the resulting foliation Fi−1 is finite depth or smooth,
we must be judicious about the choice of representation ρV . Note that this is the
point at which the finite depth and C∞ constructions diverge.

First we show how to choose ρV so that Fi−1 is finite depth if Fi is. The key is
to choose ρV in such a way that for every p ∈ I, the orbit of p under ρV(π1(V+))
is equal to the orbit under ρ∂(π1(∂V+)). This implies that taking the closure of
a leaf commutes with the operation of extending the leaf from Fi to Fi−1; i.e.
limits of extended leaves are extensions of limit leaves together possibly with
the boundary leaf V. We deduce that Fi−1 is finite depth if Fi is.

We show how to define ρV on π1 of the first component V0. The holonomy of
ρ∂ around γ is some homeomorphism f ∈ Homeo+(I). Observe that the group
〈 f 〉 generated by f is isomorphic to Z. We let ρV : π1(V0) → 〈 f 〉 be any ho-
momorphism to Z which extends ρ∂ under this isomorphism. Since V0 has two
boundary components, γ is essential in H1(V0), and such an extension exists.
Define ρV on π1(Vj) for the various j similarly. Since the image of ρV(π1(V+))
is equal to 〈 f 〉, the representation satisfies the desired property. This completes
the extension in the finite depth case.

If we want Fi−1 to be smooth, we must work harder. Recall by Theorem 2.69
of Sergeraert, the group C∞ of diffeomorphisms of the interval, infinitely tan-
gent to the identity at the endpoints, is perfect.

Now, by induction, we can assume that ρ∂ is contained in C∞. If the genus
of V is > 1, then V+ has infinite genus, so we can express the holonomy around
∂V+ as a product of a finite number of commutators. In particular, we can find
a compact subsurface W ⊂ V+ with two boundary components ∂±W where
∂−W = ∂V+, and where ρ∂ is extended to

ρW : π1(W)→ C∞

in such a way that ρW(∂+W) = Id. Then the foliation can be extended over
V+ −W as a product, and such a product foliation can be spiralled smoothly
around V in such a way that the holonomy along V is itself infinitely tangent to
the identity.

If the genus of V is 1, Kopell’s Lemma (i.e. Theorem 2.122) implies that Fi−1

might not be C2 along toral components of R(γ) or S1, although it might possi-
bly be C1.

Case 3: ∂Si ∩γi−1 is nonempty, and ∂Si is connected.

In this case, ∂S+
i is an alternating union of arcs in ∂γi and properly embed-

ded arcs in R+(γi).
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We extend the arcs in ∂γi, and glue up S+
i to S−i , creating a manifold Q. The

foliation Fi glues up naturally to give a foliation of Q. Now, the manifold Q is
homeomorphic to Mi−1. Moreover, there is a subsurface V of ∂Q corresponding
to the subsurface R(γi−1) of Mi−1. The foliation Fi is not yet tangent to V, and
crosses it in a family of rectangles D j corresponding to the arcs of ∂γi contained

in ∂S+
i . The restriction of Fi to these rectangles is a product foliation, and the

picture locally is that of a partial product

(0, 1)× (0, 1)× (0, 1/2)∪ (0, 1/2)× (0, 1)× (1/2, 1)

foliated by horizontal slices z = constant, where D j is the vertical rectangle
1/2× (0, 1)× (1/2, 1).

D j ⊂ F i ⋔ V

To an observer walking on the surface
of V, these foliated rectangles are like
vertical cliff faces, and the leaves of the
foliation are like sedimentary layers.

We need to add an extra product neighborhood along V in such a way as to
“seal up” these cliff faces, and extend Fi to Fi−1 which is tangent to ∂Mi−1 along
R(γi−1). Let µ1, . . . ,µn denote the cores of the rectangles where Fi is transverse
to V; so the µ j are properly embedded essential arcs in V. Let N(µ j) denote
tubular neighborhoods (in V) of the µ j, where D j ⊂ N(µ j) and ∂D j ∩ ∂N(µ j)
corresponds to the edge at the top of each cliff. Let W = V − ∪iN(µi) denote
the complement. Then W is contained in the subset of V where Fi is tangent,
has one frontier (in V) component ∂W+ at the top of each cliff face, and another
frontier component ∂W− which cobounds a strip near the bottom of each cliff
face with an arc of ∂D j.

We glue W × I to W, and foliate it as a product W × point. By abuse of nota-
tion, we still refer to the resulting foliation as Fi. This has the effect of doubling
the height of each cliff, and adding a smaller, complementary cliff which faces
it from across each component of N(µ j)− D j.

Each rectangle D j where Fi was transverse to V has been replaced by two

rectangles, D+
j , D−j where

D−j = ∂W− × I, D+
j = D j ∪ ∂W+ × I

The restriction of Fi to each D±j is still a product, so we can glue up each D+
j

to D−j in such a way that these product foliations match up. The result is Mi−1



202 FINITE DEPTH FOLIATIONS

foliated by Fi−1.

By adding a product layer W × I, we
extend each original cliff vertically, and
add a new smaller parallel cliff, facing
each original cliff. The “canyons” be-
tween opposing cliff faces can then be
filled in with product foliations.

This ends the induction step, and completes the proof of the theorem. 2

5.7 Corollaries of Gabai’s existence theorem

Let M be a closed irreducible atoroidal 3-manifold, and let S be an essential
embedded surface which is Thurston norm minimizing in its homology class.
Cutting along S can be taken to be the first step in a sutured manifold hierarchy
for M. By Theorem 5.27, M admits a finite depth taut foliation F which con-
tains S as a leaf. Together with Corollary 5.13, this implies that an embedded
surface is Thurston norm minimizing in its homology class if and only if it can
be realized as the first step in a sutured manifold hierarchy for M.

5.7.1 Complexity of the norm-minimizing problem

This leads to the following algorithm to determine whether a surface S is mini-
mal genus in its homology class. The algorithm proceeds by simultaneously try-
ing to build a surface S′ in the same homology class as S for which ‖S′‖ < ‖S‖,
and by trying to build a sutured manifold hierarchy for M with S as the first
step. Since exactly one of these tasks is possible, a “blind search” will eventu-
ally succeed at one of them.

In practice, for low complexity examples, this algorithm is often quite effec-
tive. It also has the following theoretical application:

Theorem 5.28. (Agol–Hass–Thurston [1]) The problem of finding the minimal norm
representative of a homology class in a 3-manifold is NP-complete.

To show that the problem is in NP involves showing that the property of be-
ing a minimal Thurston norm surface is easily checkable. But this is exactly what
a sutured manifold hierarchy provides — namely, a certificate for this property.
Showing that the problem is NP-complete then involves encoding a well-known
NP-complete problem, namely 3-SAT, as an instance of the minimal norm prob-
lem; this encoding process occupies the bulk of [1].
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5.7.2 Thurston norm and Gromov norm

Recall from § 2.8 the definition of the L1 norm on the singular homology of a
space X, as the infimum of the L1 norm on chains evaluated on all cycles in a
given homology class. This is only a pseudo-norm in general, and in dimen-
sion 2 the quotient by the subspace of norm 0 is dual to the second bounded
cohomology.

Remark The L1 norm on homology is sometimes called the Gromov norm, es-
pecially in the context of 3-manifold topology.

Example 5.29 Let S be a closed, orientable surface of genus g, and let [S] ∈
H2(S; R) represent the fundamental class of S. Then

‖[S]‖1 = max(0,−2χ(S))

If g = 0 or 1, then S admits self-maps of degree > 1. By pulling back cycles
under such maps, one sees that there exist cycles representing the fundamental
class with arbitrarily small norm, and the claim follows. If χ(S) is negative, the
proof follows as in the proof of Theorem 2.74.

Example 5.30. (Gromov [115]) Let M be a closed hyperbolic n-manifold. Then
the L1 norm of the fundamental class satisfies

‖[M]‖1 =
volume(M)

vn

where vn is the volume of the regular ideal geodesic n-simplex. Notice that this
shows that hyperbolic volume only depends on the homotopy type of M. This
observation is the first step in Gromov’s proof of Mostow rigidity.

Given an integral homology class [C] ∈ H2(M; Z) for an irreducible 3-
manifold, we have a priori three natural norms to measure its complexity: the
L1 norm, the immersed Thurston norm (denoted for the moment by ‖ · ‖i; i.e.
the infimum of −χ(S)/n taken over all immersed surfaces S without spherical
components and representing n[C] in homology), and the (ordinary embedded)
Thurston norm.

From the definition and from the computation in Example 5.29 we have in-
equalities

1

2
‖[C]‖1 ≤ ‖[C]‖i ≤ ‖[C]‖

Gabai’s construction shows that these inequalities above can be replaced by
equalities.

Firstly, the argument in the proof of Theorem 2.74 implies that L1 chains
can be efficiently approximated by maps of surfaces, and therefore ‖[C]‖1 =
2‖[C]‖i. Secondly, if S is a Thurston-norm minimizing representative of [C] then
by Theorem 5.27, there exists a taut finite depth foliation F containing S as an
embedded leaf. Finally, by Corollary 5.13, if S′ is any immersed surface in M
representing [C] then ‖S′‖i ≥ ‖S‖ = ‖[C]‖

It follows that one has
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Corollary 5.31. (Gabai) Let M be a compact orientable irreducible 3-manifold. Then

‖ · ‖ =
1

2
‖ · ‖1

as (pseudo-)norms on H2(M; R).

5.7.3 Generalized Dehn’s lemma

In the paper [55] written in 1910, Dehn gave an argument to show that if ϕ :
D → M is a proper map from a disk into a 3-manifold with boundary, and ifϕ
is an embedding near ∂D, then there is an embeddingψ : D→ M which agrees
with ϕ near ∂D and whose image can be taken to lie in any regular neighbor-
hood ofϕ(D). This assertion became known as Dehn’s Lemma. Dehn soon found
a gap in his argument, which remained unfilled for almost 50 years until in 1957,
Papakyriakopoulos [195] proved the lemma by using general position and an
ingenious covering space argument.

Gabai’s existence theorem lets one generalize this to maps of arbitrary sur-
faces:

Corollary 5.32. (Gabai) Supposeϕ : S → M is a proper map from an oriented sur-
face into an irreducible 3-manifold, possibly with boundary. Then there is an oriented
surface T with −χ(T) ≤ −χ(S) and a proper embedding φ : T → M whose image
can be taken to lie in any regular neighborhood ofϕ(S), and such thatφ(T) andϕ(S)
represent the same (relative) homology class in M.

Proof Let N be a regular neighborhood of ϕ(S) in M. If N is reducible, we
can kill reducing spheres by filling spherical components of ∂N with balls in
M− N to produce N′. Take T to be a norm minimizing surface representing the
(relative) class of ϕ(S) in N′. Then T can be isotoped across 3-balls in N′ − N
to have image in N, and we can take φ to be the map which is the result of this
isotopy. 2

Note that Gabai’s argument does not give a logically independent proof of
Dehn’s lemma, since the work of Papakyriakopoulos is used implicitly at sev-
eral points in the proof of Theorem 5.27.

5.8 Disk decomposition and fibered links

Recall that a disk decomposition is a decomposition of a sutured manifold
(M,γ) where at each stage, the decomposing surface Si is a disk. Since the end
product of the decomposition is a union of balls, it follows that M, and all its
intermediate products in the decomposition, are unions of handlebodies.

If L ⊂ S3 is a link with Seifert surface R, it follows that a necessary condi-
tion for R to be disk decomposable is that S3/R is an (open) handlebody. The
converse is not true:

Example 5.33. (Goda) Goda [108] constructed infinitely many examples of taut
sutured handlebodies of genus 2 which are not disk decomposable. The specific
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examples are combinatorially quite complicated, but the basic idea is easy to
describe. Let H be a handlebody, and let τ be an essential train track in ∂H. One
says τ is of full type if there is a system of 3g − 3 compressing disks Di for H
such that the ∂Di meet τ efficiently (i.e. transversely and without bigons), and
if P is a component of ∂H −∪i∂Di (i.e. a pair of pants) then any two boundary
components of ∂P can be joined by an arc of τ . It is straightforward to show
that if γ is a simple closed curve fully carried by τ , then ∂H minus a regular
neighborhood N(γ) of γ is incompressible in H, and therefore the pair (H,γ) is
a taut sutured handlebody.

Goda gives examples of such τ with the property that for every compressing
disk D ⊂ H, the intersection ∂D ∩ τ has to contain certain local configurations
which certify that the result of decomposing (H,γ) along D is not taut.

Some disk decompositions are more special than others.

Definition 5.34 A disk decomposition is fibered if for each term

(Mi,γi)
Di+1
; (Mi+1,γi+1)

the disk Di+1 intersects s(γi) in exactly two points.

Such disk decompositions are also called product decompositions.

Theorem 5.35. (Gabai) Let L be a link, and R a Seifert surface. Then L is fibered with
fiber L if and only if the sutured manifold

(S3 − int(N(R)), N(∂R))

admits a fibered disk decompostion.

Example 5.36. (Hopf band) The Hopf fibration is a fibration from S3 → S2

with fiber equal to S1. Thinking of S3 as a subset of C2, the map is just the

usual projection to CP1 ≡ S2.

FIG. 5.6. A left handed Hopf band

The Hopf link in S3 is the union of two fibers of the Hopf fibration. It is natu-
rally an oriented link, with orientation coming from the orientations on S3 and
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S2, and the structure of the Hopf fibration. A Hopf band is an embedded annulus
in S3 with boundary equal to the Hopf link. There are two kinds of Hopf bands,
depending on whether the annulus admits an orientation compatible with the
natural orientation on the Hopf link or not. In the first case, the Hopf band is
right handed; in the second case, it is left handed. See Fig. 5.6.

The right handed Hopf band may be taken to be the preimage of an interval
I in S2 joining the two points whose preimages in S3 are the Hopf link. An S0 in
S2 is a fibered (0-dimensional) link; this fibration can be pulled back to exhibit
the Hopf link as a fibered link with fiber the right handed Hopf band.

For each orientation of the Hopf link, it is a fibered link with fiber a Hopf
band of some handedness. The monodromy of the fibration is a map from an
annulus to itself which is a right/left handed Dehn twist for right/left handed
Hopf bands respectively.

New fibered links may be obtained from old by the following construction.

Construction 5.37. (Murasugi sum) Let R1, R2 be two oriented surfaces in S3

separated by some embedded S2. Suppose further that for i = 1, 2, Di is an
embedded disk in Ri such that Di ∩ ∂Ri consists of n disjoint arcs. We isotop R1

until D1 and D2 are identified to a disk D, in such a way that the 2n disjoint arcs
join up to make the boundary of D. The union is called the Murasugi sum of R1

and R2.
By hypothesis, there is a disk E properly embedded in S3− R with ∂E = ∂D.

The disk E may be taken to be the first surface in a sutured manifold decompo-
sition for S3− R. It follows that if S3 − Ri is disk decomposable for i = 1, 2 then
the same is true for S3 − R.

One also says R is obtained by plumbing R1 and R2 along D.
The Murasugi sum was introduced in [175], in order to prove that the degree

of the Alexander polynomial is equal to twice the minimal genus of a Seifert
surface for an alternating knot.

In [83] and [84], Gabai proves both directions of the following theorem:

Theorem 5.38. (Gabai) Let R ⊂ S3 be obtained by Murasugi sum of oriented sur-
faces R1 , R2. Then L = ∂R is a fibered link with fiber R if and only if Li = ∂Ri is
fibered for i = 1, 2.

If Li = ∂Ri are fibered links with monodromyφi : Ri → Ri then by including
each Ri in R we can extend φi by the identity outside Ri to φi : R → R. Then
the monodromy φ : R→ R is

φ = φ1φ2

5.8.1 Fibered links and Hopf bands

The implication that the Murasugi sum of fibered links is fibered was already
known by work of Murasugi [175] and Stallings [222]. A special case of Theo-
rem 5.38, studied by Stallings, is when one of the links is a Hopf link. Summing
with Hopf bands by itself turns out to be a surprisingly powerful operation.
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Example 5.39. (Trefoil and Figure 8 knot) The Murasugi sum of two Hopf bands
is a punctured torus. If the two Hopf bands have the same handedness, the
boundary of the result is a trefoil of the same handedness; otherwise, the bound-
ary is a figure 8 knot. It follows that both these knots are fibered with fiber genus
1. See Fig. 5.7.

FIG. 5.7. A left handed trefoil bounds a punctured torus obtained by Murasugi
summing two left handed Hopf bands

Example 5.40. (Alternating knots) An alternating knot fibers if any only if the
constant term of the reduced Alexander polynomial is 1. This happens if and
only if the fiber is a Murasugi sum of Hopf bands. See [176].

It is natural to ask what fibered links can be obtained from an initial set of
links by Murasugi summing their Seifert surfaces with Hopf bands. This seems
like a difficult question as stated; however if one considers the equivalence rela-
tion on fibered links defined by sequences of summing and desumming with
Hopf links, the situation becomes much more simple. Recall that a fibered link
L in a manifold M gives M the structure of an open book (see Example 4.11).
The operation on open book structures induced by plumbing with Hopf bands
is called stabilization.

Theorem 5.41. (Giroux–Goodman [107]) Two open book structures on a closed ori-
ented 3-manifold admit isotopic stabilizations if and only if their associated oriented
plane fields are homologous.

It follows that if M is an integral homology 3-sphere, any two open book
structures are stably isotopic. In particular,
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Corollary 5.42. (Giroux–Goodman) Any fibered link in S3 can be obtained from the
unknot by sumnming and desumming with Hopf bands.

This corollary was first conjectured by Harer [120].
The proof uses the theory of contact structures, and a known relationship

between contact structures and open book decompositions. It also uses the ho-
motopy classification of overtwisted contact structures by Eliashberg [65].



6

ESSENTIAL LAMINATIONS

This is a short chapter, whose purpose is mainly to introduce the definition
and some basic properties and examples of essential laminations and genuine
laminations. This is a rich and important theory, but in some ways outside the
main focus of this book. We refer the interested reader to the papers [89], [92],
[95], [94], [96], [150], [2] for some of the highlights of the theory.

We also define and discuss pseudo-Anosov flows, which generalize both
Anosov flows and suspensions of pseudo-Anosov surface homeomorphisms.
Beyond their intrinsic fascination, pseudo-Anosov flows play an important role
in subsequent chapters in generalizing the theory developed in Chapter 1.

6.1 Abstract laminations

We have already met geodesic laminations in Chapter 1, where they arose mainly
as limits of sequences of embedded closed geodesics. Abstract laminations are
more general objects, which typically do not come together with an embedding
in a manifold (even locally). On the other hand, like geodesic laminations, they
often arise from limit or inverse limit processes.

Definition 6.1 A lamination (also known as a foliated space) is a topological space
X with a local product structure of the form Rp ×Y where Y is a locally compact
topological space, such that on the overlaps

(Rp ×Yi) ∩ (Rp ×Yj)

the transition functions are of the form

φi j(t, x) = (ψ1
i j(t, x),ψ2

i j(x))

In particular, the local manifold slices Rp × point piece together locally to form
a partition of X into complete p-manifolds, the leaves of the lamination.

Thus, a lamination is like a foliation, except that the transverse space does
not have to be a manifold. By analogy with foliations, we call the neighborhoods
of the form (Rp × Yi) product charts, the factors Rp × point plaques, and the Yi

local leaf spaces.

Remark If the transverse spaces Y are totally disconnected, the leaves are just
the path components of X. But if Y is connected, e.g. Y = Rq, then the product
structure is a necessary part of the data.

209
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Example 6.2. (minimal set) If M, F is a foliation, then a closed union X of leaves
of F (e.g. a minimal set) is a lamination. Its leaves are the leaves of F which in-
tersect X.

Example 6.3. (normal lamination) Let M3 be triangulated by τ and let Σi be
a sequence of incompressible normal surfaces of least weight in their homol-
ogy class. Then there is a convergent subsequence of projective normal edge
weights, normalized to have total weight 1, and these weights limit to some
w : τ1 → R with image contained in the nonnegative reals, which defines a
normal (measured) lamination, locally of least weight.

Example 6.4. (inverse limit) Let M be a manifold and f : M → M a covering
map. The inverse limit

M̂ = lim← · · · → M→ M

is a lamination whose leaves are all covering spaces of M.
Here the inverse limit is defined to be the subset of ∏∞

i=0 M consisting of left
infinite sequences

(. . . mi, mi−1, . . . , m1, m0)

where f (mi) = mi−1 for all i.
For example, let M = S1 thought of as the unit circle in C, and f : S1 → S1

be the map f (z) = z2. Then Ŝ1 is a bundle over S1, with projection given by the
map

(. . . mi, . . . , m0)→ m0

and with fiber homeomorphic to a Cantor set. In fact, for each m0 ∈ S1, there
are exactly two possibilities for m1, four possibilities for m2, eight possibilities
for m3, etc. and we see that the fiber over m0 has the natural structure of the set
of 2-adic integers Z2. With respect to the usual topology on Z2, the monodromy
on the fiber is the map

+1 : Z2 → Z2

This map has no fixed points, and every leaf of Ŝ1 is homeomorphic to R. Notice
that this is a minimal lamination — every leaf is dense.

Example 6.5. (rational maps) Let f : CP1 → CP1 be a rational map of the Rie-

mann sphere. A point (. . . , z1, z0) in the inverse limit ĈP1 is regular if zn is a
regular value of f for all sufficiently large n. Then the set of regular values is
a union of Riemann surfaces. Let A be the subset of affine leaves. The leaf-
wise affine structure does not vary continuously, but one can suitably refine the
topology on the transverse space so that A has the structure of an affine Rie-
mann surface lamination. See [155] for details.

Example 6.6. (profinite completions) Let G = SL(2, Z), and let Ĝ denote the
profinite completion of G; i.e. the inverse limit of the family of all surjective
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homomorphisms from G to finite groups with the profinite topology. Then Ĝ is
compact, and we can form the quotient

Λ = (H2 × Ĝ)/G

This space is sometimes called the punctured solenoid.

Example 6.7. (bounded geometry) A complete Riemannian manifold M is said
to have bounded geometry if its curvature is bounded above and below by some
constant, and its injectivity radius is bounded below by some positive constant.
Such a manifold M is a dense leaf of a compact lamination Λ.

There is a natural metric on the space of all compact metric spaces called
the Gromov-Hausdorff metric, where d(X, Y) for metric spaces X, Y is defined to
be the infimum of the Hausdorff distance between X and Y with respect to all
isometric inclusions of X, Y into a third compact metric space Z. The Gromov-
Hausdorff metric induces a natural topology (sometimes called the adic topol-
ogy) on the set of locally compact pointed metric spaces, where we say that
points p ∈ X and q ∈ Y are close if there is a large R and small ǫ such that the
ball of radius R around p in X and the ball of radius R about q in Y are ǫ-close
in the Gromov-Hausdorff metric in such a way that the inclusion into a third
space Z takes p and q to ǫ-close points.

With this topology, the closure of M in the space of pointed metric spaces is
a compact space in which M is dense. If any pointed metric space in the closure
of M admits a non-free isometry, the closure M will only be a kind of orbifold
lamination in which the “leaves” are quotients of manifolds by their isometry
groups. To remedy this, one can perturb the metric on M somehow, or decorate
it with a generic separated net before taking the closure.

Compare with Example 1.55.

Example 6.8. (aperiodic tilings) The space of aperiodic tilings of Rp by some
finite set of tiles τi naturally has the structure of a lamination. For example the
space of Penrose tilings. In fact, there is a natural relationship between this lam-
inated space and a certain irrational foliation of a torus, which we describe.

Take π an irrational p-dimensional plane in Rn. Let C be a unit cube in Rn,
and consider the parallel translates Cp of C taking the vertex 0 to a point p ∈
π . For each q in the cubical lattice Zn which is contained in some Cp, let q′

be the orthogonal projection of q to π . Let V denote the union of such q′ over
all q in some Cp. There is a natural tiling of π associated to V whose cells are
the closures of the points which are closest to some q′ ∈ V; this is called the
Voronoi tiling associated to V. Now let T be the dual tiling to the Voronoi tiling
determined by the V, with vertices exactly at the points in V. It is clear that
only finitely many kinds of tiles appear in T, up to translational isometry in
π ; if π avoids the lattice Zn, these tiles are the orthogonal projections to π of
p-dimensional faces of the cubical lattice.

Other planes π ′ parallel to π will determine distinct irrational tilings by the
same finite set of isometry types of tiles. Let F be the foliation of the torus
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Tn = Rn/Zn by planes parallel to π . Every leaf of F which avoids the vertex
determines such a tiling of Rp. We need to worry somewhat about translates
of π passing through the vertices. Pick a vertex v, and let πi be a sequence of
translates of π which avoid Zn but converge to v radially in some direction
w ∈ Tvπ

⊥. Then the tilings Ti determined by the πi converge on compact sets to
a limiting tiling Tw associated to the vector w. We see that the lamination of all
tilings is obtained from F by blowing up the leaf λ passing through the vertex.

6.2 Essential laminations

We narrow our focus to laminations in 3-manifolds.

Definition 6.9 A surface lamination in a 3-manifold is a foliation of a closed sub-
set of M by 2-dimensional leaves which are complete with their induced path
metric.

When the context is clear, we will usually refer to a surface lamination in
a 3-manifold simply as a lamination. We say a lamination is nowhere dense if it
does not restrict to a foliation of any open subset of M.

Example 6.10 Let F be a foliation of M. A minimal set for F is an example of a
lamination. If F is minimal, we could blow up some leaf; a minimal set would
then be a proper sublamination.

Example 6.11 Suppose γ is an essential loop in a leaf λ of a foliation F of M.

Blow up λ to a pocket λ× I, and perturb γ to lie in λ× 1
2 . Then the complement

of the blown-up pocket is a lamination Λ of M. If N is a branched cover of M
with branch locus γ, the preimage Λ′ of Λ is a lamination of N. In general, the
lamination Λ′ cannot be “blown down” to a foliation.

Example 6.12 Let Λ be a geodesic lamination of a hyperbolic surface Σ. Let
M be a circle bundle over Σ, with p : M → Σ the projection along the circle
fibers. Then p−1(Λ) is the total space of a lamination, whose leaves consist of
the preimages p−1(λ) for leaves λ of Λ. Compare with Example 4.55.

Example 6.13 Suppose Λ is a geodesic lamination of a hyperbolic surface Σ
with the property that for some automorphism ϕ : Σ → Σ the image ϕ(Λ) is
isotopic to Λ. After replacingϕwith an isotopic automorphism, we can assume
it preserves Λ as a set. Then the product lamination Λ× I of Σ× I glues up to
give a lamination of the mapping torus

Mϕ = Σ× I/(s, 0) ∼ (ϕ(s), 1)

A geodesic lamination Λ of a finite area complete hyperbolic surface Σ has
measure 0. The complementary regions are hyperbolic surfaces with geodesic
boundary. If some complementary region is an ideal polygon with an odd num-
ber of sides, the lamination Λ is not co-orientable. Since the complementary
region is simply-connected, it lifts to any cover and represents an obstruction to
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co-orientability in such a cover. It follows that such a lamination, or a suspen-
sion of it such as might arise in Example 6.13, cannot be a sublamination of a
foliation of its ambient manifold.

FIG. 6.1. An end compressing disk is like a compressing ideal monogon

Definition 6.14 The complement of a lamination Λ falls into connected com-
ponents called complementary regions. A lamination is essential if it contains no
spherical leaf or torus leaf bounding a solid torus, and furthermore, if C is the
metric completion of a complementary region (with respect to the path metric
on M), then C is irreducible, and ∂C is both incompressible and end incompress-
ible in C. Here an end compressing disk is a properly embedded

D2 − (closed arc in ∂D2) ⊂ C

which is not properly isotopic rel. ∂ in C to an embedding in a leaf.

Another way of thinking of an end compressing disk is as a compressing
ideal monogon — that is, a monogon with one vertex “at infinity”. If you fold
a piece of paper without creasing it, so that the top and bottom edges are asymp-
totic, there is an obvious end compressing disk for the region in space “bounded”
by the paper. See Fig. 6.1. A monogon can be doubled to a punctured sphere,
and so one can think of it as having Euler characteristic 1/2. Similarly, an ideal
bigon has Euler characteristic 0, an ideal triangle (a “trigon”) has Euler charac-
teristic −1/2 and so on (compare with § 1.8).

With this convention, a lamination is essential if it has no Reeb components,
and if every essential surface in the complement has nonpositive Euler charac-
teristic.

The analogue of Novikov’s Theorem 4.35 for essential laminations is proved
by Gabai and Oertel in [96]. Before we can state the theorem, we say that a
properly embedded arc σ in a complementary region to a lamination Λ is tight
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if it is not properly homotopic rel. endpoints in M−Λ into a leaf of Λ. A loop
is tight if it is transverse to Λ, and all its subarcs are tight.

Theorem 6.15. (Gabai–Oertel [96]) Let M be a 3-manifold, and letΛ be an essential
lamination. Suppose M is not finitely covered by S1× S2. Then the following properties
are satisfied:

1. M is irreducible

2. leaves are incompressible; i.e. the inclusion λ → M induces a monomorphism
π1(λ)→ π1(M)

3. every tight loop γ transverse to Λ is essential in π1(M)

We give only an outline of a proof; for details, one should see [96].

Proof The proof is basically the same as Novikov’s proof of Theorem 4.35.
Given a transverse or tangential loop γ, one finds an immersed disk D that
it bounds, which one puts in general position with respect to Λ. Then the inter-
section Λ ∩ D gives a singular lamination of D. By counting Euler characteris-
tic, either some complementary region to D ∩Λ is inessential and can be com-
pressed or boundary compressed, or else there are some local maxima/minima
tangencies. By pushing in circles of D ∩ Λ around such a tangency, we either
push D entirely into a leaf of Λ, or we find a vanishing cycle; then Novikov’s
argument proves that Λ contains a Reeb component, contrary to the definition
of an essential lamination. 2

6.3 Branched surfaces

The relationship of branched surfaces to laminations in 3-manifolds is analo-
gous to the relationship of train tracks to geodesic laminations in surfaces.

Definition 6.16 A branched surface B in a 3-manifold M is a 2-complex with a
C1 combing along the 1-skeleton giving it a well-defined tangent space at every
point, and generic singularities. That is, every point p ∈ B has a neighborhood
in M which is homeomorphic to one of the local models in Fig. 6.2.

FIG. 6.2. Local models for a branched surface in a 3-manifold

The singular locus of B, denoted sing(B), is the set of points p ∈ B such that
there is no open neighborhood U of p in B homeomorphic to a disk. Topolog-
ically, sing(B) is a union of C1 circles in B with isolated double points and no
triple points. The complementary surfaces to sing(B) are called the branches of
B. Sometimes, the branches are also called sectors.
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Away from the finitely many double points, sing(B) is a 1-manifold along
which two local branches of B coalesce into a single branch. This local structure
defines a canonical co-orientation along each such singular edge; this lets one
define a vector field on B along sing(B) (away from the double points) which
points into the local single branch. This is called the maw vector field.

As with train tracks, a branched surface has a well-defined normal bundle
in a 3-manifold, and a regular neighborhood N(B) can be foliated by intervals
transverse to B in such a way that collapsing these intervals collapses N(B) to
a new branched surface which can be canonically identified with B.

As with train tracks, one branched surface can (fully) carry another. More-
over, laminations can be carried by branched surfaces, which allows one to
study them combinatorially:

Construction 6.17 Let Λ be a nowhere dense lamination in M. Let N(Λ) be
the ǫ-neighborhood of Λ, for sufficiently small ǫ. Then we can foliate N(Λ) by
intervals transverse to Λ. Collapsing these intervals to points gives a branched
surface B which carries Λ.

Example 6.18 If Bi are a sequence of branched surfaces and we have maps fi :
Bi → Bi−1 such that, for every singular point p ∈ Bi there is some j such that
the preimage of a neighborhood D of p in B j is a union of disks, then the inverse
limit

B̂ ⊂∏
i

Bi

consisting of sequences (. . . pi, . . . , p1, p0) such that fi(pi) = pi−1 for all i, is
an abstract surface lamination — i.e. the leaves are all nonsingular manifolds.

The point is that every singularity in any Bi is “resolved” by some definite f−1
j ,

and therefore the inverse limit is nonsingular. If each Bi is contained in a fixed
3-manifold M in such a way that each fi is a carrying map from one branched

surface to the next, then B̂ can be realized as a lamination in M.
The lamination B̂ is clearly carried by any one of the branched surfaces Bi

with carrying map given by the projection

(. . . pi, . . . , p1, p0)→ pi

Example 6.19. (Mosher–Oertel’s Universal lamination [174]) Given a branched
surface B, one can consider various universal families of directed systems of
branched surfaces Bi carried by B. One convenient way to do so is to fix a (suf-
ficiently fine and generic) simplicial structure on B and to restrict attention to
branched surfaces Bi carried by B for which the carrying map is simplicial. The
inverse limit of this directed system is an abstract lamination Ω, together with
a carrying map f : Ω → B, called the universal carrying lamination of B. It has
the property that for any lamination g : Λ → B carried by B, there is a unique
continuous map q : Λ→ Ω such that f ◦ q = g.

One way to construct Ω is to fix a path metric on B, and think of Ω as the
union of all complete surfaces which are isometrically carried by B, with the
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usual topology on the space of all pointed locally compact metric spaces (com-
pare with Example 6.7). Thinking ofΩ in this way makes its universal property
transparent.

6.4 Sink disks and Li’s theorem

Just as train tracks can be either essential or not, some branched surfaces are
better than others. As with train tracks, some control over the topology of com-
plementary regions is necessary.

If B is a branched surface, and S is a (not necessarily complete) surface in
M transverse to B, then S ∩ B is a train track. By analogy with incompressible
surfaces, one expects that if τ is essential (as a train track) in B, then τ should
be essential in S. This leads to the condition that complementary regions to a
branched surface should contain no compressing disk or compressing mono-
gon.

The following definition is introduced in [150]:

Definition 6.20 A branched surface B ⊂ M is laminar if it satisfies the following
conditions:

1. B has no sink disk; i.e. there does not exist a disk D which is a branch of
B, and such that the maw vector field along ∂D ⊂ sing(B) points always
into the interior of D

2. Complementary regions to B are irreducible, and contain no compressing
disk or compressing monogon

3. B does not carry a sphere or a torus T bounding a solid torus

Lemma 6.21 Let B be a laminar branched surface. Then any laminationΛ fully carried
by B is essential.

Proof Let Λ be fully carried by B, and let λ be a boundary leaf of Λ, bounding
a complementary region C. Then C is a union of complementary regions Ci to
B, together with I-bundles over surfaces Si carried by B with ∂Si carried by
sing(B), and with the maw vector field pointing into c(∂Si).

A compressing disk or monogon for λ in C can be made transverse to the I-
bundle regions Si × I and therefore consists of a union of subsurfaces Ei which
can be properly embedded in the Ci, together with parallel copies of the Si. By
hypothesis, no Si is a disk. It follows by additivity of Euler characteristic that
some components of the Ei are compressing disks or monogons, contrary to the
definition of a laminar branched surface.

Similarly, if S is a reducing sphere in C, we can compress S along the bound-
aries of the I-bundle regions to find a reducing sphere in some Ci, also contrary
to the definition of a laminar branched surface.

Finally, Λ contains no sphere leaf or torus leaf bounding a solid torus, or else
B would carry such a sphere or torus. 2

Remark In fact, from the argument above, it is clear that the only sink disks we
need to rule out are those for which the disks D carried by B can be included
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in slightly larger disks D′ such that D′− D is embedded in some complementary
region to C. Such a D is called a disk of contact in [96].

Conversely, Li proves the following by an inductive construction:

Lemma 6.22 If Λ is an essential lamination of M with some leaf which is not a plane,
then Λ is carried by a laminar branched surface.

Note that if M contains an essential lamination Λ in which every leaf is
a plane, then M is homeomorphic to T3. We will prove this in the sequel as
Lemma 7.21.

Not all sink disks are an obstruction to fully carrying a lamination, but some
simple examples are:

Example 6.23 One kind of local obstruction is a twisted disc of contact, illustrated
in Fig. 6.3

FIG. 6.3. A branched surface with a branch which is a twisted disk of contact
cannot fully carry a lamination

As one winds around the circle of singularity, two branches of the surface
coalesce. It follows that for any lamination Λ fully carried by such a branched
surface, there is nontrivial holonomy around such a loop. On the other hand,
this loop bounds an embedded disk which is a branch of the branched surface,
and therefore the holonomy around it must be trivial. This contradiction shows
that the twisted disk of contact obstructs the existence of Λ.

Example 6.24 Let D be the twisted disk of contact, shown above. Define Dn to
be the n-fold branched cover of D over a vertical line through the center of the
spherical branch. Any Dn is also an obstruction to fully carrying a lamination.

Example 6.25 Consider the operation of splitting open a train track τ along two
arcs which share an interval of tangency. There are three possible ways to split
open this interval, illustrated in Fig. 1.6, which we denote τ+, τ0, τ−. We can
build a branched surface by taking the union of τ × I with the mapping cylinder
of the carrying maps τ+ → τ , τ− → τ where one mapping cylinder is attached
at τ × 0 and the other at τ × 1. The branched surface so obtained contains a
copy of D2.
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Example 6.26 A twisted disk of contact D can be embedded into a branched
surface B which fully carries a lamination (though not as a single branch). At-
tach a once-punctured torus T along ∂T to the interior of D. The union B ∪ T
can be split into an ordinary disk E and a once punctured torus with a twisted
annulus attached along the boundary. Both pieces evidently fully carry a lami-
nation.

Example 6.27. (Zannad) In his PhD thesis [254], Zannad describes a branched
surface with boundary, containing no twisted disk of contact, which does not
fully carry a lamination. Start with a pair of pants P whose outer boundary com-
ponent is a circle of the branch locus, in such a way that the maw vector field
points inwards along this boundary. Attach two “blisters” to P along properly
immersed arcs as indicated in Fig. 6.4 to produce the branched surface B.

Let γ be an arc in P running from the outer boundary component to one
of the blisters. There are essentially 6 combinatorially distinct ways of splitting
open B along γ; one can check that in every case, a twisted disk of contact ap-
pears in the result.

γ

FIG. 6.4. This branched surface is obtained from a pair of pants P by blistering
along two properly immersed arcs. It contains no twisted disk of contact,
but does not fully carry a lamination. It does contain three sink disks. No
matter how γ is split open, the result contains a twisted disk of contact.

For more examples, and a thorough discussion of twisted disks of contact
and their generalizations, see [96] or [254].

One sees from these examples that it is a subtle question to decide, given a
branched surface, whether it fully carries a lamination. The principle advantage
of laminar branched surfaces is that they come with a guarantee:

Theorem 6.28. (Li, carrying theorem [150]) Let B be a laminar branched surface.
Then B fully carries a lamination Λ, which is necessarily essential.
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In what follows we present a rough outline of the proof of Theorem 6.28. Of
course, for details, one should consult [150].

The basic idea of the proof is to cut up B into two subsurfaces: one consisting
of “sink surfaces” where the maw vector field always points inwards, and the
remainder, where there are no dead ends, in the sense that one can always exit
every branch by a path in B whose orientation agrees with the maw vector
field. The absence of dead ends implies that one can inductively split open this
second subsurface, as in Example 6.18, to produce a lamination Λwhich it fully
carries. One can then argue that any lamination on the second subsurface can
be extended (at the cost of embedding it in a slightly bigger lamination) over
each of the sink surfaces, by solving a holonomy problem.

First we must prove some lemmas:

Lemma 6.29 Let B be a branched surface, and let c be a circular component of ∂B. If
B fully carries a lamination, then the branched surface B′ obtained from B by gluing
on a once-punctured orientable surface S of positive genus along c also fully carries a
lamination.

Proof Let A = c × I, so that Λ ∩ A is a lamination of A transverse to the I
fibers. Then the components of A − (Λ ∩ A) are all open annuli or products
R× I, so Λ ∩ A can be extended to a foliation Fc by adding product foliations
in these complementary pieces.

The holonomy of Fc around c is some element h ∈ Homeo+(I). By Theo-
rem 2.65, we may express h as a product of any (positive) number of commuta-
tors. So we can foliate S× I by a foliation FS transverse to the I fibers in such a
way as to extend Fc.

Now, blow up some leaves of FS to get a nowhere dense lamination ΛS.
Each leaf of ΛS − (Λ ∩ A) is parallel to some nearby leaf of Λ ∩ A. So we can
extend ΛS over B by adding suitable families of parallel leaves. 2

Remark If S is a surface with more than one boundary component, then π1(S)
is free in such a way that we may take any given boundary component as one
of the generators. It follows that if S is multiply-punctured, any lamination Λ
fully carried by B may be extended over B′ obtained by gluing one boundary
component of S to B. Proceeding inductively, it follows that one can generalize
Lemma 6.29 to arbitrary orientable nonplanar surfaces S, glued up to B along
any (finite) number of components of ∂S.

Remark Note that in the proof of Lemma 6.29 we must modify Λ by adding
more leaves in order to extend it over S. This is because, while Homeo+(I) is
perfect (and even uniformly perfect), the same is not true for the group of order-
preserving automorphisms of K, where K ⊂ I is an arbitrary closed set.

Example 6.30 Suppose K is a discrete subset of the interior of I for which both
endpoints are limit points. There is an obvious “translation” of K to itself, which
takes each point p to the nearest point q with q > p. The suspension of this
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map defines a lamination of A consisting of a single line spiralling around two
boundary circles. This lamination does not extend over any closed surface.

Lemma 6.31 Let c1, c2 be two circular components of ∂B. If B fully carries a lamina-
tion without disk leaves, then the branched surface B′ obtained by gluing c1 to c2 fully
carries a lamination.

Proof Let A1, A2 be the two annuli c1 × I, c2 × I lying over c1, c2. Let Λ be a
lamination fully carried by B, and let Λi be the intersection Λ ∩ Ai. Then each
Λi is a lamination of an annulus, with two circular boundary components C±i ,
labelled by some (local) co-orientation, compatible with the gluing of c1 to c2.
Let λ±i be the leaves of Λ bounded by circles C±i .

We blow up each boundary leaf of Λ to a product, and delete the interior.
So without loss of generality, we can assume that the boundary circles of Ai are
isolated. Using this isolation, we can subdivide each Ai into two annuli A±i with

boundaries which are boundaries of leaves of Λ, such that A−1 and A+
2 have no

leaves of Λi in their interior. We can now glue A1 to A2 in such a way that the
A−i match up, and likewise for the A+

i .

Each of the annuli A−1 , A+
2 bounds a product l−1 × I, l+2 × I for leaves l−1 , l+2 of

Λ. Now, after possibly adding more leaves, each leaf ofΛi ∩ A+
i can be extended

over this product, by Lemma 6.29, using the hypothesis that no leaf is a disk.
Assume for the moment that the boundary components of l−1 which do not lie

on A−1 all lie instead on A+
1 ∪ A−2 . Then when we extend the laminations over

the product gaps, we might add new leaves in boundary gaps between leaves
in A+

1 and A−2 . We then glue these up to the corresponding gaps in A−1 ∪ A+
2 ,

and extend them over the product regions as above. We continue this process
inductively for ω steps; at the end of this process, the laminations have been
glued up exactly, and we have completed the construction.

We must worry about the case that l−1 = l+2 = l, and A−1 , A+
2 are boundary

annuli of the same product region l × I. If l is not an annulus, by Lemma 6.29,
the pair of laminations on the boundary annuli can be extended over l× I, after
possibly adding more leaves. If l is an annulus, we blow up the circles A−1 ∩ A+

1

and A−2 ∩ A+
2 and the leaves they bound to a product, and delete the interior

leaves. Let c be a meridian of l, splitting l into two subannuli l1, l2. Then we can
extend A+

1 over l1 × I, and A−2 over l2 × I, and we are back at the problem of
gluing up the resulting laminations along c× I.

So we repeat the entire process above inductively. Either we can completely
extend the lamination at some finite stage, or we have to keep blowing up and
splitting boundary annuli infinitely often. It follows that after at most ω steps,
we are done. 2

Remark The cautious reader might worry in the proof of Lemma 6.31 that we
have postponed an (unsolvable) holonomy problem indefinitely by repeatedly
blowing up and splitting. Of course this is exactly what we have done; the pro-
cess of blowing up and splitting replaces a holonomy problem on a surface
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with no free boundary component by an infinite sequence of (solvable) holon-
omy problems on open surfaces and surfaces with free boundary components.
Each time we blow up, we insert gaps of smaller and smaller width, so that
the sum of the added widths converges. Each time we extend an annulus over
the gap, the free boundary component recedes further into the distance in the
path metric, until in the limit the surface we obtain is complete, and there is
no free boundary to glue up. Swindles like these are an important tool in low-
dimensional topology, and one should not be diffident about their use.

We now give a brief sketch of the proof of Theorem 6.28.

Proof Suppose B is a laminar branched surface. Define a graph Γ in B as fol-
lows. For each component c of sing(B), take two parallel copies of c on the
negative side of the maw vector field. Where two components c1, c2 of sing(B)
intersect transversely at a point p, we obtain locally four pushoffs c±1 , c±2 where

without loss of generality, c−1 and c+
2 cross transversely at some point q near p.

We add two arcs to Γ which are integral curves of the maw vector field joining
c+

1 to c+
2 and c−2 to c−1 .

Let KΓ be a small closed regular neighborhood of Γ in M, and let PΓ = B∩ LΓ .
Then PΓ is a branched surface with boundary, whose singular locus consists of
simple arcs, with two simple arcs for each double point of sing(B). It is easy to
find a canonical lamination fully carried by PΓ : for each branch E ⊂ PΓ , take a
product E× C where C is the middle third Cantor set, thought of as a subset of
I in the standard way. Along each branch arc, two branches amalgamate into
one in the direction of the maw vector field. We must glue the products E × C
by a homeomorphism of their boundary components

I × C ∪ I × C→ I × C

which can be done by identifying C with two disjoint copies of itself in the usual
way.

Now, the lamination carried by PΓ is extended inductively over the compo-
nents of B− Γ . Such components are either non-disks, in which case the exten-
sion can be carried out by application of Lemma 6.29 or Lemma 6.31, or else
they are disks. Now, by assumption, no disk component is a sink, and there-
fore any such disk component D has a boundary edge E with maw vector field
pointing outwards. The lamination can be extended over D by combing it to-
wards the “free” boundary edge E. After some finite set of such moves, one
either ends up in a non-disk complementary region and applies Lemma 6.29 or
Lemma 6.31 again, or one encounters a cycle of disks

D1
E1−→ D2

E2−→ · · · Ei−→ D1

The union of the disks in such a cycle is a branched annulus A, where all the
“tails” of the branch locus point in the same direction. At this point, we have
already constructed a lamination Λ along the boundary of the annulus, and it
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remains to extend it over the branched annulus. The key point is the coherence
of the tails: it implies that leaves of Λ|∂A spiral around components of ∂A in
the same direction. It follows that we can split open A to a finite union of semi-
infinite strips I ×R+ so that Λ|∂A lifts to a lamination along each component of
I ×R+. Now, since each I ×R+ component is noncompact, there is no obstruc-
tion to pushing the lamination of the boundary across the interior indefinitely.
This completes the construction of a lamination fully carried by B, which by
abuse of notation, we denote by Λ.

Lemma 6.21 implies that Λ is essential. 2

Li’s theorem gives a powerful, easily checked criterion for a 3-manifold to
contain an essential lamination.

6.4.1 Normal laminations

In [26], Brittenham proves the following theorem:

Theorem 6.32. (Brittenham) Let M be a 3-manifold, and let τ be a triangulation of
M. If M admits an essential lamination Λ, then it admits an essential lamination in
normal form.

One should compare with the classical theorem of Haken that if a manifold
contains an incompressible surface, then it contains a normal incompressible
surface. The proof in either case is similar: one first blows up leaves of Λ if nec-
essary and replaces Λ with a minimal sublamination in order to ensure that Λ
is nowhere dense. Then one tries to move Λ by isotopy until it is in normal form
with respect to τ . As in the case of essential surfaces, the first step is to ensure
that the intersection of Λwith the 2-skeleton consists of a union of normal arcs;
this step is straightforward, since inessential loops come in families which can
be simultaneously compressed across the face of a simplex. The next step is to
find innermost plaques whose intersection with some simplex is a disk of high
index, and do a boundary compression. The problem is that this step might
produce a new lamination which is normally isotopic to the old.

For example, an essential lamination might contain a monkey saddle in a
product region (ideal polygon) × S1, and a neighborhood of the saddle might
intersect some simplex in a high index disk whose boundary consists of normal
arcs. Doing a boundary compression pushes the saddle one way or the other;
after a sequence of finitely many such compressions, the saddle will wind once
around the S1 direction, and come back to where it started. See Fig. 6.5.

Brittenham’s key idea is to keep track of the intersection of Λ with the 2-
skeleton, not up to normal isotopy, but actually as a set. If one is careful, the
result of compressing an innermost high-index plaque is to produce a new lam-
ination Λ′ such that Λ′ ∩ τ2 is a proper subset of Λ∩ τ2. After a maximal (trans-
finite) family of such compressions, one argues that the result is a normal lami-
nation. Compare with the Remark following the proof of Lemma 6.31.
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∂−compress−−−−−−−→

FIG. 6.5. The result of a sequence of boundary compressions on a saddle piece
may be normally isotopic to the identity

Gabai generalized Brittenham’s argument in [89] to show that given any 3-
manifold M, there is a fixed triangulation τ such that every essential lamination
Λ on M can be isotoped to be normal with respect to τ .

Example 6.33 Let M be a 3-manifold, and suppose the rank of H2 is at least 2.
Let α ∈ H2(M; R) be an irrational class, which is not proportional to a rational
class. Letαi be a sequence of rational classes which converge toα. Fix a triangu-
lation τ of M, and for eachαi let Si be an incompressible normal surface which
represents the projective class of αi. Then each normal surface Si determines a
rational weight wi on the edges of τ . Moreover, the sequence wi contains a sub-
sequence which converges to some real valued positive weight w. This weight
w determines a measured lamination, in normal form with respect to τ .

Conversely, every fully measured nowhere dense lamination Λ is fully car-
ried by a branched surface B. By approximating the weights defining Λ by ra-
tional weights, we can find a sequence of incompressible surfaces Si which are
fully carried by B, and which converge homologically to Λ. It follows that Λ
can be normalized relative to any triangulation.

An important corollary of Theorem 6.32 and Theorem 6.28 was obtained by
Agol and Li [2]:

Corollary 6.34. (Agol–Li) There is an algorithm to tell whether a given 3-manifold
contains an essential lamination.



224 ESSENTIAL LAMINATIONS

Proof Let M be a 3-manifold, and let τ be a triangulation. If Λ admits an es-
sential lamination, then it admits an essential lamination Λ in normal form, by
Theorem 6.32. It follows that if M admits an essential lamination, then it admits
a lamination which is carried by one of a finite set of constructible branched
surfaces B1, · · · , Bn.

By Lemma 6.22, either M = T3 (which contains many essential laminations),
or else we can assume that any essential lamination Λ in M is carried by a lam-
inar branched surface. So the algorithm proceeds by taking each of the surfaces
Bi and splitting it open repeatedly in all possible ways. After some finite time,
either every such branched surface we obtain by this process has some local
obstruction to being split open further along some branch, or else we obtain
some laminar branched surface. In the first case, M does not admit an essen-
tial lamination. In the second case, M does admit an essential lamination, by
Theorem 6.28. 2

6.5 Dynamic branched surfaces

The material in the next few sections is drawn largely from [173].
Implicit in the proof of Theorem 6.28 is the existence of a (nondeterministic)

dynamical procedure for inductively splitting open a laminar branched surface.
The idea of using branched surfaces to “carry” dynamical processes is a fruitful
one, and goes back at least as far as [249]. See also [50].

Definition 6.35 An unstable dynamic branched surface is a branched surface B to-
gether with a nowhere vanishing vector field V tangent to B which points for-
ward along the branch locus (i.e. it pairs positively with the maw vector field
along each circle of the branch locus). A stable dynamic branched surface is de-
fined similarly, except that the vector field V points backward along the branch
locus (i.e. it pairs negatively with the maw vector field).

The branches of a branched surface B have a natural structure of a polygonal
surface with corners. If B is a dynamic branched surface and σ is a branch of B,
we can distinguish certain corners p ∈ ∂σ by the property that the vector field V
changes from ingoing to outgoing along ∂σ as it crosses p. Such a corner is called
an external tangency in [173], but we will call it a cusp to be consistent with our
terminology concerning train tracks. In fact, the vector field provides a natural
combing of the branch locus near the corners by means of which we can give
the branch locus the structure of a train track. With respect to this structure, we
may define Euler characteristic of branches as we did in § 1.8.3, and we observe
that with this definition, every branch satisfies χ(σ) = 0, by the Poincaré–Hopf
formula.

It follows that a dynamic branched surface B cannot contain a sink disk or a
sphere, and therefore must fully carry a lamination, by Theorem 6.28. Moreover,
every branch is a torus or Klein bottle, an annulus or Möbius band with no
cusps, or a bigon.
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Since a vector field on a branched surface can be pulled back under a carry-
ing map, it follows that the property of being a(n un)stable dynamic branched
surface is inherited under splitting open.

Example 6.36 Let T0 be an abstract train track (i.e. without an embedding in a
surface) and let Ti → Ti−1 → · · · → T0 be a sequence of elementary collapses
with the property that there is a homeomorphism φ : Ti → T0. We can build
a branched surface from a union of pieces Tj × I where we glue each Tj+1 × 0
to Tj × 1 by the collapsing map. Then glue Ti × 1 to T0 × 0 byφ to get a closed
branched surface B. The vertical vector fields on the factors match up to give B
the structure of an unstable dynamic branched surface.

Example 6.37 Suppose φ : S → S is pseudo-Anosov, and T is a train track
which carries the unstable lamination. Then there are a sequence of elementary
collapses relatingφ(T) to T, and therefore as in Example 6.36 we can build a dy-
namic branched surface in Mφ transverse to the foliation by surfaces. Similarly,
if T′ carries the stable lamination, there are a sequence of elementary collapses
relating T′ toφ(T′) and we can build another dynamic branched surface in Mφ.
These branched surfaces carry the stable/unstable essential laminations in Mφ

obtained by suspending the stable/unstable geodesic laminations of φ in S.

This is the prototypical example of a dynamic branched surface. Notice in
this example that we obtain a pair of dynamic branched surfaces. This motivates
the definition of a dynamic pair. But before we can define a dynamic pair, we
must make another couple of definitions.

Definition 6.38 Let T = I ∗ I denote the join of two closed intervals. That is,
T = I × I × I/ ∼ where ∼ collapses factors of the form point× I × 0 or I ×
point× 1 to points. Topologically, T is obtained by gluing the mapping cones of
the projections of I × I to its two factors.

Then T is a tetrahedron, and comes together with a vector field tangent to
the factors point× point× I. We call T together with its vector field a pinched
tetrahedron.

A pinched tetrahedron is a kind of degenerate
flowbox for an Anosov flow, where the stable
intervals collapse to points on the top face, and
the unstable intervals collapse to points on the
bottom face. This degeneracy gives a C1 comb-
ing of the faces, so that the faces of T become
tangent in pairs along the top and bottom edge.
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Definition 6.39 Let D be a 2n-gon, and let φ : D → D be some (orientation-
preserving) homeomorphism taking vertices to vertices. The mapping torus of
φ, together with the suspension vector field, is a dynamic solid torus. The sus-
pension of each orbit of an edge of D underφ is an annulus face.

We can now define a dynamic pair of branched surfaces:

Definition 6.40 A dynamic pair of branched surface on a closed 3-manifold M
is a pair Bs, Bu ⊂ M of dynamic branched surfaces in general position, together
with a vector field V on M such that

1. (Bs, V) is a stable dynamic branched surface, and (Bu, V) is an unstable
dynamic branched surface

2. The path closure of each component of M− (Bs ∪ Bu) is either a dynamic
solid torus or a pinched tetrahedron.

3. No two dynamic solid torus complementary components are glued up
along entire annulus faces

4. The path closure of each component K of Bu − Bs (respectively Bs − Bu)
contains an annulus face of some complementary dynamic solid torus
which is a source of the backwards (respectively forwards) flow on K

Condition 2 says essentially that all the “interesting” dynamics of V (in the
sense of homotopy) is carried by Bs and Bu. The branched surfaces obtained in
Example 6.37 can be included in the structure of a dynamic pair on M.

6.6 Pseudo-Anosov flows

The definition of a dynamic pair is justified by the fact that they carry (in a suit-
able sense) pseudo-Anosov flows. A pseudo-Anosov flow generalizes an Anosov
flow (recall Definition 4.51) in the same way that a pseudo-Anosov surface
homeomorphism generalizes an Anosov surface homeomorphism.

Definition 6.41 A Pseudo-Anosov flow φt on a 3-manifold M is a flow locally
modeled on a semi-branched cover over a flowline of an Anosov flow.

Thus, away from finitely many closed orbits, the flowlines preserve a de-
composition of TM into

TM = Es ⊕ Eu ⊕ TX

and the time t flow uniformly expands Eu and contracts Es. That is, just as in
the case of an Anosov flow, there are constants µ0 ≥ 1 and µ1 > 0 such that

‖dφt(v)‖ ≤ µ0e−µ1t‖v‖ for any v ∈ Es, t ≥ 0

‖dφ−t(v)‖ ≤ µ0e−µ1t‖v‖ for any v ∈ Eu, t ≥ 0

Moreover, TX ⊕ Es is integrable, and tangent to the weak stable foliation Fws,
and TX⊕ Eu is integrable and tangent to the weak unstable foliation Fwu.

Along the finitely many closed orbits, called singular orbits of the flow, finitely
many sheets of Fws and Fwu come together in alternating order. See Fig. 6.6 for
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FIG. 6.6. Stable and unstable (singular) foliations in a pseudo-Anosov flow, in
a neighborhood of a singular flowline of order 4

an example of a flowline of order 4 (i.e. four sheets of each singular foliation
come together along the singular flowline). If D is a small transversal to a sin-
gular orbit γ, and φ : D → D is the germ of the return map near the singular
point p = D ∩ γ then φ is locally modeled on a pseudo-Anosov homeomor-
phism of a surface in a neighborhood of a singular point. Such singular orbits
are also sometimes called pseudo-hyperbolic.

The parameterization of the flowlines is generally not important for topo-
logical applications. By abuse of notation, therefore, we often identify a pseudo-
Anosov flow and its invariant (1-dimensional) foliation X.

Pseudo-Anosov flows enjoy many of the same properties as Anosov flows;
for instance, the shadowing property (see Example 4.54). Moreover, by blow-
ing up the stable/unstable singular foliations and splitting open the singular
leaves, one obtains a pair of laminations Λs,Λu. By the expanding property of
the flow, neither of the Λs,Λu contain any compact leaf. Moreover, since every
flowline contained in a singular leaf is asymptotic to the core in either posi-
tive or negative time, complementary regions are all finite sided ideal polygon
bundles over S1.

This property of the laminations Λs,Λu is important enough to deserve a
name. We make a definition:

Definition 6.42 An essential lamination in a 3-manifold M is very full if every
complementary region is homeomorphic to one of the following two pieces:

1. an ideal polygon bundle over S1, where the polygon has at least two ideal
vertices
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2. a once-punctured ideal polygon bundle over S1, where the polygon has
at least one ideal vertex

In [173], Mosher calls these pieces a pared solid torus and a pared torus shell
respectively.

Note that pared solid tori can only arise if M has (toral) boundary. If S is
a pared torus shell, the suspension of any ideal vertex determines a canonical
isotopy class of essential simple closed curve on the corresponding component
of ∂M; this isotopy class is called the degeneracy locus of the component. By our
discussion above, the laminations obtained by splitting open the singular leaves
of the weak stable and unstable foliations of a pseudo-Anosov flow are essential
and very full.

Pseudo-Anosov flows arise more frequently than (purely) Anosov flows, es-
pecially in the dynamical study of foliations.

Example 6.43 The suspension flow of a pseudo-Anosov homeomorphism of a
surface is a pseudo-Anosov flow on the associated mapping torus.

One can study pseudo-Anosov flows combinatorially using flow boxes —
i.e. open balls which are simulataneously product charts for the singular folia-
tions Fws and Fwu. These flow boxes have a product structure U ≈ Is × Iu × I
where the Is × point× I factors are contained in leaves of Fws, and the point×
Iu × I factors are contained in leaves of Fwu. Notice that the flowlines intersect
the flow boxes in the “vertical” factors point× point× I. Each flow box has a
top face Is × Iu × 1 and a bottom face Is × Iu × 0.

One can cover M by a finite set of flow boxes with disjoint interiors, which
form the 3-cells of a regular cell decomposition of M. One can form a directed
graph whose vertices are the set of flow boxes in such a decomposition, and
where there is a directed edge from bi to b j whenever the top face of bi and
the bottom face of b j have an intersection with nonempty interior. One can con-
struct a dynamic pair from such a collection of flow boxes, satisfying certain
combinatorial properties, by building up the branched surfaces piece by piece
in each box.

The following is a restatement of (part of) Theorem 3.3.2 of [173], and is
due to Mosher. It defines a key relationship between pseudo-Anosov flows and
dynamic pairs:

Theorem 6.44. (Mosher [173]) Let M be a closed manifold. Then every pseudo-Anosov
flow on M is carried by some dynamic pair, and conversely every dynamic pair carries
some pseudo-Anosov flow.

We do not discuss the proof in detail, but it should be pointed out that for
technical reasons, Mosher does not work directly with pseudo-Anosov flows,
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but rather with a class of flows called “pA flows”. One may move from a pseudo-
Anosov flow to a pA flow and back again by elementary operations. These op-
erations do not affect the homotopy class of the flow. The advantage of pA flows
is the way in which they interact with finite depth taut foliations.

If one insists on working with pseudo-Anosov flows, then one must be pre-
pared for certain compromises:

Definition 6.45 A pseudo-Anosov flow X is almost transverse to a taut foliation
F if after dynamically blowing-up a (possibly empty) collection of singular or-
bits to a union of annuli, the flow can be isotoped to be transverse to F.

The definition of dynamic blow up is somewhat technical, but can be de-
scribed reasonably easily. A singular orbit is replaced by the suspension of a
homeomorphism of a finite simplicial tree. The homeomorphism should have
no fixed points in the interior of each edge, and at each vertex, the dynamics on
the tree and the branches of the weak foliation which limit on the singular orbit
should alternate between attracting and repelling.

An almost transverse flow may actually be isotoped to be transverse to F

away from finitely many singular points, where the type of the singularity is
controlled. Note that there are obstructions in some cases to making an almost
transverse pseudo-Anosov flow transverse to a foliation without first perform-
ing this blow up.

One has the following theorem, proved independently by Gabai and Mosher:

Theorem 6.46. (Gabai–Mosher) Let M be a closed oriented, irreducible, atoroidal
3-manifold, and let F be a finite depth foliation. Then M has a pA flow whose stable
and unstable laminations are transverse to F. Moreover, M has a pseudo-Anosov flow
which is almost transverse to F.

There is a version of this theorem for manifolds with torus boundary. Since
the bounded version is perhaps more important for applications, we state it
precisely:

Theorem 6.47. (Gabai–Mosher) Let M be a compact, oriented, irreducible, atoroidal,
torally bounded 3-manifold such that the rank of H2(M, ∂M; Z) is positive. Then M
has a pA flow, and if ∂M = ∅ then M has a pseudo-Anosov flow. In particular, M
admits a very full lamination.

We remark that the hypotheses of this theorem imply that M admits a finite
depth foliation, by Theorem 5.27 and Theorem 5.24.

A very important corollary of Theorem 6.47 concerns the persistence of es-
sential laminations under surgery.

Theorem 6.48. (Gabai–Mosher) Let M be a compact, oriented, irreducible, atoroidal,
torally bounded 3-manifold, and suppose that ∂M 6= ∅. For each component Ti ⊂ ∂M
there exist Dehn filling co-ordinates (mi, li) : H1(Ti) → Z ⊕ Z with the following
property. Let Mγ be obtained from M by filling some components Ti of ∂M along curves
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γi ⊂ Ti, so that |li(γi)| ≥ 2 for each Ti that is filled. Then Mγ contains an essential
lamination.

Proof Since M is torally bounded, H2(M, ∂M; Z) has positive rank. Then M
admits a finite depth taut foliation, and we may apply Theorem 6.47 to obtain
a pA flow and therefore a very full lamination Λ. The complementary regions
to Λ are all ideal polygon bundles or punctured ideal polygon bundles over S1.
Each boundary component of M corresponds to a once-punctured ideal poly-
gon bundle, so the suspension of an ideal vertex determines an isotopy class
of essential simple closed curve on each boundary torus called the degeneracy
locus.

If we choose co-ordinates on each H1(Ti) so that the degeneracy locus sat-
isfies (mi, li) = (1, 0) then for any surgery curve γ with |li(γi)| ≥ 2 the result
of filling along γ produces an ideal polygon bundle over S1, where the number
of vertices is a multiple of |li(γi)|. In particular, if |li(γi)| ≥ 2 the lamination Λ
stays essential in Mγ. 2

Theorem 6.48 is especially useful when we know explicit surgeries Mγ on
M for which the result is reducible or has finite fundamental group. A manifold
which is reducible or has finite fundamental group cannot contain an essential
lamination; if one knows enough surgeries with this property, one can pin down
the degeneracy locus without actually needing to construct Λ.

By bootstrapping, one may use this theorem to certify the existence of an
essential lamination on many small 3-manifolds. See § 6.10 for a table summa-
rizing what is known about some small volume examples.

Unfortunately, no proof of Theorem 6.46 or Theorem 6.47 is available in the
literature. On the other hand, we will deduce Theorem 6.48, which is one of
the most common applications of Theorem 6.46, as a corollary of the structure
theory we develop in Chapter 7 and Chapter 8.

In the meantime, it is possible to give some sense of what is involved, at
least for some simple examples.

Example 6.49. (Mosher) Let S denote the compact surface with boundary ob-
tained from S2 by removing four open disks, and let P = S× I. Then P has the
structure of a sutured manifold, where the sutures are the annuli ∂S× I, and
where R+ and R− are S× 1 and S× 0 respectively.

Let H be a round handle; that is, a solid torus with four annular sutures which
all represent standard longitudes on the boundary. Then ∂H contains two R+

annuli and two R− annuli.
In H, construct a pair of annuli Au and As which meet transversely along

the core of H, and have boundary curves which are the cores of the R+ annuli
and the R− annuli respectively. We orient the core of H somehow, and induce
orientations of the boundary components of Au, As.

We glue up the sutures of S to the sutures of H so that the R+ subsurfaces
piece together to produce Σ+, and the R− subsurfaces piece together to produce
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Σ−, and call the resulting manifold N. The boundary of the Au annulus gives
two essential curves in Σ+ which we denote by u1, u2 and the boundary of the
As annulus gives two essential curves in Σ− which we denote by s1, s2. We let
ψ : Σ+ → Σ− be an orientation-reversing homeomorphism with the following
properties:

1. The curves s1, s2 are transverse to the image curves ψ(u1),ψ(u2), and to-
gether they fill the surface Σ−.

2. Each component ofψ(u1)∩ ∂H intersects the corresponding curve si trans-
versely exactly once, and similarly for ψ(u2)

3. The complementary regions to the union of the si with theψ(u j) are either
squares or hexagons

We then glue up the boundary of N byψ, and call the result M. By undoing
the gluings, we get a taut sutured hierarchy for M

M ; N ; P∪ H

and thereby a depth 1 foliation F on M. The restriction of F to P is just the
product foliation, whereas the restriction to H consists of a bundle of saddle
pieces over a circle (c.f. Example 4.19).

We show how to “extend” the annulus Au to an unstable dynamic branched
surface. Note that the boundary of Au consists of the curves ψ(u1),ψ(u2) in
Σ−. The parts of these curves which intersect the subsurface S× 0 ⊂ Σ− can
be extended to Σ+ by adding product rectangles in P. It remains to say how to
extend these surfaces through H.

Each arc of ψ(u1) ∩ ∂H can be properly isotoped horizontally into H until
it runs into the annulus Au. The track of this isotopy is a rectangle R. We comb
this rectangle in the direction of the orientation of the core of H, so that R ∪ Au

is a properly embedded branched surface with three branches, and the maw
vector field along the branch locus agrees with the orientation of the core of H.
If we add such a rectangle for each arc as above, the result is a new branched
surface which extends Au, and which has boundary again on Σ+. We call this
new branched surface Au

0.5. The boundary components of Au
0.5 lie on Σ+, and

together with u1 and u2 the union is a train track which we denote τ0.5 ⊂ Σ+.
Note that τ0.5 is an oriented train track, and is obtained from the ui by adding
new branches which meet the ui tangentially and with the same orientation.

Now, it may happen that lots of the added branches of τ0.5 are parallel. We
collapse such parallel arcs, adding new branch components to Au

0.5 to obtain Au
1

with boundary τ1, so that τ1 has no bigons, and by our hypothesis on ψ, each
complementary region is a trigon. This is the first “stage” of the extension of
Au.

We modify ψ by an isotopy in a neighborhood of the new branches so that
ψ(τ1) intersects s1 and s2 efficiently. That is, we eliminate bigons, and spin the
branches around the ψ(ui) where they are attached so that arcs of the s j cut
off the cusps of ψ(τ1). Now we extend the branches of ψ(τ1) into N just as we
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extended the curves ψ(u1),ψ(u2). That is, the part in S × 0 is extended as a
product in P, and the part in ∂H is properly isotoped into Au

1 ∩ H, and spun so
that the maw vector field always agrees with the orientation on the core of H.
This produces Au

1.5. The boundary components of Au
1.5 lie on σ+, and together

with τ1 the union is an oriented train track τ1.5 ⊂ Σ+.
Since the complementary regions to τ1 are already trigons, the branches of

τ1.5 − τ1 are all parallel to branches of τ1. So we collapse parallel arcs, adding
new branch components to Au

1.5 to obtain Au
2 . Since every boundary arc of Au

1.5
has been collapsed into some sheet of Au

1 , the branched surface Au
2 has no

boundary, and is the desired unstable dynamical branched surface. The con-
struction of the stable dynamical branched surface is similar.

Remark This simple example does not illustrate the full range of phenomena
which must be dealt with in the proof of Theorem 6.46. Suppose we take a prod-
uct of a many-punctured surface with an interval, and glue on a collection of
round handles so that the top and bottom surfaces are connected, and therefore
have the same genus. We get several u circles in the top surface, and several s
circles in the bottom surface.

Let ψ be a gluing homeomorphism such that ψ(u) is isotopic to s for some
pair u, s of circles. Since these are oriented circles, there are two distinct cases to
consider.

Case 1: ψ(u) is anti-isotopic to s as oriented circles. We perturb ψ so that ψ(u)
lies on one side of s or the other, and extend as before. The resulting dynamical
branched surfaces and laminations will be different depending on what side
of the s circle we attach ψ(u). If M is atoroidal, we must ultimately make only
finitely many such choices, but if M is toroidal, we might obtain infinitely many
distict laminations from this procedure.

The resulting pseudo-Anosov flow contains a pair of orbits which are anti-
isotopic, and can be connected by an annulus transverse to the flow. This gives
rise to what Fenley calls perfect fits in the flow; we will return to perfect fits in
§10.10.

Case 2:ψ(u) is isotopic to s as oriented circles. In this case, the core of the round
handle which descends to s and the core of the round handle which ascends
to ψ(u) want to coalesce and produce a 3-prong singular orbit. This coalescing
cannot be performed while keeping the flow transverse to F, however, and one
has two choices: either one can produce an almost transverse pseudo-Anosov
flow, or one can do a dynamical blow up of the 3-prong orbit and produce a pA
flow transverse to F.

6.7 Push-pull

Instead of using branched surfaces, one can construct laminations transverse to
depth 1 foliations directly. In this section we sketch the outline of such a con-
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struction. This approach is presented in such a way as to bring out the structural
similarities with the material in subsequent chapters.

Let F be a depth 1 foliation of an atoroidal 3-manifold M. A pocket P of
depth 1 leaves has the structure of a (noncompact) surface bundle over S1. Let

F denote the fiber, and ϕ : F → F the monodromy. The universal cover P̃ is

homeomorphic to a product P̃ = R2 × R but geometrically, it may be more

subtle. We parameterize the leaves of P̃ as λt where t ∈ R, in such a way thatϕ
acts on this leaf space by t→ t + 1.

Let µ be a leaf of F|P. The monodromy mapϕ : µ → µ is only defined up to
homeomorphism. However, the geometry of P lets us choose a representative
ofϕwhich is a quasi-isometry, and whose quasi-isometry constant can be taken
to be as close to 1 as desired in the complement of a suitably large compact sub-
surface. Let S denote the union of the depth 0 leaves. For any codimension one
foliation, the union of the closed leaves is closed, as proved in Theorem 4.5. But
for applications, it suffices to consider the case that S is a finite union of closed
surfaces, since these are the finite depth foliations produced by the construction
in Gabai’s Existence Theorem 5.27.

In any case, a tubular neighborhood N(S) of S can be foliated by integral
curves of the normal bundle to F. Since µ is proper in the complement of S,
flow along these integral curves defines a map from µ to itself outside a com-
pact set; this defines a representative of the map ϕ “at infinity”, and it is clear
that it becomes closer and closer to an isometry as the ends of µ spiral around
S. In fact, flow along integral curves on N(S) allows us to quasi-isometrically
identify the ends of any two leaves in P. There is some ambiguity in this choice:
in each component of N(S), the intersection µ ∩N(S) contains countably many
sheets, which accumulate along S. If ν is some other leaf, then each sheet of
ν ∩ N(S) with at most one exception is contained between two nearest sheets
of µ ∩ N(S); after choosing a co-orientation on F, one may define a map from
the ends of ν to the ends of µ to be the first intersection map under the flow
along integral curves in the positive direction on N(S). Then there are compact
subsurfaces C(ν), C(µ) such that this flow determines a map

ϕµν : ν − C(ν)→ µ − C(µ)

Flow along integral curves determines a canonical isotopy from ∂C(ν) to ∂C(µ),
partially compactifying ϕµν , and the bundle structure of P determines a well-
defined class of isotopy from C(µ) to C(ν) relative to this canonical isotopy on
the boundary. This determines a global map which by abuse of notation, we
denote

ϕµν : ν → µ

which lifts, by the homotopy lifting property, to a homeomorphism

ϕ̃
µ̃

ν̃
: ν̃ → µ̃
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between leaves of F̃|
P̃

. By the compactness of M and compactness of C(µ) and

C(ν), it follows that different choices of ϕ̃µν are a finite Hausdorff distance apart,
as measured in the Hausdorff topology on their graphs in ν̃ × µ̃.

Note that ϕ̃µ̃
ν̃

and ϕ̃ν̃
µ̃

are almost inverse, in the sense that the composed maps

ϕ̃
µ̃

ν̃
ϕ̃ν̃
µ̃

and ϕ̃ν̃
µ̃
ϕ̃
µ̃

ν̃
move points only a bounded distance, and therefore induce

the identity map on S1
∞

(µ̃) and S1
∞

(ν̃) respectively. Note also that the ends of
leaves of P are asymptotically isometric to the holonomy covers of leaves of

S, and therefore leaves of P̃ are uniformly quasi-isometric to H2, and have a
well-defined circle at infinity.

The pocket P̃ can be partially compactified to a solid cylinder by adding a
cylinder

E∞ =
⋃

t

S1
∞

(λt)

consisting of the union of the circles at infinity of all the leaves of P̃. For any two

s, t ∈ R, the homeomorphisms ϕ̃λs
λt

are well-defined up to a finite Hausdorff dis-

tance, and therefore extend to a canonical homeomorphism between the circles
at infinity of any two of these leaves. This canonical identification of any two
circles in a family lets us identify all of them with a fixed abstract “universal
circle” S1

univ, and we get a global parameterization

E∞ = S1
univ ×R

We denote the canonical identifications with the universal circle by

φt : S1
univ → S1

∞
(λt)

With respect to this product structure on E∞, the lift ϕ̃ acts as

ϕ̃(θ, t) = (θ, t + 1)

Note that by construction, ϕ̃ commutes with the action of π1(P) on E∞, and
therefore the product structure on E∞ is π1(P) invariant.

We let S− denote the union of the lowermost leaves in the path closure P,
and S+ the union of the uppermost leaves. Note that S− and S+ might well

have components in common, or even be equal. Let S̃− denote the preimage of

S− in the universal cover of P, and S̃+ the preimage of S+. We indicate how to

use the structure of P̃ to compare geodesic laminations on S− and S+.

Construction 6.50 Let Λ be a geodesic lamination on S−. Then Λ pulls back to

a geodesic lamination Λ̃ of S̃−. Let λ be a leaf of S̃−, and let l be a leaf of Λ̃|λ
with endpoints p, q in S1

∞
(λ). The orientation on F determines an orientation on
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S1
∞

(λ), and therefore we can speak unambiguously about a sequence of points
in S1

∞
(λ) which approaches p from the left.

Let γ be an oriented geodesic loop on S− with contracting holonomy. Then
each lift γ̃ of γ to λ is asymptotic to some well defined point r ∈ S1

∞
(λ) in

the positive direction. By the holonomy condition, one can show that the corre-
sponding element of π1(P) has a unique (weakly) attracting fixed point in S1

univ
which we denote byφin(r).

If ri is a sequence of translates of r in S1
∞

(λ) which converge to p from the
left, the sequence φin(r) is monotone in S1

univ, and converges to some unique
point which we call φin(p). Similarly, we can define φin(q). In this way, we

associate to each leaf of Λ̃ a pair of points in S1
univ. Distinct leaves determine

unlinked pairs, so by taking the closure of this set of pairs of points, we obtain

a lamination φin(Λ̃) of S1
univ which is π1(P)-invariant, and which we say is

obtained from Λ by pushing into P from the negative side.

Having pushed Λ into P from the negative side, we proceed to pull it out
from the positive side.

Construction 6.51 Let Λ be a lamination of S1
univ. Then for each leaf λ of P̃ we

get a corresponding geodesic lamination Λ(λ). These laminations vary contin-
uously on compact subsets, and limit to a geodesic lamination on each leaf of

S̃+.
If Λ is π1(P)-equivariant, so is the set of limiting laminations; they therefore

cover a geodesic lamination of S+ which we denoteφout(Λ), and which we say
is obtained from Λ by pulling out of P from the positive side.

In this way, the composition φoutφin determines a map

φoutφin : L(S−)→ L(S+)

We get such a map for each of the (finitely many) product pockets P which
are complementary to the set S of closed leaves. Composing such maps, we
get a map φ from L(S) to itself. If we want to emphasize that φ depends on a
choice of co-orientation, we denote itφ+. As in Theorem 1.47, either some finite
power ofφ preserves an essential simple closed curve, or elseφ preserves some
full measured lamination Λ+

geo of S. This lamination can be pushed into the
union of complementary domains byφin and in this way determines a geodesic
lamination in every leaf of F. The union of these leafwise laminations is an
essential lamination of M transverse to F, and is denoted Λ+.

By pushing from the positive side and then pulling from the negative side,
we get another map φ− and another essential lamination Λ−. The laminations
Λ± are carried by a dynamic pair of branched surfaces, and one constructs a
pseudo-Anosov or pA flow by Theorem 6.44.
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Remark In the case of higher depth foliations, this argument must be modified
substantially. The “push-pull” construction pushes laminations across the high-
est depth pockets, and a combination of push-pull and a limiting procedure lets
one move laminations between leaves of lower depth.

Remark It is worth remarking that the operations of push and pull are not
generally inverse, unless F is a surface bundle. Suppose M is the double of a
manifold N whose boundary ∂N consists of a finite collection of depth 0 leaves
of F. So we write M = N ∪∂N N, and let i : M → M be the involution which
fixes ∂N, and which interchanges N and N.

Then the involution i changes the orientation on the universal circle S1
univ

associated to each pocket P, and thereby also changes the definition of the map
φin. In particular, the conjugate by i of the operation of pushing into P from the
negative side is not equal to the operation of pushing into i(P) from the positive
side. By contrast, the conjugate by i of the operation of pulling out of P from the
positive side is equal to the operation of pulling out of i(P) from the negative
side.

Remark Some key aspects of this construction have been left intentionally
vague, especially the issue of why φin(r) is a well-defined and monotone map
from the set of attracting fixed points in S1

λ to S1
univ, and why the geodesic lam-

inations on leaves of P̃, constructed from a lamination of S1
univ, vary continu-

ously. These aspects of the construction are treated in great detail and much
greater generality in Chapter 7, and are key to the construction of a universal
circle, analogous to S1

univ above, for an arbitrary taut foliation. In brief, the first
issue is solved by means of sawblades, and the second by Candel’s uniformization
theorem.

6.8 Product-covered flows

For an arbitrary flow on a 3-manifold, the pulled-back flow on the univer-
sal cover is typically very complicated. But for Anosov and pseudo-Anosov
flows, the situation is quite different. To discuss it, we must first define product-
covered flows.

Definition 6.52 Let X be a flow on a 3-manifold, and let X̃ denote the pulled-

back flow on M̃. We say X is product-covered if X̃ is conjugate to the flow on R3

generated by ∂/∂z.

Equivalently, X is product-covered if M is not a circle bundle over S2, and

the leaf space PX of X̃ is homeomorphic to R2.

Lemma 6.53 Let X be a pseudo-Anosov flow on M. Then X is product-covered.

Proof The hard part is to show that the space of leaves PX is Hausdorff. Let

φt : M̃ → M̃ denote the time t flow of X̃. We suppose PX is not Hausdorff,

and derive a contradiction. Suppose there are points p, q ∈ M̃ contained in
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distinct leaves lp , lq for which there are points ri ∈ M̃ and ti ∈ R with ri → p
and φti

(ri) → q. If |ti| is bounded above, then by passing to a subsequence
we can assume lp = lq, contrary to assumption. Therefore after passing to a
subsequence, without loss of generality we can assume ti → +∞.

Since stable leaves contract in forward time, we can move ri along a flowline

of Es until ri and p are on the same leaf λ of F̃wu without movingφti
(ri) very far.

Since the associated laminations Λs,Λu are essential, leaves of F̃wu are properly
embedded, and therefore λ intersects some neighborhood of q in a single sheet.
Since all the φti

(ri) are on this sheet, q and therefore lq are contained in λ. Let li

be the flowline containing ri. Since unstable leaves contract in backward time,
the flowlines li and lq are arbitrarily close in the backward direction. It follows
that in backward time, lq gets closer and closer to p.

Assume for the moment that λ is a nonsingular leaf. Then X̃|λ is a foliation

of λ by lines. By Palmeira’s Theorem 4.38, leaves of X̃|λ are properly embedded

in λ. Since λ is properly embedded in M̃, the flowline lq cannot accumulate on
lp at p unless they are equal.

If λ is singular, then by construction, both lp and lq are contained in the
closure of the same nonsingular stratum, and the same argument applies.

Local transversals to X̃ give PX the structure of a 2-manifold. Since M̃ is
simply-connected, so is PX. Since it is Hausdorff, it is either homeomorphic to
R2 or to S2. In the second case, M is (virtually) a bundle over S2, contrary to
Theorem 6.15. 2

Let λ be a nonsingular leaf of F̃ws or F̃wu. Then the projection of λ to PX is a
properly embedded line in PX.

If λ is a singular leaf, then the projection is a union of ≥ 3 properly em-
bedded rays which are disjoint away from a basepoint, which corresponds to a
flowline covering a periodic singular flowline on M. Thus PX inherits a trans-
verse pair of singular foliations in the sense of § 1.9.2 which we denote by Lu

and Ls, although it should be stressed that the foliations do not typically come
with any natural transverse measure, or even measure class.

Remark Any two leaves of Lu and Ls intersect in at most one point. For, sup-
pose λ is a leaf of Lu and µ is a leaf of Ls which together bound a bigon B.
By pushing λ and µ slightly off themselves if necessary, we may assume that λ
and µ have no singularities along ∂B. It follows that Lu is tangent to ∂B along
the arc λ ∩ ∂B, and transverse along µ ∩ ∂B, and therefore the sum of the index
at the singularities in the interior is positive, by the Gauss-Bonnet formula. On
the other hand, since the valence of a singular point is ≥ 3, every singularity
contributes negatively to the index. This contradiction proves the claim.

Lemma 6.54 Let G be a subgroup of Homeo+(R2). Let Γ be a G-invariant family of
properly embedded rays in R2 such that for any two rays γi ,γ j ∈ Γ the intersection
γi ∩γ j is compact. Then there is a natural circular order on Γ which is preserved by G.
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Proof The union of the pairwise intersections of any finite subset K ⊂ Γ of rays
can be engulfed in the interior of a closed disk D. Each γ ∈ K intersects D in a
compact subset, since γ is proper. If we parameterize γ as γ(t) with t ∈ [0, ∞),
then there is a largest t such that γ(t) ∈ D. Necessarily, γ(t) ∈ ∂D; by abuse of
notation, we call this point p(γ). The circle ∂D inherits an orientation from R2.
Consequently, the p(γ) for γ ∈ K inherit a circular order from ∂D, and we can
give K the same circular order. This order structure is derived from the topology
of the configuration of the γ in R2, and is therefore G-invariant, since G acts by
homeomorphisms. 2

As a corollary, we obtain the following information about the fundamental
groups of 3-manifolds containing pseudo-Anosov flows.

Theorem 6.55 Let M be a closed 3-manifold which admits an Anosov or pseudo-
Anosov flow X. Then π1(M) is circularly orderable.

Proof The group π1(M) acts on the leaf space PX of X̃ by homeomorphisms,
and preserves the transverse pair of singular foliations Ls, Lu. By Lemma 6.54,
the set of ends E of leaves in the foliations Ls , Lu admits a natural π1(M)-
invariant circular ordering.

Let λ be a leaf of Fws containing a periodic flowline γ. Since the distance
between leaves of Fws contract in forward time, γ is the unique periodic flow-
line on λ, and therefore generates π1(λ). Let l be the leaf of Ls corresponding to

some cover λ̃. Then the stabilizer of l is isomorphic to Z, and the same is true
for the ends in E corresponding to l. It follows that π1(M) admits a homomor-
phism to a circularly ordered group with kernel which is contained in Z. By
Theorem 2.47 and Theorem 2.46, π1(M) is circularly orderable. 2

From Example 2.102 we derive the following corollary:

Corollary 6.56 The Weeks manifold does not admit an Anosov or pseudo-Anosov flow.

This was the first known example of a hyperbolic 3-manifold without an
Anosov or pseudo-Anosov flow. See [40] for more discussion.

Another corollary gives a homological constraint.

Corollary 6.57. (Mosher) Let M be a 3-manifold, and let X be an Anosov or pseudo-
Anosov flow. Then the Euler class eX ∈ H2(M; Z) of the flow is contained in the unit
ball of the dual Thurston norm.

Proof Given a flow X on a 3-manifold M, the Euler class of the flow is the
obstruction to finding a non-vanishing section of the quotient bundle TM/TX.
By the construction of E in Lemma 6.54, this is the same as the Euler class of the
circular ordering associated to π1(M).

By the Milnor–Wood inequality (i.e. Corollary 2.63), for any surface S ⊂ M
we have an inequality

|eX([S])| ≤ −χ(S)

The claim follows. 2
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In particular, for M atoroidal, only finitely many cohomology classes can
arise as Euler classes of pseudo-Anosov flows on M. Mosher proved Corol-
lary 6.57 by a geometric argument, showing that a pseudo-Anosov flow could
be isotoped to meet an essential surface efficiently; then the proof follows by a
local computation. See [171] and [172] for details.

6.9 Genuine laminations

Some laminations are really just foliations in disguise. A genuine lamination is
an essential lamination which is “genuinely” not a foliation.

A complementary region to a lamination decomposes into a compact gut
piece and non-compact interstitial regions which are I-bundles over non-compact
surfaces. These interstitial regions are also referred to in the literature as intersti-
tial I-bundles and interstices. These pieces meet along interstitial annuli or Möbius
bands. A decomposition with the properties above is not quite unique. How-
ever, there is a natural choice of decomposition, whose interstitial regions are
exactly the non-compact components of the characteristic I-bundle of the com-
plementary region (see [140]). Such a choice is well-defined and unique up to
isotopy. When we need to distinguish this decomposition from an arbitrary one,
we will refer to it as the canonical decomposition. For more details, see [95] or [96].

For a typical decomposition of the complementary regions of Λ into guts
and interstices, there is a branched surface B which fully carries Λ for which
there is a 1-1 correspondence between complementary regions to B and gut
regions of Λ. Under the carrying map c : Λ → B, the interstitial regions are all
collapsed along the fibers, and mapped into B.

Definition 6.58 An essential lamination Λ is genuine if some complementary
region is not an I-bundle.

Equivalently, an essential lamination is genuine if some complementary re-
gion contains an essential surface of negative Euler characteristic. Equivalently,
an essential lamination is genuine if it has nonempty guts with respect to the
canonical decomposition.

The characterization of essential and genuine laminations in terms of the Eu-
ler characteristic of essential surfaces in complementary pieces allows us to de-
velop templates for topological arguments of the following kind: given a closed
surface S in a manifold M containing an essential lamination Λ, modify S to
make S ∩ Λ “as simple as possible”. Heuristically this should mean that S has
only saddle tangencies with Λ, and that components of S ∩ (M−Λ) are essen-
tial. Then S decomposes into a “product piece” S0 with χ(S0) = 0 which is
contained in the interstices of Λ, and a “gut piece” S< with χ(S<) < 0 whose
combinatorial complexity can be estimated from −χ(S<). Similarly, if S has
boundary, one should be able to give an upper bound for χ(S<) and for the
complexity of S< in terms of the complexity of ∂S.
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Remark In [91], Gabai called a lamination in a compact, orientable, irreducible
manifold loosesse if it has no sphere leaves, if leaves are π1-injective, and if com-
plementary regions are π1-injective. Since loosesse laminations are explicitly al-
lowed to contain end-compressing disks, the template described above cannot
be used without substantial modification. It remains to be seen whether the hy-
pothesis of containing a loosesse lamination leads to any significant topological
implications for the ambient manifold.

Example 6.59. (tripus manifold) The following unpublished example is due to
Agol–Thurston. Let M be Thurston’s tripus manifold, which is a hyperbolic 3-
manifold with a totally geodesic genus 2 boundary. This manifold has a trian-
gulation with two tetrahedra and a single edge. One can find a family of (in-
complete) hyperbolic structures on this manifold, which degenerate to give in
the limit an action on a tree dual to a spun normal surface containing a quadri-
lateral piece in each simplex. This surface S can be spun around ∂M, and the
union S ∪ ∂M is a genuine lamination.

If Λ is a genuine lamination, the leaf space of Λ̃ is in general an order tree.
Following [96], we give the definition of an order tree:

Definition 6.60 An order tree is a set T together with a collection S of linearly
ordered subsets called segments, each with distinct least and greatest elements
called the initial and final ends. If σ is a segment, −σ denotes the same subset
with the reverse order, and is called the inverse of σ . The following conditions
should be satisfied:

1. If σ ∈ S then −σ ∈ S

2. Any closed subinterval of a segment is a segment (if it has more than one
element)

3. Any two elements of T can be joined by a finite sequence of segments σi

with the final end of σi equal to the initial end of σi+1

4. Given a cyclic word σ0σ1 · · ·σk−1 (subscripts mod k) with the final end of
σi equal to the initial end ofσi+1, there is a subdivision of theσi yielding a
cyclic word ρ0ρ1 · · ·ρn−1 which becomes the trivial word when adjacent
inverse segments are cancelled

5. If σ1 and σ2 are segments whose intersection is a single element which
is the final element of σ1 and the initial element of σ2 then σ1 ∪ σ2 is a
segment

If all the segments are homeomorphic to subintervals of R with their order
topology, then T is an R-order tree.

An order tree is topologized by the usual order topology on segments. Order
trees are not typically Hausdorff, but even if they are, there are many more
possibilities than arise in the case of a foliation.

Definition 6.61 An essential lamination Λ is tight if the leaf space of the univer-

sal cover Λ̃ is Hausdorff.
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It follows that a taut foliation is tight if and only if it is R-covered. Equiv-
alently, a lamination Λ is tight if every arc α in M is homotopic rel. endpoints
to an efficient arc which is either transverse or tangent to Λ. Here an arc α is
efficient if it does not contain a subarc β whose interior is disjoint from Λ, and
which cobounds with an arc β′ in a leaf of Λ a disk whose interior is disjoint
from Λ.

If Λ has no isolated leaves, then the associated order tree of Λ̃ is actually
an R-order tree. Any lamination can be transformed into one without isolated
leaves by blowing up isolated leaves to foliated interval bundles. It follows that
we can always consider R-order trees for our applications.

Moreover, if Λ is tight, a Hausdorff R-order tree is just the underlying topo-
logical space of an R–tree. We refer to such a space as a topological R-tree to
emphasize that the metric is not important. Finally, if Λ is a tight 1-dimensional

lamination of a surface, so that Λ̃ is a tight 1-dimensional lamination of the
plane, then the associated order tree T comes with a natural planar embedding,

dual to Λ̃. See [93] for more details.
Genuine laminations certify important properties of the ambient manifold

M. The existence of the interstitial annuli gives a canonical collection of knots
in M with important properties. Using these annuli, Gabai and Kazez prove the
following in [95] and [94].

Theorem 6.62. (Gabai–Kazez [95] Word hyperbolicity) Let M be an atoroidal 3-
manifold containing a genuine lamination Λ. Then π1(M) is word hyperbolic in the
sense of Gromov.

Theorem 6.63. (Gabai–Kazez [94] Finite MCG) Let M be an atoroidal 3-manifold
containing a genuine lamination Λ. Then the mapping class group of M is finite.

Amongst all genuine laminations, some are more useful than others. If M
is not Haken, then Hatcher and Oertel [125] show that the gut regions of any
essential lamination are all homeomorphic to handlebodies. They call such lam-
inations full, where the terminology is meant to imply that the complementary
regions contain no closed incompressible surface. It should be pointed out that
Haken manifolds sometimes contain full laminations; the lamination in Exam-
ple 6.59 is full. Note that very full laminations, as defined in Definition 6.42 are
also full. Observe further that a very full essential lamination is genuine if and
only if one of the ideal polygon bundles which make up the complementary
regions has a base polygon with at least 3 ideal vertices.

The relationship between the topology of the guts and the topology of the
complementary regions is not straightforward in general. However, in the case
of a lamination with solid torus guts, the following lemma is proved in [40]:

Lemma 6.64. (Calegari–Dunfield [40] Filling Lemma) Let Λ be a genuine lami-
nation of a closed 3-manifold M with solid torus guts. Then Λ is a sublamination of a
very full genuine lamination Λ. Moreover, if Λ is tight, so is Λ.
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Very full genuine laminations are particularly nice. There is the following
theorem of Gabai and Kazez from [92]:

Theorem 6.65. (Gabai–Kazez) Let M be a 3-manifold with a very full genuine lam-
ination Λ. Then any self-homeomorphism of M homotopic to the identity is isotopic to
the identity.

Tight very full genuine laminations have another application, more central
to the theme of this book. In [40] it is shown that they give rise to a universal
circle. In this book, the very full genuine laminations we produce, although not
necessarily tight, already come with the data of a universal circle, so the con-
struction in [40] is superfluous for our purposes.

The proofs of Theorem 6.62, Theorem 6.63 and Theorem 6.65 require some-
what more background in geometric group theory and 3-manifold topology
than we have been able to present in this book. Therefore we direct the inter-
ested reader to consult [95], [94] and [92] for proofs.

6.10 Small volume examples

Due to the work of many people, it is possible to construct essential laminations
on a wide variety of 3-manifolds. The methods of § 4.3 can be used to produce
new foliations from old, and some of them can be modified to apply to essential
laminations.

One very important technique for proving the existence of a lamination is
the use of the degeneracy locus, and Theorem 6.48, as described in § 6.6.

Most other known existence results are more sporadic, and typically concern
manifolds obtained by surgery on certain kinds of knots or links in S3. One
constructs a lamination or family of laminations in the knot complement, then
shows how to modify it so that it stays essential under a (non-trivial) surgery.

Example 6.66. (Delman, Naimi) Naimi [179] and Delman [58] independently
showed that manifolds obtained by non-trivial surgery on non torus two-bridge
knots contain essential laminations.

Example 6.67. (Delman, Roberts) Work of Rachel Roberts [207], combined with
work of Delman [59] shows that manifolds obtained by non-trivial surgery on
non torus alternating knots contain essential laminations.

Example 6.68. (Wu) Ying-Qing Wu [253] shows that if K is an arborescent knot
which is not a Montesinos knot of length at most 3, then manifolds obtained by
non-trivial surgery on K contain essential laminations. Here a knot is arborescent
if it is a union of two algebraic tangles.

Of the non torus knots with ≤ 10 crossings, the only knots not covered by
Examples 6.66, 6.67 or 6.68 are 10139, 10142, 10161, 10163 and 10165. See [88],
especially § 1, for a survey.
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Conversely, the method of Example 4.46 has been adopted by Fenley to
group actions on order trees; in [77] he establishes the following nonexistence
results, which apply to infinitely many closed hyperbolic 3-manifolds.

Example 6.69. (Fenley) The manifolds Mp,q,m from Example 2.103 do not con-
tain an essential lamination whenever m ≤ −5 is odd, and |p− 2q| = 1.

The following table is taken directly from [40]. It summarizes knowledge
about laminarity for 128 small volume closed hyperbolic 3-manifolds taken
from the Hodgson–Weeks census [247].

The Lam column lists an L if the manifold is known to contain an essential
lamination, and is blank otherwise. Moreover, if the manifold is laminar, the
reason is given in the last column.

The Ord column summarizes left-orderability information about the funda-
mental group of the manifold. An N means that the fundamental group is not
left-orderable, O means that it is left orderable, and blank means unknown. The
N entries were determined by the method of Example 2.102. The O entries were
determined by the fact that the manifolds contain taut foliations, and the ho-
mology of the manifold vanishes. The left-orderings in this case come by lifting
circular orderings which arise from a universal circle associated to the taut folia-
tion. This is a subject we will pursue in the next two chapters.

Name Volume Hom Ord Lam Reason for knowing laminar
m003(−3, 1) 0.9427073628 Z/5 + Z/5 N
m003(−2, 3) 0.9813688289 Z/5 L Is m004(5, 1) and m004 is K(2/5).
m003(−4, 3) 1.2637092387 Z/5 + Z/5 N L Degeneracy test as m003(−4, 3).
m004(1, 2) 1.3985088842 0 O L Is m004(1, 2) and m004 is K(2/5).
m003(−4, 1) 1.4236119003 Z/35 N
m004(3, 2) 1.4406990067 Z/3 L Is m004(3, 2) and m004 is K(2/5).
m004(7, 1) 1.4637766449 Z/7 L Is m004(7, 1) and m004 is K(2/5).
m004(5, 2) 1.5294773294 Z/5 L Is m004(5, 2) and m004 is K(2/5).
m003(−5, 3) 1.5435689115 Z/35 N L Degeneracy test as m003(−5, 3).
m007(1, 2) 1.5435689115 Z/21 N L Degeneracy test as m011(3, 2).
m007(4, 1) 1.5831666606 Z/21 N
m007(3, 2) 1.5831666606 Z/3 + Z/9 N
m006(−3, 2) 1.6496097158 Z/15 N L Degeneracy test as m006(−3, 2).
m015(5, 1) 1.7571260292 Z/7 L Is m015(5, 1) and m015 is K(−2/7).
m007(−3, 2) 1.8243443222 Z/3 + Z/3 N L Degeneracy test as m007(−3, 2).
m016(−3, 2) 1.8854147256 Z/39 N L Degeneracy test as m016(−3, 2).
m017(−3, 2) 1.8854147256 Z/7 + Z/7 N L Degeneracy test as m017(−3, 2).
m006(3, 2) 1.8859142560 Z/45 N L Degeneracy test as m006(3, 2).
m011(2, 3) 1.9122102501 0 L Is m222(−2, 1) and m222 is 820.
m006(4, 1) 1.9222971095 Z/35 N
m006(−2, 3) 1.9537083154 Z/35 N L Degeneracy test as m006(−2, 3).
m006(2, 3) 1.9627376578 Z/55 N L Degeneracy test as m006(2, 3).
m017(−1, 3) 1.9627376578 Z/7 + Z/7 N
m023(−4, 1) 2.0143365838 Z/3 + Z/3
m007(5, 2) 2.0259452819 Z/33 N
m006(−5, 2) 2.0288530915 Z/5 L Is m015(1, 2) and m015 is K(−2/7).
m036(−3, 2) 2.0298832128 Z/3 + Z/15
m007(−6, 1) 2.0555467489 Z/3 + Z/3
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Name Volume Hom Ord Lam Reason for knowing laminar
m007(−5, 2) 2.0656708385 Z/3 L Is m015(−1, 2) and m015 is K(−2/7).
m015(−5, 1) 2.1030952907 Z/3 L Is m015(−5, 1) and m015 is K(−2/7).
m016(3, 2) 2.1145676931 Z/33 N L Degeneracy test as m016(3, 2).
m015(3, 2) 2.1145676931 Z/7 L Is m015(3, 2) and m015 is K(−2/7).
m011(4, 1) 2.1243017573 Z/43
m017(1, 3) 2.1557385676 Z/35 N
m011(−2, 3) 2.1557385676 Z/53 N L Degeneracy test as m011(−2, 3).
m034(4, 1) 2.1847555751 Z/7 L Is s385(−2, 1) and s385 is 10125.
m034(−4, 1) 2.1959641187 Z/25 N
m011(−3, 2) 2.2082823597 Z/57 N L Degeneracy test as m011(−3, 2).
m011(4, 3) 2.2102443409 Z/25 L Degeneracy test as m011(4, 3).
m011(1, 4) 2.2109517391 Z/23 L Degeneracy test as m011(1, 4).
m015(−3, 2) 2.2267179039 0 O L Is m015(−3, 2) and m015 is K(−2/7).
m015(7, 1) 2.2267179039 Z/9 L Is m015(7, 1) and m015 is K(−2/7).
m038(1, 2) 2.2597671326 0 L Is m372(−2, 1) and m372 is 946.
m015(5, 2) 2.2662435733 Z/9 L Is m015(5, 2) and m015 is K(−2/7).
m026(−4, 1) 2.2726318636 Z/13
m011(−1, 4) 2.2757758101 Z/49 N L Degeneracy test as m011(−1, 4).
m023(−3, 2) 2.2944383001 Z/3 L Is m032(5, 1) and m032 is K(−2/9).
m038(−5, 1) 2.3126354033 Z/17
m017(−5, 1) 2.3188118677 Z/7 + Z/7 N L Degeneracy test as m022(−3, 2).
m016(−5, 1) 2.3188118677 Z/23
m019(4, 1) 2.3207602675 Z/7 L Is m199(3, 1) and m199 is 942.
m022(1, 3) 2.3380401178 Z/35 N
m016(−1, 4) 2.3522069054 Z/73 N L Degeneracy test as m026(2, 3).
m017(−1, 4) 2.3522069054 Z/63 N
m019(−2, 3) 2.3641969332 Z/63 N L Degeneracy test as m019(−2, 3).
m022(5, 1) 2.3705924006 Z/3 + Z/7
m019(−4, 1) 2.3803358221 Z/41 N L Degeneracy test as m026(−2, 3).
m022(5, 2) 2.4224625169 Z/7 L Is m032(−5, 1) and m032 is K(−2/9).
m019(4, 3) 2.4444077795 Z/27 L Degeneracy test as m019(4, 3).
m022(−1, 3) 2.4540294422 Z/7 + Z/7
m026(4, 1) 2.4631393944 Z/51
m029(−3, 2) 2.4682321967 Z/5 + Z/9 N
m036(3, 2) 2.4682321967 Z/3 + Z/9 N L Degeneracy test as m036(3, 2).
m022(−5, 1) 2.4878225918 Z/7 + Z/7 N
m023(−6, 1) 2.4903791858 Z/15
m038(3, 2) 2.5026593054 Z/5 L Is m289(2, 1) and m289 is K(−3/11).
m034(−5, 1) 2.5065758445 Z/29 N
m034(5, 1) 2.5144043349 Z/11
m070(−3, 1) 2.5274184773 Z/11 L Degeneracy test as m117(−3, 2).
m038(−5, 2) 2.5274184773 Z/19
m036(−5, 1) 2.5274184773 Z/33
m030(5, 2) 2.5303032876 Z/63 N
m023(−5, 2) 2.5415850101 Z/3 + Z/3
m038(5, 1) 2.5495466001 Z/13
m026(−5, 1) 2.5667347900 Z/21
m160(1, 2) 2.5689706009 Z/3 + Z/5
m036(−1, 3) 2.5751620736 Z/57
m030(1, 3) 2.5854830480 Z/7 + Z/7 L Degeneracy test as m030(1, 3).
m160(−3, 2) 2.5953875937 Z/3 + Z/9 N
m036(−5, 2) 2.6095439552 Z/51
m027(−4, 1) 2.6122234482 Z/77
m027(4, 3) 2.6172815707 Z/25 L Degeneracy test as m027(4, 3).
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Name Volume Hom Ord Lam Reason for knowing laminar
m081(1, 3) 2.6244624283 Z/37 N
m036(5, 1) 2.6285738915 Z/3 L Is s580(−2, 1) and s580 is 10145.
m032(5, 2) 2.6294053953 0 O L Is m032(5, 2) and m032 is K(−2/9).
m034(−1, 3) 2.6414714456 Z/31 L Degeneracy test as m034(−1, 3).
m036(1, 3) 2.6536080625 Z/51 L Degeneracy test as m082(−3, 2).
m034(−2, 3) 2.6555425236 Z/35
m034(1, 3) 2.6646126469 Z/23 L Degeneracy test as m034(1, 3).
m160(2, 1) 2.6735274161 Z/3 L Is m372(2, 1) and m372 is 946.
m032(7, 1) 2.6822267321 Z/5 L Is m032(7, 1) and m032 is K(−2/9).
m069(4, 1) 2.6954841673 Z/65 N L Degeneracy test as m081(−3, 2).
m069(−1, 3) 2.6954841673 Z/39
m030(5, 3) 2.7067833105 Z/77 N L Is Haken. See [62].
m120(−3, 2) 2.7124588084 0 L Is m199(−3, 1) and m199 is 942.
m116(−1, 3) 2.7589634387 Z/7 L Is s580(2, 1) and s580 is 10145.
m081(−1, 3) 2.7725163132 Z/59 N
m160(−2, 3) 2.8022537823 Z/3 + Z/11
m221(3, 1) 2.8281220883 Z/21
m142(3, 2) 2.8281220883 Z/19
m206(1, 2) 2.8281220883 Z/5
m082(2, 3) 2.8458961160 Z/83 N
m070(4, 3) 2.8472238006 Z/85 N
m069(4, 3) 2.8472238006 Z/99
m137(−5, 1) 2.8656302333 0
m070(−2, 3) 2.8669017766 Z/61 N L Degeneracy test as m070(−2, 3).
m069(−2, 3) 2.8669017766 Z/27 L Degeneracy test as m069(−2, 3).
m069(−4, 1) 2.8733431176 Z/31
m070(−4, 1) 2.8733431176 Z/7
m100(2, 3) 2.8824943873 Z/85 Is Haken. See [62].
m082(−2, 3) 2.9027039980 Z/79 L Degeneracy test as m082(−2, 3).
m221(−1, 2) 2.9133321143 Z/7
m116(1, 3) 2.9169341134 Z/41
m120(−5, 1) 2.9356518985 Z/17
m078(2, 3) 2.9398104423 Z/37
m145(2, 3) 2.9400386172 Z/47 N
m078(5, 2) 2.9438596478 Z/43
m249(3, 1) 2.9545326040 Z/3 + Z/5
m145(3, 2) 2.9582502906 Z/13
m117(3, 2) 2.9605565159 Z/53 N
m117(−5, 1) 2.9607151670 Z/19
m154(2, 3) 2.9670703390 Z/77
m078(−2, 3) 2.9696321386 Z/17
m100(−2, 3) 2.9709840073 Z/77 L Degeneracy test as m100(−2, 3).
m117(1, 3) 2.9760925194 Z/55
m078(−5, 2) 2.9769925267 Z/7 L Is m199(−1, 2) and m199 is 942.
m159(3, 2) 2.9781624873 Z/35
m137(5, 1) 2.9868370451 0



7

UNIVERSAL CIRCLES

In this chapter we begin a systematic study of the macroscopic geometry and
topology of taut foliations. The leafwise geometry can be understood via Can-
del’s uniformization Theorem (to be proved below), which implies that for a taut
foliation F of an atoroidal 3-manifold M, one can find a metric on M for which
every leaf of F is hyperbolic, with respect to the induced path metric.

It follows that every leaf λ of F̃ is isometric to H2, and we can associate to it
a circle at infinity S1

∞
(λ). These individual circles can all be amalgamated into a

single universal circle which is sensitive to both the tangential geometry and the

transverse topology of F̃.
The methods in this chapter are a mixture of complex analysis, PL 3-manifold

topology, codimension 1 foliation theory, and 1-manifold topology. We will make
use of some tools developed in earlier chapters, especially Chapter 2 and Chap-
ter 4.

7.1 Candel’s theorem

The classical uniformization theorem says that all simply connected Riemann sur-

faces are conformally equivalent to exactly one of CP1, C, H. If Σ is a compact

Riemann surface, the conformal type of Σ̃ is determined by the sign of χ(Σ).
One remark about notation: we use the term parabolic for a Riemann surface to
mean conformally Euclidean; i.e. the universal cover of the surface is conformally
equivalent to C.

Candel’s uniformization theorem is a substantial generalization of the hy-
perbolic case of this theorem; it gives precise necessary and sufficient condi-
tions for a compact Riemann surface lamination to admit a leafwise hyperbolic
structure.

Observe first that it is easy to come up with many examples of Riemann
surface laminations which do not admit leafwise metrics of constant curvature.

Example 7.1 The disjoint union of a torus and a genus 2 surface is a Riemann
surface lamination; it obviously admits no leafwise metric of constant curvature
(although it does admit a metric of locally constant curvature).

One might ask whether every minimal Riemann surface lamination (i.e. one
with every leaf dense) must admit a leafwise metric of constant curvature. How-
ever, the following example due to Richard Kenyon shows that this is not true.

246
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Example 7.2. (Kenyon) We first construct an infinite family of planar trees whose
edges are all unit length segments with vertices in the square lattice. Let T1 be
the tree consisting of the four unit length edges with one vertex at the origin
and other vertices at lattice points. Then for each i, we let Ti+1 be the union
of T1 with four translates of Ti, attached along an extreme vertex to one of the
four “free” vertices of T1. The union T∞ is a planar tree with four ends. For any
p ∈ T∞, the four ends determine four unique geodesics γi(p), i ∈ {1, 2, 3, 4}.

FIG. 7.1. A sequence of approximations to T∞

We can thicken T∞ to an ǫ neighborhood Nǫ(T∞) ⊂ R3, and let Σ∞ be the
boundary ∂Nǫ(T∞). Then Σ∞ is a 4-punctured sphere. Σ∞ can be included as
a dense leaf in a compact Riemann surface lamination Λ, as in Example 6.7.
One observes that every finite patch in Σ∞ occurs with definite density. This
implies that Λ is a minimal lamination. However, for any sequence pi of points
in T∞ which diverge to infinity, at least three of the geodesics γ j(pi) share an
arbitrarily long initial segment. In particular, for any limit of pointed metric
spaces

(Σ′, p) = lim
i→∞

(Σ∞, pi)

where pi exits every compact subset of Σ∞, the limit leaf Σ′ has at most two
ends. So Λ is minimal, and all but one leaf is parabolic, but exactly one leaf is
hyperbolic.

Example 7.3 Let M be a solid torus foliated as a Reeb component. Every leaf is
parabolic, but there is no metric of leafwise constant curvature. To see this, let
T = ∂M be the boundary leaf, and let λ be an interior leaf. If γ is a meridian
on T, then γ is a limit of embedded loops γi ⊂ λ which bound nested subdisks
Di ⊂ λ whose union is all of λ. For any reasonable metric on M, the lengths of
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the γi converge to length(γ), and are therefore bounded. On the other hand, for
any flat metric on λ, the lengths of the γi must increase without bound.

Example 7.4. (BS(1, 2)-lamination) Let B be the mapping torus of a degree 2
self-covering map of S1. Then B is a branched surface whose fundamental group
is the Baumslag-Solitar group BS(1, 2) = 〈a, b | ab = a2〉. The universal carry-
ing lamination of B (see Example 6.19) contains three kinds of leaves: doubled
horoballs, hyperbolic planes, and hyperbolic cylinders. All three kinds of leaves
are dense; the first kind are parabolic, whereas the other two kinds are hyper-
bolic. See [174] for details.

To state Candel’s theorem, we must first discuss invariant transverse mea-
sures on laminations.

Definition 7.5 An (invariant) transverse measure µ for a lamination Λ is a non-
negative Borel measure on the leaf space of Λ in small product charts which is
compatible on the overlap of distinct charts.

Compare Definition 1.70. We spell out the details, if only to show that there
is nothing subtle about them. Letµ be an invariant transverse measure. For each
product chart Ui ≈ D× Ki, the measure µ determines a Borel measure µi on Ki.
If Ui ∩U j ≈ D× Ki j inducing inclusion maps on the local leaf spaces

ιi : Ki j → Ki , ι j : Ki j → K j

we have
(ιi)∗(µi j) = µi|ιi(Ki j)

If τ is a transversal, then we may decompose τ into a countable disjoint
union τ = ∪iτi where each τi is contained in a product chart Ui. If Ui ≈ D× Ki,
and π i : Ui → Ki is the projection to the leaf space factor on Ui, then

µ(τ) = ∑
i

µi(π
i(τi))

The compatibility of the µi on overlap of charts implies that this is independent
of the choices involved.

The following example is the key to constructing many interesting invariant
transverse measures.

Example 7.6. (Goodman–Plante [111]) Let Λ be a compact lamination with a
leafwise Riemannian metric. Let λ be some leaf of Λ, and suppose that there is
a sequence of compact submanifolds λi ⊂ λ for which

lim
i→∞

area(∂λi)

volume(λi)
= 0

By analogy with the theory of amenable groups, we call such a sequence λi a
Følner sequence (compare with [80]).
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We define a transverse measure µi as follows. For any compact transversal
τ , we define

µi(τ) =
#(τ ∩ λi)

volume(λi)

Since Λ is compact, we can cover it with finitely many product charts. Decom-
pose τ into a union of finitely many transversals, each contained in a product
chart. By abuse of notation, let τ be one of these subtransversals. Since τ is con-
tained in a product chart, there is a constant K such that any two points of τ ∩ λ
are at least distance K apart in the path metric on λ. It follows that for any fixed
τ , µi(τ) is bounded above independently of i.

Let U be a product chart for Λ containing τ , so that Λ∩U ≈ D× K where D
is an open ball and K is a locally compact topological space. Suppose τ ⊂ U and
let τ ′ be another transversal with the same projection to K as τ . Let T = τ ∩ λ
and T′ = τ ′ ∩ λ. Then T and T′ are uniformly separated, and there is a constant
C such that the points of T and T′ are in bijective correspondence, where each
p ∈ T corresponds to some p′ ∈ T′ with

dλ(p, p′) ≤ C

Now, by definition,

µi(τ)− µi(τ
′) =

#(T ∩ λi)− #(T′ ∩ λi)

volume(λi)

Since both T and T′ are separated in λ (with respect to the path metric), the size
of #(T ∩ λi)− #(T′ ∩ λi) is O(area(∂λi)), where the constant of proportionality
depends on τ and τ ′ but not i. It follows that

lim
i→∞

µi(τ)−µi(τ
′) = 0

From this we deduce that any weak limit µ of some subsequence of the µi is
an invariant transverse measure. Note that by our earlier estimate, such a weak
limit exists.

Since Λ is compact, we can cover it with finitely many product charts. By
finiteness and the pigeonhole principle, there is an ǫ > 0 such that, for each i,
there is a chart Ui for which

volume(λi ∩Ui)

volume(λi)
≥ ǫ

After passing to a subsequence, one can find a sequence λi for which the charts
Ui are constant. So we can construct a transversal τ in Ui for which µi(τ) ≥ ǫ,
and therefore any weak limit µ is nontrivial.

Compare with Example 1.51.
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Definition 7.7 Let Λ be a Riemann surface lamination. The leafwise metric on
Λ determines a leafwise closed 2-form Ω which on each leaf is just the (Gauss)
curvature 2-form. We can think of Ω as a signed leafwise measure. The product
of this measure with an invariant transverse measure µ defines a signed Borel
measure µ ×Ω on the total space of Λ; the total mass of this measure is called
the Euler characteristic of µ, and is denoted χ(µ).

Let U be a product chart for Λ, so that Λ ∩U ≈ D× K where D is an open
disk, and K is a locally compact topological space. A transverse measure µ re-
stricts to a measure on K, which by abuse of notation we also denote by µ. Then

(µ×Ω)(U) =
∫

K

(∫

D×k
Ω

)
dµ(k)

From this local formula, one may calculate χ(µ) from a finite open cover by
product charts with product intersections, by the inclusion-exclusion formula.
The defining property of an invariant transverse measure implies that the value
of χ(µ) is well-defined, independently of the choice of cover.

Example 7.8 Let F be a foliation of M, and let µ be an invariant transverse mea-
sure. Suppose X is a section of TF with “generic” singularities. That is, X is non-
singular away from a link L which is transverse to F away from finitely many
isolated points.

Let L′ ⊂ L be the union of the segments where L is transverse to F. Then
for each leaf λ, and each point of λ ∩ L′, X is singular, and the topological type
of the singularity is constant on components of L′. Let L′i be the components of
L′i. Then we define an index of each L′i to be 1 or −1 depending on whether the
local leafwise singular behavior of X along L′i is a source/sink or a saddle. Since
each L′i is transverse to F, we can define µ(L′i). Then

∑
i

index(L′i)µ(L′i) =
χ(µ)

2π

The proof is the usual proof of Gauss–Bonnet for surfaces, applied leafwise in
product charts. See [52].

Remark We could in principle do away with the normalization factor of (2π)−1

in the formula of Example 7.8 by changing the definition of χ(µ). In practice,
we are only interested in the sign of χ(µ), so there is no obvious advantage to
be gained by such a normalization.

Remark The sign of the Euler characteristic of an invariant measure contains a
lot of information about the conformal geometry of leaves ofΛ. Connes showed
that if the µ-measure of the set of spherical leaves is zero, then µ(Λ) ≤ 0. Com-
plementary to this, one has the following theorem of Ghys:

Theorem 7.9. (Ghys [102]) LetΛ be a compact oriented Riemann surface lamination,
and let µ be an invariant transverse measure. Suppose that µ-a.e. leaves of Λ are not 2-
spheres, and further suppose that χ(µ) = 0. Then µ-a.e. leaf is conformally Euclidean.
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Having defined χ(µ), we can now state and prove Candel’s uniformization
theorem:

Theorem 7.10. (Candel’s uniformization theorem [41]) Let Λ be a Riemann sur-
face lamination. Then Λ admits a leafwise hyperbolic metric if and only if χ(µ) < 0 for
all nontrivial invariant transverse measures µ.

Proof Firstly, it is obvious that for such a metric, χ(µ) < 0 for all µ, by the
integral definition of χ.

A compact parabolic or spherical leaf admits µwith χ(µ) ≥ 0, so we assume
that L contains no compact leaf.

Let L be a leaf of Λ which is conformally Euclidean, so L = C or C∗, say
L = C for concreteness. There is a uniformizing map

f : C→ L

which is conformal. The fact that f is conformal allows us to make a comparison
between the area and the square of the boundary length of the image of a round
disk in C. In particular, for any disk D ⊂ C,

area( f (D)) =
∫

D
|df |2

and

length(∂ f (D)) = length( f (∂D)) =
∫

∂D
|df |

Let Br ⊂ C denote the disk of radius r centered at 0, and let Lr = f (Br). Then

area(Lr) =
∫

Br

|df |2 =
∫ r

0

(∫

∂Bs

|df |2
)

ds

and

length(∂Lr)
2 =

(∫

∂Br

|df |
)2

≤ 2πr
∫

∂Br

|df |2 = 2πr
d

dr
area(Lr)

We want to show that for some subsequence ri, the Lri
are a Følner sequence,

and will let us construct an invariant transverse measure µ. Suppose not, i.e.
suppose we have

lim inf
r→∞

length(∂Lr)

area(Lr)
= α > 0

Then for sufficiently large r ≥ r0, we have

length(∂Lr)

area(Lr)
≥ ǫ ≥ α

2
> 0
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In particular,

∞ =
∫

∞

r0

dr

2πr
≤
∫

∞

r0

1

length(∂Lr)2

d

dr
area(Lr)dr

≤ 1

ǫ2

∫
∞

r0

1

area(Lr)2

d

dr
area(Lr)dr

=
1

ǫ2area(Lr0)

This contradiction implies that the Lr contain a Følner sequence Li = Lri
, and

therefore we can construct an invariant transverse measureµ as in Example 7.6.
Let Ω be the tangential curvature 2-form of Λ determined by its leafwise

Riemannian metric. We would like to show
∫

Li
Ω

area(Li)
→ 0

and therefore conclude that χ(µ) = 0, but a priori it is hard to see why this is
true, since we have no control over the geodesic curvature of ∂Li.

Cover Λwith product charts D×τi and in L, look at the union Ri of product
disks intersecting Li. Then by the Gauss–Bonnet Theorem,

∫

Ri

Ω = 2πχ(Ri)−
∫

∂Ri

κg − ∑
p∈∂Ri

αp

where κg is the geodesic curvature along smooth segments of ∂Ri, and αp is
the “turning angle” at the corner p of ∂Ri, where the boundaries of distinct
product disks intersect transversely. Now, since the geometry of Ri is locally
bounded, and all the nontrivial topology is concentrated near the boundary,
2πχ(Ri) is bounded in absolute value by const.|∂Ri|. Moreover, the geodesic
curvature |κg| ≤ const. and the corners p of ∂Ri are uniformly separated from
each other. Moreover, by judicious choice of inclusion of product disks in Ri, we
can estimate |∂Ri| ≤ const.|∂Li| and

|area(Ri)− area(Li)| ≤ const.|∂Ri|

In particular, the Ri are a Følner sequence too, determining an invariant trans-
verse measure µ, and by the estimates above, we have χ(µ) = 0. A similar
argument produces a µ with χ(µ) = 0 if some leaf λ of Λ is conformally equiv-
alent to C∗.

It follows that if Λ admits no invariant transverse measure µ with χ(µ) ≥ 0
then all leaves are of hyperbolic type. Each leaf individually admits a hyper-
bolic metric which is unique in its conformal class. To prove Candel’s theorem
therefore, it suffices to study the transverse continuity and smoothness of the
leafwise uniformizing map.
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For each λ of Λ, there is a holomorphic covering u : D → λ unique up to
conformal self-maps of D. By pushing forward the Poincaré metric gP on D and
comparing it with some (smooth Riemmanian) metric gΛ onΛwe get a function
η : D→ R such that

u∗gΛ = η2gP

In particular, we have a uniformization map

η : Λ→ (0, ∞)

with η(x) = |dux(0)| where ux : D → λ takes 0 to x. Scaling the metric |gΛ|1/2

conformally on Λ by η makes each leaf individually isometric to a hyperbolic
surface. We must analyze the continuity of η.

Since leaves converge on compact sets, for any p ∈ λ and some large com-
pact K with p ∈ K ⊂ λ, for all qt ∈ λt sufficiently close to p we have qt ∈ Kt ⊂ λt

where Kt isǫ-close to K inΛ. So we can uniformize the continuously varying fam-
ily of disks Kt by some ηK. By the monotonicity property of the Poincaré metric
(i.e. the Schwartz lemma; see e.g. [139]), we have ηK < η, and as K exhausts λ,

lim
K→λ

ηK |λ = η|λ

On the other hand, by the Schwartz lemma, for all t

lim
K→λ

ηK |λt
≤ η|λt

so η is lower semicontinuous.

Conversely, suppose we have a sequence of holomorphic maps ut : D → λt

sending ut(0) = qt and qt → p. We would like to conclude that there is a
convergent subsequence with u∞ : D → λ and u∞(0) = p. Then, if the ut were
the uniformizing maps for λt, by the Schwartz lemma again we would have

lim
t→∞

η(qt) = lim
t→∞

|dut(0)| = |du∞(0)| ≤ η(p)

To establish this, it suffices to show that O(D,Λ), the space of holomorphic
maps from D to Λ, is compact.

We show now that O(D,Λ) is compact. Firstly, it is closed, since if fn : D → Λ

converge uniformly to f : D → Λ, then f is holomorphic. So it suffices to show
that O(D,Λ) is bounded.

Basically, this follows from Brody’s lemma. Let Drn denote the disk of radius
rn in C. Suppose rn → ∞. Brody’s lemma (see e.g. [146]) says that if we are given
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an unbounded sequence in O(D,Λ), by suitably restricting and precomposing
the sequence with Möbius transformations, we can obtain a new sequence

hn : Drn → Λ

with
|dhn(0)|n = sup

|z|≤rn

|dhn(z)|n = 1

Here | · |n denotes the norm with respect to the Poincaré metric on Drn . It is
easy to estimate that hn|Dr are equicontinuous for any fixed r, so we can extract
a limit h∞ : C→ Λ with

|dh∞(0)|e = sup
z∈C
|dh∞(z)|e = 1

where | · |e denotes the Euclidean metric on C. That is, we have constructed a
nonconstant holomorphic map from C to Λ. This contradicts the fact that the
leaves of Λ are all hyperbolic; this contradiction implies O(D,Λ) is compact,
and shows that η is upper semicontinuous. In particular, η is continuous. With
some more work, one can show that it is smooth, and therefore the leafwise
hyperbolic metric determines the same smooth structure on Λ. 2

The appeal to Brody’s lemma in the proof of Candel’s theorem indicates
another characterization of the hyperbolic metric on Λ determined by its con-
formal class — it is just the familiar Kobayashi metric with respect to O(D,Λ).
See e.g. [146] for a fuller discussion of Kobayashi metrics on complex spaces.

Example 7.11. (Mess) Let G be a finitely generated group which is quasi-isometric
to a plane P with a Riemannian metric which is complete of bounded geometry.
If P with its metric is conformally Euclidean, then random walk on P (and there-
fore on G) is recurrent, since random walk is conformally invariant in 2 dimen-
sions. A theorem of Varopoulos [244] then implies that G is virtually nilpotent,
and one can deduce that G is virtually Z2. So we suppose that P is conformally
hyperbolic. We can realize P as a dense leaf in a compact Riemann surface lami-
nation Λ as in Example 6.7. The fact that P is quasi-isometric to G implies that it
is “coarsely homogeneous” and therefore every leaf of Λ is conformally hyper-
bolic. It follows by Theorem 7.10 that P is quasi-isometric to H2 and therefore G
acts on S1

∞
as a convergence group. By Theorem 2.99 we deduce that G is vir-

tually a surface group. This is a key step in the proof of the Seifert Conjecture;
see [163].

7.2 Circle bundle at infinity

The material in the next few sections borrows heavily from [40] and (to a lesser
extent) from what exists of [239]. The main goal of the remainder of the chapter
is to associate a universal circle to a taut foliation of an atoroidal 3-manifold. The
idea for this construction is due to Thurston, who gave a seminal and inspiring
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series of lectures on the topic at MSRI in 1996-7. There is no really satisfactory
reference for Thurston’s view of the theory of universal circles, since his main
paper on the topic [239] is mostly unwritten. Therefore the approach we take
here incorporates ideas from a number of people, especially Calegari, Dunfield
and Fenley. Where it makes sense, we develop some aspects of the machinery
(especially the Leaf Pocket Theorem; see below) for essential laminations.

Let M be an atoroidal 3-manifold, and Λ an essential lamination. Then the
leaves of Λ are all of hyperbolic type, and therefore Candel’s theorem applies.

Using Candel’s theorem, we can define the circle bundle at infinity of a taut
foliation.

Definition 7.12 Let F be a taut foliation of an atoroidal 3-manifold M, and let L
be the leaf space of F̃. By Theorem 7.10 we find a metric on M so that every leaf

of F̃ is isometric, with its induced path metric, to H2.

For each leaf λ of F̃, let S1
∞

(λ) denote the ideal boundary of λ with respect
to this metric. The endpoint map

e : UTpλ → S1
∞

(λ)

takes a unit vector v in λ at p to the endpoint at infinity of the geodesic ray
γv ⊂ λ which emanates from p, and satisfies γ′v(0) = v.

Definition 7.13 The circle bundle at infinity is the topological space whose un-
derlying set is the disjoint union

E∞ =
⋃

λ∈L

S1
∞

(λ)

and with the largest topology so that the endpoint map

e : UTF̃→ E∞

is continuous.

With this topology, E∞ is a circle bundle over L, whose fiber over each λ ∈ L
is S1

∞
(λ).

We may give another definition of the topology on E∞ in terms of cylindri-

cal charts, as follows. For every transverse arc τ to F̃, the restriction UTF̃|τ
is a cylinder. We obtain E∞ from the disjoint union of these cylinders over
all transversals τ by the quotient map which identifies two vectors v and w
if e(v) = e(w).

Suppose τ1, τ2 are two transversals which meet the same embedded interval

I → L of leaves. For t ∈ I, let λt be the corresponding leaf of F̃, and τ1(t), τ2(t)

the intersections τi ∩ λt. Let vt be a section of UTF̃|τ1 . For each vt ∈ UTF̃|τ1(t)
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there is a unique wt ∈ UTF̃|τ2(t) with e(vt) = e(wt). For every ǫ > 0 there is

a compact K ⊂ M̃ such that the geodesic rays from vt and wt are ǫ-close on

M̃− K. In fact, we can fix ǫ, K so that if w′t ∈ UTF̃|τ2(t) is any other vector, the

geodesic rays from vt and w′t have disjoint ǫ neighborhoods in M̃− K. Since vt

is a continuous section, for any compact L ⊂ M̃, for all s sufficiently close to
t, the geodesic rays from vt and vs are ǫ-close on L. It follows that ws and wt

are ǫ-close on L − K for all s. Since L,ǫ are arbitrary, this implies that wt is a

continuous section of UTF̃|τ2(t).
We have proved the following:

Lemma 7.14 For every transversal τ to F̃, the restriction

e : UTF̃|τ → E∞|τ
is a homeomorphism.

In particular, on the overlap of two cylindrical “charts” for E∞, the transition
functions are homeomorphisms with respect to the ordinary topology on each

UTF̃|τ . It follows that E∞ is a (typically non-Hausdorff) 2-manifold.

7.3 Separation constants

Let Λ be an essential lamination in a compact manifold M. Then leaves of Λ̃

are properly embedded in M̃. One cannot usually make this statement more
quantitative: leaves are typically not uniformly properly embedded unless the

leaf space of Λ̃ is Hausdorff (compare with Lemma 4.48 and the following re-
mark). Nevertheless, the compactness of M implies that there is a uniform pos-

itive ǫ > 0 such that every leaf of Λ̃ is k quasi-isometrically embedded in its ǫ
neighborhood.

Definition 7.15 LetΛ be a lamination of M. A separation constant forΛ is a num-

ber ǫ > 0 with the property that there is some k ≥ 1 such that every leaf of Λ̃ is

k quasi-isometrically embedded in its ǫ-neighborhood in M̃.

Lemma 7.16 Let Λ be an essential lamination of a compact manifold M. Then there is
a separation constant for Λ.

Proof By compactness of M, there is anǫ so that every 2ǫ ball in M̃ is contained

in a product chart for Λ̃. Note that in M̃, any leaf λ of Λ̃ intersects a product

chart at most once, since otherwise we could build a tight transversal loop to Λ̃
by the method of Lemma 4.24.

Now, consider theǫ-neighborhood Nǫ(λ) in M̃ of a leaf λ of Λ̃. We can cover
N2ǫ(λ) by product charts, and observe that λ intersects each of these charts only
once. Since M is compact, each of these charts has bounded geometry. Therefore
λ is (uniformly) quasi-isometrically embedded in Nǫ. 2
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7.4 Markers

Candel’s uniformization theorem gives us more or less complete information
about the tangential geometry of an essential lamination in an atoroidal 3-manifold.

We have seen from Lemma 7.14 that the ideal geometry of leaves of Λ̃ varies
continuously from leaf to leaf in the visual sense. That is, we understand what
it means for a section

σ : I → E∞|I
to be continuous, for I an embedded interval in L. This begs the obvious ques-
tion of whether some sections σ are more “natural” or “canonical” than oth-
ers. Ideally, we would like to identify certain classes of sections σ which reflect

(transverse) geometric properties of the corresponding leaves of Λ̃.
By Lemma 7.16 we know that we can do coarse geometry with leaves of

Λ̃, at least in sufficiently small tubular neighborhoods of a leaf. It makes sense
therefore to compare the geometry of families of leaves on macroscopic subsets

where they stay sufficiently close in M̃.
The simplest kinds of macroscopic subsets of leaves to compare are quasi-

geodesic rays. This suggests the definition of a marker.

Definition 7.17 Let Λ be an essential lamination of M with hyperbolic leaves.
A marker for Λ is a map

m : I ×R+ → M̃

with the following properties:

1. There is a closed set K ⊂ I such that for each k ∈ K, the image of k×R+

in M̃ is a geodesic ray in a leaf of Λ̃. Further, for k ∈ I − K,

m(k×R+) ⊂ M̃− Λ̃
We call these rays the horizontal rays of the marker.

2. For each t ∈ R+, the interval m(I × t) is a tight transversal. Further, there
is a separation constant ǫ for Λ, such that

length(m(I × t)) < ǫ/3

We call these intervals the vertical intervals of the marker.

For a marker m, a horizontal ray m(k×R+) in a leaf λ of Λ̃ is asymptotic to
a unique point in S1

∞
(λ), which we call the endpoint of m(k×R+). By abuse of

notation, we call the union of such endpoints, as k varies over K, the endpoints
of the marker m.

If F is a foliation, then K = I for each marker m. Each point on the interval

corresponds to a fixed leaf of F̃, so we may identify I with an embedded interval
in L. Then the endpoints of m are the image of a section I → E∞, which by abuse
of notation, we denote

m : I → E∞|I
and we denote the image of this section by e(m) ⊂ E∞.
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Markers are related to, and arise in practice from sawblades, defined as fol-
lows:

Definition 7.18 Let Λ be an essential lamination of M with hyperbolic leaves.
An ǫ-sawblade for F is an embedded polygonal surface P ⊂ M obtained from
I × I by gluing P(1, I) to a subset of P(0, I) in such a way that P(1, 0) gets
identified with P(0, 0), with the following properties:

1. There is a closed subset K ⊂ I including the endpoints of I, such that for
each t ∈ K, the subset P(I, t) ⊂ F is a geodesic arc in a leaf λt of Λ. For
t = 0, the subset P(I, 0) ⊂ F closes up to a geodesic loop γ ⊂ λ0.

2. For each t ∈ I, the subset P(t, I) is an embedded, tight transversal to Λ of
length≤ ǫ. The transversal P(1, I) is contained in the image of P(0, I), and
the corresponding geodesic segments P(I, t1), P(I, t2) where P(1, t1) =
P(0, t2) for t1, t2 ∈ K, join up to a geodesic segment in the corresponding
leaf of Λ; i.e. there is no corner along P(0, I).

If ǫ is understood, we just say a sawblade. Note that holonomy transport of the
transversal P(0, I) around γ induces an embedding K → K taking one endpoint
to itself. Here γ is oriented compatibly with the usual orientation on I = [0, 1].
We call the positive direction on γ the contracting direction for the sawblade, and
the negative direction the expanding direction.

FIG. 7.2. A sawblade, with the transverse foliation poking through

We show how to construct a marker from a sawblade.
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Construction 7.19 Let P be a sawblade, and let P̃ be a component of the preim-

age in M̃. P̃ is the universal cover of P, and the deck group of the cover is
π1(P) = Z, generated by the closed geodesic γ as in Definition 7.18.

Let τ be a lift of P(0, I), and let K ⊂ I be as in Definition 7.18. Parameterize
τ as τ(t) where τ(t) corresponds to the lift of P(0, t). Then for each k ∈ K, let λk

denote the leaf of Λ̃ containing τ(k). By the second property of a sawblade, the

intersection λk ∩ P̃ contains an entire geodesic ray starting from τ(k). Together

with complementary strips of P̃, the union of these rays are a marker for Λ.

Notice that the union of the markers constructed in Construction 7.19, over
all lifts τ of P(0, I), is exactly the preimage P̃.

By abuse of notation, we refer to the union of the endpoints of the markers

associated to P̃ in Construction 7.19 as the endpoints of P̃.

Construction 7.20 Every simple closed geodesic γ contained in a non-simply
connected leaf λ of Λ is the boundary geodesic of some ǫ-sawblade, for any
positive ǫ. For, holonomy transport around γ induces the germ of a homeomor-
phism hγ : τ → τ of some transversal τ . If pi ∈ τ is a sequence converging
to p∞ = τ ∩ γ, then we must either have hγ(pi) ≤ pi for infinitely many i, or
else hγ(pi) ≥ pi for infinitely many i. In either case, after possibly reversing
the orientation of γ, we can assume hγ(pi) ≤ pi for infinitely many i. Since γ
is compact, for sufficiently small i, the interval [p∞, pi] ⊂ τ can be holonomy
transported through transversals with length uniformly bounded by any ǫ.

The following lemma of Gabai from [85] shows, if M is not T3, that every
minimal essential lamination contains some leaf which is not simply-connected.

Lemma 7.21. (Gabai) If M is a closed 3-manifold containing an essential lamination
Λ such that every leaf of Λ is a plane, then M is T3.

Proof Here is the idea of the proof. For concreteness, we fix a 1-dimensional
foliation X of M transverse to Λ. Assume without loss of generality that Λ is
minimal. If Λ is a genuine lamination, the core of an interstitial annulus is a
homotopically essential loop in M which is homotopic into a leaf of Λ, so we
are done. If Λ is essential, then either Λ is a fiber of a fibration (which containts
many essential loops) or after possibly collapsing complementary product re-
gions, Λ is a minimal foliation.

If the leaf space of Λ̃ branches, then branching is dense in the leaf space, by

minimality. So for any δ > 0 we may find leaves λ1, λ2 of Λ̃ containing points

pi ∈ λi on a transversalσ contained in a leaf of X̃ with length(σ) ≤ δ, and such
that the leaf space between λ1 and λ2 branches. Since the leaf space between λ1

and λ2 branches, there is a transversal τ contained in a leaf of X̃ between λ1 and
λ2 with length(τ) ≥ ǫ for some fixed ǫ which is a separation constant for Λ.

Now, by minimality and the compactness of M, there is some universal
constant T such that some point q in the middle third of τ is within leafwise
distance T of a translate α(p1). If δ is chosen sufficiently small, then by the
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compactness of M, we can holonomy transport α(σ) through arcs contained in

leaves of X̃ to a transversal h(α(σ)) ⊂ τ where length(h(α(σ))) ≤ ǫ/3.
It follows that if I ⊂ L is the family of leaves corresponding to σ , then α(I)

is contained in the interior of I, and thereforeα fixes some leaf in I, and we are
done.

We have therefore reduced to the case that Λ is a foliation, and Λ̃ does not
branch. In this case,Λ is R-covered, and L ≈ R. Now, by hypothesis, π1(M) acts
on R without fixed points. By Hölder’s Theorem 2.90, π1(M) is free abelian, and
therefore M is homeomorphic to T3. 2

It follows that if M is atoroidal, every minimal set contains at least one saw-
blade.

A closed geodesic γ on a closed surface Σ lifts in the universal cover Σ̃ to a

system of infinite geodesics whose endpoints in S1
∞

(Σ̃) are dense. The following
lemma is the analogue of this observation, with “closed geodesic” replaced by
“sawblade”, and “closed surface” replaced by “minimal essential lamination”.

Lemma 7.22 Let Λ be a minimal essential lamination of an atoroidal 3-manifold M,

and let P be an ǫ-sawblade for Λ. Then the set of endpoints of lifts P̃ of P is dense in

S1
∞

(λ) for every leaf λ of Λ̃.

Proof SinceΛ is minimal, there is a uniform constant C > 0 such that for every

leaf λ of Λ̃, and for every point p ∈ λ, there is a point q ∈ λ within distance C
of p in the path metric on λ, such that q is contained in a lift of P.

It follows that q is contained in a marker, and there is a geodesic ray r
through q such that holonomy transport of a suffiently short transversal τ(q)
through q along r keeps the length of the transversal smaller than ǫ/3 for all
time.

Since such rays r can be found within distance C of any point in λ, we can
find at least two such disjoint rays r1, r2. Suppose r1 and r2 were asymptotic to
the same ideal point in S1

∞
(λ). Then these rays would contain pairs of points

arbitrarily close to each other in λ. But each of the ri projects to the compact
sawblade P which is embedded in M and does not accumulate on itself. This
gives a contradiction, and shows that r1 , r2 are not asymptotic.

Now, the set of endpoints of all lifts P̃ of P determines a subset P∞(λ) ⊂
S1

∞
(λ) for all leaves λ. We have shown that this subset contains at least two

points, for every λ. Let p ∈ λ. Then there are points p1(λ), p2(λ) in P∞(λ) which
are separated by some positive constant in the visual metric, as seen from p.
The points p1(λ), p2(λ) lie on transversals to E∞, which are the endpoints of

two lifts P̃1, P̃2 of P. The visual distance between these endpoints varies contin-
uously in some small neighborhood of p, and therefore there is a transversal τ

to Λ̃, containing p, so that there is a uniform δ > 0 such that for each p′ ∈ τ con-
tained on a leaf λ′, there are at least two points in P∞(λ′) which are separated
by at least δ in the visual metric on S1

∞
(λ′), as seen from p′.
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Since Λ is minimal, there is a positive constant C′ so that every m ∈ Λ̃ is
within leafwise distance ≤ C′ from some point on a translate of τ . It follows

that the size of P∞ in the visual metric as seen from any m ∈ Λ̃ is bounded
below by a positive constant δ′ independently of m.

Now, if some P∞(λ) were not dense in S1
∞

(λ), we could find a point n ∈ λ
for which the size of P∞(λ) in the visual metric, as seen from n, was arbitrarily
small. But this contradicts what we have just shown. It follows that P∞(λ) is

dense in S1
∞

(λ) for all leaves λ of Λ̃, as claimed. 2

7.5 Leaf pocket theorem

Having proved Lemma 7.22, it is straightforward to prove the following theo-
rem:

Theorem 7.23. (Calegari–Dunfield, Leaf Pocket Theorem [40]) Let Λ be an es-

sential lamination on an atoroidal 3-manifold M. Then for every leaf λ of Λ̃, and every
ǫ > 0, the set of endpoints of ǫ-markers is dense in S1

∞
(λ).

Proof By Lemma 7.21, every minimal sublamination of Λ contains a closed
geodesic, and therefore a simple closed geodesic. Each side of this geodesic is
contained in an ǫ-marker, by Construction 7.20. By Lemma 7.22, the set of end-
points of lifts of each such marker are dense in S1

∞
(λ) for each leaf λ contained

in a lift of a minimal set. Each endpoint transversal associated to a marker inter-
sects an interval of leaves. It follows that for any δ > 0, there is some η > 0 with

the following property. If p ∈ M̃ is contained in a leaf λ of Λ̃, and if p is within

distance η of some leaf in Λ̃′ for some minimal set Λ′, then the set of endpoints
of ǫ-markers is δ-dense (i.e. it intersects every interval of length δ) in S1

∞
(λ), in

the visual metric as seen from p.

Now, suppose λ is an arbitrary leaf of Λ̃, and I ⊂ S1
∞

(λ) is an arbitrary in-
terval. We want to show that some endpoint of a lift of an ǫ-marker intersects
I. Let H ⊂ λ be the half space which is the convex hull of I, and let pi be a
sequence of points in H converging to some p∞ in the interior of I. The injec-
tivity radius of H centered at pi diverges to infinity, and therefore if π(pi) ∈ M
contains a subsequence converging to some q ∈ M, then if µ is the leaf of Λ
containing q, the closure of π(λ) contains the entire leaf µ. In fact, the closure of
π(λ) contains the closure of µ, and therefore contains some minimal set Λ′. It
follows that for any η > 0 we can find a point p ∈ λ which is within distance η

(in M̃) of some leaf in Λ̃′ for some minimal set Λ′. By the previous paragraph,
this implies that the endpoints of markers are δ-dense in S1

∞
(λ) as seen from

p. But p is contained in H, so if δ is less than π , some endpoint of a marker
intersects the interior of I, as desired. 2

In the remainder of the chapter, we specialize to the case of taut foliations.
Each marker m defines by the endpoint map, an embedded interval e(m) ⊂

E∞ transverse to the foliation by circles.
The following lemma is a restatement of Lemma 6.11 in [40]:
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Lemma 7.24 Let e(m1), e(m2) be two endpoint intervals of ǫ-markers m1, m2. Then
these intervals are either disjoint, or else their union is an embedded, ordered interval
transverse to the foliation of E∞ by circles.

Proof Let λt, t ∈ [0, 1] denote the set of leaves intersecting the marker m1, and
let µt, t ∈ [0, 1] denote the set of leaves intersecting m2. Suppose ν = λt = µs,
and

p ∈ S1
∞

(ν) ∩ e(m1) ∩ e(m2)

Then m1 and m2 contain geodesic rays in ν which are asymptotic. Since they
areǫ-markers, in the complement of some big compact subset, m1 and m2 areǫ-
close. Since leaves are quasi-isometrically embedded in their ǫ-neighborhoods

in M̃, it follows that for every nearby leaf ν′ which m1 and m2 intersect, m1 ∩ν′
and m2 ∩ ν′ are asymptotic. This proves the lemma. 2

From this we deduce that distinct markers whose endpoints intersect can be
amalgamated, and the unions give a π1(M)-invariant family of disjoint, embed-
ded intervals in E∞ transverse to the foliation by circles. We denote this family
of intervals by M, and by abuse of notation, denote a typical element of M by
m, or mi for some index i (previously, we denoted such transversals by e(m) or
e(mi)). We also use the notation m(λ) for e(m) ∩ S1

∞
(λ), if m intersects λ.

Lemma 7.25 Let µ,ν be adjacent nonseparated leaves, and let λt be an increasing
sequence limiting to both µ,ν with t ∈ [0, 1). Then the set of markers which intersect
S1

∞
(µ) and the set of markers which intersect S1

∞
(ν) are unlinked in S1

∞
(λt), for any

t.

Proof Suppose m1,1, m2,1 are endpoints of markers which intersect S1
∞

(µ), and
m1,2, m2,2 are endpoints of markers which intersect S1

∞
(ν). By the definition of

markers, we can construct two proper embeddings

j1, j2 : I ×R→ M̃

which intersect leaves of F̃ in geodesics, and so that ji(·, t) is asymptotic to m1,i

and m2,i as t → ∞ and t → −∞ respectively. By the definition of markers,

the ends of j1, j2 are foliated by transversals to F̃ of length ≤ ǫ, which is a
separation constant for F. Since j1 intersects µ and j2 intersects ν, the definition
of a separation constant implies that the ends of j1, j2 are disjoint, and therefore
their intersection is compact.

But they intersect in a point a ∈ λ if and only if their endpoints in S1
∞

(λ) are
linked; that is, if m1,1(λ), m2,1(λ) link m1,2(λ), m2,2(λ). The set of leaves λ for
which this holds is obviously open; moreover, since the intersection of j1, j2 is
compact, it is closed. If the set of such λ is nonempty, it therefore must contain
µ,ν. But j1 does not intersect ν and j2 does not intersect µ; this contradiction
proves the lemma. 2
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Remark The idea of using markers to study the asymptotic geometry of taut
foliations is due to Thurston [239]. Thurston’s approach to constructing mark-
ers is measure-theoretic rather than topological, using harmonic measures and
the martingale convergence theorem. However, there are some advantages to
the more “cut-and-paste” approach in [40], and it makes many technical points
more concrete and elementary.

7.6 Universal circles

Definition 7.26 Let F be a taut foliation of an atoroidal 3-manifold M. A uni-
versal circle for F is a circle S1

univ together with the following data:

1. There is a faithful representation

ρuniv : π1(M)→ Homeo+(S1
univ)

2. For every leaf λ of F̃ there is a monotone map

φλ : S1
univ → S1

∞
(λ)

Moreover, the map

φ : S1
univ × L→ E∞

defined byφ(·, λ) = φλ(·) is continuous. That is, (E∞, L,φ) is a monotone
family.

3. For every leaf λ of F̃ and every α ∈ π1(M) the following diagram com-
mutes:

S1
univ

ρuniv(α)−−−−→ S1
univ

φλ

y φα(λ)

y

S1
∞

(λ)
α−−−−→ S1

∞
(α(λ))

4. If λ and µ are incomparable leaves of F̃ then the core ofφλ is contained in
the closure of a single gap ofφµ and vice versa.

The main purpose of the next few sections is to prove the following theorem:

Theorem 7.27. (Thurston, Calegari–Dunfield [239], [40]) Let F be a co-oriented
taut foliation of an atoroidal, oriented 3-manifold. Then there is a universal circle for F.

Remark Thurston introduced the idea of universal circles in [239], in a some-
what different form. His treatment is less axiomatic, and does not explicitly
address the relationship between the cores of incomparable leaves.

The definition of a universal circle and the formulation of Theorem 7.27 that
we use is tailored to our applications in Chapter 8, especially to the proof of
Theorem 8.5.
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7.7 Leftmost sections

Let l ⊂ L be an embedded oriented interval. The circle bundle E∞ restricts to a
bundle E∞|l with total space an annulus.

The system M|l of transversals define a “partial connection” on the circle
bundle E∞|l , by thinking of the mi as integral curves, where they are defined.
Thurston’s key idea was to realize that for a bundle with 1-dimensional fiber,
a partial connection can be integrated (though not uniquely) by using the order
structure of the fiber.

Locally, we may choose R2 charts on E∞|l for which the fibers are vertical,
and a marker m is horizontal. More generally, we may choose such local charts
for which any finite collection mi of markers are horizontal.

Warning 7.28 Note that this convention is rotated by π/2 from the usual con-
vention we have for thinking about surface foliations in 3-manifolds, in which
leaves and their universal circles are “horizontal” and transversals and seg-
ments in L are “vertical”.

If l is oriented so that the positive direction is to the right, then the fibers
of E∞ are oriented so that the positive direction is to the top. For an observer
standing on some m and looking in the positive direction along m, the positive
direction in the observer’s fiber is to the left. If we change the orientation on l,
since the orientation on E∞ is fixed, the orientation on the fibers also changes,
and the positive direction is still to the left.

A section σ : l → E∞|l is said to cross m if there is a local chart U ⊂ E∞|l ,
such that σ(π(U)) ⊂ U, and such that there are distinct values x1 , x2 ∈ l such
that σ(x1) > m(x1) and σ(x2) < m(x2).

Note that if we merely haveσ(x1) > m(x1) andσ(x2) = m(x2), the sections
do not cross, but run into each other. If there is some x ∈ π(U) such that σ(y) 6=
m(y) for y < x, but σ(y) = m(y) for y ≥ x, then we say σ and m coalesce (over
π(U)).

Definition 7.29 An admissible section is a section σ : l → E∞|l such that σ(l)
does not cross any m ∈M|l, and if the initial point p := σ(l(0)) of the segment is
contained in a marker m, thenσ(l) and m agree on π(m)∩ L, where π : E∞ → L
is the projection.

Example 7.30 A marker m is admissible over the interval π(m).

Remark The condition that a section which starts on a marker stays on that
marker is imposed to ensure that certain unions of admissible sections joined at
endpoints have the property that they do not cross markers. Observe that with
this condition, the restriction of an admissible section over l to a subinterval
l′ ⊂ l may no longer be admissible.

Let λ = l(0) be the initial leaf of l, and let p ∈ S1
∞

(λ) = E∞|λ. Let A(λ, p, l)
denote the set of admissible sections σ from l to E∞|l for which σ(λ) = p.
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The universal cover of the annulus E∞|l is a plane P, foliated by vertical
lines which cover circles S1

∞
(µ). We choose global co-ordinates on P making

it a product I ×R so that these vertical lines are factors point× R. Let p̃ ∈ P
be a lift of p. Then each element σ of A(λ, p, l) admits a unique lift s(σ) to P
with initial value p̃. This defines a natural partial order on A(λ, p, l) defined by
σ1 ≥ σ2 if and only if

s(σ1)(t) ≥ s(σ2)(t)

for all t ∈ l.
Given two admissible sectionsσ1,σ2, there is an upper bound σ1 ∧σ2 defined

by
s(σ1 ∧σ2)(t) = max(s(σ1)(t), s(σ2)(t))

for all t ∈ l.

Lemma 7.31 Ifσ1 and σ2 are both admissible, then σ1 ∧σ2 is too.

Proof If the initial point p̃ is contained in a marker m̃, then every admissible
section contains all of m̃ ∩ P, so the second condition of admissibility can never
be violated.

So we assume that σ1 ∧σ2 crosses some marker m, and derive a contradic-
tion. Let m̃ be the lift to P which crosses s(σ1 ∧σ2). Then by definition there are
values t1, t2 ∈ l such that s(σ1 ∧σ2)(t1) > m̃(t1) and s(σ1 ∧σ2)(t2) < m̃(t2).
Without loss of generality, and by interchanging the labelling of σ1 and σ2 if
necessary, we may assume that s(σ1 ∧σ2)(t1) = s(σ1)(t1). Moreover, by defi-
nition, we have s(σ1)(t2) ≤ s(σ1 ∧σ2)(t2). It follows that s(σ1) crosses m̃, and
thereforeσ1 crosses m, contrary to the hypothesis that σ1 is admissible. 2

Notice that σ1 ∧σ2 is ≥ both σ1 and σ2 in the partial order. We now show
that A(λ, p, l) is nonempty, and contains a unique largest element with respect
to the partial order.

Construction 7.32 For any finite set Mi = {mi} we can consider the sections
A(λ, p, l)i which are admissible with respect to this set. It is clear that many
such sections exist. Moreover, by Lemma 7.31, there exists an infinite increasing
sequence σ j,i ∈ A(λ, p, l)i which have the following cofinal property: for any
other σ ∈ A(λ, p, l)i, we have σ j,i ≥ σ for sufficiently large j. Suppose we

choose a finite set Mi with the property that every S1
∞

(λ) intersects some mi.
Then for each leaf p×R of P, every lifted admissible section s(σ) has a uniform
upper bound.

Define σ
∞,i : l → P by

s(σ
∞,i)(t) := lim

j→∞

s(σ j,i)(t)

for all t ∈ l.
Note that s(σ

∞,i) is not in general continuous, but it is monotone. In fact, if
we think of the s(σ ji) as maps from [0, 1] to P (and not as sections), then after
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parameterizing them by arclength, the limit of an increasing sequence exists
as a map from [0, 1] to P, whose image might contain some vertical segments.
Now, let Mi+1 be obtained from Mi by adding another element of M. Since M

is countable, we can assume that M = ∪i Mi. Note that for each µ, the sequence
s(σ

∞,i)(µ) is monotone decreasing, since the condition of admissibility depends
on an increasing sequence of constraints. Note that by reversing the orientation
on the fibers, the same argument shows that a lower bound exists, pointwise, for
all admissible sections, for Mi with our property. It follows that

s(σ∞,∞)(t) := lim
i→∞

s(σ
∞,i)(t)

exists for all t ∈ l.
As before, a priori the section s(σ∞,∞) is not necessarily continuous but it

can be included into the image of a continuous map whose graph crosses no lift
of an element of M.

On the other hand, by Theorem 7.23 the set of markers intersects every
S1

∞
(λ) in a dense set, and therefore the map corresponding to s(σ∞,∞) can con-

tain no vertical segments. It follows that s(σ∞,∞) is actually continuous, and
σ∞,∞ is actually an admissible section from l → E∞|l which, by construction, is
largest with respect to the partial order.

Given any oriented embedded line l ⊂ L and p ∈ S1
∞

(l(0)) we can therefore
construct the associated leftmost section, which we denote by

σp,l : l → E∞|l
Warning 7.33 Notice that in general, σp,l does not vary continuously in the
compact-open topology as a function of p, though it does vary upper semicon-
tinuously.

7.8 Turning corners, and special sections

Let µ1,µ2 be a pair of adjacent nonseparated leaves of L which are both positive
limits of λt with t ∈ [0, 1), as t → 1. Let p ∈ S1

∞
(µ1). For each t < 1, let l1(t)

be the oriented segment of L from µ1 to λt, and l2 the oriented segment of L
from λt to µ2. Note that the orientation on l2(t) agrees with that inherited from
L, and that of l1(t) disagrees, for each t.

For each t, let qt ∈ S1
∞

(λt) be defined by

qt = σp,l1(t)(λt)

Then define rt by
rt = σqt,l2(t)(µ2)

In this way, the composition of two leftmost sections defines a (not neces-
sarily continuous) circular order preserving map from S1

∞
(µ1) to S1

∞
(µ2). As

t → 1, the points qt, and therefore also the points rt, move monotonely in their
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respective circles (to make sense of this statement, lift to the universal covers of
the respective annuli) and we can define the limit

r = lim
t→1

rt

We say r is obtained from p by turning the corner fromµ1 to µ2. Ifµ1,µ2 are a pair
of adjacent nonseparated leaves which are both negative limits of a decreasing
family λt, we can define the operation of turning the corner in that case simi-
larly. With this operation available to us, we can define the set of special sections
by the following procedure.

Definition 7.34 Let λ,µ ∈ L be two distinct leaves. The path from λ to µ is a
union of finitely many oriented segments li ⊂ L, i ∈ {1, . . . , n} with the follow-
ing properties:

1. Each li is embedded, and distinct li, l j are disjoint

2. The initial leaf of l1 is λ, and the final leaf of ln is µ

3. The final leaf of li is an adjacent nonseparated leaf from the initial leaf of
li+1

4. The number of segments is minimal

Here we allow the possibility that the li are degenerate (i.e. equal to a single
leaf).

It is clear that a path exists between any two leaves, and is unique. Explicitly,

if γ is a path in M̃ between the leaves λ,µ, then γ defines a subset of L. The

intersection, over all such paths γ in M̃ is exactly equal to the union of the
segments in the path (in L) from µ to λ. That is, the path in L consists of the

union of leaves that any path in M̃ (in the usual sense) from λ toµmust intersect.
It is easy to see that a leafν of L is in the path from λ to µ if and only if it is equal

to one of λ,µ, or separates (in M̃) λ from µ.

Example 7.35 If λ,µ are comparable, the path from λ to µ consists of a single
segment, which is equal to the unique oriented, embedded interval in L from λ

to µ.

Example 7.36 If λ,µ are adjacent nonseparated leaves, then the path from λ to
µ consists of two degenerate segments, namely the segment consisting of the
point λ, and the segment consisting of the point µ. If λ,µ are nonseparated but
not necessarily adjacent, every segment is degenerate.

Construction 7.37 Let λ ∈ L and p ∈ S1
∞

(λ). Then the special section

σp : L→ E∞

is the section defined as follows. Let µ ∈ L be arbitrary, and let l1, . . . , ln be the
path from λ to µ. Letσp|l1

be the leftmost admissible sectionσp,l1
defined in the

previous section. If λ′ is the endpoint of l1, let p′ = σp,l1
(λ′) ∈ S1

∞
(λ′), and let
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q be obtained from p′ by turning the corner from the end leaf of l1 to the intial
leaf of l2. Then let σp agree with σq on the path from the initial leaf of l2 to µ.
Since each path consists of a finite number of sections, this inductively defines
the value of σp at µ.

Remark In the definition of a special section we see the importance of the
slight subtlety in the definition of an admissible section, as stressed in the Re-
mark following Definition 7.29. If we only insisted that an admissible section
did not cross any marker, then a special section σp for which p is contained in a
marker m might cross m.

Definition 7.38 Let S be the union of the special sectionsσp as p varies over all

points in all circles S1
∞

(λ) of leaves λ of F̃.

The universal circle will be derived from S as a quotient of the completion
of S with respect to a natural circular order.

7.9 Circular orders

In this section we define the natural circular order on S. The first thing to ob-
serve is that special sections do not cross:

Lemma 7.39 Special sections do not cross.

Proof Let σ1,σ2 be two special sections, and suppose they cross. Then there is
some embedded l ⊂ L such that the restrictions ofσ1,σ2 to l cross. That is, there
are leaves l± ∈ l and lifts σ̃1, σ̃2 to P, the universal cover of the annulus E∞|l so
that

σ̃1(l1) > σ̃2(l1)

and
σ̃1(l2) < σ̃2(l2)

Now, by the definition of a special section, for each σi there is a leaf λi ∈ L
such that the restriction of each σi(l) to the connected components of l − λi are
naturally oriented (of course, we might have λi not in l, in which case there is
only a single connected component). On a segment of l on which the two ori-
entations agree, the definition of leftmost admissible sections implies that one
section cannot cross another, or else by forming an upper bound, one section
could be shown not to be leftmost. On a segment on which the orientations
disagree, with σ̃1 going to the right and σ̃2 going to the left, say, a similar com-
parison shows that they are either disjoint, or else σ̃2 ≤ σ̃1. It follows that if σi

andσ j disagree at either λi or λ j, then they do not cross. The last case to consider
is that σ1(λ1) = σ2(λ1), say. But in this case,

σ1|ν≥λ1
= σ2|ν≥λ1

by the definition of leftmost admissible sections, so they cannot cross in this
case either. 2
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To define a circular order on S we first restrict attention to three sections
σ1,σ2,σ3 on a linearly ordered segment l. Let P be the universal cover of the
annulus E∞|l . As before, we think of P as a plane for which the lifts of the
circle fibers are the vertical lines. We fix an orientation on E∞ coming from the
orientation on L and the orientation on S1

∞
(λ) inherited from the orientations

on leaves λ.
Let λ ∈ l be a leaf, and let I ⊂ S1

∞
(λ) be an embedded interval which

contains all three sections σi(λ). Then the union I ∪i σi(l) is connected, and we
can lift it to P as follows: first lift the interval I, then lift the sections σi to σ̃i

so that they intersect the corresponding points on Ĩ. Then the sections σ̃i do
not cross, by Lemma 7.39, and therefore they are totally ordered. For a different
choice of interval I, this total ordering might change by a cyclic permutation; in
particular, this gives an unambigous circular ordering on the triple σi.

Now, suppose that we have three special sections σp ,σq,σr where p, q, r are
contained in leaves λ,µ,ν ∈ l, for l some embedded line in L. If two of the
sections σp ,σq say agree on E∞|l , then by the construction of special sections,
they are equal on all of E∞. It follows that the construction above defines a
circular ordering on the set of all special sections σp with p ∈ E∞|l , where two
special sections are identified if they agree as maps from L to E∞ (i.e. we forget
the “base point”).

It remains to compare special sections whose basepoints are on the circles at
infinity of incomparable leaves.

Lemma 7.40 Let µ,ν be adjacent nonseparated leaves, and suppose that they are both
positive limits of an increasing sequence λt with t ∈ [0, 1). Let p1, p2 ∈ S1

∞
(µ) and

q1, q2 ∈ S1
∞

(ν). Then the four sections σpi
and σqi

disagree on λt for t sufficiently

close to 1, and the σpi
sections do not link theσqi

sections, as copies of S0 in S1
∞

(λt).

Proof If mi is any finite set of markers which intersect µ and ν, there is a t such
that all the mi intersect λt. By Lemma 7.25, this set of markers inherits a circular
order from S1

∞
(λt) for which the markers intersecting µ do not link the markers

intersecting ν. Since the set of endpoints of markers is dense in S1
∞

for any
leaf, there is a unique point pµ ∈ S1

∞
(ν) such that for any two markers m1, m2

which intersect µ and m3 which intersects ν, the circular order on m1, m2, m3

is equal to the circular order on m1(µ), m2(µ), pν. It follows that the circular
orderings on S1

∞
(µ) and S1

∞
(ν) can be “refined” to a circular ordering on the

union as follows: let Iµ be the half-open oriented interval obtained from S1
∞

(µ)
by cutting open at pν, in such a way that pν is the initial point of the interval,
and define Iν similarly. Then build a circle from the disjoint union Iµ ∪ Iν in
such a way that orientations agree (there is only one way to do this). One sees
from the discussion above that this is exactly the circular ordering induced on
σp as p varies over S1

∞
(µ) ∪ S1

∞
(ν) by restricting these sections to the leaves λt.

2

By applying Lemma 7.40 inductively, we can circularly order bigger and
bigger subsets of S, and by taking a limit we can order all of S. Observe that
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S is separable with respect to the order topology (i.e. it contains a countable
dense subset). Moreover, its order completion contains no isolated points, and
is homeomorphic to a perfect subset of a circle. By collapsing gaps, this gives
a monotone map to a universal circle π : S → S1

univ which is at most 2–1,

and which is 1–1 for the σp as p varies over any given circle S1
∞

(λ). Since the
construction is natural, the action of π1(M) on S gives an induced action on
S1

univ. Notice that if s, t ∈ S have the same image in S1
univ, then for any leaf λ,

s(λ) = t(λ), or else there would be uncountably many other elements of S be-
tween s and t. If σ ∈ S, then for any λ there is a mapϕλ : S → S1

∞
(λ) defined

by

ϕλ(σ) = σ(λ)

The mapϕλ is monotone for any λ, by construction. This extends continuously
to S, and descends to S1

univ, where it defines a monotone map

φλ : S1
univ → S1

∞
(λ)

which varies continuously as a function of λ ∈ L.
Property (3) of a universal circle follows from the naturality of the construc-

tion, and the definition of S1
univ. We defer the proof of property (4) until we

consider some examples, although it would be easy enough to prove it directly
from Lemma 7.40

7.10 Examples

In this subsection we give some idea of the combinatorics of universal circles.

Example 7.41. (Linear segment) Let I ⊂ L be a closed interval, with lowest leaf
λ and highest leaf λ′. Leftmost trajectories can run into each other, but not cross.
A leftmost trajectory going up can coalesce with a leftmost trajectory coming
down. The set of special sections give the cylinder E∞|I the structure of a (1-
dimensional) branched lamination; see Definition 8.6 for a general definition.

In the universal circle, the set of special sections which intersect λ at x and
λ′ at x′ is an interval, running positively from sx to sx′ .

Here is another way to see the circular order on special sections in I. Lift to
the universal cover P of the cylinder E∞|I . Each special section lifts to Z copies
in P. In P, two sections sy, sz satisfy sy < sz if and only if there is a nontrivial
positive transversal from sy to sz. This defines a total order upstairs, which is
evidently order isomorphic to R. The action of the deck group on the cover
of the cylinder induces an action on the ordered set of lifts of special sections,
inducing a circular order on their quotient.

Example 7.42. (Nonseparated leaves) The next example incorporates positive
branching. Let λ,µ be two incomparable leaves which are nonseparated, and
such that there is a 1-parameter family of leaves νt with t ∈ [0, 1), satisfying
νt < λ,µ for all t, and converging to both λ and µ as t→ 1.
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x

x′

sx sx′

FIG. 7.3. The special sections might coalesce, but they don’t cross.

Every marker which intersects λ or µ will intersect νt, for sufficiently large
t. As described in the previous subsection, this induces a circular order on the
union of a dense subset of S1

∞
(λ) and S1

∞
(µ), and by comparing special sections

in S1
∞

(νt) for sufficiently large t, these can be completed to a circular order on
the disjoint union of all special sections sx where

x ∈ S1
∞

(λ) ∪ S1
∞

(µ)

In this circularly ordered set the set of special sections sx with x ∈ S1
∞

(λ)
is a half–open interval, containing a (locally) clockwisemost point, but not a
(locally) anticlockwisemost point, and similarly for the sy with y ∈ S1

∞
(µ).

Notice that if λ,µ were nonseparated, but the approximating sequence νt

satisfied νt > λ,µ then the half-open intervals of special sections would contain
(locally) anticlockwisemost points instead.

µ λy x

sy

sx

FIG. 7.4. The special sections coming from each of the two nonseparated leaves
determine a half-open interval in the circular order on the union. Here, the
point x is in S1

∞
(λ), and the point y is in S1

∞
(µ).
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Example 7.43. (More branching) The next example includes both positive and
negative branching. In this case, we have nonseparating leaves µ, λ exhibiting
positive branching, nonseparating leaves ν, λ′ exhibiting negative branching,
where λ′ > λ. Let x ∈ S1

∞
(λ) be the point determining the locally clockwise-

most segment sx in the previous example, and let x′ be the corresponding point
(determining the locally anticlockwisemost segment) in S1

∞
(λ′).

µ λy x

λ′ν z x′

case 1:

case 2:

sy sz

sx sx′

sy sz

sx = sx′

FIG. 7.5. In case 1, sx and sx′ differ somewhere on E∞|[λ,λ′]. In case 2, they are
equal on all of E∞.

There are two topologically distinct cases to consider: in the first, the special
sections sx and sx′ do not agree on the entire interval [λ, λ′], although they might
agree on some closed subset of this interval, which might include either or both
of the endpoints. In the second, the sections sx , sx′ do agree on the entire interval,
and therefore agree on all of E∞.

These examples contain all the necessary information to show how to go
from a finite union K of ordered subsegments in L, whose image in the Haus-
dorffification of L is connected, to a circle S1(K) which realizes the circular order
on the set of special sections associated to points in leaves λ in K. By following
the model of Example 7.42, one can amalgamate the circles associated to a pair
of ordered segments whose endpoints are nonseparated. Given Ki, K j disjoint,

finite connected unions, we get circles S1(Ki) and S1(K j); if Ki and K j contain a

pair of nonseparated leaves, we can follow Example 7.42 to amalgamate S1(K j)

and S1(Ki) into S1(Ki ∪ K j), completing the induction step. One must verify
that the result does not depend on the order in which one constructs K from or-
dered subsegments; implicitly, this is a statement about the commutativity of the
amalgamating operation in Example 7.42. This commutativity is evident even
in Example 7.43, where one may choose to amalgamate the segment [λ, λ′] with
µ first and then ν, or the other way around.
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7.11 Special sections and cores

We use the notation S(λ) to denote the subset of S consisting of special sections
associated to points x ∈ S1

∞
(λ). In this subsection we describe the relationship

between S(λ) and the core of φλ.

Lemma 7.44 Let λ be a leaf of F̃. Then core(φλ) is contained in the closure S(λ) of

the image of S(λ) in S1
univ, and the difference S(λ) − core(φλ) consists of at most

countably many isolated points, at most one in each gap ofφλ .

Proof Given p, q ∈ core(φλ), either p and q are the boundary points of the
closure of some gap, or else φλ(p) 6= φλ(q), and therefore there are p′, q′ ∈
S(λ) which link p, q. It follows that every accumulation point of core(φλ) is an
accumulation point of S(λ). Since core(φλ) is perfect, it follows that core(φλ) ⊂
S(λ).

Conversely, given p, q ∈ S1
∞

(λ) distinct points, we have φλ(p) = p 6= q =
φλ(q), and therefore there are points p′, q′ ∈ core(λ) which link p, q. In particu-
lar, p and q are not both in the same gap region of φλ, and therefore there is at
most one such point in each gap. Since φλ has only countably many gaps, the
lemma follows. 2

An example where S(λ) − core(φλ) might contain isolated points is illus-
trated in case 2 of Fig. 7.5.

Now, if λ and µ are incomparable leaves, then φµ(S(λ)) is a single point
of S1

∞
(µ), and similarly for φλ(S(µ)). Since φλ is 1–1 on S(λ), it follows that

S(λ) and S(µ) are not linked as subsets of S1
univ, and therefore the same is true

of core(φλ) and core(φµ), by Lemma 7.44. This is the last defining property of
a universal circle, and completes the proof of Theorem 7.27.
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CONSTRUCTING TRANSVERSE LAMINATIONS

This is a technical chapter, in which we show that if M is atoroidal, and F is a
taut foliation with two-sided branching, then the axioms of a universal circle
give rise to a pair of essential laminations transverse to F. For the particular
universal circles constructed in Chapter 7 we obtain more detailed information
about these laminations and their interaction with F. Finally, this structure the-
ory gives a new proof of Theorem 6.48, thus filling a gap in the literature.

8.1 Minimal quotients

New universal circles can be obtained from old in an uninteresting way: given
a point p ∈ S1

univ, we can blow up the orbit of p to obtain a new universal

circle S1
univ and a monotone map to S1

univ whose gaps are the interiors of the
preimages of the points in the orbit of p.

These blown up universal circles have the property that there are distinct
points p, q ∈ S1

univ whose images are identified under every map φλ. We make
the following definition:

Definition 8.1 A universal circle is minimal if for any distinct p, q ∈ S1
univ there

is some λ such thatφλ(p) 6= φλ(q).

In the next lemma, we show that any universal circle which is not minimal
is obtained from a minimal universal circle by blow up.

Lemma 8.2 Let S1
univ be a universal circle for F. Then there is a minimal universal

circle S1
m for F with monotone maps φm

λ : S1
m → S1

∞
(λ) and a monotone map m :

S1
univ → S1

m such that for all λ ∈ L

φm
λ ◦m = φλ

Proof If S1
univ is not minimal, define an equivalence relation on S1

univ by p ∼ q

if φλ(p) = φλ(q) for all λ ∈ L. Let γp ⊂ S1
univ be the interiors of the two closed

arcs from two such distinct p, q with p ∼ q. Then for each λ ∈ L, either γ+

is contained in a single gap of φλ, or γ− is. Moreover, if both γ− and γ+ were
contained in gaps of φλ, the mapφλ would be constant, which is absurd.

Now, by Lemma 2.17, closures of gaps ofφλ vary upper semicontinuously as
a function of λ ∈ L. It follows that the subset of λ ∈ L for which γ+ is contained
in a gap of φλ is closed, and similarly for γ−. But L is path connected, so either
γ+ is contained in a gap ofφλ for every λ, or γ− is.

274
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It follows that the equivalence classes of ∼ are a ρuniv(π1(M))-equivariant
collection of closed disjoint intervals of S1

univ, and single points, and therefore

the quotient space of S1
univ by this decomposition defines a new circle with a

π1(M) action induced by the quotient map

m : S1
univ → S1

m

By construction, for each λ ∈ L the equivalence relation on S1
univ defined byφλ

is coarser than the equivalence relation defined by m, and therefore φλ factors
through m to a unique mapφm

λ : S1
m → S1

∞
(λ) satisfying

φλ = φm
λ ◦m

2

Note that the construction of a universal circle in Chapter 7 produces a min-
imal circle.

8.2 Laminations of S1
univ

The main purpose of this section is to prove that a minimal universal circle for a
taut foliation with two-sided branching admits a pair of nonempty laminations
Λ±univ which are preserved by the action of π1(M), acting via the representation
ρuniv.

Construction 8.3 Let λ ∈ L. Let L+(λ), L−(λ) denote the two connected com-
ponents of L− λ, where the labelling is such that L+(λ) consists of the leaves
on the positive side of λ, and L−(λ) consists of the leaves on the negative side.

Recall that for X ⊂ L, the set core(X) denotes the union, over λ ∈ X, of
the sets core(φλ). As in Construction 2.8 we can associate to the subset core(X)
the lamination of H2 which is the boundary of the convex hull of the closure of
core(X), and thereby construct the corresponding lamination Λ(core(X)) of S1.

Then define
Λ+(λ) = Λ(core(L+(λ)))

and
Λ+

univ =
⋃

λ∈L

Λ+(λ)

and similarly for Λ−(λ) and Λ−univ, where the closure is taken in the space of

unordered pairs of distinct points in S1
univ.

Observe the following property of Λ+(λ).

Lemma 8.4 Let λ,µ be leaves of F̃. Thenφµ(Λ+(λ)) is trivial unless µ < λ.

Proof If µ ∈ L+(λ) then by definition, core(µ) ⊂ core(L+(λ)) and therefore
every leaf ofΛ+(λ) is contained in the closure of a gap ofµ. Ifµ ∈ L−(λ) butµ is
incomparable with λ, then µ is incomparable with every element of L+(λ), and
therefore by Theorem 2.19, core(L+(λ)) is contained in the closure of a single
gap of µ, and thereforeφµ(Λ+(λ)) is trivial in this case too. 2
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We are now ready to establish the key property of Λ±univ: that they are lami-

nations of S1
univ.

Theorem 8.5. (Calegari [37]) Let F be a taut foliation of an atoroidal 3-manifold M,
and let S1

univ be a minimal universal circle for F. Then Λ±univ are laminations of S1
univ

which are preserved by the natural action of π1(M). Furthermore, if L branches in the
positive direction, then Λ+

univ is nonempty, and if L branches in the negative direction,

then Λ−univ is.

Proof We first show that no leaf of Λ+(λ) links any leaf of Λ+(µ), for µ, λ ∈ L.
There are three cases to consider

Case 1: λ ∈ L−(µ) and µ ∈ L−(λ)

In this case, L+(λ) and L+(µ) are disjoint, and moreover they are incom-
parable. That is, for every ν1 ∈ L+(λ) and ν2 ∈ L+(µ) the leaves ν1 and ν2

are incomparable. It follows from the definition of a universal circle that for
all such pairs, the core of φν1 is contained in the closure of a single gap of φν2 ,
and vice versa. Since L+(λ) and L+(µ) are path connected, Theorem 2.19 implies
that core(L+(µ)) and core(L+(λ)) are unlinked. It follows that no leaf of Λ+(λ)
links any leaf of Λ+(µ), as claimed.

Case 2: λ ∈ L−(µ) and µ ∈ L+(λ)

In this case, we have L+(µ) ⊂ L+(λ) and therefore

core(L+(µ)) ⊂ core(L+(λ))

so the claim is proved in this case too.

Case 3: λ ∈ L+(µ) and µ ∈ L+(λ)

In this case, observe that L−(λ) ⊂ L+(µ) and L−(µ) ⊂ L+(λ), and therefore

L = L+(µ) ∪ L+(λ)

Since S1
univ is minimal, every point in S1

univ is a limit of a sequence of points

in core(φλi
) for some sequence λi. It follows that core(L) is all of S1

univ, and

therefore core(L+(λ)) ∪ core(L+(µ)) = S1
univ.

Now, if two subsets X, Y ⊂ S1 satisfy X∪Y = S1, then the boundaries of the
convex hulls of X and Y do not cross in H2. For, if l, m are boundary geodesics of
H(X) and H(Y) respectively which cross in H2, then l, m both bound open half
spaces l+, m+ which are disjoint from H(X) and H(Y) respectively. Moreover,
since l, m are transverse, the intersection l+ ∩m+ contains an open sector in H2,
which limits to some nonempty interval in S1 which by construction is disjoint



BRANCHED SURFACES AND BRANCHED LAMINATIONS 277

from both X and Y. But this contradicts the defining property of the pair X, Y.
This contradiction proves the claim in this case too.

It remains to show that Λ+
univ is nonempty when L branches in the positive

direction. Now, for any λ ∈ L, core(φλ) is perfect by Lemma 2.14. It suffices to
show core(L+(λ)) is not equal to S1

univ.
If we can find another leaf µ with λ ∈ L−(µ) and µ ∈ L−(λ), then as above,

core(L+(λ)) and core(L+(µ)) are unlinked as subsets. It follows that the subset
core(L+(λ)) is contained in the closure of a single interval in the complement of
core(L+(µ)) and conversely, and therefore neither core is dense. To see that such
a µ exists, note that if there is ν with ν < µ and ν < λ but µ, λ incomparable,
then µ will have the desired properties.

Since L branches in the positive direction, there is ν and some leaves λ′,µ
with ν < µ, λ′ and λ′,µ incomparable. Since F is taut, if π(λ′) and π(λ) denote
the projections of λ, λ′ to M, there is some transverse positively oriented arc γ

from π(λ′) to π(λ). Lifting to M̃, we see there is some α ∈ π1(M) such that
α(λ′) < λ. Thenα(µ) is the desired leaf.

The corresponding properties for Λ−univ are proved by reversing the orienta-
tion on L. 2

8.3 Branched surfaces and branched laminations

A leaf l of Λ±univ is a pair of distinct points l± in S1
univ. For each λ ∈ L we

define φλ(l) to be the unique geodesic in λ with endpoints equal to φλ(l+)
and φλ(l−) if these two points are distinct, and let φλ(l) be empty otherwise.
More generally, for any sublamination K of Λ±, defineφλ(K) to be the geodesic
lamination of λ with leaves consisting of the union of the φλ(k) as k ranges
over the leaves of K. In the special case that K is one of Λ±univ, we also denote

φλ(Λ
±
univ) by Λ±geo(λ).

For each leaf l of Λ±univ, define Π(l) to be the union

Π(l) :=
⋃

λ∈L

φλ(l)

Then each Π(l) is a properly embedded union of planes transverse to F̃. Each
component of Π(l) intersects an open connected union of leaves of L, so each
Π(l) has only countably many components. If we need to refer to the individual
components, we enumerate them as Πi(l).

We now define

Λ̃±geo :=
⋃

λ∈L

Λ±geo(λ) =
⋃

l∈Λ±univ

Π(l)

Note the tilde notation to be consistent with the convention that Λ̃±geo covers

an object in M. The objects Λ̃±geo are not yet necessarily 2-dimensional lamina-
tions; rather they are branched laminations, to be defined shortly. On the other
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hand, they have the important property that the branch locus of each leaf is a
1-manifold (that is, there are no “triple points”) and moreover, the sheets come
with a parameterization by leaves of Λ±univ that lets us split them open in a
canonical way to a lamination.

The definition we give here of a branched lamination is not the most gen-
eral possible, since for us, every branched lamination comes together with an
ordinary lamination which it fully carries. Branched laminations are a general-
ization of branched surfaces as defined and studied in § 6.3.

Definition 8.6 A branched lamination fully carrying a lamination K ⊂ M is given
by the following data:

1. An open submanifold N ⊂ M

2. A 1-dimensional foliation XV of N

3. A lamination Λ of N transverse to XV , intersecting every leaf of XV

4. A surjective map ψ : N → N from N to itself which is monotone on each
leaf x of XV

The underlying space of the branched lamination itself is the image K = ψ(Λ),
thought of as a subset of M. We say that the lamination Λ is fully carried by K,
and is obtained by splitting K open.

Notice that with this definition, we allow the possibility that K = N = M,
which would happen for instance if Λ is a foliation.

Let us describe our strategy to realize Λ̃±geo as branched laminations, which

fully carry split open laminations Λ̃±split.

Firstly, observe that we can define in generality a branched lamination as a
structure on M which is locally modeled on the structure in Definition 8.6, and
for which the 1-dimensional foliations XV in local charts are required to piece
together to give a global transverse 1-dimensional foliation, but for which the
laminations Λ and the map ψ are only defined locally, with no conditions on
how they might piece together globally. General branched laminations do not
always fully carry laminations.

Another way of thinking of a branched lamination is as the total space of
a distribution defined on a closed subset of M which is integrable, but not
uniquely. That is, through every point, there is a complete integral submani-
fold tangent to the distribution, but such submanifolds might not be disjoint
if they are not equal. The branch locus of the branched lamination consists of
the union of the boundaries of the subsets where such distinct integral sub-
manifolds agree. In particular, the branch locus has the structure of a union of
1-manifolds. In the case of a branched surface, this branch locus is a finite union
of circles, and one typically requires this union of circles to be in general posi-
tion with respect to each other.

Given a branched lamination K, one can sometimes find an abstract lamina-
tion “carried” by K which consists of the disjoint union of the collection of all
maximal integral surfaces, topologized leafwise with the path topology, and as
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a lamination by the pointed metric space topology (compare with Example 6.7).
The obstruction to defining this abstract lamination is that there might not be
enough complete surfaces which are carried by K. For instance, K might contain
twisted disks of contact, or more subtle local obstructions.

But even if one can produce such an abstract lamination, there is an addi-
tional difficulty in embedding this abstract lamination in N transverse to the
foliation XV . This amounts to finding a local order structure on the leaf space
of this abstract lamination. Once this order structure is obtained, the process of
recovering ψ from K is more or less the same as the usual process of blowing
up some collection of leaves of a foliation or lamination.

In our context, there is no difficulty in constructing the abstract lamination:
the surfaces Π(l) as l ranges over leaves of Λ±univ are all carried by the branched

laminations Λ̃±geo, and in fact the leaves of the abstract laminations carried by

Λ̃±geo are precisely the connected components of the Π(l).
It remains to find a local order structure on the leaf space of this abstract lam-

ination. The laminations Λ±univ span abstract geodesic laminations of H2 dual to
order trees; the desired local order structure on the leaves of the abstract lami-
nations carred by Λ̃±geo comes from the local order structure on these order trees.

In this way, the abstract laminations may be realized as laminations in M̃ fully

carried by Λ̃±geo. This is the summary of our strategy. Now we go into detail.

To establish the desired properties of Λ̃±geo, we must first understand how

the laminations Λ±geo(λ) vary as a function of λ.

Let τ be a transversal to F̃. The cylinder UTF̃|τ , thought of as a circle bundle
over τ , carries two natural families of sections. The first family of sections comes
from the structure maps e andφ.

Construction 8.7 Let τ be a transversal to F̃. The endpoint map defines an

embedding e : UTF̃|τ → E∞. The structure map of the universal circle φ :
S1

univ × L → E∞, composed with e−1, defines a canonical collection of sections
of the circle bundle

UTF̃|τ → τ

as follows. If we let ι : τ → L denote the embedding induced by the quotient

map M̃ → L, then the arcs p × ι(τ) with p ∈ S1
univ map to a family of arcs

in E∞|ι(τ). In the case of the universal circles constructed in § 7.9 these are the

restriction of the special sections to ι(τ). Then e−1 pulls these back to define a

family of sections of UTF̃|τ , which by abuse of notation we call the special sec-
tions over τ . If p ∈ S1

univ, we denote byσ(p)|τ the special section corresponding
to p over τ .

The second family of sections comes from the geometry of M̃.
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Construction 8.8 A Riemannian metric on M pulls back to a Riemannian metric

on M̃. Parallel transport with respect to the Levi-Civita connection does not

preserve the 2-dimensional distribution TF̃, but the combination of the Levi-

Civita connection of the metric on M̃ together with orthogonal projection to TF̃

defines an orthogonal (i.e. metric preserving) connection on TF̃.

If τ is a transversal, this connection defines a trivialization of UTF̃|τ by par-
allel transport along τ . We call the fibers of this trivialization the geometric sec-
tions over τ .

Let ν denote the unit normal vector field to F, and ν̃ the unit normal vector
field to F̃.

Lemma 8.9 There is a uniform modulus f : R+ → R+ with

lim
t→0

f (t) = 0

such that for any p ∈ S1
univ, any q ∈ M̃ and τ(t) any integral curve of ν̃ through q

parameterized by arclength, then if

r = σ(p)|τ(0) ∈ UTqF̃

and σ ′(·) denotes the geometric section over τ obtained by parallel transporting r, we
have

arcwise distance from σ(p)|τ(t) to σ ′(t) in UTτ(t)F̃ ≤ f (t)

Proof This just follows from the compactness of UTF and the continuity of e
andφ. 2

Said another way, Lemma 8.9 says that a geometric section and a special sec-
tion which agree at some point cannot move apart from each other too quickly.
Since the geometric sections are defined by an orthogonal connection, it follows
that if σ(p) and σ(q) are two special sections, the angle between them cannot
vary too quickly. This lets us prove the following.

Lemma 8.10 The laminationsΛ±geo(λ) vary continuously on compact subsets of M̃, as

a function of λ ∈ L. Moreover, the sets Λ̃±geo are closed as subsets of M̃.

Proof The continuity of Λ±geo(λ) on compact subsets of M̃ follows from the fact
that the leaves λ themselves vary continuously on compact subsets, together
with the continuity of e and φ.

Now we show that the unions Λ̃±geo are closed. Let λi → λ and pi ∈ λi → p ∈
λ be a sequence of leaves of F̃ and points in those leaves. Since pi → p, it follows
that for sufficiently large i, the leaves λi are all comparable, and contained in
an interval I ⊂ L, so without loss of generality, we can assume that all λi are

contained in I. Let τ be an orthogonal trajectory to F̃ through p, parameterized
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by arclength, and let qi ∈ λi be equal to τ ∩ λi. Suppose that pi ∈ Λ+
geo(λi)

for each i. We must show that p ∈ Λ+
geo(λ). Now, since pi ∈ Λ+

geo(λi), there is

a leaf li of Λ+
geo(λi) with pi ∈ li. Geometrically, li is just a geodesic in λ with

respect to its hyperbolic metric. Let l′i ∈ Λ+
univ be such that φλi

(l′i) = li. Then
by Lemma 8.9, the angle between the special sections over τ defined by the l′i
cannot vary too quickly. But in UTpi

λi, the angle between the endpoints of li is
π , since pi lies on the geodesic li. It follows that as i→ ∞, the angle between the
special sections over τ defined by l′i converges to π , and therefore the geodesics
φλ(l′i) in Λ+

geo(λ) contain points converging to p. Since Λ+
geo(λ) is closed in λ,

the point p ∈ Λ+
geo(λ), as claimed. 2

The next lemma shows, as promised, that Λ̃±geo are branched laminations
which can be split open. The following lemma is somewhat ad hoc. However,
the basic idea is very simple, and is precisely as described in the paragraphs

following Definition 8.6. Namely, the branched laminations Λ̃±geo can be split
open because they are parameterized by abstract laminations whose leaf spaces
already have well-defined local order structures.

Lemma 8.11 Λ̃±geo are branched laminations of M̃, fully carrying laminations Λ̃±split

which are preserved by the action of π1(M).

Proof For the sake of notation, we restrict to Λ̃+
geo.

Fix some small ǫ, and for each leaf λ of L let N(λ) be the subset of points in
λ which are distance < ǫ from Λ+

geo(λ), and let

Ñ =
⋃

λ

N(λ)

The nearest point map (in the path metric on λ) defines a retraction from N(λ)
to Λ+

geo(λ), away from the set of points which are equally close to two leaves;
call these ambivalent points. The preimages of this retraction, together with the
points equally close to two leaves, give a 1-dimensional foliation of N(λ) −
Λ+

geo(λ) by open intervals, with at most one ambivalent point on each open
interval, as the midpoint.

If Λ+
geo foliates some region, then the integral curves of the orthogonal dis-

tribution define a foliation of the foliated region of Λ+
geo. Together, this defines

a 1-dimensional foliation of N(λ). By Lemma 8.10, these foliations vary con-

tinuously from leaf to leaf of λ, and define a 1-dimensional foliation XV of Ñ,

which is an open neighborhood of Λ̃+
geo. Note that leafwise, this foliation is the

I-bundle structure on a tubular neighborhood of a geodesic lamination which
allows one to collapse the lamination to a train track. Compare with Construc-
tion 1.64.

If l, m are leaves of Λ+
geo(λ) which are both in the closure of the same com-

plementary region, and which contain points which are < 2ǫ apart, then there
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are at most two points p, q in this complementary region which are distance ex-
actlyǫ in λ to both l and m. Call such points cusps. Note that after collapsing the
lamination, the cusps correspond to the switches of the associated train track.

The set of cusps in each leaf λ of F̃ are isolated; futhermore, by Lemma 8.10 the
set of cusps in λ varies continuously as a function of λ, thereby justifying the
notation p(λ) for a family of leafwise cusps, with the possibility of birth-death
pairs in the sense of Morse theory when two distinct cusp points p(λ), q(λ) coa-
lesce at some leaf λ0 and disappear in nearby leaves on one side. It follows that
the union of all cusps defines a locally finite collection c̃ of properly embedded

lines in M̃ which covers a link c ⊂ M. By abuse of notation, we call c̃ the cusps of
N. Observe that the cusps parameterize the branching of the leaf space of XV ,
as follows. For each point p ∈ c̃ there is a 1-parameter family γt of leaves of XV ,
with t ∈ [0, 1), such that the limit of the γt as t→ 1 is a union of two leaves γ±1
together with the point p, which is in the closure of both γ+

1 and γ−1 . We refer
to such a family of leaves of XV as a branching family.

To show that Λ̃+
geo is a branched lamination fully carrying a lamination, we

must first define a map ψ : Ñ → Ñ which is monotone on each leaf of XV . For
convenience, we use Construction 2.4 to think of Λ+

univ as a geodesic lamination

of a copy H2
univ of the hyperbolic plane bounded by S1

univ. Notice that each leaf

γ of XV is contained in a leaf λ of F̃. The leafγ might be bounded or unbounded
in λ, the latter case occurring for instance if Λ+

geo(λ) is a foliation. A bounded

endpoint ofγ determines a complementary region toΛ+
univ in H2

univ. Pick a point
in such a complementary region. An unbounded end determines an endpoint

in S1
∞

(λ), which determines its preimage under φ−1
λ

in S1
univ. This preimage

might be a point or an interval; for concreteness, if it is an interval, pick its anti-
clockwisemost point. Span the two points constructed in this way by a geodesic
γuniv. This geodesic γuniv can be thought of as a “preimage” to γ. Note by our
choice of ideal endpoints for γuniv that γuniv does not cross any leaves of Λ+

univ
whose endpoints are identified byφλ. It follows that γuniv crosses exactly those
leaves of Λ+

univ which correspond to leaves of Λ+(λ) crossed by γ. We define

a monotone map ψ : γuniv → γ which takes each intersection γuniv ∩ Λ+
univ to

the corresponding intersection γ ∩Λ+
geo(λ), and takes complementary intervals

either to the corresponding intervals, or collapses them to points if the corre-
sponding leaves in Λ+

univ are identified in Λ+
geo(λ).

We want to make the assignment γ → γuniv continuously as a function of
γ, at least away from the cusps c̃. This amounts to choosing the endpoints of
γuniv in complementary regions to Λ+

univ in H2
univ continuously as a function

of γ. Since the complementary regions are all homeomorphic to disks, and are
therefore contractible, there is no obstruction to making such a choice. More-
over, for the same reason, this construction can be done in a π1(M) equivariant
manner, where we think of π1(M) acting on the leaves of Λ+

univ and permuting
the complementary regions as sets. Along the cusps c̃, one must be slightly more
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careful. If γt with t ∈ [0, 1) limiting to γ±1 is a branching family, we must choose

(γt)univ and (γ±1 )univ so that there is an equality

(γ−1 )univ ∪ p ∪ (γ+
1 )univ = lim

t→1
(γt)univ

for some p in a complementary region to H2
univ. Again, the contractibility of

complementary regions implies that this can be done, even equivariantly.
For each γ, the graph of ψ : γuniv → γ defines an interval ψ(γuniv) in the

product H2
univ × Ñ. The disjoint union of intervals ψ(γuniv) as γ varies over

leaves of XV is itself an open 3-manifold Ñ′ homeomorphic to Ñ as a subspace

of H2
univ × Ñ. Moreover, the intersections of the geodesics γuniv with leaves of

Λ+
univ defines a lamination Λ̃+

split of Ñ′ that maps by ψ to Λ̃+
geo.

The action of π1(M) on the base 3-manifold Ñ induces an action on Ñ′ as

follows. Since we want the actions on Ñ′ and Ñ to be semiconjugate under the
monotone map ψ, we must just decide how an element α ∈ π1(M) should act

on point preimages of p ∈ Ñ. Now, for each p ∈ Ñ, either ψ−1(p) is a point, in
which case ψ−1(α(p)) is also a point for allα ∈ π1(M), and we can define

α : ψ−1(p)→ ψ−1(α(p))

or elseψ−1(p) is an interval in a complementary region of Λ+
univ with endpoints

on distinct leaves l, m of Λ+
univ which map to the same leaf of some Λ+

geo(λ). In

the second case, for all α ∈ π1(M), the preimage of ψ−1(α(p)) is also a com-
plementary interval, with endpoints on leaves α(l),α(m) of Λ+

univ. If ψ−1 is an

interval, we defineα : ψ−1(p)→ ψ−1(α(p)) to be the unique affine homeomor-
phism which takes the endpoint on l to the endpoint onα(l), and the endpoint
on m to the endpoint on α(m). Here we mean affine with respect to the length
induced as a geodesic segment in H2. This is the desired action. 2

Remark We can choose ψ : N → N to have point preimages which are as

small as desired. It follows that the laminations Λ̃±split can be chosen to intersect

leaves of F̃ in lines which are uniformly (k,ǫ) quasigeodesic, for any choice of
k > 1,ǫ > 0.

Define Λ±split to be the laminations of M covered by Λ̃±split.

Remark If Λ+
split is a genuine lamination, there is a choice of partition into guts

and interstitial regions for which the cores of the interstitial annuli are exactly
the cusps c, and similarly for Λ−split.

Theorem 8.12 Let F be a taut foliation of an atoroidal 3-manifold M. Suppose F has
two-sided branching. Then M admits laminations Λ±split which are are essential lam-

inations of M and which are transverse to F. Moreover, for any k > 1,ǫ > 0, the
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laminations Λ±split can be isotoped to intersect the leaves of F in curves which are uni-

formly (k,ǫ) quasigeodesic.

Proof We construct Λ̃±split as in Lemma 8.11, covering laminations Λ±split in M.

By construction, the leaves of Λ̃±split are all planes, soΛ±split do not contain any

spherical leaves or torus leaves bounding a solid torus, and complementary re-
gions admit no compressing disks. Moreover, since M admits a taut foliation F

by hypothesis, M̃ is homeomorphic to R3, so complementary regions admit no
essential spheres. It remains to show that there are no compressing monogons.

If D is a compressing monogon for Λ+
split, there are points p, q in ∂D con-

tained in a leaf λ of Λ+
split which are arbitrarily close together in D but arbitrarily

far apart in λ. Lift D, p, q, λ to M̃, where by abuse of notation we refer to them

by the same names. Since p, q are arbitrarily close in M̃, they are contained in

comparable leaves µ1,µ2 of F̃. Suppose p ∈ µ1 ∩ λ. Let τ be a short transversal
from µ1 to µ2. The endpoints of the quasigeodesic λ ∩ µ1 determine a leaf of

Λ+
univ, which determines a pair of special sections of UTτF̃. By Lemma 8.9 and

the uniformity of k,ǫ, the angle between these special sections stays close to π
along τ , for τ sufficiently short. It follows that there is a short path in λ, starting

from p, from µ1 to some p′ ∈ µ2. But Λ̃+
split ∩ µ2 is a (k,ǫ) quasigeodesic lami-

nation, so p′ and q can be joined by a short path in λ ∩µ2, and therefore p and q
are close in λ, contrary to the definition of D.

It follows that no such compressing monogon D exists, and the laminations
Λ±split are essential, as claimed. 2

8.4 Straightening interstitial annuli

In this section we show that each complementary region to Λ±split can be ex-

hausted by a sequence of guts, for some partition into guts and I-bundles, such
that the interstitial annuli are transverse to F. This implies that complementary
regions are solid tori. Note that this does not address the question, left implicit in
the last section, of whether or not the laminations Λ±split are genuine; but it does

show that if they are genuine, then they are very full.

Each leaf of Λ̃±split is transverse to the foliation F̃, and therefore it inherits a

codimension one foliation, whose leaves are the intersection with leaves of F̃.
We show that this foliation branches in at most one direction.

Lemma 8.13 Let Π be a leaf of Λ̃+
split. The induced foliation Π∩F of Π does not branch

in the positive direction, and similarly for leaves of Λ̃−split.

Proof Let l be a leaf of Λ+(λ). That is, a leaf of Λ(core(L+(λ))), thought of as
an unordered pair of distinct points in S1

univ. By Lemma 8.4, the image φµ(l) is
trivial unless µ < λ.
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The subset of L consisting of leaves µ with µ < λ does not branch in the
positive direction. Recall that Π(l) is a countable union of properly embedded

planes transverse to F̃. Let H ⊂ L be the subset of L which intersects Π(l). Then
H does not branch in the positive direction. Moreover, Π(l) is carried by the

branched lamination Λ̃+
geo, and naturally embeds into the split open lamination

Λ̃+
split as a countable union of leaves Πsplit(l). We denote the components of

Πsplit(l) by Πi
split(l), corresponding to the connected components Hi of H. Note

that for each leaf λ ∈ Hi, the intersection Πi
split(l) ∩ λ = φλ(l) is a single line.

It follows that the induced foliation of each leaf Πi
split(l) does not branch in the

positive direction.

Now, the leaves l of laminations Λ+(λ) with λ in F̃ are dense in Λ+
univ. If Π

is a limit of leaves Πi where the induced foliation of Πi does not branch in the
positive direction, the same is true for Π. To see why this is true, let J be the

subset of L which Π intersects. Lemma 8.10 implies that the set of leaves of F̃

which Π intersects in a single component is both open and closed in J, and is
therefore equal to J. It follows that if Π branches in the positive direction, then

J branches in the positive direction. In this case, Π intersects leaves µ1,µ2 of F̃

which are incomparable but satisfy µ1 > ν,µ2 > ν for some third leaf ν of F̃.
But this means that some approximating leaf Πi intersects both µ1 and µ2 for
sufficiently big i, contrary to the defining property of the Πi.

This contradiction proves the claim, and the lemma follows. 2

Lemma 8.14 Let Λ±split be the laminations constructed in Theorem 8.12. Then there is

a system of interstitial annuli A±i for Λ±split, such that, (supressing the superscript ±
for the moment) each Ai satisfies the following properties:

1. The intersection of Ai with the foliation F induces a nonsingular product foliation
of Ai = S1 × I by intervals point× I.

2. There is a uniform ǫ, which may be chosen as small as desired, such that each
leaf of the induced foliation of each Ai has length ≤ ǫ. Moreover, every point p
in an interstitial region can be connected to a point in the lamination by an arc
contained in a leaf of F of length ≤ ǫ/2.

We say that such an interstitial system is horizontally foliated.

Proof We do the construction upstairs in M̃. For convenience, we concentrate

on Λ̃+
split. By abuse of notation, we denote Λ̃+

split ∩ λ by Λ+
split(λ), for λ a leaf

of F̃. We suppose that we have performed the splitting in such a way that the
geodesic curvatures of the leaves of Λ+

split(λ) are uniformly pinched as close to

0 as we like.
Recall that we can split open Λ̃+

geo so that the laminations Λ+
split(λ) for λ a

leaf of F̃ are as close as desired to geodesic laminations. We define the interstitial
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regions to be precisely the set of points p in each leaf λ of F̃, not in Λ+
split(λ), and

which are contained in an arc in λ of length ≤ ǫ between two distinct boundary
leaves. This obviously satisfies the desired properties. 2

Lemma 8.15 Let Ai be a horizontally foliated system of interstitial annuli for Λ+
split.

Then, after possibly throwing away annuli bounding compact interstitial regions, the
system Ai can be isotoped so that at the end of the isotopy, each annulus is transverse
or tangent to F.

Proof We assume before we start that we have thrown away annuli bounding
compact interstitial regions. The key to the proof of this lemma is the fact that

the foliation of leaves of Λ̃+
split by the intersection with F̃ does not branch in the

positive direction. This lets us inductively push local minima in the positive di-
rection, until they cancel local maxima. The first step is to describe a homotopy
from each Ai to some new Ai which is either transverse or tangent to F. At each
stage of this homotopy, we require that the image of Ai be foliated by arcs of its
intersection with leaves of F. We fix notation: let N be a complementary region,
and Ni the interstitial I-bundle bounded by the Ai.

Let ci be the core of an interstitial annulus Ai. Suppose ci is not transverse
or tangent to F. Then ci must have at least one local maximum and one local
minimum, with respect to the foliation F. Either Ai bounds a compact I-bundle

over a disk, or else the universal cover Ãi is noncompact, and c̃i has infinitely
many local maxima and minima. By hypothesis, we have already thrown away

compact I-bundles, so we may assume Ãi is noncompact. Let p be a local mini-
mum on c̃i ∩ λ, and p± neighboring local maxima on c̃i ∩ λ± for leaves λ, λ± of

F̃. Then by construction, λ < λ+, λ− in the partial order on L.
By Lemma 8.13, λ+ and λ− are comparable; without loss of generality, we

can assume λ− ≤ λ+. Then there is q on c̃i between p and p+ with q ∈ c̃i ∩ λ−.

The points q and p− are contained in arcs Iq, Ip− of Ãi which bound a rectangle

R ⊂ Ãi. The arcs Iq, Ip− also bound a rectangle R′ ⊂ λ− of a complementary

region to Λ+
split(λ

−). The union R ∪ R′ is a cylinder which bounds an interval

bundle over a disk D × I in a complementary region. We push R across this
D× I to R′, and then slightly in the positive direction, cancelling the local min-
imum at p with the local maximum at p′. Do this equivariantly with respect to

the action of π1(Ai) on the lift Ãi. After finitely many moves of this kind, all
maxima and minima are cancelled, and we have produced new immersed an-
nuli A′i either transverse or tangential to F, and homotopic to the original Ai.
If A′i is tangent to F, it finitely covers some annular complementary region to

Λ+
split ∩ λ for some leaf λ of F. Since it is homotopic to an embedded annulus, by

elementary 3-manifold topology the degree of this covering map must be one,
and A′i must be embedded. See for example Chapter 13 of [127].

If A′i is transverse to F, it is either embedded, or cuts off finitely many
bigon × I where the edges of the bigons are transverse to F. By inductively
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pushing arcs across innermost embedded bigons, we can reduce the number
of bigons by two at a time. We can do this unless there is a single arc of self-
intersection of A′i which corresponds to both cusps of a (non-embedded) bigon.
But, since A′i is homotopic to Ai which is embedded, the number of arcs of inter-
section must be even, for homological reasons. It follows that all bigons can be
cancelled, and A′i is homotopic to A′′i which is embedded. By further cancelling
bigons of intersection of A′′i with A′′j for distinct indices i, j we can assume the

union of the A′′i are disjointly embedded. Let N′′i be the I-bundle bounded by
the A′′i . By construction, Ni and N′′i are homotopy equivalent in N. Since Ni, N′′i
and N are all Haken, again, by standard 3-manifold topology, Ni and N′′i are
isotopic in N, and therefore the system Ai is isotopic to the system A′′i .

Compare with Lemma 2.2.2 of [35]. 2

Theorem 8.16 Every complementary region to Λ±split is a finite-sided ideal polygon

bundle over S1. Moreover, after possibly removing finitely many isolated leaves and
blowing down bigon bundles over S1, the laminations Λ±split are minimal.

Proof By Lemma 8.14 and Lemma 8.15, we can exhaust each complementary
region by a sequence of guts Gi bounded by interstitial annuli transverse to
F. It follows that the boundary of each Gi is foliated by the intersection with
F, and therefore each boundary component is a torus. Since M is irreducible
and atoroidal, these tori either bound solid tori, or are contained in balls. But
by construction, the core of each essential annulus is transverse to F, and is
therefore essential in π1(M) by Theorem 4.38. So every torus bounds a solid
torus, which is necessarily on the Gi side, and therefore each Gi is a solid torus.

For distinct i, j, the intersection ∂Gi ∩ ∂G j contains annuli which are essen-
tial in both solid tori. Since M is compact, π1(M) contains no infinitely divisible
elements, and therefore for sufficiently large i ≤ j, the inclusion Gi → G j is
a homotopy equivalence, and the union is an open solid torus. Moreover, this
inclusion takes interstitial regions to interstitial regions, and therefore each in-
terstitial region is of the form S1 × I ×R+. It follows that each complementary
region is a finite-sided ideal polygon bundle over S1, as claimed.

If some complementary region is actually a bigon bundle over S1, after lift-

ing to M̃, the boundary leaves intersect each leaf of F̃ in quasigeodesics which
are asymptotic at infinity. It follows that such regions arose by unnecessarily

splitting open a leaf of Λ̃±geo; we blow such regions down, identifying their
boundary leaves.

To see thatΛ±split are minimal, after possibly removing finitely many isolated

leaves, observe that if Λ is a minimal sublamination of Λ+
split, then the construc-

tion in Lemma 8.14 still applies, and therefore by Lemma 8.15, the complemen-
tary regions of this minimal sublamination are also finite sided ideal polygon
bundles over S1. It follows that every leaf of Λ+

split −Λ must be a suspension of

one of the finitely many diagonals of one of the finitely many ideal polygons.
The theorem follows. 2
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Remark For each complementary region C of Λ±split, one can distinguish be-

tween various possibilities for the topology of F ∩ C. Let G be a gut region of
Λ+

split. As remarked above, it is bounded by a system of interstitial annuli which

are transverse to F. Let G̃ be a cover of G in M̃. Then G̃ is also the universal
cover of G. Topologically, G is a solid torus, and G̃ is a solid cylinder. If γ de-
notes the core circle of G, we can also think of γ by abuse of notation as the

generator of π1(G) = Z which acts on G̃ by deck transformations. Let λt, with

t ∈ (−∞, ∞) parameterize the leaves of F̃ which intersect G̃, and suppose this
parameterization is chosen so that the action of γ on L satisfies

γ(λt) = λt+1

The boundary ∂G consists of two parts: the annular components Ai ⊂ ∂G,
and the laminar boundary ∂G∩Λ+

split. Note that if Λ+
split is co-orientable, this de-

composition defines the structure of a sutured manifold on G, in the sense of § 5.4.

We denote these subsets of ∂G by ∂vG and ∂hG respectively. These lift to ∂vG̃

and ∂hG̃ in the obvious way. The boundary ∂G̃ is foliated by circles of intersec-

tion with leaves of F̃.
There are three distinct classes of interstitial regions. Recall the map ψ from

Lemma 8.11.

FIG. 8.1. Three different kinds of interstitial region.

1. If an interstitial region R of Λ+
geo contains no branch locus, that is, if the

corresponding interstitial region R′ of Λ+
split maps homeomorphically to

R by ψ, then the foliation of ∂G by circles transverse to F can be extended
to the entire interstitial region. The lift of the interstitial region intersects

exactly the leaves λt of F̃; i.e. the same set of leaves that G̃ intersects. We
call this kind of interstitial region a cusp.

2. If an interstitial region R of Λ+
geo contains a circle branch component c,

this circle gets split open to a tangential interstitial annulus in the corre-
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sponding interstitial region R′ of Λ+
split. The leaves of F ∩ R′ spiral around

this annulus and limit on to it. In M̃, the annulus is covered by a rectangle

contained in a leafν of F̃ which is a limit of λt as either t→ −∞ or t→∞.
In the figure, the spiralling is from the positive side, and ν is a limit of λt

as t → −∞. We call this kind of interstitial region a (positive or negative)
annular spiral.

3. If an interstitial region R of Λ+
geo contains a line branch component, it

might conceivably contain infinitely many γi. Each of these gets split open
to a rectangle contained in the interior of an interstitial region R′ of Λ+

split

bounded by a transverse interstitial annulus. Moreover, the leaves F ∩ R
spiral out to fill all of the preimage of R under the collapsing map ψ, and
limit on the union of split open rectangles in R′ contained in distinct leaves

νi of F̃ which are all limits of λt as t → −∞. Note that there is no claim
that the νi fall into finitely many orbit classes under the action of γ. Note
that since there are at least infinitely many νi which are limits of λt, the
spiralling in this case must be from the positive side, by Lemma 8.13. Of
course, if C is a complementary region for Λ−split, the spiralling must con-

versely be from the negative side. We call this kind of interstitial region a
(positive or negative) rectangular spiral.

These three classes of interstitial region are illustrated in Fig. 8.1. Different
kinds of interstitial region reflect different properties of the action of γ on L, and
reflect the way in which the copy of R parameterized by λt is embedded in L.

8.5 Genuine laminations and Anosov flows

In this section we study the question of when the laminationsΛ±split are genuine,

and not merely essential. It is clear from Theorem 8.16 that Λ±split are genuine

if and only if for some leaf λ of F̃, the geodesic laminations Λ±geo(λ) are not
foliations.

Lemma 8.17 Let S1
univ be a minimal universal circle. The endpoints of leaves of Λ+

univ

are dense in S1
univ, and similarly for Λ−univ.

Proof Suppose not. Then there is some interval I ⊂ S1
univ which does not in-

tersect any leaf of Λ+
univ. Since S1

univ is minimal, there is some leaf λ of F̃ such
that core(φλ) intersects the interior of I. It follows that φλ(I) is an interval in
S1

∞
(λ) which does not intersect a leaf of φλ(Λ

+
univ). But this is contrary to the

fact from Theorem 8.16 that complementary regions to Λ+
split are finite sided

ideal polygon bundles over S1. 2

Example 8.18 Suppose p ∈ S1
univ is invariant under the action of π1(M) on

S1
univ. We let Λp be the lamination of S1

univ consisting of all unordered pairs

p, q where q ∈ S1
univ − p. By Construction 2.4 this corresponds to the geodesic

lamination of H2 by all geodesics with one endpoint at p.
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Note that for each leaf λ of F̃, the pushforward lamination φλ(Λp)geo con-
sists of the geodesic lamination of λ by all geodesics with one endpoint atφλ(p).

We call the foliation of H2 by all geodesics with one endpoint at some p ∈
S1

∞
the geodesic fan centered at p. By abuse of notation, we also refer to the cor-

responding lamination of S1
∞

as the geodesic fan centered at p.

Construction 8.19 Let G be a foliation of H2 by geodesics, and suppose G is not a
geodesic fan. Then G does not branch, and the leaf space of G is homeomorphic
to R. Corresponding to the two ends of R there are exactly two points in S1

∞

which are not the endpoints of any leaf of G. Call these the ideal leaves of G.

Lemma 8.20 Let F be a taut foliation of an atoroidal 3-manifold M, and let G be a
transverse foliation which intersects every leaf of F in geodesics. Then for every leaf λ

of F̃, every foliation G̃ ∩ λ is a geodesic fan centered at some unique s(λ) ∈ S1
∞

(λ).

Proof Let J ⊂ L be the leaves of F̃ for which G̃ ∩ λ is not a geodesic fan. Then
by Construction 8.19, to each λ ∈ J we can associate two points p±(λ) ∈ S1

∞
(λ)

which are the ideal leaves of the foliation G̃∩ λ. Let γλ be the geodesic spanned
by p±.

By Lemma 8.10, J is open as a subset of L, and the union

G̃ =
⋃

λ∈J

γλ

is a locally finite union of complete planes transverse to F̃. This union covers
some compact surface G ⊂ M transverse to F, and the intersection with leaves
of F defines a foliation of G. It follows that G consists of a union of incompress-
ible tori and Klein bottles. But M is atoroidal, so J is empty. 2

It follows from a similar argument that if one of Λ±split is essential but not

genuine, then both of them are, and they are equal. In this case, there is a well-
defined π1(M)-invariant section s : L→ E∞ which we call a spine.

Conversely, we have the following:

Lemma 8.21 Suppose for some F that there is a point p ∈ S1
univ which is invariant

under the action of π1(M) on S1
univ. Then F does not have two-sided branching.

Proof Let λ be some leaf of F̃, and let µ1 ,ν2,ν3 > λ be three pairwise incompa-

rable leaves. Such leaves can certainly be found if F̃ branches in the positive di-
rection. Since F is taut, there is a positive transversal from the projection to M of

each νi to the projection of µ1. Lifting to M̃, there exist elementsα2,α3 ∈ π1(M)
such that αi(µ1) = µi > νi for i = 2, 3. Then the µi are all translates of each
other, are mutually incomparable, and are all > λ for some fixed λ.

It follows that L+(µi) are disjoint and incomparable for i = 1, 2, 3 and there-
fore core(L+(µi)) is contained in the closure of a single gap of core(L+(µ j)) for

i 6= j. But this implies that the closures of the sets core(L+(µi)) do not contain a
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common point of intersection. Since p is preserved by the action of π1(M), if it
were contained in the closure of core(L+(µi)) for some i, it would be contained
in the closure of core(L+(µi)) for all three, contrary to what we have just shown.
It follows that p is not contained in the closure of core(L+(µ1)), and therefore
is not contained in the closure of core(L+(α(µ1))) for anyα ∈ π1(M).

But if F̃ branches in the negative direction, by the tautness of F we can find
an element β ∈ π1(M) such that β(µ1) and µ1 are incomparable, and both
satisfy µ1 ,β(µ1) < λ′ for some λ′. But then the union of L+(µ1) and L+(β(µ1))
is all of L, and therefore the closure of core(L+(µ1)) ∪ core(L+(β(µ1))) is all of
S1

univ, so p is contained in the closure of one of them, which is a contradiction.
It follows that F does not have two-sided branching, as claimed. 2

At first glance, it appears as though Lemma 8.20 and Lemma 8.21 together
are incompatible with the existence of F for which Λ±split are not genuine, since

one imagines that a spine gives rise to an invariant p ∈ S1
univ. However, this is

somewhat misleading. It is true, and not so hard to show, that a spine cannot
cross any markers in M. However, the way in which a spine turns corners in
L may be incompatible with the “leftmost rule” obeyed by special sections; c.f.
§ 7.8.

In fact, foliations with an invariant spine occur naturally; we have already
met some:

Example 8.22 Let F be Fws for some Anosov flow X on M. Then every leaf of F̃

is foliated by flowlines of X. Suppose flowlines of X are quasigeodesic in leaves

of F̃. Then after straightening flowlines leafwise, the foliation of each leaf λ by
X is a geodesic fan, asymptotic to some p ∈ S1

∞
(λ).

The main result of this section is that such examples are the only possibility,
when Λ±split are essential but not genuine.

Theorem 8.23 Let F be a taut foliation of M, and suppose that Λ+
split is essential but

not genuine. Then there is an Anosov flow φt of M such that F is the weak stable
foliation ofφt, and Λ+

split is the weak unstable foliation.

Proof Constructing the flow is easy; most of the proof will be concerned with
verifying that it satisfies the requisite properties.

By Lemma 8.20, for every leaf λ of F̃, the lamination Λ+
geo(λ) is a geodesic

fan, asymptotic to some unique p(λ) ∈ S1
∞

(λ).

Let Ỹ be the unit length vector field on M̃ contained in TF̃ which on a leaf
λ points towards p(λ) ∈ S1

∞
(λ). Here we are identifying UTpλ with S1

∞
(λ) for

each p ∈ λ by the endpoint map e. Then Ỹ descends to a nowhere vanishing
leafwise geodesic vector field Y on F. We will show that if φt denotes the time
t flow generated by Y, then φt is an Anosov flow, and F is the weak stable
foliation for φt.
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We define Eu as follows. Each point q ∈ S1
univ determines a geodesic γq(λ)

in each leaf λ of F̃ by setting γq(λ) equal to the unique geodesic from φλ(q) to
p(λ). As we let λ vary but fix q, the γq(λ) sweep out a (possibly disconnected)

union of planes transverse to F̃, whose leaves intersect leaf of F̃ exactly in the

flowlines of Ỹ. We define Eu to be the orthogonal distribution to Ỹ in the tangent
space to these leaves.

For simplicity, we first treat the case that F is minimal, and then show how
to modify the argument for general F.

Recall Definition 7.18 of a sawblade from § 7.4, and the definition of the con-
tracting and expanding directions.

Let γ be a closed embedded geodesic contained in a leaf λ of F. Let λ̃ be a

covering leaf of λ in M̃, stabilized by the corresponding element α ∈ π1(M).

Since p(λ̃) is defined intrinsically by the foliation Λ+
geo(λ̃), it follows thatα fixes

p(λ̃), and γ is a closed orbit of Y. Let γ̃ be the corresponding axis of α on λ̃.

Then one endpoint of γ̃ is p(λ̃); let r ∈ S1
∞

(λ̃) be the other endpoint of γ̃. By
hypothesis, γ̃ is equal toφ

λ̃
(l)geo for some leaf l of Λ+

univ.

Let τ be an embedded interval in L containining λ̃ as an endpoint. For suffi-
ciently short τ , the intervals τ and α(τ) are completely comparable; moreover,
for some choice of orientation on γ, we can assumeα(τ) ⊂ τ .

Then the set of leaves φν(l)geo for ν ∈ τ is an embedded rectangle R in

M̃, such that γ(R) ⊂ R, and we can find an embedded ǫ-sawblade P for F in
M with γ as a boundary circle. Notice that R is tangent to Eu ⊕ TY. Since P is
embedded, there is a lower bound on the length of an arc in M from P to itself
which is not homotopic into P. By minimality of F, there is a uniform R such
that for any leaf λ of F, and every point p ∈ λ, the ball of radius R about p in λ
(in the path metric) intersects P.

Return to the universal cover. Then preimages of P intersect every leaf λ of

F̃ in a union of bi-infinite geodesics and geodesic rays, contained in flowlines of

Ỹ, which intersect the ball of radius R about any point in λ, as measured in λ. If

P̃ is one component of the preimage, then P̃∩ λ contains a geodesic ray δ in the
contracting direction. Let q ∈ λ be a point far from the geodesic containing δ.

Then there is a translate α(P̃) with α ∈ π1(M) which intersects the ball in λ of
radius R about q, and whose intersection with λ contains a geodesic ray δ′. By
the choice of q, the rays δ and δ′ are not contained in the same geodesic. More-
over, since P is compact and embedded in M, it does not accumulate on itself,
so the rays δ and δ′ are not asymptotic to the same point in S1

∞
(λ). On the other

hand, δ and δ′ are both contained in flowlines of Ỹ, which are asymptotic in the
positive direction; it follows that the contracting direction of γ is the negative
direction. A priori, holonomy around the sawblade P is merely non-increasing
for some nearby leaf. But in fact, this argument shows that the holonomy is ac-
tually strictly decreasing for all leaves sufficiently close to γ. The same argument
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shows that there is another sawblade P′ on the other side of γ, for which γ is
also the contracting direction.

We show now that flow along Ỹ eventually strictly increases the length of

any integral curve of Eu. Let τ be a short integral curve, and let τ̃ be a lift to M̃.

Let λ be a leaf of F̃ which intersects τ̃ and also some lift γ̃ of γ. Then the flowline
of Ỹ through τ ∩ λ is eventually asymptotic to the (negatively oriented) γ̃. But
we have just seen that holonomy around γ is strictly decreasing, so flow along

Ỹ eventually blows up any arbitrarily short transversal to γ to a transversal of

definite size. If follows that flow along Ỹ eventually blows up the length of any
arbitrarily short τ̃ , as claimed. By covering an integral curve with such short
curves, and using the compactness of M, we can find uniform estimates for the
rate of this blow up, as required.

If F is not minimal, the argument is basically the same, except that we must
use the fact that almost every geodesic ray in a leaf of F is asymptotic to some
minimal set to extend the arguments to all of F. 2

It is now easy to deduce the main theorem of this chapter:

Theorem 8.24. (Calegari) Let F be a co-orientable taut foliation with two-sided branch-
ing of a closed, orientable algebraically atoroidal 3-manifold M Then either F is the weak
stable foliation of an Anosov flow, or else there are a pair of very full genuine lamina-
tions Λ±split transverse to F.

Proof This follows from Theorem 8.12, Theorem 8.16 and Theorem 8.23. 2

Corollary 8.25 Let M be a closed 3-manifold which admits a taut foliation with two-
sided branching. Then either M is toroidal, or admits an Anosov flow, or else π1(M) is
word hyperbolic, the mapping class group of M is finite, and every self-homeomorphism
of M homotopic to the identity is isotopic to the identity.

Proof This follows from Theorem 8.24 together with Theorem 6.62, Theorem 6.63
and Theorem 6.65. 2

The statements of theorems and proofs throughout Chapter 7 and Chapter 8
all concern taut foliations of closed 3-manifolds. By doubling and restriction,
one obtains analogous theorems for manifolds with torus boundary and taut
foliations transverse to the boundary. Alternately, one can directly generalize
the proofs of the main theorems to manifolds with boundary; such proofs are
not significantly more complicated than the proofs for closed manifolds, and do
not require any really new ideas.

We can use our structure theory for such manifolds to give a (new) proof of
Theorem 6.48, without appealing to the (unpublished) proof of Theorem 6.47.

Proof of Theorem 6.48: Let M be a compact, oriented, irreducible, atoroidal,
torally bounded 3-manifold, and suppose that ∂M 6= ∅. Then H2(M, ∂M; Z)
has positive rank, and therefore by Theorem 5.27 and Theorem 5.24, M admits
a finite depth taut foliation F which can be taken to be transverse to ∂M.
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Since F has finite depth, it contains a compact leaf S. If S is a fiber of a fibra-
tion, F admits a transverse pseudo-Anosov flow by Theorem 1.78. Otherwise, F

has two-sided branching, and we can construct very full essential laminations
Λ±split transverse to F, by Theorem 8.24. In either case, we can find a very full

essential lamination in M, and the remainder of the proof follows as in § 6.6.
2

We remark that any geodesic lamination of a finite area leaf is necessarily
nowhere dense. It follows that if F contains a compact leaf, Λ±split are genuine.

For taut foliations with one-sided or no branching, one can still construct a
pair of genuine transverse laminations; however, the construction is quite dif-
ferent from the method of this chapter, and therefore we must treat these cases
separately. We do this in the next chapter.



9

SLITHERINGS AND OTHER FOLIATIONS

The construction of transverse laminations from a universal circle in the previ-
ous chapter relied fundamentally on the structure of the branching of L. But for
many important special classes of taut foliations, L does not branch, or branches
in only one direction. In this case one can trade topology for geometry, and con-
struct transverse laminations which detect not the branching of the leaf space,
but the bending of individual leaves.

In this chapter, we survey a range of alternative methods for treating such
special classes of foliations and some related objects. We give complete proofs
(mainly concerning slitherings) when published arguments are not available,
but otherwise we generally cite the relevant published literature for details.

9.1 Slitherings

The main reference for this section is [236].

Definition 9.1 A 3-manifold M slithers over S1 if the universal cover M̃ fibers
over S1 (with disconnected fibers) in such a way that π1(M) acts on M̃ by bun-
dle automorphisms.

The foliation of M̃ by the connected components of the fibers descends to a
foliation F of M which we say arises from the slithering.

There are two basic examples of foliations which arise from slitherings:

Example 9.2 If M is Seifert fibered, and F is transverse to the Seifert fibration,
then F arises from a slithering.

Example 9.3 If M fibers over S1, then the fibration by surfaces arises from a
slithering.

It is clear from the definition of a slithering that F is taut and R-covered.

Definition 9.4 Suppose F is R-covered. A transverse flow X is regulating if ev-

ery flowline of X̃ projects homeomorphically to the leaf space L of F̃. That is, X

is regulating if and only if every flowline of X̃ intersects every leaf of F̃.
Suppose F has one-sided branching (in the negative direction). A transverse

flow X is semi-regulating if it projects to a copy of R in L whose positive end is
properly embedded.

Example 9.5. (drilling or branching) Let F be an R-covered foliation of M. Sup-
pose X is a regulating vector field for F which contains closed orbitsγi. Then the

295
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restriction of F is an R-covered foliation of M−∪iγi. Moreover, the restriction
arises from a slithering if the original foliation did.

Similarly, if N → M is a covering map branched over the γi and if G denotes
the pullback of F to N, then G is R-covered and arises from a slithering if F

does.

Definition 9.6 Suppose F is R-covered. A cone field C transverse to F is regu-
lating if every vector field X supported by C is regulating.

Example 9.7. (Lorentz cone fields) Let M = UTΣ where Σ is a hyperbolic sur-
face, and let F be the stable foliation of the geodesic flow. Then F arises from a
slithering. We can think of M as a quotient PSL(2, R)/π1(Σ). A bi-infinite path
γ ⊂ Σ lifts to a tautological path γ̂ ⊂ UTΣ. If the (signed) geodesic curvature
of γ in Σ is strictly bigger than 1 everywhere, the lift is regulating. Geometri-
cally, this corresponds to the condition that γ turns to the right faster than a
horocycle, and makes infinitely many “full turns”. For example, γ could be the
boundary of a round disk in Σ, in the hyperbolic metric. There is a regulating
cone field C (called a Lorentz cone field) in UTΣ which consists of all vectors
which are tangent to such lifts γ̂. See [236].

A regulating vector field might have no closed orbits, but a regulating cone
field will support many regulating vector fields, many of which will have closed
orbits with desirable properties.

Suppose that F arises from a slithering of M over S1. The action of π1(M)

on M̃ is compatible with the fibration π : M̃→ S1 and induces a representation

ρS : π1(M)→ Homeo+(S1)

Since M̃ is contractible, the fibration π lifts to a fibration

π̃ : M̃→ R

where R can be thought of as the leaf space of F̃, and ρS lifts to

ρ̃S : π1(M)→ ˜Homeo+(S1)

If Z ∈ ˜Homeo+(S1) generates the center of ˜Homeo+(S1), then Z acts on the

leaf space of F̃.

Definition 9.8 The map Z : L(F̃) → L(F̃) is called the structure map of the
slithering.

For each leaf λ of F̃ and each point p ∈ λ, we can join p by a transverse arc
γp to the leaf Z(λ). Moreover, one can choose such γp to vary continuously with

λ, p. Since Z commutes with the action of π1(M) on M̃, and since M is compact,
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it follows that there is a uniform constant C such that every point on λ can be

joined by a transverse path of length ≤ C in M̃ to a point on Z(λ). Conversely,
every point on Z(λ) can be joined by a transverse path of length ≤ C to a point

on λ. In particular, for any two leaves λ,µ of F̃, there is a constant C such that
λ is contained in the C-neighborhood of µ, and vice versa. Now, since F is R-
covered, by Lemma 4.49 we know that for any C there are constants K,ǫ so that
both λ andµ are (K,ǫ) quasi-isometrically embedded in their C neighborhoods;
consequently, the nearest point map determines a quasi-isometry from λ to µ. If
we choose a metric on M for which all leaves of F are hyperbolic surfaces, this
quasi-isometry determines a quasisymmetric homeomorphism from S1

∞
(λ) to

S1
∞

(µ), which we denote by φλµ . It is clear that this homeomorphism does not
depend on the particular choice of constant C. In particular, for any three leaves
λ,µ,ν, we have a cocycle condition

φνλφ
µ
νφ

λ
µ = Id

as a map from S1
∞

(λ) to itself. Moreover, since the maps φλµ are determined by

the geometry of λ,µ, M̃, it is clear that for allα ∈ π1(M), we have an identity

α−1φ
α(λ)
α(µ)

α = φλµ

where the action ofα on ideal circles is induced by its action on leaves.

Theorem 9.9 Let F arise from a slithering over S1. Then there is a universal circle
S1

univ and structure maps φλ : S1
univ → S1

∞
(λ) which are quasisymmetric homeomor-

phisms, so that for all leaves λ,µ of F̃, we have an identity

φµ = φλµφλ

Proof Identify S1
univ with S1

∞
(λ) for some fixed λ, and define φµ = φλµ. Define

ρuniv by

ρuniv(α) = φ
α(λ)
λ α

as a map from S1
∞

(λ) to itself. We calculate

φ
β(λ)
λ βφ

α(λ)
λ α = βαα−1β−1φ

β(λ)
λ βαα−1φ

α(λ)
λ α

= βαφ
α−1(λ)

α−1β−1(λ)
φλ
α−1(λ) = βαφλ

α−1β−1(λ)α
−1β−1βα

= φ
βα(λ)
λ βα

So ρuniv defines a homomorphism from π1(M) to S1
univ. This data obviously

satisfies the first 3 defining properties of a universal circle; since F is R-covered,
the fourth property is vacuously satisfied. 2
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Let us also remark that the compactness of M implies that the distance from
λ to Z(λ) is bounded from below by a positive constant. That is, we have the
following lemma

Lemma 9.10 Let F arise from a slithering over M. Then there is a uniform positive

constant C such for every leaf λ of F̃ and for every path γ in M̃ from λ to Z(λ) there is
an estimate

length(γ) ≥ C

9.2 Eigenlaminations

For λ a leaf of F̃, and γ a geodesic in λ, there is a corresponding geodesic Z∗(γ)
in Z(λ) whose endpoints are determined by φλ

Z(λ)
applied to the endpoints of

γ. Moreover, the map Z defines a quasigeodesic Z(γ) ⊂ Z(λ) whose geodesic
straightening is Z∗(γ). If γ covers a closed geodesic τ in M, then there is some
α ∈ π1(M) which acts as a translation on γ. Since Z and α commute, α also
fixes Z∗(γ) which similarly covers a closed geodesic Z∗(τ) in M. Notice that
τ and Z∗(τ) are freely homotopic in M, by a homotopy with the property that

the track of each point is transverse to F. To see this, let Ã denote the union of

the geodesics in leaves µ of F̃ between λ and Z(λ) whose geodesics are asymp-
totic to the points in S1

∞
(µ) which map to the endpoints of γ in S1

∞
(λ) under

φ
µ
λ

. Then Ã is preserved by α, and therefore covers a compact annulus A ⊂ M
transverse to F. This annulus can be foliated by transverse intervals, which de-
fine the desired homotopy.

Iterate this construction, and define τi = Zi
∗(τ) for each i ∈ Z, where τ = τ0.

Similarly, construct Ai, a transverse annulus from τi to τi+1 which is foliated
by leafwise geodesics in F. For any integers j < k the union Ak

j = ∪k
i= jAi is

also an annulus transverse to F foliated by leafwise geodesics of F. Notice by
Lemma 9.10 that there is a constant C such that any path in Ak

j joining the two

boundary components has length ≥ (k− j)C.
Now, since M is compact, for any constant C the set of loopsΩC(M) in M of

length ≤ C is compact, and contains only finitely many free homotopy classes.
Moreover, there is a constant C′ depending on C such that any two loops in the
same homotopy class are homotopic by a homotopy whose tracks have length
≤ C′. It follows that one of the following two things must happen:

1. For some i and infinitely many j, τi and τ j are freely homotopic by a ho-
motopy of uniformly bounded length (independent of i, j)

2. lim infi→∞
length(τi) = lim infi→−∞

length(τi) = ∞

In the first case, the composition of the transverse homotopy with the homotopy
of bounded length gives a homotopy whose tracks can all be straightened to be
transverse to F; it follows that the homotopy is an essential homotopy from τi to
itself, whose mapping torus is an essential torus transverse to F. By the work of
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many people, this is known to imply that either M contains an essential embed-
ded torus, or else it is a small Seifert fibered space. The proof uses in an essential
way the full power of the Convergence Group Theorem 2.99. However, in our
current setup, we can circumvent the hard work in that theorem as follows.

Let G denote the image of π1(M) in Homeo+(S1
univ). As explained in § 2.14,

the hard part of the proof of Theorem 2.99 is to find a configuration of non-
simple arcs in a disk bounded by S1

univ which is G-invariant. But if T is an im-
mersed essential torus which intersects F leafwise in geodesics, then for each

leaf λ of F̃, the intersection with the lifts of T give such a configuration. Note
that this configuration is not yet G-invariant. As λ varies, the leafwise configu-
ration of geodesics might go through triple points. By compactness of T, these
triple points must come in pairs which are vertices of football regions (i.e. the
suspension of a triangle) with boundary bigons contained in T. The intersec-
tion of each football region with F foliates the interior by geodesic triangles.
It follows that we can eliminate such regions by a homotopy whose tracks are
supported in leaves of F, and obtain a (topological) configuration of arcs in the
disk which are G-invariant. If this configuration of arcs is filling, then G acts dis-
cretely and cocompactly on the disk and is therefore a surface orbifold group
and M is Seifert fibered by Scott [215]. Otherwise, the G-orbit of the boundary
of a complementary region is a G-invariant system of embedded arcs which let
us produce an embedded essential torus in M transverse to F, and see that M
is torus reducible.

We assume therefore in the sequel that M is not Seifert fibered and is atoroidal,
and therefore the length of the τi is unbounded as i→ ±∞.

Fix a positive integer n, and consider the family of immersed annuli An+i
i .

A priori, the annuli An+i
i are not embedded but merely immersed. The self-

intersections of An+i
i with itself consist of a family γi j of arcs, transverse to F,

which end on boundary components of the local sheets of An+i
i . Each γi j arises

from some elementα ∈ π1(M) with

Zi(λ) < α(Zi(λ)) < Zn+i(λ)

and for which ρuniv(α)(γ) and γ link in S1
univ (here we identify γ with its end-

points in S1
∞

(λ) = S1
univ). Sinceα commutes with Z, it follows that the combina-

torics of the self-intersection of An+i
i with itself is independent of i. In particular,

the number of such self-intersections is a constant, independent of i. Now, for

i very big, the length of the core of the annulus An+i
i increases without bound.

It follows that either some γi j has a very large diameter, or else for every r > 0

there are points pi ∈ An+i
i such that the ball of radius r about pi in An+i

i is
embedded, for sufficiently large i.

How canγi j get a very large diameter? Since the distance between boundary

components of An+i
i is bounded both above and below independently of i, and
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since the γi j must always be transverse to the foliation F|
An+i

i
, it follows that a

γi j with a very large diameter must spend a lot of time winding around the core

of the annulus An+i
i .

It turns out that there is an intimate relationship between the diameter of

γi j and the angle that different sheets of An+i
i make along γi j. In particular, we

have the following lemma:

Lemma 9.11 For any ǫ > 0 there is a constant C so that if there is a leaf λ of F such

that two sheets of An+i
i make an angle in λ of ≥ ǫ at some point in a component of

intersection γi j, then diam(γi j) ≤ C.

Proof The leafwise geodesic flow identifies the leafwise unit tangent bundle

with S1
univ for every p ∈ M̃. The visual measure on the unit tangent bundle

therefore induces a metric on S1
univ for every point p ∈ M̃, which varies con-

tinuously as a function of p. Now, Lemma 8.9 implies that the visual angle be-
tween distinct points in the universal circle cannot get too small too quickly as

one moves about in M̃.
For any point p ∈ M̃ on a leaf µ, let q ∈ Z(µ) be the nearest point to p (the

choice of q is ambiguous, but there is a uniform constant C so that all different
choices are within leafwise distance C of each other). We can compare the visual
angle on S1

∞
(µ) from p with the visual angle on S1

∞
(Z(µ)) from q, by identify-

ing both with S1
univ via the structure maps. By the compactness of M, there is

a uniform constant C′ such that d
M̃

(p, q) ≤ C′, and it follows that for any con-
stant ǫ > 0, there is a uniform constant δ > 0 so that if the visual angle between
two points on S1

univ as seen from p is≥ ǫ, then the visual angle between the cor-
responding points as seen from q is ≥ δ. For a geodesic γ ⊂ λ, let γuniv denote
the corresponding unordered pair of points in S1

univ, and let γµ denote geodesic
in µ with endpoints asymptotic to φµ(γuniv). Now, if the geodesics γµ ,α(γ)µ
meet at an angle > ǫ at their intersection p ∈ µ, then their endpoints in S1

univ
are separated by at least ǫ with respect to the visual angle as seen from p. It
follows that for q ∈ Z(µ) as above, the angle between any two endpoints of
γZ(µ),α(γ)Z(µ) in S1

∞
(Z(µ)) with respect to the visual angle as seen from q is

at least δ. It follows that there is a constant T (depending on δ) such that the
intersection q′ = γZ(µ) ∩α(γ)Z(µ) satisfies

dµ(q, q′) ≤ T

Moreover, if τ is a transversal to F̃ from p to q of length approximately C′, then
a similar comparison holds for all r ∈ τ .

Translating into our context, this means that if γuniv ,γ′univ are linked in S1
univ

and if γλ ,γ′λ intersect in an angle ≥ ǫ, then if we parameterize the interval
[λ, Z(λ)] ⊂ L by λt, t ∈ [0, 1], the path

τ(t) = γλt ∩γ′λt
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stays within a bounded distance of a path of length ≤ C, and so has bounded

diameter itself. Now, each γi j lifts in M̃ to a subset of such an arc τ . It follows
that for any ǫ > 0, there is a constant C such that if the leafwise angle be-

tween two sheets of An+i
i along some component γi j is > ǫ at any point, then

diam(γi j) ≤ C, which was exactly what we had to prove. 2

It follows from Lemma 9.11 that for any r and any ǫ, there is an N such

that for all i > N, there is a point pi ∈ An+i
i such that the ball about pi in

An+i
i of radius r is an immersed subsurface whose self-intersections all make a

(leafwise) angle ≤ ǫ.
Since this is true for each n, we pick a diagonal sequence of such points with

respect to n→ ∞, r→ ∞,ǫ→ 0. Since M is compact, the pi so obtained contain

a convergent subsequence. The balls Br(pi) ⊂ An+i
i converge in the Hausdorff

topology to a complete embedded sublamination Λ which is transverse to F, and
which intersects each leaf in a geodesic lamination. Moreover, by construction,

if Λ̃ denotes the preimage of Λ in M̃, then the lamination Λ(λ) = Λ̃ ∩ λ arises
from a lamination Λuniv of S1

univ by

Λ(λ) = φλ(Λuniv)

for all leaves λ of F̃.
In fact, one can construct two such laminations Λ±, one corresponding to

sequences pi with i→ ∞, another corresponding to sequences pi with i → −∞,
and associated laminations Λ±univ of S1

univ which are preserved by the action of
π1(M). We denote the union ∪i Ai by

A(γ) =
⋃

i

Ai

In summary, we have proved the following theorem:

Theorem 9.12. (Thurston) Let F arise from a slithering of M over S1, where M is
atoroidal and is not a small Seifert fibered space. Then for any geodesic γ contained in
a leaf of F (immersed or not), the annulus A(γ) contains sequences of points pi, i ∈ Z
escaping to either end of A(γ), such that the ball of radius |i| in the path metric about pi

converges in the Hausdorff topology to an essential lamination Λ± ⊂ M as i → ±∞.

Proof All we need to show is that Λ± are essential. But any lamination Λ

which arises from an invariant laminationΛuniv of a universal circle is essential,
by the argument of Theorem 8.12. 2

Now, the argument of Theorem 8.16 shows that any lamination Λ arising
from an invariant lamination of S1

univ is minimal (after possibly removing finitely
many isolated leaves) and has complementary regions which are finite-sided

ideal polygon bundles over S1 provided that the foliations of leaves λ of Λ̃ by

λ ∩ F̃ branch in at most one direction.
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But if F is R-covered, the foliation of each leaf λ by λ∩ F̃ is a product foliation,
so this condition is automatically satisfied. It follows that Λ± have solid torus
complementary regions. By abuse of notation, we remove finitely many isolated
leaves, and assume Λ± are minimal with solid torus complementary regions.

A priori, the laminations Λ± seem to depend on the choice of the original
leafwise geodesic γ, and the choice of the sequence pi. Suppose δ is another

geodesic in a leafµ. Then we can construct annuli An+1
i (δ) and examine the pat-

tern of intersections of An+i
i (γ) and An+i

i (δ). As above, for fixed n, the combi-
natorics of these intersections are independent of n. However, the cores of both
annuli get arbitrarily long as i gets large, while the distance between boundary
components is bounded above and below. So for every ǫ > 0, for sufficiently
large i and n, both annuli contain subdisks with an arbitrarily big injectivity
radius whose mutual intersections make a (leafwise) angle ≤ ǫ. It follows that
the limiting laminations Λ+(γ) and Λ+(δ) have no transverse intersections;
since they both are minimal with solid torus complementary regions, they must
agree. A similar argument shows that Λ+(γ) does not depend on the choice of
sequence pi, and we can conclude that Λ± do not depend on any choices.

Historical Remark Theorem 9.12 is proved by Thurston in [236] using leafwise
geodesic currents. Thurston’s paper is only a preprint, and some details in the
argument are not easy to figure out. In an effort to understand this theorem, I
developed the argument above, obviously modeled on Nielsen’s proof of The-
orem 1.47.

Remark It is well-known that identifying and eliminating football regions is
often the key to promoting homotopy information to isotopy information in 3-
manifold topology. In our context, the existence of the foliation F simplifies the
combinatorics immensely.

9.3 Uniform and nonuniform foliations

We turn now to arbitrary R-covered foliations. More general than foliations aris-
ing from slitherings are uniform foliations.

Definition 9.13 Let F be a taut foliation of M. F is uniform if every two leaves

λ,µ of F̃ are a finite Hausdorff distance apart.

Suppose F is uniform. Since no two leaves of F̃ can diverge from each other,
holonomy transport keeps the length of every transversal bounded. Let I be
an interval in L whose translates under π1(M) cover L, and let I+, I− denote
respectively the uppermost and lowermost points of I. Let µ, λ be the corre-
sponding leaves of L. Since F is uniform, there is a constant ǫ > 0 such that
every point on λ can be joined by a transversal of length ≤ ǫ to some point on
µ. Let p ∈ λ, and let ν > λ be such that no point on ν is within distance ǫ of
p. Then of course ν > µ, but more significantly, there is no α ∈ π1(M) which
satisfies α(λ) ≤ λ and α(µ) > ν. If J is the interval in L whose uppermost and
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lowermost leaves are ν and µ respectively, then no translate of I by an element
of π1(M) contains J.

This property of I and J lets us construct a natural kind of “length scale” on

the leaf space L of F̃:

Construction 9.14 Let F be uniform, and let L denote the leaf space of F̃. A co-
orientation on F determines an orientation on L, and therefore a total order >
on leaves of L. Let I ⊂ L be an open interval whose translates cover L, and let
I+, I− denote respectively the uppermost and lowermost point of the closure of
I. Given λ ∈ L define p(λ) ∈ L by

p(λ) = sup
α

α(I+)

where the supremum is taken over allα ∈ π1(M) for which λ ∈ α(I).

By the argument above, given any λ there is a leaf ν > λ such that p(λ) ≤ ν.
Since λ was arbitrary, p(λ) exists and satisfies

p(λ) > λ

for all λ ∈ L. Moreover, since translates of I cover L, the sequence pn(λ) is
unbounded as n→ ∞.

If λ < µ then any α(I) containing µ but not λ must have α(I+) > p(λ). It
follows that p is monotone. Moreover, from the naturality of Construction 9.14
it follows that p commutes with the action of π1(M). If p is continuous, then it
must be conjugate to a translation, and M slithers over L/〈p〉 ≈ S1.

In general, p need not be continuous, especially if F is not minimal. But as
in Theorem 2.78 we can blow up points where p is not continuous to produce
a monotone equivalent action in which p is conjugate to a translation. Or, since
p is central, we can blow down intervals in the complement of the image of p
to obtain a “smaller” monotone equivalent action in which p is conjugate to a

translation. In either case one can realize π1(M) as a subgroup of ˜Homeo(S1)
and recover the following theorem from [236]:

Theorem 9.15. (Thurston) Let F be a uniform taut foliation of a 3-manifold. Then
after possibly blowing down some pockets of leaves, F arises from a slithering of M
over S1, and the holonomy representation in Homeo(L) is conjugate to a subgroup of

˜Homeo(S1).

Not every R-covered foliation is uniform:

Example 9.16 Let φ : T → T be an Anosov automorphism of a torus T. Let
Mφ denote the mapping torus of φ, and let F be the suspension of the stable
foliation (on T) of φ. Then F is R-covered but not uniform. Note in this case
that Mφ admits a Sol geometry.
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Example 9.17 Let M1, M2 be two circle bundles over surfaces Σ1, Σ2 which are
topologically products

Mi = Σi × S1

For i = 1, 2 let

ρi : π1(Σi)→ Homeo(S1)

be representations defining a slithering over S1. Let Fi denote the induced foli-
ation on Mi, as in Example 4.2.

Since each Mi is a product, the result of drilling out a circle fiber of Mi pro-
duces a new manifold which also slithers over S1. By the compactness of the
Mi, there is an ǫ such that the set of vectors in TMi which make an angle ≤ ǫ
with the circle fibers is a regulating cone field Ci. Any loop γi ⊂ Σi lifts to a
regulating curve γ̂ supported by this cone field.

We suppose in what follows that the representationsρi are sufficiently generic.
Explicitly, we require that they satisfy

1. The image ρi(π1(Σi)) acts minimally on S1 with trivial centralizer

2. There are elements αi ∈ ρi(π1(Σi)) whose rotation numbers rot(αi) = θi

are irrational, and irrationally related

We let γi ⊂ Σ be loops corresponding to the conjugacy classes of the αi,
with regulating lifts γ̂i. We drill out a tubular neighborhood of each γ̂i and glue
the resulting boundary tori in such a way that the foliations match up precisely
to produce a foliation F on the resulting closed manifold M. The restriction of
Fi to each Mi − γ̂i is R-covered, and therefore F is R-covered. Since each Fi is
minimal, so is F.

Let Li denote the leaf space of each Fi, and let L denote the leaf space of F.
Of course, these three leaf spaces are all homeomorphic to R. The slitherings
define two representations

ρ̂i : π1(Mi − γ̂i)→ Homeo+(Li)

which are “amalgamated” along a Z subgroup 〈α〉 corresponding to 〈αi〉 on
each side. We can think of this amalgamation as defining a homeomorphism
h : L1 → L2 and after identifying L with L1, the image of π1(M) in Homeo+(L1)
is generated by

ρ̂1(π1(M1 − γ̂1)) ∗ h∗ρ̂1(π1(M1 − γ̂1))

By our conditions on the representations, the centralizer of ρ̂1(π1(M1 − γ̂1)) is
cyclic, generated by some element Z1, and the centralizer of h∗ρ̂1(π1(M1− γ̂1))
is also cyclic, generated by some element Z2. Both Z1 and Z2 are conjugate
to translations, so α gets a well-defined rotation number relative to each of
them, whose mod Z reduction is equal to θ1 and θ2 respectively. Since the θi

are incommensurable, there is no element of Homeo+(L1) which centralizes
both subgroups, and therefore F is not uniform.
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Example 9.18. (hyperbolic example) The manifold M in Example 9.17 is a graph
manifold. Let C be a cone field which agrees with Ci on each Mi − N(γ̂i) for
some tubular neighborhoods N(γ̂i), and in a torus × I neighborhood of the
torus along which the pieces are glued, the cone field supports only those curves
which wind sufficiently many times around the slithering direction (on either
side) before crossing from one side to another.

To see that this cone field is regulating, consider the progress in L of a bi-
infinite curve γ it supports. If γ stays on one side of the separating torus, it
is regulating because it is supported by one of the cone fields C1 or C2. Every
time it crosses over, it makes a definite amount of progress, as measured in
either side. A meaningful analogy is currency exchange: think of progress in L
as measuring your wealth. On the M1 side, this wealth is measured in dollars,
while on the M2 side it is measured in rubles. When you change money from
dollars to rubles, you “round down” to the nearest integer. But if you charge a
large enough fee to process each transaction, your wealth will increase without
bound (as measured in either dollars or rubles).

The existence of the regulating cone field C lets one construct regulating
vector fields with periodic orbits γ. A suitably long and generic periodic orbit
γ has hyperbolic complement, so by removing γ or by taking a suitable cover
branched enough times over γ as in Example 9.5, one obtains examples of hy-
perbolic 3-manifolds with taut foliations which are R-covered but not uniform.

This construction is due to Calegari, and is discussed in detail in [31].

9.4 The product structure on E∞

Suppose F is minimal and R-covered but not uniform. Then the Hausdorff dis-

tance between any two leaves of F̃ is infinite. It follows that any leaf contains
points which are arbitrarily far from any other leaf.

Conversely, we prove the following:

Lemma 9.19 Let F be minimal and R-covered but not uniform. Then any two leaves

λ,µ of F̃ contain points which are arbitrarily close in M̃.

Proof Suppose not. Then there is some ǫ > 0 and leaves λ < µ such that no
transversal of length ≤ ǫ can intersect both λ and µ.

Let τ be a transversal of length ǫ, and let I be the corresponding interval in
L with endpoints I±. As in Construction 9.14, for each ν ∈ L we define

p(ν) = sup
α

α(I+)

where the supremum is taken over all α ∈ π1(M) for which ν ∈ α(I). By
hypothesis, p(λ) ≤ µ and is therefore bounded. Since p is obviously monotone,
p(ν) exists for all ν. Since the action of π1(M) on L is minimal, p is conjugate to
a translation and commutes with π1, and M slithers over L/〈p〉 ≈ S1. 2

Since any two leaves λ,µ of L contain points which are arbitrarily close in M̃,
we can find a sequence of markers mi ∈ M which project to a nested sequence
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of intervals Ii ⊂ L for which ∪i Ii = L. We let m∞ ⊂ E∞ denote a Hausdorff
limit of some subsequence of the mi.

Definition 9.20 A transversal m∞ ⊂ E∞ which projects homeomorphically to
L, and which is a uniform limit of markers (in the Hausdorff topology on E∞)
on compact subsets is called a long marker.

Since a long marker is a uniform limit of markers on compact subsets, no
marker can cross a long marker. More generally, the same argument shows that
no two long markers can cross. It follows by Theorem 7.23 that the set of long
markers is compact (with the topology of convergence on compact subsets in
E∞) and π1(M)-invariant.

Suppose there is some long marker m∞ and someα ∈ π1(M) which does not
stabilize m∞. Then for some λ, the circle S1

∞
(λ) intersects at least two translates

of m∞. By compactness of M, there is a uniform ǫ > 0 such that for any p ∈ M̃
in some leaf µ, the set of translates of m∞ in S1

∞
(µ) has visual angle at least ǫ

as seen from p. But then by the argument of Theorem 7.23, the translates of m∞

are dense in E∞, and therefore the union of the set of all long markers is all of
E∞.

If two long markers agree along some proper sub-interval, then they must
trap infinitely many long markers between them. The elements of M which
converge to these intermediate markers are disjoint, and therefore must cross
elements of M which converge to at least one of the two extremal markers. This
contradiction shows that long markers are disjoint. Since the union is all of E∞,
the set of long markers foliates E∞ as a product S1

univ × L.
We summarize this as a lemma:

Lemma 9.21 Let F be a minimal R-covered nonuniform foliation of M. Then one of
the following two possibilities must occur:

1. There is a unique long marker m∞ which is stabilized by π1(M); we call such a
long marker a spine for F.

2. E∞ is foliated as a product R× S1 by long markers.

Under the hypotheses of the Lemma, it turns out that if F has a spine, then M
admits a Sol structure, and F is the suspension of the stable or unstable foliation
of an Anosov automorphism of a torus; i.e. we are in the case of Example 9.16.
Note that in this case E∞ has a natural product structure too. We conclude that
if F is minimal but not uniform, then for any minimal universal circle S1

univ, the
structure maps φλ are all homeomorphisms. We summarize this discussion as a
theorem.

Theorem 9.22 Let M be an atoroidal 3-manifold, and let F be R-covered and mini-
mal but not uniform. Then the minimal universal circle S1

univ for F is unique, and the
structure map

φ : S1
univ × L→ E∞

is a homeomorphism.
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See Theorem 4.6.4 from [33] for more details.

Remark A foliation F arising from a slithering may have a spine even if the
underlying manifold is not Sol. We have already seen that for F arising from a
slithering, the bundle E∞ has a canonical product structure; in this case, a spine
for F is never compatible with the product structure on E∞, but winds around
the universal circle an integral number of times in each unit of the slithering.
For example, the stable foliation of UTΣ for Σ a hyperbolic manifold has a spine
which rotates exactly once around the universal circle in each unit of slithering.

9.5 Moduli of quadrilaterals

To construct essential laminations transverse to a nonuniform R-covered folia-
tion F, we must study the action of π1(M) on S1

univ. This construction involves
some fairly complicated combinatorics, which we summarize in the next couple
of sections. The key is to study the action of π1(M) on the space of 4-tuples of
points in S1

univ. So we begin with a discussion of the moduli of such 4-tuples.

Let Q := {p, q, r, s} ⊂ RP1 be an ordered 4-tuple of distinct points, whose

order is compatible with the circular order inherited as a subset of RP1 ≈ S1.
There is a unique g ∈ PSL(2, R) such that

g(p) = 0, g(q) = 1, g(s) = ∞

Then the modulus of Q is defined to be the value g(r) ∈ (1, ∞). The modulus is
denoted mod(Q) and can be calculated from the cross-ratio

mod(Q) =
(r− p)(s− q)

(q− p)(s− r)
= mod(0, 1, mod(Q), ∞)

See e.g. [149] for details.
After a change of co-ordinates, we assume Q = {0, 1, λ, ∞}. If 1 < t <

λ,−∞ < u < 0 then Q can be “decomposed” into the two quadrilaterals

Q1 = {0, 1, t, u}, Q2 = {u, t, λ, ∞}

Then

mod(Q1) =
t(1− u)

t− u
, mod(Q2) =

λ− u

t− u

If we set

t =
√
λ, u =

λ−
√
λ

1−
√
λ

then

mod(Q1) = mod(Q2) =

√
λ+ 1

2

which is approximately equal to λ1/4 for λ close to 1.
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Now let Q := {p, q, r, s} ⊂ S1
univ be an abstract quadrilateral. For each leaf

λ of F̃ the image φλ(Q) consists of four distinct points in S1
∞

(λ), which are the
vertices of a unique ideal quadrilateral Qλ ⊂ λ. The hyperbolic metric on λ lets
us calculate the modulus of Qλ.

By Theorem 2.92, either π1(M) is locally indicable, or else there are nontriv-
ialα ∈ π1(M) for which fix(α) ⊂ L is noncompact. We remark that if π1(M) is
locally indicable, then H1(M; Z) 6= 0, and therefore M is Haken; for simplicity’s
sake, we restrict attention in the sequel to the second case, in which we can find
nontrivialα with fix(α) ⊂ L is noncompact.

Without loss of generality (after possibly changing the orientation on L) it

follows that there is an unbounded increasing sequence of leaves λi of F̃ such
that α(λi) = λi for all i. Let λ = λ1. Further, let γi ⊂ λi be the axis of α, and let
τi be the closed geodesic in M covered by γi. Then as in the case of slitherings,
we can argue that either M is toroidal, or the length of the τi (i.e. the translation
length of α on γi) increases without bound. We assume we are in the second
case.

Let p, q ∈ S1
univ be the fixed points of α. Choose points p± and q± on S1

univ
near p and q so that (p+, p, p−, q−, q, q+) is circularly ordered. Let Q be the
quadrilateral {p+, p−, q−, q+} and use the structure maps φλi

to define hyper-
bolic quadrilaterals Qλi

. Then for suitable p±, q±, the moduli mod(Qλi
) goes to

infinity as i→ ∞. By repeatedly bisecting Q, we can find r, s ∈ S1
univ and p±i , q±i

such that p+
i , q+

i → r, p−i , q−i → s so that if Qi denotes the abstract quadrilateral

Qi = {p+
i , p−i , q−i , q+

i }, there are ni → ∞ with the following properties:

1. mod(Qi
λ)→ 1 as i →∞

2. mod(Qi
λni

)→ ∞ as i→ ∞

Remark The existence of quadrilaterals Qi and leaves λ, λni
with properties as

above can be deduced directly whenever the action of π1(M) on S1
univ is not

a convergence group. By the Convergence Group Theorem 2.99, if π1(M) acts
as a convergence group on S1

univ, then this action is conjugate into PSL(2, R); it
follows in this case that M is either Sol or Seifert-fibered.

From the point of view of using the existence of an R-covered foliation to
deduce δ-hyperbolicity of π1(M), one need only consider the case that M is
non-Haken. This was the point of view of [33]. It is therefore a considerable
technical simplification to use the elementary Theorem 2.92 in place of the much
more complicated Convergence Group Theorem.

9.6 Constructing laminations

Each ideal quadrilateral has a unique center of gravity in H2. The centers of

gravity of the ideal quadrilaterals Qi
λni

will typically escape to infinity in M̃,

but we can find a sequence βi ∈ π1(M) such that the centers of gravity of

some infinite subsequence of the βi(Qi
λni

) converge to some point in M̃. Then
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the sequence of abstract quadrilaterals βi(Qi) ⊂ S1
univ contains a subsequence

which converges to a “degenerate quadrilateral” consisting of a pair of points
l ∈ S1

univ. Likewise, let m ∈ S1
univ denote the pair of points r, s as above. We

define L+ to be the closure of the union of the translates of l by elements of
π1(M), and we define L− to be the closure of the union of the translates of m
by elements of π1(M).

We summarize the properties of L± in the following Lemma:

Lemma 9.23 For any k ∈ L+ and w ∈ L− with endpoints a, b and c, d respectively
there are abstract quadrilaterals

P := {a+, a−, b−, b+}, Q := {c+, c−, d−, d+}

where a± can be chosen to be contained in any given open neighborhood of a (and so
on), for which there is β ∈ π1(M) with

β(a+) = c−, β(a−) = d−, β(b−) = d+, β(b+) = c+

With respect to any choice of symmetric structure on S1
univ (obtained for

instance by pulling it back from some λ viaφ−1
λ

) the modulus of P can be chosen
to be as close to ∞ as desired, and the modulus of β(P) as close to 1 as desired.
Notice that β(P) is not equal to Q as a quadrilateral even though they have the
same vertices in S1

univ, because the order of the vertices is different (although
the cyclic order is the same).

Suppose no element of L+ links any element of L−.

Construction 9.24 Let G < Homeo+(S1), and let L± be two nonempty G-
invariant families of pairs of points in S1. Suppose no element of L+ links any
element of L−. Think of S1 as the ideal boundary of H2, and to L+ associate the
family Γ+ of geodesics with endpoints on elements of L+. For each connected
component K ⊂ Γ+ form the convex hull H(K) and the boundary of the convex
hull ∂H(K). Then

Λ+ =
⋃

K

∂H(K)

is a geodesic lamination of H2 which determines a laminar relation (which we
denote Λ+

univ) of S1 which is G-invariant. One can perform a similar construc-
tion with L− and L+ reversed to obtain Λ−.

On the other hand, suppose that some element of L+ links some element
of L−. Without loss of generality, we assume l links m in S1

univ. Let β be as in

Lemma 9.23. Then after possibly replacing β by β2, we see that β must have
at least four fixed points in S1

univ, which alternate between (weakly) repelling

and attracting. An isometry of H2 has at most two fixed points at infinity, so it

follows that β fixes no leaf of F̃, and acts as a translation on L. We assume, after
reversing the orientation on L if necessary, that β is a positive translation.
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Let p, q be a pair of weakly repelling fixed points of β, and let Π ⊂ M̃ be the

plane which intersects each leaf λ of F̃ in the unique geodesic with endpoints
φλ(p),φλ(q). Then β stabilizes Π, and it covers an immersed annulus A ⊂ M.

Suppose A is not embedded, so that there is some α ∈ π1(M) for which
α(Π) crosses Π transversely; equivalently, so that α(p),α(q) link p, q in S1

univ.
Then the intersection is a properly embedded line

l = Π ∩α(Π)

Since p, q are weakly repelling, the points βnα(p),βnα(q) are uniformly
bounded away from p and q, and link them in the same combinatorial pattern.
Let l− ⊂ l be a properly embedded ray which escapes to infinity in the negative
direction (with respect to the co-orientation on L). Then by the above, the pro-
jection of l− to A stays in a compact region. Now, a noncompact component of
intersection of A with itself must escape to infinity in either direction; it follows
that l covers a compact circle of self-intersection of A. The existence of such a
circle implies that α conjugates some nontrivial power of β to some other non-
trivial power. It turns out in this case thatα and β are commensurable, and are
both contained in some maximal cyclic subgroup of π1(M). Since α was arbi-
trary subject to the constraints thatα(Π) crossesΠ transversely, it follows thatΠ
crosses only finitely many of its translates by π1(M). The method of Construc-
tion 9.24 thereby produces a π1(M)-invariant laminar relation Λ+

univ. Repeating
this construction with weakly attracting fixed points r, s of β in place of p, q, we
obtain another π1(M)-invariant laminar relation Λ−univ.

It follows that in either case we obtain laminar relations Λ±univ. The method
of Chapter 8 lets us construct genuine minimal laminations Λ± of M transverse
to F with solid torus guts. A posteriori we can conclude from this that Λ± are
transverse, and some element of L+ links some element of L−. We summarize
this discussion as a theorem:

Theorem 9.25. (Calegari, Fenley) Let F be an R-covered foliation of an atoroidal
manifold M. Then there are a pair Λ± of genuine minimal laminations in M with the
following properties:

1. Each complementary region to Λ± is a finite sided ideal polygon bundle over S1

2. Each Λ± is transverse to F and intersects leaves of F in geodesic laminations

3. Λ± are transverse to each other, and bind each leaf of F

Historical Remark Theorem 9.25 was obtained independently in [33] and in
[76]. The arguments in both papers were quite similar, and both were strongly
influenced by unpublished work of Thurston. The arguments presented in this
chapter streamline arguments presented in the work cited above.

9.7 Foliations with one-sided branching

Recall that a taut foliation F has one-sided branching if the leaf space L of F̃

branches in at most one direction. By convention, we assume throughout the
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remainder of this chapter that this branching takes place in the negative direc-
tion, i.e. that given any two leaves λ,µ in L, there is some leaf ν in L with ν > λ

and ν > µ.
A taut foliation with one-sided branching is always monotone equivalent to

a minimal taut foliation with one-sided branching. The reason is that comple-
mentary regions to a minimal sublamination always have the form of pockets
of bounded diameter which can be blown down. See Theorem 2.2.7 from [35]
for details.

One can adapt Construction 9.14 to a foliation F with one-sided branching.
Suppose there is some closed embedded interval I ⊂ L with the property that
there is no α ∈ π1(M) for which α(I) is contained in the interior of I. Call such
an interval I incompressible.

Construction 9.26 Suppose F is minimal with one-sided branching, and let L

denote the leaf space of F̃. Let I ⊂ L be an incompressible embedded interval,
and let I+, I− denote the uppermost and lowermost points of I respectively. For
each leaf λ of L, define

p(λ) = sup
α

α(I+)

where the supremum is taken over allα ∈ π1(M) for which λ ∈ α(I).

Since I is incompressible, whenever there areα,β ∈ π1(M) such thatα(I−) <
β(I−) we must also haveα(I+) < β(I+). Now, if λ > µ then since F is minimal,
there isα ∈ π1(M) such that λ > α(I−) > µ. It follows that p(λ) > p(µ) so that
p is strictly monotone.

Now, for any λ, pn(λ) is a monotonically increasing sequence. By hypothe-
sis L branches only in the negative direction, so either pn(λ) increases without
bound, or it limits to some unique µ. In the second case, since F is minimal we
can find some α ∈ π1(M) with µ ∈ α(I). Since pn(λ) → µ from below, there is
some n such that pn(λ) ∈ α(I) (see Lemma 4.45). But in this case, pn+1(λ) > µ,
contrary to the definition of µ. It follows that pn(λ) increases without bound for
any λ.

Construction 9.27 Suppose F is minimal with one-sided branching, and let L

denote the leaf space of F̃. Let I ⊂ L be an incompressible embedded interval,
and let p : L → L be the monotone map from Construction 9.26. Define a new
total order > by

λ > µ if and only if pn(λ) > pn(µ) for sufficiently large n

and define λ ∼ µ if pn(λ) = pn(µ) for some (and therefore all sufficiently large)
n.

Let L∼ denote the quotient space of L by the equivalence relation ∼. Then
L∼ is totally ordered, and the action of π1(M) descends to an order-preserving
action. Moreover, the action of p descends to a fixed-point-free translation of
L∼. After taking the order completion and blowing down gaps if necessary, we
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can assume that L∼ is monotone equivalent to R, and the action of π1(M) is

semi-conjugate into ˜Homeo+(S1), where the central Z subgroup is generated
by p.

If L contains no incompressible interval I, then for any closed I there is an
α ∈ π1(M) such thatα(I) is contained in the interior of I. If J is the intersection
of a nested sequence of translates of I, then there is similarly some β with β(J)
contained in the interior of J. It follows that for any I there is a sequenceαi such
that αi(I) ⊂ αi−1(I) and ∩iαi(I) = λ for some point λ ∈ L. Since F is minimal,
for any other interval J there is β with β(λ) contained in the interior of J.

It follows that we have a dichotomy for the action of π1(M) on the leaf space
L, similar to the dichotomy for R-covered foliations between slitherings and
nonuniform foliations. Exactly one of the following two possibilities occurs:

1. There is an action of π1(M) on S1 and a monotone map L → S1 compati-
ble with the two π1 actions

2. For any two intervals I, J ⊂ L there isα ∈ π1(M) such thatα(I) ⊂ J

It turns out that the first case cannot occur for taut foliations of atoroidal
3-manifolds with one-sided branching; see Theorem 2.3.2 from [35].

9.8 Long markers

Suppose M is atoroidal, and F is taut and minimal with one-sided branching.

Let m ∈ M be a marker for F̃, where we think of m as an embedded interval in
E∞. We know from Chapter 7 that the elements of M are disjoint and dense in
E∞.

For each marker m, let Im ⊂ L denote the image of m under the canoni-
cal projection E∞ → L. Let αi be a sequence of elements of π1(M) such that
αi−1(Im) ⊂ αi(Im) and such that the union ℓ = ∪iαi(Im) is a properly embedded
copy of R in L. The sequence of markers αi ◦m ⊂ E∞ contains a subsequence
which converges on compact subsets to a properly embedded section

m∞ ⊂ E∞

which has the property that the image does not cross the image of any element
of M transversely. By analogy with Definition 9.20, we call m∞ and its translates
long markers.

Let ℓ ⊂ L denote the projection of m∞ to L. Then ℓ is a properly embedded
copy of R in L. Since L has one-sided branching, and F is minimal, for every
λ ∈ L there is α ∈ π1(M) such that λ ∈ α(ℓ). In particular, we can find α with
α(ℓ) 6= ℓ and thereforeα(m∞) 6= m∞.

The argument of Theorem 7.23 generalizes in a straightforward manner to
show that the set of long markers intersects S1

∞
(λ) in a dense set for every λ ∈ L.

Since each long marker is a limit of translates of m, no two can cross each other
transversely. In fact, just as for nonuniform R-covered foliations, any two long
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markers must be disjoint, and for the same reason: for if two long markers co-
alesce on some subcylinder of E∞, then they must trap infinitely many long
markers between them. Then elements of M which converge to these interme-
diate markers must cross elements of M which converge to at least one of the
two extremal markers.

Now, suppose µ > λ. Every long marker which intersects S1
∞

(λ) must also
intersect S1

∞
(µ). Since the set of such long markers is dense in S1

∞
(λ), and since

long markers are disjoint, this defines a circular-order preserving correspon-
dence between a dense subset of S1

∞
(λ) and some subset cµ

λ
⊂ S1

∞
(µ). We can

take a maximal perfect subset of the closure of cµ
λ

to be the core of a unique
monotone map

φ
µ
λ

: S1
∞

(µ)→ S1
∞

(λ)

By construction, these structure maps satisfy a cocycle condition

φ
µ
λφ

ν
µ = φνλ

for any three leaves ν,µ, λ for which

ν ≥ µ ≥ λ

It follows that the circles S1
∞

(λ) and various maps φνµ form a directed sys-

tem, and we may take the universal circle S1
univ and the structure mapsφλ to be

the inverse limit of this system, so that

φ
µ
λ
φµ = φλ

for all µ ≥ λ.
We summarize this as a theorem:

Theorem 9.28 Let M be atoroidal, and let F be a taut foliation of M with one-sided

branching, and let L denote the leaf space of F̃. Then there is a universal circle S1
univ,φλ

and monotone maps φµ
λ

for all pairs of leaves µ, λ ∈ L with µ > λ such that the φµ
λ

form a directed system whose inverse limit is the universal circle and its structure maps.

Compare with Theorem 3.4.1 from [35].
As in Chapter 8, from the branching of L and the axiomatic properties of a

universal circle, we may construct a laminar relationΛ+
univ of S1

univ which deter-

mines a branched lamination Λ̃+
geo of M̃. In fact, in this context, it turns out that

Λ̃+
geo does not branch, and covers (without any splitting) a minimal genuine

lamination Λ+ of M transverse to F with finite sided polygon bundle comple-

mentary regions. Since Λ̃+
geo does not branch, we are justified in dropping the

suffix and relabeling it as Λ̃+.
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9.9 Complementary polygons

We think of Λ+
univ as a geodesic lamination of some H2 bounded by S1

univ. Each

complementary region G̃ to Λ̃+ corresponds to a finite sided ideal polygon P
in this copy of H2. The stabilizer of P is a cyclic subgroup of π1(M), generated

by some α. If G̃ covers a complementary solid torus G in M, then the core of G
represents the conjugacy class ofα in π1(M).

The following is a version of Lemma 4.2.5 from [35], adapted to our current
discussion.

Lemma 9.29 Let α, P be as above. Then after possibly replacing α with some finite
power, the vertices of P are repelling fixed points for α, and there is exactly one fixed
point which is attracting in each complementary interval (in S1

univ) to the vertices of P.

The attracting fixed points ofα make up the vertices of a “dual polygon” P′

to P. By an argument similar to that of the R-covered case, if γ is a boundary
leaf of P′, one can show that no translate of γ by any element of π1(M) can link
itself in S1

univ, and therefore one obtains a “complementary” laminar relation

Λ−univ, and therefore another minimal genuine lamination Λ− of M transverse
to F and to Λ+.

The situtation is therefore analogous to the R-covered case, and one has the
following theorem:

Theorem 9.30. (Calegari) Let F be a taut foliation with one-sided branching of an
atoroidal manifold M. Then there are a pair Λ± of genuine minimal laminations in M
with the following properties:

1. Each complementary region to Λ± is a finite sided ideal polygon bundle over S1

2. Each Λ± is transverse to F and intersects leaves of F in geodesic laminations

3. Λ± are transverse to each other, and bind each leaf of F

See [35], especially Theorem 4.2.7, for details.

9.10 Pseudo-Anosov flows

We have seen whenever F is R-covered or has one-sided branching that either
M is toroidal, or we can construct a pair of very full genuine laminations Λ±

transverse to each other and to F, which intersect each leaf of F in a binding
pair of geodesic laminations.

One may construct a dynamic pair of branched surfaces Bs, Bu which carry
Λ±, and by applying Theorem 6.44 we obtain a pseudo-Anosov flow X trans-
verse to F.

As in Theorem 6.55, the leaf space PX of X̃ can be compactified by adding
a circle, which is the order completion of the set E of ends of leaves of Ls , Lu.
In each of these cases, this circle is naturally isomorphic to the universal circle
S1

univ, and the laminations obtained by splitting open Ls , Lu are isomorphic to

Λ±univ.
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If F is R-covered, the pseudo-Anosov flow X constructed as above is regu-
lating. If F has one-sided branching, X as above is semi-regulating.

We summarize this as a theorem:

Theorem 9.31. (Calegari) Let M be a 3-manifold, and let F be a taut foliation of M
which branches in at most one direction. Then either M is toroidal, or there is a pseudo-
Anosov flow X transverse to F.

If F is R-covered, then X is regulating. If F has one-sided branching, then X is

semi-regulating. Moreover, the leaf space PX of X̃ can be compactified by adding the
universal circle S1

univ for F, and the singular foliations Ls , Lu of PX associated to the
(weak) stable and unstable foliations of X can be split open to a pair of laminations of
PX which determine laminar relations on S1

univ which agree with Λ±univ.

By applying Theorem 6.62, Theorem 6.63 and Theorem 6.65, we deduce the
following:

Corollary 9.32 Let M be a 3-manifold which admits a taut foliation which branches
in at most one direction. Then π1(M) either contains Z ⊕ Z, or is word-hyperbolic.
Moreover, in the latter case, the mapping class group of M is finite, and any self-
homeomorphism homotopic to the identity is isotopic to the identity.
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PEANO CURVES

In this chapter we reconcile (to some extent) the view of a foliated manifold
developed in Chapter 7 and Chapter 8 with the geometry of the underlying
manifold. We are exclusively interested in taut foliations F on hyperbolic 3-
manifolds M, so the emphasis will be on perceiving the relationship between
the data S1

univ,Λ±univ associated to the topology of F and the data S2
∞

associated
to the geometry of M.

In the context of surface bundles, one can develop the theory either on the
topological side (after Nielsen) or on the analytic side (after Bers). For taut fo-
liations, there is as yet no analytic approach to understanding S1

univ and Λ±univ.
Nevertheless, one can try to imagine the form such an analytic approach would
take, and to enumerate some necessary ingredients.

We begin with a brief survey of the standard analytic approach to construct-
ing universal Teichmüller space.

10.1 The Hilbert space H1/2

We think of S1 as the boundary of the unit disk D in C. We consider the vector
space B of smooth complex-valued functions f : S1 → C which can be repre-
sented by Fourier series

f (z) = ∑
n 6=0

anzn

for z = eiθ.
There is a symplectic form on this space defined by

{ f , g} =
∫

S1
f dg

(compare with the definition of the Godbillon–Vey cocycle). In terms of Fourier
series, if f = ∑ anzn and g = ∑ bnzn then

{ f , g} = 2π i ∑ nanb−n

There is also a Hermitian inner product which in terms of Fourier series is given
by

( f , g) = 2π∑ |n|anbn

Let H1/2 denote the completion of B with respect to this inner product. Infor-

mally, H1/2 is the space of functions f for which the 1/2 density d1/2 f on S1 is
square integrable.

316



THE HILBERT SPACE H1/2 317

The symplectic form and the Hermitian inner product together determine

an almost complex structure J : H1/2 → H1/2 by

{ f , Jg} = ( f , g)

In terms of Fourier series,

J( f ) = i ∑ sign(n)anzn

Geometrically, J( f ) is the boundary value of the harmonic conjugate of the har-
monic extension of f to the unit disk D, normalized to have value 0 at the origin.
The operator J is unitary; since J2 = −1, it determines a polarization

H1/2 = H+ + H−

where H± are the ±i eigenspaces of J. Analytically, H+ is the subspace of func-
tions whose harmonic extensions to D are holomorphic, and H− the subspace
of functions whose harmonic extensions are antiholomorphic.

We denote the subspace of H1/2 consisting of real valued functions by H
1/2
R .

In terms of Fourier series, these are the functions for which

a−n = an

Note that the operator J preserves H
1/2
R . Functions in H

1/2
R are exactly the bound-

ary values of real harmonic functions on the unit disk with value 0 at the ori-

gin, and with finite energy. By taking exterior derivative, we may identify H
1/2
R

with the space H(D) of L2 real harmonic 1-forms on the unit disk. Under this
identification, the symplectic pairing corresponds to the usual wedge product
of 1-forms, and the operator J corresponds to the ordinary Hodge star for the
“universal (hyperbolic) Riemann surface” D. See [177] for details.

If h : S1 → S1 is a diffeomorphism, it defines an operator Vh on H1/2 by

Vh f = f ◦ h

This operator preserves the subspace of real functions, and the symplectic form.
We define a new almost complex structure by

Jh = V−1
h JVh

which defines a new Hermitian inner product and a new polarization H±h .

Definition 10.1 A homeomorphism h : S1 → S1 is quasisymmetric if there is a
k ≥ 1 such that

1

k
≤ h(x + t)− h(x)

h(x)− h(x− t)
≤ k

for all x ∈ S1 and all sufficiently small positive t. If k is the infimal value for
which this holds, h is said to be k quasisymmetric.
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Note that h is 1-quasisymmetric if and only if h ∈ PSL(2, R). We denote the
subgroup of all quasisymmetric homeomorphisms of S1 by QS. The following
theorem is implicit in the paper [4]:

Theorem 10.2. (Ahlfors–Beurling) Let h ∈ Homeo+(S1) and let Vh be defined on

a dense subspace of H1/2. The following are equivalent:

1. The operator Vh is bounded

2. The operator V−1
h is bounded

3. h is in QS

10.2 Universal Teichmüller space

The subgroup of h ∈ QS for which Jh = J is exactly equal to the Möbius group
PSL(2, R). This motivates the following definition:

Definition 10.3 The universal Teichmüller space T is defined to be the coset space

T = PSL(2, R)\QS

Geometrically, a homeomorphism h is in QS if and only if it is the boundary
value of a quasiconformal homeomorphism hD : D→ D. This is something that
we now explain. Recall from Chapter 1 that a smooth mapφ between Riemann
surfaces is quasiconformal if the supremum of |φz/φz| is strictly less than one, in
which case the dilatation K is defined by the formula

K− 1

K + 1
= sup

p

∣∣∣∣∣
φz(p)

φz(p)

∣∣∣∣∣

andφ is said to be K quasiconformal.
For a fixed K, the set of K quasiconformal diffeomorphisms of a domain

is equicontinuous, and we say that a homeomorphism is K quasiconformal if
it can be obtained as a limit of a locally uniformly convergent sequence of K
quasiconformal diffeomorphisms.

A quasiconformal homeomorphism between Riemann surfaces lifts to a qua-
siconformal homeomorphism between the universal covers, with the same di-
latation. Thus there is virtually no loss of generality in considering quasiconfor-
mal homeomorphisms from D to itself.

Suppose h : S1 → S1 is quasisymmetric. By composing with an element of
PSL(2, R), we can assume h fixes some point. We identify S1 with R ∪∞, and
assume that h fixes ∞. Then for x + iy in the upper half-plane, define

hD(x + iy) =
1

2

∫ 1

0
(h(x + ty) + h(x− ty))dt + i

∫ 1

0
(h(x + ty)− h(x− ty))dt

hD defined in this way is called the Ahlfors–Beurling extension of h.
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The Ahlfors–Beurling extension is a quasiconformal homeomorphism of the
upper half-plane to itself. Moreover, if h is k quasisymmetric, the dilatation of
hD is bounded by some universal constant K(k), and tends to 1 as k→ 1.

Conversely, any K quasiconformal homeomorphism of D to itself restricts
to a k(K) quasisymmetric homeomorphism of S1, where k(K) → 1 as K → 1.
These facts were first proved by Ahlfors–Beurling. For a proof, see [4] or [149].

Now, given f1, f2 ∈ T, the Teichmüller distance from f1 to f2 is defined by

dT( f1, f2) =
1

2
log K

f1 f−1
2

where Kh is the infimum of the dilatation over all quasiconformal extensions
hD of h ∈ QS. Note that Kh only depends on the image of h in the double coset
space PSL(2, R)\QS/PSL(2, R), so this distance is well-defined.

10.2.1 Beltrami differentials

Let Ω ⊂ CP1 be a domain, and φ : Ω → CP1 be a quasiconformal map. By
definition, the ratio

µ =
φz

φz

is a measurable function on Ω, for which the supremum of its absolute value is

strictly less than 1. The function µ can be extended to CP1 by setting it identi-

cally equal to zero on CP1 −Ω. The function µ is called the (complex) dilatation
of φ, and it measures the extent to which φ deviates from a conformal map.
At a point z where φ is smooth, dφ sends infinitesimal circles centered at z to
infinitesimal ellipses centered at φ(z). The ratio of the major to minor axis of
these ellipses is equal to

1 + |µ(z)|
1− |µ(z)|

Note that it is not the function µ but the differential µ(z) dz
dz which is well-

defined independent of the local holomorphic parameter z. A differential of this
kind satisfying sup |µ(z)| < 1 is known as a Beltrami differential.

Conversely, given a measurable complex-valued function µ on CP1 with
supz |µ(z)| < 1 there is the following realization theorem due to Ahlfors–Bers:

Theorem 10.4. (Ahlfors–Bers, measurable Riemann mapping theorem [3]) Let

Ω ⊂ CP1 be a domain (possibly equal to all of CP1) and let µ be a measurable complex-
valued function in Ω with sup |µ| < 1. Then there is a quasiconformal mapping

φ : Ω→ CP1 satisfying

∂φ = µ∂φ

almost everywhere.
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10.2.2 The Schwarzian derivative

References for the Schwarzian derivative include [149], [233] and [6].
Let Ω be a domain in CP1. The Schwarzian derivative measures the de-

viation of a locally injective holomorphic map f : Ω → CP1 from being the
restriction of an element of PSL(2, C).

For each z ∈ Ω there is a unique element osc( f , z) ∈ PSL(2, C), called an
osculating map, which agrees with f near z up to second order. The composition
osc( f , z)−1 ◦ f agrees with the identity at z up to second order; the third order
term in the power series is (up to a factor of 6) the value of the Schwarzian
derivative S f at z. In co-ordinates,

S f =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

Under a change of co-ordinates by an element g ∈ PSL(2, C), the Schwarzian
transforms by

S( f ◦ g) = (S f ◦ g)(g′)2

In other words, the Schwarzian gives rise to a well-defined quadratic holomor-
phic differential on the underlying complex projective surface associated to the
domain Ω. If Γ < PSL(2, C) acts discretely on Ω, the Schwarzian gives a well-
defined quadratic holomorphic differential on the quotient surface Ω/Γ .

The absolute values of the real and imaginary parts of
√

S f dz integrate to
give a pair of transversely measured singular foliations on Ω. This generalizes
the discussion for compact Riemann surfaces in § 1.10.

10.2.3 The Liouville cocycle

The Schwarzian, the space H
1/2
R , and hyperbolic geometry are related by means

of the so-called Liouville cocycle (see [184]).
If p, q, r, s are a positively ordered quadruple of points in S1, we denote their

cross-ratio by

[p, q, r, s] :=
(p− r)(q− s)

(p− s)(q− r)

There is an integral formula for the cross-ratio

log([p, q, r, s]) =
∫ q

p

∫ s

r

dxdy

4 sin2( 1
2 (x− y))

In particular, for any g ∈ Diffeo+(S1),

log

(
[g(p), g(q), g(r), g(s)]

[p, q, r, s]

)

=
∫ q

p

∫ s

r

(
g′(x)g′(y)

4 sin2( 1
2 (g(x)− g(y)))

− 1

4 sin2( 1
2 (x− y))

)
dxdy
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One is therefore led to study the integral kernel c(g) : S1 × S1 → R defined by

c(g)(x, y) :=
g′(x)g′(y)

4 sin2( 1
2 (g(x)− g(y)))

− 1

4 sin2( 1
2 (x− y))

c(g) is a kind of cocycle, which measures the extent to which g distorts cross-
ratios. It vanishes exactly when g ∈ PSL(2, R), and is related to the more famil-
iar Schwarzian derivative by the limiting formula

S(g)(x) = 6 lim
y→x

c(g)(x, y)

In [177], it is shown that c(g) is an integral kernel for the operator d ◦ (Jg− J)

on H
1/2
R when g is sufficiently smooth. The point is that this operator makes

sense and is well-defined when g ∈ QS is merely quasisymmetric, and can be
thought of as a kind of “quantum Schwarzian derivative”.

The (L1) cocycle c should be compared with the (L2) cocycle s constructed
by Navas in Example 2.105.

See [184] and [177] for more details.

10.3 Spaces of maps

Definition 10.5 A quasicircle is a map φ : S1 → CP1 which extends to a qua-

siconformal homeomorphism Φ : CP1 → CP1. If Φ is K-quasiconformal, φ is
said to be a K quasicircle.

Remark Note that with this definition, a quasicircle comes with a marking.
Note also e.g. by the Ahlfors–Beurling extension that without loss of generality
we can assume that the extension Φ is actually conformal on D.

Let Q denote the set of quasicircles. There are many natural competing topolo-
gies for Q. One obvious parameterization induces a particularly nice topology:

Theorem 10.6. (Topology of Q) The set Q can be naturally parameterized as the total
space of a principal PSL(2, C) bundle over universal Teichmüller space T.

Proof Let Q = φ(S1) and let U± be the two connected components of CP1−Q.
An orientation on S1 determines an orientation on Q, so we can take U+ to be
the component on the positive side of Q. Let ψ± : D± → U± be uniformizing

maps, where D± are the connected components of CP1 − S1. Since Q is locally
connected, (ψ±)−1 extend to maps of the closures of U±, and we can restrict
them to Q. Then (ψ−)−1 ◦ψ+ ∈ QS, and is well-defined up to multiplication by
PSL(2, R), so it determines an element of T. Conversely, two such maps φ1 ,φ2

determine the same element of T if and only if they differ by pre-composition
with an element of PSL(2, R).

By the Ahlfors–Beurling extension theorem and the measurable Riemann
mapping theorem (i.e. Theorem 10.4), every element of QS/PSL(2, R) arises in
this way. 2
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We remark that the space of all embeddings of S1 into S2 is homeomorphic
to a product UTS2 × l2 where l2 denotes the usual Hilbert space of square-
summable sequences of real numbers; see [48].

10.3.1 Welding

We saw in Theorem 10.6 that two copies of the unit disk whose boundaries are
identified by an (orientation reversing) quasisymmetric homeomorphism can

be realized as the complementary regions of a unique quasicircle in CP1 (up
to conjugation by PSL(2, C)), where the quasisymmetry is the difference of the
two uniformizing maps. This operation is called welding.

Example 10.7 Let M be a surface bundle over a circle with fiber S and mon-
odromyφ. Then associated to M there is a geodesic l in Teichmüller space T(S)
stabilized by φ∗. Let p ∈ l be a basepoint. Then for each i there is an (infinite
volume) hyperbolic 3-manifold Mi which simultaneously uniformizes the com-

plex structuresφi(p) on S and and φ−i(p) on S. Here S just denotes S with the
opposite orientation.

That is, there is a quasifuchsian representation

ρi : π1(S)→ PSL(2, C)

with limit set a quasicircleΛi and complementary regions U±i such that the quo-

tient surface U+
i /ρi(π1(S)) represents the pointφi(p) in T(S), and U−i /ρi(π1(S))

represents the point φ−i(p) in T(S).

This representation is obtained by welding as follows: let S̃ be the universal
cover of a fiber of the fibration. By Candel’s uniformization theorem, we can

assume that S̃ with its path metric is isometric to H2 (actually, Candel’s theorem
is trivial to prove in this case, since all the leaves of a fibration are compact).

Taking a quotient by the action of π1(S) on S̃ determines a (marked) hyperbolic
structure on S which we can take to be the basepoint p by suitably choosing
a conformal structure on S before uniformizing. Consider the submanifold Mi

of M̃ bounded byφi(S̃) and φ−i(S̃). The quotient Mi/π1(S) has two boundary

components with the complex structures φi(p) and φ−i(p). The two boundary
components of Mi are isometric to H2; i.e. they are conformally disks, and these
disks can be welded together by the quasisymmetric homeomorphism which

identifies their ideal circles. This welding determines a quasicircle Λi ⊂ CP1

which admits a natural π1(S) action, by uniqueness.
For each i the welding map defines a continuous parameterization

Pi : S1
∞

(S̃)→ Λi

which is compatible with the natural π1(S) actions. The maps Pi diverge in Q

and limit to a “degenerate” map P∞ ∈ ∂Q whose image is a Peano (i.e. sphere-
filling) curve.
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Topologically, the map P∞ is a quotient map, where the equivalence classes

are generated by the laminar relations∼± on S1
∞

(S̃) associated to the stable and
unstable laminations Λ±.

Multiple disks can be welded. Suppose we obtain a topological S2 by gluing
together finitely many disks Di by identifying intervals in their boundaries. If
each Di is conformally isomorphic to the unit disk, and the gluing maps are qua-
sisymmetric on their domain of definition, the resulting S2 can be uniformized
compatibly with the symmetric structures on the boundary of each Di. Start
with an initial piece D1 which cobounds an interval with D2. Build a quasicon-
formal homeomorphism of D2 to the upper half-plane which gives the correct
boundary behavior along ∂D1 ∩ ∂D2 using the Ahlfors–Beurling extension, and
glue along the strip so obtained. At each stage, uniformize the union of the disks
that have been glued by using Theorem 10.4.

If we try to glue together infinitely many disks, we need to be careful that
this process converges, and that the limiting map is a homeomorphism (and
does not collapse some subsurface of S2 to a point).

10.3.2 Completions of QS and Q

If we try to generalize Example 10.7 to taut foliations, we run into many prob-
lems. Consider the case that F is an R-covered foliation. Let λ < µ be two leaves
of F̃ which cobound a subset Mµ

λ
⊂ M̃. Since E∞ is a cylinder in this case, there

is a natural homeomorphism between S1
∞

(λ) and S1
∞

(µ); however, this home-
omorphism is not typically quasisymmetric.

Remark If F arises from a slithering, the gluing homeomorphism is quasisym-
metric, and the welding problem can be solved. As we take limits λ → −∞ and
µ → ∞ in L = R, one would like to know that the sequence of uniformizing
maps defined by welding converge, and produce a hyperbolic structure on M
in the limit.

More generally, if F branches, let K be a compact subset of L, and define a

submanifold MK ⊂ M̃ consisting of the leaves of F̃ in K. Let µi be the bound-
ary leaves of MK for which the co-orientation on the µi points out of MK, and
λi the boundary leaves for which the co-orientation points into MK. We can
build a topological sphere S2

K as follows. Start with S1
univ, and let T ⊂ S1

univ
be the closure of the union of core(λ) as λ ranges over K. First take a quotient
S1

univ → S1
univ/∼ which collapses complementary gaps to T. Then attach S1

univ

to S1
∞

(µi) or S1
∞

(λi) by the monotone mapsφµi
or φλi

, and use these attaching
maps to glue on the leaves µi , λi; note that these attaching maps factor through
the quotient map S1

univ → S1
univ/ ∼. In this case, the attaching maps are not

even local homeomorphisms, and it seems like a very difficult analytic problem
to perform welding in this context.

Just at the topological level, the quotient space obtained from the disjoint
union
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S1
univ ∪i µi ∪i λi

by this procedure might not be a sphere. Fortunately, necessary and sufficient
conditions are known by work of R. L. Moore; we will discuss this in § 10.5.

Ideally, we would like to be able to find a suitable completion of QS in the
space of monotone maps from S1 to itself, for which the welding problem can

be solved analytically. Then one could try to uniformize M̃ by uniformizing the
spheres S2

Ki
for a suitable increasing union Ki ⊂ L which exhaust L. In the limit,

one hopes that we obtain a natural map P∞ : S1
univ → CP1 which is unique up

to composition with PSL(2, C), and depends only on the geometry of M̃. Since

π1(M) acts on M̃ by isometries, we get an induced representation of π1(M) into
PSL(2, C) which should define the hyperbolic structure on M.

Obtaining a limiting map P∞ might depend on basepoints: if M is torus-
reducible, a lift of this torus determines a common leaf in Λ+

univ ∩Λ−univ whose

union is the core circle in S2
Ki

of an annulus with definite modulus, independent

of i. As i → ∞, either the torus and everything on one side of it pinches off
to a point and what is left should uniformize a hyperbolic piece of M, or else
one should obtain a quasifuchsian surface group coming from a Seifert-fibered
piece of M.

Completing QS is very similar to completing Q. How do families of quasi-
circles degenerate? One major problem is the sheer abundance of topologies in
which one might like to take limits. For example:

1. The subspace topology of the space of all continuous maps from S1 to S2

with the compact-open topology

2. The induced path topology from the subspace topology (the difference
with the previous topology is detected by “bumping” on the frontier)

3. The Banach topology with the L∞ norm on the space of Schwarzian deriva-
tives of uniformizing maps, thought of as quadratic holomorphic differ-
entials in the disk

The last topology is frequently studied in classical Teichmüller theory. A
point in T determines a Schwarzian S f for which the associated conformal
map is univalent in the upper half-plane. If U denotes the space of all univa-
lent Schwarzians, then U is closed. Gehring [99] showed that T is equal to the
interior of U; however, the closure of T is not equal to all of U, and in fact U

contains many isolated points.

Example 10.8. (Incorrigible arcs) A quasiarc α ⊂ C is incorrigible if the Haus-
dorff limits ofα under elements of PSL(2, C) do not contain any circles. In [233],

Thurston shows that the uniformizing map for CP1 −α is isolated in U when-
everα is incorrigible.

For quasicircles with big symmetry groups, things are much better. Given
a surface of finite type S, one can consider hyperbolic structures on S of finite
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area, and π1(S)-equivariant quasicircles and Schwarzians with respect to dis-
crete faithful representations of π1(S) into PSL(2, C). The corresponding subset
of T is just the ordinary Teichmüller space T(S) and the corresponding subset
of U is closed and is denoted U(S). In this case, one has the following:

Theorem 10.9. (Bromberg, density theorem [27]) Let S be a surface of finite type.
Then the closure of T(S) is equal to all of U(S).

The case of taut foliations is somewhat intermediate between a surface of
finite type and a disk. No good Teichmüller theory exists for a taut foliation
with just the right level of generality to be useful.

Example 10.10. (Makarov) One can try to understand QS by studying the clo-
sure of the set of operators Vh in a suitable operator topology. The Vh have an
important additional property besides boundedness: they are compatible with

the algebraic structure on H1/2 which comes from pointwise addition and multi-
plication of functions, and this property is preserved by operators V which are
reasonable limits of Vh. If V is a bounded operator with this property, one can

try to find the biggest subspace of H1/2 on which V is invertible; typically this
might consist of the set of functions whose values are constant on the equiv-
alence classes of an equivalence relation on S1. One is led to expect from our
geometric picture that these equivalence relations are, or are generated by, lam-
inar relations. This algebraic perspective is due to N. Makarov.

There is another route to uniformization which requires more topological
input, and gives less information, but for which one can actually point to some
positive results. Given S1

univ and Λ±univ one can let P∞ be the map which takes

S1
univ to the quotient space generated by the laminar relations associated to

Λ±univ, and show under suitable circumstances that the result is a topological

sphere S2
univ. If one knows enough about the topological action of π1(M) on

S1
univ, one can deduce information about the topological action of π1(M) on

S2
univ; in the best case, one can show that this action is a convergence action.

This is a significant intermediate step towards the ultimate goal of being able
to directly perceive the hyperbolic geometry of M in the topology and leafwise
geometry of F.

In § 10.9 we will discuss a theorem of Fenley which produces the desired
map P∞ in the presence of a suitable pseudo-Anosov flow. However, there are
many technical obstacles to realizing this picture in the general case, and our
knowledge is incomplete.

In the next section our aims are quite modest. We describe some natural
ways in which families in Q can degenerate in such a way as to give rise to
data in the form of laminations. Any eventual theory of welding in a suitable
completion of QS should take account of and incorporate these examples.
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10.4 Constructions and Examples

With respect to any reasonable topology, the space Q is path-connected, and
even contractible. Given one such topology, one can try to define a suitable
path completion. We can try to partially compactify Q by adding a boundary ∂Q

which contains a point for every properly embedded ray in Q satisfying certain
properties, quotiented by an equivalence relation generated by suitable proper
homotopies between rays. Each such ray or homotopy of rays should at least
converge at infinity in the compact-open topology to a single map S1 → S2, but
many such maps might have an uncountable preimage in ∂Q.

Since the compact-open topology has the fewest open sets, the compactifi-
cation of Q it defines is smallest, and contains the least information.

10.4.1 Pinching laminations

Let f : S1 → S2 be some continuous map, and suppose ft : S1 → S2 is a
continuous family of maps which are embeddings for t < 1, and such that
f1 = f . For each point r ∈ f (S1) let Sr = f−1(r). We would like to produce a
pair of laminar relations ∼± on S1 such that the equivalence classes generated
by the union of the ∼± are exactly the sets Sr.

Construction 10.11 Let p, q ∈ Sr. Then p ∼+ q if there is a 1-parameter family
of maps gt : I → S2 with the following properties:

1. gt(0) = ft(p) and gt(1) = ft(q)
2. gt(s) is disjoint from ft(S1) and on the positive side for s ∈ (0, 1) and

t < 1

3. The diameter of gt(I) goes to 0 as t→ 1, in the spherical metric

If p ∼+ q and gt : I → S2 is a family satisfying the properties of Construc-
tion 10.11, we say that gt joins p to q with respect to ft. Or, if ft is understood,
we just say that gt joins p to q.

Lemma 10.12 The relations ∼± as defined in Construction 10.11 are equivalence re-
lations.

Proof The definition of p ∼± q is symmetric in p and q. If p ∼+ q and q ∼+ r
then there are families gt : I → S2 and ht : I → S2 satisfying the properties of
Construction 10.11. The concatenation of gt with ht can be perturbed off q to be
properly embedded in the complement of ft(S1). This shows that p ∼ r, and
we have verified that ∼+ (and likewise ∼−) is an equivalence relation. 2

Lemma 10.13 Let r, s ∈ f (S1) be distinct and let p1 ∼+ q1 in Sr, p2 ∼+ q2 in Ss.
Then p1, q1 do not link p2, q2.

Proof Let gt join p1 to q1 and ht join p2 to q2. If p1, q1 links p2, q2 then gt(I) and
ht(I) intersect, since they are both on the same side of ft(S1). But the spherical
diameters of both gt(I) and ht(I) go to 0 as t→ 1. It follows that

r = f (p1) = f (p2) = s

contrary to hypothesis. 2
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It follows from this lemma that ∼± determine laminar relations of S1, by
taking the closure of the equivalence classes in each Sr. Dependence of the re-
sulting laminations on the path ft defines a topology on a suitable partial com-
pactification on Q. Under what conditions on ft are these equivalence classes
equal to the sets Sr?

10.4.2 Pleating laminations

If Γ is a Jordan curve, the convex hull C(Γ) ⊂ H3 is bounded by a pair of pleated
surfaces S±(Γ).

Pleated surfaces are introduced in [230]. In full generality, a pleated surface
is a map of a hyperbolic surface to a hyperbolic 3-manifold

f : P→ M

such that f sends each rectifiable arc in P to a rectifiable arc in M of the same
length, and such that there is a geodesic lamination Λ in P (called the pleating
locus) such that f sends each leaf of Λ to a geodesic in M, and is totally geodesic
on the complement P−Λ.

FIG. 10.1. The boundary of the convex hull of a subset of S2
∞

is a pleated sur-
face

The convex hull C(Γ) is just the intersection of all the geodesic half-spaces in
H3 whose closures contain Γ . The boundary of a half-space is a totally geodesic
H2 which limits on a round circle in S2

∞
. Therefore we may obtain C(Γ) by con-
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sidering the union of all the round circles which can be inscribed on either side
of Γ ; see Fig. 10.1.

The boundary ∂C(Γ) consists of two pleated surfaces P±(Γ) which are the
envelope of the family of boundaries of half-spaces which contain Γ . When Λ is
discrete, the leaves of the pleating locus correspond to pairs of points p, q ∈ Γ
for which there is an inscribed round circle in S2

∞
which touches Γ only at p and

q, and the totally geodesic regions in P± correspond to the round circles which
lie on one (fixed) side of Γ and touch it in at least 3 points.

Notice that the convex hull and the pleated surfaces P± make sense for any

embedding f : S1 → CP1. The pleating locus actually gets the structure of a
measured lamination where the measure comes from the angle through which
the osculating planes must rotate in order to cross a family of leaves.

In this way, an embedding f : S1 → CP1 determines a pair of locally finite
transversely measured laminations on S1. A family of maps ft ∈ Q degenerating
as t→ 1 might determine a limit lamination in a number of ways:

1. As a projectively measured lamination in PML(S1)

2. As a lamination with a measure class of transverse measure, by taking
convergence in PML(S1) on compact subsets of the space of pairs of un-
ordered distinct points

3. In the Hausdorff topology in L(S1) on the support of the underlying lam-
inations

The three partial compactifications of Q these define are progressively coarser;
correspondingly the existence of a limit is progressively easier to establish.

10.4.3 Examples

Example 10.14. (Hilbert’s curve) In [130] David Hilbert defined a famous ex-
ample of a space-filling curve h : S1 → S where S is the unit square, as a limit
of a sequence of embeddings hn.

FIG. 10.2. An approximation to Hilbert’s square-filling circle
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The image of hn is made of 4n straight segments, each of length 2−n, and
the limiting map is Hölder continuous, of exponent 1/2. Note that a curve with
Hölder exponent bigger that 1/2 cannot be sphere-filling.

An approximation to h is illustrated in Fig. 10.2. The curve h is defined recur-
sively, where each hn is obtained from hn−1 by a finite subdivision rule. Away
from the boundary of the square, the geometry of h is “self-similar”, and motifs
which occur will recur on every scale.

The pinching laminations which give rise to h are illustrated in Fig. 10.3.

FIG. 10.3. The two laminations associated to Hilbert’s map h. The lamination
on the left parameterizes coincidences of h on the inside, and the lamina-
tion on the right parameterizes coincidences of h on the outside. Notice the
lamination on the right has an infinite area complementary region, corre-
sponding to the outside of the square.

Example 10.15. (Julia set) Let c ∈ C be a point in the boundary of the Mandel-
brot set. Let Jc be the Julia set (i.e. the closure of the set of repelling periodic
orbits) of the corresponding quadratic map qc : z → z2 + c. By the definition of
the Mandelbrot set, Jc is connected.

Suppose further that Jc is locally connected. Then Jc is a quotient of S1 by a
laminar relation Λ(θ) defined as follows.

Construction 10.16 Think of S1 as R/2πZ and let θ ∈ S1. Define Λ0(θ) to con-
sist of a single leaf l with endpoints θ and θ+ π . Suppose that we have defined
Λi(θ). Then we defineΛi+1(θ) inductively as follows. Let d be the degree 2 map

d : φ→ 2φ mod 2πZ
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Let m be a leaf of Λi(θ) with endpoints p, q. Then p has two preimages p± under
d, and similarly q has two preimages q±. The leaf l separates p+ from p− and
separates q+ from q−, so there is exactly one preimage of p and one preimage
of q on either side of l. Join these up to make two new leaves m±. Do this for
every leaf of Λi(θ); the union, together with the initial leaf l, is Λi+1(θ).

Finally, define Λ(θ) to be the closure of the increasing union

Λ(θ) =
⋃

i

Λi(θ)

FIG. 10.4. The Julia set of z → z2 + i. Note that this set is a dendrite — i.e. it is
simply connected with empty interior

Suppose there are two leaves m1 and m2 of Λi(θ) which cross. By construc-
tion, neither of m1 nor m2 crosses l, so they are contained on one side of l. It
follows that their images d(m1) and d(m2) also cross. But these are leaves of
Λi−1(θ). It follows by induction that no two leaves of any Λi(θ) can cross, and
thereforeΛ(θ) is a lamination. Notice thatΛ(θ) is invariant under the doubling
map d.

The relationship with Jc is as follows: for c a parameter on the boundary of
the Mandelbrot set, the critical point 0 of qc : z → z2 + c is contained in Jc. Let
B denote the attractive basin of ∞ — i.e. those points z ∈ C ∪∞ for which the
sequence qn

c (z) diverges. Since Jc is connected, B is homeomorphic to an open
disk. Uniformize the basin B by the open unit disk

u : D→ B
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so that the boundary circle maps onto Jc

u : D ∪ S1 → B∪ Jc

Here we use the local connectivity of Jc to know that the uniformizing map
extends continuously to the closure D ∪ S1.

The restriction of qc to B is conformally conjugate to the map z → z2 on
D which restricts to the doubling map d on the boundary circle. On the other
hand, the critical value c = qc(0) has only one preimage in Jc, so the two points
in S1 corresponding to the preimage under the doubling map must be mapped
to the same point by u. The initial leaf l corresponds to the two points on S1

which map by u to the critical point 0.

FIG. 10.5. The lamination Λ(θ), with external angle θ = π
6 corresponding to

the Julia set Ji. Note that complementary regions are all ideal triangles.

In the case qi : z→ z2 + i the critical point 0 has itinerary

0→ i→ −1 + i→ −i→ −1 + i→ −1→ · · ·
which is pre-periodic with period 2. The doubling map d on S1 has two periodic

points with period 2, which are 2π
3 and 4π

3 . So we have a correspondence via u:

−1 + i→ 2π

3
, −i → 4π

3
, i→ π

3
, 0→ π

6

A similar calculation lets one determine the angle corresponding to Jc when-
ever 0 is pre-periodic. Such post-critically finite quadratic maps are very impor-
tant in the Thurston theory of rational dynamics.
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See [10], [231] for more details.

10.5 Moore’s theorem

If we are not yet in a position to understand universal circles analytically, at least
we can understand them topologically, using tools developed by R. L. Moore in
the 1920’s.

Recall the definition of an upper semicontinuous decomposition of a Haus-
dorff space from Definition 2.5 as one for which the graph of the decomposition
elements is closed in the product. This definition can be further refined:

Definition 10.17 A decomposition G of a 2-manifold without boundary S is cel-
lular provided G is upper semicontinuous, and provided each ζ ∈ G is compact
and has a nonseparating embedding in R2.

The following theorem was proved by Moore in [170]:

Theorem 10.18. (Moore) Let G be a cellular decomposition of S which is either S2 or
R2. Then the quotient map π : S→ S/G can be approximated by homeomorphisms. In
particular, S and S/G are homeomorphic.

Moore proves his theorem by appealing to an earlier characterization [169]
of the plane and the sphere in terms of separation properties of the continua
they contain.

A subsequent characterization due to Zippin [255] is more easily stated:

Theorem 10.19. (Zippin) A Peano continuum C which satisfies the following three
conditions is a 2-sphere:

1. C contains at least one 1-sphere

2. Every 1-sphere of C separates C

3. No arc which lies on a 1-sphere of C separates C

Here a Peano continuum is a compact, connected, and locally connected met-
ric space. See [248] for further characterizations and a discussion.

Moore’s theorem lets us analyze the degeneration associated to points in ∂Q

in a systematic way at the topological level.

10.6 Quasigeodesic flows

Complementary to Theorem 10.18, under the right circumstances one can re-
cover the decomposition G (or at least something resembling it) from the dy-
namics of π1(M) on a suitable space.

Throughout the next few sections we study properties of quasigeodesic flows
on hyperbolic 3-manifolds. By convention, we assume our flows are oriented
and co-oriented.



QUASIGEODESIC FLOWS 333

A flow X on a hyperbolic 3-manifold M is quasigeodesic if the flowlines of X̃

are quasigeodesics; i.e. for each flowline l of X̃ there is k ≥ 1 such that for all
points p, q ∈ l we have an estimate

dl(p, q) ≤ kd
M̃

(p, q) + k

Remark For the sake of notational convenience, we have absorbed the two
constants k,ǫ from Definition 1.17 into a single constant k.

A priori, the constant k is allowed to depend on l. A quasigeodesic flow is
said to be uniformly quasigeodesic if k as above can be chosen independently
of the flowline. For M closed and hyperbolic, all quasigeodesic flows are uni-
formly quasigeodesic:

Lemma 10.20 Let M be a closed hyperbolic 3-manifold. Let X be a quasigeodesic flow.
Then X is uniformly quasigeodesic.

Proof We suppose not, and derive a contradiction. By hypothesis, for each i

there is a flowline li of X̃ which is not 2i-quasigeodesic. By Lemma 1.26 there is
some subarc li

i of length at most c(i) which is not 2i−1-quasigeodesic. By another

application of Lemma 1.26, there is a subarc li−1
i ⊂ li

i of length at most c(i− 1)

which is not 2i−2-quasigeodesic. By induction, we obtain a sequence of nested
arcs

l1
i ⊂ l2

i ⊂ · · · ⊂ li
i

where l
j
i has length at most c( j), and is not 2 j−1-quasigeodesic. Let pi be the

midpoint of l1
i , and let αi ∈ π1(M) be a sequence of elements for which αi(pi)

converges to a point p∞ on a flowline l∞. Since the flowlinesαi(li) converge on

compact subsets, and since the length of the subarcs l
j
i for fixed j are bounded

independent of i, it follows thatαi(l
j
i ) converges for each j to some subarc l

j
∞ ⊂

l∞ which is not 2 j−1-quasigeodesic.
Since this is true for each j, the limit l∞ is not quasigeodesic at all, contrary

to hypothesis. This contradiction proves the lemma. 2

Corollary 10.21 Let X be a quasigeodesic flow on a closed hyperbolic 3-manifold M.

Then leaves of X̃ are uniformly properly embedded in M̃, and X is product covered; i.e.

the leaf space PX of X̃ is homeomorphic to a plane.

Proof Uniformity follows from Lemma 10.20, and the Hausdorffness of the

leaf space of X̃ follows from Lemma 4.48. Since M is hyperbolic, M̃ is homeo-
morphic to R3, and therefore PX is homeomorphic to a plane. 2

We let
ρhol : π1(M)→ Homeo+(PX)

denote the holonomy homomorphism, and let πX : M̃ → PX denote the quo-

tient map from M̃ to the leaf space of X̃.
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10.7 Endpoint maps and equivalence relations

We define natural endpoint maps:

Construction 10.22 Let X be a quasigeodesic flow on a hyperbolic 3-manifold

M. Let PX denote the leaf space of X̃. Each p ∈ PX corresponds to a quasi-

geodesic flowline lp ⊂ M̃ which limits to two distinct endpoints in S2
∞

. We de-
fine e+(p) and e−(p) to be the positive and negative endpoints of the oriented
quasigeodesic lp in S2

∞
, and thereby define maps

e± : PX → S2
∞

Lemma 10.23 The maps e± are continuous, and for all p ∈ PX and α ∈ π1(M) we
have

e+(ρhol(α)(p)) = α(e+(p))

and similarly for e−.

Proof If l is a complete k-quasigeodesic in H3, then by Lemma 1.24 there is
a constant C depending only on k such that the geodesic lg with the same
endpoints is contained in the k-neighborhood of l, and vice versa. So if li is

a sequence of flowlines of X̃ which converges on compact subsets to l, then
the straightened geodesics (li)g eventually contain arbitrarily long segments
which are contained in the 2C neighborhood of lg. If (li)g, lg are two hyperbolic

geodesics which are 2C-close on a segment of length t, then they are ∼ 2Ce−t

close on an interior subsegment of length t/2. It follows that the (li)g converge
to lg uniformly on compact subsets, and therefore e± are continuous.

The π1(M)-equivariance of e± is clear from the definition. 2

The maps e± are degenerate in the following very strong sense:

Lemma 10.24 Let γ ⊂ PX be an embedded circle, and let D ⊂ PX be the region
enclosed by γ. Then there is an equality of images

e+(γ) = e+(D)

and similarly for e−.

Proof For concreteness, we concentrate on the map e+. Suppose to the contrary

that there is some p ∈ e+(D) which is not in the image of e+(γ). Letσ : D→ M̃
be a section of πX; i.e. we suppose that

πX ◦σ : D → D

is the identity map.

Let S ⊂ M̃ be the union of σ(D) together with the positive rays contained

in flowlines of X̃ which emanate from points on σ(γ). Then S is a properly

embedded disk in M̃ which limits on e+(γ) ⊂ S2
∞

.
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We orient S so that the positive side of S contains positive rays emanating
from the interior of σ(D). Then if q ∈ e+(D) but not in e−(γ), any sequence

qi ∈ M̃ limiting to q ∈ S2
∞

is eventually contained on the positive side of S.
Now, e−(PX) is a nonempty π1(M)-equivariant subset of S2

∞
, and is there-

fore dense. So we can find some flowline l of X̃ with e−(l) arbitrarily close to p.
It follows that the negative end of l is contained on the positive side of S. But by
the definition of S, the negative end of every flowline is eventually contained
on the negative side of S; this contradiction proves the lemma. 2

Corollary 10.25 For every point p ∈ S2
∞

in the image of e+, every connected compo-
nent of (e+)−1(p) is noncompact, and similarly for e−.

Proof We suppose not, and derive a contradiction. For the sake of notation, let
L = (e+)−1(p). Since e+ is continuous, point preimages are closed, and there-
fore by supposition, there is some compact component K ⊂ L. If L is compact,
then L can be included into the interior of a compact disk D ⊂ PX whose bound-
ary separates L from infinity. Otherwise, L is unbounded, and there is an em-
bedded loop γ ⊂ PX − L which separates K from some other component K′ of
L, and we define D to be the region bounded by γ. In either case, the existence
of such a D contradicts Lemma 10.24, and we are done. 2

We define equivalence relations ∼± on PX as follows.

Construction 10.26 Let e± : PX → S2
∞

be the endpoint maps constructed in
Construction 10.22. Define equivalence relations ∼± on PX whose equivalence
classes are the connected components of the point preimages of e±.

Equivalence classes of ∼+ and ∼− have good mutual separation properties:

Lemma 10.27 Let k+, k− be equivalence classes of∼± respectively. Then the intersec-
tion k+ ∩ k− is compact.

Proof The set k+ ∩ k− is closed. Moreover, every such flowline is asymptotic
to e+(k+) in positive time, and e−(k−) in negative time. Since X is uniformly
quasigeodesic, there is a single geodesic lg and a constant C such that every
flowline l′ ∈ k+ ∩ k− is contained in the C-neighborhood of lg. The set of such
flowlines is compact. 2

Using this data, we can construct some auxiliary sets E±, which parameter-
ize the relations ∼± “at infinity”.

Construction 10.28 For each equivalence class k of ∼±, define Ek to be the set
of ends of k, thought of as a closed subset of PX.

We may define ends of k very concretely as follows. A sequence (ri) of prop-
erly embedded rays ri ⊂ PX limits to an end of k if for every simply-connected
open set U containing k, there is a positive integer N such that for all i, j ≥ N,
the rays ri and r j are contained in, and are properly homotopic in U. We write

(ri) ∼ (r′i) if the alternating sequence r1 , r′1, r2, r′2, . . . limits to an end of k. We
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can then define Ek to be the set of equivalence classes of sequences of properly
embedded rays which limit to an end of k.

We define
E+ =

⋃

k

Ek

where the union is taken over all equivalence classes k of ∼+, and define E−

similarly.

Lemma 10.29 The union E+ ∪ E− admits a natural π1(M)-invariant circular order-
ing.

Proof Let e1 , e2, e3 be three ends, and let (ri)
1, (ri)

2, (ri)
3 be three sequences of

properly embedded rays in PX associated to these ends as in Construction 10.28.
By Lemma 10.27, for sufficiently large N, we may assume that r1

i ∩ r2
j is compact

whenever i, j ≥ N, and moreover that there is a proper homotopy from r2
j to r2

k

whose image intersects r1
i in a compact subset, and similarly for other pairs of

superscripts. It follows that for sufficiently large i, the ends of the rays r1
i , r2

i , r3
i

are disjoint, and thereby inherit a circular ordering from the orientation of the
plane by Lemma 6.54. Moreover, this circular ordering does not depend on the
choice of i, or on the equivalence classes of sequences of rays representing the
e j.

By construction, this circular ordering is π1(M)-invariant. 2

By taking the closure of E+ ∪ E− in the order topology and blowing down
gaps, we obtain a universal circle S1

univ and an action

ρuniv : π1(M)→ Homeo+(S1
univ)

The disk is characterized in terms of separation properties by Zippin [256]:

Theorem 10.30. (Zippin) A Peano continuum C containing a 1-sphere J and satis-
fying the following three conditions is a closed 2-cell with boundary J:

1. C contains an arc that spans J

2. Every arc of C that spans J separates C

3. No closed proper subset of an arc spanning J separates C

Using this characterization and the definition of S1
univ, one can verify the

following theorem:

Theorem 10.31 Let X be a quasigeodesic flow on a hyperbolic 3-manifold M. Then
there is a universal circle S1

univ with a π1(M) action which compactifies PX, so that

DX := PX ∪ S1
univ is a closed disk with a continuous faithful π1(M) action.

It follows as in Chapter 2 that π1(M) is CO. We obtain analogues of Corol-
lary 6.56 and Corollary 6.57 for quasigeodesic flows:

Corollary 10.32 The Weeks manifold does not admit a quasigeodesic flow.
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Corollary 10.33 Let M be a closed hyperbolic 3-manifold, and let X be a quasigeodesic
flow. Then the Euler class eX ∈ H2(M; Z) of the flow is contained in the unit ball of
the dual Thurston norm.

10.8 Construction of laminations

We continue our analysis of quasigeodesic flows, and the action of π1(M) on
the associated universal circle..

Further study of the separation properties of the equivalence relations ∼±
on PX lets us construct natural laminations of S1

univ.

Lemma 10.34 Some equivalence class k of ∼+ is separating in PX.

Proof Note that an equivalence class is separating if and only if it has more
than one end. Since every equivalence class is noncompact, it has at least one
end. Therefore this lemma holds unless every equivalence class has exactly one
end. In the latter case, we can define a retraction r : DX → S1

univ by sending
every equivalence class k to the unique end in Ek, and then composing with the
natural inclusion and projection maps

Ek → E+ ∪ E− → E+ ∪ E− → S1
univ

Such a retraction contradicts the contractibility of the closed disk; the lemma
follows. 2

We now define a pair of laminations:

Construction 10.35 For each equivalence class k of∼+, letΛk be the lamination
spanned by the set of ends of k. That is, we apply Construction 2.8 to the image
of Ek under the natural map

Ek → S1
univ

Then define
Λ+

univ =
⋃

k

Λk

where the union is taken over all equivalence classes k of ∼+, and define Λ−univ
similarly.

By Lemma 10.34, the laminations Λ±univ are nonempty. By the naturality of
the construction, they are π1(M)-invariant.

We summarize this as a theorem:

Theorem 10.36 Let M be a closed oriented hyperbolic 3-manifold with a quasigeodesic
flow X. Then the universal circle S1

univ admits a pair of nonempty laminations Λ±univ
which are preserved by the natural action of π1(M).

By considering the action of π1(M) on the dual order tree to either Λ±univ, we
obtain the following corollary:

Corollary 10.37 Let M be a closed oriented hyperbolic 3-manifold with a quasigeodesic
flow X. Then π1(M) acts faithfully on an order tree without a global fixed point.
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10.9 Quasigeodesic pseudo-Anosov flows

In the last few sections and earlier in § 6.8, we showed how to obtain a “dynam-
ical package” consisting of a universal circle and a pair of laminations together
with a π1(M)-action from a flow which is assumed to be either pseudo-Anosov
or quasigeodesic.

If a flow satisfies both properties one may develop this structure further. The
main reference for what follows is the paper [78] by Fenley.

Fenley’s main theorem concerns the interaction of quasigeodesic pseudo-
Anosov flows with taut foliations.

Definition 10.38 Let F be a taut foliation of a closed hyperbolic 3-manifold M.

Then F has the continuous extension property if for every leaf λ of F̃, the embed-

ding λ → M̃ extends to a continuous map

λ ∪ S1
∞

(λ)→ M̃ ∪ S2
∞

(M̃)

Example 10.39 If M fibers over S1, the continuous extension property for the
leaves of the fibration follows from Theorem 1.80 due to Cannon–Thurston [44].

Example 10.40 LetΛ be an essential lamination of a closed hyperbolic 3-manifold

M. Then there is a uniform ǫ > 0 such that every leaf λ of Λ̃ is embedded in its
ǫ-neighborhood, by Lemma 7.16. Denote this ǫ-neighborhood by Nǫ(λ). Since

M is compact, leaves of Λ̃ have uniformly bounded geometry. It follows that
the area of subsets of λ can be approximated up to a uniform constant by the
volume of corresponding subsets in Nǫ(λ).

Since M is a hyperbolic 3-manifold, we have an estimate

volume(BR(p)) = O(e2R)

We let π : M̃ − p → S2 denote projection from p onto the visual sphere,

thought of as the unit sphere to M̃ at p. For a point q ∈ M̃ with d(p, q) = t the
norm of dπ satisfies

|dπ(q)| = O(e−t)

Let B be the ball of radius 1 about p. Since Nǫ(λ) is embedded in H3 we can
estimate ∫

Nǫ(λ)−B
|dπ(x)|αdvol ≤

∫

H3−B
|dπ(x)|αdvol < ∞

for anyα > 2.
Re-writing in spherical co-ordinates and applying Fubini’s theorem, we can

conclude that for almost every (intrinsically) geodesic ray γ ⊂ λ emanating
from p, ∫

∞

1

∣∣∣∣
dπ(γ(t))

dt

∣∣∣∣
α

e
√

Ktdt < ∞

for any α > 2, where K is chosen so that the area of λ grows like eKt (such a K
exists by Theorem 7.10).
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By Hölder’s inequality, dπ(γ(t))/dt is in L1, and therefore the projection
π(γ(t)) has a well-defined limit in the visual sphere for almost every γ. This
limit defines a measurable extension from S1

∞
(λ) → S2

∞
. See [34] for details, or

see [206] for similar considerations when Λ is a closed surface.

Theorem 10.41. (Fenley, continuous extension theorem) Let F be a taut foliation
in a closed hyperbolic 3-manifold M. Suppose that F is almost transverse to a quasi-
geodesic pseudo-Anosov flow X which is not Anosov. Then F has the continuous exten-
sion property.

For a foliation F which satisfies the continuous extension property, we may
identify the image of S1

∞
(λ) with the closure of λ in S2

∞
. For the sake of brevity,

we denote this image by λ∞.
The sets λ∞ have properties which reflect the topology of F.

Example 10.42 Suppose F is R-covered. Then for every leaf λ of F̃, we have
λ∞ = S2

∞
.

To see this, we argue by contradiction. Suppose some λ∞ omits some point
p ∈ S2

∞
, and therefore an open disk U containing p. Let U′ and U′′ be two

open disks in S2
∞

whose closures are disjoint and contained in U. Since M has
finite volume, there are elements α,β ∈ π1(M) such that α(S2

∞
−U) ⊂ U′ and

β(S2
∞
−U) ⊂ U′′. Let λ′ = α(λ) and λ′′ = β(λ). Since the leaf space of F̃ is R,

after relabeling the leaves if necessary, we can assume λ separates λ′ from λ′′ in

M̃. However, by construction, there is an arc γ in S2
∞

joining λ′
∞

to λ′′
∞

which

avoids λ∞. The arc γ is a Hausdorff limit (in M̃ ∪ S2
∞

) of arcs γi ⊂ M̃ running
between λ′ and λ′′. Each γi must intersect λ in some point qi, and by extracting
a subsequence, we find qi → q ∈ γ. But by construction, q ∈ λ∞, giving us a
contradiction.

Example 10.43 Suppose F has one-sided branching. Then for every leaf λ, the
set λ∞ has no interior. Moreover, if F branches in the negative direction, then
µ∞ ⊂ λ∞ whenever µ < λ.

Example 10.44 Suppose F is depth 1. If F is monotone equivalent to a surface
bundle over S1, then by Example 10.42, we have λ∞ = S2

∞
for every leaf λ

of F̃. Otherwise, the depth 0 leaves are quasifuchsian, and their covers limit
to embedded quasicircles in S2

∞
. The depth 1 leaves limit to Sierpinski gaskets

of measure zero. A Sierpinski gasket is obtained from a disk by removing a
countable union of open subdisks in such a way that what is left has no interior.
If the ambient manifold M is closed, the closure of any two complementary
disks are disjoint. If M is compact with torus boundaries, two complementary
disks might share an accidental parabolic fixed point.

See [73] for details and a further discussion.

10.10 Pseudo-Anosov flows without perfect fits

The main reference for this section is [79].
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Definition 10.45 Let X be a pseudo-Anosov flow with leafspace PX in which
the stable/unstable singular foliations project to Ls , Lu. A pair of leaves ls , lu

of Ls , Lu respectively make a perfect fit if they do not intersect, but if any other
unstable leaf sufficiently near lu on the ls side must intersect ls, and vice versa.

Remark The condition that X contains no perfect fits rules out behavior which
is otherwise controlled by the “zero-angle theorem” in the approach of Cannon
and Thurston [44].

Let S1
univ be the ideal circle associated to X. This circle compactifies PX to a

closed disk. Let ∼ be the closed equivalence relation on S1
univ generated by the

relation that p ∼ q if both p and q are endpoints of the same stable or unstable
leaf in PX.

The quotient space S1
univ/∼ can be approached in steps. We start with a

sphere obtained from the union of two copies of the closed disk PX identified
along their boundaries, which are S1

univ. We define a decomposition whose el-

ements are individual points in S1
univ, closures of stable leaves in the top copy

of PX, and closures of unstable leaves in the bottom copy of PX. The “no per-
fect fits” condition implies that the boundary points of stable and unstable
leaves are disjoint and therefore this is a cellular decomposition of the sphere.
By Moore’s Theorem 10.18 the quotient of S2 by this decomposition is itself a
sphere S2

X. Moreover, the restriction of this quotient map to S1
univ is surjective,

and gives an identification S2
X = S1

univ/ ∼. Since the decomposition was π1(M)-
invariant, the natural action of π1(M) descends to an action on this sphere by
homeomorphisms.

The main theorem of [79] is the following:

Theorem 10.46. (Fenley, boundary theorem) Let X be a pseudo-Anosov flow of M
without perfect fits, which is not topologically conjugate to a suspension Anosov flow.
Then the quotient of S1

univ by the equivalence relation ∼ is a sphere S2
X. This sphere

compactifies the universal cover M̃ as a closed ball with a π1(M)-action. Moreover, the
action of π1(M) on S2

X is a uniform convergence action.

By Bowditch’s theorem (i.e. Theorem 2.100) one has the following corollary:

Corollary 10.47. (Fenley) Let X be a pseudo-Anosov flow on M without perfect fits,
which is not topologically conjugate to a suspension Anosov flow. Then π1(M) is word
hyperbolic, and the sphere S2

X is isomorphic as a space with a π1(M)-action to S2
∞

.

The word hyperbolicity of π1(M) already follows from the existence of a
pseudo-Anosov flow and Theorem 6.62, but the identification of S2

X with S2
∞

is new, and Fenley’s proof of word-hyperbolicity does not depend logically on
Theorem 6.62.

Corollary 10.48. (Fenley) Let X be a pseudo-Anosov flow on M without perfect fits,
which is not topologically conjugate to a suspension Anosov flow. Then X is quasi-
geodesic, leaves of Λs and Λu are quasigeodesic and limit on quasicircles.



FURTHER DIRECTIONS 341

By Theorem 10.41 it follows that if such an X is almost transverse to a taut
foliation F, then F has the continuous extension property.

Fenley analyzes the pseudo-Anosov flows produced by Theorem 6.46 and
Theorem 9.31 and shows that they have no perfect fits. Therefore one has the
following corollary:

Corollary 10.49 Let F be a taut foliation of a closed hyperbolic 3-manifold M. Sup-
pose that F has finite depth or else branches in at most one direction. Then F has the
continuous extension property.

10.11 Further directions

Fenley’s program, which generalizes the work of Cannon–Thurston, adds con-
siderably to our ability to directly compare and integrate taut foliations and
hyperbolic structures on 3-manifolds. To push it further requires one to solve a
significant number of technical problems, or to have a fundamentally new idea,
or probably both.

It would certainly be worthwhile to develop a better understanding of the
constructions in Chapter 8 and to develop some good examples and structure
theory for the universal laminations Λ±univ for a taut foliation F with two-sided

branching. For example, are the laminations Λ±split ever not genuine when M

is hyperbolic? It would also be worthwhile to develop the theory of abstract
groups which act on S1 and preserve a transverse pair of laminations. Another
challenge is to try to come up with natural examples of abstract laminations,
constructed via the method of Example 6.7, which turn out to embed as es-
sential laminations in 3-manifolds. Are there other kinds of transverse struc-
ture (topological, number theoretic, analytic) on Riemann surface laminations
which can substitute for the role of monotonicity in 1-dimensional topology?
Are there other codimension one objects (loosesse laminations, word hyper-
bolic 2-complexes, contact structures) which are flexible enough to exist in any
hyperbolic 3-manifold, but which still certify useful geometric or topological
properties?

In order to approach these problems, one should bear in mind the words of
the American psychologist and philosopher John Dewey:

Every great advance in science has issued from a new audacity of the imag-
ination.

John Dewey, The Quest for Certainty
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[135] Hölder, O. (1901). Die Axiome der Quantität und die Lehre vom Mass.
Ber. Verh. Sachs. Ges. Wiss. Leipzig. Math. Phys. C1(53), 1–64.

[136] Howie, James (1982). On locally indicable groups. Math. Z. 180(4), 445–
461.

[137] Hurder, S. and Katok, A. (1990). Differentiability, rigidity and Godbillon-
Vey classes for Anosov flows. Inst. Hautes Études Sci. Publ. Math. (72), 5–61
(1991).

[138] Husemoller, Dale (1994). Fibre bundles (Third edn), Volume 20 of Graduate
Texts in Mathematics. Springer-Verlag, New York.

[139] Imayoshi, Y. and Taniguchi, M. (1992). An introduction to Teichmüller
spaces. Springer-Verlag, Tokyo. Translated and revised from the Japanese
by the authors.

[140] Jaco, William (1980). Lectures on three-manifold topology, Volume 43 of
CBMS Regional Conference Series in Mathematics. American Mathematical
Society, Providence, R.I.

[141] Jankins, Mark and Neumann, Walter D. (1985). Rotation numbers of
products of circle homeomorphisms. Math. Ann. 271(3), 381–400.

[142] Jekel, Solomon M. (1989). A simplicial formula and bound for the Euler
class. Israel J. Math. 66(1-3), 247–259.

[143] Johnson, Barry Edward (1972). Cohomology in Banach algebras. American
Mathematical Society, Providence, R.I. Memoirs of the American Mathe-
matical Society, No. 127.

[144] Jost, Jürgen (2002). Riemannian geometry and geometric analysis (Third edn).
Universitext. Springer-Verlag, Berlin.

[145] Kirby, Robion and Melvin, Paul (1994). Dedekind sums, µ-invariants and
the signature cocycle. Math. Ann. 299(2), 231–267.

[146] Kobayashi, Shoshichi (1998). Hyperbolic complex spaces, Volume 318 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin.

[147] Kopell, Nancy (1970). Commuting diffeomorphisms. In Global Analysis



350 REFERENCES

(Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), pp. 165–184. Amer.
Math. Soc., Providence, R.I.
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l’intervalle, du cercle et de la droite. Bull. Braz. Math. Soc. (N.S.) 35(1), 13–50.

[182] Navas, Andrés (2006a). Growth of groups and diffeomorphisms of the
interval. arXiv:math.DS/0508353.

[183] Navas, Andrés (2006b). Grupos de difeomorfismos del circulo.
arXiv:math.DS/0607481.

[184] Navas, Andrés (2006c). On uniformly quasisymmetric groups of circle
diffeomorphisms. Annales Academiae Scientiarum Fennicae, 31, 437–462.

[185] Newlander, A and Nirenberg, L (1957). Complex analytic co-ordinates in
almost complex manifolds. Annals of Mathematics, 65, 391–404.

[186] Nielsen, Jakob (1986). Jakob Nielsen: collected mathematical papers. Vol. 1.
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Poincaré, 12, 30, 52, 77, 84, 85, 103, 186, 191,

253
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