Math for Data Science

Omar Hijab*

Copyright © 2022 - 2024 Omar Hijab. All Rights Reserved.

Preface

This text is under construction and is continuously updated. Upon completion of the text, the preface will be enlarged and exercises will be added.

This text is a presentation of the mathematics underlying Data Science. The text assumes minimal math background, and basic math is reviewed. Alongside this, advanced results are presented, sometimes without proof. However, as a general rule, as much as possible is carefully derived, because there is value in understanding how things work.

Important principles or results are displayed in these boxes.

For Python coding, the standard data science libraries are used. A Python index lists the Python functions used in the text.

Python code is displayed in these boxes.
Because SQL is usually part of a data scientist's toolkit, an introduction to using SQL from within Python, using the Python-MariaDB connector, is included in an appendix.

Throughout, we use iff to mean if and only if. To help navigate the text, in each section, we indicate a break, a new idea, or a change in direction, with the symbol

Sections and figures are numbered sequentially within each chapter, and equations are numbered sequentially within each section, so $\S 3.3$ is the third section in the third chapter, Figure 7.11 is the eleventh figure in the seventh
iv
chapter, and (3.2.1) is the first equation in the second section of the third chapter.

If a section contains the alert

$$
\begin{array}{l}\star \\ \text { under construction } \boldsymbol{\star},\end{array}
$$

then it is incomplete. If a section does not contain this alert, then it is complete except for minor edits. Out of 54 sections, fewer than 4 are incomplete.

Contents

Preface iii
List of Figures xiii
1 Data Sets 1
1.1 Introduction 1
1.2 The MNIST Dataset 4
1.3 Averages and Vector Spaces 9
1.4 Two Dimensions 16
1.5 Complex Numbers 34
1.6 Mean and Covariance 42
1.7 High Dimensions 58
2 Linear Geometry 63
2.1 Vectors and Matrices 63
2.2 Products 71
2.3 Matrix Inverse 81
2.4 Span and Linear Independence 87
2.5 Zero Variance Directions 101
2.6 Pseudo-Inverse 106
2.7 Projections 115
2.8 Basis 123
2.9 Rank 131
3 Principal Components 137
3.1 Geometry of Matrices 137
3.2 Eigenvalue Decomposition 140
3.3 Singular Value Decomposition 167
3.4 Principal Component Analysis 176
3.5 Cluster Analysis 185
4 Counting 191
4.1 Permutations and Combinations 191
4.2 Graphs 196
4.3 Binomial Theorem 209
4.4 Exponential Function 216
5 Probability 227
5.1 Binomial Probability 227
5.2 Probability 238
5.3 Random Variables 244
5.4 Normal Distribution 261
5.5 Chi-squared Distribution 272
6 Statistics 283
6.1 Estimation 283
6.2 Z-test 288
6.3 T-test 301
6.4 Two Means 308
6.5 Variances 312
6.6 Maximum Likelihood Estimates 316
6.7 Chi-Squared Tests 317
7 Calculus 323
7.1 Calculus 323
7.2 Entropy and Information 341
7.3 Multi-variable Calculus 349
7.4 Back Propagation 355
7.5 Convex Functions 367
7.6 Multinomial Probability 382
8 Machine Learning 391
8.1 Overview 391
8.2 Neural Networks 392
8.3 Gradient Descent 407
8.4 Network Training 416
8.5 Loss Functions 419
8.6 Regression Examples 428
8.7 Strict Convexity 439
8.8 Accelerated Gradient Descent 443
8.9 Stochastic Gradient Descent 450
A Appendices 451
A. 1 SQL 451
A. 2 Minimizing Sequences 465
References 473
Python 475
Index 479

List of Figures

1.1 Iris dataset [20]. 2
1.2 Images in the MNIST dataset. 3
1.3 A portion of the MNIST dataset. 5
1.4 Original and projections: $n=784,600,350,150,50,10,1$. 5
1.5 The MNIST dataset (3d projection). 6
1.6 A crude copy of the image. 7
1.7 HTML colors. 10
1.8 The vector v joining the points m and x. 11
1.9 Datasets of points versus datasets of vectors. 12
1.10 A statistic f valued in a vector space V. 13
1.11 A dataset with its mean. 16
1.12 A vector v. 16
1.13 Vectors v_{1} and v_{2} and their shadows in the plane. 17
1.14 Adding v_{1} and v_{2} 18
1.15 Scaling with $t=2$ and $t=-2 / 3$ 19
1.16 The polar representation of $v=(x, y)$. 20
$1.17 v$ and its antipode $-v$ 21
1.18 Two vectors v_{1} and v_{2}. 22
1.19 Pythagoras for general triangles 24
1.20 Proof of Pythagoras for general triangles. 25
$1.21 v$ and v^{\perp} 26
1.22 Multiplying and dividing points on the unit circle. 34
1.23 Complex numbers 37
1.24 The second, third, and fourth roots of unity 40
1.25 The fifth, sixth, and fifteenth roots of unity 41
1.26 MSD for the mean (green) versus MSD for a random point (red). 43
1.27 Projecting a vector v onto the line through u. 48
1.28 Covariance ellipses and inverse covariance ellipses. 51
1.29 Covariance ellipse and incovariance ellipse. 54
1.30 A positively correlated dataset $\rho>0$. 55
1.31 A negatively correlated dataset $\rho<0$. 55
1.32 Level contours of $v \cdot Q^{-1} v$. 56
1.33 Ellipsoid and axes in 3d. 57
1.34 Disks inside the square 59
1.35 Balls inside the cube 60
2.1 The points $0, x, A x$, and b. 106
2.2 The points $x, A x$, the points $x^{*}, A x^{*}$, and the point x^{+}. 107
2.3 Projecting onto a line. 116
2.4 Projecting onto a plane, $\mathrm{Pb}=r u+s v$. 117
2.5 Dataset, reduced dataset, and projected dataset, $n<d$. 121
2.6 Relations between vector classes. 124
2.7 First defect for MNIST. 127
2.8 The dimension staircase with defects. 128
2.9 The dimension staircase for the MNIST dataset 128
2.10 A 5×3 matrix A is a linear transformation from \mathbf{R}^{3} to \mathbf{R}^{5}. 131
3.1 Image of unit circle with $\sigma_{1}=1.5$ and $\sigma_{2}=.75$. 138
3.2 SVD decomposition $A=U S V$. 140
3.3 Relations between matrix classes. 141
3.4 Inverse covariance ellipse and centered dataset 151
$3.5 S=\operatorname{span}\left(v_{1}\right)$ and $T=S^{\perp}$. 155
3.6 Three springs at rest and perturbed. 159
3.7 Six springs at rest and perturbed. 160
3.8 Two springs along a circle leading to $Q(2)$. 161
3.9 Five springs along a circle leading to $Q(5)$. 161
3.10 Plot of eigenvalues of $Q(50)$. 165
3.11 Density of eigenvalues of $Q(d)$ for d large. 166
3.12 MNIST eigenvalues as a percentage of the total variance. 177
3.13 MNIST eigenvalue percentage plot. 178
3.14 Original and projections: $n=784,600,350,150,50,10,1$. 182
3.15 The full MNIST dataset (2d projection). 183
3.16 The Iris dataset (2d projection). 184
$4.16=3$! permutations of 3 balls. 191
4.2 Directed and undirected graphs. 196
4.3 A weighed directed graph. 196
4.4 A double edge and a loop. 197
4.5 The complete graph K_{6} and the cycle graph C_{6}. 198
4.6 The triangle $K_{3}=C_{3}$. 199
4.7 Non-isomorphic graphs with degree sequence ($3,2,2,1,1,1$). 207
4.8 Complete bipartite graph K_{53}. 207
4.9 Pascal's triangle. 212
4.10 The exponential function $\exp x$. 222
4.11 Convexity of the exponential function. 225
5.1 The distribution of p given 7 heads in 10 tosses. 235
5.2 The logistic function. 236
5.3 The logistic function takes real numbers to probabilities. 237
$5.4100,000$ sessions, with $5,15,50$, and 500 tosses per session. 241
5.5 When we sample X, we get x. 244
5.6 $N=150$ petal lengths and their mean. 246
5.7 Histogram of $N=150$ petal lengths. 247
5.8 Means of 100,000 batches, of size $n=1,5,15,50$. 248
5.9 Distribution of a bernoulli random variable. 250
5.10 Confidence that X lies in interval $[a, b]$. 250
5.11 Cumulative distribution functions. 251
5.12 Cdf of a bernoulli distribution. 251
5.13 Binary variance. 254
5.14 When we sample $X_{1}, X_{2}, \ldots, X_{n}$, we get $x_{1}, x_{2}, \ldots, x_{n}$. 259
5.15 The standard normal distribution. 262
$5.16 \mathrm{z}=$ norm.ppf(p) and $\mathrm{p}=$ norm.cdf(z). 264
5.17 Confidence (green) or significance (red) (lower-tail, two-tail, upper-tail). 265
$5.1868 \%, 95 \%, 99 \%$ confidence cutoffs for standard normal. 266
5.19 Cutoffs, confidence levels, p-values. 267
$5.20 p$-values at 5% and at 1%. 267
$5.2168 \%, 95 \%, 99 \%$ cutoffs for non-standard normal. 268
$5.22(X, Y)$ in the square and in the circle. 273
5.23 Chi-squared distribution with different degrees. 274
5.24 With degree $d \geq 2$, the chi-squared distribution peaks at $d-2.276$
6.1 Statistics flowchart: p-value p and significance α. 284
6.2 Histogram of sampling $n=25$ students, repeated $N=1000$ times. 289
6.3 The error matrix 298
$6.4 t$-distribution, against normal (dashed) 302
6.5 Fisher F-distribution. 315
6.6 Contingency table [22]. 320
$7.1 f^{\prime}(a)$ is the slope of the tangent line at a. 323
7.2 Composition of two functions 325
7.3 Angle θ in the plane, $P=(x, y)$ 328
7.4 Increasing or decreasing? 330
7.5 Increasing or decreasing? 331
7.6 Tangent parabolas $p_{m}(x)$ (green), $p_{L}(x)$ (red), $L>m>0$. 334
7.7 The logarithm function $\log x$. 336
7.8 The absolute entropy function $H(p)$. 343
7.9 Asymptotics of binomial coefficients. 345
7.10 The relative information $I(p, q)$ with $q=.7$. 347
7.11 Composition of multiple functions. 352
7.12 Composition of three functions in a chain. 356
7.13 A network composition [24]. 360
7.14 The function $g=\max (y, z)$. 361
7.15 Forward and backward propagation [24]. 362
7.16 Level sets and sublevel sets in two dimensions. 368
7.17 Contour lines in two dimensions 368
7.18 Line segment $\left[x_{0}, x_{1}\right]$ 369
7.19 Convex: The line segment lies above the graph. 370
7.20 Convex hull of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ 371
7.21 Convex set in three dimensions with supporting hyperplane. 373
7.22 Hyperplanes in two and three dimensions. 373
7.23 Separating hyperplane theorem. 374
7.24 The third row is the sum of the first and second rows. 389
8.1 A perceptron with activation function f. 394
8.2 Perceptrons in parallel [15]. 395
8.3 Network of neurons. 398
8.4 Incoming and Outgoing signals. 398
8.5 Forward and back propagation between two neurons. 398
8.6 Downstream, local, and upstream derivatives at node i. 402

LIST OF FIGURES

8.7 A shallow dense layer. 406
8.8 Layered neural network [8]. 407
8.9 Double well newton descent. 410
8.10 Double well cost function and sublevel sets at w_{0} and at w_{1} 412
8.11 Double well gradient descent. 415
8.12 Cost trajectory and number of iterations as learning rate varies. 419
8.13 Linear regression neural network. 421
8.14 Logistic regression neural network. 423
8.15 Population versus employed: Linear Regression. 429
8.16 Longley Economic Data [12]. 429
8.17 Polynomial regression: Degrees $2,4,6,8,10,12$ 433
8.18 Exam outcomes (0 or 1) and logistic regression fit [26]. 434
8.19 Hours studied and outcomes. 435
8.20 Hours studied and one-hot encoded outcomes. 435
8.21 Neural network for student exam outcomes. 436
8.22 Projection of Iris dataset onto \mathbf{R}^{2} 438
8.23 Convex hulls of projections of MNIST dataset classes onto \mathbf{R}^{2}. 439
A. 1 Dataframe from list-of-dicts. 455
A. 2 Menu dataframe and SQL table. 455
A. 3 Rawa restaurant. 458
A. 4 OrdersIn dataframe and SQL table. 459
A. 5 OrdersOut dataframe and SQL table. 461

Chapter 1

Data Sets

In this chapter we explore examples of data sets and some simple Python code. We also review the geometry of vectors in the plane and properties of 2×2 matrices, introduce the mean and covariance of a dataset, then present a first taste of what higher dimensions might look like.

1.1 Introduction

Geometrically, a dataset is a sample of N points $x_{1}, x_{2}, \ldots, x_{N}$ in d dimensional space \mathbf{R}^{d}. Algebraically, a dataset is an $N \times d$ matrix.

Practically speaking, as we shall see, the following are all representations of datasets

$$
\text { matrix }=\text { CSV file }=\text { spreadsheet }=S Q L \text { table }=\text { array }=\text { dataframe }
$$

Each point $x=\left(t_{1}, t_{2}, \ldots, t_{d}\right)$ in the dataset is a sample or an example, and the components $t_{1}, t_{2}, \ldots, t_{d}$ of a sample point x are its features or attributes. As such, d-dimensional space \mathbf{R}^{d} is feature space.

Sometimes one of the features is separated out as the label. In this case, the dataset is a labelled dataset.

As examples, we look at two datasets, the Iris dataset and the MNIST dataset. The Iris dataset contains 150 examples of four features of Iris flowers, and there are three classes of Irises, Setosa, Versicolor, and Virginica, with 50 samples from each class.

The four features are sepal length and width, and petal length and width (Figure 1.1). For each example, the class is the label corresponding to that example, so the Iris dataset is labelled.

Figure 1.1: Iris dataset [20].

The Iris dataset is downloaded using the code

```
from sklearn import datasets
iris = datasets.load_iris(as_frame=True)
dataset = iris["frame"]
dataset
```

If sklearn is not installed, you'll need to first run

```
pip install sklearn
```

5

Figure 1.2: Images in the MNIST dataset.
The MNIST dataset consists of 60, 000 images of hand-written digits (Figure 1.2). There are 10 classes of images, corresponding to each digit 0,1 , $\ldots, 9$. We seek to compress the images while preserving as much as possible of the images' characteristics.

Each image is a grayscale 28×28 pixel image. Since $28^{2}=784$, each image is a point in $d=784$ dimensions. Here there are $N=60000$ samples and $d=784$ features.

This subsection is included just to give a flavor. All unfamiliar words are explained in detail in Chapter 2. If preferred, just skip to the next subsection.

Suppose we have a dataset of N points

$$
x_{1}, x_{2}, \ldots, x_{N}
$$

in d-dimensional feature space. We seek to find a lower-dimensional feature space $U \subset \mathbf{R}^{d}$ so that the projections of these points onto U retain as much information as possible about the data.

In other words, we are looking for an n-dimensional subspace U for some $n<d$. Among all n-dimensional subspaces, which one should we pick? The answer is to select U among all n-dimensional subspaces to maximize variability in the data.

Another issue is the choice of n, which is an integer satisfying $0 \leq n \leq d$. On the one hand, we want n to be as small as possible, to maximize data compression. On the other hand, we want n to be big enough to capture most of the features of the data. At one extreme, if we pick $n=d$, then we have no compression and complete information. At the other extreme, if we pick $n=0$, then we have full compression and no information.

Projecting the data from \mathbf{R}^{d} to a lower-dimensional space U is dimensional reduction. The best alignment, the best-fit, or the best choice of U is principal component analysis. These issues will be taken up in §3.4.

If this is your first exposure to data science, there will be a learning curve, because here there are three kinds of thinking: Data science (Datasets, PCA, descent, networks), math (linear algebra, probability, statistics, calculus), and Python (numpy, pandas, scipy, sympy, matplotlib). It may help to read the code examples, and the important math principles first, then dive into details as needed.

To illustrate and make concrete concepts as they are introduced, we use Python code throughout. We run Python code in a Jupyter notebook.

Jupyter is an IDE, an integrated development environment. Jupyter supports many frameworks, including Python, Sage, Julia, and R. A useful Jupyter feature is the ability to measure the amount of execution time of a code cell by including at the start of the cell

```
%%time
```

The installation procedure is to first install Python, then install Jupyter using Python pip. Additional frameworks (R,...) are then installed separately. After this, to make each additional installed framework available from within Jupyter, run jupyter kernelspec. Detailed steps depend on the reader's laptop setup.

1.2 The MNIST Dataset

As our working example, we take the MNIST ${ }^{1}$ dataset.
The dataset consists of 70,000 images, split into 60,000 training images and 10,000 testing images. The dataset is loaded by

```
from keras.datasets import mnist
(train_X, train_y), (test_X, test_y) = mnist.load_data()
```

(This code requires keras, tensorflow and related modules if not already installed.)

[^0]

Figure 1.3: A portion of the MNIST dataset.
Since this dataset is for demonstration purposes, these images are coarse. Since each image consists of 784 pixels, and each pixel shading is a number, each image is a point x in $\mathbf{R}^{d}=\mathbf{R}^{784}$.

Figure 1.4: Original and projections: $n=784,600,350,150,50,10,1$.
To compress the image means to reduce the number of dimensions in the point x while keeping maximum information. We can think of a single image as a dataset itself, and compress the image, or we can design a compression algorithm based on a collection of images. In the second case, we say we
want to train the procedure on the dataset. It is then reasonable to expect that the procedure applies well to any image that is similar to the images in the dataset.

Figure 1.5: The MNIST dataset (3d projection).
For the second image in Figure 1.2, reducing dimension from $d=784$ to n equal $600,350,150,50,10$, and 1, we have the images in Figure 1.4.

Compressing each image to a point in $n=3$ dimensions and plotting all $N=60000$ points yields Figure 1.5. All this is discussed in §3.4.

The top left image in Figure 1.4 is given by a 784 -dimensional point which is imported as an array pixels of shape $(28,28)$.

```
pixels = train_X[1]
```


Live exercise in class

1. Take out your laptops and open Jupyter.
2. In Jupyter, return a two-dimensional plot of the point $(2,3)$ using the code
```
from matplotlib.pyplot import *
grid()
scatter(2,3)
show()
```

3. Do for loops over i and j in range(28) and use scatter to plot points at location (i, j) with size given by pixels $[i, j]$, then show.

Figure 1.6: A crude copy of the image.
Here is one possible code, returning Figure 1.6.

```
from matplotlib.pyplot import *
```

from numpy import *

```
pixels = train_X[1]
grid()
for i in range(28):
    for j in range(28): scatter(i,j, s = pixels[i,j])
show()
```

The top left image in Figure 1.4 is returned by the code

```
from matplotlib.pyplot import *
imshow(pixels, cmap="gray_r")
```

We end the section by discussing the Python import command. The last code snippet can be rewritten

```
import matplotlib.pyplot as plt
plt.imshow(pixels, cmap="gray_r")
```

or as

```
from matplotlib.pyplot import imshow
imshow(pixels, cmap="gray_r")
```

So we have three versions of this code snippet.
In the second version, it is explicit that imshow is imported from the submodule pyplot of the module matplotlib. Moreoever, the submodule matplotlib.pyplot is referenced by a short nickname plt.

In the first version import from *, many commands, maybe not all, are imported from the submodule matplotlib.pyplot.

In the third version, only the command imshow is imported. Which import style is used depends on the situation.

In this text, we usually use the first style, as it is visually lightest. To help with online searches, in the Python index, Python commands are listed under their full module path.

1.3 Averages and Vector Spaces

Suppose we have a population of things (people, tables, numbers, vectors, images, etc.) and we have a sample of size N from this population:

$$
\mathrm{L}=\left[\mathrm{x}_{-} 1, \mathrm{x}_{-} 2, \ldots, \mathrm{x}_{-} \mathrm{N}\right] .
$$

The total population is the population or the sample space. For example, the sample space consists of all real numbers and we take $N=5$ samples from this population

$$
L_{-} 1=[3.95,3.20,3.10,5.55,6.93]
$$

Or, the sample space consists of all integers and we take $N=5$ samples from this population

$$
L_{-} 2=[35,-32,-8,45,-8] .
$$

Or, the sample space consists of all rational numbers and we take $N=5$ samples from this population

```
L_3 = [13/31, 8/9, 7/8, 41/22, 32/27].
```

Or, the sample space consists of all Python strings and we take $N=5$ samples from this population

```
L_4 = ['a2e?','#%T','7y5,','kkk>><</','[[)*+']
```

Or, the sample space consists of all HTML colors and we take $N=5$ samples from this population

Figure 1.7: HTML colors.

Here's the code generating the colors

```
# HTML color codes are #rrggbb (6 hexes)
from matplotlib.pyplot import *
from random import choice
def hexcolor():
    return "#" + ''.join([choice('0123456789abcdef') for _ in
    \hookrightarrow range(6)])
for i in range(5): scatter(i,0, c=hexcolor())
show()
```

Let L be a list as above. The goal is to compute the sample average or mean of the list, which is

$$
\text { mean }=\text { average }=\frac{x_{1}+x_{2}+\cdots+x_{N}}{N} .
$$

In the first example, for real numbers, the average is

$$
\frac{3.95+3.20+3.10+5.55+6.93}{5}=4.546
$$

In the second case, for integers, the average is $32 / 5$. In the third case, the average is $385373 / 73656$. In the fourth case, while we can add strings, we can't divide them by 5 , so the average is undefined. Similarly for colors: the average is undefined.

This leads to an important definition (the most important definition in the course). A sample space or population V is called a vector space if, roughly speaking, one can compute means or averages in V. In this case,
we call the members of the population "vectors", even though the members may be anything, as long as they satisfy the basic rules of a vector space.

In a vector space V, the rules are:

1. vectors can be added (and the sum $v+w$ is back in V)
2. vector addition is commutative $v+w=w+v$
3. vector addition is associative $u+(v+w)=(u+v)+w$
4. there is a zero vector 0
5. vectors v have negatives $-v$
6. vectors can be multiplied by real numbers (and the product $r v$ is back in V)
7. multiplication is distributive over addition $(r+s) v=r v+s v$ and $r(u+v)=r u+r v$
8. $1 v=v$ and $0 v=0$
9. $r(s v)=(r s) v$.

Let $x_{1}, x_{2}, \ldots, x_{N}$ be a dataset. Is the dataset a collection of points, or is the dataset a collection of vectors? In other words, what geometric picture of datasets should we have in our heads? Here's how it works.

Figure 1.8: The vector v joining the points m and x.

A vector is an arrow joining two points (Figure 1.8). Given two points $m=(a, b)$ and $x=(c, d)$, the vector joining them is

$$
v=x-m=(c-a, d-b) .
$$

Then m is the tail of v, and x is the head of v. For example, the vector joining $m=(1,2)$ to $x=(3,4)$ is $v=(2,2)$.

Given a point x, we would like to associate to it a vector v in a uniform manner. However, this cannot be done without a second point, a reference point. Given a dataset of points $x_{1}, x_{2}, \ldots, x_{N}$, the most convenient choice for the reference point is the mean m of the dataset. This results in a dataset of vectors $v_{1}, v_{2}, \ldots, v_{N}$, where $v_{k}=x_{k}-m, k=1,2, \ldots, N$.

The dataset $v_{1}, v_{2}, \ldots, v_{N}$ is centered, its mean is zero,

$$
\frac{v_{1}+v_{2}+\cdots+v_{N}}{N}=0 .
$$

So datasets can be points $x_{1}, x_{2}, \ldots, x_{N}$ with mean m, or vectors v_{1}, v_{2}, \ldots, v_{N} with mean zero (Figure 1.9). This distinction is crucial, when measuring the dimension of a dataset (§2.8).

Figure 1.9: Datasets of points versus datasets of vectors.

Centered Versus Non-Centered

If $x_{1}, x_{2}, \ldots, x_{N}$ is a dataset of points with mean m and

$$
v_{1}=x_{1}-m, v_{2}=x_{2}-m, \ldots, v_{N}=x_{N}-m
$$

then $v_{1}, v_{2}, \ldots, v_{N}$ is a centered dataset of vectors.

Figure 1.10: A statistic f valued in a vector space V.

Let us go back to vector spaces. When we work with vector spaces, numbers are referred to as scalars, because $2 v, 3 v,-v, \ldots$ are scaled versions of v. When we multiply a vector v by a scalar r to get the scaled vector $r v$, we call it scalar multiplication. This is to distinguish this multiplication from the inner and outer products we see below.

For example, the samples in the list L_{1} form a vector space, the set of all real numbers \mathbf{R}. Even though one can add integers, the set \mathbf{Z} of all integers does not form a vector space because multiplying an integer by $1 / 2$ does not result in an integer. The set \mathbf{Q} of all rational numbers (fractions) is a vector space, so L_{3} is a sampling from a vector space. The set of strings is not a vector space because even though one can add strings, addition is not commutative:

```
'alpha' + 'romeo' == 'romeo' + 'alpha'
```

returns False.
Usually, we can't take sample means from a population, we instead take the sample mean of a statistic associated to the population. A statistic is an assignment of a number $f($ item $)$ to each item in the population. For example, the human population on Earth is not a vector space (they can't be added), but their heights is a vector space (heights can be added). For the list L_{4}, a statistic might be the length of the string. For the HTML colors, a statistic is the HTML code of the color.

In general, a statistic need not be a number. A statistic can be anything
that "behaves like a number". For example, we shall see below that f (item) can be a vector or a matrix. More generally, a statistic's values may be anything that lives in a vector space V, which we defined above.

For example, for the scalar dataset

$$
x_{1}=1.23, x_{2}=4.29, x_{3}=-3.3, x_{4}=555,
$$

the average is

$$
m=\frac{1.23+4.29-3.3+555}{4}=139.305
$$

In Python, averages are computed using numpy.mean. For a scalar dataset, the code

```
from numpy import *
dataset = array([1.23,4.29,-3.3,555])
mean(dataset)
```

returns the average.
For the two-dimensional dataset

$$
x_{1}=(1,2), x_{2}=(3,4), x_{3}=(-2,11), x_{4}=(0,66),
$$

the average is

$$
m=\frac{(1,2)+(3,4)+(-2,11)+(0,66)}{4}=(0.5,20.75)
$$

Note the x-components are summed, and the y-components are summed, leading to a two-dimensional mean. (This is vector addition, taken up in §1.4.)

In Python, a dataset in \mathbf{R}^{2} may be assembled as 4×2 array

```
from numpy import *
dataset = array([[1,2], [3,4], [-2,11], [0,66]])
```

Then the code

```
mean(dataset, axis=0)
```

returns the mean $(0.5,20.75)$.
To explain what axis=0 does, we use matrix terminology. After arranging dataset into an array of four rows and two columns, to compute the mean, we sum over the row index.

This means summing the entries of the first column, then summing the entries of the second column, resulting in a mean with two components.

In Python, the default is to consider the row index i as index zero, and to consider the column index j as index one.

Summing over index=1 is equivalent to thinking of the dataset as two points in \mathbf{R}^{4}, so

```
mean(dataset, axis=1)
```

returns (1.5, 3.5, 4.5, 33).
Here is a more involved example of a dataset of random points and their mean:

```
from numpy import *
from numpy.random import random
from matplotlib.pyplot import scatter, grid, show
N = 20
dataset = array([ [random(), random()] for _ in range(N) ])
mean = mean(dataset,axis=0)
grid()
X = dataset[:,0]
Y = dataset[:,1]
scatter(X,Y)
scatter(*mean)
show()
```

This returns Figure 1.11.

Figure 1.11: A dataset with its mean.

In this code, scatter expects two positional arguments, the x and the y components of a point, or two lists of x and y components separately. The unpacking operator $*$ unpacks mean from one pair into its separate x and y components *mean. Also, for scatter, dataset is separated into its two columns.

1.4 Two Dimensions

We start with the geometry of vectors in two dimensions. This is the cartesian plane \mathbf{R}^{2}, also called 2-dimensional real space. The plane \mathbf{R}^{2} is a vector space, in the sense described in the previous section.

Figure 1.12: A vector v.

In the cartesian plane, a vector is an arrow v joining the origin to a point (Figure 1.12). In this way, points and vectors are almost interchangeable, as a point x in \mathbf{R}^{d} corresponds to the vector v starting at the origin 0 and ending at x.

Figure 1.13: Vectors v_{1} and v_{2} and their shadows in the plane.

In the cartesian plane, each vector v has a shadow. This is the triangle constructed by dropping the perpendicular from the tip of v to the x-axis, as in Figure 1.13. This cannot be done unless one first draws a horizontal line (the x-axis), then a vertical line (the y-axis). In this manner, each vector v has cartesian coordinates $v=(x, y)$. In particular, the vector $0=(0,0)$, the zero vector, corresponds to the origin.

In the cartesian plane, vectors $v_{1}=\left(x_{1}, y_{1}\right)$ and $v_{2}=\left(x_{2}, y_{2}\right)$ are added by adding their coordinates,

Addition of vectors

If $v_{1}=\left(x_{1}, y_{1}\right)$ and $v_{2}=\left(x_{2}, y_{2}\right)$, then

$$
\begin{equation*}
v_{1}+v_{2}=\left(x_{1}+x_{2}, y_{1}+y_{2}\right) . \tag{1.4.1}
\end{equation*}
$$

Because points and vectors are interchangeable, the same formula is used for addition $P+P^{\prime}$ of points P and P^{\prime}.

Figure 1.14: Adding v_{1} and v_{2}

This is the same as combining their shadows as in Figure 1.14. In Python, lists and tuples do not add this way. Lists and tuples have to first be converted into numpy arrays.

```
v1 = (1,2)
v2 = (3,4)
v1 + v2 == (1+3,2+4) # returns False
v1 = [1,2]
v2 = [3,4]
v1 + v2 == [1+3,2+4] # returns False
from numpy import *
v1 = array([1,2])
v2 = array([3,4])
v1 + v2 == array([1+3,2+4]) # returns True
```

For example, $v_{1}=(-3,1)$ and $v_{2}=(2,-2)$ returns

$$
v_{1}+v_{2}=(-3,1)+(2,-2)=(-3+2,1-2)=(-1,-1) .
$$

A vector $v=(x, y)$ in the plane may be scaled by scaling the shadow as in Figure 1.15. This is vector scaling by t. Note when t is negative, the shadow is also flipped. In Python, we write

```
from numpy import *
v = array([1,2])
3*v == array([3,6]) # returns True
```

Given a vector v, the scalings $t v$ of v form a line passing through the origin 0 (Figure 1.17). This line is the span of v (see §2.4). Scalings $t v$ of v are also called multiples of v.

Scaling of vectors

If $v=(x, y)$, then

$$
t v=(t x, t y)
$$

If t and s are real numbers, it is easy to check

$$
t\left(v_{1}+v_{2}\right)=t v_{1}+t v_{2} \quad \text { and } \quad t(s v)=(t s) v .
$$

Thus multiplying v by s, and then multiplying the result by t, has the same effect as multiplying v by $t s$, in a single step. Because points and vectors are interchangeable, the same formula is used for scaling $t P$ points P by t.

Figure 1.15: Scaling with $t=2$ and $t=-2 / 3$

We set $-v=(-1) v$, and define subtraction of vectors by

$$
v_{1}-v_{2}=v_{1}+\left(-v_{2}\right)
$$

This gives

Subtraction of vectors

If $v_{1}=\left(x_{1}, y_{1}\right)$ and $v_{2}=\left(x_{2}, y_{2}\right)$, then

$$
\begin{equation*}
v_{1}-v_{2}=\left(x_{1}-x_{2}, y_{1}-y_{2}\right) \tag{1.4.2}
\end{equation*}
$$

```
from numpy import *
v1 = array([1,2])
v2 = array([3,4])
v1 - v2 == array([1-3,2-4]) # returns True
```


Distance Formula

If $v_{1}=\left(x_{1}, y_{1}\right)$ and $v_{2}=\left(x_{2}, y_{2}\right)$, then the distance between v_{1} and v_{2} is

$$
\left|v_{1}-v_{2}\right|=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} .
$$

The distance of $v=(x, y)$ to the origin $0=(0,0)$ is its magnitude or norm or length

$$
r=|v|=|v-0|=\sqrt{x^{2}+y^{2}} .
$$

Figure 1.16: The polar representation of $v=(x, y)$.
In terms of r and θ (Figure 1.16), the polar representation of (x, y) is

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

In Python,

```
from numpy import *
from numpy.linalg import norm
v = array([1,2])
norm(v) == sqrt(5)# returns True
```

The unit circle consists of the vectors which are distance 1 from the origin 0 . When v is on the unit circle, the magnitude of v is 1 , and we say v is a unit vector. In this case, the line formed by the scalings of v intersects the unit circle at $\pm v$ (Figure 1.17).

When v is a unit vector, $r=1$, and (Figure 1.16),

$$
\begin{equation*}
v=(x, y)=(\cos \theta, \sin \theta) . \tag{1.4.3}
\end{equation*}
$$

The unit circle intersects the horizontal axis at the vectors $(1,0)$, and $(-1,0)$, and intersects the vertical axis at the vectors $(0,1)$, and $(0,-1)$. These four vectors are equally spaced on the unit circle (Figure 1.17).

Figure 1.17: v and its antipode $-v$
By the distance formula, a vector $v=(x, y)$ is a unit vector when

$$
x^{2}+y^{2}=1 \text {. }
$$

More generally, any circle with center (a, b) and radius r consists of vectors $v=(x, y)$ satisfying

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

Let R be a point on the unit circle, and let $t>0$. From this, we see the scaled point $t R$ is on the circle with center $(0,0)$ and radius t. Moreover, if Q is any point, $Q+t R$ is on the circle with center Q and radius r.

Given this, it is easy to check

$$
|t v|=|t||v|
$$

for any real number t and vector v.
From this, if a vector v is unit and $r>0$, then $r v$ has magnitude r. If v is any vector not equal to the zero vector, then $r=|v|$ is positive, and

$$
\left|\frac{1}{r} v\right|=\frac{1}{r}|v|=\frac{1}{r} r=1,
$$

so v / r is a unit vector.

Figure 1.18: Two vectors v_{1} and v_{2}.

Now we discuss the dot product in two dimensions. We have two vectors v and v^{\prime} in the plane \mathbf{R}^{2}, with $v_{1}=\left(x_{1}, y_{1}\right)$ and $v_{2}=\left(x_{2}, y_{2}\right)$. The dot product of v_{1} and v_{2} is given algebraically as

$$
v_{1} \cdot v_{2}=x_{1} x_{2}+y_{1} y_{2},
$$

or geometrically as

$$
v_{1} \cdot v_{2}=\left|v_{1}\right|\left|v_{2}\right| \cos \theta,
$$

where θ is the angle between v_{1} and v_{2}. To show that these are the same, below we derive the

Dot Product Identity

$$
\begin{equation*}
x_{1} x_{2}+y_{1} y_{2}=v_{1} \cdot v_{2}=\left|v_{1}\right|\left|v_{2}\right| \cos \theta \tag{1.4.4}
\end{equation*}
$$

In Python, the dot product is given by numpy.dot,

```
from numpy import *
v1 = array([1,2])
v2 = array([3,4])
dot(v1,v2) == 1*3 + 2*4 # returns True
```

As a consequence of the dot product identity, we have code for the angle between two vectors,

```
from numpy import *
def angle(u,v):
    a = dot(u,v)
    b = dot(u,u)
    c = dot(v,v)
    theta = arccos(a / sqrt(b*c))
    return degrees(theta)
```

Recall that $-1 \leq \cos \theta \leq 1$. Using the dot product identity (1.4.4), we obtain the important

Cauchy-Schwarz Inequality

If u and v are any two vectors, then

$$
\begin{equation*}
-|u||v| \leq u \cdot v \leq|u||v| . \tag{1.4.5}
\end{equation*}
$$

To derive the dot product identity, we first derive Pythagoras' theorem for general triangles

$$
\begin{equation*}
c^{2}=a^{2}+b^{2}-2 a b \cos \theta \tag{1.4.6}
\end{equation*}
$$

To derive (1.4.6), we drop a perpendicular to the base b, obtaining two right triangles (Figure 1.20). By Pythagoras applied to each triangle,

$$
a^{2}=d^{2}+f^{2} \quad \text { and } \quad c^{2}=e^{2}+f^{2}
$$

Also $b=e+d$, so

$$
b^{2}=(e+d)^{2}=e^{2}+2 e d+d^{2}
$$

By the definition of $\cos \theta, d=a \cos \theta$. Putting this all together,

$$
\begin{aligned}
c^{2} & =e^{2}+f^{2}=(b-d)^{2}+f^{2} \\
& =f^{2}+d^{2}+b^{2}-2 d b \\
& =a^{2}+b^{2}-2 a b \cos \theta,
\end{aligned}
$$

so we get (1.4.6).

Figure 1.19: Pythagoras for general triangles.

Figure 1.20: Proof of Pythagoras for general triangles.
Next, connect Figures 1.18 and 1.19 by noting $a=\left|v_{2}\right|$ and $b=\left|v_{1}\right|$ and $c=\left|v_{2}-v_{1}\right|$.

Now go back to deriving (1.4.4). By vector addition, we have

$$
v_{2}-v_{1}=\left(x_{2}-x_{1}, y_{2}-y_{1}\right),
$$

and $b^{2}=\left|v_{1}\right|^{2}=x_{1}^{2}+y_{1}^{2}, a^{2}=\left|v_{2}\right|^{2}=x_{2}{ }^{2}+y_{2}{ }^{2}$. By the binomial theorem,

$$
\begin{aligned}
c^{2} & =\left|v_{2}-v_{1}\right|^{2}=\left|\left(x_{2}-x_{1}, y_{2}-y_{1}\right)\right|^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
& =x_{1}^{2}+y_{1}^{2}-2\left(x_{1} x_{2}+y_{1} y_{2}\right)+x_{2}{ }^{2}+y_{2}{ }^{2}=a^{2}+b^{2}-2\left(x_{1} x_{2}+y_{1} y_{2}\right),
\end{aligned}
$$

thus

$$
\begin{equation*}
c^{2}=a^{2}+b^{2}-2\left(x_{1} x_{2}+y_{1} y_{2}\right) \tag{1.4.7}
\end{equation*}
$$

Comparing the terms in (1.4.6) and (1.4.7), we arrive at (1.4.4).

Let u and v be vectors. A basic property of dot product is

$$
\begin{equation*}
|u+v|^{2}=|u|^{2}+2 u \cdot v+|v|^{2} . \tag{1.4.8}
\end{equation*}
$$

This is easily derived from the definition of $u \cdot v$.
If $P=(x, y)$, let $P^{\perp}=(-y, x)$, and let $v=O P$ and $v^{\perp}=O P^{\prime}$ be the vectors emanating from the origin, and ending at P and P^{\perp}. Then

$$
v \cdot v^{\perp}=(x, y) \cdot(-y, x)=0 .
$$

This shows v and v^{\perp} are perpendicular (Figure 1.21).

Figure 1.21: v and v^{\perp}
From Figure 1.21, we see points P and P^{\prime} on the unit circle satisfy $P \cdot P^{\prime}=$ 0 iff $P^{\prime}= \pm P^{\perp}$.

We now solve two linear equations in two unknowns x, y. We start with the homogeneous case

$$
\begin{equation*}
a x+b y=0, \quad c x+d y=0 \tag{1.4.9}
\end{equation*}
$$

Let A be the 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \tag{1.4.10}\\
c & d
\end{array}\right)
$$

It is easy to exhibit a solution of the first equation in (1.4.9): choose $(x, y)=(-b, a)$. If we want this to be a solution of the second equation as well, we must have $c x+d y=a d-b c=0$. Based on this, we make the following definition. The determinant of A is

$$
\operatorname{det}(A)=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

In (1.4.9), multiply the first equation by d and the second by b and subtract, obtaining

$$
(a d-b c) x=d(a x+b y)-b(c x+d y)=0 .
$$

In (1.4.9), multiply the first equation by c and the second by a and subtract, obtaining

$$
(b c-a d) y=c(a x+b y)-a(c x+d y)=0 .
$$

From here, we see there are two cases: $\operatorname{det}(A)=0$ and $\operatorname{det}(A) \neq 0$. When $\operatorname{det}(A) \neq 0$, the only solution of (1.4.9) is $(x, y)=(0,0)$. When $\operatorname{det}(A)=0$, $(x, y)=(-b, a)$ is a solution of both equations in (1.4.9). We have shown

Homogencous System

When $\operatorname{det}(A)=0$, the homogeneous system (1.4.9) has a nonzero solution, and all solutions are scalar multiples of $(x, y)=(-b, a)$. When $\operatorname{det}(A) \neq 0$, the only solution is $(x, y)=(0,0)$.

This covers the homogeneous case. For the inhomogeneous case

$$
\begin{equation*}
a x+b y=e, \quad c x+d y=f \tag{1.4.11}
\end{equation*}
$$

multiplying and subtracting as above, we obtain

$$
\begin{aligned}
(a d-b c) x & =d(a x+b y)-b(c x+d y)
\end{aligned}=d e-b f, ~ 子 ~(b c-d) y=c(a x+b y)-a(c x+d y)=c e-a f .
$$

Dividing by $\operatorname{det}(A)$, we obtain

Inhomogeneous System

When $\operatorname{det}(A) \neq 0$, the inhomogeneous system (1.4.11) has the unique solution

$$
\begin{equation*}
x=\frac{d e-b f}{a d-b c}, \quad y=\frac{a f-c e}{a d-b c} . \tag{1.4.12}
\end{equation*}
$$

When $\operatorname{det}(A)=0$, (1.4.11) has a solution iff $c e=a f$ and $d e=b f$. When $a^{2}+b^{2} \neq 0$, a solution is

$$
x=\frac{a e}{a^{2}+b^{2}}, \quad y=\frac{b e}{a^{2}+b^{2}} .
$$

When $c^{2}+d^{2} \neq 0$, a solution is

$$
x=\frac{c f}{c^{2}+d^{2}}, \quad y=\frac{d f}{c^{2}+d^{2}} .
$$

Any other solution differs from these solutions by a scalar multiple of the homogeneous solution $(x, y)=(-b, a)$.

We now go over the basic properties of 2×2 matrices. This we use in the next section. A 2×2 matrix A is a block of four numbers as in (1.4.10).

The matrix (1.4.10) can be written in terms of the two vectors $u=(a, b)$ and $v=(c, d)$, as follows

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\binom{u}{v}, \quad u=(a, b), v=(c, d) .
$$

In this case, we call u and v the rows of A. On the other hand, A may be written as

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
u & v
\end{array}\right), \quad u=(a, c), v=(b, d) .
$$

In this case, we call u and v the columns of A. This shows there are at least three ways to think about a matrix: as rows, or as columns, or as a single block.

The simplest operations on matrices are addition and scalar multiplication. Addition is as follows,

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad A^{\prime}=\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right) \quad \Longrightarrow \quad A+A^{\prime}=\left(\begin{array}{ll}
a+a^{\prime} & b+b^{\prime} \\
c+c^{\prime} & d+d^{\prime}
\end{array}\right)
$$

and scalar multiplication is as follows,

$$
t A=\left(\begin{array}{cc}
t a & t b \\
t c & t d
\end{array}\right)
$$

The transpose A^{t} of the matrix A is

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \Longrightarrow \quad A^{t}=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

Then the rows of A^{t} are the columns of A.
Let $w=(x, y)$ be a vector. We now explain how to multiply the matrix A by the vector w. The result is then another vector $A w$. This is called right multiplication.

To do this, we write A as rows $A=\binom{u}{v}$, then use the dot product,

$$
A w=(u \cdot w, v \cdot w)=(a x+b y, c x+d y)
$$

Notice $A w$ is a vector. When multiplying this way, one often writes

$$
A w=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y},
$$

and we call w and $A w$ column vectors.
This terminology is introduced to keep things consistent: It's always row-times-column with row on the left and column on the right. Nevertheless, a vector, a row vector, and a column vector are all the same thing, just a vector.

Just like we can multiply matrices and vectors, we can also multiply two matrices A and A^{\prime} and obtain a product $A A^{\prime}$. Following the row-column rule above, we write $A=\binom{u}{v}$ as rows and $A^{\prime}=\left(u^{\prime}, v^{\prime}\right)$ as columns to obtain

$$
A A^{\prime}=\left(\begin{array}{cc}
u \cdot u^{\prime} & u \cdot v^{\prime} \\
u^{\prime} \cdot v & u^{\prime} \cdot v^{\prime}
\end{array}\right) .
$$

If we do this the other way, we obtain

$$
A^{\prime} A=\left(\begin{array}{cc}
u^{\prime} \cdot u & u^{\prime} \cdot v \\
u \cdot v^{\prime} & u \cdot v
\end{array}\right),
$$

so

$$
A A^{\prime} \neq A^{\prime} A
$$

鉬

A rotation in the plane is the matrix

$$
U=U(\theta)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Here θ is the angle of rotation. By the trigonometric addition formulas (1.5.5),

$$
\begin{aligned}
U(\theta) U\left(\theta^{\prime}\right) & =\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
\cos \theta^{\prime} & -\sin \theta^{\prime} \\
\sin \theta^{\prime} & \cos \theta^{\prime}
\end{array}\right) \\
& =\left(\begin{array}{cc}
\cos \left(\theta+\theta^{\prime}\right) & -\sin \left(\theta+\theta^{\prime}\right) \\
\sin \left(\theta+\theta^{\prime}\right) & \cos \left(\theta+\theta^{\prime}\right)
\end{array}\right)=U\left(\theta+\theta^{\prime}\right)
\end{aligned}
$$

This says rotating by θ^{\prime} followed by rotating by θ is the same as rotating by $\theta+\theta^{\prime}$.

There is a special matrix I, the identity matrix,

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

The matrix I satisfies

$$
A I=I A=A
$$

for any matrix A.
Also, for each matrix A with $\operatorname{det}(A) \neq 0$, the matrix

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)=\left(\begin{array}{cc}
\frac{d}{a d-b c} & \frac{-b}{a d-b c} \\
\frac{-c}{a d-b c} & \frac{a d-b c}{a d-b}
\end{array}\right)
$$

is the inverse of A. The inverse matrix satisfies

$$
A A^{-1}=A^{-1} A=I
$$

The inverse reverses the order of the product,

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

The transpose also reverses the order of a product,

$$
(A B)^{t}=B^{t} A^{t}
$$

Using matrix-vector multiplication, we can rewrite (1.4.11) as

$$
A v=w
$$

where

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad v=\binom{x}{y}, \quad w=\binom{e}{f} .
$$

Then the solution (1.4.12) can be rewritten

$$
v=A^{-1} w
$$

where A^{-1} is the inverse matrix. We study inverse matrices in depth in $\S 2.3$.
The matrix (1.4.10) is symmetric if $b=c$. A symmetric matrix looks like

$$
Q=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) .
$$

A general matrix A consists of four numbers a, b, c, d, and a symmetric matrix Q consists of three numbers a, b, c. A matrix Q is symmetric when

$$
Q^{t}=Q
$$

Let $A=(u, v)$ be a 2×2 matrix with columns u, v. Then u, v are the rows of $A^{t}=\binom{u}{v}$. Since matrix multiplication is row \times column,

$$
A^{t} A=\binom{u}{v}\left(\begin{array}{ll}
u & v
\end{array}\right)=\left(\begin{array}{ll}
u \cdot u & u \cdot v \\
v \cdot u & v \cdot v
\end{array}\right) .
$$

Now suppose $A^{t} A=I$. Then $u \cdot u=1=v \cdot v$ and $u \cdot v=0$, so u and v are orthogonal unit vectors. Such vectors are called orthonormal. We have shown

Orthogonal Matrices

Let A be a matrix. Then $A^{t} A=I$ iff the columns of A are orthonormal, and $A A^{t}=I$ iff the rows of A are orthonormal.

The second statement follows by applying the first to A^{t} instead of A. A matrix U is orthogonal if

$$
U^{t} U=I=U U^{t}
$$

Thus a matrix is orthogonal iff its rows are orthonormal, and its columns are orthonormal.

Now we introduce the tensor product. If $u=(a, b)$ and $v=(c, d)$ are vectors, their tensor product is the matrix

$$
u \otimes v=\left(\begin{array}{ll}
a c & a d \\
b c & b d
\end{array}\right)=\left(\begin{array}{ll}
c u & d u
\end{array}\right)=\binom{a v}{b v} .
$$

Here we wrote $u \otimes v$ as a single block, and also in terms of rows and columns.
If we do this the other way, we get

$$
v \otimes u=\left(\begin{array}{cc}
c a & c b \\
d a & d b
\end{array}\right)
$$

so

$$
(u \otimes v)^{t}=v \otimes u
$$

When $u=v, u \otimes v=v \otimes v$ is a symmetric matrix.
Here is code for tensor.

```
from numpy import *
def tensor(u,v):
    return array([ [ a*b for b in v] for a in u ])
```

The trace of a matrix A is the sum of the diagonal entries,

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \Longrightarrow \quad \operatorname{trace}(A)=a+d
$$

The determinant of $u \otimes v$ is zero,

$$
\operatorname{det}(u \otimes v)=0
$$

This is true no matter what the vectors u and v are. Check this yourself.
Notice by definition of $u \otimes v$,

$$
\begin{equation*}
\operatorname{trace}(u \otimes v)=u \cdot v, \quad \text { and } \quad \operatorname{trace}(v \otimes v)=|v|^{2} . \tag{1.4.13}
\end{equation*}
$$

The basic property of tensor product is

Tensor Product Identity

If $A=u \otimes v$, then

$$
\begin{equation*}
A w=(u \otimes v) w=(v \cdot w) u \tag{1.4.14}
\end{equation*}
$$

This can be checked by writing out both sides in detail.
Now let

$$
Q=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

be a symmetric matrix and let $v=(x, y)$. Then

$$
Q v=(a x+b y, b x+c y)
$$

so

$$
v \cdot Q v=(x, y) \cdot(a x+b y, b x+c y)=a x^{2}+2 b x y+c y^{2} .
$$

This is the quadratic form associated to the matrix Q.

Quadratic Form

If

$$
Q=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \quad \text { and } \quad v=(x, y)
$$

then

$$
v \cdot Q v=a x^{2}+2 b x y+c y^{2} .
$$

When Q is the identity

$$
Q=I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

then the quadratic function is $x^{2}+y^{2}$:

$$
Q=I \quad \Longrightarrow \quad v \cdot Q v=x^{2}+y^{2} .
$$

When Q is diagonal,

$$
Q=\left(\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right) \quad \Longrightarrow \quad v \cdot Q v=a x^{2}+c y^{2}
$$

An important case is when $Q=u \otimes u$. In this case, by (1.4.14),

Quadratic Forms of Tensors

If $Q=u \otimes u$, then

$$
\begin{equation*}
v \cdot Q v=v \cdot(u \otimes u) v=(u \cdot v)^{2} \tag{1.4.15}
\end{equation*}
$$

1.5 Complex Numbers

This section is a brief review of complex numbers, for use in later sections. In $\S 1.4$, we studied points in two dimensions, and we saw how points can be added and subtracted. In $\S 2.1$, we study points in any number of dimensions, and there we also add and subtract points.

In two dimensions, each point has a shadow (Figure 1.13). By stacking shadows, points in the plane can be multiplied and divided (Figure 1.22). In this sense, points in the plane behave like numbers, because they follow the usual rules of arithmetic.

Figure 1.22: Multiplying and dividing points on the unit circle.

This ability of points in the plane to follow the usual rules of arithmetic is unique to one and two dimensions, and not present in any other dimension.

When thought of in this manner, points in the plane are called complex numbers, and the plane is the complex plane.

To define multiplication of points, let $P=(x, y)$ and $P^{\prime}=\left(x^{\prime}, y^{\prime}\right)$ be points on the unit circle. Stack the shadow of P^{\prime} on top of the shadow of P, as in Figure 1.22. Here is how one does this without any angle measurement: Mark $Q=x^{\prime} P$ at distance x^{\prime} along the vector $O P$ joining O and P, and draw the circle with radius y^{\prime} and center Q. Then this circle intersects the unit circle at two points, both called $P^{\prime \prime}$.

We think of the first point $P^{\prime \prime}$ as the result of multiplying P and P^{\prime}, and we write $P^{\prime \prime}=P P^{\prime}$, and we think of the second point $P^{\prime \prime}$ as the result of dividing P by P^{\prime}, and we write $P^{\prime \prime}=P / P^{\prime}$. Then we have

Multiplication and Division of Points

For $P=(x, y)$ and $P^{\prime}=\left(x^{\prime}, y^{\prime}\right)$ on the unit circle, when $x^{\prime} y^{\prime} \neq 0$,

$$
\begin{align*}
& P^{\prime \prime}=P P^{\prime}=\left(x x^{\prime}-y y^{\prime}, x^{\prime} y+x y^{\prime}\right), \tag{1.5.1}\\
& P^{\prime \prime}=P / P^{\prime}=\left(x x^{\prime}+y y^{\prime}, x^{\prime} y-x y^{\prime}\right) .
\end{align*}
$$

To derive (1.5.1), let $P^{\perp}=(-y, x)$ (" P-perp"). Then

$$
\begin{aligned}
& x^{\prime} P+y^{\prime} P^{\perp}=\left(x^{\prime} x, x^{\prime} y\right)+\left(-y^{\prime} y, y^{\prime} x\right)=\left(x x^{\prime}-y y^{\prime}, x^{\prime} y+x y^{\prime}\right), \\
& x^{\prime} P-y^{\prime} P^{\perp}=\left(x^{\prime} x, x^{\prime} y\right)-\left(-y^{\prime} y, y^{\prime} x\right)=\left(x x^{\prime}+y y^{\prime}, x^{\prime} y-x y^{\prime}\right)
\end{aligned}
$$

so (1.5.1) is equivalent to

$$
\begin{equation*}
P^{\prime \prime}=x^{\prime} P \pm y^{\prime} P^{\perp} . \tag{1.5.2}
\end{equation*}
$$

To establish (1.5.2), since $P^{\prime \prime}$ is on the circle of center Q and radius y^{\prime}, we may write $P^{\prime \prime}=Q+y^{\prime} R$, for some point R on the unit circle (see §1.4).

Interpreting points as vectors, and using (1.4.8), $P^{\prime \prime}=x^{\prime} P+y^{\prime} R$ is on the unit circle iff

$$
\begin{aligned}
1=\left|x^{\prime} P+y^{\prime} R\right|^{2} & =\left|x^{\prime} P\right|^{2}+2 x^{\prime} P \cdot y^{\prime} R+\left|y^{\prime} R\right|^{2} \\
& =x^{\prime 2}|P|^{2}+2 x^{\prime} y^{\prime} P \cdot R+y^{\prime 2}|R|^{2} \\
& =x^{\prime 2}+y^{\prime 2}+2 x^{\prime} y^{\prime} P \cdot R \\
& =1+2 x^{\prime} y^{\prime} P \cdot R .
\end{aligned}
$$

But this happens iff $P \cdot R=0$, which happens iff $R= \pm P^{\perp}$ (Figure 1.21). This establishes (1.5.2).

More generally, if $r=|P|$ and $r^{\prime}=\left|P^{\prime}\right|$, let R be any point satisfying $|R|=r$. Then

$$
P^{\prime \prime}=Q+y^{\prime} R=x^{\prime} P+y^{\prime} R
$$

satisfies $\left|P^{\prime \prime}\right|=r r^{\prime}$ exactly when $R= \pm P^{\perp}$, leading to the two points in (1.5.1).

Let \bar{P} be the conjugate $(x,-y)$ of $P=(x, y)$. The first $P^{\prime \prime}$ is the product

$$
\begin{equation*}
P P^{\prime}=\left(x x^{\prime}-y y^{\prime}, x^{\prime} y+x y^{\prime}\right) \tag{1.5.3}
\end{equation*}
$$

but the second $P^{\prime \prime}$ is not division, it is the product ${ }^{2} P \bar{P}^{\prime}$ of P and \bar{P}^{\prime}.
Instead, the correct formula for division is given by

$$
\begin{equation*}
P / P^{\prime}=\frac{1}{r^{\prime 2}} P \bar{P}^{\prime}=\frac{1}{x^{\prime 2}+y^{\prime 2}}\left(x x^{\prime}+y y^{\prime}, x^{\prime} y-x y^{\prime}\right) \tag{1.5.4}
\end{equation*}
$$

When $r^{\prime}=1$, (1.5.4) reduces to the corresponding formula in (1.5.1).
With this understood, it is easily checked that division undoes multiplication,

$$
\left(P / P^{\prime}\right) P^{\prime}=P
$$

In fact, one can check that multiplication and division as defined by (1.5.3) and (1.5.4) follow the usual rules of arithmetic.

It is natural to identify points on the horizontal axis with real numbers, because, using (1.5.1), $z=(x, 0)$ and $z^{\prime}=\left(x^{\prime}, 0\right)$ implies
$z+z^{\prime}=(x, 0)+\left(x^{\prime}, 0\right)=\left(x+x^{\prime}, 0\right), \quad z z^{\prime}=\left(x x^{\prime}-00, x 0+x^{\prime} 0\right)=\left(x x^{\prime}, 0\right)$.
Because of this, we can write $z=x$ instead of $z=(x, 0)$, this only for points in the plane, and we call the horizontal axis the real axis.

[^1]Similarly, let $i=(0,1)$. Then the point i is on the vertical axis, and, using (1.5.1), one can check

$$
i x=(0,1)(x, 0)=(-0, x)=x^{\perp}
$$

Thus the vertical axis consists of all points of the form $i x$. These are called imaginary numbers, and the vertical axis is the imaginary axis.

Using i, any point $P=(x, y)$ may be written

$$
P=x+i y
$$

since $x+i y=(x, 0)+(y, 0)(0,1)=(x, 0)+(0, y)=(x, y)$. This leads to Figure 1.23. In this way, real numbers x are considered complex numbers with zero imaginary part, $x=x+0 i$.

Figure 1.23: Complex numbers

Since by (1.5.1), $i^{2}=(0,1)^{2}=(-1,0)=-1$, we have

Square Root of -1

The complex number i satisfies $i^{2}=-1$.

When thinking of points in the plane as complex numbers, it is traditional to denote them by z instead of P. By (1.5.1), we have

$$
z=x+i y, \quad z^{\prime}=x^{\prime}+i y^{\prime} \quad \Longrightarrow z z^{\prime}=\left(x x^{\prime}-y y^{\prime}\right)+i\left(x^{\prime} y+x y^{\prime}\right)
$$

and

$$
\frac{z}{z^{\prime}}=\frac{x+i y}{x^{\prime}+i y^{\prime}}=\frac{\left(x x^{\prime}+y y^{\prime}\right)+i\left(x^{\prime} y-x y^{\prime}\right)}{x^{\prime 2}+y^{\prime 2}}
$$

In particular, one can always "move" the i from the denominator by the formula

$$
\frac{1}{z}=\frac{1}{x+i y}=\frac{x-i y}{x^{2}+y^{2}}=\frac{\bar{z}}{|z|^{2}}
$$

Here $x^{2}+y^{2}=r^{2}=|z|^{2}$ is the absolute value squared of z, and \bar{z} is the conjugate of z.

Let $r, r^{\prime}, r^{\prime \prime}$ and $\theta, \theta^{\prime}, \theta^{\prime \prime}$ be the polar coordinates of $P, P^{\prime}, P^{\prime \prime}=P P^{\prime}$ (see Figure 1.16). Then Figure 1.22 suggests $\theta^{\prime \prime}=\theta+\theta^{\prime}$. Using multiplication of points (1.5.1) together with his bisection method, Archimedes[10] defined angle measure θ numerically and derived $\theta^{\prime \prime}=\theta+\theta^{\prime}$.

By elementary algebra,

$$
\left(x^{2}+y^{2}\right)\left(x^{\prime 2}+y^{\prime 2}\right)=\left(x x^{\prime}-y y^{\prime}\right)^{2}+\left(x^{\prime} y+x y^{\prime}\right)^{2} .
$$

Since this implies $r^{\prime \prime 2}=r^{2} r^{\prime 2}$, we conclude

Polar Coordinates of Complex Numbers

If (r, θ) and $\left(r^{\prime}, \theta^{\prime}\right)$ are the polar coordinates of complex numbers P and P^{\prime}, and $\left(r^{\prime \prime}, \theta^{\prime \prime}\right)$ are the polar coordinates of the product $P^{\prime \prime}=P P^{\prime}$, then

$$
r^{\prime \prime}=r r^{\prime} \quad \text { and } \quad \theta^{\prime \prime}=\theta+\theta^{\prime}
$$

From this and (1.5.1), using $(x, y)=(\cos \theta, \sin \theta),\left(x^{\prime}, y^{\prime}\right)=\left(\cos \theta^{\prime}, \sin \theta^{\prime}\right)$, we have the addition formulas

$$
\begin{align*}
& \sin \left(\theta+\theta^{\prime}\right)=\sin \theta \cos \theta^{\prime}+\cos \theta \sin \theta^{\prime} \\
& \cos \left(\theta+\theta^{\prime}\right)=\cos \theta \cos \theta^{\prime}-\sin \theta \sin \theta^{\prime} \tag{1.5.5}
\end{align*}
$$

For example, if $\omega=\cos \theta+i \sin \theta$, then the polar coordinates of ω are $r=1$ and θ. It follows the polar coordinates of ω^{2} are $r=1$ and 2θ, so $\omega^{2}=\cos (2 \theta)+i \sin (2 \theta)$.

By the same logic, for any power k, the polar coordinates of ω^{k} are $r=1$ and $k \theta$, so $\omega^{k}=\cos (k \theta)+i \sin (k \theta)$.

When $P=(x, y)=x+i y$ is thought of as a complex number, r is called the absolute value of P, and written $r=|P|$. Then $r=\sqrt{x^{2}+y^{2}}$ and

$$
P=x+i y=r \cos \theta+i r \sin \theta=r(\cos \theta+i \sin \theta) .
$$

for any complex number P.

We can reverse the logic in the previous paragraph to compute square roots. Let P be any point in the plane. We define the square root of P to be a point Q satisfying $Q^{2}=P$. In this case, we write $Q=\sqrt{P}$. If Q is a square root, so is $-Q$, so there are two square roots $\pm Q= \pm \sqrt{P}$.

The formula for $Q=\sqrt{P}$ is

$$
P=(x, y) \quad \Longrightarrow \quad \sqrt{P}= \pm\left(\frac{r+x}{\sqrt{2 r+2 x}}, \frac{y}{\sqrt{2 r+2 x}}\right)
$$

This formula is valid as long as $x \neq-r$, and can checked directly by checking $Q^{2}=P$.

When P is on the unit circle, $r=1$, so the formula reduces to

$$
\sqrt{P}= \pm\left(\frac{1+x}{\sqrt{2+2 x}}, \frac{y}{\sqrt{2+2 x}}\right) .
$$

鏤車

We will need the roots of unity in $\S 3.2$. This generalizes square roots, cube roots, etc.

A point ω is a root of unity if $\omega^{d}=1$ for some power d. If d is the power, we say ω is a d-th root of unity.

For example, the square roots of unity are ± 1, since $(\pm 1)^{2}=1$. Here we have

$$
1=\cos 0+i \sin 0, \quad-1=\cos \pi+i \sin \pi
$$

The fourth roots of unity are $\pm 1, \pm i$, since $(\pm 1)^{4}=1,(\pm i)^{4}=1$. Here we have

$$
\begin{aligned}
1 & =\cos 0+i \sin 0 \\
i & =\cos (\pi / 2)+i \sin (\pi / 2) \\
-1 & =\cos \pi+i \sin \pi \\
-i & =\cos (3 \pi / 2)+i \sin (3 \pi / 2)
\end{aligned}
$$

In general, the roots of unity are denoted by powers of ω, so the square roots of unity are 1 and $\omega=-1$, and the fourth roots of unity are $1, \omega=i$, $\omega^{2}=-1, \omega^{3}=-i$.

Let $\omega=\cos \theta+i \sin \theta$. Since $1=\cos (2 \pi)+i \sin (2 \pi)$ and $\omega^{k}=\cos (k \theta)+$ $i \sin (k \theta)$, a d-th root of unity ω satisfies

$$
\begin{equation*}
\omega=\cos (2 \pi / d)+i \sin (2 \pi / d) \tag{1.5.6}
\end{equation*}
$$

$\omega^{2}=1$

$\omega^{3}=1$

$\omega^{4}=1$

Figure 1.24: The second, third, and fourth roots of unity
If $\omega^{d}=1$, then

$$
\left(\omega^{k}\right)^{d}=\left(\omega^{d}\right)^{k}=1^{k}=1
$$

With ω given by (1.5.6), this implies

$$
1, \omega, \omega^{2}, \ldots, \omega^{d-1}
$$

are the d-th roots of unity.
If we set

$$
\omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2}=\cos (2 \pi / 3)+i \sin (2 \pi / 3)
$$

then a calculation shows

$$
1, \quad \omega, \quad \omega^{2}=-\frac{1}{2}-i \frac{\sqrt{3}}{2}
$$

are the cube roots of unity,

$$
1^{3}=1, \quad \omega^{3}=1, \quad\left(\omega^{2}\right)^{3}=1
$$

Similarly, the fifth roots of unity are $1, \omega, \omega^{2}, \omega^{3}, \omega^{4}$, where

$$
\omega=-\frac{1}{4}+\frac{\sqrt{5}}{4}+i \sqrt{\frac{\sqrt{5}}{8}+\frac{5}{8}}=\cos (2 \pi / 5)+i \sin (2 \pi / 5)
$$

Figure 1.25: The fifth, sixth, and fifteenth roots of unity
Summarizing,

Roots of Unity

If

$$
\omega=\cos (2 \pi / d)+i \sin (2 \pi / d)
$$

the d-th roots of unity are

$$
1, \omega, \omega^{2}, \ldots, \omega^{d-1}
$$

The roots satisfy

$$
\omega^{k}=\cos (2 \pi k / d)+i \sin (2 \pi k / d), \quad k=0,1,2, \ldots, d-1
$$

Since $\omega^{d}=1$, one has, from Figures 1.24 and 1.25,

$$
\begin{equation*}
\omega^{k}+\omega^{-k}=\omega^{k}+\omega^{d-k}=2 \cos (2 \pi k / d), \quad k=0,1,2, \ldots, d-1 . \tag{1.5.7}
\end{equation*}
$$

Here is sympy code for the roots of unity. We use display instead of print to pretty-print the output.

```
from sympy import RootOf, symbols, init_printing
init_printing()
x = symbols('x')
d = 5
for k in range(d): display(RootOf(x**d - 1,k))
```

The fundamental theorem of algebra states that a polynomial $p(x)$ of degree d has d roots: There are d complex numbers $x_{0}, x_{1}, \ldots, x_{d-1}$ (not necessarily distinct) satisfying $p(x)=0$. In numpy, the roots of the polynomial $p(x)=a x^{2}+b x+c$ are returned by

```
import numpy as np
np.roots([a,b,c])
```

Since the cube roots of unity are the roots of the polynomial $p(x)=x^{3}-1$, the code

```
import numpy as np
np.roots([1,0,0, -1])
```

returns the cube roots

```
array([-0.5+0.8660254j, -0.5-0.8660254j, 1. +0.j ])
```


1.6 Mean and Covariance

Let $x_{1}, x_{2}, \ldots, x_{N}$ be a dataset in \mathbf{R}^{d}, and let x be any point in \mathbf{R}^{d}. The mean-square distance of x to D is

$$
M S D(x)=\frac{1}{N} \sum_{k=1}^{N}\left|x_{k}-x\right|^{2}
$$

Above $|x|$ stands for the length of the vector x, or the distance of the point x to the origin. When $d=2$ and we are in two dimensions, this was defined in §1.4. For general d, this is defined in §2.1. In this section we continue to focus on two dimensions $d=2$.

The mean or sample mean is

$$
m=\frac{1}{N} \sum_{k=1}^{N} x_{k}=\frac{x_{1}+x_{2}+\cdots+x_{N}}{N} .
$$

The mean m is a point in feature space. The first result is

Point of Best-fit

The mean is the point of best-fit: The mean minimizes the mean-square distance to the dataset (Figure 1.26).

Figure 1.26: MSD for the mean (green) versus MSD for a random point (red).
Using (1.4.8),

$$
|a+b|^{2}=|a|^{2}+2 a \cdot b+|b|^{2}
$$

for vectors a and b, it is easy to derive the above result. Insert $a=x_{k}-m$ and $b=m-x$ to get

$$
M S D(x)=M S D(m)+\frac{2}{N} \sum_{k=1}^{N}\left(x_{k}-m\right) \cdot(m-x)+|m-x|^{2} .
$$

Now the middle term vanishes

$$
\begin{aligned}
\frac{2}{N} \sum_{k=1}^{N}\left(x_{k}-m\right) \cdot(m-x) & =\frac{2}{N}\left(\left(\sum_{k=1}^{N} x_{k}\right)-N m\right) \cdot(m-x) \\
& =2(m-m) \cdot(m-x)=0
\end{aligned}
$$

so we have

$$
M S D(x)=M S D(m)+|m-x|^{2} \geq M S D(m)
$$

deriving the above result.
Here is the code for Figure 1.26.

```
from matplotlib.pyplot import *
from numpy import *
from numpy.random import random
N = 20
dataset = array([ [random(),random()] for _ in range(N) ])
m = mean(dataset,axis=0)
p = array([random(),random()])
grid()
X = dataset[:,0]
Y = dataset[:,1]
scatter(X,Y)
for v in dataset:
        plot([m[0],v[0]],[m[1],v[1]], c='green')
        plot([p[0],v[0]],[p[1],v[1]],c='red')
show()
```

The covariance of a dataset is defined in any dimension d. When $d=1$, the dataset consists of scalars $x_{1}, x_{2}, \ldots, x_{N}$, and the mean m is a scalar.

In this case, the covariance q is also a scalar,

$$
q=\frac{1}{N} \sum_{k=1}^{N}\left(x_{k}-m\right)^{2} .
$$

In the scalar case, the covariance is called the variance of the scalar dataset. In general, the covariance is a symmetric $d \times d$ matrix Q. When $d=1$, a 1×1 matrix is a scalar, $Q=(q)$, as above.

If the dataset $x_{1}, x_{2}, \ldots, x_{N}$ has mean m, we can center the dataset,

$$
v_{1}=x_{1}-m, v_{2}=x_{2}-m, \ldots, v_{N}=x_{N}-m .
$$

Then the covariance matrix is (see $\S 1.4$ for tensor product)

$$
\begin{equation*}
Q=\frac{v_{1} \otimes v_{1}+v_{2} \otimes v_{2}+\cdots+v_{N} \otimes v_{N}}{N} . \tag{1.6.1}
\end{equation*}
$$

The covariance is a symmetric $d \times d$ matrix. Here is code from scratch for the covariance matrix of a dataset.

```
from numpy import *
from numpy.random import random
def tensor(u,v):
    return array([ [ a*b for b in v] for a in u ])
N = 20
dataset = array([ [random(),random()] for _ in range(N) ])
m = mean(dataset,axis=0)
# center dataset
vectors = dataset - m
Q = mean([ tensor(v,v) for v in vectors ],axis=0)
```

For example, suppose $N=5$ and

$$
\begin{equation*}
x_{1}=(1,2), \quad x_{2}=(3,4), \quad x_{3}=(5,6), \quad x_{4}=(7,8), \quad x_{5}=(9,10) . \tag{1.6.2}
\end{equation*}
$$

Then $m=(5,6)$ and
$v_{1}=x_{1}-m=(-4,-4), \quad v_{2}=x_{2}-m=(-2,-2), \quad v_{3}=x_{3}-m=(0,0)$, $v_{4}=x_{4}-m=(2,2), \quad v_{5}=x_{5}-m=(4,4)$.

Since

$$
\begin{aligned}
(\pm 4, \pm 4) \otimes(\pm 4, \pm 4) & =\left(\begin{array}{ll}
16 & 16 \\
16 & 16
\end{array}\right) \\
(\pm 2, \pm 2) \otimes(\pm 2, \pm 2) & =\left(\begin{array}{ll}
4 & 4 \\
4 & 4
\end{array}\right) \\
(0,0) \otimes(0,0) & =\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

summing and dividing by N leads to the covariance

$$
Q=\left(\begin{array}{ll}
8 & 8 \\
8 & 8
\end{array}\right)
$$

Notice

$$
Q=8(1,1) \otimes(1,1)
$$

which, as we see below (§2.5), reflects the fact that the points of this dataset lies on a line. Here the line is $y=x+1$.

The covariance matrix as written in (1.6.1) is the biased covariance matrix. If the denominator is instead $N-1$, the matrix is the unbiased covariance matrix.

For datasets with large N, it doesn't matter, since N and $N-1$ are almost equal. For simplicity, here we divide by N, and we only consider the biased covariance matrix.

In practice, datasets are standardized before computing their covariance. The covariance of standardized datasets - the correlation matrix - is the same whether one starts with bias or not (§2.2).

In numpy, the Python covariance constructor is

```
from numpy import *
from numpy.random import random
N = 20
dataset = array([ [random(),random()] for _ in range(N) ])
Q = cov(dataset,bias=True,rowvar=False)
```

This returns the same result as the previous code for Q. Notice here there is no need to compute the mean, this is taken care of automatically. The
option bias=True indicates division by N, returning the biased covariance. To return the unbiased covariance and divide by $N-1$, change the option to bias=False, or remove it, since bias=False is the default.

The option rowvar=False indicates the vectors of the dataset are entered as rows; the dataset is then an $N \times 2$ matrix. If the transpose dataset. T is entered, the X samples and Y samples of the dataset are entered separately, and we insert rowvar=True, or remove it, since rowvar=True is the default.

```
Q = cov(dataset.T,bias=True)
```

to return the same result.
From (1.4.13), if Q is the covariance matrix (1.6.1),

$$
\begin{equation*}
\operatorname{trace}(Q)=\frac{1}{N} \sum_{k=1}^{N}\left|x_{k}-m\right|^{2} . \tag{1.6.3}
\end{equation*}
$$

We call (1.6.3) the total variance of the dataset. Thus the total variance equals $M S D(m)$.

In Python, the total variance is

```
from numpy import *
Q = cov(dataset.T,bias=True)
Q.trace()
```

We now project a 2 d dataset onto a line. Let u be a unit vector (a vector of length one, $|u|=1$), and let $v_{1}, v_{2}, \ldots, v_{N}$ be a 2 d dataset, assumed for simplicity to be centered. We wish to project this dataset onto the line through u. This will result in a 1 d dataset.

According to Figure 1.27, when a vector v is projected onto the line through u, the length of the projected vector $\operatorname{proj}_{u} v$ equals $|v| \cos \theta$, where θ is the angle between the vectors v and u. Since $|u|=1$, this length equals the dot product $v \cdot u$. Hence the projected vector is

$$
\underset{u}{\operatorname{proj} v}=(v \cdot u) u
$$

Applying this logic to each vector $v_{1}, v_{2}, \ldots, v_{N}$, we conclude: the projected dataset onto the line through u is the dataset

$$
\left(v_{1} \cdot u\right) u,\left(v_{2} \cdot u\right) u, \ldots,\left(v_{N} \cdot u\right) u
$$

These vectors are all multiples of u, as they should be. The projected dataset is in \mathbf{R}^{2}.

Alternately, discarding u and retaining the scalar coefficients, we have the one-dimensional dataset

$$
v_{1} \cdot u, v_{2} \cdot u, \ldots, v_{N} \cdot u
$$

This is the reduced dataset. The reduced dataset consists of scalars.
Since the vector u is fixed, the reduced dataset and the projected dataset contain the same information.

Figure 1.27: Projecting a vector v onto the line through u.
The mean of the reduced dataset is 0 , since

$$
\frac{v_{1} \cdot u+v_{2} \cdot u+\cdots+v_{N} \cdot u}{N}=\left(\frac{v_{1}+v_{2}+\cdots+v_{N}}{N}\right) \cdot u=0 \cdot u=0
$$

and the mean of the projected dataset is also 0 .
Since the reduced dataset is one-dimensional, its variance is

$$
q=\frac{1}{N} \sum_{k=1}^{N}\left(v_{k} \cdot u\right)^{2}
$$

But, according to (1.4.15), this equals

$$
q=\frac{1}{N} \sum_{k=1}^{N} u \cdot\left(v_{k} \otimes v_{k}\right) u=u \cdot Q u
$$

Because the reduced dataset and projected dataset are essentially the same, we also refer to q as the variance of the projected dataset. Thus we conclude (see $\S 1.4$ for $v \cdot Q v$)

Variance of Projected Dataset

Let Q be the covariance matrix of a dataset. Then the variance of the projected dataset onto the line through the vector u equals the quadratic function $u \cdot Q u$.

As a consequence, for any covariance Q, we see $u \cdot Q u \geq 0$ for any vector u, as this is the variance of the projected dataset. Projections are studied further in §2.7.

Going back to the dataset (1.6.2), $x_{k}-m, k=1,2,3,4,5$, are all multiples of $(1,1)$. If we select $u=(1,-1)$, then $\left(x_{k}-m\right) \cdot u=0$, so the covariance Q satisfies $u \cdot Q u=0$. This can also be seen by

$$
Q u=8((1,1) \otimes(1,1)) u=8(1,1) \cdot u(1,1)=0 .
$$

This shows that the dataset lies on the line passing through m and perpendicular to $(1,-1)$.

Now we describe the covariance ellipses associated to a given dataset (Figure 1.28).

The contour of all points x satisfying $x \cdot Q x=1$ is the covariance ellipsoid. In two dimensions $d=2$, this is the covariance ellipse. The contour of all points x satisfying $x \cdot Q^{-1} x=1$ is the inverse covariance ellipsoid. In two dimensions $d=2$, this is the inverse covariance ellipse

In two dimensions $d=2$, a covariance matrix has the form

$$
Q=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

If we write $u=(x, y)$ for a vector in the plane, the covariance ellipse is

$$
u \cdot Q u=a x^{2}+2 b x y+c y^{2}=1
$$

Figure1.28 displays examples of covariance ellipses (blue) and inverse covariance ellipses (red). When Q is diagonal, the lengths of the major and
minor axes of the inverse covariance ellipse equal $2 \sqrt{a}$ and $2 \sqrt{c}$, and the lengths of the major and minor axes of the covariance ellipse equal $2 / \sqrt{a}$ and $2 / \sqrt{c}$.

The covariance ellipse and inverse covariance ellipses described above are centered at the origin $(0,0)$. When a dataset has mean m and covariance Q, the ellipses are drawn centered at m, as in Figures 1.30, 1.31, and 1.32.

In particular, when $a=c$ and $b=0$, then $Q=a I$ is a multiple of the identity, the inverse covariance ellipse is the circle of radius \sqrt{a}, and the covariance ellipse is the circle of radius $1 / \sqrt{a}$.

Here is the code for Figure 1.28. The ellipses drawn here are centered at the origin.

```
from matplotlib.pyplot import *
from numpy import *
L, delta = 4, .1
x = arange(-L,L,delta)
y = arange(-L,L,delta)
X,Y = meshgrid(x, y)
a, b, c = 9, 0, 4
det = a*c - b**2
A, B, C = c/det, -b/det, a/det
def ellipse(a,b,c,levels,color):
    contour(X,Y,a*X**2 + 2*b*X*Y + c*Y**2,levels,colors=color)
grid()
ellipse(a,b,c,[1],'blue')
ellipse(A,B,C,[1],'red')
show()
```

This completes the discussion of covariance ellipses.

Figure 1.28: Covariance ellipses and inverse covariance ellipses.

Now we describe how to standardize datasets in \mathbf{R}^{2}. For datasets in \mathbf{R}^{d}, this is described in §2.2.

Remember, a dataset is a sequence of N points in a d-dimensional feature space. Restricting to the case $d=2$, a dataset is a sequence of x-coordinates and y-coordinates

$$
x_{1}, x_{2}, \ldots, x_{N}, \quad \text { and } \quad y_{1}, y_{2}, \ldots, y_{N}
$$

Suppose the mean of this dataset is $m=\left(m_{x}, m_{y}\right)$. Then, by the formula for tensor product, the covariance matrix is

$$
Q=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right),
$$

where
$a=\frac{1}{N} \sum_{k=1}^{N}\left(x_{k}-m_{x}\right)^{2}, \quad b=\frac{1}{N} \sum_{k=1}^{N}\left(x_{k}-m_{x}\right)\left(y_{k}-m_{y}\right), \quad c=\frac{1}{N} \sum_{k=1}^{N}\left(y_{k}-m_{y}\right)^{2}$.
From this, we see a is the variance of the x-features, and c is the variance of y-features. We also see b is a measure of the correlation between the x and y features.

Standardizing the dataset means to center the dataset and to place the x and y features on the same scale. For example, the x-features may be close
to their mean m_{x}, resulting in a small x variance a, while the y-features may be spread far from their mean m_{y}, resulting in a large y variance c.

When this happens, the different scales of x 's and y 's distorts the relation between them, and b may not accurately reflect the correlation. To correct for this, we center and re-scale

$$
x_{1}, x_{2}, \ldots x_{N} \quad \rightarrow \quad x_{1}^{\prime}=\frac{x_{1}-m_{x}}{\sqrt{a}}, x_{2}^{\prime}=\frac{x_{2}-m_{x}}{\sqrt{a}}, \ldots, x_{N}^{\prime}=\frac{x_{N}-m_{x}}{\sqrt{a}}
$$

and

$$
y_{1}, y_{2}, \ldots y_{N} \quad \rightarrow \quad y_{1}^{\prime}=\frac{y_{1}-m_{y}}{\sqrt{c}}, y_{2}^{\prime}=\frac{y_{2}-m_{y}}{\sqrt{c}}, \ldots, y_{N}^{\prime}=\frac{y_{N}-m_{y}}{\sqrt{c}}
$$

This results in a new dataset $v_{1}=\left(x_{1}^{\prime}, y_{1}^{\prime}\right), v_{2}=\left(x_{2}^{\prime}, y_{2}^{\prime}\right), \ldots, v_{N}=\left(x_{N}^{\prime}, y_{N}^{\prime}\right)$ that is centered,

$$
\frac{v_{1}+v_{2}+\cdots+v_{N}}{N}=0
$$

with each feature standardized to have unit variance,

$$
\frac{1}{N} \sum_{k=1}^{N}{x_{k}^{\prime}}^{2}=1, \quad \frac{1}{N} \sum_{k=1}^{N}{y_{k}^{\prime}}^{2}=1
$$

This is the standardized dataset.
Because of this, the covariance matrix of the standardized dataset has the form

$$
Q^{\prime}=\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)
$$

where

$$
\rho=\frac{1}{N} \sum_{k=1}^{N} x_{k}^{\prime} y_{k}^{\prime}=\frac{b}{\sqrt{a c}}=\frac{\sum_{k=1}^{N}\left(x_{k}-m_{x}\right)\left(y_{k}-m_{y}\right)}{\sqrt{\left(\sum_{k=1}^{N}\left(x_{k}-m_{x}\right)^{2}\right)\left(\sum_{k=1}^{N}\left(y_{k}-m_{y}\right)^{2}\right)}}
$$

is the Pearson correlation coefficient of the dataset. The matrix Q^{\prime} is the correlation matrix, or the standardized covariance matrix.

For example,

$$
Q=\left(\begin{array}{ll}
9 & 2 \\
2 & 4
\end{array}\right) \quad \Longrightarrow \quad \rho=\frac{b}{\sqrt{a c}}=\frac{1}{3} \quad \Longrightarrow \quad Q^{\prime}=\left(\begin{array}{cc}
1 & 1 / 3 \\
1 / 3 & 1
\end{array}\right)
$$

The correlation coefficient ρ ("rho") is always between -1 and 1 (this follows from the Cauchy-Schwarz inequality (1.4.5).

When $\rho= \pm 1$, the dataset samples are perfectly correlated and lie on a line passing through the mean. When $\rho=1$, the line has slope 1 , and when $\rho=-1$, the line has slope -1 . When $\rho=0$, the dataset samples are completely uncorrelated and are considered two independent one-dimensional datasets.

In Python numpy, the correlation matrix Q^{\prime} is returned by

```
from numpy import *
corrcoef(dataset.T)
```

Here again, we input the transpose of the dataset if our default is vectors as rows. Notice the $1 / N$ cancels in the definition of ρ. Because of this, corrcoef is the same whether we deal with biased or unbiased covariance matrices.

We say a unit vector u is best aligned or best-fit with the dataset if u maximizes the variance $v \cdot Q v$ over all unit vectors v,

$$
u \cdot Q u=\max _{|v|=1} v \cdot Q v
$$

We calculate the best-aligned unit vector. When a dataset is standardized, the variance of the dataset projected onto a vector $v=(x, y)$ equals

$$
v \cdot Q v=a x^{2}+2 b x y+c y^{2}=x^{2}+2 \rho x y+y^{2} .
$$

Since $v=(x, y)$ is a unit vector, we have $x^{2}+y^{2}=1$, so we can write $(x, y)=(\cos \theta, \sin \theta)$. Using the double-angle formula, we obtain

$$
v \cdot Q v=x^{2}+2 \rho x y+y^{2}=1+2 \rho \sin \theta \cos \theta=1+\rho \sin (2 \theta) .
$$

Since the sine function varies between +1 and -1 , we conclude the projected variance varies between

$$
1-\rho \leq v \cdot Q v \leq 1+\rho
$$

and

$$
\begin{array}{ll}
\theta=\frac{\pi}{4}, \quad v_{+}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \quad \Longrightarrow \quad v_{+} \cdot Q v_{+}=1+\rho \\
\theta=\frac{3 \pi}{4}, \quad v_{-}=\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \quad \Longrightarrow \quad v_{-} \cdot Q v_{-}=1-\rho
\end{array}
$$

Thus the best-aligned vector v_{+}is at 45°, and the worst-aligned vector is at 135° (Figure 1.29)

Actually, the above is correct only if $\rho>0$. When $\rho<0$, it's the other way. The correct answer is

$$
1-|\rho| \leq v \cdot Q v \leq 1+|\rho|,
$$

and $v_{ \pm}$must be switched when $\rho<0$. We study best-aligned vectors in \mathbf{R}^{d} in §3.2.

Figure 1.29: Covariance ellipse and incovariance ellipse.

Figure 1.30: A positively correlated dataset $\rho>0$.

Figure 1.31: A negatively correlated dataset $\rho<0$.

Here are two randomly generated datasets. For the dataset in Figure 1.30, the mean and covariance are

$$
(0.46563359,0.59153958) \quad\left(\begin{array}{rr}
0.09652275 & 0.00939796 \\
0.00939796 & 0.0674424
\end{array}\right) .
$$

For the dataset in Figure 1.31, the mean and covariance are

$$
(0.48785572,0.51945499) \quad\left(\begin{array}{rr}
0.08266583 & -0.00976249 \\
-0.00976249 & 0.08298294
\end{array}\right)
$$

Figure 1.32: Level contours of $v \cdot Q^{-1} v$.

In general, for non-standardized datasets, the projected variance $v \cdot Q v$ varies between two extremes $\lambda_{ \pm}$,

$$
\lambda_{-} \leq v \cdot Q v \leq \lambda_{+}, \quad|v|=1
$$

where $\lambda_{ \pm}$are given by

$$
\begin{equation*}
\lambda_{ \pm}=\frac{a+c}{2} \pm \sqrt{\left(\frac{a-c}{2}\right)^{2}+b^{2}} \tag{1.6.4}
\end{equation*}
$$

When the datset is standardized, as we saw above, $\lambda_{ \pm}=1 \pm|\rho|$.
The major axis of the inverse covariance ellipse $v \cdot Q^{-1} v=1$ has length $2 \sqrt{\lambda_{+}}$, and the minor axis has length $2 \sqrt{\lambda_{-}}$. These are the principal axes of the dataset.

When the dataset is not standardized, the best-aligned and worst-aligned vectors are

$$
\begin{equation*}
v_{+}=\left(-b, a-\lambda_{+}\right), \quad v_{-}=\left(-b, a-\lambda_{-}\right) . \tag{1.6.5}
\end{equation*}
$$

All this will discussed in detail in §3.2. In Figure 1.32, the level contours

$$
v \cdot Q^{-1} v=k, \quad k=\frac{1}{2}, 1, \frac{3}{2}, 2
$$

are drawn.
In three dimensions, when $d=3$, the ellipses are replaced by ellipsoids (Figure 1.33). In 3d, the inverse covariance ellipsoid and principal axes are displayed in Figure 1.33.

Figure 1.33: Ellipsoid and axes in 3d.

Here is code for Figures 1.30, 1.31, and 1.32. The code incorporates the formulas for $\lambda_{ \pm}$and $v_{ \pm}$.

```
from matplotlib.pyplot import *
from numpy import *
from numpy.random import *
N = 50
X = array([ random() for _ in range(N) ])
Y = array([ random() for _ in range(N) ])
scatter(X,Y,s=2)
```

```
m = mean([X,Y],axis=1)
Q = cov(X,Y,bias=True)
a, b, c = Q [0,0], Q[0,1], Q[1,1]
delta = . 01
x = arange(0,1,delta)
y = arange(0,1,delta)
X,Y = meshgrid(x, y)
def ellipse(a,b,c,d,e,levels,color):
    det = a*c - b**2
    A, B, C = c/det, -b/det, a/det
    # inverse covariance ellipse centered at (d,e)
    Z = A* (X-d)**2 + 2*B*(X-d)*(Y-e) + C* (Y-e)**2
    contour(X,Y,Z,levels,colors=color)
    for pm in [+1,-1]:
        lamda = (a+c)/2 + pm * sqrt(b**2 + (a-c)**2/4)
        sigma = sqrt(lamda)
        len = sqrt(b**2 +(a-lamda)**2)
        axesX = [d+sigma*b/len,d-sigma*b/len]
        axesY = [e-sigma*(a-lamda)/len,e+sigma*(a-lamda)/len]
        plot(axesX,axesY,linewidth=.5)
grid()
levels = [.5,1,1.5,2]
ellipse(a,b,c,*m,levels,'red')
show()
```


1.7 High Dimensions

Although not directly used in later material, this section is here to boost intuition about high dimensions.

Draw four disks inside a square, as in Figure 1.34. In Figure 1.34, the edge-length of the square is 4 , and the radius of each blue disk is 1 . Since the length of the diagonal of the square is $4 \sqrt{2}$, the radius of the red disk is

$$
\frac{1}{4}(4 \sqrt{2}-4)=\sqrt{2}-1
$$

Notice there are 4 blue disks.

Figure 1.34: Disks inside the square

The following code returns Figure 1.34.

```
from matplotlib.pyplot import *
from matplotlib import patches
from numpy import *
fig, axes = subplots()
square = Rectangle((-2,-2), 4, 4,color='lightblue')
circle1 = Circle((1, 1), radius=1, color='blue')
circle2 = Circle((-1, 1), radius=1, color='blue')
circle3 = Circle((1, -1), radius=1, color='blue')
circle4 = Circle((-1, -1), radius=1, color='blue')
circle = patches.Circle((0, 0), radius=sqrt(2)-1,
    \hookrightarrow color='red')
plot([-2, 2],[-2, 2],color='black')
axes.add_patch(square)
```

```
axes.add_patch(circle1)
axes.add_patch(circle2)
axes.add_patch(circle3)
axes.add_patch(circle4)
axes.add_patch(circle)
for pos in ['right', 'top', 'bottom', 'left']:
    gca().spines[pos].set_visible(False)
axis('equal')
show()
```


Figure 1.35: Balls inside the cube

Now we repeat this in three dimensions, obtaining Figure 1.35. Draw eight balls inside a cube, as in Figure 1.35.

Since the edge-length of the cube is 4 , the radius of each blue ball is 1 . Since the length of the diagonal of the cube is $4 \sqrt{3}$, the radius of the red ball is

$$
\frac{1}{4}(4 \sqrt{3}-4)=\sqrt{3}-1
$$

Notice there are 8 blue balls.
In two dimensions, when a region is scaled by a factor t, its area increases by the factor t^{2}. In three dimensions, when a region is scaled by a factor t, its volume increases by the factor t^{3}. We conclude: In d dimensions, when a region is scaled by a factor t, its (d-dimensional) volume increases by the factor t^{d}. This is called the scaling principle.

In d dimensions, the edge-length of the cube remains 4 , the radius of each blue ball remains 1 , and there are 2^{d} blue balls. Since the length of the diagonal of the cube is $4 \sqrt{d}$, the same calculation results in the radius of the red ball equal to $r=\sqrt{d}-1$.

By the scaling principle, the volume of the red ball equals r^{d} times the volume of the blue ball. We conclude the following:

- Since $r=\sqrt{d}-1=1$ exactly when $d=4$, we have: In four dimensions, the red ball and the blue balls are the same size.
- Since there are 2^{d} blue balls, the ratio of the volume of the red ball over the total volume of all the blue balls is $r^{d} / 2^{d}$.
- Since $r^{d}=2^{d}$ exactly when $r=2$, and since $r=\sqrt{d}-1=2$ exactly when $d=9$, we have: In nine dimensions, the volume of the red ball equals the sum total of the volumes of all blue balls.
- Since $r=\sqrt{d}-1>2$ exactly when $d>9$, we have: In ten or more dimensions, the red ball sticks out of the cube.
- Since the length of the semi-diagonal is $2 \sqrt{d}$, for any dimension d, the radius of the red ball $r=\sqrt{d}-1$ is less than half the length of the semi-diagonal. As the dimension grows without bound, the proportion of the diagonal covered by the red ball converges to $1 / 2$.

The code for Figure 1.35 is as follows. For 3d plotting, the module mayavi is better than matplotlib.

```
from mayavi.mlab import *
from numpy import *
from itertools import product
# run mayavi viewer inside notebook
init_notebook()
# clear any previously created
# mayavi scenes
clf()
# build sphere mesh
N = 40
theta = linspace(0,2*pi,N)
phi = linspace(0,pi,N)
theta,phi = meshgrid(theta,phi)
# spherical coordinates theta, phi
x = cos(theta)*sin(phi)
y = sin(theta)*sin(phi)
z = cos(phi)
# render ball
# here color is rgb triple of floats
def ball(a,b,c,r,color):
    return mesh(a + r*x,b + r*y, c + r*z,color=color)
pm1 = [-1,1]
for center in product(pm1,pm1,pm1):
        # blue balls: color (0,0,1)
        ball(*center,1,(0,0,1))
        # black wire cube: color (0,0,0)
        outline(color=(0,0,0))
# red ball: color (1,0,0)
ball(0,0,0,sqrt(3)-1, (1, 0,0))
```


Chapter 2

Linear Geometry

In $\S 1.4$, we reviewed the geometry of vectors in the plane. Now we study linear geometry in any dimension d.

The material in this chapter is usually referred to as Linear Algebra. We prefer the term Linear Geometry, to emphasize that the material is, like much of data science, geometric.

2.1 Vectors and Matrices

A vector is a list of scalars

$$
v=\left(t_{1}, t_{2}, \ldots, t_{d}\right) .
$$

The scalars are the components or the features of v. If there are d features, we say the dimension of v is d. We call v a d-dimensional vector.

A point x is also a list of scalars, $x=\left(t_{1}, t_{2}, \ldots, t_{d}\right)$. The relation between points x and vectors v is discussed in $\S 1.3$. The set of all d-dimensional vectors or points is d-dimensional space \mathbf{R}^{d}.

In Python, we use numpy or sympy for vectors and matrices. In Python, if L is a list, then numpy. array (L) or sympy.Matrix(L) return a vector or matrix.

```
from numpy import *
v = array([1, 2, 3])
v.shape
```

```
from sympy import *
v = Matrix([1, 2,3])
v.shape
```

The first v .shape returns (3,), and the second v . shape returns (3,1). In either case, v is a 3-dimensional vector.

Vectors are added component by component: With

$$
v=\left(t_{1}, t_{2}, \ldots\right) \quad \text { and } \quad v=\left(t_{1}^{\prime}, t_{2}^{\prime}, \ldots\right)
$$

we have

$$
v+v^{\prime}=\left(t_{1}+t_{1}^{\prime}, t_{2}+t_{2}^{\prime}, \ldots\right), \quad \text { and } \quad s v=\left(s t_{1}, s t_{2}, \ldots\right)
$$

Addition $v+v^{\prime}$ only works when v and v^{\prime} have the same shape.
The zero vector is the vector $0=(0,0,0, \ldots)$. The zero vector is the only vector satisfying $0+v=v=v+0$ for every vector v. Even though the zero scalar and the zero vector are distinct objects, we use 0 to denote both. A vector v is nonzero if v is not the zero vector.

In \mathbf{R}^{4}, the vectors

$$
e_{1}=(1,0,0,0), \quad e_{2}=(0,1,0,0), \quad e_{3}=(0,0,1,0), \quad e_{4}=(0,0,0,1)
$$

together are the standard basis. Similarly, in \mathbf{R}^{d}, we have the standard basis $e_{1}, e_{2}, \ldots, e_{d}$.

A matrix is a listing arranged in a rectangle of rows and columns. Specifically, an $N \times d$ matrix A has N rows and d columns,

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & \ldots a_{1 d} \\
a_{21} & a_{22} & \ldots a_{2 d} \\
\ldots & \ldots & \ldots \\
a_{N 1} & a_{N 2} & \ldots a_{N d}
\end{array}\right) .
$$

In Python, if L is a list of lists, then both array (L) and Matrix (L) return a matrix. The code

```
from numpy import *
A = array([[1,6,11],[2,7,12],[3,8,13],[4,9,14],[5,10,15]])
A.shape
from sympy import *
A = Matrix([[1,6,11], [2,7,12], [3,8,13],[4,9,14],[5,10,15]])
A.shape
```

returns (5,3), so A is a 5×3 matrix,

$$
A=\left(\begin{array}{ccc}
1 & 6 & 11 \\
2 & 7 & 12 \\
3 & 8 & 13 \\
4 & 9 & 14 \\
5 & 10 & 15
\end{array}\right)
$$

The transpose of a matrix A is the matrix $B=A^{t}$ resulting from turning A on its side, so

$$
B=A^{t}=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15
\end{array}\right)
$$

Note the transpose operation interchanges rows and columns: the rows of A^{t} are the columns of A. In both numpy or sympy, the transpose of A is A.T.

A d-dimensional vector v may be written as a $1 \times d$ matrix

$$
v=\left(\begin{array}{llll}
t_{1} & t_{2} & \ldots & t_{d}
\end{array}\right) .
$$

In this case, we call v a row vector.
An N-dimensional vector v may be written as a $N \times 1$ matrix

$$
v=\left(\begin{array}{c}
t_{1} \\
t_{2} \\
\ldots \\
t_{N}
\end{array}\right) .
$$

In this case, we call v a column vector.

We will be considering matrices with different properties, and we use the following notation

- A, B : any matrix
- U, V : orthonormal rows or orthonormal columns
- Q : symmetric matrix
- P : projections

Vectors $v_{1}, v_{2}, \ldots, v_{d}$ with the same dimension may be horizontally stacked as columns of a matrix,

$$
A=\left(\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{d}
\end{array}\right) .
$$

Similarly, vectors $v_{1}, v_{2}, \ldots, v_{N}$ with the same dimension may be vertically stacked as rows of a matrix,

$$
A=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\ldots \\
v_{N}
\end{array}\right)
$$

By default, sympy creates column vectors. Because of this, it is easiest to build matrices as columns,

```
from sympy import *
# column vectors
u = Matrix([1,2,3,4,5])
v = Matrix([6,7,8,9,10])
w = Matrix([11,12,13,14,15])
# 5x3 matrix
```

```
A = Matrix.hstack(u,v,w)
# column vector
b = Matrix([1,1,1,1,1])
# 5x4 matrix
M = Matrix.hstack(A,b)
```

In general, for any sympy matrix A, column vectors can be hstacked and row vectors can be vstacked. For any matrix A, the code

```
from sympy import *
A == Matrix.hstack(*[A.col(j) for j in range(A.cols)])
```

returns True. Note we use the unpacking operator $*$ to unpack the list, before applying hstack.

In numpy, there is hstack and vstack, but we prefer column_stack and row_stack, so the code

```
from numpy import *
A == row_stack([ row for row in A ])
A == column_stack([ col for col in A.T ])
```

returns True. In numpy, the input is a list, there is no unpacking.

In numpy, a matrix A is a list of rows, so

```
A == array([ row for row in A ])
A.T == array([ col for col in A.T ])
```

both return True. Here col refers to rows of A^{t}, hence refers to the columns of A.

The number of rows is len(A), and the number of columns is len(A.T). To access row i, use $\mathrm{A}[\mathrm{i}]$. To access column j, access row j of the transpose, A.T[j]. To access the j-th entry in row i, use $\mathrm{A}[i, j]$.

In sympy, the number of rows in a matrix A is A.rows, and the number of columns is A.cols, so

```
A.shape == (A.rows,A.cols)
```

returns True. To access row i, use A.row(i). Similarly, to access column j, use A.col(j). So,

```
A == Matrix([ A.row(i) for i in range(A.rows) ])
A.T == Matrix([A.col(j) for j in range(A.cols) ])
```

both return True.
A matrix is square if the number of rows equals the number of columns, $N=d$. A matrix is diagonal if it looks like one of these

$$
\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & d
\end{array}\right), \quad \text { or } \quad\left(\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0
\end{array}\right), \quad \text { or } \quad\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right),
$$

where some of the numbers on the diagonal a, b, c, d may be zero.

A dataset is a collection of points $x_{1}, x_{2}, \ldots, x_{N}$ in \mathbf{R}^{d}. After centering the mean to the origin (§1.3), the dataset becomes a collection of vectors v_{1}, v_{2}, \ldots, v_{N}. Usually the vectors are presented as the rows of an $N \times d$ matrix A. Corresponding to this, datasets are often provided as a CSV file.

The matrix A is the dataset matrix. In excel, this is called a spreadsheet. In SQL, this is called a table. In numpy, it's an array. In pandas, it's a dataframe. So, effectively,

$$
\text { matrix }=\text { dataset }=\text { CSV file }=\text { spreadsheet }=\text { table }=\text { array }=\text { dataframe }
$$

Matrices consisting of numbers are added and multiplied by scalars as follows. With

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & \ldots a_{1 d} \\
a_{21} & a_{22} & \ldots a_{2 d} \\
\ldots & \ldots & \ldots \\
a_{N 1} & a_{N 2} & \ldots a_{N d}
\end{array}\right) \quad \text { and } \quad A^{\prime}=\left(\begin{array}{ccc}
a_{11}^{\prime} & a_{12}^{\prime} & \ldots a_{1 d}^{\prime} \\
a_{21}^{\prime} & a_{22}^{\prime} & \ldots a_{2 d}^{\prime} \\
\ldots & \ldots & \ldots \\
a_{N 1}^{\prime} & a_{N 2}^{\prime} & \ldots a_{N d}^{\prime}
\end{array}\right),
$$

we have

$$
A+A^{\prime}=\left(\begin{array}{ccc}
a_{11}+a_{11}^{\prime} & a_{12}+a_{12}^{\prime} & \ldots a_{1 n}+a_{1 d}^{\prime} \\
a_{21}+a_{21}^{\prime} & a_{22}+a_{22}^{\prime} & \ldots a_{2 n}+a_{2 d}^{\prime} \\
\ldots & \ldots & \ldots \\
a_{N 1}+a_{N 1}^{\prime} & a_{N 2}+a_{N 2}^{\prime} & \ldots a_{N d}+a_{N d}^{\prime}
\end{array}\right)
$$

and

$$
t A=\left(\begin{array}{ccc}
t a_{11} & t a_{12} & \ldots t a_{1 d} \\
t a_{21} & t a_{22} & \ldots t a_{2 d} \\
\ldots & \ldots & \ldots \\
t a_{N 1} & t a_{N 2} & \ldots t a_{N d}
\end{array}\right) .
$$

$A+A^{\prime}$ is the result of matrix addition, and $t A$ is the result of matrix scaling. Matrices may be added only if they have the same shape.

In Python, matrix scaling and matrix addition are $a * A$ and $A+B$. The code

```
from sympy import *
A = zeros(2,3)
B = ones(2,2)
C = Matrix([[1,2],[3,4]])
D = B + C
E = 5 * C
F = eye(4)
A, B, C, D, E, F
```

returns

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right),\left(\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right),\left(\begin{array}{cc}
5 & 10 \\
15 & 20
\end{array}\right),\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Diagonal matrices are constructed using diag. The code

```
from sympy import *
A = diag(1,2,3,4)
B = diag(-1, ones(2, 2), Matrix([5, 7, 5]))
A, B
```

returns

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right),\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 5 \\
0 & 0 & 0 & 7 \\
0 & 0 & 0 & 5
\end{array}\right) .
$$

It is straightforward to convert back and forth between numpy and sympy. In the code

```
from sympy import *
A = diag(1,2,3,4)
from numpy import *
B = array(A)
C = Matrix(B)
```

A and C are sympy.Matrix, and B is numpy.array. numpy is for numerical computations, and sympy is for algebraic/symbolic computations.

For the Iris dataset, the mean (§1.3) is given by the following code.

```
from sklearn import datasets
```

iris = datasets.load_iris()

```
dataset = iris["data"]
```

To center dataset, we compute the mean and subtract it,

```
m = mean(dataset,axis=0)
vectors = dataset - m
```

The mean is $m=(5.84,3.05,3.76,1.2)$.

2.2 Products

Let t be a scalar, u, v, w be vectors, and let A, B be matrices. We already know how to compute $t u, t v$, and $t A, t B$. In this section, we compute the dot product $u \cdot v$, the matrix-vector product $A v$, and the matrix-matrix product $A B$.

These products are not defined unless the dimensions "match". In numpy, these products are written dot; in sympy, these products are written $*$.

In $\S 1.4$, we defined the dot product in two dimensions. We now generalize to any dimension d. Suppose u, v are vectors in \mathbf{R}^{d}. Then their dot product $u \cdot v$ is the scalar obtained by multiplying corresponding features and then summing the products. This only works if the dimensions of u and v agree. In other words, if $u=\left(s_{1}, s_{2}, \ldots, s_{d}\right)$ and $v=\left(t_{1}, t_{2}, \ldots, t_{d}\right)$, then

$$
\begin{equation*}
u \cdot v=s_{1} t_{1}+s_{2} t_{2}+\cdots+s_{d} t_{d} . \tag{2.2.1}
\end{equation*}
$$

It's best to think of this as "row-times-column" multiplication,

$$
u \cdot v=\left(\begin{array}{lll}
s_{1} & s_{2} & s_{3}
\end{array}\right)\left(\begin{array}{l}
t_{1} \\
t_{2} \\
t_{3}
\end{array}\right)=s_{1} t_{1}+s_{2} t_{2}+s_{3} t_{3} .
$$

As in $\S 1.4$, we always have rows on the left, and columns on the right.
In Python,
from numpy import *
$u=\operatorname{array}([1,2,3])$

```
v = array([4, 5, 6])
dot(u,v) == 1*4 + 2*5 + 3*6
from sympy import *
u = Matrix([1,2,3])
v = Matrix([4, 5, 6])
u.T * v == 1*4 + 2*5 + 3*6
```

both return True.
For clarity, sometimes we write (u.T)*v; the parentheses don't change anything. Note in sympy, we take the transpose when multiplying, since vectors are by default column vectors, and it's always row \times column .

As in two dimensions, the length or norm or magnitude of a vector v is the square root of the dot product $v \cdot v$,

$$
|v|=\sqrt{v \cdot v}
$$

In Python, the length of a vector v is

```
from numpy import *
sqrt(dot(v,v))
from sympy import *
sqrt(v.T * v)
```

Notice numpy returns a scalar, while sympy returns a 1×1 matrix.
A vector is a unit vector if its length equals 1 . When $|v|=0$, all the features of v equal zero. It follows the zero vector is the only vector with zero length. All other vectors have positive length.

Let v be any nonzero vector. By dividing v by its length $|v|$, we obtain a unit vector $u=v /|v|$.

As in §1.4,

Dot Product

The dot product $u \cdot v(2.2 .1)$ satisfies

$$
\begin{equation*}
u \cdot v=|u||v| \cos \theta, \tag{2.2.2}
\end{equation*}
$$

where θ is the angle between u and v.
In two dimensions, this was equation (1.4.4) in §1.4. Since any two vectors lie in a two-dimensional plane, this remains true in any dimension.

Based on this, we can compute the angle θ,

$$
\cos \theta=\frac{u \cdot v}{\sqrt{|u||v|}}=\frac{u \cdot v}{\sqrt{(u \cdot u)(v \cdot v)}} .
$$

Here is code for the angle θ,

```
from numpy import *
def angle(u,v):
    a = dot(u,v)
    b = dot(u,u)
    c = dot(v,v)
    theta = arccos(a / sqrt(b*c))
    return degrees(theta)
```

Since $|\cos \theta| \leq 1$, we have the

Cauchy-Schwarz Inequality

The dot product of two vectors is absolutely less or equal to the product of their lengths,

$$
\begin{equation*}
|u \cdot v| \leq|u||v| \quad \text { or } \quad|u \cdot v|^{2} \leq(u \cdot u)(v \cdot v) . \tag{2.2.3}
\end{equation*}
$$

Vectors u and v are said to be perpendicular or orthogonal if $u \cdot v=0$. A collection of vectors is orthogonal if any pair of vectors in the collection
are orthogonal. With this understood, the zero vector is orthogonal to every vector. The converse is true as well: If $u \cdot v=0$ for every v, then in particular, $u \cdot u=0$, which implies $u=0$.

Vectors v_{1}, \ldots, v_{N} are said to be orthonormal if they are both unit vectors and orthogonal. Orthogonal nonzero vectors can be made orthonormal by dividing each vector by its length.

An important application of the Cauchy-Schwarz inequality is the triangle inequality

$$
\begin{equation*}
|a+b| \leq|a|+|b| . \tag{2.2.4}
\end{equation*}
$$

To see this, let v be any unit vector. Then

$$
(a+b) \cdot v=a \cdot v+b \cdot v \leq|a||v|+|b||v|=|a|+|b| .
$$

From this, selecting $v=(a+b) /|a+b|$,

$$
|a+b|=(a+b) \cdot v \leq|a|+|b| .
$$

Suppose v is a vector and A is a matrix. If the rows of A have the same dimension as that of v, we can take the dot product of each row of A with v, obtaining the matrix-vector product $A v: A v$ is the vector whose features are the dot products of the rows of A with v.

In other words,

```
dot(A,v) == array([ dot(row,v) for row in A ])
A*v == Matrix([ A.row(i) * v for i in range(A.rows) ])
```

both return True.
If u and v are vectors, we can think of u as a row vector, or a matrix consisting of a single row. With this interpretation, the matrix-vector product $u v$ equals the dot product $u \cdot v$.

If u and v are vectors, we can think of u as a column vector, or a matrix consisting of a single column. With this interpretation, u^{t} is a single row, and the matrix-vector product $u^{t} v$ equals the dot product $u \cdot v$.

Let A and B be two matrices. If the row dimension of A equals the column dimension of B, the matrix-matrix product $A B$ is defined. When this condition holds, the entries in the matrix $A B$ are the dot products of the rows of A with the columns of B. In Python,

```
from numpy import *
C = array([ [ dot(row,col) for col in B.T ] for row in A ])
dot(A,B) == C
from sympy import *
C = Matrix([[ A.row(i)*B.col(j) for j in range(B.cols)] for i
    un range(A.rows) ])
A*B == C
```

both return True, and, with

$$
A=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right), B=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{array}\right)
$$

the code
$A, B, \operatorname{dot}(A, B)$
$A, B, A * B$
returns

$$
A B=\left(\begin{array}{ccc}
70 & 80 & 90 \\
158 & 184 & 210
\end{array}\right) .
$$

Let A and B be matrices. Since transpose interchanges rows and columns, we always have

$$
(A B)^{t}=B^{t} A^{t}
$$

As a special case, if we think of v as a column vector, i.e. as a matrix with a single column, then the matrix-vector product $A v$ is the same as the matrix-matrix product $A v$, so

$$
(A v)^{t}=v^{t} A^{t}
$$

Here we are thinking of v as a matrix with one column, and v^{t} as a matrix with one row.

In Python,

```
dot(A,B).T == dot(B.T,A.T)
(A * B).T == B.T * A.T
```

both return True.
We also have

Dot Product Transpose Identity

For any vectors u, v, and matrices A, we have

$$
\begin{equation*}
(A u) \cdot v=u \cdot\left(A^{t} v\right) \quad \text { and } \quad\left(A^{t} u\right) \cdot v=u \cdot A v \tag{2.2.5}
\end{equation*}
$$

whenever the shapes of u, v, A match.
In terms of row vectors and column vectors, this is automatic. For example,

$$
(A u) \cdot v=(A u)^{t} v=\left(u^{t} A^{t}\right) v=u^{t}\left(A^{t} v\right)=u \cdot\left(A^{t} v\right) .
$$

In Python,

```
dot(dot(A,u),v) == dot(u,dot(A.T,v))
dot(dot(A.T,u),v) == dot(u,dot(A,v))
(A*u).T * v == u.T * (A.T*V)
(A.T*u).T * v == u.T * (A*v)
```

all return True.

Let A be a matrix. We compute useful expressions for $A A^{t}$ and $A^{t} A$.
Assume the rows of A are $v_{1}, v_{2}, \ldots, v_{N}$. Since matrix-matrix multiplication is row \times column, we have

$$
A A^{t}=\left(\begin{array}{cccc}
v_{1} \cdot v_{1} & v_{1} \cdot v_{2} & \ldots & v_{1} \cdot v_{N} \tag{2.2.6}\\
v_{2} \cdot v_{1} & v_{2} \cdot v_{2} & \ldots & v_{2} \cdot v_{N} \\
\ldots & \ldots & \ldots & \ldots \\
v_{N} \cdot v_{1} & v_{N} \cdot v_{2} & \ldots & v_{N} \cdot v_{N}
\end{array}\right) .
$$

As a consequence, ${ }^{1}$

Orthonormal Rows and Columns

Let U be a matrix.

- U has orthonormal rows iff $U U^{t}=I$.
- U has orthonormal columns iff $U^{t} U=I$.

The second statement follows from the first by substituting U^{t} for U.

To compute $A^{t} A$, we bring in the tensor product. If u and v are vectors, the tensor product $u \otimes v$ is the matrix-matrix product $u^{t} v$, with u and v row vectors. If u is N-dimensional and v is d-dimensional, then $u \otimes v$ is an $N \times d$ matrix.

For example, if $u=(a, b, c), v=(A, B)$, then

$$
u \otimes v=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\left(\begin{array}{ll}
A & B
\end{array}\right)=\left(\begin{array}{ll}
a A & a B \\
b A & b B \\
c A & c B
\end{array}\right) .
$$

Then the identities (1.4.14) and (1.4.15) hold in general. Using the tensor product, we have

[^2]
Tensor Identity

Let A be a matrix with rows $v_{1}, v_{2}, \ldots, v_{N}$. Then

$$
\begin{equation*}
A^{t} A=v_{1} \otimes v_{1}+v_{2} \otimes v_{2}+\cdots+v_{N} \otimes v_{N} \tag{2.2.7}
\end{equation*}
$$

Multiplying (2.2.7) by x^{t} on the left and x on the right, and using (1.4.15), we see (2.2.7) is equivalent to

$$
\begin{equation*}
|A x|^{2}=x^{t} A^{t} A x=\left(v_{1} \cdot x\right)^{2}+\left(v_{2} \cdot x\right)^{2}+\cdots+\left(v_{N} \cdot x\right)^{2} . \tag{2.2.8}
\end{equation*}
$$

By matrix-vector multiplication,

$$
A x=\left(v_{1} \cdot x, v_{2} \cdot x, \ldots, v_{N} \cdot x\right)
$$

Since $|A x|^{2}$ is the sum of the squares of its components, this derives (2.2.8).

A matrix Q is symmetric if $Q=Q^{t}$. For any matrix $A, Q=A A^{t}$ and $Q=A^{t} A$ are symmetric.

A symmetric matrix Q satisfying $v \cdot Q v \geq 0$ for every vector v is nonnegative. A symmetric matrix Q satisfying $v \cdot Q v>0$ for every nonzero vector v is positive.

The most important example of a nonnegative matrix is the covariance matrix (§1.6) of a dataset. When a dataset in \mathbf{R}^{d} fills up all d dimensions, the covariance matrix is positive (see $\S 2.5$).

The trace of a square matrix

$$
A=\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)
$$

is the sum of its diagonal elements,

$$
\operatorname{trace}(A)=\operatorname{trace}\left(\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right)=a+d+f
$$

Even though in general $A B \neq B A$, it is always true that

$$
\begin{equation*}
\operatorname{trace}(A B)=\operatorname{trace}(B A) \tag{2.2.9}
\end{equation*}
$$

Trace and tensor product combine in the identity

$$
\begin{equation*}
u \cdot Q v=\operatorname{trace}(Q(v \otimes u)) \tag{2.2.10}
\end{equation*}
$$

The derivations of these identities are simple calculations that we skip.

If $x_{1}, x_{2}, \ldots, x_{N}$ is a dataset of points in \mathbf{R}^{d} with mean m, and v_{1}, v_{2}, \ldots, v_{N} is the corresponding centered dataset, then the covariance matrix Q is the average of tensor products (§1.6),

$$
Q=\frac{v_{1} \otimes v_{1}+v_{2} \otimes v_{2}+\cdots+v_{N} \otimes v_{N}}{N} .
$$

Let A be the matrix with rows $v_{1}, v_{2}, \ldots, v_{N}$. By (2.2.7), the last equation is the same as

$$
\begin{equation*}
Q=\frac{1}{N} A^{t} A \tag{2.2.11}
\end{equation*}
$$

If we save the Iris dataset as a centered array vectors, as in $\S 2.1$, code from scratch for the covariance is
from numpy import *
$Q=\operatorname{dot}($ vectors. T, vectors) $/ N$
Of course, it is simpler to avoid centering and just do directly

```
Q = cov(dataset,rowvar=False)
```

or

Q $=\operatorname{cov}($ dataset.T)
After downloading the Iris dataset as in §2.1, the mean, covariance, and total variance are
$m=(5.84,3.05,3.76,1.2), \quad Q=\left(\begin{array}{cccc}0.68 & -0.04 & 1.27 & 0.51 \\ -0.04 & 0.19 & -0.32 & -0.12 \\ 1.27 & -0.32 & 3.09 & 1.29 \\ 0.51 & -0.12 & 1.29 & 0.58\end{array}\right), \quad 4.54$.

In $\S 1.6$, we discussed standardizing datasets in \mathbf{R}^{2}. This can be done in general.

Let $x_{1}, x_{2}, \ldots, x_{N}$ be a dataset in \mathbf{R}^{d}. Each sample point x has d features $\left(t_{1}, t_{2}, \ldots, t_{d}\right)$. We compute the variance of each feature separately.

Let $e_{1}, e_{2}, \ldots, e_{d}$ be the standard basis in \mathbf{R}^{d}, and, for each $j=1,2 \ldots, d$, project the dataset onto e_{j}, obtaining the scalar dataset $x_{1} \cdot e_{j}, x_{2} \cdot e_{j}, \ldots$, $x_{N} \cdot e_{j}$, consisting of the j-th feature of the samples. If $q_{j j}$ is the variance of this scalar dataset, then $q_{11}, q_{22}, \ldots, q_{d d}$ are the diagonal entries of the covariance matrix.

To standardize the dataset, we center it, and rescale the features to have variance one, as follows. Let $m=\left(m_{1}, m_{2}, \ldots, m_{d}\right)$ be the dataset mean. For each sample point $x=\left(t_{1}, t_{2}, \ldots, t_{d}\right)$, the standardized vector is

$$
v=\left(\frac{t_{1}-m_{1}}{\sqrt{q_{11}}}, \frac{t_{2}-m_{2}}{\sqrt{q_{22}}}, \ldots, \frac{t_{d}-m_{d}}{\sqrt{q_{d d}}}\right) .
$$

Then the standardized dataset is $v_{1}, v_{2}, \ldots, v_{N}$.
If $Q=\left(q_{i j}\right)$ is the covariance matrix, then the correlation matrix is the $d \times d$ matrix $Q^{\prime}=\left(q_{i j}^{\prime}\right)$ with entries

$$
q_{i j}^{\prime}=\frac{q_{i j}}{\sqrt{q_{i i} q_{j j}}}, \quad i, j=1,2, \ldots, d
$$

Then a straightforward calculation shows

Standardized Covariance Equals Correlation

The covariance matrix of the standardized dataset equals the correlation matrix of the original dataset.

In Python,

```
from numpy import *
from sklearn.preprocessing import StandardScaler
# standardize dataset
vectors = StandardScaler().fit_transform(dataset)
```

```
Qcorr = corrcoef(dataset.T)
Qcov = cov(vectors.T,bias=True)
allclose(Qcov,Qcorr)
```

returns True.

2.3 Matrix Inverse

Let A be any matrix and b a vector. The goal is to solve the linear system

$$
\begin{equation*}
A x=b . \tag{2.3.1}
\end{equation*}
$$

In this section, we use the inverse A^{-1} and the pseudo-inverse A^{+}to solve (2.3.1).

However, it's very easy to construct matrices A and vectors b for which the linear system (2.3.1) has no solutions at all! For example, take A the zero matrix and b any non-zero vector. Because of this, we must be careful when solving (2.3.1).

Given a square matrix A, the inverse matrix is the matrix B satisfying

$$
\begin{equation*}
A B=I=B A \tag{2.3.2}
\end{equation*}
$$

Here I is the identity matrix. Since I is a square matrix, A must also be a square matrix.

Only square matrices may have inverses. Moreover, not every square matrix has an inverse. For example, the zero matrix does not have an inverse. When A has an inverse, we say A is invertible.

If a matrix is $d \times d$, then the inverse is also $d \times d$. We write $B=A^{-1}$ for the inverse matrix of A. For example, it is easy to check

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \Longrightarrow \quad A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Since we can't divide by zero, a 2×2 matrix is invertible only if $a d-b c \neq 0$.

Since

$$
(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I,
$$

we have

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

When A has an inverse A^{-1}, we can solve the linear system $A x=b$.

Solution of $A x=b$ when A invertible

If A is invertible, then

$$
\begin{equation*}
A x=b \quad \Longrightarrow \quad x=A^{-1} b \tag{2.3.3}
\end{equation*}
$$

This is easy to check, since

$$
A x=A\left(A^{-1} b\right)=\left(A A^{-1}\right) b=I b=b
$$

```
from sympy import *
# solving Ax=b
x = A.inv() * b
from numpy import *
from numpy.linalg import inv
# solving Ax=b
x = dot(inv(A) , b)
```

In general, a matrix A is not invertible, and $A x=b$ is solved using the pseudo-inverse $x=A^{+} b$. The definition and framework of the pseudoinverse is in $\S 2.6$. The upshot is: every (square or non-square) matrix A has a pseudo-inverse A^{+}. Here is the general result.

Solution of $A x=b$ for General A

If $A x=b$ is solvable, then

$$
x^{+}=A^{+} b \quad \Longrightarrow \quad A x^{+}=b \text {. }
$$

If $A x=b$ is not solvable, then x^{+}minimizes the residual $|A x-b|^{2}$.

This says if $A x=b$ has some solution, then $x^{+}=A^{+} b$ is also a solution. On the other hand, $A x=b$ may have no solution, in which case the error $|A x-b|^{2}$ is minimized. From this point of view, it's best to think of x^{+}as a candidate for a solution. It's a solution only after confirming equality of $A x^{+}$and b. All this is worked out in $\S 2.6$.

To put this in context, there are three possibilities for a linear system (2.3.1). A linear system $A x=b$ can have

- no solutions, or
- exactly one solution, or
- infinitely many solutions.

As examples of these three possibilities, we have

- $A=0$ and $b \neq 0$,
- A is invertible,
- $A=0$ and $b=0$.

The pseudo-inverse provides a single systematic procedure for deciding among these three possibilities. The pseudo-inverse is available in numpy and sympy as pinv. In this section, we focus on using Python to solve $A x=b$, postponing concepts to $\S 2.6$.

How do we use the above result? Given A and b, using Python, we compute $x=A^{+} b$. Then we check, by multiplying in Python, equality of $A x$ and b.

The rest of the section consists of examples of solving linear systems. The reader is encouraged to work out the examples below in Python. However, because some linear systems have more than one solution, and the implementation of Python on your laptop may be different than on my laptop, our solutions may differ.

It can be shown that if the entries of A are integers, then the entries of A^{+}are fractions. This fact is reflected in sympy, but not in numpy, as the default in numpy is to work with floats.

Let

$$
u=(1,2,3,4,5), v=(6,7,8,9,10), w=(11,12,13,14,15)
$$

and let A be the matrix with columns u, v, w,

$$
A=\left(\begin{array}{lll}
u & v & w
\end{array}\right)=\left(\begin{array}{ccc}
1 & 6 & 11 \tag{2.3.4}\\
2 & 7 & 12 \\
3 & 8 & 13 \\
4 & 9 & 14 \\
5 & 10 & 15
\end{array}\right)
$$

```
from numpy import *
# vectors
u = array([1,2,3,4,5])
v = array([6,7,8,9,10])
w = array([11,12,13,14,15])
# arrange as columns
A = column_stack([u,v,w])
```

For this A, the code
from scipy.linalg import pinv
pinv (A)
returns

$$
A^{+}=\frac{1}{150}\left(\begin{array}{ccccc}
-37 & -20 & -3 & 14 & 31 \\
-10 & -5 & 0 & 5 & 10 \\
17 & 10 & 3 & -4 & -11
\end{array}\right)
$$

Alternatively, in sympy,

```
from sympy import *
# column vectors
u = Matrix([1,2,3,4,5])
v = Matrix([6,7,8,9,10])
w = Matrix([11,12,13,14,15])
A = Matrix.hstack(u,v,w)
A.pinv()
```

returns the same result.

Let A be as in (2.3.4) and let

$$
a=(8,9,10,11,12), \quad b=(11,6,1,-4,-9) .
$$

We solve $A x=a$ and $A x=b$ by computing the candidates

$$
x^{+}=A^{+} a=\frac{1}{15}(2,5,8),
$$

and

$$
x^{+}=A^{+} b=\frac{1}{30}(-173,-50,73) \text {. }
$$

Then we check that the candidates are actually solutions, which they are, by comparing $A x^{+}$and a, in the first case, and $A x^{+}$and b, in the second case.

For

$$
c=(-9,-3,3,9,10),
$$

we have

$$
x^{+}=A^{+} c=\frac{1}{15}(82,25,-32) .
$$

However, for this x^{+}, we have

$$
A x^{+}=(-8,-3,2,7,12),
$$

which is not equal to c. From this, not only do we conclude x^{+}is not a solution of $A x=c$, but also, by the general result above, the system $A x=c$ is not solvable at all.

Let B be the matrix with columns a and b,

$$
B=(a, b)=\left(\begin{array}{cc}
8 & 11 \\
9 & 6 \\
10 & 1 \\
11 & -4 \\
12 & -9
\end{array}\right)
$$

We solve

$$
B x=u, \quad B x=v, \quad B x=w
$$

by constructing the candidates

$$
B^{+} u, \quad B^{+} v, \quad B^{+} w,
$$

obtaining the solutions

$$
x^{+}=\frac{1}{51}(16,-7), \quad x^{+}=\frac{1}{51}(41,-2), \quad x^{+}=\frac{1}{51}(66,3) .
$$

Let

$$
C=A^{t}=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15
\end{array}\right)
$$

and let $f=(0,-5,-10)$. Then

$$
C^{+}=\left(A^{t}\right)^{+}=\left(A^{+}\right)^{t}=\left(\begin{array}{ccc}
-37 & -10 & 17 \\
-20 & -5 & 10 \\
-3 & 0 & 3 \\
14 & 5 & -4 \\
31 & 10 & -11
\end{array}\right)
$$

and

$$
x^{+}=C^{+} f=\frac{1}{50}(32,35,38,41,44) .
$$

Once we confirm equality of $C x^{+}$and f, which is the case, we obtain a solution x^{+}of $C x=f$.

Let D be the matrix with columns a and f,

$$
D=(a, f)=\left(\begin{array}{cc}
1 & 0 \\
6 & -5 \\
11 & -10
\end{array}\right)
$$

and let a, b, c, d, e be the columns of B. Then

$$
D^{+}=\frac{1}{30}\left(\begin{array}{lll}
25 & 10 & -5 \\
28 & 10 & -8
\end{array}\right) .
$$

We solve

$$
D x=a, \quad D x=b, \quad D x=c, \quad, D x=d, \quad D x=e,
$$

by constructing the candidates

$$
D^{+} a, \quad D^{+} b, \quad D^{+} c, \quad D^{+} d, \quad D^{+} e,
$$

obtaining the solutions

$$
x^{+}=(1,0), \quad x^{+}=(2,1), \quad x^{+}=(3,2), \quad x^{+}=(4,3), \quad x^{+}=(5,4) .
$$

雯

2.4 Span and Linear Independence

Let u, v, w be three vectors. Then

$$
3 u-\frac{1}{6} v+9 w, \quad 5 u+0 v-w, \quad 0 u+0 v+0 w
$$

are linear combinations of u, v, w.
In general, a linear combination of vectors $v_{1}, v_{2}, \ldots, v_{d}$ is

$$
\begin{equation*}
t_{1} v_{1}+t_{2} v_{2}+\cdots+t_{d} v_{d} \tag{2.4.1}
\end{equation*}
$$

Here the coefficients $t_{1}, t_{2}, \ldots, t_{d}$ are scalars.
In terms of matrices, let

$$
u=(1,2,3,4,5), v=(6,7,8,9,10), w=(11,12,13,14,15)
$$

and let A be the matrix with columns u, v, w, as in (2.3.4). Let x be the vector $(r, s, t)=(1,2,3)$. Then an explicit calculation shows (do this calculation!) the matrix-vector product $A x$ equals $r u+s v+t w$,

$$
A x=r u+s v+t w .
$$

The code

```
dot(A,x) == r*u + s*v + t*w
```

returns
array ([True, True, True, True, True])
To repeat, the linear combination $r u+s v+t w$ is the same as the matrixvector product $A x$. This is a general fact on which everything depends:

Column Linear Combination Same as Matrix-Vector Product

Let A be a matrix with columns $v_{1}, v_{2}, \ldots, v_{d}$, and let

$$
x=\left(t_{1}, t_{2}, \ldots, t_{d}\right)
$$

Then

$$
\begin{equation*}
A x=t_{1} v_{1}+t_{2} v_{2}+\cdots+t_{d} v_{d} \tag{2.4.2}
\end{equation*}
$$

In other words,

$$
\begin{equation*}
A x=b \quad \text { is the same as } \quad b=t_{1} v_{1}+t_{2} v_{2}+\cdots+t_{d} v_{d} . \tag{2.4.3}
\end{equation*}
$$

The span of vectors $v_{1}, v_{2}, \ldots, v_{d}$ consists of all linear combinations

$$
t_{1} v_{1}+t_{2} v_{2}+\cdots+t_{d} v_{d}
$$

of the vectors. For example, $\operatorname{span}(b)$ of a single vector b is the line through b, and $\operatorname{span}(u, v, w)$ is the set of all linear combinations $r u+s v+t w$.

Span Definition I

The span of $v_{1}, v_{2}, \ldots, v_{d}$ is the set S of all linear combinations of v_{1}, v_{2}, \ldots, v_{d}, and we write

$$
S=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{d}\right)
$$

When we don't want to specify the vectors $v_{1}, v_{2}, v_{3}, \ldots, v_{d}$, we simply say S is a span.

From (2.4.2), we have

Span Definition II

Let A be the matrix with columns $v_{1}, v_{2}, v_{3}, \ldots, v_{d}$. Then $\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{d}\right)$ is the set S of all vectors of the form $A x$.

If each vector v_{k} is a linear combination of vectors $w_{1}, w_{2}, \ldots, w_{N}$, then every vector v in $\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{d}\right)$ is a linear combination of w_{1}, w_{2}, \ldots, w_{N}, so $\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{d}\right)$ is contained in $\operatorname{span}\left(w_{1}, w_{2}, \ldots, w_{N}\right)$.

If also each vector w_{k} is a linear combination of vectors $v_{1}, v_{2}, \ldots, v_{d}$, then every vector w in $\operatorname{span}\left(w_{1}, w_{2}, \ldots, w_{N}\right)$ is a linear combination of v_{1}, v_{2}, \ldots, v_{d}, so $\operatorname{span}\left(w_{1}, w_{2}, \ldots, w_{N}\right)$ is contained in $\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{d}\right)$.

When both conditions hold, it follows

$$
\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{d}\right)=\operatorname{span}\left(w_{1}, w_{2}, \ldots, w_{N}\right)
$$

Thus there are many choices of spanning vectors for a given span.
For example, let u, v, w be the columns of A in (2.3.4). Let \subset mean "is contained in". Then

$$
\operatorname{span}(u, v) \quad \subset \quad \operatorname{span}(u, v, w)
$$

since adding a third vector can only increase the linear combination possibilities. On the other hand, since $w=2 v-u$, we also have

$$
\operatorname{span}(u, v, w) \quad \subset \quad \operatorname{span}(u, v)
$$

It follows that

$$
\operatorname{span}(u, v, w) \quad=\quad \operatorname{span}(u, v)
$$

Let A be a matrix. The column space of A is the span of its columns. For A as in (2.3.4), the column space of A is $\operatorname{span}(u, v, w)$. The code

```
from sympy import *
# column vectors
u = Matrix([1,2,3,4,5])
v = Matrix([6,7,8,9,10])
w = Matrix([11,12,13,14,15])
A = Matrix.hstack(u,v,w)
# returns minimal spanning set for column space of A
A.columnspace()
```

returns a minimal set of vectors spanning the column space of A. The column rank of A is the number of vectors returned.

For example, for A as in (2.3.4), this code returns

$$
u=(1,2,3,4,5), \quad v=(6,7,8,9,10)
$$

Why is this? Because $w=2 v-u$, so

$$
\operatorname{span}(u, v, w)=\operatorname{span}(u, v)
$$

We conclude the column rank of A equals 2 .

If the columns of A are $v_{1}, v_{2}, \ldots, v_{d}$, and $x=\left(t_{1}, t_{2}, \ldots, t_{d}\right)$ is a vector, then by definition of matrix-vector multiplication,

$$
A x=t_{1} v_{1}+t_{2} v_{2}+\cdots+t_{d} v_{d} .
$$

By (2.4.3),

Column Space and $A x=b$

The column space of a matrix A consists of all vectors of the form $A x$. A vector b is in the column space of A when $A x=b$ has a solution.

The corresponding code in numpy is

```
from numpy import *
from scipy.linalg import orth
# returns minimal orthonormal spanning set for column space
    G of A
orth(A)
```

This code returns two orthonormal vectors $a /|a|$ and $b /|b|$, where

$$
a=(8,9,10,11,12), \quad b=(11,6,1,-4,-9),
$$

and $|a|=\sqrt{510},|b|=\sqrt{255}$.
We conclude the column space of A can be described in at least three ways,

$$
\operatorname{span}(a, b)=\operatorname{span}(u, v, w)=\operatorname{span}(u, v) .
$$

Explicitly, a and b are linear combinations of u, v, w,

$$
\begin{equation*}
15 a=2 u+5 v+8 w, \quad 30 b=-173 u-50 v+73 w, \tag{2.4.4}
\end{equation*}
$$

and u, v, w are linear combinations of a and b,

$$
\begin{equation*}
51 u=16 a-7 b, \quad 51 v=41 a-2 b, \quad w=2 v-u \tag{2.4.5}
\end{equation*}
$$

By (2.4.3), to derive (2.4.4), we solve $A x=a$ and $A x=b$ for x. But this was done in §2.3.

Similarly, let B be the matrix with columns a and b, and solve $B x=u$, $B x=v, B x=w$, obtaining (2.4.5). This was done in $\S 2.3$.

As a general rule, sympy.columnspace returns vectors in close to original form, and scipy.linalg.orth orthonormalizes the spanning vectors.

Let A be a matrix, and let b be a vector. Assume the columns of A and b all lie in \mathbf{R}^{d}. How can we tell if b is in the column space of A ? Given the above tools, here is an easy way to tell.

Write the augmented matrix $\bar{A}=(A, b) ; \bar{A}$ obtained by adding b as an extra column next to the columns of A. If A is $d \times N$, then \bar{A} is $d \times(N+1)$.

Given A and $\bar{A}=(A, b)$, compute their column ranks. Let $v_{1}, v_{2}, \ldots, v_{N}$ be the columns of A. If these ranks are equal, then

$$
\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{N}\right)=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{N}, b\right)
$$

so b is a linear combination of the columns, or b is in the column space of A.

Column Space of Augmented Matrix

Let \bar{A} be the matrix A augmented by a vector b. Then b is in the column space of A iff

$$
\begin{equation*}
\operatorname{column} \operatorname{rank}(A)=\operatorname{column} \operatorname{rank}(\bar{A}) \tag{2.4.6}
\end{equation*}
$$

For example, let $b=(-9,-3,3,9,10)$ and let $\bar{A}=(A, b)$. Using Python, check the column rank of \bar{A} is 3 . Since the column rank of A is 2 , we conclude b is not in the column space of $A: b$ is not a linear combination of u, v, w.

When (2.4.6) holds, b is a linear combination of the columns of A. However, (2.4.6) does not tell us which linear combination. According to (2.4.3), finding the linear combination is equivalent to solving $A x=b$.
\mathbf{R}^{3} consists of all vectors (r, s, t) in three dimensions. If

$$
e_{1}=(1,0,0), \quad e_{2}=(0,1,0), \quad e_{3}=(0,0,1)
$$

then

$$
(r, s, t)=r e_{1}+s e_{2}+t e_{3}
$$

This shows the vectors e_{1}, e_{2}, e_{3} span \mathbf{R}^{3}, or

$$
\mathbf{R}^{3}=\operatorname{span}\left(e_{1}, e_{2}, e_{3}\right)
$$

As a consequence, \mathbf{R}^{3} is a span. Similarly, in dimension d, we can write

$$
\begin{align*}
e_{1} & =(1,0,0, \ldots, 0,0) \\
e_{2} & =(0,1,0, \ldots, 0,0) \\
e_{3} & =(0,0,1, \ldots, 0,0) \tag{2.4.7}\\
\ldots & =\ldots \\
e_{d} & =(0,0,0, \ldots, 0,1)
\end{align*}
$$

Then $e_{1}, e_{2}, \ldots, e_{d}$ span \mathbf{R}^{d}, so

d-dimensional Space

\mathbf{R}^{d} is a span.

The set $e_{1}, e_{2}, \ldots, e_{d}$ is the standard basis for \mathbf{R}^{d}.

The row space of a matrix is the span of its rows.

```
from sympy import *
# returns minimal spanning set for row space of A
A.rowspace()
```

The row rank of a matrix is the number of vectors returned by rowspace(). This is the minimal number of vectors spanning the row space of A.

For example, call the rows of A in (2.3.4) a, b, c, d, e. Let

$$
f=(0,-5,-10) .
$$

Then rowspace returns the vectors a and f, so

$$
\operatorname{span}(a, b, c, d, e)=\operatorname{span}(a, f)
$$

Explicitly, the linear combination

$$
50 f=32 a+35 b+38 c+41 d+44 e
$$

is derived using $C=A^{t}$ and solving $C x=f$. The linear combinations

$$
a=a+0 f, \quad b=2 a-5 f, \quad c=3 a-10 f, \quad d=4 a-15 f, \quad e=5 a-20 f
$$

are derived using $D=(a, f)$ and solving $D x=a, D x=b, D x=c, D x=d$, $D x=e$. Again, these linear systems were solved in $\S 2.3$.

Since the transpose interchanges rows and columns, the row space of A equals the column space of A^{t}. Using this, we compute the row space in numpy by

```
from numpy import *
from scipy.linalg import orth
# returns minimal spanning set for row space of A
orth(A.T)
```

Numpy returns orthonormal vectors.
When Q is symmetric, the row space of Q equals the column space of Q.

A linear combination $t_{1} v_{1}+t_{2} v_{2}+\cdots+t_{d} v_{d}$ is trivial if all the coefficients are zero, $t_{1}=t_{2}=\cdots=t_{d}=0$. Otherwise it is non-trivial, if at least one coefficient is not zero. A linear combination $t_{1} v_{1}+t_{2} v_{2}+\cdots+t_{d} v_{d}$ vanishes if it equals the zero vector,

$$
t_{1} v_{1}+t_{2} v_{2}+\cdots+t_{d} v_{d}=0 .
$$

For example, with u, v, w as above, we have $w=2 v-u$, so

$$
\begin{equation*}
r u+s v+t w=1 u-2 v+1 w=0 \tag{2.4.8}
\end{equation*}
$$

is a vanishing non-trivial linear combination of u, v, w.
We say $v_{1}, v_{2}, \ldots, v_{d}$ are linearly dependent if there is a non-trivial vanishing linear combination of $v_{1}, v_{2}, \ldots, v_{d}$. Otherwise, if there is no non-trivial vanishing linear combination, we say $v_{1}, v_{2}, \ldots, v_{d}$ are linearly independent. For example, u, v, w above are linearly dependent.

Suppose u, v, w are any three vectors, and suppose u, v, w are linearly dependent. Then we have $r u+s v+t w=0$ for some scalars r, s, t, where at least one is not zero. If $r \neq 0$, then we may solve for u, obtaining

$$
u=-(s / r) v-(t / r) w .
$$

If $s \neq 0$, then we may solve for v, obtaining

$$
v=-(r / s) u-(t / s) w
$$

If $t \neq 0$, then

$$
w=-(r / t) u-(s / t) v
$$

Hence linear dependence of u, v, w means one of the three vectors is a multiple of the other two vectors.

In general, linear dependence of $v_{1}, v_{2}, \ldots, v_{d}$ is the same as saying at least one of the vectors is a linear combination of the remaining vectors.

In terms of matrices,

Homogeneous Linear Systems

Let A be the matrix with columns $v_{1}, v_{2}, \ldots, v_{d}$. Then

- $v_{1}, v_{2}, \ldots, v_{d}$ are linearly dependent when $A x=0$ has a nonzero solution x, and
- $v_{1}, v_{2}, \ldots, v_{d}$ are linearly independent when $A x=0$ has only the zero solution $x=0$.

The set of vectors x satisfying $A x=0$, or the set of solutions x of $A x=0$, is the null space of the matrix A.

With this terminology, $v_{1}, v_{2}, \ldots, v_{d}$ are linearly dependent when there is a nonzero null space for the matrix A.

For example, with A as in (2.3.4), the sympy code

```
from sympy import *
```

returns a list with a single vector,

$$
[x]=\left[\left(\begin{array}{l}
r \\
s \\
t
\end{array}\right)\right]=\left[\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)\right] .
$$

This says the null space of A consists of all multiples of $(1,-2,1)$. Since the code
[r,s,t] = A.nullspace() [0]
$r * u+s * v+t * w$
returns the column vector

$$
\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right),
$$

we have $A x=0$, in agreement with (2.4.8).

The corresponding numpy code is
from scipy.linalg import null_space
null_space(A)
This code returns the unit vector

$$
\frac{-1}{\sqrt{6}}\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)
$$

which is a multiple of $(1,-2,1)$. scipy.linalg.null_space always returns orthonormal vectors.

Here is a simple result that is used frequently.

A Versus $A^{t} A$

Let A be any matrix. The null space of A equals the null space of $A^{t} A$.

If x is in the null space of A, then $A x=0$. Multiplying by A^{t} leads to $A^{t} A x=0$, so x is in the null space of $A^{t} A$.

Conversely, if x is in the null space of $A^{t} A$, then $A^{t} A x=0$. By the dot-product-transpose indentity, (2.2.5),

$$
|A x|^{2}=A x \cdot A x=x \cdot A^{t} A x=0
$$

so $A x=0$, which means x is in the null space of A.

An important example of linearly independent vectors are orthonormal vectors.

Orthonormal Implies Linearly Independent

If $v_{1}, v_{2}, \ldots, v_{d}$ are orthonormal, they are linearly independent.
To see this, suppose we have a vanishing linear combination

$$
t_{1} v_{1}+t_{2} v_{2}+\cdots+t_{d} v_{d}=0
$$

Take the dot product of both sides with v_{1}. Since the dot products of any two vectors is zero, and each vector has length one, we obtain

$$
t_{1}=t_{1} v_{1} \cdot v_{1}=t_{1} v_{1} \cdot v_{1}+t_{2} v_{2} \cdot v_{1}+\cdots+t_{d} v_{d} \cdot v_{1}=0
$$

Similarly, all other coefficients t_{k} are zero. This shows $v_{1}, v_{2}, \ldots, v_{d}$ are linearly independent.

In general, nullspace() returns a minimal set of vectors spanning the null space of A. The nullity of A is the number of vectors returned by the method nullspace().

For example, to compute the nullspace of the matrix

$$
B=A^{t}=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15
\end{array}\right)
$$

we solve $B x=0$. Since the code

```
from numpy import *
from scipy.linalg import null_space
u = array([1,2,3,4,5])
v = array([6,7,8,9,10])
w = array([11, 12,13,14,15])
B = row_stack([u,v,w])
null_space(B)
```

returns the list of three vectors

$$
\left[x_{1}, x_{2}, x_{3}\right]=\left[\left(\begin{array}{c}
1 \\
-2 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
2 \\
-3 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
3 \\
-4 \\
0 \\
0 \\
1
\end{array}\right)\right]
$$

here we can make three conclusions: (1) the nullspace of B is spanned by three vectors, (2) this is the least number of vectors that spans the nullspace of B, and (3) the nullity of B is 3 .

Let S and T be spans. We say S and T are orthogonal complements if every vector in S is orthogonal to every vector in T. In symbols, we write $S=T^{\perp}$ and $T=S^{\perp}$ (pronounced " T-perp" and " S-perp").

Suppose S is the span of vectors a, b, c. How do we compute S^{\perp} ? The answer is by using nullspace: Let A be the matrix with rows a, b, c. By matrix-vector multiplication,

$$
0=A x=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) x=\left(\begin{array}{l}
a \cdot x \\
b \cdot x \\
c \cdot x
\end{array}\right)
$$

This shows x is orthogonal to a, b, c exactly when x is in the null space of A. Thus S^{\perp} equals the null space of A.

In general, if $S=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{N}\right)$, let A be the matrix with rows v_{1}, v_{2}, \ldots, v_{N}. Then S^{\perp} equals the null space of A.

An important example of orthogonality is the row space and the null space. Suppose A has rows $v_{1}, v_{2}, \ldots, v_{N}$, and x is a vector, all of the same dimension. Then, by definition, the matrix-vector product is

$$
A x=\left(v_{1} \cdot x, v_{2} \cdot x, \ldots, v_{N} \cdot x\right)
$$

If x is in the null space, $A x=0$, then

$$
v_{1} \cdot x=0, v_{2} \cdot x=0, \ldots, v_{N} \cdot x=0
$$

so x is orthogonal to the rows of A. Conversely, if x is orthogonal to the rows of A, then $A x=0$.

This shows the null space of A and the row space of A are orthogonal complements. Summarizing, we write

Row Space and Null Space are Orthogonal

Every vector in the row space is orthogonal to every vector in the null space,

$$
\begin{equation*}
(\text { nullspace })^{\perp}=\text { rowspace }, \quad(\text { rowspace })^{\perp}=\text { nullspace } . \tag{2.4.9}
\end{equation*}
$$

Since the row space is the orthogonal complement of the null space, and the null space of A equals the null space of $A^{t} A$, we conclude

A Versus $A^{t} A$

Let A be any matrix. Then the row space of A equals the row space of $A^{t} A$.

Now replace A by A^{t} in this last result. Since the row space of A^{t} equals the column space of A, and $A A^{t}$ is symmetric, we also have

A Versus $A A^{t}$

Let A be any matrix. Then the column space of A equals the column space of $A A^{t}$.

Let A be a matrix and b a vector. So far we've met four spaces,

- the null space: all x 's satisfying $A x=0$,
- the row space: the span of the rows of A,
- the column space: the span of the columns of A,
- the solution space: the solutions x of $A x=b$.

A set S of vectors is a subspace if $x_{1}+x_{2}$ is in S whenever x_{1} and x_{2} are in S, and $t x$ is in S whenever x is in S. When this happens, we say S is closed under addition and scalar multiplication: A subspace is a set of vectors closed under addition and scalar multiplication.

Since a linear combination of linear combinations is a linear combination, every span is a subspace. In particular, \mathbf{R}^{d} is a subspace.

It's important to realize the first three are subspaces, but the fourth is not.

- If x_{1} and x_{2} are in the null space, and r_{1} and r_{2} are scalars, then so is $r_{1} x_{1}+r_{2} x_{2}$, because

$$
A\left(r_{1} x_{1}+r_{2} x_{2}\right)=r_{1} A x_{1}+r_{2} A x_{2}=r_{1} 0+r_{2} 0=0
$$

This shows the null space is a subspace.

- The row space is a span, so is a subspace.
- The column space is a span, so is a subspace.
- The solution space S of $A x=b$ is not a subspace, nor a span: If x is in S, then $A x=b$, so $A(5 x)=5 A x=5 b$, so $5 x$ is not in S.

If x_{1} and x_{2} are solutions of $A x=b$, then $A\left(x_{1}+x_{2}\right)=2 b$, so the solution space is not a subspace. However

$$
\begin{equation*}
A\left(x_{1}-x_{2}\right)=b-b=0 \tag{2.4.10}
\end{equation*}
$$

so the difference $x_{1}-x_{2}$ of any two solutions x_{1} and x_{2} is in the null space of A, which is a span.

鏳詨

Let A be an $N \times d$ matrix. Then matrix multiplication by A transforms a vector x to the vector $b=A x$. From this point of view, the set of vectors x is the source space \mathbf{R}^{d}, and the set of vectors $b=A x$ is the target space \mathbf{R}^{N}.

The null space and the row space are in the source space, and the column space is in the target space.

Let A be a $d \times d$ invertible matrix. Then the source space is \mathbf{R}^{d} and the target space is \mathbf{R}^{d}. If $A x=0$, then

$$
x=\left(A^{-1} A\right) x=A^{-1}(A x)=A^{-1} 0=0 .
$$

This shows the null space of an invertible matrix is zero, hence the nullity is zero.

Since the row space is the orthogonal complement of the null space, we conclude the row space is all of \mathbf{R}^{d}.

In $\S 2.9$, we see that the column rank and the row rank are equal. From this, we see also the column space is all of \mathbf{R}^{d}. In summary,

Null Space of Invertible Matrix

Let A be a $d \times d$ invertible matrix. Then the null space is zero, and the row space and column space are both \mathbf{R}^{d}. In particular, the nullity is 0 , and the row rank rank and column rank are both d.

2.5 Zero Variance Directions

Let $x_{1}, x_{2}, \ldots, x_{N}$ be a dataset in \mathbf{R}^{d}. Then $x_{1}, x_{2}, \ldots, x_{N}$ are N points in \mathbf{R}^{d}, and each x has d features, $x=\left(t_{1}, t_{2}, \ldots, t_{d}\right)$. From $\S 1.6$, the mean is

$$
m=\frac{x_{1}+x_{2}+\cdots+x_{N}}{N}
$$

Center the dataset (see §1.3)

$$
v_{1}=x_{1}-m, v_{2}=x_{2}-m, \ldots, v_{N}=x_{N}-m
$$

and let A be the matrix with rows $v_{1}, v_{2}, \ldots, v_{N}$. By (2.2.7), the covariance is

$$
Q=\frac{v_{1} \otimes v_{1}+v_{2} \otimes v_{2}+\cdots+v_{N} \otimes v_{N}}{N}=\frac{1}{N} A^{t} A
$$

If b is a vector, the projection of the centered dataset onto the line through b results in the reduced dataset

$$
v_{1} \cdot b, v_{2} \cdot b, \ldots, v_{N} \cdot b
$$

The mean of this projected dataset is zero, and its variance is

$$
\begin{equation*}
\frac{\left(v_{1} \cdot b\right)^{2}+\left(v_{2} \cdot b\right)^{2}+\cdots+\left(v_{N} \cdot b\right)^{2}}{N}=\frac{1}{N} b^{t} A^{t} A b=b \cdot Q b . \tag{2.5.1}
\end{equation*}
$$

We obtain this result, which was first stated in §1.6.

Variance of Projected Dataset

Let Q be the covariance matrix of a dataset. Then the variance of the projected dataset onto the line through the vector b equals the quadratic function $b \cdot Q b$.

A vector b is a zero variance direction if the projected variance is zero,

$$
b \cdot Q b=0
$$

We investigate zero variance directions, but first we need a definition.
Let m be a point in \mathbf{R}^{d} and b a vector in \mathbf{R}^{d}. The hyperplane passing through m and orthogonal to b is the set of points x satisfying the equation

$$
b \cdot(x-m)=0 .
$$

In \mathbf{R}^{3}, a hyperplane is a plane, and in \mathbf{R}^{2}, a hyperplane is a line. In general, in \mathbf{R}^{d}, a hyperplane is $(d-1)$-dimensional, always one less than the ambient dimension.

Zero Variance Directions

Let m and Q be the mean and covariance of a dataset in \mathbf{R}^{d}. Then $b \cdot Q b=0$ is the same as saying every point in the dataset lies in the hyperplane passing through m and orthogonal to b,

$$
b \cdot(x-m)=0 .
$$

This is easy to see. Let the dataset be $x_{1}, x_{2}, \ldots, x_{N}$, and center it to $v_{1}, v_{2}, \ldots, v_{N}$. If $b \cdot Q b=0$, then, by (2.5.1), $v_{k} \cdot b=0$ for $k=1,2, \ldots, N$. This shows $b \cdot\left(x_{k}-m\right)=0, k=1,2, \ldots, N$, which means the points x_{1}, x_{2}, \ldots, x_{N} lie on the hyperplane $b \cdot(x-m)=0$. Here are some examples.

In two dimensions \mathbf{R}^{2}, a line is determined by a point on the line and a vector orthogonal to the line. If (a, b) is the vector orthogonal to the line and $\left(x_{0}, y_{0}\right),(x, y)$ are points on the line, then $(x, y)-\left(x_{0}, y_{0}\right)$ is orthogonal to (a, b), or

$$
(a, b) \cdot\left((x, y)-\left(x_{0}, y_{0}\right)\right)=0 .
$$

Writing this out, the equation of the line is

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)=0, \quad \text { or } \quad a x+b y=c,
$$

where $c=a x_{0}+b y_{0}$.
If the mean and covariance of a dataset are $m=(2,3)$ and

$$
Q=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

and $b=(1,1)$, then $Q b=0$, so $b \cdot Q b=0$. Since the line passes through the mean, the dataset lies on the line $x+y=5$. We conclude this dataset is one-dimensional.

If

$$
Q=\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)
$$

and $b=(x, y)$, then

$$
b \cdot Q b=3 x^{2}+y^{2}
$$

so $b \cdot Q b$ is never zero unless $b=0$. In this case, we conclude the dataset is two-dimensional, because it does not lie on a line.

In three dimensions \mathbf{R}^{3}, a plane is determined by a point $\left(x_{0}, y_{0}, z_{0}\right)$ in the plane, and a vector (a, b, c) orthogonal to the plane. If (x, y, z) is any
point in the plane, then $(x, y, z)-\left(x_{0}, y_{0}, z_{0}\right)$ is orthogonal to (a, b, c), so the equation of the plane is

$$
(a, b, c) \cdot\left((x, y, z)-\left(x_{0}, y_{0}, z_{0}\right)\right)=0, \quad \text { or } \quad a x+b y+c z=d
$$

where $d=a x_{0}+b y_{0}+c z_{0}$.
Suppose we have a dataset in \mathbf{R}^{3} with mean $m=(3,2,1)$, and covariance

$$
Q=\left(\begin{array}{lll}
1 & 1 & 1 \tag{2.5.2}\\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Let $b=(2,-1,-1)$. Then $Q b=0$, so $b \cdot Q b=0$. We conclude the dataset lies in the plane

$$
(2,-1,-1) \cdot\left((x, y, z)-\left(x_{0}, y_{0}, z_{0}\right)\right)=0, \quad \text { or } \quad 2 x-y-z=3 .
$$

In this case, the dataset is two-dimensional, as it lies in a plane.
If a dataset has covariance the 3×3 identity matrix I, then $b \cdot I b$ is never zero unless $b=0$. Such a dataset is three-dimensional, it does not lie in a plane.

Sometimes there may be several zero variance directions. For example, for the covariance (2.5.2) and $u=(2,-1,-1), v=(0,1,-1)$, we have both

$$
u \cdot Q u=0 \quad \text { and } \quad v \cdot Q v=0
$$

From this we see the dataset corresponding to this Q lies in two planes: The plane orthogonal to u, and the plane orthogonal v. But the intersection of two planes is a line, so this dataset lies in a line, which means it is onedimensional.

Which line does this dataset lie in? Well, the line has to pass through the mean, and is orthogonal to u and v. If we find a vector b satisfying $b \cdot u=0$ and $b \cdot v=0$, then the line will pass through m and will be parallel to b. But we know how to find such a vector. Let A be the matrix with rows u, v. Then b in the nullspace of A fullfills the requirements. We obtain $b=(1,1,1)$.

Let $v_{1}, v_{2}, \ldots, v_{N}$ be a centered dataset of vectors in \mathbf{R}^{d}, and let Q be the covariance matrix of the dataset. Then $v \cdot Q v$ is the variance of the projected dataset onto v. Being a variance, we know $v \cdot Q v \geq 0$. A zero variance direction is a vector v satisfying $v \cdot Q v=0$. We show the zero variance directions are the same as the nullspace of Q,

Zero Variance Directions and Nullspace I

Let Q be a covariance matrix. Then the null space of Q equals the zero variance directions of Q.

To see this, we use the quadratic equation from high school. If Q is symmetric, then $u \cdot Q v=v \cdot Q u$. For t scalar and u, v vectors, it follows the quadratic function

$$
(v+t u) \cdot Q(v+t u)=t^{2} u \cdot Q u+2 t u \cdot Q v+v \cdot Q v=a t^{2}+2 b t+c
$$

is nonnegative for all t scalar. Thus the parabola $a t^{2}+2 b t+c$ intersects the horizontal axis in at most one root. This implies the discriminant $b^{2}-a c$ is not positive, $b^{2}-a c \leq 0$, which yields

$$
(u \cdot Q v)^{2} \leq(u \cdot Q u)(v \cdot Q v)
$$

Inserting $u=Q v$, we have

$$
\begin{equation*}
|Q v|^{4}=(Q v \cdot Q v)^{2} \leq(Q v \cdot Q Q v)(v \cdot Q v) \tag{2.5.3}
\end{equation*}
$$

Now we can derive the result. If v is in the null space of Q, then $Q v=0$. Taking the dot product with v, we get $v \cdot Q v=v \cdot 0=0$, so v is a zero variance direction. Conversely, if v is a zero variance direction, then $v \cdot Q v=0$. By (2.5.3), this implies $Q v=0$, so v is in the null space of Q.

Based on the above result, here is code that returns zero variance directions.

```
from numpy import *
def zero_variance(dataset):
    Q = cov(dataset.T)
    return null_space(Q)
```

Let A be an $N \times d$ dataset matrix, and let Q be the covariance of the dataset. By (2.2.11), $Q=A^{t} A / N$ if the dataset is centered. Then the null space of Q equals the null space of $A^{t} A$, which equals the null space of A. We conclude

Zero Variance Directions and Nullspace II

Let Q be a covariance matrix of a centered dataset A. Then the null space of A equals the zero variance directions of Q.

Suppose the dataset is

$$
(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)
$$

This is four vectors in \mathbf{R}^{5}. Since it is only four vectors, it is at most a four-dimensional dataset. The code returns three vectors

$$
(1,-2,1,0,0),(2,-3,0,1,0),(3,-4,0,0,1) .
$$

Thus this dataset is orthogonal to three directions. Each hyperplane is one condition, so each cuts the dimension down by one, so the dimension of this dataset is $5-3=2$. Dimension of a dataset is discussed in $\S 2.9$.

2.6 Pseudo-Inverse

What exactly is the pseudo-inverse? It turns out the answer is best understood geometrically.

Think of b and $A x$ as points, and measure the distance between them, and think of x and the origin 0 as points, and measure the distance between them (Figure 2.1).

Figure 2.1: The points $0, x, A x$, and b.
If $A x=b$ is solvable, then, among all solutions x^{*}, select the solution x^{+} closest to 0 .

More generally, if $A x=b$ is not solvable, select the points x^{*} so that $A x^{*}$ is closest to b, then, among all such x^{*}, select the point x^{+}closest to the origin.

Even though the point x^{+}may not solve $A x=b$, this procedure (Figure 2.2) results in a uniquely determined x^{+}: While there may be several points x^{*}, there is only one x^{+}.

Figure 2.2: The points $x, A x$, the points $x^{*}, A x^{*}$, and the point x^{+}.
The results in this section are as follows. Let A be any matrix. There is a unique matrix A^{+}- the pseudo-inverse of A - with the following properties.

- the linear system $A x=b$ is solvable, when $b=A A^{+} b$.
- $x^{+}=A^{+} b$ is a solution of

1. the linear system $A x=b$, if $A x=b$ is solvable.
2. the regression equation $A^{t} A x=A^{t} b$, always.

- In either case,

1. there is exactly one solution with minimum norm.
2. Among all solutions, x^{+}has minimum norm.
3. Every other solution is $x=x^{+}+v$ for v in the null space of A.

Key concepts in this section are the residual

$$
\begin{equation*}
|A x-b|^{2} \tag{2.6.1}
\end{equation*}
$$

and the regression equation

$$
\begin{equation*}
A^{t} A x=A^{t} b \tag{2.6.2}
\end{equation*}
$$

The following is clear.

Zero Residual

x is a solution of (2.3.1) iff the residual is zero.

For A as in (2.3.4) and $b=(-9,-3,3,9,10)$, the linear system $A x=b$ is

$$
\begin{align*}
x+6 y+11 z & =-9 \\
2 x+7 y+12 z & =-3 \\
3 x+8 y+13 z & =3 \tag{2.6.3}\\
4 x+9 y+14 z & =9 \\
5 x+10 y+15 z & =10
\end{align*}
$$

and the regression equation $A^{t} A x=A^{t} b$ is

$$
\begin{align*}
11 x+26 y+41 z & =16 \\
13 x+33 y+53 z & =13 \tag{2.6.4}\\
41 x+106 y+171 z & =36
\end{align*}
$$

Let b be any vector, not necessarily in the column space of A. To see how close we can get to solving (2.3.1), we minimize the residual (2.6.1). We say x^{*} is a residual minimizer if

$$
\begin{equation*}
\left|A x^{*}-b\right|^{2}=\min _{x}|A x-b|^{2} \tag{2.6.5}
\end{equation*}
$$

A residual minimizer always exists.

Existence of Residual Minimizer

There is a residual minimizer x^{*} in the row space of A.
The derivation of this technical result is at the end of this section.

Regression Equation

x^{*} is a residual minimizer iff x^{*} solves the regression equation.

To see this, let v be any vector, and t a scalar. Insert $x=x^{*}+t v$ into the residual and expand in powers of t to obtain

$$
|A x-b|^{2}=\left|A x^{*}-b\right|^{2}+2 t\left(A x^{*}-b\right) \cdot A v+t^{2}|A v|^{2}=f(t)
$$

If x^{*} is a residual minimizer, then $f(t)$ is minimized when $t=0$. But a parabola

$$
f(t)=a+2 b t+c t^{2}
$$

is minimized at $t=0$ only when $b=0$. Thus the linear coefficient vanishes, $\left(A x^{*}-b\right) \cdot A v=0$. This implies

$$
A^{t}\left(A x^{*}-b\right) \cdot v=\left(A x^{*}-b\right) \cdot A v=0 .
$$

Since v is any vector, this implies

$$
A^{t}\left(A x^{*}-b\right)=0
$$

which is the regression equation. Conversely, if the regression equation holds, then the linear coefficient in the parabola $f(t)$ vanishes, so $t=0$ is a minimum, establishing that x^{*} is a residual minimizer.

If x_{1} and x_{2} are solutions of the regression equation, then

$$
A^{t} A\left(x_{1}-x_{2}\right)=A^{t} A x_{1}-A^{t} A x_{2}=A^{t} b-A^{t} b=0
$$

so $x_{1}-x_{2}$ is in the null space of $A^{t} A$. But from $\S 2.4$, the nullspace of $A^{t} A$ equals the nullspace of A. We conclude $x_{1}-x_{2}$ is in the null space of A. This establishes

Multiple Solutions

Any two residual minimizers differ by a vector in the nullspace of A.

We say x^{+}is a minimum norm residual minimizer if x^{+}is a residual minimizer and

$$
\left|x^{+}\right|^{2} \leq\left|x^{*}\right|^{2}
$$

for any residual minimizer x^{*}.
Since any two residual minimizers differ by a vector in the null space of A, x^{+}is a minimum norm residual minimizer if x^{+}is a residual minimizer and

$$
\left|x^{+}\right|^{2} \leq\left|x^{+}+v\right|^{2}
$$

for any v in the null space of A.

Minimum Norm Residual Minimizer

Let x^{*} be a residual minimizer. Then x^{*} is a minimum norm residual minimizer iff x^{*} is in the row space of A.

Since we know from above there is a residual minimizer in the row space of A, we always have a minimum norm residual minimizer.

Let v be in the null space of A, and write

$$
\left|x^{*}+v\right|^{2}=\left|x^{*}\right|^{2}+2 x^{*} \cdot v+|v|^{2} .
$$

This shows x^{*} is a minimum norm solution of the regression equation iff

$$
\begin{equation*}
2 x^{*} \cdot v+|v|^{2} \geq 0 \tag{2.6.6}
\end{equation*}
$$

If x^{*} is in the row space of A, then $x^{*} \cdot v=0$, so (2.6.6) is valid.
Conversely, if (2.6.6) is valid for every v in the null space of A, replacing v by $t v$ yields

$$
2 t x^{*} \cdot v+t^{2}|v|^{2} \geq 0
$$

Dividing by t and inserting $t=0$ yields

$$
x^{*} \cdot v \geq 0 .
$$

Since both $\pm v$ are in the null space of A, this implies $\pm x^{*} \cdot v \geq 0$, hence $x^{*} \cdot v=0$. Since the row space is the orthogonal complement of the null space, the result follows.

Now we use this to show

Uniqueness

There is exactly one minimum norm residual minimizer x^{+}.
If x_{1}^{+}and x_{2}^{+}are minimum norm residual minimizers, then $v=x_{1}^{+}-x_{2}^{+}$ is both in the row space and in the null space of A, so $x_{1}^{+}-x_{2}^{+}=0$. Hence $x_{1}^{+}=x_{2}^{+}$.

Putting the above all together, each vector b leads to a unique x^{+}. Defining A^{+}by setting

$$
x^{+}=A^{+} b,
$$

we obtain A^{+}, the pseudo-inverse of A.
Notice if A is, for example, 5×4, then $A x=b$ implies x is a 4 -vector and b is a 5 -vector. Then from $x=A^{+} b$, it follows A^{+}is 4×5. Thus the shape of A^{+}equals the shape of A^{t}.

Summarizing what we have so far,

Regression Equation is Always Solvable

The regression equation (2.6.2) is always solvable. The solution of minimum norm is $x^{+}=A^{+} b$. Any other solution differs by a vector in the null space of A.

For A as in (2.3.4) and $b=(-9,-3,3,9,10)$,

$$
x^{+}=A^{+} b=\frac{1}{15}\left(\begin{array}{c}
82 \\
25 \\
-32
\end{array}\right)
$$

is the minimum norm solution of the regression equation (2.6.4).

Returning to the linear system (2.3.1), we show

Linear System Versus Regression Equation

If the linear system is solvable, then every solution of the regression equation is a solution of the linear system, and vice-versa.

We know any two solutions of the linear system (2.3.1) differ by a vector in the null space of A (2.4.10), and any two solutions of the regression equation (2.6.2) differ by a vector in the null space of A (above).

If x is a solution of (2.3.1), then, by multiplying by A^{t}, x is a solution of the regression equation (2.6.2). Since $x^{+}=A^{+} b$ is a solution of the regression equation, $x^{+}=x+v$ for some v in the null space of A, so

$$
A x^{+}=A(x+v)=A x+A v=b+0=b
$$

This shows x^{+}is a solution of the linear system. Since all other solutions differ by a vector v in the null space of A, this establishes the result.

Now we can state when $A x=b$ is solvable,

Solvability of $A x=b$

The linear system $A x=b$ is solvable iff $b=A A^{+} b$. When this happens, $x^{+}=A^{+} b$ is the solution of minimum norm.

If (2.3.1) is solvable, then from above, x^{+}is a solution, so

$$
A A^{+} b=A\left(A^{+} b\right)=A x^{+}=b
$$

Conversely, if $A A^{+} b=b$, then clearly $x^{+}=A^{+} b$ is a solution of (2.3.1).
When (2.3.1) is solvable, (2.3.1) and (2.6.2) have the same solutions, so x^{+}is the minimum norm solution of (2.3.1).

For example, let $b=(-9,-3,3,9,10)$, and let A be as in (2.3.4). Since

$$
A A^{+} b=\left(\begin{array}{c}
-8 \tag{2.6.7}\\
-3 \\
2 \\
7 \\
12
\end{array}\right)
$$

is not equal to b, the linear system (2.6.3) is not solvable.

Suppose A is invertible. Then (2.3.1) has only the solution $x=A^{-1} b$, so $A^{-1} b$ is the minimum norm residual minimizer. We conclude

Inverse Equals Pseudo-Inverse
If A is invertible, then $A^{+}=A^{-1}$.

The key properties [17] of A^{+}are

Properties of Pseudo-Inverse

A. $A A^{+} A=A$
B. $A^{+} A A^{+}=A^{+}$
C. $A A^{+}$is symmetric
D. $A^{+} A$ is symmetric

The verification of these properties is very enlightening, so we do it carefully. Let u be a vector and set $b=A u$. Then the residual

$$
|A x-b|^{2}=|A x-A u|^{2}
$$

is minimized at $x=u$. Since $A^{+} b=A^{+} A u$ is the minimum norm residual minimizer, u and $A^{+} A u$ differ by a vector v in the null space of A,

$$
\begin{equation*}
u=A^{+} A u+v . \tag{2.6.9}
\end{equation*}
$$

Since $A v=0$, multiplying by A leads to

$$
A u=A A^{+} A u .
$$

Since u was any vector, this yields \mathbf{A}.
Now let w be a vector and set $u=A^{+} w$. Inserting into (2.6.9) yields

$$
A^{+} w=A^{+} A A^{+} w+v
$$

for some v in the null space of A. But both $A^{+} w$ and $A^{+} A A^{+} w$ are in the row space of A, hence so is v. Since v is in both the null space and the row space, v is orthogonal to itself, so $v=0$. This implies $A^{+} A A^{+} w=A^{+} w$. Since w was any vector, we obtain B.

Since $A^{+} b$ solves the regression equation, $A^{t} A A^{+} b=A^{t} b$ for any vector b. Hence $A^{t} A A^{+}=A^{t}$. Let $P=A A^{+}$. Now

$$
P^{t} P=\left(A A^{+}\right)^{t}\left(A A^{+}\right)=\left(A^{+}\right)^{t} A^{t} A A^{+}=\left(A^{+}\right)^{t} A^{t}=P^{t} .
$$

Since the left side is symmetric, so is P^{t}. Hence P is symmetric, obtaining C.

For any vector x,

$$
A\left(x-A^{+} A x\right)=A x-A A^{+} A x=0
$$

so $x-A^{+} A x$ is in the null space of A. For any $y, A^{+} A y$ is in the row space of A. Since the row space and the null space are orthogonal,

$$
\left(x-A^{+} A x\right) \cdot A^{+} A y=0
$$

Let $P=A^{+} A$. This implies

$$
x \cdot P y=P x \cdot P y=x \cdot P^{t} P y
$$

Since this is true for any vectors x and $y, P=P^{t} P$. This shows $P=A^{+} A$ is symmetric, obtaining \mathbf{D}.

Having arrived at $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$, the reasoning is reversible: It can be shown any matrix A^{+}satisfying $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ must equal the pseudo-inverse.

Also we have

Pseudo-Inverse and Transpose

If U has orthonormal columns or orthonormal rows, then $U^{+}=U^{t}$.

From (2.2.6), such a matrix U satisfies $U U^{t}=I$ or $U^{t} U=I$. In either case, $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ are immediate consequences.

We end the section with the derivation of the existence of a residual minimizer x^{*} in the row space of A. For this, we appeal to (7.5.9) in $\S 7.5$.

We need to show $f(x)=|A x-b|^{2}$ is proper and continuous on the row space of A (here the row space of A plays the role of \mathbf{R}^{d} in (7.5.9)). For continuity, if x_{n} approaches x, then $A x_{n}$ approaches $A x$, so $A x_{n}-b$ approaches $A x-b$. Hence the norms squared $\left|A x_{n}-b\right|^{2}$ approach $|A x-b|^{2}$. This shows $f(x)$ is continuous.

For properness, suppose $f(x)$ is not proper. Then there would be a sequence x_{1}, x_{2}, \ldots in the row space of A satisfying $\left|x_{n}\right| \rightarrow \infty$ while $f\left(x_{n}\right)$ remains bounded, say $f\left(x_{n}\right) \leq c$ for some constant c. Let $x_{n}^{\prime}=x_{n} /\left|x_{n}\right|$. Then x_{n}^{\prime} are unit vectors in the row space of A, hence x_{n}^{\prime} is a bounded sequence. From $\S A .2$, this implies x_{n}^{\prime} subconverges to some x^{*}, necessarily a unit vector and necessarily in the row space of A.

By the triangle inequality (2.2.4),

$$
\left|A x_{n}^{\prime}\right|=\frac{1}{\left|x_{n}\right|}\left|A x_{n}\right| \leq \frac{1}{\left|x_{n}\right|}\left(\left|A x_{n}-b\right|+|b|\right) \leq \frac{1}{\left|x_{n}\right|}(c+|b|) .
$$

Moreover $A x_{n}^{\prime}$ subconverges to $A x^{*}$. Since $\left|x_{n}\right| \rightarrow \infty$, taking the limit $n \rightarrow$ ∞,

$$
\left|A x^{*}\right|=\lim _{n \rightarrow \infty}\left|A x_{n}^{\prime}\right| \leq \frac{1}{\infty}(c+|b|)=0 .
$$

Thus x^{*} is both in the row space of A and in the null space of A. Since the row space and the null space are orthogonal, this implies $x^{*}=0$. But we can't have $1=\left|x^{*}\right|=|0|=0$. This contradiction shows there is no such sequence x_{n}, and we conclude $f(x)$ is proper.

2.7 Projections

In this section, we study projection matrices P, and we show

- $P=A A^{+}$is the projection matrix onto the column space of A,
- $P=A^{+} A$ is the projection matrix onto the row space of A,
- $P=I-A^{+} A$ is the projection matrix onto the null space of A,

Figure 2.3: Projecting onto a line.

Let u be a unit vector, and let b be any vector. Let $\operatorname{span}(u)$ be the line through u (Figure 2.3). The projection of b onto $\operatorname{span}(u)$ is the vector v in $\operatorname{span}(u)$ that is closest to b.

It turns out this closest vector v equals $P b$ for some matrix P, the projection matrix. Since $\operatorname{span}(u)$ is a line, the projected vector $P b$ is a multiple $t u$ of u.

From Figure 2.3, $b-P b$ is orthogonal to u, so

$$
0=(b-P b) \cdot u=b \cdot u-P b \cdot u=b \cdot u-t u \cdot u=b \cdot u-t .
$$

Solving for t, this implies $t=b \cdot u$. Thus

$$
\begin{equation*}
P b=(b \cdot u) u=(u \otimes u) b \tag{2.7.1}
\end{equation*}
$$

Notice $P b=b$ when b is already on the line through u. In other words, the projection of a vector onto a line equals the vector itself when the vector is already on the line. If U is the matrix with the single column u, we obtain $P=U U^{t}$.

To summarize, the projected vector is the vector $(b \cdot u) u$, and the reduced vector is the scalar $b \cdot u$. Now we project onto a plane. If U is the matrix with the single column u, then the reduced vector is $U^{t} b$ and the projected vector is $U U^{t} b$.

Figure 2.4: Projecting onto a plane, $\mathrm{Pb}=r u+s v$.
Let u, v be an orthonormal pair of vectors, so $u \cdot v=0, u \cdot u=1=v \cdot v$. We project a vector b onto the plane $\operatorname{span}(u, v)$ containing u, v. As before, there is a matrix P, the projection matrix, such that the projection of b onto the plane equals $P b$. Then $b-P b$ is orthogonal to the plane (Figure 2.4), which means $b-P b$ satisfies

$$
(b-P b) \cdot u=0 \quad \text { and } \quad(b-P b) \cdot v=0 .
$$

Since $P b$ lies in the plane, $P b=r u+s v$ is a linear combination of u and v. Inserting $P b=r u+s v$, we obtain

$$
r=b \cdot u, \quad s=b \cdot v
$$

If U is the matrix with columns u, v, by (2.2.7), this yields,

$$
P b=(b \cdot u) u+(b \cdot v) v=(u \otimes u+v \otimes v) b=U U^{t} b
$$

Here the projection matrix also is $P=U U^{t}$.
Notice $P b=b$ when b is already in the plane. In other words, the projection of a vector onto a plane equals the vector itself when the vector is already in the plane.

To summarize, here the projected vector is the vector $U U^{t} b=(b \cdot u) u+$ $(b \cdot v) v$, and the reduced vector is the vector $U^{t} b=(b \cdot u, b \cdot v)$. The projected vector has the same dimension as the original vector, and the reduced vector has only two components.

We define projection matrices in general. Let S be a span. A matrix P is a projection matrix onto S if

1. $P b$ is in S for any vector b,
2. $P b=b$ if b is in S,
3. $b-P b$ is orthogonal to S for any vector b.

Let A be any matrix and let S be the column space of A. We show

Projection Onto a Column Space

The projection matrix onto the column space of A is

$$
\begin{equation*}
P=A A^{+} \tag{2.7.2}
\end{equation*}
$$

By definition, the column space S of A consists of vectors of the form $A x$. If b is any vector, then

$$
P b=A A^{+} b=A x, \quad \text { with } \quad x=A^{+} b,
$$

so $P b$ is in S. This establishes 1. If b is in S, then $b=A x$, so $P b=A A^{+} b=$ $A A^{+} A x=A x=b$, establishing 2. For 3., let $x^{+}=A^{+} b$. Then x^{+}is a solution of the regression equation, so

$$
(b-P b) \cdot A v=A^{t}\left(b-A A^{+} b\right) \cdot v=\left(A^{t} b-A^{t} A x^{+}\right) \cdot v=0
$$

establishing 3.
Now let $x=A^{+} b$. Then $A x=A A^{+} b=P b$ is the projection of v onto the column space of A. If the columns are $v_{1}, v_{2}, \ldots, v_{d}$, and $x=\left(t_{1}, t_{2}, \ldots, t_{d}\right)$, then by matrix-vector multiplication,

$$
P v=t_{1} v_{1}+t_{2} v_{2}+\cdots+t_{d} v_{d}
$$

So the reduced vector x consists of the coefficients when writing $P v$ as a linear combination of the columns.

```
from numpy import *
from numpy.linalg import pinv
# projection of column vector b
# onto column space of A
def project(A,b):
    Aplus = pinv(A)
    x = dot(Aplus,b) # reduced
    return dot(A,x) # projected
```


Projected and Reduced Vectors

Let A be a matrix and v a vector. Then the projected vector is $P v=$ $A A^{+} v$ and the reduced vector is $x=A^{+} v$.

For A as in (2.3.4) and $b=(-9,-3,3,9,10)$ the reduced vector onto the column space of A is

$$
x=A^{+} b=\frac{1}{15}(82,25,-32),
$$

and the projected vector onto the column space of A is

$$
P b=A x=A A^{+} b=(-8,-3,2,7,12) .
$$

The projection matrix onto the column space of A is

$$
P=A A^{+}=\frac{1}{10}\left(\begin{array}{ccccc}
6 & 4 & 2 & 0 & -2 \\
4 & 3 & 2 & 1 & 0 \\
2 & 2 & 2 & 2 & 2 \\
0 & 1 & 2 & 3 & 4 \\
-2 & 0 & 2 & 4 & 6
\end{array}\right)
$$

In the same way, one can show

Projection Onto a Row Space

The projection matrix onto the row space of A is

$$
\begin{equation*}
P=A^{+} A . \tag{2.7.3}
\end{equation*}
$$

For A as in (2.3.4), the projection matrix onto the row space is

$$
P=A^{+} A=\frac{1}{6}\left(\begin{array}{ccc}
5 & 2 & -1 \\
2 & 2 & 2 \\
-1 & 2 & 5
\end{array}\right)
$$

When the columns of a matrix U are orthonormal, in the previous section we saw $U^{+}=U^{t}$, so we have

Projection onto Orthonormal Vectors

If the columns of U are orthonormal, the projection matrix onto the column space of U is

$$
\begin{equation*}
P=U U^{t} \tag{2.7.4}
\end{equation*}
$$

Here the projected vector is $U U^{t} b$, and the reduced vector is $U^{t} b$. The code here is

```
from numpy import *
# projection of column vector b
# onto column space of U
# with orthonormal columns
def project_to_ortho(U,b):
    x = dot(U.T,b) # reduced
    return dot(U,x) # projected
```

Let $v_{1}, v_{2}, \ldots, v_{N}$ be a dataset in \mathbf{R}^{d}, and let U be a $d \times n$ matrix with orthonormal columns. Then the projection matrix onto the column space of U is $P=U U^{t}$, and P is the projection onto an orthonormal span.

In this case, the dataset $U^{t} v_{1}, U^{t} v_{2}, \ldots, U^{t} v_{N}$ is the reduced dataset, and $U U^{t} v_{1}, U U^{t} v_{2}, \ldots, U U^{t} v_{N}$ is the projected dataset.

The projected dataset is in \mathbf{R}^{d}, and the reduced dataset is in \mathbf{R}^{n}. Table 2.5 summarizes the relationships.

dataset	v_{k} in \mathbf{R}^{d},	$k=1,2, \ldots, N$
reduced	$U^{t} v_{k}$ in \mathbf{R}^{n},	$k=1,2, \ldots, N$
projected	$U U^{t} v_{k}$ in \mathbf{R}^{d},	$k=1,2, \ldots, N$

Table 2.5: Dataset, reduced dataset, and projected dataset, $n<d$.

Let S and T be spans. Let $S+T$ consist of all sums of vectors $u+v$ with u in S and v in T. Then a moment's thought shows $S+T$ is itself a span. When the intersection of S and T is the zero vector, we write $S \oplus T$, and we say $S \oplus T$ is the direct sum of S and T.

Let S be a span and let S^{\perp} consist of all vectors orthogonal to S. We call S^{\perp} the orthogonal complement. This is pronounced " S-perp". If v is in both S and in S^{\perp}, then v is orthogonal to itself, hence $v=0$. From this, we see $S+S^{\perp}$ is a direct sum $S \oplus S^{\perp}$.

Direct Sum and Orthogonal Complement

If S is a span in \mathbf{R}^{d}, then

$$
\begin{equation*}
\mathbf{R}^{d}=S \oplus S^{\perp} \tag{2.7.5}
\end{equation*}
$$

This is an immediate consequence of what we already know. Let P be the projection matrix onto S. Since any vector v in \mathbf{R}^{d} may be written

$$
v=P v+(v-P v)
$$

we see any vector is a sum of a vector in S and a vector in S^{\perp}.

An important example of (2.7.5) is the relation between the row space and the null space of a matrix. In $\S 2.4$, we saw that, for any matrix A, the row space and the null space are orthogonal complements.

Taking $S=$ nullspace in (2.7.5), we have the important

Null space plus Row Space Equals Source Space

If A is an $N \times d$ matrix,

$$
\begin{equation*}
\text { nullspace } \oplus \text { rowspace }=\mathbf{R}^{d}, \tag{2.7.6}
\end{equation*}
$$

and the null space and row space are orthogonal to each other.
From this, the projection onto the null space of A is

$$
\begin{equation*}
P=I-A^{+} A \tag{2.7.7}
\end{equation*}
$$

For A as in (2.3.4), the projection matrix onto the null space is

$$
P=I-A^{+} A=\frac{1}{6}\left(\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 4 & -2 \\
1 & -2 & 1
\end{array}\right)
$$

Let S be the column space of a matrix A, and let P be the projection matrix onto S. We end the section by establishing the claim made at the start of the section, that $P b$ is the point in S that is closest to b.

Since every point in S is of the form $A x$, we need to check

$$
|P b-b|^{2}=\min _{x}|A x-b|^{2} .
$$

But this was already done in $\S 2.3$, since $P b=A A^{+} b=A x^{+}$where $x^{+}=A^{+} b$ is a residual minimizer.

Projection is the Nearest Point in the Span

Let $P b=A A^{+} b$ be the projection of b onto the column space of A, and let $x^{+}=A^{+} b$ be the reduced vector. Then

$$
\begin{equation*}
\left|A x^{+}-b\right|^{2}=\min _{x}|A x-b|^{2} . \tag{2.7.8}
\end{equation*}
$$

2.8 Basis

Let S be the span of vectors $v_{1}, v_{2}, \ldots, v_{N}$. Then there are many other choices of spanning vectors for S. For example, $v_{1}+v_{2}, v_{2}, v_{3}, \ldots, v_{N}$ also spans S.

If S cannot be spanned by fewer than N vectors, then we say v_{1}, v_{2}, \ldots, v_{N}. is a basis for S, and we call N is the dimension of S.

In other words, when N is the smallest number of spanning vectors, we say N is the dimension $\operatorname{dim} S$ of S, and $v_{1}, v_{2}, \ldots, v_{N}$ is a minimal spanning set for S. This definition is important enough to repeat,

Basis and Dimension Definition

A basis for a span S is a minimal spanning set of vectors. The dimension of S is the number of vectors in any basis for S.

To clarify this definition, suppose someone asks "Who is the shortest person in the room?" There may be several shortest people in the room, but, no matter how many shortest people there are, there is only one shortest height. In other words, a span may have several bases, but a span's dimension is uniquely determined.

When a basis $v_{1}, v_{2}, \ldots, v_{N}$ consists of orthogonal vectors, we say v_{1}, v_{2}, \ldots, v_{N} is an orthogonal basis. When $v_{1}, v_{2}, \ldots, v_{N}$ are also unit vectors, we say $v_{1}, v_{2}, \ldots, v_{N}$ is an orthonormal basis.

Figure 2.6: Relations between vector classes.

Here are two immediate consequences of this terminology.

Span of N Vectors

If $S=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{N}\right)$, then $\operatorname{dim} S \leq N$.

Larger Span has Larger Dimension

If a span S_{1} is contained in a span S_{2}, then $\operatorname{dim} S_{1} \leq \operatorname{dim} S_{2}$.

With this terminology,

- rowspace() returns a basis of the row space,
- columnspace() returns a basis of the column space,
- nullspace() returns a basis for the null space,
- row rank equals the dimension of the row space,
- column rank equals the dimension of the column space,
- nullity equals the dimension of the null space.

Let S be the span of vectors $v_{1}, v_{2}, \ldots, v_{N}$. How can we check if these vectors constitute a basis for S ? The answer is the main result of the section.

Spanning Plus Linearly Independent Equals Basis

Let S be the span of vectors $v_{1}, v_{2}, \ldots, v_{N}$. Then the vectors are a basis for S if and only if they are linearly independent.

Remember, to check for linear independence of given vectors, assemble the vectors as columns of a matrix A, and check whether A.nullspace() equals zero. If that is the case, the vectors are a basis for their span. If not, the vectors are not a basis for their span. The proof of the main result is at the end of the section.

Here is an example. Let $e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)$. We have just seen that e_{1}, e_{2}, e_{3} are linearly independent. Hence e_{1}, e_{2}, e_{3} is a basis for \mathbf{R}^{3}, which means e_{1}, e_{2}, e_{3} is a minimal spanning set of vectors for \mathbf{R}^{3}. From this, we conclude $\operatorname{dim} \mathbf{R}^{3}=3$.

The statement $\operatorname{dim} \mathbf{R}^{3}=3$ may at first seem trivial or obvious. But, if we flesh this out following our terminology above, the statement is saying that any minimal spanning set of vectors in \mathbf{R}^{3} must have exactly 3 vectors. Stated in this manner, the statement has content.

Since we can do the same calculation with the standard basis

$$
\begin{aligned}
e_{1} & =(1,0, \ldots, 0), \\
e_{2} & =(0,1,0, \ldots, 0), \\
\ldots & =\ldots \\
e_{d} & =(0,0, \ldots, 0,1),
\end{aligned}
$$

in \mathbf{R}^{d}, we conclude $e_{1}, e_{2}, \ldots, e_{d}$ are linearly independent, so

Dimension of Euclidean Space

The dimension of \mathbf{R}^{d} is d.

The MNIST dataset consists of vectors $v_{1}, v_{2}, \ldots, v_{N}$ in \mathbf{R}^{d}, where $N=$ 60000 and $d=784$. For the MNIST dataset, the full dimension is 712 , as returned by the code

```
from numpy.linalg import matrix_rank
matrix_rank(vectors)
```

In particular, since $712<784$, approximately 10% of pixels are never touched by any image. For example, the most likely pixel to remain untouched is at the top left corner $(0,0)$. Thus there are 72 zero variance directions for this dataset.

We pose the following question: What is the least n for which the first n images are linearly dependent? Since the dimension of the feature space \mathbf{R}^{d} is d, we must have $n \leq 784$. To answer the question, we compute the row rank of the first n vectors for $n=1,2,3, \ldots$, and continue until we have linear dependence of $v_{1}, v_{2}, \ldots, v_{n}$.

If we save the MNIST dataset as a centered array vectors, as in §2.1, and run the code below, we obtain $n=560$ (Figure 2.7). matrix_rank is discussed in §2.9.

```
from numpy import *
from numpy.linalg import matrix_rank
# vectors as Nxd array
def find_first_defect(vectors):
    d = len(vectors[0])
    previous = 0
    for n in range(len(vectors)):
        r = matrix_rank(vectors[:n+1,:])
```

```
print((r,n+1),end=",")
if r == previous: break
if r == d: break
previous = r
```


Abstract

$1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,4$ $2,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80$ $81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,11$ $4,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,14$ $3,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,17$ $2,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,20$ $1,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,23$ $0,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,25$ 9 ,260, $261,262,263,264,265,266$, $267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,28$ $9,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,28$ $7,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,34$ $6,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,37$ $5,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,43$ $4,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,43$ 3,435 $2,463,464,465,466,467,468,469,470,471,472,473,474,475,476,470,478,479,480,481,482,483,484,485,486,481,488,489,490,49$ $1,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,52$ $0,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,54$ 9, 550, $551,552,553,554,555,556,557,558,559,560,560$,

Figure 2.7: First defect for MNIST.

Let $v_{1}, v_{2}, \ldots, v_{N}$ be a dataset. We want to compute the dimensions of the first k vectors,

$$
d_{1}=\operatorname{dim}\left(v_{1}\right), \quad d_{2}=\operatorname{dim}\left(v_{1}, v_{2}\right), \quad d_{3}=\operatorname{dim}\left(v_{1}, v_{2}, v_{3}\right), \quad \text { and so on }
$$

This we call the dimension staircase. For example, Figure 2.8 is the dimension staircase for

$$
v_{1}=(1,0,0), v_{2}=(0,1,0), v_{3}=(1,1,0), v_{4}=(3,4,0), v_{5}=(0,0,1)
$$

In Figure 2.8, we call the points $(3,2)$ and $(4,2)$ defects.

Figure 2.8: The dimension staircase with defects.
In the code, the staircase is drawn by stairs (X, Y), where the horizontal points X and the vertical values Y satisfy len $(X)==\operatorname{len}(Y)+1$. In Figure 2.8, $X=[1,2,3,4,5,6]$, and $Y=[1,2,2,2,3]$.

Figure 2.9: The dimension staircase for the MNIST dataset.
With the MNIST dataset loaded as vectors, here is code returning Figure 2.9. This code is not efficient, but it works. It takes 57041 vectors in the dataset to fill up 712 dimensions.

```
from matplotlib.pyplot import *
from numpy.linalg import matrix_rank
# vectors as Nxd array
def dimension_staircase(vectors):
    d = vectors[0].size
    N = len(vectors)
    rmax = matrix_rank(vectors)
    dimensions = [ ]
    basis = [ ]
    for n in range(1,N):
            r = matrix_rank(vectors[:n,:])
            print((r,n),end=",")
            dimensions.append(r)
            if r == rmax: break
    stairs(dimensions, range(n+1))
```

Proof of main result. Here we derive: Let S be the span of v_{1}, v_{2}, \ldots, v_{N}. Then $v_{1}, v_{2}, \ldots, v_{N}$ is a basis for S if and only if $v_{1}, v_{2}, \ldots, v_{N}$ are linearly independent.

Suppose $v_{1}, v_{2}, \ldots, v_{N}$ are not linearly independent. Then v_{1}, v_{2}, \ldots, v_{N} are linearly dependent, which means one of the vectors, say v_{1}, is a linear combination of the other vectors $v_{2}, v_{3}, \ldots, v_{N}$. Then any linear combination of $v_{1}, v_{2}, \ldots, v_{N}$ is necessarily a linear combination of $v_{2}, v_{3}, \ldots, v_{N}$, thus

$$
\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{N}\right)=\operatorname{span}\left(v_{2}, v_{3}, \ldots, v_{N}\right)
$$

This shows $v_{1}, v_{2}, \ldots, v_{N}$ is not a minimal spanning set, and completes the derivation in one direction.

In the other direction, suppose $v_{1}, v_{2}, \ldots, v_{N}$ are linearly independent, and suppose $b_{1}, b_{2}, \ldots, b_{d}$ is a minimal spanning set. Since $b_{1}, b_{2}, \ldots, b_{d}$ is minimal, we must have $d \leq N$. Once we establish $d=N$, it follows v_{1}, v_{2}, \ldots, v_{N} is minimal, and the proof will be complete.

Since by assumption,

$$
\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{N}\right)=\operatorname{span}\left(b_{1}, b_{2}, \ldots, b_{d}\right),
$$

v_{1} is a linear combination of $b_{1}, b_{2}, \ldots, b_{d}$,

$$
v_{1}=t_{1} b_{1}+t_{2} b_{2}+\cdots+t_{d} b_{d}
$$

Since $v_{1} \neq 0$, at least one of the coefficients, say t_{1}, is not zero, so we can solve

$$
b_{1}=\frac{1}{t_{1}}\left(v_{1}-t_{2} b_{2}-t_{3} b_{3}-\cdots-t_{d} b_{d}\right)
$$

This shows

$$
\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{N}\right)=\operatorname{span}\left(v_{1}, b_{2}, b_{3}, \ldots, b_{d}\right)
$$

Repeating the same logic, v_{2} is a linear combination of $v_{1}, b_{2}, b_{3}, \ldots, b_{d}$,

$$
v_{2}=s_{1} v_{1}+t_{2} b_{2}+t_{3} b_{3}+\cdots+t_{d} b_{d} .
$$

If all the coefficients of $b_{2}, b_{3}, \ldots, b_{d}$ are zero, then v_{2} is a multiple of v_{1}, contradicting linear independence of $v_{1}, v_{2}, \ldots, v_{N}$. Thus there is at least one coefficient, say t_{2}, which is not zero. Solving for b_{2}, we obtain

$$
b_{2}=\frac{1}{t_{2}}\left(v_{2}-s_{1} v_{1}-t_{3} b_{3}-\cdots-t_{d} b_{d}\right)
$$

This shows

$$
\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{N}\right)=\operatorname{span}\left(v_{1}, v_{2}, b_{3}, b_{4}, \ldots, b_{d}\right)
$$

Repeating the same logic, v_{3} is a linear combination of $v_{1}, v_{2}, b_{3}, b_{3}, \ldots$, b_{d},

$$
v_{3}=s_{1} v_{1}+s_{2} v_{2}+t_{3} b_{3}+t_{4} b_{4}+\cdots+t_{d} b_{d} .
$$

If all the coefficients of $b_{3}, b_{4}, \ldots, b_{d}$ are zero, then v_{3} is a linear combination of v_{1}, v_{2}, contradicting linear independence of $v_{1}, v_{2}, \ldots, v_{N}$. Thus there is at least one coefficient, say t_{3}, which is not zero. Solving for b_{3}, we obtain

$$
b_{3}=\frac{1}{t_{3}}\left(v_{3}-s_{1} v_{1}-s_{2} v_{2}-t_{4} b_{4}-\cdots-t_{d} b_{d}\right) .
$$

This shows

$$
\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{N}\right)=\operatorname{span}\left(v_{1}, v_{2}, v_{3}, b_{4}, b_{5}, \ldots, b_{d}\right)
$$

Continuing in this manner, we eventually arrive at

$$
\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{N}\right)=\cdots=\operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{d}\right)
$$

This shows v_{N} is a linear combination of $v_{1}, v_{2}, \ldots, v_{d}$. This shows $N=d$, because $N>d$ contradicts linear independence. Since d is the minimal spanning number, this shows $v_{1}, v_{2}, \ldots, v_{N}$ is a minimal spanning set for S.

2.9 Rank

If A is an $N \times d$ matrix, then (Figure 2.10) $x \mapsto A x$ is a linear transformation that sends a vector x in \mathbf{R}^{d} (the source space) to the vector $A x$ in \mathbf{R}^{N} (the target space). The transpose A^{t} goes in the reverse direction: The linear transformation $b \mapsto A^{t} b$ sends a vector b in \mathbf{R}^{N} (the target space) to the vector $A^{t} b$ in \mathbf{R}^{d} (the source space).

It follows that for an $N \times d$ matrix, the dimension of the source space is d, and the dimension of the target space is N,

$$
\operatorname{dim}(\text { source space })=d, \quad \operatorname{dim}(\text { target space })=N .
$$

```
from sympy import *
d = A.cols # source space dimension
N = A.rows # target space dimension
```


Figure 2.10: A 5×3 matrix A is a linear transformation from \mathbf{R}^{3} to \mathbf{R}^{5}.
By (2.4.2), the column space is in the target space, and the row space is in the source space. Thus we always have

$$
0 \leq \text { row rank } \leq d \quad \text { and } \quad 0 \leq \text { column rank } \leq N
$$

For A as in (2.3.4), the column rank is 2 , the row rank is 2 , and the nullity is 1 . Thus the column space is a 2 -d plane in \mathbf{R}^{5}, the row space is a $2-\mathrm{d}$ plane in \mathbf{R}^{3}, and the null space is a 1-d line in \mathbf{R}^{3}.

The main result in this section is

Rank Theorem

Let A be any matrix. Then

$$
\begin{equation*}
\text { row } \operatorname{rank}(A)=\text { column } \operatorname{rank}(A) . \tag{2.9.1}
\end{equation*}
$$

This is established at the end of the section.
Because the row rank and the column rank are equal, in the future we just say rank of a matrix, and we write $\operatorname{rank}(A)$. In Python,

```
from sympy import *
A.rank()
from numpy.linalg import matrix_rank
matrix_rank(A)
```

returns the rank of a matrix. The main result implies $\operatorname{rank}(A)=\operatorname{rank}\left(A^{t}\right)$, so

Upper bound for Rank

For any $N \times d$ matrix, the rank is never greater than $\min (N, d)$.

An $N \times d$ matrix A is full-rank if its rank is the highest it can be, $\operatorname{rank}(A)=\min (N, d)$. Here are some consequences of the main result.

- When $N \geq d$, full-rank is the same as $\operatorname{rank}(A)=d$, which is the same as saying the columns are linearly independent and the rows span \mathbf{R}^{d}.
- When $N \leq d$, full-rank is the same as $\operatorname{rank}(A)=N$, which is the same as saying the rows are linearly independent and the columns span \mathbf{R}^{N}.
- When $N=d$, full-rank is the same as saying the rows are a basis of \mathbf{R}^{d}, and the columns are a basis of \mathbf{R}^{N}.

When A is a square matrix, we can say more:

Full Rank Square Equals Invertible

Let A be a square matrix. Then A is full rank iff A is invertible.
Suppose A is $d \times d$. If A is invertible and B is its inverse, then $A B=I$. Since $A B x=A(B x)=A y$ with $y=B x$, the column space of $A B$ is contained in the column space of A. Since the column space of $A B=I$ is \mathbf{R}^{d}, we conclude the column space of A is \mathbf{R}^{d}, thus $\operatorname{rank}(A)=d$.

Conversely, suppose A is full rank. This means the columns of A span \mathbf{R}^{d}. By (2.4.3), this implies

$$
A x=b
$$

is solvable for any b. Let $e_{1}, e_{2}, \ldots, e_{d}$ be the standard basis. If we set successively $b=e_{1}, b=e_{2}, \ldots, b=e_{d}$, we then get solutions $x_{1}, x_{2}, \ldots, x_{d}$. If B is the matrix with columns $x_{1}, x_{2}, \ldots, x_{d}$, then

$$
A B=A\left[x_{1}, x_{2}, \ldots, x_{d}\right]=\left[A x_{1}, A x_{2}, \ldots, A x_{d}\right]=\left[e_{1}, e_{2}, \ldots, e_{d}\right]=I
$$

Thus we found a matrix B satisfying $A B=I$.
Repeating the same argument with rows instead of columns, we find a matrix C satisfying $C A=I$. Then

$$
C=C I=C A B=I B=B
$$

so $B=C$ is the inverse of A.

Orthonormal Rows and Columns

Let U be a matrix.

- U has orthonormal rows iff $U U^{t}=I$.
- U has orthonormal columns iff $U^{t} U=I$.

If U is square and either holds, then they both hold.
The first two assertions are in $\S 2.2$. For the last assertion, assume U is a square matrix. From $\S 2.4$, orthonormality of the rows implies linear
independence of the rows, so U is full-rank. If U also is a square matrix, then U is invertible. Multiply by U^{-1},

$$
U^{-1}=U^{-1} I=U^{-1} U U^{t}=U^{t} .
$$

Since we have $U^{-1} U=I$, we also have $U^{t} U=I$.

A square matrix U satisfying

$$
\begin{equation*}
U U^{t}=I=U^{t} U \tag{2.9.2}
\end{equation*}
$$

is an orthogonal matrix.
Equivalently, we can say

Orthogonal Matrix

A matrix U is orthogonal iff its rows are an orthonormal basis iff its columns are an orthonormal basis.

Since

$$
U u \cdot U v=u \cdot U^{t} U v=u \cdot v
$$

U preserves dot products. Since lengths are dot products, U also preserves lengths. Since angles are computed from dot products, U also preserves angles. Summarizing,

Angles, Lengths, and Dot Products

Orthogonal Matrices Preserve Angles, Lengths, and Dot Products:
As a consequence,

Orthogonal Matrix sends ON Vectors to ON Vectors

Let U be an orthogonal matrix. If $v_{1}, v_{2}, \ldots, v_{d}$ are orthonormal, then $U v_{1}, U v_{2}, \ldots, U v_{d}$ are orthonormal.

In two dimensions, $d=2$, an orthogonal matrix must have two orthonormal columns, so must be of the form

$$
U=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \quad \text { or } \quad U=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right)
$$

In the first case, U is a rotation, while in the second, U is a rotation followed by a reflection.

If $v_{1}, v_{2}, \ldots, v_{d}$ is an orthonormal basis of \mathbf{R}^{d}, and U has columns v_{1}, v_{2}, \ldots, v_{d}, then U is square and $U U^{t}=I=U^{t} U$. By (2.2.7), we have

$$
I=v_{1} \otimes v_{1}+v_{2} \otimes v_{2}+\cdots+v_{d} \otimes v_{d}
$$

Multiplying both sides by v, by (1.4.14), we obtain

Orthonormal Basis Expansion

If $v_{1}, v_{2}, \ldots, v_{d}$ is an orthonormal basis, and v is any vector, then

$$
\begin{equation*}
v=\left(v \cdot v_{1}\right) v_{1}+\left(v \cdot v_{2}\right) v_{2}+\cdots+\left(v \cdot v_{d}\right) v_{d} \tag{2.9.3}
\end{equation*}
$$

and

$$
\begin{equation*}
|v|^{2}=\left|v \cdot v_{1}\right|^{2}+\left|v \cdot v_{2}\right|^{2}+\cdots+\left|v \cdot v_{d}\right|^{2} . \tag{2.9.4}
\end{equation*}
$$

Let $v_{1}, v_{2}, \ldots, v_{N}$ be a centered dataset, and let A be the dataset matrix with rows $v_{1}, v_{2}, \ldots, v_{N}$. The dimension of the dataset is the rank of its dataset matrix A. From what we just saw, the dimension of the dataset equals the rank of $A^{t} A$. Since the covariance is the matrix $Q=A^{t} A / N$, and scaling a matrix has no effect on the rank, we conclude the dimension of a dataset equals the rank of its covariance.

To derive the main result, first we recall (2.7.6). From the definition of dimension, we can rewrite (2.7.6) as

Row Rank plus Nullity equals Source Space Dimension

For any matrix, the row rank plus the nullity equals the dimension of the source space. If the matrix is $N \times d, r$ is the rank, and n is the
nullity, then

$$
r+n=d
$$

Assume A has N rows and d columns. By (2.7.6), every vector x in the source space \mathbf{R}^{d} can be written as a sum $x=u+v$ with u in the null space, and v in the row space. In other words, each vector x may be written as a sum $x=u+v$ with $A u=0$ and v in the row space.

From this, we have

$$
A x=A(u+v)=A u+A v=A v
$$

This shows the column space consists of vectors of the form $A v$ with v in the row space.

Let $v_{1}, v_{2}, \ldots, v_{r}$ be a basis for the row space. From the previous paragraph, it follows $A v_{1}, A v_{2}, \ldots, A v_{r}$ spans the column space of A. We claim $A v_{1}, A v_{2}, \ldots, A v_{r}$ are linearly independent. To check this, we write

$$
0=t_{1} A v_{1}+t_{2} A v_{2}+\cdots+t_{r} A v_{r}=A\left(t_{1} v_{1}+t_{2} v_{2}+\cdots+t_{r} v_{r}\right) .
$$

If v is the vector $t_{1} v_{1}+t_{2} v_{2}+\cdots+t_{r} v_{r}$, this shows v is in the null space. But v is a linear combination of basis vectors of the row space, so v is also in the row space. Since the row space is the orthogonal complement of the null space, we must have v orthogonal to itself. Thus $v=0$, or $t_{1} v_{1}+t_{2} v_{2}+\cdots+t_{r} v_{r}=0$.

But $v_{1}, v_{2}, \ldots, v_{r}$ is a basis. By linear independence of $v_{1}, v_{2}, \ldots, v_{r}$, we conclude $t_{1}=0, \ldots, t_{r}=0$. This establishes the claim, hence $A v_{1}, A v_{2}, \ldots$, $A v_{r}$ is a basis for the column space. This shows r is the dimension of the column space, which is by definition the column rank. Since by construction, r is also the row rank, this establishes the rank theorem.

Chapter 3

Principal Components

In this chapter, we look at the two fundamental methods of breaking or decomposing a matrix into elementary components, the eigenvalue decomposition and the singular value decomposition, then we apply this to principal component analysis.

We begin by looking at the geometry of a matrix as a linear transformation.

3.1 Geometry of Matrices

Matrix multiplication by an $N \times d$ matrix A sends a point x in the source space \mathbf{R}^{d} to a point $b=A x$ in the target space \mathbf{R}^{N} (Figure 2.10).

Equivalently, since points in \mathbf{R}^{d} are essentially the same as vectors in \mathbf{R}^{d} (see §1.3), an $N \times d$ matrix A sends a vector v in \mathbf{R}^{d} to a vector $A v$ in \mathbf{R}^{N}.

Looked at this way, a matrix A induces a linear transformation: Matrix multiplication by A satisfies

$$
A\left(v_{1}+v_{2}\right)=A v_{1}+A v_{2}, \quad A(t v)=t A v
$$

One way to understand what the transformation does is to see how it distorts distances between vectors. If v_{1} and v_{2} are in \mathbf{R}^{d}, then the distance between them is $d=\left|v_{1}-v_{2}\right|$ (recall $|v|$ denotes the euclidean length of v). How does this compare with the distance between $A v_{1}$ and $A v_{2}$, or $\left|A v_{1}-A v_{2}\right| ?$

If we let

$$
u=\frac{v_{1}-v_{2}}{\left|v_{1}-v_{2}\right|}=\frac{1}{d}\left(v_{1}-v_{2}\right),
$$

then u is a unit vector, $|u|=1$, and

$$
|A u|=\left|\frac{1}{d} A\left(v_{1}-v_{2}\right)\right|=\frac{\left|A v_{1}-A v_{2}\right|}{\left|v_{1}-v_{2}\right|} .
$$

This ratio is a scaling factor of the linear transformation. Of course this scaling factor depends on the given vectors v_{1}, v_{2}.

From this, to understand the scaling distortions, it is enough to understand what multiplication by A does to unit vectors u.

The first step in understanding this is to compute

$$
\sigma_{1}=\max |A u| \quad \text { and } \quad \sigma_{2}=\min |A u| .
$$

Here the maximum and minimum are taken over all unit vectors u.
Then σ_{1} is the distance of the furthest image from the origin, and σ_{2} is the distance of the nearest image to the origin. It turns out σ_{1} and σ_{2} are the top and bottom singular values of A.

To keep things simple, assume both the source space and the target space are \mathbf{R}^{2}; then A is 2×2.

The unit circle (in red in Figure 3.1) is the set of vectors u satisfying $|u|=1$. The image of the unit circle (also in red in Figure 3.1) is the set of vectors of the form

$$
\{A u:|u|=1\} .
$$

The annulus is the set (the region between the dashed circles in Figure 3.1) of vectors b satisfying

$$
\left\{b: \sigma_{2}<|b|<\sigma_{1}\right\}
$$

It turns out the image is an ellipse, and this ellipse lies in the annulus.
Thus the numbers σ_{1} and σ_{2} constrain how far the image of the unit circle is from the origin, and how near the image is to the origin.

Figure 3.1: Image of unit circle with $\sigma_{1}=1.5$ and $\sigma_{2}=.75$.

To relate σ_{1} and σ_{2} to what we've seen before, let $Q=A^{t} A$. Then,

$$
\sigma_{1}^{2}=\max |A u|^{2}=\max (A u) \cdot(A u)=\max u \cdot A^{t} A u=\max u \cdot Q u .
$$

Thus σ_{1}^{2} is the maximum projected variance corresponding to the covariance Q. Similarly, σ_{2}^{2} is the minimum projected variance corresponding to the covariance Q.

Now let $Q=A A^{t}$, and let b be in the image. Then $b=A u$ for some unit vector u, and

$$
b \cdot Q^{-1} b=(A u) \cdot Q^{-1} A u=u \cdot A^{t}\left(A A^{t}\right)^{-1} A u=u \cdot I u=|u|^{2}=1 .
$$

This shows the image of the unit circle is the inverse covariance ellipse (§1.6) corresponding to the covariance Q, with major axis length $2 \sigma_{1}$ and minor axis length $2 \sigma_{2}$. Let us look at some special cases.

The first example is

$$
V=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \tag{3.1.1}\\
\sin \theta & \cos \theta
\end{array}\right)
$$

If $e_{1}=(1,0), e_{2}=(0,1)$ is the standard basis in \mathbf{R}^{2}. then the columns of V are

$$
V e_{1}=(\cos \theta, \sin \theta), \quad \text { and } \quad V e_{2}=(-\sin \theta, \cos \theta)
$$

Since $V^{t} V=I$, the columns of V are orthonormal. Thus V transforms the orthonormal basis e_{1}, e_{2} into the orthonormal basis $V e_{1}, V e_{2}$ (see §2.9). By (1.4.3), V is a rotation by the angle θ.

The second example is

$$
S=\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right)
$$

Then S scales the horizontal direction by the factor σ_{1}, and S scales the vertical direction by σ_{2}.

The third example are the reflections

$$
R=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad R=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

These reflect vectors across the horizontal axis, and across the vertical axis.

Recall an orthogonal matrix is a matrix U satisfying $U^{t} U=I=U U^{t}$ ((2.9.2)). Every orthogonal matrix U is a rotation V or a rotation times a reflection $V R$.

The SVD decomposition (§3.3) states that every matrix A can be written as a product

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=U S V
$$

Here S is a diagonal matrix as above, and U, V are orthogonal and rotation matrices as above.

In more detail, apart from a possible reflection, there are scalings σ_{1} and σ_{2} and angles α and β, so that A transforms vectors by first rotating by α, then scaling by $\left(\sigma_{1}, \sigma_{2}\right)$, then by rotating by β (Figure 3.2).

Figure 3.2: SVD decomposition $A=U S V$.
In other words, each 2×2 matrix A, consisting of four numbers a, b, c, d, may be described by four other numbers. These other numbers present a much clearer picture of the geometry of A : two angles α, β, and two scalings σ_{1}, σ_{2}.

Everything in this section generalizes to any $N \times d$ matrix, as we see in the coming sections.

3.2 Eigenvalue Decomposition

Let A be a matrix. An eigenvector for A is a nonzero vector v such that $A v$ is aligned with v. This means

$$
\begin{equation*}
A v=\lambda v \tag{3.2.1}
\end{equation*}
$$

for some scalar λ, the corresponding eigenvalue. Because the solution $v=0$ of (3.2.1) is not useful, we insist eigenvectors be nonzero.

If v is an eigenvector, then the dimension of v equals the dimension of $A v$, which can only happen when A is a square matrix.

Figure 3.3: Relations between matrix classes.

If v is an eigenvector corresponding to eigenvalue λ, then any scalar multiple $u=t v$ is also an eigenvector corresponding to eigenvalue λ, since

$$
A v=\lambda v \quad \Longrightarrow \quad A u=A(t v)=t(A v)=t(\lambda v)=\lambda(t v)=\lambda u
$$

Because of this, we usually take eigenvectors to be unit vectors, by normalizing them. Even then, this does not determine v uniquely, since both $\pm v$ are unit eigenvectors.

Let

$$
Q=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

Then Q has eigenvalues 3 and 1, with corresponding eigenvectors $(1,1)$ and $(1,-1)$. These are not unit vectors, but the corresponding unit eigenvectors are $(1 / \sqrt{2}, 1 / \sqrt{2})$ and $(1 / \sqrt{2},-1 / \sqrt{2})$.

The code

```
from numpy import *
from numpy.linalg import eig
# lambda is a keyword in Python
# so we use lamda instead
A = array([[2,1],[1, 2]])
lamda, U = eig(A)
lamda
```

returns the eigenvalues $[3,1]$ as an array, and returns the eigenvectors v_{1}, v_{2} of Q, as the columns of the matrix U. The matrix U is discussed further below.

The method eig(A) works on any square matrix A, but may return complex eigenvalues. When eig(A) returns real eigenvalues, they are not necessarily ordered in any predetermined fashion.

If the matrix Q is known to be symmetric, then the eigenvalues are guaranteed real. In this case, the method eigh(Q) returns these eigenvalues in increasing order. If eigh is used on a non-symmetric matrix, it will return erroneous data.

```
from numpy import *
from numpy.linalg import eigh
Q = array([[2,1],[1,2]])
lamda, U = eigh(Q)
lamda
```

returns the array $[1,3]$.

Let A be a square $d \times d$ matrix. The ideal situation is when there is a basis $v_{1}, v_{2}, \ldots, v_{d}$ in \mathbf{R}^{d} of eigenvectors of A. However, this is not always the case. For example, if

$$
A=\left(\begin{array}{ll}
1 & 1 \tag{3.2.2}\\
0 & 1
\end{array}\right)
$$

and $A v=\lambda v$, then $v=(x, y)$ satisfies $x+y=\lambda x, y=\lambda y$. This system has only the nonzero solution $(x, y)=(1,0)$ (or its multiples) and $\lambda=1$. Thus A has only one eigenvector $e_{1}=(1,0)$, and the corresponding eigenvalue is $\lambda=1$.

Let A be any square matrix.

Eigenvalues of A Versus Eigenvalues of A^{t}

The eigenvalues of A and the eigenvalues of A^{t} are the same.
This result is a consequence of the rank theorem in $\S 2.9$. To see why, suppose λ is an eigenvalue of A with corresponding eigenvector v. Then $A v=\lambda v$, which implies

$$
(A-\lambda I) v=A v-\lambda v=0 .
$$

As a consequence, if we let $B=A-\lambda I$, then λ is an eigenvalue of A iff 1 B has a nonzero null space. If we show $B^{t}=A^{t}-\lambda I$ has a nonzero null space, by the same logic, we will conclude λ is an eigenvalue of A^{t}. Now B has a nonzero null space iff B is not full-rank. Since B is square, by the rank theorem, this happens iff B^{t} is not full-rank, which happens iff B^{t} has

[^3]a nonzero null space. Thus λ is an eigenvalue of A iff λ is an eigenvalue of A^{t}.

Let v be a unit vector. From $\S 2.5$, when Q is the covariance matrix of a dataset, $v \cdot Q v$ is the variance of the dataset projected onto the line through v. When v is an eigenvector, $Q v=\lambda v$, the variance equals

$$
v \cdot Q v=v \cdot \lambda v=\lambda v \cdot v=\lambda .
$$

More generally, this holds for any symmetric matrix Q. We conclude

Projected Variance along Eigenvector Direction

If v is a unit eigenvector of a symmetric matrix Q, then $v \cdot Q v$ equals the corresponding eigenvalue. In particular, the eigenvalues of a covariance matrix are nonnegative.

In general, when Q is symmetric but not a covariance matrix, some eigenvalues of Q may be negative.

Suppose λ and μ are eigenvalues of a symmetric matrix Q with corresponding eigenvectors u, v. Since Q is symmetric, $u \cdot Q v=v \cdot Q u$. Using $Q u=\lambda u, Q v=\mu v$, we compute $u \cdot Q v$ in two ways:

$$
\mu u \cdot v=u \cdot(\mu v)=u \cdot Q v=v \cdot Q u=v \cdot(\lambda u)=\lambda u \cdot v .
$$

This implies

$$
(\mu-\lambda) u \cdot v=0
$$

If $\lambda \neq \mu$, we must have $u \cdot v=0$. We conclude:

Distinct Eigenvalues Have Orthogonal Eigenvectors

For a symmetric matrix Q, eigenvectors corresponding to distinct eigenvalues are orthogonal.

Suppose there is a basis $v_{1}, v_{2}, \ldots, v_{d}$ of eigenvectors of Q, with corresponding eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$. Let E be the diagonal matrix with λ_{1}, $\lambda_{2}, \ldots, \lambda_{d}$ on the diagonal,

$$
E=\left(\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \ldots & 0 \\
0 & \lambda_{2} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \lambda_{d-1} & 0 \\
0 & 0 & \ldots & 0 & \lambda_{d}
\end{array}\right) .
$$

Let U be the matrix with columns $v_{1}, v_{2}, \ldots, v_{d}$. By matrix multiplication and $Q v_{j}=\lambda_{j} v_{j}, j=1,2, \ldots, d$, we obtain

$$
\begin{equation*}
Q U=U E . \tag{3.2.3}
\end{equation*}
$$

When this happens, we say Q is diagonalizable. Thus A in (3.2.2) is not diagonalizable. On the other hand, we will show every symmetric matrix Q is diagonalizable. In fact, Q symmetric leads to an orthonormal basis of eigenvectors.

In Python, given Q, we compute the third eigenvector v and third eigenvalue λ, and verify $Q v=\lambda v$. The code

```
from numpy import *
from numpy.linalg import eigh
# Q is any symmetric matrix
lamda, U = eigh(Q)
lamda = lamda[2]
v = U[:,2]
allclose(dot(Q,v), lamda*v)
```

returns True.

The main result in this section is

Eigenvalue Decomposition (EVD)

Let Q be a symmetric $d \times d$ matrix. There is an orthonormal basis v_{1}, v_{2}, \ldots, v_{d} in \mathbf{R}^{d} of eigenvectors of Q, with corresponding eigenvalues

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d}
$$

Here are some consequences of the eigenvalue decomposition.
If V is the matrix with rows $v_{1}, v_{2}, \ldots, v_{d}$ then $U=V^{t}$ is the matrix with columns $v_{1}, v_{2}, \ldots, v_{d}$. Since $v_{1}, v_{2}, \ldots, v_{d}$ are orthonormal, U is orthogonal (see (2.9.2)), so $U^{t} U=I=U U^{t}$. By (3.2.3), $Q U=U E$. Multiplying on the right by $V=U^{t}$,

$$
Q=Q U V=U E V
$$

Thus the eigenvalue decomposition states

Diagonalization (EVD)

There is an orthogonal matrix V and a diagonal matrix E such that with $U=V^{t}$, we have

$$
\begin{equation*}
Q=U E V . \tag{3.2.4}
\end{equation*}
$$

When this happens, the rows of V are the eigenvectors of Q, and the diagonal entries of E are the eigenvalues of Q.

In other words, with the correct choice of orthonormal basis, the matrix Q becomes a diagonal matrix E.

The orthonormal basis eigenvectors $v_{1}, v_{2}, \ldots, v_{d}$ are the principal components of the matrix Q. The eigenvalues and eigenvectors of Q, taken together, are the eigendata of Q. The code

```
from numpy import *
from numpy.linalg import eigh
Q = array([[2,1],[1,2]])
lamda, U = eigh(Q)
lamda, U
```

returns the eigenvectors $[1,3]$ and the matrix $U=[u, v]$ with columns

$$
u=(1 / \sqrt{2},-1 / \sqrt{2}), \quad v=(1 / \sqrt{2}, 1 / \sqrt{2})
$$

These columns are the orthonormal eigenvectors $Q v=3 v, Q u=1 u$. By (3.2.3), $Q U=U E$, where E is the diagonal matrix with the eigenvalues on the diagonal,

```
from numpy import *
from numpy.linalg import eigh
Q = array([[2,1],[1,2]])
lamda, U = eigh(Q)
V = U.T
E = diag(lamda)
allclose(Q,dot(U,dot(E,V))
```

returns True.

In sympy, the corresponding commands are

```
from sympy import *
from sympy import init_printing
init_printing()
# eigenvalues
Q.eigenvals()
# eigenvectors
Q.eigenvects()
U, E = Q.diagonalize()
```

The command init_printing pretty-prints the output.

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ be the nonzero eigenvalues of Q. Then the diagonal matrix E has r nonzero entries on the diagonal, so $\operatorname{rank}(E)=r$. Since U and $V=U^{t}$ are invertible, $\operatorname{rank}(E)=\operatorname{rank}(U E V)$. Since $Q=U E V$,

$$
\operatorname{rank}(Q)=\operatorname{rank}(E)=r .
$$

Rank Equals Number of Nonzero Eigenvalues

The rank of a diagonal matrix equals the number of nonzero entries. The rank of a square symmetric matrix Q equals the number of nonzero eigenvalues of Q.

Using sympy,

```
from sympy import *
Q = Matrix([[2,1],[1,2]])
U, E = Q.diagonalize()
display(U,E)
```

returns

$$
U=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right), \quad E=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)
$$

Also,

```
from sympy import *
    a,b,c = symbols("a b c")
    Q = Matrix([[a,b ],[b,c]])
    U, E = Q.diagonalize()
    display(Q,U,E)
```

returns

$$
Q=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right), \quad U=\frac{1}{2 b}\left(\begin{array}{cc}
a-c-\sqrt{D} & a-c+\sqrt{D} \\
2 b & 2 b
\end{array}\right)
$$

and

$$
E=\frac{1}{2}\left(\begin{array}{cc}
a+c-\sqrt{D} & 0 \\
0 & a+c+\sqrt{D}
\end{array}\right), \quad D=(a-c)^{2}+4 b^{2} .
$$

display is used to pretty-print the output.

When all the eigenvalues are nonzero, we can write

$$
E^{-1}=\left(\begin{array}{ccccc}
1 / \lambda_{1} & 0 & 0 & \ldots & 0 \\
0 & 1 / \lambda_{2} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 0 & 1 / \lambda_{d}
\end{array}\right)
$$

Then a straightforward calculation using (3.2.4) shows

Nonzero Eigenvalues Equals Invertible

Let $Q=U E V$ be the EVD of a symmetric matrix Q. Then Q is invertible iff all its eigenvalues are nonzero. When this happens, we have

$$
Q^{-1}=U E^{-1} V
$$

More generally, using (2.6.8), one can check

Pseudo-Inverse (EVD)

If $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}$ are the nonzero eigenvalues of Q, then $1 / \lambda_{1} \leq$ $1 / \lambda_{2} \leq \cdots \leq 1 / \lambda_{r}$ are the nonzero eigenvalues of Q^{+}. Moreover, if $Q=U E V$ as in (3.2.4), then $Q^{+}=U E^{+} V$.

Similarly, eigendata may be used to solve linear systems.

Nonzero Eigenvalues Equals Solvable

Let $v_{1}, v_{2}, \ldots, v_{d}$ be the orthonormal basis of eigenvectors of Q corresponding to eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$. Then the linear system

$$
Q x=b
$$

has a solution x for every vector b iff all eigenvalues are nonzero, in which case

$$
\begin{equation*}
x=\frac{1}{\lambda_{1}}\left(b \cdot v_{1}\right) v_{1}+\frac{1}{\lambda_{2}}\left(b \cdot v_{2}\right) v_{2}+\cdots+\frac{1}{\lambda_{d}}\left(b \cdot v_{d}\right) v_{d} . \tag{3.2.5}
\end{equation*}
$$

The proof is straightforward using (2.9.3), multiply by Q to verify,

$$
\begin{aligned}
Q x & =Q\left(\frac{1}{\lambda_{1}}\left(b \cdot v_{1}\right) v_{1}+\frac{1}{\lambda_{2}}\left(b \cdot v_{2}\right) v_{2}+\ldots\right) \\
& =\frac{1}{\lambda_{1}}\left(b \cdot v_{1}\right) Q v_{1}+\frac{1}{\lambda_{2}}\left(b \cdot v_{2}\right) Q v_{2}+\ldots \\
& =\frac{1}{\lambda_{1}}\left(b \cdot v_{1}\right) v_{1}+\frac{1}{\lambda_{2}}\left(b \cdot v_{2}\right) v_{2}+\ldots \\
& =\left(b \cdot v_{1}\right) v_{1}+\left(b \cdot v_{2}\right) v_{2}+\cdots=b .
\end{aligned}
$$

Another consequence of the eigenvalue decomposition is

Trace is the Sum of Eigenvalues

Let Q be a symmetric matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$. Then

$$
\begin{equation*}
\operatorname{trace}(Q)=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{d} . \tag{3.2.6}
\end{equation*}
$$

To derive this, use (3.2.3): Since U is orthogonal, $U V=U U^{t}=I$. By (2.2.9), $\operatorname{trace}(A B)=\operatorname{trace}(B A)$, so

$$
\operatorname{trace}(Q)=\operatorname{trace}(Q U V)=\operatorname{trace}(V Q U)=\operatorname{trace}(V U E V U)=\operatorname{trace}(E) .
$$

Since $E=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right)$, $\operatorname{trace}(E)=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{d}$, and the result follows.

Let Q be symmetric with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$. Since

$$
Q v=\lambda v \quad \Longrightarrow \quad Q^{2} v=Q Q v=Q(\lambda v)=\lambda Q v=\lambda^{2} v
$$

Q^{2} is symmetric with eigenvalues $\lambda_{1}^{2}, \lambda_{2}^{2}, \ldots, \lambda_{d}^{2}$. Applying the last result to Q^{2}, we have

$$
\operatorname{trace}\left(Q^{2}\right)=\operatorname{trace}\left(Q Q^{t}\right)=\operatorname{trace}\left(Q^{2}\right)=\lambda_{1}^{2}+\lambda_{2}^{2}+\cdots+\lambda_{d}^{2}
$$

Figure 3.4: Inverse covariance ellipse and centered dataset.

It turns out every symmetric nonnegative matrix is the covariance of a simple data set (Figure 3.4).

Sum of Tensor Products

Let Q be a symmetric $d \times d$ matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$ and orthonormal eigenvectors $v_{1}, v_{2}, \ldots, v_{d}$. Then

$$
\begin{equation*}
Q=\lambda_{1} v_{1} \otimes v_{1}+\lambda_{2} v_{2} \otimes v_{2}+\cdots+\lambda_{d} v_{d} \otimes v_{d} . \tag{3.2.7}
\end{equation*}
$$

In particular, when Q is nonnegative, the dataset consisting of the $2 d$ points

$$
\pm \sqrt{\lambda_{1}} v_{1}, \pm \sqrt{\lambda_{2}} v_{2}, \ldots, \pm \sqrt{\lambda_{d}} v_{d}
$$

is centered and has covariance Q / d
Since $v_{1}, v_{2}, \ldots, v_{d}$ is an orthonormal basis, by (2.9.3), every vector v can be written

$$
v=\left(v \cdot v_{1}\right) v_{1}+\left(v \cdot v_{2}\right) v_{2}+\cdots+\left(v \cdot v_{d}\right) v_{d} .
$$

Multiply by Q. Since $Q v_{k}=\lambda_{k} v_{k}$,

$$
\begin{aligned}
Q v & =\left(v \cdot v_{1}\right) Q v_{1}+\left(v \cdot v_{2}\right) Q v_{2}+\cdots+\left(v \cdot v_{d}\right) Q v_{d} \\
& =\lambda_{1}\left(v \cdot v_{1}\right) v_{1}+\lambda_{2}\left(v \cdot v_{2}\right) v_{2}+\cdots+\lambda_{d}\left(v \cdot v_{d}\right) v_{d} \\
& =\left(\lambda_{1} v_{1} \otimes v_{1}+\lambda_{2} v_{2} \otimes v_{2}+\cdots+\lambda_{d} v_{d} \otimes v_{d}\right) v
\end{aligned}
$$

This proves the first part. For the second part, let $b_{k}=\sqrt{\lambda_{k}} v_{k}$. Then the mean of the $2 d$ vectors $\pm b_{1}, \pm b_{2}, \ldots, \pm b_{d}$ is clearly zero, and by (3.2.7), the
covariance matrix

$$
\frac{2}{2 d}\left(b_{1} \otimes b_{1}+b_{2} \otimes b_{2}+\cdots+b_{d} \otimes b_{d}\right)
$$

equals Q / d.

Now we approach the eigenvalues of Q from a different angle. In §2.5, we studied zero variance directions. Since the eigenvalues of a covariance matrix are nonnegative, for a covariance matrix, they may also be called minimum variance directions. Now we study maximum variance directions.

Let

$$
\lambda_{1}=\max _{|v|=1} v \cdot Q v
$$

where the maximum is over all unit vectors v. We say a unit vector b is best-fit for Q or best-aligned with Q if the maximum is achieved at $v=b: \lambda_{1}=b \cdot Q b$. When Q is a covariance matrix, this means the unit vector b is chosen so that the variance $b \cdot Q b$ of the dataset projected onto b is maximized.

An eigenvalue λ_{1} of Q is the top eigenvalue if $\lambda_{1} \geq \lambda$ for any other eigenvalue. An eigenvalue λ_{1} of Q is the bottom eigenvalue if $\lambda_{1} \leq \lambda$ for any other eigenvalue.

Maximum Projected Variance is an Eigenvalue

Let Q be a symmetric matrix. Then

$$
\begin{equation*}
\lambda_{1}=\max _{|v|=1} v \cdot Q v \tag{3.2.8}
\end{equation*}
$$

is the top eigenvalue of Q.

Best-aligned vector is an eigenvector

Let Q be a symmetric matrix. Then a best-aligned vector b is an eigenvector of Q corresponding to the top eigenvalue λ_{1}.

To prove these results, we begin with a simple calculation, whose derivation we skip.

A Calculation

Suppose λ, a, b, c, d are real numbers and suppose we know

$$
\frac{\lambda+a t+b t^{2}}{1+c t+d t^{2}} \leq \lambda, \quad \text { for all } t \text { real. }
$$

Then $a=\lambda c$.
Let λ be any eigenvalue of Q, with eigenvector $v: Q v=\lambda v$. Dividing v by its length, we may assume $|v|=1$. Then

$$
\lambda_{1} \geq v \cdot Q v=v \cdot(\lambda v)=\lambda v \cdot v=\lambda
$$

This shows $\lambda_{1} \geq \lambda$ for any eigenvalue λ.
Now we show λ_{1} itself is an eigenvalue. Let v_{1} be a unit vector maximizing $v \cdot Q v$, so v_{1} is best-fit for Q. Then

$$
\begin{equation*}
\lambda_{1}=v_{1} \cdot Q v_{1} \geq v \cdot Q v \tag{3.2.9}
\end{equation*}
$$

for all unit vectors v. Let u be any vector. Then for any real t,

$$
v=\frac{v_{1}+t u}{\left|v_{1}+t u\right|}
$$

is a unit vector. Insert this v into (3.2.9) to obtain

$$
\lambda_{1} \geq \frac{\left(v_{1}+t u\right) \cdot Q\left(v_{1}+t u\right)}{\left|v_{1}+t u\right|^{2}}
$$

Since Q is symmetric, $u \cdot Q v_{1}=v_{1} \cdot Q u$. Expanding with $\left|v_{1}\right|^{2}=1$, we obtain

$$
\lambda_{1} \geq \frac{\lambda_{1}+2 t u \cdot Q v_{1}+t^{2} u \cdot Q u}{1+2 t u \cdot v_{1}+t^{2}|u|^{2}}=\frac{\lambda_{1}+a t+b t^{2}}{1+c t+d t^{2}} .
$$

Applying the calculation with $\lambda=\lambda_{1}, a=2 u \cdot Q v_{1}, b=u \cdot Q u, c=2 u \cdot v_{1}$, and $d=|u|^{2}$, we conclude

$$
u \cdot Q v_{1}=\lambda_{1} u \cdot v_{1}
$$

for all vectors u. But this implies

$$
u \cdot\left(Q v_{1}-\lambda_{1} v_{1}\right)=0
$$

for all u. Thus $Q v_{1}-\lambda_{1} v_{1}$ is orthogonal to all vectors, hence orthogonal to itself. Since this can only happen if $Q v_{1}-\lambda_{1} v_{1}=0$, we conclude $Q v_{1}=\lambda_{1} v_{1}$. Hence λ_{1} is itself an eigenvalue. This completes the proof of the two results.

Just as the maximum variance (3.2.8) is the top eigenvalue λ_{1}, the minimum variance

$$
\begin{equation*}
\lambda_{d}=\min _{|v|=1} v \cdot Q v \tag{3.2.10}
\end{equation*}
$$

is the bottom eigenvalue, and the corresponding eigenvector v_{d} is the worstaligned vector.

By the eigenvalue decomposition, the eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d}$ of a symmetric matrix Q may be arranged in decreasing order, and may be positive, zero, or negative scalars. When Q is a covariance, the eigenvalues are nonnegative, and the bottom eigenvalue is at least zero. When the bottom eigenvalue is zero, the corresponding eigenvectors are zero variance directions.

Now we can complete the proof the eigenvalue decomposition. Having found the top eigenvalue λ_{1} with its corresponding unit eigenvector v_{1}, we let $S=\operatorname{span}\left(v_{1}\right)$ and $T=S^{\perp}$ be the orthogonal complement of v_{1} (Figure 3.5). Then $\operatorname{dim}(T)=d-1$, and we can repeat the process and maximize $v \cdot Q v$ over all unit v in T, i.e. over all unit v orthogonal to v_{1}. This leads to another eigenvalue λ_{2} with corresponding eigenvector v_{2} orthogonal to v_{1}.

Since λ_{1} is the maximum of $v \cdot Q v$ over all vectors in \mathbf{R}^{d}, and λ_{2} is the maximum of $v \cdot Q v$ over the restricted space T of vectors orthogonal to v_{1}, we must have $\lambda_{1} \geq \lambda_{2}$.

Having found the top two eigenvalues $\lambda_{1} \geq \lambda_{2}$ and their orthonormal eigenvectors v_{1}, v_{2}, we let $S=\operatorname{span}\left(v_{1}, v_{2}\right)$ and $T=S^{\perp}$ be the orthogonal complement of S. Then $\operatorname{dim}(T)=d-2$, and we can repeat the process to obtain λ_{3} and v_{3} in T. Continuing in this manner, we obtain eigenvalues

$$
\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \cdots \geq \lambda_{d}
$$

with corresponding orthonormal eigenvectors

$$
v_{1}, v_{2}, v_{3}, \ldots, v_{d}
$$

This proves the eigenvalue decomposition.

Figure 3.5: $S=\operatorname{span}\left(v_{1}\right)$ and $T=S^{\perp}$.

鏳

Let Q be a positive covariance matrix and let $b \cdot Q^{-1} b=1$ be the inverse covariance ellipsoid. If v is a unit eigenvector corresponding to an eigenvalue λ, then $\lambda \geq 0$, and the vector $b=\sqrt{\lambda} v$ has length $\sqrt{\lambda}$. Moreover b satisfies

$$
b \cdot Q^{-1} b=(\sqrt{\lambda} v) \cdot Q^{-1}(\sqrt{\lambda} v)=\lambda v \cdot Q^{-1} v=\lambda v \cdot\left(\lambda^{-1} v\right)=v \cdot v=1 .
$$

Hence the line segment joining the vectors $\pm \sqrt{\lambda} v$ is an axis of the inverse covariance ellipsoid, with length $2 \sqrt{\lambda}$ (Figure 3.4).

When $\lambda=\lambda_{1}$ is the top eigenvalue, the axis is the principal axis of the inverse covariance ellipsoid. When $\lambda=\lambda_{2}$ is the next highest eigenvalue, the axis is orthogonal to the principal axis, and is the second principal axis. Continuing in this manner, we obtain all the principal axes of the inverse covariance ellipsoid.

Principal Axes of Inverse Covariance Ellipsoid

Let v be a unit eigenvector of a covariance matrix Q with eigenvalue λ. Then the line segment joining $-\sqrt{\lambda} v$ and $+\sqrt{\lambda} v$ is a principal axis of the inverse covariance ellipsoid, with length $2 \sqrt{\lambda}$.

Together with Figure 1.32, this result provides a geometric interpretation of eigenvalues: They control the variances of a dataset's points, in the principal directions.

Sometimes, several eigenvalues are equal, leading to several eigenvectors, say m of them, corresponding to a given eigenvalue λ. In this case, we say the eigenvalue λ has multiplicity m, and we call the span

$$
S_{\lambda}=\{v: Q v=\lambda v\}
$$

the eigenspace corresponding to λ. For example, suppose the top three eigenvalues are equal: $\lambda_{1}=\lambda_{2}=\lambda_{3}$, with b_{1}, b_{2}, b_{3} the corresponding eigenvectors. Calling this common value λ, the eigenspace is $S_{\lambda}=\operatorname{span}\left(b_{1}, b_{2}, b_{3}\right)$. Since b_{1}, b_{2}, b_{3} are orthonormal, $\operatorname{dim}\left(V_{\lambda}\right)=3$. In Python, the eigenspaces V_{λ} are obtained by the matrix U above: The columns of U are an orthonormal basis for the entire space, so selecting the columns corresponding to a specific λ yields an orthonormal basis for S_{λ}.

Let (evs, \mathbb{U}) be the list of eigenvalues and matrix U whose columns are the eigenvectors. Then the eigenvectors are the rows of U^{t}. Here is code for selecting just the eigenvectors corresponding to eigenvalue s.

```
from numpy import *
from numpy.linalg import eigh
lamda, U = eigh(Q)
V = U.T
V[isclose(lamda,s)]
```

The function isclose (a,b) returns True when a and b are numerically close. Using this boolean, we extract only those rows of V whose corresponding eigenvalue is close to s.

The subspace S_{λ} is defined for any λ. However, $\operatorname{dim}\left(S_{\lambda}\right)=0$ unless λ is an eigenvalue, in which case $\operatorname{dim}\left(S_{\lambda}\right)=m$, where m is the multiplicity of λ.

The proof of the eigenvalue decomposition is a systematic procedure for finding eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d}$. Now we show there are no other eigenvalues.

The Eigenvalue Decomposition is Complete

If λ is an eigenvalue for $Q, Q v=\lambda v$, then λ equals one of the eigenvalues in the eigenvalue decomposition of Q.

To see this, suppose $Q v=\lambda v$ with $\lambda \neq \lambda_{j}$ for $j=1, \ldots, d$. Since $\lambda \neq \lambda_{j}$ for $j=1, \ldots, d$, the vector v must be orthogonal to every $v_{j}, j=1, \ldots, d$. Since $\operatorname{span}\left(v_{1}, \ldots, v_{d}\right)=\mathbf{R}^{d}$, it follows v is orthogonal to every vector, hence v is orthogonal to itself, hence $v=0$. We conclude λ cannot be an eigenvalue.

All this can be readily computed in Python. For the Iris dataset, we have the covariance matrix in (2.2.12). The eigenvalues are

$$
4.2>0.24>0.08>0.02
$$

and the orthonormal eigenvectors are the columns of the matrix

$$
U=\left(\begin{array}{cccc}
0.36 & -0.66 & -0.58 & 0.32 \\
-0.08 & -0.73 & 0.6 & -0.32 \\
0.86 & 0.18 & 0.07 & -0.48 \\
0.36 & 0.07 & 0.55 & 0.75
\end{array}\right)
$$

Since the eigenvalues are distinct, the multiplicity of each eigenvalue is 1 .
From (2.2.12), the total variance of the Iris dataset is

$$
4.54=\operatorname{trace}(Q)=\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4} .
$$

For the Iris dataset, the top eigenvalue is $\lambda_{1}=4.2$, it has multiplicity 1 , and its corresponding list of eigenvectors contains only one eigenvector,

$$
v_{1}=(0.36,-0.08,0.86,0.36)
$$

The top eigenvalue accounts for 92.5% of the total variance.

The second eigenvalue is $\lambda_{2}=0.24$ with eigenvector

$$
v_{2}=(-0.66,-0.73,0.18,0.07)
$$

The top two eigenvalues account for 97.8% of the total variance.
The third eigenvalue is $\lambda_{3}=0.08$ with eigenvector

$$
v_{3}=(-0.58,0.60,0.07,0.55)
$$

The top three eigenvalues account for 99.5% of the total variance.
The fourth eigenvalue is $\lambda_{4}=0.02$ with eigenvector

$$
v_{4}=(0.32,-0.32,-0.48,0.75)
$$

The top four eigenvalues account for 100% of the total variance. Here each eigenvalue has multiplicity 1 , since there are four distinct eigenvalues.

An important class of symmetric matrices are of the form

$$
\begin{aligned}
& \left(\begin{array}{rr}
2 & -2 \\
-2 & 2
\end{array}\right)\left(\begin{array}{rrr}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)\left(\begin{array}{rrrr}
2 & -1 & 0 & -1 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
-1 & 0 & -1 & 2
\end{array}\right) \\
& \left(\begin{array}{rrrrr}
2 & -1 & 0 & 0 & -1 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
-1 & 0 & 0 & -1 & 2
\end{array}\right)\left(\begin{array}{rrrrrr}
2 & -1 & 0 & 0 & 0 & -1 \\
-1 & 2 & -1 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 \\
-1 & 0 & 0 & 0 & -1 & 2
\end{array}\right) \\
& \left(\begin{array}{rrrrrrr}
2 & -1 & 0 & 0 & 0 & 0 & -1 \\
-1 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & -1 \\
-1 & 0 & 0 & 0 & 0 & -1 & 2
\end{array}\right) .
\end{aligned}
$$

We denote these matrices $Q(2), Q(3), Q(4), Q(5), Q(6), Q(7)$. The following code generates these symmetric $d \times d$ matrices $Q(d)$,

```
def row(i,d):
    v = [0]*d
    v[i] = 2
    if i > 0: v[i-1] = -1
    if i < d-1: v[i+1] = -1
    if i == 0: v[d-1] += -1
    if i == d-1: v[0] += -1
    return v
# using sympy
from sympy import Matrix
def Q(d): return Matrix([ row(i,d) for i in range(d) ])
# using numpy
from numpy import *
def Q(d): return array([ row(i,d) for i in range(d) ])
```

The eigenvalues of these symmetric matrices follow interesting patterns that are best explored using Python.

Below we will see, the eigenvalues of $Q(d)$ are between 4 and 0 , and each eigenvalue other than 4 and 0 has multiplicity 2 .

Figure 3.6: Three springs at rest and perturbed.

To explain where these matrices come from, look at the mass-spring systems in Figures 3.6 and 3.7. Here we have springs attached to masses and walls on either side. At rest, the springs are the same length. When perturbed, some springs are compressed and some stretched. In Figure 3.6, let x_{1} and x_{2} denote the displacement of each mass from its rest position.

When extended by x, each spring fights back by exerting a force $k x$ proportional to the displacement x. For example, look at the mass m_{1}. The spring to its left is extended by x_{1}, so exerts a force of $-k x_{1}$. Here the minus indicates pulling to the left. On the other hand, the spring to its right is extended by $x_{2}-x_{1}$, so it exerts a force $+k\left(x_{2}-x_{1}\right)$. Here the plus indicates pulling to the right. Adding the forces from either side, the total force on m_{1} is $-k\left(2 x_{1}-x_{2}\right)$. For m_{2}, the spring to its left exerts a force $-k\left(x_{2}-x_{1}\right)$, and the spring to its right exerts a force $-k x_{2}$, so the total force on m_{2} is $-k\left(2 x_{2}-2 x_{1}\right)$. We obtain the force vector

$$
-k\binom{2 x_{1}-x_{2}}{-x_{1}+2 x_{2}}=-k\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)\binom{x_{1}}{x_{2}} .
$$

However, as you can see, the matrix here is not exactly $Q(2)$.

Figure 3.7: Six springs at rest and perturbed.

For five masses, let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ denote the displacement of each mass from its rest position. In Figure 3.7, x_{1}, x_{2}, x_{5} are positive, and x_{3}, x_{4} are negative.

As before, the total force on m_{1} is $-k\left(2 x_{1}-x_{2}\right)$, and the total force on m_{5} is $-k\left(2 x_{5}-x_{4}\right)$. For m_{2}, the spring to its left exerts a force $-k\left(x_{2}-x_{1}\right)$, and the spring to its right exerts a force $+k\left(x_{3}-x_{2}\right)$. Hence, the total force on m_{2} is $-k\left(-x_{1}+2 x_{2}-x_{3}\right)$. Similarly for m_{3}, m_{4}. We obtain the force vector

$$
-k\left(\begin{array}{c}
2 x_{1}-x_{2} \\
-x_{1}+2 x_{2}-x_{3} \\
-x_{2}+2 x_{3}-x_{4} \\
-x_{3}+2 x_{4}-x_{5} \\
-x_{4}+2 x_{5}
\end{array}\right)=-k\left(\begin{array}{rrrrr}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right) .
$$

But, again, the matrix here is not $Q(5)$. Notice, if we place one mass and two springs in Figure 3.6, we obtain the 1×1 matrix 2.

To obtain $Q(2)$ and $Q(5)$, we place the springs along a circle, as in Figures 3.8 and 3.9. Now we have as many springs as masses. Repeating the same logic, this time we obtain $Q(2)$ and $Q(5)$. Notice if we place one mass and one spring in Figure 3.8, $d=1$, we obtain the 1×1 matrix $Q(1)=0$: There is no force if we move a single mass around the circle, because the spring is not being stretched.

Figure 3.8: Two springs along a circle leading to $Q(2)$.

Figure 3.9: Five springs along a circle leading to $Q(5)$.

Thus the matrices $Q(d)$ arise from mass-spring systems arranged on a circle. From Newton's law (force equals mass times acceleration), one shows the frequencies of the vibrating springs equal $\sqrt{\lambda k / m}$, where k is above, m is the mass of each of the masses, and λ is an eigenvalue of $Q(d)$. This is the physical meaning of the eigenvalues of $Q(d)$.

Let v have features $\left(x_{1}, x_{2}, \ldots, x_{d}\right)$, and let $Q=Q(d)$. By elementary algebra, check that

$$
\begin{equation*}
v \cdot Q v=\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+\cdots+\left(x_{d-1}-x_{d}\right)^{2}+\left(x_{d}-x_{1}\right)^{2} . \tag{3.2.11}
\end{equation*}
$$

As a consequence of (3.2.11), show also the following.

- For any vector $v, 0 \leq v \cdot Q v \leq 4|v|^{2}$. Conclude every eigenvalue λ satisfies $0 \leq \lambda \leq 4$.
- $\lambda=0$ is an eigenvalue, with multiplicity 1 .
- When d is even, $\lambda=4$ is an eigenvalue with multiplicity 1 .
- When d is odd, $\lambda=4$ is not an eigenvalue.

To compute the eigenvalues, we use complex numbers, specifically the d-th root of unity ω (§1.5). Let

$$
p(t)=2-t-t^{d-1}
$$

and let

$$
v_{1}=\left(\begin{array}{c}
1 \\
\omega \\
\omega^{2} \\
\omega^{3} \\
\vdots \\
\omega^{d-1}
\end{array}\right)
$$

Then $Q v_{1}$ is

$$
Q v_{1}=\left(\begin{array}{c}
2-\omega-\omega^{d-1} \\
-1+2 \omega-\omega^{2} \\
-\omega+2 \omega^{2}-\omega^{3} \\
\vdots \\
-\omega^{d-2}+2 \omega^{d-1}-1
\end{array}\right)=p(\omega)\left(\begin{array}{c}
1 \\
\omega \\
\omega^{2} \\
\omega^{3} \\
\vdots \\
\omega^{d-1}
\end{array}\right)=p(\omega) v_{1}
$$

Thus v_{1} is an eigenvector corresponding to eigenvalue $p(\omega)$.
For each $k=0,1,2, \ldots, d-1$, define

$$
v_{k}=\left(1, \omega^{k}, \omega^{2 k}, \omega^{3 k}, \ldots, \omega^{(d-1) k}\right)
$$

By the same calculation, we have

$$
Q v_{k}=p\left(\omega^{k}\right) v_{k}, \quad k=0,1,2, \ldots, d-1
$$

By (1.5.7),

$$
p\left(\omega^{k}\right)=2-\omega^{k}-\omega^{(d-1) k}=2-\omega^{k}-\omega^{-k}=2-2 \cos (2 \pi k / d) .
$$

Eigenvalues of $Q(d)$

The (unsorted) eigenvalues of $Q(d)$ are

$$
\begin{equation*}
\lambda_{k}=p\left(\omega^{k}\right)=2-2 \cos \left(\frac{2 \pi k}{d}\right), \quad k=0,1,2, \ldots, d-1 \tag{3.2.12}
\end{equation*}
$$

Corresponding to each eigenvalue λ_{k}, there is the complex eigenvector v_{k}. Separating v_{k} into its real and imaginary parts yields two real eigenvectors

$$
\begin{aligned}
& \Re\left(v_{k}\right)=\left(1, \cos \left(\frac{2 \pi k}{d}\right), \cos \left(\frac{4 \pi k}{d}\right), \cos \left(\frac{6 \pi k}{d}\right), \ldots, \cos \left(\frac{2(d-1) \pi k}{d}\right)\right) \\
& \Im\left(v_{k}\right)=\left(0, \sin \left(\frac{2 \pi k}{d}\right), \sin \left(\frac{4 \pi k}{d}\right), \sin \left(\frac{6 \pi k}{d}\right), \ldots, \sin \left(\frac{2(d-1) \pi k}{d}\right)\right) .
\end{aligned}
$$

When $k=0$ or when $k=d / 2, d$ even, we have $\Im\left(v_{k}\right)=0$. This explains the double multiplicity in Figure 3.10, except when $k=0$ or $k=d / 2, d$ even.

Applying this formula, we obtain eigenvalues

$$
\begin{aligned}
Q(2) & =(4,0) \\
Q(3) & =(3,3,0) \\
Q(4) & =(4,2,2,0) \\
Q(5) & =\left(\frac{5}{2}+\frac{\sqrt{5}}{2}, \frac{5}{2}+\frac{\sqrt{5}}{2}, \frac{5}{2}-\frac{\sqrt{5}}{2}, \frac{5}{2}-\frac{\sqrt{5}}{2}, 0\right) \\
Q(6) & =(4,3,3,1,1,0) \\
Q(8) & =(4,2+\sqrt{2}, 2+\sqrt{2}, 2,2,2-\sqrt{2}, 2-\sqrt{2}, 0) \\
Q(10) & =\left(4, \frac{5}{2}+\frac{\sqrt{5}}{2}, \frac{5}{2}+\frac{\sqrt{5}}{2}, \frac{3}{2}+\frac{\sqrt{5}}{2}, \frac{3}{2}+\frac{\sqrt{5}}{2}\right. \\
& \left.\frac{5}{2}-\frac{\sqrt{5}}{2}, \frac{5}{2}-\frac{\sqrt{5}}{2}, \frac{3}{2}-\frac{\sqrt{5}}{2}, \frac{3}{2}-\frac{\sqrt{5}}{2}, 0\right) \\
Q(12) & =(4,2+\sqrt{3}, 2+\sqrt{3}, 3,3,2,2,1,1,2-\sqrt{3}, 2-\sqrt{3}, 0) .
\end{aligned}
$$

Our last topic is the distribution of the eigenvalues for large d. How are the eigenvalues scattered? Figure 3.10 plots the eigenvalues for $Q(50)$ using the code below.

```
from numpy.linalg import eigh
from matplotlib.pyplot import stairs,show,scatter,legend
d = 50
lamda = eigh(Q(d))[0]
stairs(lamda,range(d+1),label="numpy")
k = arange(d)
lamda = 2 - 2*cos(2*pi*k/d)
sorted = sort(lamda)
```

```
scatter(k,lamda,s=5,label="unordered")
scatter(k,sorted,c="red",s=5,label="increasing order")
legend()
show()
```


Figure 3.10: Plot of eigenvalues of $Q(50)$.

Figure 3.10 shows the eigenvalues tend to cluster near the top $\lambda_{1} \sim 4$ and the bottom $\lambda_{d}=0$ for d large. Using the double-angle formula,

$$
\lambda_{k}=4 \sin ^{2}\left(\frac{\pi k}{d}\right), \quad k=0,1,2, \ldots, d-1
$$

Solving for k / d in terms of λ, and multiplying by two to account for the double multiplicity, we obtain ${ }^{2}$ the proportion of eigenvalues below threshhold λ,

$$
\begin{equation*}
\frac{\#\left\{k: \lambda_{k} \leq \lambda\right\}}{d} \approx \frac{2}{\pi} \arcsin \left(\frac{1}{2} \sqrt{\lambda}\right), \quad 0 \leq \lambda \leq 4 . \tag{3.2.13}
\end{equation*}
$$

This arcsine law is valid for a wide class of matrices, not just $Q(d)$, as the matrix size d grows without bound, $d \rightarrow \infty$.

[^4]Equivalently, the derivative of the arcsine law (3.2.13) exhibits (see (7.1.9)) the eigenvalue clustering near the ends (Figure 3.11).

```
from numpy import *
from matplotlib.pyplot import *
lamda = arange(0.1,3.9,.01)
density = 1/(pi*sqrt(lamda*(4-lamda)))
plot(lamda,density)
# r"..." means raw string
f = r"$\displaystyle\frac1{\pi\sqrt{\lambda(4-\lambda)}}$"
text(.5,.45,f,usetex=True,fontsize="x-large")
show()
```


Figure 3.11: Density of eigenvalues of $Q(d)$ for d large.

The matrices $Q(d)$ are prototypes of matrices that are fundamental in many areas of physics and engineering, including time series analysis and information theory, see [9].

3.3 Singular Value Decomposition

In this section, we discuss the singular value decomposition (U, S, V) of a matrix A.

Let A be a matrix. We say a positive number $\sigma>0$ is a singular value of A if there are nonzero vectors v and u satisfying

$$
\begin{equation*}
A v=\sigma u \quad \text { and } \quad A^{t} u=\sigma v \tag{3.3.1}
\end{equation*}
$$

When this happens, v is a right singular vector and u is a left singular vector associated to σ.

Some books allow singular values to be zero. Here we insist that singular values be positive. Contrast singular values with eigenvalues: While eigenvalues may be negative or zero, for us singular values are positive.

The definition immediately implies

Singular Values of A Versus A^{t}

The singular values of A are the same as the singular values of A^{t}.
We work out our first example. Let

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Then $A v=\lambda v$ implies $\lambda=1$ and $v=(1,0)$. Thus A has only one eigenvalue equal to 1 . Set

$$
Q=A^{t} A=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

Since Q is symmetric, Q has two eigenvalues λ_{1}, λ_{2} and corresponding eigenvectors v_{1}, v_{2}. Moreover, as we saw in an earlier section, v_{1}, v_{2} may be chosen orthonormal.

The eigenvalues of Q are given by

$$
0=\operatorname{det}(Q-\lambda I)=\lambda^{2}-3 \lambda+1
$$

By the quadratic formula,

$$
\lambda_{1}=\frac{3}{2}+\frac{\sqrt{5}}{2}=2.62, \quad \lambda_{2}=\frac{3}{2}-\frac{\sqrt{5}}{2}=.38
$$

Now we turn to singular values. If v and u and $\sigma>0$ satisfy (3.3.1), then

$$
\begin{equation*}
Q v=A^{t} A v=A^{t}(\sigma u)=\sigma^{2} v \tag{3.3.2}
\end{equation*}
$$

Hence $\sigma^{2}=\lambda$, and we obtain

$$
\sigma_{1}=\sqrt{\frac{3}{2}+\frac{\sqrt{5}}{2}}=1.62, \quad \sigma_{2}=\sqrt{\frac{3}{2}-\frac{\sqrt{5}}{2}}=0.62
$$

To make (3.3.1) work, we set $u_{1}=A v_{1} / \sigma_{1}$. Then $A v_{1}=\sigma_{1} u_{1}$, and

$$
A^{t} u_{1}=A^{t} A v_{1} / \sigma_{1}=Q v_{1} / \sigma_{1}=\lambda_{1} v_{1} / \sigma_{1}=\sigma_{1} v_{1}
$$

Thus v_{1}, u_{1} are right and left singular vectors corresponding to the singular value σ_{1} of A. Similarly, if we set $u_{2}=A v_{2} / \sigma_{2}$, then v_{2}, u_{2} are right and left singular vectors corresponding to the singular value σ_{2} of A.

We show v_{1}, v_{2} are orthonormal, and u_{1}, u_{2} are orthonormal. We already know v_{1}, v_{2} are orthonormal, because we chose them that way, as eigenvectors of the symmetric matrix Q. Also
$0=\lambda_{1} v_{1} \cdot v_{2}=Q v_{1} \cdot v_{2}=\left(A^{t} A v_{1}\right) \cdot v_{2}=\left(A v_{1}\right) \cdot\left(A v_{2}\right)=\sigma_{1} u_{1} \cdot \sigma_{2} u_{2}=\sigma_{1} \sigma_{2} u_{1} \cdot u_{2}$.
Since $\sigma_{1} \neq 0, \sigma_{2} \neq 0$, it follows u_{1}, u_{2} are orthogonal. Also

$$
\lambda_{1}=\lambda_{1} v_{1} \cdot v_{1}=Q v_{1} \cdot v_{1}=\left(A^{t} A v_{1}\right) \cdot v_{1}=\left(A v_{1}\right) \cdot\left(A v_{1}\right)=\sigma_{1}^{2} u_{1} \cdot u_{1}
$$

Since $\lambda_{1}=\sigma_{1}^{2}, u_{1} \cdot u_{1}=1$. Similarly, $u_{2} \cdot u_{2}=1$. This shows u_{1}, u_{2} are orthonormal, and completes the first example.

Let A be an $N \times d$ matrix, and suppose $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$ are singular values with corresponding left singular vectors $u_{1}, u_{2}, \ldots, u_{r}$ and right singular vectors $v_{1}, v_{2}, \ldots, v_{r}$. Then, since $u_{k}=A v_{k} / \sigma_{k}$, the vectors $u_{1}, u_{2}, \ldots, u_{r}$ are in the column space of A. If $u_{1}, u_{2}, \ldots, u_{r}$ are linearly independent, it follows r is no larger than $\operatorname{rank}(A)$, hence r is no larger than $\min (N, d)$.

We seek the largest value of r. Many books include zero as a possible singular value, allowing the largest r to equal $\min (N, d)$. Here we insist
singular values are positive. Because of this, we will see the largest r is $\operatorname{rank}(A)$.

鍴

The close connection between singular values σ of A and positive eigenvalues λ of $Q=A^{t} A$ carries over in the general case.

A Versus Q

Let A be any matrix. Then

- the rank of A equals the rank of Q,
- σ is a singular value of A iff $\lambda=\sigma^{2}$ is a positive eigenvalue of Q.

Since the rank equals the dimension of the row space, the first part follows from §2.4.

If $A v=\sigma u$ and $A^{t} u=\sigma v$, then

$$
Q v=A^{t} A v=A^{t}(\sigma u)=\sigma A^{t} u=\sigma^{2} v
$$

so v is an eigenvector of $A^{t} A$ corresponding to $\lambda=\sigma^{2}>0$. Conversely, If $Q v=\lambda v$ and $\lambda>0$, then set $\sigma=\sqrt{\lambda}$ and $u=A v / \sigma$. Then

$$
A v=\sigma u, \quad A^{t} u=A^{t} A v / \sigma=Q v / \sigma=\lambda v / \sigma=\sigma v .
$$

From $\S 3.2$, the number of positive eigenvalues (possibly repeated) of Q equals the rank of Q. By the above, we conclude the rank of A equals the number of singular values (possibly repeated) of A.

Singular Value Decomposition (SVD)

Let A be any matrix and let r be the rank of A. Then there is an orthonormal basis $u_{1}, u_{2}, \ldots, u_{N}$ of the target space and an orthonormal basis $v_{1}, v_{2}, \ldots, v_{d}$ of the source space and positive scalars
$\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$, such that

$$
\begin{equation*}
A v_{k}=\sigma_{k} u_{k}, \quad A^{t} u_{k}=\sigma_{k} v_{k}, \quad k=1,2, \ldots, r \tag{3.3.3}
\end{equation*}
$$

and

$$
A v_{k}=0, \quad A^{t} u_{k}=0 \quad \text { for } k>r .
$$

The proof is very simple once we remember the rank of Q equals the number of positive eigenvalues of Q. By the eigenvalue decomposition, there is an orthonormal basis of the source space v_{1}, v_{2}, \ldots and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq$ $\lambda_{r}>0$ such that $Q v_{k}=\lambda_{k} v_{k}, k=1, \ldots, r$, and $Q v_{k}=0, k>r$.

Setting $\sigma_{k}=\sqrt{\lambda_{k}}$ and $u_{k}=A v_{k} / \sigma_{k}, k=1, \ldots, r$, as in our first example, we have (3.3.3), and, again as in our first example, $u_{1}, u_{2}, \ldots, u_{r}$ are orthonormal.

Assume A is $N \times d$. Then the source space is \mathbf{R}^{d}, and the target space is \mathbf{R}^{N}. By construction, $v_{r+1}, v_{r+2}, \ldots, v_{d}$ is an orthonormal basis for the null space of A. Set $u_{1}=A v_{1} / \sigma_{1}, u_{2}=A v_{2} / \sigma_{2}, \ldots, u_{r}=A v_{r} / s_{r}$. Since $A v_{r+1}=0, \ldots, A v_{d}=0, u_{1}, u_{2}, \ldots, u_{r}$ is an orthonormal basis for the column space of A.

Since the column space of A is the row space of A^{t}, the column space of A is the orthogonal complement of the nullspace of A^{t} (2.7.6). Choose $u_{r+1}, u_{r+2}, \ldots, u_{N}$ any orthonormal basis for the nullspace of A^{t}. Then $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ and $\left\{u_{r+1}, u_{r+2}, \ldots, u_{N}\right\}$ are orthogonal. From this, u_{1}, u_{2}, \ldots, u_{N} is an orthonormal basis for the target.

For our second example, let a and b be nonzero vectors, possibly of different sizes, and let A be the matrix

$$
A=a \otimes b, \quad A^{t}=b \otimes a
$$

Then

$$
A v=(v \cdot b) a=\sigma u \quad \text { and } \quad A^{t} u=(u \cdot a) b=\sigma v
$$

Since the range of A equals $\operatorname{span}(a)$, the rank of A equals one.
Since $\sigma>0, v$ is a multiple of b and u is a multiple of a. If we write $v=t b$ and $u=s a$ and plug in, we get

$$
v=|a| b, \quad u=|b| a, \quad \sigma=|a||b| .
$$

Thus there is only one singular value of A, equal to $|a||b|$. This is not surprising since the rank of A is one.

In a similar manner, one sees the only singular value of the $1 \times n$ matrix $A=a$ equals $\sigma=|a|$.

Our third example is

$$
A=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \tag{3.3.4}\\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Then

$$
A^{t}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right), \quad Q=A^{t} A=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Since Q is diagonal symmetric, its rank is 3 and its eigenvalues are $\lambda_{1}=1$, $\lambda_{2}=1, \lambda_{3}=1, \lambda_{4}=0$, and its eigenvectors are

$$
v_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), v_{2}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), v_{3}\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), v_{4}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

Clearly $v_{1}, v_{2}, v_{3}, v_{4}$ are orthonormal. By (3.3.2), $\sigma_{1}=1, \sigma_{2}=1, \sigma_{3}=1$.
Since we must have $A v=\sigma u$, we can check that

$$
u_{1}=A v_{1}=v_{2}, \quad u_{2}=A v_{2}=v_{3}, \quad u_{3}=A v_{3}=v_{4}, \quad u_{4}=v_{1}
$$

satisfies (3.3.1). This completes our third example.

Let's look at the SVD decomposition in more detail. Suppose A is $N \times d$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$ are the singular values of A.

If $N \leq d$, then $r \leq N$, we set

$$
S=\left(\begin{array}{cccccc}
\sigma_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & \sigma_{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \sigma_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Here we have $(N, d)=(4,6), r=3$.
If $N \geq d$, then $r \leq d$, we set

$$
S=\left(\begin{array}{cccc}
\sigma_{1} & 0 & 0 & 0 \\
0 & \sigma_{2} & 0 & 0 \\
0 & 0 & \sigma_{3} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Here we have $(N, d)=(6,4), r=3$. In either case, S has the same shape $N \times d$ as A.

Let U be the matrix with columns $u_{1}, u_{2}, \ldots, u_{N}$, and let V be the matrix with rows $v_{1}, v_{2}, \ldots, v_{d}$. Then V^{t} has columns $v_{1}, v_{2}, \ldots, v_{d}$.

Then U and V are orthogonal $N \times N$ and $d \times d$ matrices. By (3.3.1),

$$
A V^{t}=U S
$$

Right-multiplying by V and using $V^{t} V=I$ implies

$$
A=U S V
$$

Summarizing,

Diagonalization (SVD)

If A is any matrix, there is a diagonal matrix S with nonnegative diagonal entries, with the same shape as A, and orthogonal matrices U and V, satisfying

$$
A=U S V
$$

The rows of V are an orthonormal basis of right singular vectors, and the columns of U are an orthonormal basis of left singular vectors.

From this, if A is $N \times d$, then U is $N \times N, S$ is $N \times d$, and V is $d \times d$.
When $A=Q$ is a covariance matrix, $Q \geq 0$, then the eigenvalues are nonnegative, and, from (3.2.4), we have $U E U^{t}=Q$. If we choose $V=U^{t}$, we see EVD is a special case of SVD, with the singular values corresponding to the positive eigenvalues.

In general, however, if Q has negative eigenvalues, V is not equal to U^{t}; instead V is obtained from U^{t} by re-sorting the rows of U.

In Python, svd returns the orthogonal matrices U and V and a vector sigma of singular values. The singular values are arranged in decreasing order. To recover the diagonal matrix S, we use diag.

```
from numpy import *
from numpy.linalg import svd
U, sigma, V = svd(A)
# sigma is a vector
# build diag matrix S
p = min(A.shape)
S = zeros(A.shape)
S[:p,:p] = diag(sigma)
print(U.shape,S.shape,V.shape)
print(U,S,V)
allclose(A, dot(U, dot(S, V)))
```

This code returns True.

Given the relation between the singular values of A and the eigenvalues of $Q=A^{t} A$, we also can conclude

Right Singular Vectors Are the Same as Eigenvectors

Let A be any matrix and let $Q=A^{t} A$.
v is an eigenvector of $Q \quad \Longleftrightarrow \quad v$ is a right singular vector of A.
(This statement ignores zero eigenvalues.)
For example, if dataset is the Iris dataset (ignoring the classes), the code

```
from numpy import *
from numpy.linalg import svd,eigh
# center dataset
m = mean(dataset,axis=0)
A = dataset - m
# rows of V are right
# singular vectors of A
V = svd(A)[2]
# any of these will work
Q = dot(A.T,A)
Q = cov(dataset.T,bias=False)
Q = cov(dataset.T,bias=True)
# columns of U are
# eigenvectors of Q
U = eigh(Q)[1]
# compare columns of U
# and rows of V
U, V
```

returns
$U=\left(\begin{array}{cccc}0.36 & -0.66 & -0.58 & 0.32 \\ -0.08 & -0.73 & 0.6 & -0.32 \\ 0.86 & 0.18 & 0.07 & -0.48 \\ 0.36 & 0.07 & 0.55 & 0.75\end{array}\right), V=\left(\begin{array}{cccc}0.36 & -0.08 & 0.86 & 0.36 \\ -0.66 & -0.73 & 0.18 & 0.07 \\ 0.58 & -0.6 & -0.07 & -0.55 \\ 0.32 & -0.32 & -0.48 & 0.75\end{array}\right)$
This shows the columns of U are identical to the rows of V, except for the third column of U, which is the negative of the third row of V.

Now we turn to the pseudo-inverse.

To get the Pseudo-Inverse, Invert the Singular Values

The pseudo-inverse A^{+}is obtained by replacing singular values of A by their reciprocals, and taking the transpose.

More explicitly, we can write
Inverse Singular Values, and Flipped Singular Vectors
Let A have rank r, and let σ_{k}, v_{k}, u_{k} be the singular data as above. Then

$$
A^{+} u_{k}=\frac{1}{\sigma_{k}} v_{k}, \quad\left(A^{+}\right)^{t} v_{k}=\frac{1}{\sigma_{k}} u_{k}, \quad k=1,2, \ldots, r,
$$

and

$$
A^{+} u_{k}=0, \quad\left(A^{+}\right)^{t} v_{k}=0 \quad \text { for } k>r .
$$

We illustrate these results in the case of a diagonal matrix

$$
S=\left(\begin{array}{ccccc}
a & 0 & 0 & 0 & 0 \\
0 & b & 0 & 0 & 0 \\
0 & 0 & c & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ll|ll}
& & 0 & 0 \\
& 0 & & 0 \\
& & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Since S is 4×5 and $S S^{+} S=S, S^{+}$must be 5×4. Writing

$$
S^{+}=\left(\begin{array}{lll|l}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
\hline * & * & * & * \\
* & * & * & *
\end{array}\right)=\left(\begin{array}{lll}
A & B \\
\hline C & D
\end{array}\right),
$$

and applying the four properties of the pseudo-inverse S^{+}, leads to

$$
A=Q^{-1}=\left(\begin{array}{ccc}
1 / a & 0 & 0 \\
0 & 1 / b & 0 \\
0 & 0 & 1 / c
\end{array}\right), \quad B=C=D=0 .
$$

From SVD, one then deduces the above results.

3.4 Principal Component Analysis

Let Q be the covariance matrix of a dataset in \mathbf{R}^{d}. Then Q is a $d \times d$ symmetric matrix, and the eigenvalue decomposition guarantees an orthonormal basis $v_{1}, v_{2}, \ldots, v_{d}$ in \mathbf{R}^{d} consisting of eigenvectors of Q,

$$
Q v_{k}=\lambda_{k} v_{k}, \quad k=1, \ldots, d
$$

These eigenvectors are the principal components of the dataset. Principal Component Analysis (PCA) consists of projecting the dataset onto lowerdimensional subspaces spanned by some of the eigenvectors.

Let Q be a symmetric matrix with eigenvalue λ and corresponding eigenvector $v, Q v=\lambda v$. If t is a scalar, then the matrix $t Q$ has eigenvalue $t \lambda$ and corresponding eigenvector v, since

$$
(t Q) v=t Q v=t \lambda v=(t \lambda) v
$$

Hence multiplying Q by a scalar does not change the eigenvectors.
Let A be the dataset matrix of a given dataset with N samples, and d features. If the samples are the rows of A, then A is $N \times d$. If we assume the dataset is centered, then, by (2.2.11), the covariance is $Q=A^{t} A / N$. From the previous paragraph, the eigenvectors of the covariance Q equal the eigenvectors of $A^{t} A$. From (3.3.5), these are the same as the right singular vectors of A.

Thus the principal components of a dataset are the right singular vectors of the centered dataset matrix. This shows there are two approaches to the principal components of a dataset: Either through EVD and eigenvectors of the covariance matrix, or through SVD and right singular vectors of the centered dataset matrix. We shall do both.

Assuming the eigenvalues are ordered top to bottom,

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{d}
$$

in PCA one takes the most significant components, those components who eigenvalues are near the top eigenvalue. For example, one can take the top two eigenvalues $\lambda_{1} \geq \lambda_{2}$ and their eigenvectors v_{1}, v_{2}, and project the dataset onto the plane $\operatorname{span}\left(v_{1}, v_{2}\right)$. The projected dataset can then be visualized as points in the plane. Similarly, one can take the top three eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3}$ and their eigenvectors v_{1}, v_{2}, v_{3} and project the dataset onto
the space $\operatorname{span}\left(v_{1}, v_{2}, v_{3}\right)$. This can then be visualized as points in three dimensions.

Recall the MNIST dataset consists of $N=60000$ points in $d=784$ dimensions. After we download the dataset,

```
from numpy import *
from keras.datasets import mnist
(train_X, train_y), (test_X, test_y) = mnist.load_data()
dataset = train_X.reshape((60000,784))
labels = train_y
```

we compute Q, the total variance, and the eigenvalues, as percentages of the total variance. We also name the targets as labels for later use.

array([[9.705,	9.705],
	7.096,	16.801],
	6.169,	22.97],
	5.389,	28.359],
	4.869,	33.228],
	4.312,	37.54],
	3.272,	40.812],
	2.884,	43.696],
	2.762,	46.458],
	2.357,	48.815],
	2.109,	50.924],
	2.023,	52.947],
	1.716,	54.663],
	1.692,	56.355],
	1.579,	57.934],
	1.483,	59.417],
	1.325,	60.741],
	1.277,	62.018],
	1.187,	63.205],
	1.153,	64.358]])

Figure 3.12: MNIST eigenvalues as a percentage of the total variance.

```
Q = cov(dataset.T)
totvar = Q.trace()
```

```
from numpy.linalg import eigh
# use eigh for symmetric matrices
lamda, U = eigh(Q)
# sort in ascending order then reverse
sorted = sort(lamda)[::-1]
percent = sorted*100/totvar
# cumulative sums
sums = cumsum(percent)
data = array([percent,sums])
print(data.T[:20].round(decimals=3))
d = len(lamda)
from matplotlib.pyplot import stairs
stairs(percent,range(d+1))
```


Figure 3.13: MNIST eigenvalue percentage plot.
The left column in Figure 3.12 lists the top twenty eigenvalues as a percentage of their sum. For example, the top eigenvalue λ_{1} is around 10% of
the total variance. The right column lists the cumulative sums of the eigenvalues, so the third entry in the right column is the sum of the top three eigenvalues, $\lambda_{1}+\lambda_{2}+\lambda_{3}=22.97 \%$.

This results in Figures 3.12 and 3.13. Here we sort the array eig in decreasing order, then we cumsum the array to obtain the cumulative sums.

Because the rank of the MNIST dataset is 712 (§2.9), the bottom $72=$ $784-712$ eigenvalues are exactly zero. A full listing shows that many more eigenvalues are near zero, and the second column in Figure 3.12 shows the top ten eigenvalues alone sum to almost 50% of the total variance.

A MNIST image is a point in \mathbf{R}^{784}. Now we turn to projecting the image from 784 dimensions down to n dimensions, where n is 784, 600, 350, 150, $50,10,1$. Let Q be any $d \times d$ covariance matrix, and let v be in \mathbf{R}^{d}. Let $v_{1}, v_{2}, \ldots, v_{d}$ be the orthonormal basis of eigenvectors corresponding to the eigenvalues of Q, arranged in decreasing order. Here is code that returns the projection matrix P (§2.7) onto the span of the eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$ corresponding to the top n eigenvalues of Q.

```
from numpy import *
from numpy.linalg import eigh
# projection matrix onto top n
# eigenvectors of covariance
# of dataset
def pca(dataset,n):
    Q = cov(dataset.T)
    # columns of V are
    # eigenvectors of Q
    lamda, U = eigh(Q)
    # decreasing eigenvalue sort
    order = lamda.argsort()[::-1]
    # sorted top n columns of U
    # are cols of U
    V = U[:,order[:n]]
    P = dot(V,V.T)
```

```
return P
```

In the code, lamda is sorted in decreasing order, and the sorting order is saved as order. To obtain the top n eigenvectors, we sort the first n columns $\mathrm{U}[:$, order [:n]] in the same order, resulting in the $d \times n$ matrix V. The code then returns the projection matrix $P=V V^{t}$ (2.7.4).

Instead of working with the covariance Q, as discussed at the start of the section, we can work directly with the dataset, using svd, to obtain the eigenvectors.

```
from numpy import *
from numpy.linalg import svd
# projection matrix onto top n
# eigenvectors of covariance
# of dataset
def pca_with_svd(dataset,n):
    # center dataset
    m = mean(dataset,axis=0)
    vectors = dataset - m
    # rows of V are
    # right singular vectors
    V = svd(vectors)[2]
    # no need to sort, already decreasing order
    U = V[:n].T # top n rows as columns
    P = dot(U,U.T)
    return P
```

Let $\mathrm{v}=$ dataset [1] be the second image in the MNIST dataset, and let Q be the covariance of the dataset. Then the code below returns the image compressed down to $n=784,600,350,150,50,10,1$ dimensions, returning Figure 1.4

```
from matplotlib.pyplot import *
figure(figsize=(10,5))
```

```
# eight subplots
rows, cols = 2, 4
v = dataset[1] # second image
display_image(v,row,col,1)
for i,n in enumerate([784,600,350,150,50,10,1],start=2):
    # either will work
    P = pca_with_svd(dataset,n)
    P = pca(dataset,n)
    projv = dot(P,v)
    A = reshape(projv,(28,28))
    subplot(rows, cols,i)
    imshow(A,cmap="gray_r")
```

If you run out of memory trying this code, cut down the dataset from 60,000 points to 10,000 points or fewer. The code works with pca or with pca_with_svd.

We now show how to project a vector v in the dataset using sklearn. The following code sets up the PCA engine using sklearn.

```
from sklearn.decomposition import PCA
N = len(dataset)
n = 10
engine = PCA(n_components = n)
```

The following code computes the reduced dataset (§2.7)

```
reduced = engine.fit_transform(dataset)
reduced.shape
```

and returns $(N, n)=(60000,10)$. The following code computes the projected dataset

```
projected = engine.inverse_transform(reduced)
projected.shape
```

and returns $(N, d)=(60000,784)$.
Let U be the $d \times n$ matrix with columns the top n eigenvectors. Then the projection matrix onto the column space of U (project_to_ortho in §2.7) is $P=U U^{t}$. In the above code, reduced equals $U^{t} v$ for each image v, and projected is $U U^{t} v$ for each image v.

Figure 3.14: Original and projections: $n=784,600,350,150,50,10,1$.
Then the code

```
from matplotlib.pyplot import *
figure(figsize=(10,5))
# eight subplots
rows, cols = 2, 4
v = dataset[1] # second image
display_image(v,rows,cols,1)
for i,n in enumerate([784,600,350,150,50,10,1],start=2):
    engine = PCA(n_components = n)
    reduced = engine.fit_transform(dataset)
```

```
projected = engine.inverse_transform(reduced)
projv = projected[1] # second image
A = reshape(projv, (28,28))
subplot(rows, cols,i)
imshow(A,cmap="gray_r")
```

returns Figure 3.14.

鏆

Now we project all vectors of the MNIST dataset onto two and three dimensions, those corresponding to the top two or three eigenvalues. To start, we compute reduced as above with $n=3$, the top three components.

In the two-dimensional plotting code below, reduced is an array of shape $(60000,3)$, but we use only the top two components 0 and 1 . When the rows are plotted as a scatterplot, we obtain Figure 3.15. Note the rows are plotted grouped by color, to match the legend, and each plot point's color is determined by the value of its label.

Figure 3.15: The full MNIST dataset (2d projection).

```
from matplotlib.pyplot import *
Colors = ('blue', 'red', 'green', 'orange', 'gray','cyan',
```

```
    \hookrightarrow 'turquoise', 'black', 'orchid', 'brown')
for i,color in enumerate(Colors):
    scatter(reduced[labels==i,0], reduced[labels==i,1],
    \hookrightarrow label=i, c=color, edgecolor='black')
grid()
legend(loc='upper right')
show()
```


Figure 3.16: The Iris dataset (2d projection).
Code for the 2 d plot (Figure 3.16) of the Iris dataset is

```
from matplotlib.pyplot import *
Colors = ['blue', 'red', 'green']
Classes = ["Iris-setosa", "Iris-virginica", "Iris-versicolor"]
for a,b in zip(Classes,Colors):
    scatter(reduced[labels==a,0], reduced[labels==a,1],
        \hookrightarrow label=a, c=b, edgecolor='black')
grid()
legend(loc='upper right')
```

```
show()
```


Now we turn to three dimensional plotting. Here is the code

```
%matplotlib notebook
from matplotlib.pyplot import *
from mpl_toolkits import mplot3d
P = axes(projection='3d')
P.set_axis_off()
Colors = ('blue', 'red', 'green', 'orange', 'gray','cyan' ,
    \hookrightarrow'turquoise', 'black', 'orchid', 'brown')
for i,color in enumerate(Colors):
    P.scatter(reduced[labels==i,0], reduced[labels==i,1],
    \hookrightarrowreduced[labels==i,2], label=i, c=color,
    \hookrightarrow edgecolor='black')
legend(loc='upper right')
show()
```

The three dimensional plot of the complete MNIST dataset is Figure 1.5 in $\S 1.2$. The command \%matplotlib notebook allows the figure to rotated and scaled.

3.5 Cluster Analysis

\star under construction
Cluster analysis seeks to partition a dataset into groups or clusters based on selected criteria, such as proximity in distance.

Let $x_{1}, x_{2}, \ldots, x_{N}$ be a dataset in \mathbf{R}^{d}. The simplest algorithm is k-means clustering. The algorithm is iterative: We start with k means m_{1}, m_{2}, \ldots, m_{k}, not necessarily part of the data set, and we divide the dataset into k
clusters, where the i-th cluster consists of the points x in the dataset for which mean m_{i} is nearest to x.

The algorithm is in two parts, the assignment step and the update step. Initially the means $m_{1}, m_{2}, \ldots, m_{k}$ are chosen at random, or by an educated guess, then clusters $C_{1}, C_{2}, \ldots, C_{k}$ are assigned, then each mean is recomputed as the mean of each cluster.

The sklearn package contains clustering routines, but here we write the code from scratch to illustrate the ideas. Here is an animated gif illustrating the convergence of the algorithm.

Assume the means are given as a list of length k,

```
means = [ means[0], means[1], ... ]
```

and each cluster is a list of points (so clusters is a list of lists)

```
clusters = [ clusters[0], clusters[1], ... ]
```

such that

```
N == sum([ len(cluster) for cluster in clusters] )
```

Given a point x, we first select the mean closest to x :

```
from numpy import *
from numpy.linalg import norm
def nearest_index(x,means):
    i = 0
    for j,m in enumerate(means):
        n = means[i]
        if norm(x - m) < norm(x - n): i = j
    return i
```

Starting with empty clusters (k is the number of clusters), we iterate the assign/update steps until the means no longer change. If any clusters remain empty, we discard them. Here is the assignment step.

```
def assign_clusters(dataset,means):
    clusters = [ [ ] for m in means ]
    for x in dataset:
        i = nearest_index(x,means)
        clusters[i].append(x)
    return [ c for c in clusters if len(c) > 0 ]
```

Here is the update step.

```
def update_means(clusters):
    return [ mean(c,axis=0) for c in clusters ]
```

Here is the iteration.

```
from numpy.random import random
d = 2
k,N = 7,100
def random_vector(d):
    return array([ random() for _ in range(d) ])
dataset = [ random_vector(d) for _ in range(N) ]
means = [ random_vector(d) for _ in range(k) ]
close_enough = False
while not close_enough:
        clusters = assign_clusters(dataset,means)
        print([len(c) for c in clusters])
        newmeans = update_means(clusters)
        # only check closeness if number of means unchanged
        if len(newmeans) == len(means):
            close_enough = all([ allclose(m,n) for m,n in
        uip(means,newmeans) ])
        means = newmeans
```

This code returns the size the clusters after each iteration. Here is code
that plots a cluster.

```
def plot_cluster(mean,cluster,color,marker):
    for v in cluster:
        scatter(v[0],v[1], s=50, c=color, marker=marker)
    scatter(mean[0], mean[1], s=100, c=color, marker='*')
```

Here is code for the entire iteration. hexcolor is in $\S 1.3$.

```
from matplotlib.pyplot import *
d = 2
k,N = 7,100
def random_vector(d):
        return array([ random() for _ in range(d) ])
dataset = [ random_vector(d) for _ in range(N) ]
means = [ random_vector(d) for _ in range(k) ]
colors = [ hexcolor() for _ in range(k) ]
close_enough = False
figure(figsize=(4,4))
grid()
for v in dataset: scatter(v[0],v[1],s=20,c='black')
show()
while not close_enough:
        clusters = assign_clusters(dataset,means)
        newmeans = update_means(clusters)
        # only check closeness if number of means unchanged
        if len(newmeans) == len(means):
            close_enough = all([ allclose(m,n) for m,n in
        4 zip(means,newmeans) ])
        figure(figsize=(4,4))
        grid()
        for i,c in enumerate(clusters):
```

plot_cluster(newmeans[i], c, colors[i], '\$' + str (i) + '\$')
show ()
means = newmeans

Chapter 4

Counting

Some of the material in this chapter is first seen in high school. Because repeating the exposure leads to a deeper understanding, we review it in a manner useful to the later chapters.

4.1 Permutations and Combinations

Suppose we have three balls in a bag, colored red, green, and blue. Suppose they are pulled out of the bag and arranged in a line. We then obtain six possibilities, listed in Figure 4.1.

Figure 4.1: $6=3$! permutations of 3 balls.

Why are there six possibilities? Because they are three ways of choosing
the first ball, then two ways of choosing the second ball, then one way of choosing the third ball, so the total number of ways is

$$
6=3 \times 2 \times 1
$$

In particular, we see that the number of ways multiply, $6=3 \times 2 \times 1$.
Similarly, there are $5 \times 4 \times 3 \times 2 \times 1=120$ ways of selecting five distinct balls. Since this pattern appears frequently, it has a name.

If n is a positive integer, then n-factorial is

$$
n!=n \times(n-1) \times(n-2) \times \cdots \times 2 \times 1
$$

The factorial function grows large rapidly, for example,

$$
10!=10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1=3,628,800
$$

Notice also

$$
(n+1)!=(n+1) \times n \times(n-1) \times \cdots \times 2 \times 1=(n+1) \times n!
$$

and $(n+2)!=(n+2) \times(n+1)!$, and so on.

Permutations of n Objects

The number of ways of selecting n objects from a collection of n distinct objects is n !.

We also have

$$
1!=1, \quad 0!=1
$$

It's clear that $1!=1$. It's less clear that $0!=1$, but it's reasonable if you think about it: The number of ways of selecting from zero balls results in only one possibility - no balls.

More generally, we can consider the selection of k balls from a bag containing n distinct balls. There are two varieties of selections that can be made: Ordered selections and unordered selections. An ordered selection is a permutation, and an unordered selection is a combination. In particular, when $k=n, n$! is the number of ways of permuting n objects.

The number of permutations of k objects from n objects is written as $P(n, k)$, and the number of combinations of k objects from n objects is written as $C(n, k)$.

For ordered selections, there are n choices for the first ball, $n-1$ choices for the second ball, and so on, until we have $n-k+1$ choices for the k-th ball. Thus

$$
P(n, k)=n \times(n-1) \times \cdots \times(n-k+1) .
$$

For example, there are $5 \times 4=20$ ordered selections of two balls from five distinct balls. Because ordering is taken into account, selecting ball \#2 then ball \#3 is considered distinct from selecting ball \#3 then ball \#2.

Permutation of k Objects from n Objects

The number of permutations of k objects from n objects is

$$
P(n, k)=n(n-1)(n-2) \ldots(n-k+1)=\frac{n!}{(n-k)!} .
$$

The last formula follows by canceling,

$$
\frac{n!}{(n-k)!}=\frac{n(n-1) \ldots(n-k+1)(n-k)!}{(n-k)!}=n(n-1) \ldots(n-k+1) .
$$

Notice $P(x, k)$ is defined for any real number x by the same formula,

$$
P(x, k)=x(x-1)(x-2) \ldots(x-k+1) .
$$

When a selection of k objects is made, and the k objects are permuted, that is considered the same unordered selection, but a different ordered selection. Since the number of permutations of k objects is k !, the number $P(n, k)$ of ordered selections is k ! times the number $C(n, k)$ of unordered selections. This leads to

Combinations of k Objects from n Objects

The number of combinations of k objects from n objects is

$$
C(n, k)=\frac{P(n, k)}{k!}=\frac{n!}{(n-k)!k!} .
$$

For example,

$$
P(5,2)=5 \times 4=20, \quad C(5,2)=\frac{5 \times 4}{2 \times 1}=10
$$

so we have twenty ordered pairs

$$
\begin{aligned}
& (1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2), \\
& (3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4)
\end{aligned}
$$

and ten unordered pairs

$$
\{1,2\},\{1,3\},\{1,4\},\{1,5\},\{2,3\},\{2,4\},\{2,5\},\{3,4\},\{3,5\},\{4,5\} .
$$

The number $C(n, k)$ is also called n-choose- k. Because it appears in the binomial theorem, $C(n, k)$ is also called the binomial coefficient (§4.3).

Since $P(x, k)$ is defined for any real number x, so is $C(n, k)$:

$$
C(x, k)=\frac{P(x, k)}{k!}=\frac{x(x-1)(x-2) \ldots(x-k+1)}{1 \cdot 2 \cdot 3 \cdots k} .
$$

An important question is the rate of growth of the factorial function $n!$. Attempting to answer this question leads to the exponential (§4.4) and to the entropy (§7.2). Here is how this happens.

Since n ! is a product of the n factors

$$
1,2,3, \ldots, n-1, n
$$

each no larger than n, it is clear that

$$
n!<n^{n} .
$$

However, because half of the factors are less then $n / 2$, we expect an approximation smaller than n^{n}, maybe something like $(n / 2)^{n}$ or $(n / 3)^{n}$.

To be systematic about it, assume an approximation of the form ${ }^{1}$

$$
\begin{equation*}
n!\sim e\left(\frac{n}{e}\right)^{n}, \quad \text { for } n \text { large } \tag{4.1.1}
\end{equation*}
$$

for some constant e. We seek the best constant e that fits here. In this approximation, we multiply by e so that (4.1.1) is an equality when $n=1$.

Using the binomial theorem, in $\S 4.4$ we show

$$
\begin{equation*}
3\left(\frac{n}{3}\right)^{n} \leq n!\leq 2\left(\frac{n}{2}\right)^{n}, \quad n \geq 1 \tag{4.1.2}
\end{equation*}
$$

Based on this, a constant e satisfying (4.1.1) must lie between 2 and 3,

$$
2 \leq e \leq 3
$$

To figure out the best constant e to pick, we see how much both sides of (4.1.1) increase when we replace n by $n+1$. Write (4.1.1) with $n+1$ replacing n, obtaining

$$
\begin{equation*}
(n+1)!\sim e\left(\frac{n+1}{e}\right)^{n+1} \tag{4.1.3}
\end{equation*}
$$

Dividing the left sides of (4.1.1), (4.1.3) yields

$$
\frac{(n+1)!}{n!}=(n+1)
$$

Dividing the right sides yields

$$
\begin{equation*}
\frac{e((n+1) / e)^{n+1}}{e(n / e)^{n}}=(n+1) \cdot \frac{1}{e} \cdot\left(1+\frac{1}{n}\right)^{n} \tag{4.1.4}
\end{equation*}
$$

To make these quotients match as closely as possible, we should choose

$$
\begin{equation*}
e \sim\left(1+\frac{1}{n}\right)^{n} \tag{4.1.5}
\end{equation*}
$$

Choosing $n=1,2,3, \ldots, 100, \ldots$ results in

$$
e \sim 2, e \sim 2.25, e \sim 2.37, \ldots, e \sim 2.705, \ldots
$$

[^5]As $n \rightarrow \infty$, we obtain Euler's constant e (§4.4).
Equation (4.1.1) can be improved to Stirling's approximation

$$
\begin{equation*}
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}, \quad \text { for } n \text { large } \tag{4.1.6}
\end{equation*}
$$

This is an asymptotic equality: the ratio of the two sides approaches 1 as n grows to infinity.

4.2 Graphs

A graph consists of nodes and edges. For example, the graphs in Figure 4.2 each have four nodes and three edges. The left graph is directed, in that a direction is specified for each edge. The graph on the right is undirected, no direction is specified.

Figure 4.2: Directed and undirected graphs.
In a directed graph, if there is an edge pointing from node i to node j, we say (i, j) is an edge. For undirected graphs, we say i and j are adjacent.

An edge (i, j) is weighed if a scalar $w_{i j}$ is attached to it. If every edge in a graph is weighed, then the graph is a weighed graph. Any two nodes may be considered adjacent by assigning the weight zero to the edge between them.

Figure 4.3: A weighed directed graph.
In $\S 7.4$, back propagation on weighed directed graphs is used to calculate derivatives.

Let $w_{i j}$ be the weight on the edge (i, j) in a weighed directed graph. The weight matrix of a weighed directed graph is the matrix $W=\left(w_{i j}\right)$.

If the graph is unweighed, then we set $A=\left(a_{i j}\right)$, where

$$
a_{i j}=\left\{\begin{array}{ll}
1, & \text { if } i \text { and } j \text { adjacent }, \\
0, & \text { if not. }
\end{array} .\right.
$$

In this case, A consists of ones and zeros, and is called the adjacency matrix. If the graph is also undirected, then the adjacency matrix is symmetric,

Figure 4.4: A double edge and a loop.

Sometimes graphs may have multiple edges between nodes, or loops, which are edges starting and ending at the same node. A graph is simple if it has no loops and no multiple edges. In this section, we deal only with simple undirected unweighed graphs.

To summarize, a simple undirected graph $G=(V, E)$ is a collection V of nodes, and a collection of edges E, each edge corresponding to a pair of nodes.

The number of nodes is the order n of the graph, and the number of edges is the size m of the graph. In a (simple undirected) graph of order n, the number of pairs of nodes is n-choose- 2 , so the number of edges satisfies

$$
0 \leq m \leq\binom{ n}{2}=\frac{1}{2} n(n-1) .
$$

How many graphs of order n are there? Since graphs are built out of edges, the answer depends on how many subsets of edges you can grab from
a maximum of $n(n-1) / 2$ edges. The number of subsets of a set with m elements is 2^{m}, so the number G_{n} of graphs with n nodes is

$$
G_{n}=2^{\binom{n}{2}}=2^{n(n-1) / 2} .
$$

For example, the number of graphs with $n=5$ is $2^{5(5-1) / 2}=2^{10}=1,024$, and the number of graphs with $n=10$ is

$$
n=10 \quad \Longrightarrow G_{n}=2^{45}=35,184,372,088,832
$$

Figure 4.5: The complete graph K_{6} and the cycle graph C_{6}.
When $m=0$, there are no edges, and we say the graph is empty. When $m=n(n-1) / 2$, there are the maximum number of edges, and we say the graph is complete. The complete graph with n nodes is written K_{n} (Figure 4.5).

The cycle graph C_{n} with n nodes is as in Figure 4.5. The graph C_{n} has n edges. The cycle C_{3} is called a triangle.

A graph G^{\prime} is a subgraph of a graph G if every node of G^{\prime} is a node of G, and every edge of G^{\prime} is an edge of G. For example, a triangle in G is a graph triangle that is a subgraph of G. Below we see the graph K_{6} in Figure 4.5 contains twenty triangles.

Figure 4.6: The triangle $K_{3}=C_{3}$.

Let v be a node in a (simple, undirected) graph G. The degree of v is the number d_{v} of edges containing v. If the nodes are labelled $1,2, \ldots, n$, with the degrees in decreasing order, then

$$
d_{1} \geq d_{2} \geq d_{3} \geq \cdots \geq d_{n}
$$

is the degree sequence of the graph. We write

$$
\left(d_{1}, d_{2}, d_{3}, \ldots, d_{n}\right)
$$

for the degree sequence.
If we add the degrees over all nodes, we obtain the number of edges counted twice, because each edge contains two nodes. Thus we have

Handshaking Lemma

If the order is n, the size is m, and the degrees are $d_{1}, d_{2}, \ldots, d_{n}$, then

$$
d_{1}+d_{2}+\cdots+d_{n}=\sum_{k=1}^{n} d_{k}=2 m .
$$

A node is isolated if its degree is zero. A node is dominating if it has the highest degree. Notice the highest degree is $\leq n-1$, because there are no loops. We show

Nodes with Equal Degree

In any graph, there are at least two nodes with the same degree.

To see this, we consider two cases. First case, assume there are no isolated nodes. Then the degree sequence is

$$
n-1 \geq d_{1} \geq d_{2} \geq \cdots \geq d_{n} \geq 1
$$

So we have n integers spread between 1 and $n-1$. This can't happen unless at least two of these integers are equal. This completes the first case. In the second case, we have at least one isolated node, so $d_{n}=0$. If $d_{n-1}=0$ also, then we have found two nodes with the same degree. If not, then the maximum degree is $n-2$ (because node n is isolated), and

$$
n-2 \geq d_{1} \geq d_{2} \geq \ldots d_{n-1} \geq 1
$$

So now we have $n-1$ integers spread between 1 and $n-2$. This can't happen unless at least two of these integers are equal. This completes the second case.

A graph is regular if all the node degrees are equal. If the node degrees are all equal to k, we say the graph is k-regular. From the handshaking lemma, for a k-regular graph, we have $k n=2 m$, so

$$
m=\frac{1}{2} k n .
$$

For example, because $2 m$ is even, there are no 3 -regular graphs with 11 nodes. Both K_{n} and C_{n} are regular, with K_{n} being $(n-1)$-regular, and C_{n} being 2-regular.

A walk on a graph is a sequence of nodes $v_{1}, v_{2}, v_{3}, \ldots$ where each consecutive pair v_{i}, v_{i+1} of nodes are adjacent. For example, if v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6} are the nodes (in any order) of the complete graph K_{6}, then $v_{1} \rightarrow$ $v_{2} \rightarrow v_{3} \rightarrow v_{4} \rightarrow v_{2}$ is a walk. A path is a walk with no backtracking: A path visits each node at most once. A closed walk is a walk that ends where it starts. A cycle is a closed walk with no backtracking.

Two nodes a and b are connected if there is a walk starting at a and ending at b. If a and b are connected, then there is a path starting at a and ending at b, since we can cut out the cycles of the walk. A graph is connected if every two nodes are connected. A graph is disconnected if it is not connected. For
example, Figure 4.5 may be viewed as two connected graphs K_{6} and C_{6}, or a single disconnected graph $K_{6} \cup C_{6}$.

Consider a graph with order n. The adjacency matrix is the $n \times n$ matrix $A=\left(a_{i j}\right)$ given by

$$
a_{i j}= \begin{cases}1, & \text { if } i \text { and } j \text { are adjacent }, \\ 0, & \text { if not. }\end{cases}
$$

For example, the empty graph has adjacency matrix given by the zero matrix. Since our graphs are undirected, the adjacency matrix is symmetric.

Let $\mathbf{1}$ be the vector $\mathbf{1}=(1,1,1, \ldots, 1)$. The adjacency matrix of the complete graph K_{n} is the $n \times n$ matrix A with all ones except on the diagonal. If I is the $n \times n$ identity matrix, then this adjacency matrix is

$$
A=\mathbf{1} \otimes \mathbf{1}-I
$$

For example, for the triangle K_{3},

$$
A=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \otimes\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)-\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

If we label the nodes of the cycle graph C_{n} consecutively, then node i is shares an edge with $i-1$ and $i+1$, except when $i=1$ and $i=n$. Node 1 shares an edge with 2 and n, and node n shares an edge with $n-1$ and 1 . So for C_{6} the adjacency matrix is

$$
A=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Notice there are ones on the sub-diagonal, and ones on the super-diagonal, and ones in the upper-right and lower-left corners.

For any adjacency matrix A, the sum of each row is equal to the degree of the node corresponding to that row. This is the same as saying

$$
A \mathbf{1}=\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\ldots \\
d_{n}
\end{array}\right)
$$

In particular, for a k-regular graph, we have

$$
A \mathbf{1}=k \mathbf{1}
$$

so for a k-regular graph, k is an eigenvalue of A.
What is the connection between degrees and eigenvalues in general? To explain this, let e be an eigenvalue of A with eigenvector $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, so $A v=e v$. Since a multiple $t v$ of v is also an eigenvector, we may assume the biggest component of v equals 1 . Suppose the nodes are labelled so that $v=\left(1, v_{2}, v_{3}, \ldots, v_{n}\right)$, with

$$
v_{1}=1 \geq\left|v_{j}\right|, \quad j=2,3, \ldots, n
$$

Taking the first component of $A v=e v$, we have

$$
(A v)_{1}=a_{11} v_{1}+a_{12} v_{2}+a_{13} v_{3}+\cdots+a_{1 n} v_{n}
$$

Since the sum $a_{11}+a_{12}+\cdots+a_{1 n}$ equals the degree d_{1} of node 1 , this implies
$d_{1}=a_{11}+a_{12}+\cdots+a_{1 n} \geq a_{11} v_{1}+a_{12} v_{2}+a_{13} v_{3}+\cdots+a_{1 n} v_{n}=(A v)_{1}=e v_{1}=e$.
Since d_{1} is one of the degrees, d_{1} is no greater than the maximum degree. This explains

Maximum Degree of Graph

If e is any eigenvalue of the adjacency matrix A, then e is less or equal to the maximum degree.

In particular, for a k-regular graph, the maximum degree equals k, and we already saw k is an eigenvalue, so

Top Eigenvalue

For a k-regular graph, k is the top eigenvalue of the adjacency matrix A.

Let $A=\mathbf{1} \otimes \mathbf{1}-I$ be the adjacency matrix of complete graph K_{n}. Then for any vector v orthogonal to 1 ,

$$
A v=(\mathbf{1} \otimes \mathbf{1}-I) v=(\mathbf{1} \cdot v) \mathbf{1}-v=0-v=-v
$$

so $e=-1$ is an eigenvalue with multiplicity $n-1$. Since

$$
A \mathbf{1}=(\mathbf{1} \cdot \mathbf{1}) \mathbf{1}-\mathbf{1}=n \mathbf{1}-\mathbf{1}=(n-1) \mathbf{1},
$$

$n-1$ is an eigenvalue. Hence the eigenvalues of A are $n-1$ with multiplicity 1 and -1 with multiplicity $n-1$.

The complement of graph G is the graph \bar{G} obtained by switching 1's and 0 's, so the adjacency matrix \bar{A} of \bar{G} is

$$
\bar{A}=A(\bar{G})=\mathbf{1} \otimes \mathbf{1}-I-A(G)
$$

Let G be a k-regular graph, and suppose $k=e_{1} \geq e_{2} \geq \cdots \geq e_{n}$ are the eigenvalues of $A=A(G)$. Since A is symmetric, we have an orthogonal basis of eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$, with $v_{1}=\mathbf{1}$. Then \bar{G} is an $(n-1-k)$-regular graph, so the top eigenvalue of $\bar{A}=A(\bar{G})$ is $n-1-k$, with eigenvector $v_{1}=1$. If v_{k} is any eigenvector of A other than $\mathbf{1}$, then v_{k} is orthogonal to 1 , hence

$$
\bar{A} v=(\mathbf{1} \otimes \mathbf{1}-I-A) v_{k}=-v-e_{k} v_{k}=\left(-1-e_{k}\right) v_{k}
$$

Hence the eigenvalues of \bar{A} are $n-1-k$ and $-1-e_{k}, k=2, \ldots, n$, with the same eigenbasis.

Now we look at powers of the adjacency matrix A. By definition of matrix multiplication,

$$
\left(A^{2}\right)_{i j}=i \text {-th row } \times j \text {-th column }=\sum_{k=1}^{n} a_{i k} a_{k j} .
$$

Now $a_{i k} a_{k j}$ is either 0 or 1 , and equals 1 exactly if there is a 2 -step path from i to j. Hence

$$
\left(A^{2}\right)_{i j}=\text { number of 2-step walks connecting } i \text { and } j .
$$

Notice a 2 -step walk between i and j is the same as a 2 -step path between i and j.

When $i=j,\left(A^{2}\right)_{i i}$ is the number of 2-step paths connecting i and i, which means number of edges. Since this counts edges twice, we have

$$
\frac{1}{2} \operatorname{trace}\left(A^{2}\right)=m=\text { number of edges. }
$$

Similarly, $\left(A^{3}\right)_{i j}$ is the number of 3 -step walks connecting i and j. Since a 3 -step walk from i to i is the same as a triangle (draw a picture to see this!)t, $\left(A^{3}\right)_{i i}$ is the number of triangles in the graph passing through i. Since the trace is the sum of the diagonal elements, trace $\left(A^{3}\right)$ counts the number of triangles. But this over counts by a factor of $3!=6$, since three labels may be rearranged in six ways. Hence

$$
\frac{1}{6} \operatorname{trace}\left(A^{3}\right)=\text { number of triangles. }
$$

Loops, Edges, Triangles

Let A be the adjacency matrix. Then

- $\operatorname{trace}(A)=$ number of loops $=0$,
- $\operatorname{trace}\left(A^{2}\right)=2 \times$ number of edges,
- $\operatorname{trace}\left(A^{3}\right)=6 \times$ number of triangles.

Let us compute these for the complete graph K_{n}. Since

$$
(u \otimes v)^{2}=(u \otimes v)(u \otimes v)=(u \cdot v)(u \otimes v),
$$

and $\mathbf{1} \cdot \mathbf{1}=n$, we have $(\mathbf{1} \otimes \mathbf{1})^{2}=n \mathbf{1} \otimes \mathbf{1}$. So

$$
A^{2}=(\mathbf{1} \otimes \mathbf{1}-I)^{2}=(\mathbf{1} \otimes \mathbf{1})^{2}-2 \mathbf{1} \otimes \mathbf{1}+I=(n-2) \mathbf{1} \otimes \mathbf{1}+I
$$

Since $\operatorname{trace}(u \otimes v)=u \cdot v$, we have $\operatorname{trace}(\mathbf{1} \otimes \mathbf{1})=n$. Hence

$$
\operatorname{trace}\left(A^{2}\right)=\operatorname{trace}((n-2) \mathbf{1} \otimes \mathbf{1}+I)=n(n-2)+n=n(n-1)
$$

This is correct because for a complete graph, $n(n-1) / 2$ is the number of edges.

Continuing,

$$
\begin{aligned}
A^{3}=A^{2} A & =((n-2) \mathbf{1} \otimes \mathbf{1}+I)(\mathbf{1} \otimes \mathbf{1}-I) \\
& =n(n-2) \mathbf{1} \otimes \mathbf{1}-(n-2) \mathbf{1} \otimes \mathbf{1}+\mathbf{1} \otimes \mathbf{1}-I \\
& =\left(n^{2}-3 n+3\right) \mathbf{1} \otimes \mathbf{1}-I .
\end{aligned}
$$

From this, we get

$$
\operatorname{trace}\left(A^{3}\right)=n\left(n^{2}-3 n+3\right)-n=n\left(n^{2}-3 n+2\right)=n(n-1)(n-2) .
$$

This is correct because for a complete graph, we have a triangle whenever we have a triple of nodes, and there are n-choose- 3 triples, which equals $n(n-1)(n-2) / 6$.

Remember, a graph is connected if there is a walk connecting any two nodes. Since there is a 4 -step walk between i and j exactly when there are r, s, and t satisfying

$$
a_{i r} a_{r s} a_{s t} a_{t j}=1,
$$

we see there is a 4 -step walk connecting i and j if $\left(A^{4}\right)_{i j}>0$. Hence

Connected Graph

Let A be the adjacency matrix. Then the graph is connected if for every $i \neq j$, there is a k with $\left(A^{k}\right)_{i j}>0$.

Two graphs are isomorphic if a re-labelling of the nodes in one makes it identical to the other. To explain this, we need permutations.

A permutation on n letters is a re-arrangement of $1,2,3, \ldots, n$. Here are two permutations of $(1,2,3,4)$,

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 1 & 2
\end{array}\right) .
$$

There are n ! permutations of $(1,2, \ldots, n)$. If a permutation sends i to j, we write $i \rightarrow j$. Since a permutation is just a re-labelling, if $i \rightarrow k$ and $j \rightarrow k$, then we must have $i=j$.

Each permutation leads to a permutation matrix. A permutation matrix is a matrix of zeros and ones, with only one 1 in any column or row. For example, the above permutations correspond to the 4×4 matrices

$$
P=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad P=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

In general, the permutation matrix P has $P_{i j}=1$ if $i \rightarrow j$, and $P_{i j}=0$ if not. If P is any permutation matrix, then $P_{i k} P_{j k}$ equals 1 if both $i \rightarrow k$ and $j \rightarrow k$. In other words, $P_{i k} P_{j k}=1$ if $i=j$ and $i \rightarrow k$, and $P_{i k} P_{j k}=0$ otherwise. Since $i \rightarrow k$ for exactly one k,

$$
\left(P P^{t}\right)_{i j}=\sum_{k=1}^{n} P_{i k} P_{k j}^{t}=\sum_{k=1}^{n} P_{i k} P_{j k}= \begin{cases}1, & i=j \\ 0, & i \neq j .\end{cases}
$$

Hence P is orthogonal,

$$
P P^{t}=I, \quad P^{-1}=P^{t}
$$

Using permutation matrices, we can say two graphs are isomorphic if their adjacency matrices A, A^{\prime} satisfy

$$
A^{\prime}=P A P^{-1}=P A P^{t}
$$

for some permutation matrix P.
If two graphs are isomorphic, then it is easy to check their degree sequences are equal. However, the converse is not true. Figure 4.7 displays two non-isomorphic graphs with degree sequences $(3,2,2,1,1,1)$. These graphs are non-isomorphic because in one graph, there are two degree-one nodes adjacent to a degree-three node, while in the other graph, there is only one degree-one node adjacent to a degree-three node.

A graph is bipartite if the nodes can be divided into two groups, with adjacency only between nodes across groups. If we call the two groups even and odd, then odd nodes are never adjacent to odd nodes, and even nodes are never adjacent to even nodes.

Figure 4.7: Non-isomorphic graphs with degree sequence $(3,2,2,1,1,1)$.

Figure 4.8: Complete bipartite graph K_{53}.

The complete bipartite graph is the bipartite graph with maximum number of edges: Every odd node is adjacent to every even node. The complete bipartite graph with n odd nodes with m even nodes is written $K_{n m}$. Then the order of $K_{m n}$ is $n+m$.

Let $a=(1,1, \ldots, 1,0,0, \ldots, 0)$ be the vector with n ones and m zeros, and let $b=\mathbf{1}-a$. Then b has n zeros and m ones, and the adjacency matrix of $K_{n m}$ is

$$
A=A\left(K_{n m}\right)=a \otimes b+b \otimes a .
$$

For example, the adjacency matrix of K_{53} is $A=A\left(K_{n m}\right)$ which equals

$$
\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \otimes\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right) \otimes\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{llllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Recall we have

$$
(a \otimes b) v=(b \cdot v) a .
$$

From this, we see the column space of $A=a \otimes b+b \otimes a$ is $\operatorname{span}(a, b)$. Thus the rank of A is 2 , and the nullspace of A consists of the orthogonal complement $\operatorname{span}(a, b)^{\perp}$ of $\operatorname{span}(a, b)$. Using this, we compute the eigenvalues of A.

Since the nullspace is $\operatorname{span}(a, b)^{\perp}$, any vector orthogonal to a and to b is an eigenvector for $e=0$. Hence the eigenvalue $e=0$ has multiplicity $n+m-2$. Since $\operatorname{trace}(A)=0$, the sum of the eigenvalues is zero, and the remaining two eigenvalues are $\pm e \neq 0$.

Let v be an eigenvector for $e \neq 0$. Then v is orthogonal to the nullspace of A, so v must be a linear combination of a and $b, v=r a+s b$. Since $a \cdot b=0$,

$$
A a=n b, \quad A b=m a
$$

Hence

$$
e v=A v=A(r a+s b)=r n b+s m a .
$$

Applying A again,

$$
e^{2} v=A^{2} v=A(r n b+s m a)=r n m a+s m n b=n m(r a+s b)=n m v .
$$

Hence $e=\sqrt{n m}$. We conclude the eigenvalues of $K_{n m}$ are

$$
\sqrt{n m}, 0,0, \ldots, 0,-\sqrt{n m}, \quad \text { (with } 0 \text { repeated } n+m-2 \text { times). }
$$

For example, for the graph in Figure 4.8, the nonzero eigenvalues are $e=$ $\pm \sqrt{3 \times 5}= \pm \sqrt{15}$.

Let G be a graph with n nodes and m edges. The incidence matrix of G is a matrix whose rows are indexed by the edges, and whose columns are indexed by the nodes. Therefore, the incidence matrix has shape $m \times n$.

By placing arrows along the edges, we can make G into a directed graph. In a directed graph, each edge has a tail node and a head node. Then the incidence matrix is given by

$$
B_{i j}= \begin{cases}1, & \text { if node } j \text { is the head of edge } i \\ -1, & \text { if node } j \text { is the tail of edge } i, \\ 0, & \text { if node } j \text { is not on edge } i\end{cases}
$$

The laplacian of a graph G is the symmetric $n \times n$ matrix

$$
L=B^{t} B
$$

Both the laplacian matrix and the adjacency matrix are $n \times n$. What is the connection between them?

Laplacian

The laplacian satisfies

$$
L=D-A
$$

where $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is the diagonal degree matrix.
For example, for the cycle graph C_{6}, the degree matrix is $2 I$, and the laplacian is the matrix we saw in $\S 3.2$,

$$
L=Q(6)=\left(\begin{array}{cccccc}
2 & -1 & 0 & 0 & 0 & -1 \\
-1 & 2 & -1 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 \\
-1 & 0 & 0 & 0 & -1 & 2
\end{array}\right)
$$

4.3 Binomial Theorem

Let x and a be two variables. A binomial is an expression of the form

$$
(a+x)^{2}, \quad(a+x)^{3}, \quad(a+x)^{4}, \quad \ldots
$$

The degree of each of these binomials is 2,3 , and 4 .
When binomials are expanded by multiplying out, one obtains a sum of terms. The binomial theorem specifies the exact pattern or form of the resulting sum.

Recall that

$$
(a+b)(c+d)=a(c+d)+b(c+d)=a c+a d+b c+b d
$$

Similarly,
$(a+b)(c+d+e)=a(c+d+e)+b(c+d+e)=a c+a d+a e+b c+b d+b e$.
Using this algebra, we can expand each binomial.
Expanding $(a+x)^{2}$ yields

$$
\begin{equation*}
(a+x)^{2}=(a+x)(a+x)=a^{2}+x a+a x+x^{2}=a^{2}+2 a x+x^{2} . \tag{4.3.1}
\end{equation*}
$$

Similarly, for $(a+x)^{3}$, we have

$$
\begin{align*}
(a+x)^{3} & =(a+x)(a+x)^{2}=(a+x)\left(a^{2}+2 a x+x^{2}\right) \\
& =a^{3}+2 a^{2} x+a x^{2}+x a^{2}+2 x a x+x^{3} \tag{4.3.2}\\
& =a^{3}+3 a^{2} x+3 a x^{2}+x^{3} .
\end{align*}
$$

For $(a+x)^{4}$, we have

$$
\begin{align*}
(a+x)^{4} & =(a+x)(a+x)^{3}=(a+x)\left(a^{3}+3 a^{2} x+3 a x^{2}+x^{3}\right) \\
& =a^{4}+3 a^{3} x+3 a^{2} x^{2}+a x^{3}+a^{3} x+3 a^{2} x^{2}+3 a x^{3}+x^{4} \tag{4.3.3}\\
& =a^{4}+4 a^{3} x+6 a^{2} x^{2}+4 a x^{3}+x^{4} .
\end{align*}
$$

Thus

$$
\begin{align*}
& (a+x)^{2}=a^{2}+2 a x+x^{2} \\
& (a+x)^{3}=a^{3}+3 a^{2} x+3 a x^{2}+x^{3} \\
& (a+x)^{4}=a^{4}+4 a^{3} x+6 a^{2} x^{2}+4 a x^{3}+x^{4} \tag{4.3.4}\\
& (a+x)^{5}=\star a^{5}+\star a^{4} x+\star a^{3} x^{2}+\star a^{2} x^{3}+\star a x^{4}+\star x^{5} .
\end{align*}
$$

Here \star means we haven't found the coefficient yet.

There is a pattern in (4.3.4). In the first line, the powers of a are in decreasing order, $2,1,0$, while the powers of x are in increasing order, 0,1 , 2. In the second line, the powers of a decrease from 3 to 0 , while the powers of x increase from 0 to 3 . In the third line, the powers of a decrease from 4 to 0 , while the powers of x increase from 0 to 4 .

This pattern of powers is simple and clear. Now we want to find the pattern for the coefficients in front of each term. In (4.3.4), these coefficients are $(1,2,1),(1,3,3,1),(1,4,6,4,1)$, and $(\star, \star, \star, \star, \star, \star)$. These coefficients are the binomial coefficients.

Before we determine the pattern, we introduce a useful notation for these coefficients by writing

$$
\binom{2}{0}=1, \quad\binom{2}{1}=2, \quad\binom{2}{2}=1
$$

and

$$
\binom{3}{0}=1, \quad\binom{3}{1}=3, \quad\binom{3}{2}=3, \quad\binom{3}{3}=1
$$

and

$$
\binom{4}{0}=1, \quad\binom{4}{1}=4, \quad\binom{4}{2}=6, \quad\binom{4}{3}=4, \quad\binom{4}{4}=1
$$

and

$$
\binom{5}{0}=\star, \quad\binom{5}{1}=\star, \quad\binom{5}{2}=\star, \quad\binom{5}{3}=\star, \quad\binom{5}{4}=\star, \quad\binom{5}{5}=\star .
$$

With this notation, the number

$$
\begin{equation*}
\binom{n}{k} \tag{4.3.5}
\end{equation*}
$$

is the coefficient of $a^{n-k} x^{k}$ when you multiply out $(a+x)^{n}$. This is the binomial coefficient. Here n is the degree of the binomial, and k, which specifies the term in the resulting sum, varies from 0 to n (not 1 to n).

It is important to remember that, in this notation, the binomial $(a+x)^{2}$ expands into the sum of three terms $a^{2}, 2 a x, x^{2}$. These are term 0 , term 1, and term 2. Alternatively, one says these are the zeroth term, the first term, and the second term. Thus the second term in the expansion of the binomial $(a+x)^{4}$ is $6 a^{2} x^{2}$, and the binomial coefficient $\binom{4}{2}=6$. In general, the binomial $(a+x)^{n}$ of degree n expands into a sum of $n+1$ terms.

Since the binomial coefficient $\binom{n}{k}$ is the coefficient of $a^{n-k} x^{k}$ when you multiply out $(a+x)^{n}$, we have the binomial theorem.

Binomial Theorem

The binomial $(a+x)^{n}$ equals

$$
\begin{equation*}
\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} x+\binom{n}{2} a^{n-2} x^{2}+\cdots+\binom{n}{n-1} a x^{n-1}+\binom{n}{n} x^{n} \tag{4.3.6}
\end{equation*}
$$

Using summation notation, the binomial theorem states

$$
\begin{equation*}
(a+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} x^{k} . \tag{4.3.7}
\end{equation*}
$$

The binomial coefficient $\binom{n}{k}$ is called " n-choose- k ", because it is the coefficient of the term corresponding to choosing $k x$'s when multiplying the n factors in the product

$$
(a+x)^{n}=(a+x)(a+x)(a+x) \ldots(a+x)
$$

For example, the term $\binom{4}{2} a^{2} x^{2}$ corresponds to choosing two a 's, and two x 's, when multiplying the four factors in the product

$$
(a+x)^{4}=(a+x)(a+x)(a+x)(a+x) .
$$

The binomial coefficients may be arranged in a triangle, Pascal's triangle (Figure 4.9). Can you figure out the numbers \star in this triangle before peeking ahead?

Figure 4.9: Pascal's triangle.
In Pascal's triangle, the very top row has one number in it: This is the zeroth row corresponding to $n=0$ and the binomial expansion of $(a+x)^{0}=1$. The first row corresponds to $n=1$; it contains the numbers $(1,1)$, which correspond to the binomial expansion of $(a+x)^{1}=1 a+1 x$. We say the zeroth entry $(k=0)$ in the first row $(n=1)$ is 1 and the first entry $(k=1)$ in the first row is 1 . Similarly, the zeroth entry $(k=0)$ in the second row
($n=2$) is 1 , and the second entry $(k=2)$ in the second row $(n=2)$ is 1 . The second entry $(k=2)$ in the fourth row $(n=4)$ is 6 . For every row, the entries are counted starting from $k=0$, and end with $k=n$, so there are $n+1$ entries in row n. With this understood, the k-th entry in the n-th row is the binomial coefficient n-choose $-k$. So 10 -choose- 2 is

$$
\binom{10}{2}=45
$$

We can learn a lot about the binomial coefficients from this triangle. First, we have 1's all along the left edge. Next, we have 1's all along the right edge. Similarly, one step in from the left or right edge, we have the row number. Thus we have

$$
\binom{n}{0}=1=\binom{n}{n}, \quad\binom{n}{1}=n=\binom{n}{n-1}, \quad n \geq 1 .
$$

Note also Pascal's triangle has a left-to-right symmetry: If you read off the coefficients in a particular row, you can't tell if you're reading them from left to right, or from right to left. It's the same either way: The fifth row is $(1,5,10,10,5,1)$. In terms of our notation, this is written

$$
\binom{n}{k}=\binom{n}{n-k}, \quad 0 \leq k \leq n
$$

the binomial coefficients remain unchanged when k is replaced by $n-k$.
The key step in finding a formula for n-choose- k is to notice

$$
(a+x)^{n+1}=(a+x)(a+x)^{n}
$$

Let's work this out when $n=3$. Then the left side is $(a+x)^{4}$. From (4.3.4),
we get

$$
\begin{aligned}
\binom{4}{0} a^{4}+ & \binom{4}{1} a^{3} x+\binom{4}{2} a^{2} x^{2}+\binom{4}{3} a x^{3}+\binom{4}{4} x^{4} \\
= & (a+x)\left(\binom{3}{0} a^{3}+\binom{3}{1} a^{2} x+\binom{3}{2} a x^{2}+\binom{3}{3} x^{3}\right) \\
= & \binom{3}{0} a^{4}+\binom{3}{1} a^{3} x+\binom{3}{2} a^{2} x^{2}+\binom{3}{3} a x^{3} \\
& +\binom{3}{0} a^{3} x+\binom{3}{1} a^{2} x^{2}+\binom{3}{2} a x^{3}+\binom{3}{3} x^{4} \\
= & \binom{3}{0} a^{4}+\left(\binom{3}{1}+\binom{3}{0}\right) a^{3} x+\left(\binom{3}{2}+\binom{3}{1}\right) a^{2} x^{2} \\
& +\left(\binom{3}{3}+\binom{3}{2}\right) a x^{3}+\binom{3}{3} x^{4} .
\end{aligned}
$$

Equating corresponding coefficients of x, we get,

$$
\binom{4}{1}=\binom{3}{1}+\binom{3}{0}, \quad\binom{4}{2}=\binom{3}{2}+\binom{3}{1}, \quad\binom{4}{3}=\binom{3}{3}+\binom{3}{2} .
$$

In general, a similar calculation establishes

$$
\begin{equation*}
\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}, \quad 1 \leq k \leq n . \tag{4.3.8}
\end{equation*}
$$

This allows us to build Pascal's triangle (Figure 4.9), where, apart from the ones on either end, each term ("the child") in a given row is the sum of the two terms ("the parents") located directly above in the previous row.

Insert $x=1$ and $a=1$ in the binomial theorem to get

$$
\begin{equation*}
2^{n}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n-1}+\binom{n}{n} . \tag{4.3.9}
\end{equation*}
$$

We conclude the sum of the binomial coefficients along the n-th row of Pascal's triangle is 2^{n} (remember n starts from 0).

Now insert $x=1$ and $a=-1$. You get

$$
0=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\cdots \pm\binom{ n}{n-1} \pm\binom{ n}{n}
$$

Hence: the alternating ${ }^{2}$ sum of the binomial coefficients along the n-th row of Pascal's triangle is zero.

We now show
Binomial Coefficient
The binomial coefficient $\binom{n}{k}$ equals $C(n, k)$,

$$
\begin{equation*}
\binom{n}{k}=\frac{n \cdot(n-1) \cdots \cdots(n-k+1)}{1 \cdot 2 \cdots \cdot k}=\frac{n!}{k!(n-k)!}, \quad 1 \leq k \leq n \tag{4.3.10}
\end{equation*}
$$

To establish (4.3.10), because

$$
C(0,0)=1=\binom{0}{0}
$$

it is enough to show $C(n, k)$ also satisfies (4.3.8),

$$
\begin{equation*}
C(n+1, k)=C(n, k)+C(n, k-1), \quad 1 \leq k \leq n \tag{4.3.11}
\end{equation*}
$$

To establish (4.3.11), we simplify

$$
\begin{aligned}
C(n, k)+C(n, k-1) & =\frac{n!}{k!(n-k)!}+\frac{n!}{(k-1)!(n-k+1)!} \\
& =\frac{n!}{(k-1)!(n-k)!}\left(\frac{1}{k}+\frac{1}{n-k+1}\right) \\
& =\frac{n!(n+1)}{(k-1)!(n-k)!k(n-k+1)} \\
& =\frac{(n+1)!}{k!(n+1-k)!}=C(n+1, k) .
\end{aligned}
$$

[^6]This establishes (4.3.11), and, consequently, (4.3.10).
For example,

$$
\binom{7}{3}=\frac{7 \cdot 6 \cdot 5}{1 \cdot 2 \cdot 3}=35=\binom{7}{4} \quad \text { and } \quad\binom{10}{2}=\frac{10 \cdot 9}{1 \cdot 2}=45=\binom{10}{8} .
$$

The formula (4.3.10) is easy to remember: There are k terms in the numerator as well as the denominator, the factors in the denominator increase starting from 1, and the factors in the numerator decrease starting from n.

In Python, the code

```
from scipy.special import comb
comb (n,k)
comb(n,k, exact=True)
```

returns the binomial coefficient.

The binomial coefficient $\binom{n}{k}$ makes sense even for fractional n. This can be seen from (4.3.10). For example, for $n=1 / 2$ and $k=3$,

$$
\begin{equation*}
\binom{1 / 2}{3}=\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{1 \cdot 2 \cdot 3}=\frac{(1 / 2)(-1 / 2)(-3 / 2)}{6}=\frac{3}{48} . \tag{4.3.12}
\end{equation*}
$$

This works also for n negative,

$$
\begin{equation*}
\binom{-1 / 2}{3}=\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right)}{1 \cdot 2 \cdot 3}=\frac{(-1 / 2)(-3 / 2)(-5 / 2)}{6}=\frac{15}{48} \tag{4.3.13}
\end{equation*}
$$

In fact, in (4.3.10), n may be any real number, for example $n=\sqrt{2}$.

4.4 Exponential Function

In this section, our first goal is to derive (4.1.2), as promised in §4.1.

To begin, use the binomial theorem (4.3.7) with $a=1$ and $x=1 / n$, obtaining

$$
\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} 1^{n-k}\left(\frac{1}{n}\right)^{k}=\sum_{k=0}^{n} \frac{1}{k!} \frac{n(n-1)(n-2) \ldots(n-k+1)}{n \cdot n \cdot n \cdots \cdot n} .
$$

Rewriting this by pulling out the first two terms $k=0$ and $k=1$ leads to

$$
\begin{equation*}
\left(1+\frac{1}{n}\right)^{n}=1+1+\sum_{k=2}^{n} \frac{1}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{k-1}{n}\right) . \tag{4.4.1}
\end{equation*}
$$

From (4.4.1), we can tell a lot. First, since all terms are positive, we see

$$
\left(1+\frac{1}{n}\right)^{n} \geq 2, \quad n \geq 1
$$

Second, each factor in (4.4.1) is of the form

$$
\begin{equation*}
\left(1-\frac{j}{n}\right), \quad 1 \leq j \leq k-1 \tag{4.4.2}
\end{equation*}
$$

Since n is in the denominator, each such factor increases with n. Moreover, as n increases, the number of terms in (4.4.1) increases, hence so does the sum. We conclude

$$
\left(1+\frac{1}{n}\right)^{n} \quad \text { increases as } n \text { increases. }
$$

Therefore, as n increases without bound, there is a definite limit

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

From above, we have $e \geq 2$.
Third, when $k \geq 2$, we know

$$
k!=k(k-1)(k-2) \ldots 3 \cdot 2 \geq 2^{k-1} .
$$

Since each factor in (4.4.2) is no greater than 1 , by (4.4.1),

$$
\begin{equation*}
\left(1+\frac{1}{n}\right)^{n} \leq 1+1+\sum_{k=2}^{n} \frac{1}{k!} \leq 2+\sum_{k=2}^{n} \frac{1}{2^{k-1}} \tag{4.4.3}
\end{equation*}
$$

But the sum

$$
s_{n}=\sum_{k=2}^{n} \frac{1}{2^{k-1}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n-1}}
$$

may be easily estimated as follows.
Multiplying s_{n} by 2 doubles each term, and results in almost the same sum, so

$$
2 s_{n}=1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{n-2}}=1+s_{n}-\frac{1}{2^{n-1}}
$$

Solving for s_{n}, we conclude

$$
\sum_{k=2}^{n} \frac{1}{2^{k-1}}=s_{n}=1-\frac{1}{2^{n-1}} \leq 1, \quad n \geq 2
$$

By (4.4.3), we arrive at

$$
\begin{equation*}
2 \leq\left(1+\frac{1}{n}\right)^{n} \leq 3, \quad n \geq 1 \tag{4.4.4}
\end{equation*}
$$

Summarizing, we established the following strengthening of (4.1.5).

Euler's Constant

The limit

$$
\begin{equation*}
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \tag{4.4.5}
\end{equation*}
$$

exists and satisfies $2 \leq e \leq 3$.

We use (4.4.4) to establish (4.1.2). Write (4.1.2) as $a_{n} \leq b_{n} \leq c_{n}$. When $n=1$,

$$
a_{1}=b_{1}=c_{1} .
$$

Moreover, as n increases, a_{n}, b_{n}, c_{n} all increase. Therefore, to establish (4.1.2), it is enough to show b_{n} increases faster than a_{n}, and c_{n} increases faster than b_{n}, both as n increases.

To measure how a_{n}, b_{n}, c_{n} increase with n, divide the $(n+1)$-st term by the n-th term: It is enough to show

$$
\frac{a_{n+1}}{a_{n}} \leq \frac{b_{n+1}}{b_{n}} \leq \frac{c_{n+1}}{c_{n}}
$$

But we already know

$$
\frac{b_{n+1}}{b_{n}}=n+1,
$$

and, from (4.4.4),

$$
\frac{a_{n+1}}{a_{n}}=\frac{3((n+1) / 3)^{n+1}}{3(n / 3)^{n}}=(n+1) \cdot \frac{1}{3} \cdot\left(1+\frac{1}{n}\right)^{n} \leq n+1=\frac{b_{n+1}}{b_{n}}
$$

and, from (4.4.4) again,

$$
\frac{b_{n+1}}{b_{n}}=n+1 \leq(n+1) \cdot \frac{1}{2} \cdot\left(1+\frac{1}{n}\right)^{n}=\frac{2((n+1) / 2)^{n+1}}{2(n / 2)^{n}}=\frac{c_{n+1}}{c_{n}}
$$

Since we've shown b_{n} increases faster than a_{n}, and c_{n} increases faster than b_{n}, we have derived (4.1.2).

By definition, Euler's constant e satisfies (4.4.5). To obtain a second formula for e, insert $n=\infty$ in (4.4.1), which means let n grow to infinity without bound in (4.4.1). Using $1 / \infty=0$, since the k-th term approaches $1 / k!$, and since the number of terms increases with n, we obtain the second formula

$$
e=1+1+\sum_{k=2}^{\infty} \frac{1}{k!}\left(1-\frac{1}{\infty}\right)\left(1-\frac{2}{\infty}\right) \ldots\left(1-\frac{k-1}{\infty}\right)=\sum_{k=0}^{\infty} \frac{1}{k!} .
$$

To summarize,

Euler's Constant

Euler's constant satisfies

$$
e=\sum_{k=0}^{\infty} \frac{1}{k!}=1+1+\frac{1}{2}+\frac{1}{6}+\frac{1}{24}+\frac{1}{120}+\frac{1}{720}+\ldots
$$

Depositing one dollar in a bank offering 100% interest returns two dollars after one year. Depositing one dollar in a bank offering the same annual interest compounded at mid-year returns

$$
\left(1+\frac{1}{2}\right)^{2}=2.25
$$

dollars after one year.
Depositing one dollar in a bank offering the same annual interest compounded at n intermediate time points returns $(1+1 / n)^{n}$ dollars after one year.

Passing to the limit, depositing one dollar in a bank and continuously compounding at an annual interest rate of 100% returns e dollars after one year. Because of this, (4.4.5) is often called the compound-interest formula.

Now we derive the result of continuously compounding at any specified annual interest rate x. Note here x is a proportion, not a percent. An interest rate of 30% corresponds to $x=.3$ in the exponential function.

Exponential Function

For any real number x, the limit

$$
\begin{equation*}
\exp x=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \tag{4.4.6}
\end{equation*}
$$

exists. In particular, $\exp 0=1$ and $\exp 1=e$.
Note, in the compound-interest interpretation, when $x>0$, the bank is giving you interest, while, if $x<0$, the bank is taking away interest, leading to a continual loss.

To derive this, assume first $x>0$ is a positive real number. Then, exactly as before, using the binomial theorem,

$$
\left(1+\frac{x}{n}\right)^{n}, \quad n \geq 1
$$

is increasing with n, so the limit in (4.4.6) is well-defined.

To establish the existence of the limit when $x<0$, we first show

$$
\begin{equation*}
(1-x)^{n} \geq 1-n x, \quad 0<x<1, n \geq 1 . \tag{4.4.7}
\end{equation*}
$$

This follows inductively: Each of the following inequalities is implied by the preceding one,

$$
\begin{aligned}
(1-x) & =1-x \\
(1-x)^{2} & =1-2 x+x^{2} \geq 1-2 x \\
(1-x)^{3} & =(1-x)(1-x)^{2} \geq(1-x)(1-2 x)=1-3 x+2 x^{2} \geq 1-3 x \\
(1-x)^{4} & =(1-x)(1-x)^{3} \geq(1-x)(1-3 x)=1-4 x+3 x^{3} \geq 1-4 x
\end{aligned}
$$

This establishes (4.4.7) for all $n \geq 1$.
Now let x be any real number. Then, for n large enough, x^{2} / n^{2} lies between 0 and 1 . Replacing x by x^{2} / n^{2} in (4.4.7), we obtain

$$
1 \geq\left(1-\frac{x^{2}}{n^{2}}\right)^{n} \geq 1-\frac{x^{2}}{n}
$$

As $n \rightarrow \infty$, both sides of this last equation approach 1 , so

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1-\frac{x^{2}}{n^{2}}\right)^{n}=1 \tag{4.4.8}
\end{equation*}
$$

Now let n grow without bound in

$$
\left(1+\frac{x}{n}\right)^{n}\left(1-\frac{x}{n}\right)^{n}=\left(1-\frac{x^{2}}{n^{2}}\right)^{n}
$$

Since the limit $\exp x$ is well-defined when $x>0$, by (4.4.8), we obtain

$$
\exp x \cdot \lim _{n \rightarrow \infty}\left(1-\frac{x}{n}\right)^{n}=1, \quad x>0
$$

This shows the limit $\exp x$ in (4.4.6) is well-defined when $x<0$, and

$$
\exp (-x)=\frac{1}{\exp x}, \quad \text { for all } x
$$

Figure 4.10: The exponential function $\exp x$.
Repeating the logic yielding (4.4.1), we have

$$
\begin{equation*}
\left(1+\frac{x}{n}\right)^{n}=1+x+\sum_{k=2}^{n} \frac{x^{k}}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \ldots\left(1-\frac{k-1}{n}\right) . \tag{4.4.9}
\end{equation*}
$$

Letting $n \rightarrow \infty$ in (4.4.9) as before, results in the following.

Exponential Series

The exponential function is always positive and satisfies, for every real number x,

$$
\begin{equation*}
\exp x=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\ldots \tag{4.4.10}
\end{equation*}
$$

The graph of $\exp x$ is in Figure 4.10.

We use the binomial theorem one more time to show

Law of Exponents

For real numbers x and y,

$$
\exp (x+y)=\exp x \cdot \exp y
$$

To see this, multiply out the sums

$$
\left(a_{0}+a_{1}+a_{2}+a_{3}+\ldots\right)\left(b_{0}+b_{1}+b_{2}+b_{3}+\ldots\right)
$$

in a "symmetric" manner, obtaining
$a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right)+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right)+\left(a_{0} b_{3}+a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{0}\right)+\ldots$
Using summation notation, the n-th term in this last sum is

$$
\sum_{k=0}^{n} a_{k} b_{n-k}=a_{0} b_{n}+a_{1} b_{n-1}+\cdots+a_{n-1} b_{1}+a_{n} b_{0}
$$

Thus

$$
\left(\sum_{k=0}^{\infty} a_{k}\right)\left(\sum_{m=0}^{\infty} b_{m}\right)=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) .
$$

Now insert

$$
a_{k}=\frac{x^{k}}{k!}, \quad b_{n-k}=\frac{y^{n-k}}{(n-k)!} .
$$

Then the n-th term in the resulting sum equals, by the binomial theorem,

$$
\sum_{k=0}^{n} a_{k} b_{n-k}=\sum_{k=0}^{n} \frac{x^{k}}{k!} \frac{y^{n-k}}{(n-k)!}=\frac{1}{n!} \sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}=\frac{1}{n!}(x+y)^{n}
$$

Thus

$$
\exp x \cdot \exp y=\left(\sum_{k=0}^{\infty} \frac{x^{k}}{k!}\right)\left(\sum_{m=0}^{\infty} \frac{y^{m}}{m!}\right)=\sum_{n=0}^{\infty} \frac{(x+y)^{n}}{n!}=\exp (x+y)
$$

This derives the law of exponents.
Repeating the law of exponents n times implies

$$
\exp (n x)=\exp (x+x+\cdots+x)=\exp x \cdot \exp x \cdots \exp x=(\exp x)^{n}
$$

If we write $\sqrt[n]{x}=x^{1 / n}$, replacing x by x / n yields

$$
\exp (x / n)=(\exp x)^{1 / n}
$$

Combining the last two equations yields

$$
\exp (n x / m)=\left((\exp x)^{n}\right)^{1 / m}=(\exp x)^{n / m}
$$

Inserting $x=1$ in this last equation, it follows, for any rational number $x=n / m$,

$$
\exp x=\exp (1 \cdot x)=(\exp 1)^{x}=e^{x}
$$

Because of this, as a matter of convenience, we write the exponential function either way, $\exp x$ or e^{x}, even when x is not rational.

Exponential Notation

For any real number x,

$$
e^{x}=\exp x
$$

Suppose $0<r<1$. Then $r^{2}<r, r^{3}<r$, and so on. Replacing x by $r x$ in the exponential series (4.4.10),

$$
\begin{align*}
e^{r x} & =1+r x+\frac{1}{2!} r^{2} x^{2}+\frac{1}{3!} r^{3} x^{3}+\ldots \\
& <1+r x+\frac{1}{2!} r x^{2}+\frac{1}{3!} r x^{3}+\ldots \tag{4.4.11}\\
& =1-r+r e^{x}
\end{align*}
$$

From this we can show

Convexity of the Exponential Function

For $0<r<1$,

$$
\begin{equation*}
\exp ((1-r) x+r y)<(1-r) \exp x+r \exp y \tag{4.4.12}
\end{equation*}
$$

To derive (4.4.12), replace x by $y-x$ in (4.4.11), obtaining

$$
e^{r(y-x)}<1-r+r e^{y-x}
$$

Now multiply both sides by e^{x}, obtaining (4.4.12).
Graphically, the convexity of the exponential functions is the fact that the line segment joining two points on the graph lies above the graph (Figure 4.11).

Figure 4.11: Convexity of the exponential function.

Convexity is discussed further in $\S 7.5$.

Chapter 5

Probability

5.1 Binomial Probability

Suppose a coin is tossed repeatedly, landing heads or tails each time. After tossing the coin 100 times, we obtain 53 heads. What can we say about this coin? Can we claim the coin is fair? Can we claim the probability of obtaining heads is .53 ?

Whatever claims we make about the coin, they should be reliable, in that they should more or less hold up to repeated verification.

To obtain reliable claims, we therefore repeat the above experiment 20 times, obtaining for example the following count of heads

$$
[57,49,55,44,55,50,49,50,53,49,53,50,51,53,53,54,48,51,50,53] .
$$

On the other hand, suppose someone else repeats the same experiment 20 times with a different coin, and obtains

$$
[69,70,79,74,63,70,68,71,71,73,65,63,68,71,71,64,73,70,78,67] .
$$

In this case, one suspects the two coins are statistically distinct, and have different probabilities of obtaining heads.

In this section, we study how the probabilities of coin-tossing behave, with the goal of answering the question: Is a given coin fair?

Assume we are tossing a coin. If we let $p=\operatorname{Prob}(H)$ and $q=\operatorname{Prob}(T)$ be the probabilities of obtaining heads and tails after a single toss, then

$$
p+q=1
$$

In particular, we see $q=1-p$, and p may be any real number between 0 and 1 , depending on the particular coin being tossed.

If we toss the coin twice, we obtain one of four possibilities, $H H, H T$, $T H$, or $T T$. If we make the natural assumption that the coin has no memory, that the result of the first toss has no bearing on the result of the second toss, then the probabilities are

$$
\begin{equation*}
\operatorname{Prob}(H H)=p^{2}, \operatorname{Prob}(H T)=p q, \operatorname{Prob}(T H)=q p, \operatorname{Prob}(T T)=q^{2} . \tag{5.1.1}
\end{equation*}
$$

These are valid probabilities since their sum equals 1 ,

$$
p^{2}+p q+q p+q^{2}=(p+q)^{2}=1^{2}=1
$$

To see why these are the correct probabilities, we use the conditional probability definition,

$$
\begin{equation*}
\operatorname{Prob}(A \mid B)=\frac{\operatorname{Prob}(A \text { and } B)}{\operatorname{Prob}(B)} \tag{5.1.2}
\end{equation*}
$$

We use this formula to compute the probability that we obtain heads on the second toss given that we obtain tails on the first toss. The conditional probability definition (5.1.2) is equivalent to the chain rule

$$
\operatorname{Prob}(A \text { and } B)=\operatorname{Prob}(A \mid B) \operatorname{Prob}(B) .
$$

To compute this, we introduce the convenient notation

$$
X_{n}= \begin{cases}1, & \text { if the } n \text {-th toss is heads } \\ 0, & \text { if the } n \text {-th toss is tails }\end{cases}
$$

Then X_{n} is a random variable (§5.3) and represents a numerical reward function of the outcome (heads or tails) at the n-th toss.

With this notation, (5.1.1) may be rewritten

$$
\begin{aligned}
& \operatorname{Prob}\left(X_{1}=1 \text { and } X_{2}=1\right)=p^{2}, \\
& \operatorname{Prob}\left(X_{1}=1 \text { and } X_{2}=0\right)=p q, \\
& \operatorname{Prob}\left(X_{1}=0 \text { and } X_{2}=1\right)=q p, \\
& \operatorname{Prob}\left(X_{1}=0 \text { and } X_{2}=0\right)=q^{2} .
\end{aligned}
$$

In particular, this implies

$$
\begin{aligned}
\operatorname{Prob}\left(X_{1}=1\right) & =\operatorname{Prob}\left(X_{1}=1 \text { and } X_{2}=0\right)+\operatorname{Prob}\left(X_{1}=1 \text { and } X_{2}=1\right) \\
& =p q+p^{2}=\operatorname{Prob}(p+q)=p .
\end{aligned}
$$

Similarly, $\operatorname{Prob}\left(X_{2}=1\right)=p$. Computing,
$\operatorname{Prob}\left(X_{2}=1 \mid X_{1}=0\right)=\frac{\operatorname{Prob}\left(X_{1}=0 \text { and } X_{2}=1\right)}{\operatorname{Prob}\left(X_{1}=0\right)}=\frac{q p}{q}=p=\operatorname{Prob}\left(X_{2}=1\right)$,
so

$$
\operatorname{Prob}\left(X_{2}=1 \mid X_{1}=0\right)=\operatorname{Prob}\left(X_{2}=1\right) .
$$

Thus $X_{1}=0$ has no effect on the probability that $X_{2}=1$, and similarly for the other possibilities. This is often referred to as the independence of the coin tosses. We conclude

Independent Coin-Tossing

With the conditional probability definition (5.1.2), a coin has no memory between successive tosses if and only if the probabilities at distinct tosses multiply,

$$
\begin{equation*}
\operatorname{Prob}\left(X_{1}=a_{1}, X_{2}=a_{2}, \ldots\right)=\operatorname{Prob}\left(X_{1}=a_{1}\right) \operatorname{Prob}\left(X_{2}=a_{2}\right) \ldots \tag{5.1.3}
\end{equation*}
$$

Here a_{1}, a_{2}, \ldots are 0 or 1 .
Since we are tossing the same coin, we can set

$$
\operatorname{Prob}\left(X_{n}=1\right)=p, \quad \operatorname{Prob}\left(X_{n}=0\right)=q=1-p, \quad n \geq 1 .
$$

Thus all probabilities in (5.1.3) are determined by the parameter p, which may be any number between 0 and 1 .

Suppose X is a random variable taking on three values a, b, c with probabilities p, q, r,

$$
P(X=a)=p, \quad P(X=b)=q, \quad P(X=c)=r .
$$

Then the mean or average or expected value of X is

$$
E(X)=a p+b q+c r .
$$

Since $p+q+r=1$, the expected value of X lies between the greatest of a, b, c, and the least,

$$
\min (a, b, c) \leq E(X) \leq \max (a, b, c)
$$

The variance of X is a measure of how far X deviates from its mean,

$$
\operatorname{Var}(X)=E\left((X-m)^{2}\right), \quad m=E(X) .
$$

For example,

$$
\operatorname{Var}(X)=(a-m)^{2} \cdot p+(b-m)^{2} \cdot q+(c-m)^{2} \cdot r .
$$

By expanding the squares, one has the identity

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-m^{2}, \quad m=E(X)
$$

A random variable Z is standard if its mean is zero and its variance is one. If X is any random variable with mean m and variance σ^{2}, the random variable

$$
Z=\frac{X-m}{\sigma}
$$

is standard.
For $X=X_{n}$, the mean is

$$
E\left(X_{n}\right)=1 \cdot p+0 \cdot(1-p)=p
$$

and the variance is

$$
\operatorname{Var}\left(X_{n}\right)=E\left(X_{n}^{2}\right)-m^{2}=1^{2} \cdot p+0^{2} \cdot(1-p)-p^{2}=p-p^{2}=p(1-p) .
$$

Let

$$
S_{n}=X_{1}+X_{2}+\cdots+X_{n}
$$

Since $X_{k}=1$ when the k-th toss is heads, and $X_{k}=0$ when the k-th toss is tails, S_{n} is the number of heads in n tosses.

The mean of S_{n} is

$$
E\left(S_{n}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots+E\left(X_{n}\right)=p+p+\cdots+p=n p .
$$

The second moment of S_{n}, or the mean of S_{n}^{2}, is

$$
E\left(S_{n}^{2}\right)=E\left(\left(\sum_{k=1}^{n} X_{k}\right)^{2}\right)=\sum_{k=1}^{n} E\left(X_{n}^{2}\right)+\sum_{k \neq j} E\left(X_{k} X_{j}\right)
$$

By independence and $X_{k}^{2}=X_{k}$,
$E\left(S_{n}^{2}\right)=\sum_{k=1}^{n} E\left(X_{n}\right)+\sum_{k \neq j} E\left(X_{k}\right) E\left(X_{j}\right)=n p+n(n-1) \cdot p^{2}=n p(1-p)+n^{2} p^{2}$.
Hence the variance of S_{n} is

$$
\operatorname{Var}\left(S_{n}\right)=E\left(S_{n}^{2}\right)-(n p)^{2}=n p(1-p)+n^{2} p^{2}-n^{2} p^{2}=n p(1-p) .
$$

It is natural to ask for the probability of obtaining k heads in n tosses, $\operatorname{Prob}\left(S_{n}=k\right)$. Here k varies between 0 and n, corresponding to all tails or all heads respectively.

There are $n+1$ possibilities $S_{n}=0, S_{n}=1, S_{n}=2, \ldots, S_{n}=n$ for the number of heads in n tosses. If we have no idea what the parameter p is, then all possibilities are equally likely, so one expects

$$
\begin{equation*}
\operatorname{Prob}\left(S_{n}=k\right)=\frac{1}{n+1}, \quad 0 \leq k \leq n \tag{5.1.4}
\end{equation*}
$$

Notice

$$
\sum_{k=0}^{n} \operatorname{Prob}\left(S_{n}=k\right)=\sum_{k=0}^{n} \frac{1}{n+1}=1
$$

as it should be.
Now suppose we are given p, so we know $p=\operatorname{Prob}\left(X_{n}=1\right)$. Since the number of ways of choosing k heads from n tosses is $\binom{n}{k}$, and the probabilities of distinct tosses multiply, the probability of k heads in n tosses is as follows.

Binomial Distribution With Parameters n, p

If a coin has heads-probability p, the probability of obtaining k heads in n tosses is

$$
\begin{equation*}
\operatorname{Prob}\left(S_{n}=k\right)=\binom{n}{k} p^{k}(1-p)^{n-k} \tag{5.1.5}
\end{equation*}
$$

Moreover the mean and variance of the binomial distribution is $n p$ and $n p(1-p)$.

By the binomial theorem,

$$
\sum_{k=0}^{n} \operatorname{Prob}\left(S_{n}=k\right)=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}=(p+1-p)^{n}=1
$$

again as it should be.
The binomial distribution with $n=1$ corresponds to a single coin toss, and is called the bernoulli distribution. The corresponding random variable X,

$$
\operatorname{Prob}(X=1)=p, \quad \operatorname{Prob}(X=0)=1-p,
$$

is a bernoulli or bernoulli random variable. The values of a bernoulli random variable need not be 0,1 , they may be any two values a and b.

Now we assume the coin parameter p is unknown, and we interpret (5.1.5) as the conditional probability that $S_{n}=k$ given knowledge of p, which we rewrite as

$$
\begin{equation*}
\operatorname{Prob}\left(S_{n}=k \mid p=r\right)=\binom{n}{k} r^{k}(1-r)^{n-k}, \quad 0 \leq k \leq n \tag{5.1.6}
\end{equation*}
$$

Now $\operatorname{Prob}\left(S_{n}=k\right)$ is the sum of the probabilities $\operatorname{Prob}\left(S_{n}=k\right.$ and $\left.p=r\right)$ over $0 \leq r \leq 1$. By the definition of conditional probability (5.1.2),

$$
\operatorname{Prob}\left(S_{n}=k \text { and } p=r\right)=\operatorname{Prob}\left(S_{n}=k \mid p=r\right) \operatorname{Prob}(p=r) .
$$

Thus $\operatorname{Prob}\left(S_{n}=k\right)$ is the sum of $\operatorname{Prob}\left(S_{n}=k \mid p=r\right) \operatorname{Prob}(p=r)$ over $0 \leq r \leq 1$. Since p varies continuously over $0 \leq r \leq 1$, the sum is replaced by the integral, so

$$
\operatorname{Prob}\left(S_{n}=k\right)=\int_{0}^{1} \operatorname{Prob}\left(S_{n}=k \mid p=r\right) \operatorname{Prob}(r<p<r+d r)
$$

Since we don't know anything about p, it's simplest to assume a uniform a priori probability

$$
\operatorname{Prob}(a<p<b)=b-a, \quad 0 \leq a<b \leq 1,
$$

which is the same as saying $\operatorname{Prob}(r<p<r+d r)=d r$. By (5.1.6), we obtain

$$
\operatorname{Prob}\left(S_{n}=k\right)=\int_{0}^{1}\binom{n}{k} r^{k}(1-r)^{n-k} d r
$$

But by integration by parts,

$$
\int_{0}^{1} r^{k}(1-r)^{n-k} d r=\frac{k!(n-k)!}{(n+1)!}
$$

From this, we conclude

$$
\begin{equation*}
\operatorname{Prob}\left(S_{n}=k\right)=\int_{0}^{1}\binom{n}{k} r^{k}(1-r)^{n-k} d r=\binom{n}{k} \frac{k!(n-k)!}{(n+1)!}=\frac{1}{n+1}, \tag{5.1.7}
\end{equation*}
$$

agreeing with with our intuitive result earlier.
Notice the difference: In (5.1.5), we know the coin's heads probability p, and obtain the binomial distribution, while in (5.1.7), since we don't know p, and there are $n+1$ possibilities $0 \leq k \leq n$, we obtain the uniform distribution $1 /(n+1)$.

We now turn things around: Suppose we toss the coin n times, and obtain k heads. How can we use this data to estimate the coin's probability of heads p ?

To this end, we introduce the fundamental
Bayes Theorem

$$
\begin{equation*}
\operatorname{Prob}(A \mid B)=\frac{\operatorname{Prob}(B \mid A) \cdot \operatorname{Prob}(A)}{\operatorname{Prob}(B)} \tag{5.1.8}
\end{equation*}
$$

The proof of Bayes Theorem is straightforward:

$$
\begin{aligned}
\operatorname{Prob}(A \mid B) & =\frac{\operatorname{Prob}(A \text { and } B)}{\operatorname{Prob}(B)} \\
& =\frac{\operatorname{Prob}(A \text { and } B)}{\operatorname{Prob}(A)} \cdot \frac{\operatorname{Prob}(A)}{\operatorname{Prob}(B)} \\
& =\operatorname{Prob}(B \mid A) \cdot \frac{\operatorname{Prob}(A)}{\operatorname{Prob}(B)}
\end{aligned}
$$

The depth of the result lies in its widespread usefulness.
We now write Bayes Theorem to compute

$$
\begin{equation*}
\operatorname{Prob}\left(p=r \mid S_{n}=k\right)=\operatorname{Prob}\left(S_{n}=k \mid p=r\right) \cdot \frac{\operatorname{Prob}(p=r)}{\operatorname{Prob}\left(S_{n}=k\right)} . \tag{5.1.9}
\end{equation*}
$$

But $\operatorname{Prob}\left(S_{n}=k \mid p=r\right)$ is as in (5.1.6), $\operatorname{Prob}\left(S_{n}=k\right)$ is as in (5.1.7), and $\operatorname{Prob}(p=r)=1$. Inserting these quantities into (5.1.9) leads to

A Posteriori probability Given k heads in n tosses

Assume the unknown heads probability p of a coin is uniformly distributed on $0 \leq r \leq 1$. Then the probability that $p=r$ given k heads in n tosses equals

$$
\begin{equation*}
\operatorname{Prob}\left(p=r \mid S_{n}=k\right)=(n+1) \cdot\binom{n}{k} r^{k}(1-r)^{n-k} . \tag{5.1.10}
\end{equation*}
$$

Notice because of the extra factor $(n+1)$, this is not equal to (5.1.6). In (5.1.6), p is fixed, and k is the variable. In (5.1.10), k is fixed, and r is the variable. This a posteriori distribution for $(n, k)=(10,7)$ is plotted in Figure 5.1. Notice this distribution is concentrated about $k / n=7 / 10=.7$.

Figure 5.1: The distribution of p given 7 heads in 10 tosses.

The code generating this figure is

```
from matplotlib.pyplot import *
from numpy import arange
def f(x): return 1320 * x^7*(1-x)^3
grid()
X = arange(0,1,.01)
plot(X,f(X),color="blue",linewidth=.5)
show()
```


Figure 5.2: The logistic function.

Because Bayes Theorem is so useful, here are two alternate forms. First, since

$$
\begin{aligned}
\operatorname{Prob}(B) & =\operatorname{Prob}(B \text { and } A)+\operatorname{Prob}\left(B \text { and } A^{c}\right) \\
& =\operatorname{Prob}(B \mid A) \operatorname{Prob}(A)+\operatorname{Prob}\left(B \mid A^{c}\right) \operatorname{Prob}\left(A^{c}\right),
\end{aligned}
$$

Bayes rule also states

$$
\begin{equation*}
\operatorname{Prob}(A \mid B)=\frac{\operatorname{Prob}(B \mid A) \operatorname{Prob}(A)}{\operatorname{Prob}(B \mid A) \operatorname{Prob}(A)+\operatorname{Prob}\left(B \mid A^{c}\right) \operatorname{Prob}\left(A^{c}\right)} \tag{5.1.11}
\end{equation*}
$$

Let

$$
\begin{equation*}
p=\sigma(z)=\frac{1}{1+e^{-z}} \tag{5.1.12}
\end{equation*}
$$

This is the logistic function (Figure 5.2). The logistic function takes as inputs real numbers y, and returns as outputs probabilities p (Figure 5.3). Think of the input z as an activation energy, and the output p as the probability of activation. In Python, σ is the expit function.

```
from scipy.special import expit
p = expit(z)
```


Figure 5.3: The logistic function takes real numbers to probabilities.

Dividing the numerator and denominator of (5.1.11) by the numerator, we also obtain in terms of log-probabilities,

$$
\begin{equation*}
\operatorname{Prob}(A \mid B)=\sigma\left(\log \left(\frac{\operatorname{Prob}(B \mid A) \operatorname{Prob}(A)}{\operatorname{Prob}\left(B \mid A^{c}\right) \operatorname{Prob}\left(A^{c}\right)}\right)\right) . \tag{5.1.13}
\end{equation*}
$$

For example, suppose we have two groups of points in \mathbf{R}^{d}, selected as follows. A fair coin is tossed. If the result is heads, select a point x in \mathbf{R}^{d} at random with normal probability (§5.4) with mean m_{H}, or

$$
\operatorname{Prob}(x \mid H) \sim e^{-\left|x-m_{H}\right|^{2} / 2}
$$

If the result is tails, select a point x at random with normal probability with mean m_{T}, or

$$
\operatorname{Prob}(x \mid T) \sim e^{-\left|x-m_{T}\right|^{2} / 2} .
$$

This says the the groups are centered around the points m_{H} and m_{T} respectively.

Given a point x, what is the probability x is in the heads group? In other words, what is

$$
\operatorname{Prob}(H \mid x) ?
$$

This question is begging for Bayes theorem.
Let

$$
w=m_{H}-m_{T}, \quad w_{0}=-\frac{1}{2}\left|m_{H}\right|^{2}+\frac{1}{2}\left|m_{T}\right|^{2} .
$$

Since $\operatorname{Prob}(H)=\operatorname{Prob}(T)$, here we have $\operatorname{Prob}(A)=\operatorname{Prob}\left(A^{c}\right)$. Inserting the probabilities and simplifying leads to

$$
\begin{equation*}
\log \left(\frac{\operatorname{Prob}(B \mid A) \operatorname{Prob}(A)}{\operatorname{Prob}\left(B \mid A^{c}\right) \operatorname{Prob}\left(A^{c}\right)}\right)=w \cdot x+w_{0} \tag{5.1.14}
\end{equation*}
$$

which leads to

$$
\operatorname{Prob}(H \mid x)=\operatorname{Prob}(A \mid B)=\sigma\left(w \cdot x+w_{0}\right)
$$

Thus the hyperplane

$$
z=w \cdot x+w_{0}
$$

is the cut-off between the two groups. Written this way, the probability is a single-layer perceptron (§8.2).

5.2 Probability

A probability is often described as
the extent to which an event is likely to occur, measured by the ratio of the favorable outcomes to the whole number of outcomes possible.

We explain what this means by describing the basic terminology:

- An experiment is a procedure that yields an outcome, out of a set of possible outcomes. For example, tossing a coin is an experiment that yields one of two outcomes, heads or tails, which we also write as 1 or 0 . Rolling a six-sided die yields outcomes $1,2,3,4,5,6$. Rolling two six-sided dice yields 36 outcomes $(1,1),(1,2), \ldots$. Flipping a coin three times yields $2^{3}=8$ outcomes

TTT, TTH, THT, TH $H, H T T, H T H, H H T, H H H$,
or

$$
000,001,010,011,100,101,110,111 .
$$

- The sample space is the set S of all possible outcomes. If $\#(S)$ is the number of outcomes in S, then for the four experiments above, we have $\#(S)$ equals $2,6,36$, and 8 . The sample space S is also called the population.
- An event is a specific subset E of S. For example, when rolling two dice, E can be the outcomes where the sum of the dice equals 7 . In this case, the outcomes in E are

$$
(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)
$$

so here $\#(S)=36$ and $\#(E)=6$. Another example is obtaining three heads when tossing a coin seven times. Here $\#(S)=2^{7}=128$ and $\#(E)=35$, which is the number of ways you can choose three things out of seven things:

$$
\#(E)=7 \text {-choose- } 3=\binom{7}{3}=\frac{7 \cdot 6 \cdot 5}{1 \cdot 2 \cdot 3}=35
$$

- The probability of an outcome s is a number $\operatorname{Prob}(s)$ with the properties

1. $0 \leq \operatorname{Prob}(s) \leq 1$,
2. The sum of the probabilities of all outcomes equals one.

- The probability $\operatorname{Prob}(E)$ of an event E is the sum of the probabilities of the outcomes in E.
- Outcomes are equally likely when they have the same probability. When this is so, we must have

$$
\operatorname{Prob}(E)=\frac{\#(E)}{\#(S)}
$$

For example,

1. A coin is fair if the outcomes are equally likely. For one toss of a fair coin, $\operatorname{Prob}($ heads $)=1 / 2$.
2. More generally, tossing a coin results in outcomes

$$
\operatorname{Prob}(\text { head })=p, \quad \operatorname{Prob}(\text { tail })=1-p,
$$

with $0<p<1$.
3. A die is fair if the outcomes are equally likely. Roll a fair die and let E be the event that the outcome is less than 3. Then $\operatorname{Prob}(E)=2 / 6=1 / 3$.
4. The probability of obtaining a sum of 7 when rolling two fair dice is $\operatorname{Prob}(E)=6 / 36=1 / 6$.
5. The probability of obtaining three heads when tossing a fair coin seven times is $\operatorname{Prob}(E)=35 / 128$.
6 . The probability of selecting an iris with petal length between 1 and 3 from the Iris dataset.

Now suppose we conduct an experiment by tossing a coin (always assumed fair unless otherwise mentioned) 10 times. Because the coin is fair, we expect to obtain heads around 5 times. Will we obtain heads exactly 5 times? Let's run the experiment with Python. In fact, we will run the experiment 20 times. If we count the number of heads after each run of the experiment, we obtain a digit between 0 and 10 inclusive.

To simulate this, we use binomial ($\mathrm{n}, \mathrm{p}, \mathrm{N}$). When $N=1$, this returns the number of heads obtained after a single experiment, consisting of tossing a coin n times, where the probability of obtaining heads in each toss is p.

More generally, binomial (n, p, N) runs this experiment N times, returning a vector v with N components. For example, the code

```
from numpy.random import *
p=.5
n = 10
N = 20
v = binomial(n,p,N)
print(v)
```

returns

The sample space S corresponding to (p, n, N) consists of all vectors $v=$ $\left(v_{1}, v_{2}, \ldots, v_{N}\right)$ with N components, with each component equal to to 0,1 , \ldots, n. So here $\#(S)=(n+1)^{N}$.

Figure 5.4: 100,000 sessions, with 5, 15, 50, and 500 tosses per session.

Now we conduct three experiments: tossing a coin 5 times, then 50 times, then 500 times. The code

```
p = . 5
for n in [5,50,500]: print(binomial(n,p,1))
```

This returns the count of heads after 5 tosses, 50 tosses, and 500 tosses,

3, 28, 266

The proportions are the count divided by the total number of tosses in the experiment. For the above three experiments, the proportions after 5 tosses, 50 tosses, and 500 tosses, are
$3 / 5=.600,28 / 50=.560,266 / 500=.532$

Now we repeat each experiment 100,000 times and we plot the results in a histogram.

```
from matplotlib.pyplot import *
from numpy.random import *
N = 100000
p = . }
for n in [5,50,500]:
    data = binomial(n,p,N)
    hist(data,bins=n,edgecolor ='Black')
    grid()
    show()
```

This results in Figure 5.4.

The takeaway from these graphs are the two fundamental results of probability:

1. Law of Large Numbers. The proportion in a repeated experiment is the sample proportion. The sample proportion tends to be near the underlying probability p. The underlying probability is the population proportion. The larger the sample size in the experiment, the closer the proportion is to p. Another way of saying this is: For large sample size, the sample mean is approximately equal to the population mean.
2. Central Limit Theorem. For large sample size, the shape of the graph of the proportions or counts is approximately normal. The normal distribution is studied in §5.4. Another way of saying this is: For large sample size, the shape of the sample mean histogram is approximately normal.

The law of large numbers is qualitative and the central limit theorem is quantitative. While the law of large numbers says one thing is close to another, it does not say how close. The central limit theorem provides a numerical measure of closeness, using the normal distribution.

Roll two six-sided dice. Let A be the event that at least one dice is an even number, and let B be the event that the sum is 6 . Then

$$
\begin{gathered}
A=\{(2, *),(4, *),(6, *),(*, 2),(*, 4),(*, 6)\} \\
B=\{(1,5),(2,4),(3,3),(4,2),(5,1)\}
\end{gathered}
$$

The intersection of A and B is the event of outcomes in both events:

$$
A \text { and } B=\{(2,4),(4,2)\}
$$

The union of A and B is the event of outcomes in either event:

$$
A \text { or } B=\{(2, *),(4, *),(6, *),(*, 2),(*, 4),(*, 6),(1,5),(3,3),(5,1)\} .
$$

The complement of A is the events of outcomes not in A. So

$$
\text { not } A=\{(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)\}
$$

Since $\#(\operatorname{not} A)=9$, and $\#(S)=36$,

$$
\#(A)=\#(S)-\#(\operatorname{not} A)=36-9=27
$$

Clearly $\#(B)=5$.
The difference of A minus B is the event of outcomes in A but not in B :
$A-B=A$ and not B
$=\{(2, *$ except 4$),(4, *$ except 2$),(6, *),(*$ except 4,2$),(*$ except 2,4$),(*, 6)\}$.
Similarly,

$$
B-A=\{(1,5),(3,3),(5,1)\} .
$$

Then $A-B$ is part of A and $B-A$ is part of $B, A \cap B$ is part of both, and all are part of $A \cup B$.

Hence

$$
\operatorname{Prob}(A)=\frac{27}{36}=\frac{3}{4}, \quad \operatorname{Prob}(B)=\frac{5}{36} .
$$

Events A and B are independent if

$$
\operatorname{Prob}(A \text { and } B)=\operatorname{Prob}(A) \times \operatorname{Prob}(B)
$$

The conditional probability of A given B is

$$
\operatorname{Prob}(A \mid B)=\frac{\operatorname{Prob}(A \text { and } B)}{\operatorname{Prob}(B)}
$$

When A and B are independent,

$$
\operatorname{Prob}(A \mid B)=\frac{\operatorname{Prob}(A \text { and } B)}{\operatorname{Prob}(B)}=\frac{\operatorname{Prob}(A) \times \operatorname{Prob}(B)}{\operatorname{Prob}(B)}=\operatorname{Prob}(A),
$$

so the conditional probability equals the unconditional probability.
Are A and B above independent? Since

$$
\operatorname{Prob}(A \mid B)=\frac{\operatorname{Prob}(A \cap B)}{\operatorname{Prob}(B)}=\frac{2 / 36}{5 / 36}=\frac{2}{5}
$$

which is not equal to $\operatorname{Prob}(A)$, they are not independent.

5.3 Random Variables

Suppose a real number x is selected at random. Even if we don't know anything about x, we know x is a number, so our confidence that $-\infty<$ $x<\infty$ equals 100%, the chance that x satisfies $-\infty<x<\infty$ equals 1 , the probability that x satisfies $-\infty<x<\infty$ equals 1 .

When we say x is "selected at random", we think of a machine X that is the source of the numbers x (Figure 5.5). Such a source of numbers is best called a random number. Unfortunately, ${ }^{1}$ the standard 100-year-old terminology for such an X is random variable, and this is what we'll use.

Figure 5.5: When we sample X, we get x.

[^7]For example, suppose we want to estimate the proportion of American college students who have a smart phone. Instead of asking every student, we take a sample and make an estimate based on the sample.

Let p be the actual proportion of students that in fact have a smartphone. If there are N students in total, and m of them have a smartphone, then $p=m / N$. For each student, let

$$
X= \begin{cases}1, & \text { if the student has a smartphone } \\ 0, & \text { if not. }\end{cases}
$$

Then X is a random variable: X is a machine that returns 0 or 1 depending on the chosen student.

A random variable taking on only two values is a bernoulli random variable. Since X takes on the two values 0 and $1, X$ is a bernoulli random variable.

Throughout we adopt the convention that random variables are written uppercase X, while the numbers they produce when sampled are written lowercase x. In other words, when we sample X, we get x.

We will have occasion to meet many different random variables X, Y, Z, \ldots The letter Z is reserved for a standard random variable, one having mean zero and variance one. Samples from Z are written as z.

What is the chance, what is our confidence, what is the probability, of selecting x from an interval $[a, b]$? If we write

$$
\operatorname{Prob}(a<X<b)
$$

for the chance that X lies in the interval $[a, b]$, we are asking for $\operatorname{Prob}(a<$ $X<b$). If we don't know anything about X, then we can't figure out the probability, and there is nothing we can say. Knowing something about X means knowing the distribution of X : Where X is more likely to be and where X is less likely to be. In effect, a random variable is a quantity X whose probabilities $\operatorname{Prob}(a<X<b)$ can be computed.

For example, take the Iris dataset and let X be the petal length of an iris (Figure 5.6) selected at random. Here the number of samples is $N=150$.

```
from pandas import *
df = read_csv("iris.csv")
petal_length = df["Petal_length"].to_numpy()
```

3.758666666666666

```
array([1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4,
    1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1. , 1.7, 1.9, 1.6,
    1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 1.2, 1.3, 1.5, 1.3,
    1.5, 1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4, 4.7, 4.5,
    4.9, 4. , 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4. , 4.7, 3.6,
    4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4. , 4.9, 4.7, 4.3, 4.4, 4.8, 5. ,
    4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4. , 4.4,
    4.6, 4. , 3.3, 4.2, 4.2, 4.2, 4.3, 3. , 4.1, 6. , 5.1, 5.9, 5.6,
    5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.3, 5.5, 5. , 5.1, 5.3, 5.5,
    6.7, 6.9, 5. , 5.7, 4.9, 6.7, 4.9, 5.7, 6. , 4.8, 4.9, 5.6, 5.8,
    6.1, 6.4, 5.6, 5.1, 5.6, 6.1, 5.6, 5.5, 4.8, 5.4, 5.6, 5.1, 5.1,
    5.9, 5.7, 5.2, 5. , 5.2, 5.4, 5.1])
```

Figure 5.6: $N=150$ petal lengths and their mean.

The mean is the usual formula

$$
m=E(X)=\frac{1}{N} \sum_{k=1}^{N} x_{k} .
$$

Similarly, the second moment is

$$
E\left(X^{2}\right)=\frac{1}{N} \sum_{k=1}^{N} x_{k}^{2}
$$

In general, given any function $f(x)$, we have the mean of $f\left(x_{1}\right), f\left(x_{2}\right), \ldots$, $f\left(x_{N}\right)$,

$$
\begin{equation*}
E(f(X))=\frac{1}{N} \sum_{k=1}^{N} f\left(x_{k}\right) . \tag{5.3.1}
\end{equation*}
$$

If we let

$$
f(x)= \begin{cases}1, & 1<x<3 \\ 0, & \text { otherwise }\end{cases}
$$

then $f\left(x_{k}\right)$ only counts when $1<x_{k}<3$, so

$$
E(f(X))=\frac{1}{N} \sum_{k=1}^{N} f\left(x_{k}\right)=\frac{\#\left\{\text { samples satisfying } 1<x_{k}<3\right\}}{N}
$$

But this is the probability that a randomly selected iris has petal length X between 1 and 3,

$$
\operatorname{Prob}(1<X<3)=E(f(X))
$$

when $f(x)$ is as above.
This shows probabilities are special cases of means. Since we can compute means by (5.3.1), we can compute probabilities for X. By definition, this X is a random variable.

Figure 5.7: Histogram of $N=150$ petal lengths.
To see how the iris petal lengths are distributed, we plot a histogram,
hist (petal_length, bins=20)
show ()
This results in Figure 5.7.

Figure 5.8: Means of 100,000 batches, of size $n=1,5,15,50$.
More generally, we take a random batch of samples of size n and take the mean of the samples in the batch. For example, the following code grabs a batch of $n=5$ petals lengths $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ at random and takes their mean,

$$
\frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}}{5} .
$$

from numpy.random import *
rng = default_rng()

```
# n = batch_size
def random_batch_mean(n):
    rng.shuffle(petal_length)
    return mean(petal_length[:n])
random_batch_mean(5)
```

The five petal lengths are selected by first shuffling the petal lengths, then selecting the first five petal_length[:5]. Now repeat this computation 100,000 times, for batch sizes $1,5,15,50$. The resulting histograms are in Figure 5.8. Notice in the first subplot, the batch is size $n=1$, so we recover the base histogram Figure 5.7. Figure 5.8 is of course another illustration of the central limit theorem.

```
N = 100000
for n in [1,5,15,50]:
    Xbar = [ random_batch_mean(n) for _ in range(N)]
    hist(Xbar,bins=50)
    grid()
    show()
```

The simplest random variable is the bernoulli random variable X resulting from a coin toss, with $X=1$ corresponding to heads, and $X=0$ corresponding to tails. In this case,

$$
\operatorname{Prob}(X=1)=p, \quad \operatorname{Prob}(X=0)=1-p,
$$

which can be written

$$
\operatorname{Prob}(X=x)=p^{x}(1-p)^{1-x}, \quad x=0,1 .
$$

This distribution is presented graphically in Figure 5.9.

Figure 5.9: Distribution of a bernoulli random variable.
For example, if we let X be the number of heads obtained in n tosses of a coin with heads probability p, and sample $X 100,000$ times, the resulting frequency histogram is in 5.4. Knowing something about X means knowing where X is more likely to be and where X is less likely to be. But this is exactly the information provided by the histogram. Therefore the histogram is the approximate distribution of X. There is one caveat: Because we prefer our probabilities to sum to 1 , with 1 corresponding to certainty, this last conclusion is correct only after rescaling the histogram to have total area 1.

Because of the central limit theorem, the normal distribution given on the left in Figure 5.10 plays a central role. This distribution is studied in §5.4. We say X follows a specific distribution, such as the curves in Figure 5.10, when the probability $\operatorname{Prob}(a<X<b)$ is given by the green area in Figure 5.10. Thus

$$
\text { chance }=\text { confidence }=\text { probability }=\text { area } .
$$

Figure 5.10: Confidence that X lies in interval $[a, b]$.
Given any distribution as in Figure 5.10, the cumulative distribution function at a point x is the area under the graph to the left of x,

$$
c d f_{X}(x)=\operatorname{Prob}(X \leq x)
$$

Then the green areas in Figure 5.10 is the difference between two areas, hence equal

$$
c d f_{X}(b)-c d f_{X}(a) .
$$

Figure 5.11: Cumulative distribution functions.
For the distributions in Figure 5.10, the cumulative distribution functions are in Figure 5.11.

For the bernoulli distribution in Figure 5.9, the cdf is in Figure 5.12. Because the bernoulli random variable takes on only the values $x=0,1$, these are the values where the $\operatorname{cdf} \operatorname{Prob}(X \leq x)$ jumps.

Figure 5.12: Cdf of a bernoulli distribution.
Let X be a random variable taking on values $x_{1}, x_{2}, x_{3}, \ldots$, with probabilities $p_{1}, p_{2}, p_{3}, \ldots$ then the mean is

$$
\mu=E(X)=p_{1} x_{1}+p_{2} x_{2}+p_{3} x_{3}+\cdots=\sum_{k=1}^{N} p_{k} x_{k}
$$

This is the population mean. It does not depend on a sampling of the population.

For example, suppose the population consists of 100 balls, of which 30 are red, 20 are green, and 50 are blue. The cost of each ball is

$$
X(\text { ball })= \begin{cases}\$ 1, & \text { red } \\ \$ 2, & \text { green } \\ \$ 3, & \text { blue }\end{cases}
$$

Then

$$
\begin{gathered}
p_{\text {red }}=\operatorname{Prob}(\text { red })=\frac{\#(\text { red })}{\#(\text { balls })}=\frac{30}{100}=.3, \\
p_{\text {green }}=\operatorname{Prob}(\text { green })=\frac{\#(\text { green })}{\#(\text { balls })}=\frac{20}{100}=.2, \\
p_{\text {blue }}=\operatorname{Prob}(\text { blue })=\frac{\#(\text { blue })}{\#(\text { balls })}=\frac{50}{100}=.5 .
\end{gathered}
$$

Then the average cost of a ball equals

$$
\begin{aligned}
E(X) & =p_{\text {red }} \cdot 1+p_{\text {green }} \cdot 2+p_{\text {blue }} \cdot 3 \\
& =\frac{30 \cdot 1+20 \cdot 2+50 \cdot 3}{100}=\frac{x_{1}+x_{2}+\cdots+x_{100}}{100} .
\end{aligned}
$$

The variance is

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left((X-\mu)^{2}\right)=p_{1}\left(x_{1}-\mu\right)^{2}+p_{2}\left(x_{2}-\mu\right)^{2}+p_{3}\left(x_{3}-\mu\right)^{2}+\ldots \\
& =\sum_{k=1}^{N} p_{k}\left(x_{k}-\mu\right)^{2}
\end{aligned}
$$

This is the variance or population variance. A direct consequence of the formula is $\operatorname{Var}(X)=0$ exactly when X is a non-random constant. The square root of the variance is the standard deviation. We also write $\operatorname{Var}(X)=$ σ^{2}, so σ is the standard deviation.

Going back to the smartphone random variable X, because p is the proportion of students having smartphones, $\operatorname{Prob}(X=1)=p$. This implies $\operatorname{Prob}(X=0)=1-p$. Since X takes on two values $x_{1}=1$ and $x_{2}=0$ with probabilities $p_{1}=p$ and $p_{2}=1-p$, the mean is

$$
\mu=E(X)=x_{1} p_{1}+x_{2} p_{2}=1 \cdot p+0 \cdot(1-p)=p
$$

and the variance is

$$
\sigma^{2}=\left(x_{1}-\mu\right)^{2} p_{1}+\left(x_{2}-\mu\right)^{2} p_{2}=(1-p)^{2} \cdot p+(0-p)^{2} \cdot(1-p)=p(1-p)
$$

Thus the standard deviation is $\sqrt{p(1-p)}$.
More generally, if a random variable X takes on two values a and b with $\operatorname{Prob}(X=a)=p$, then

$$
E(X)=a p+b(1-p)
$$

In particular, if $Y= \pm 1$ with probability $1 / 2$, then $E(Y)=0$.
If $\operatorname{Prob}(X=a)=1$, then we say X is the constant a. In this case, the mean is

$$
E(X)=a \cdot \operatorname{Prob}(X=1)=a
$$

and the variance is

$$
E\left((X-a)^{2}\right)=(a-a)^{2} \operatorname{Prob}(X=1)=0 .
$$

Conversely, a random variable with variance zero is a constant.
Let X and Y be random variables and let a, b be constants. A basic property of the mean is linearity

$$
E(a X+b Y)=a E(X)+b E(Y)
$$

Using this, we have

$$
\begin{aligned}
\operatorname{Var}(X) & =\sigma^{2}=E\left((X-\mu)^{2}\right) \\
& =E\left(X^{2}-2 \mu X+\mu^{2}\right)=E\left(X^{2}\right)-2 \mu E(X)+\mu^{2}=E\left(X^{2}\right)-E(X)^{2}
\end{aligned}
$$

We conclude

$$
\begin{equation*}
E\left(X^{2}\right)=\mu^{2}+\sigma^{2}=(E(X))^{2}+\operatorname{Var}(X) \tag{5.3.2}
\end{equation*}
$$

Let X have mean μ and variance σ^{2}, and write

$$
Z=\frac{X-\mu}{\sigma} .
$$

Then

$$
E(Z)=\frac{1}{\sigma} E(X-\mu)=\frac{E(X)-\mu}{\sigma}=\frac{\mu-\mu}{\sigma}=0
$$

and

$$
E\left(Z^{2}\right)=\frac{1}{\sigma^{2}} E\left((X-\mu)^{2}\right)=\frac{\sigma^{2}}{\sigma^{2}}=1
$$

We conclude Z has mean zero and variance one.
A random variable is standard if its mean is zero and its variance is one. The variable Z is the standardization of X. For example, the standardization of the bernoulli random variable is

$$
\frac{X-p}{\sqrt{p(1-p)}}
$$

Since $p(1-p)$ is unchanged when p is replaced by $1-p$, the graph of the bernoulli variance is a symmetric hump vanishing at $p=0$ and $p=1$ (Figure 5.13). Therefore the bernoulli variance is maximized at $p=1 / 2$, where it equals $p(1-p)=1 / 4$.

Figure 5.13: Binary variance.
If X is a random variable, so are X, X^{2}, X^{3}, \ldots These are powers of X. The moments of X are the power means

$$
E(X), E\left(X^{2}\right), E\left(X^{3}\right), \ldots
$$

The moments of a random variable may be combined into a sum. To explain this, we bring in the exponential series

$$
e^{t}=1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\ldots
$$

where t is any real number. The number e, Euler's constant (§4.4), is approximately 2.7 , as can be seen from

$$
e=e^{1}=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots=1+1+\frac{1}{2}+\frac{1}{6}+\ldots
$$

Since X has real values, so does $t X$, so $e^{t X}$ is also a random variable. The moment generating function is the mean of $e^{t X}$,

$$
M(t)=M_{X}(t)=E\left(e^{t X}\right)=1+t E(X)+\frac{t^{2}}{2!} E\left(X^{2}\right)+\frac{t^{3}}{3!} E\left(X^{3}\right)+\ldots
$$

For example, for the smartphone random variable $X=0,1$ with $\operatorname{Prob}(X=$ 1) $=p, X^{2}=X, X^{3}=X, \ldots$, so

$$
M(t)=1+t E(X)+\frac{t^{2}}{2!} E\left(X^{2}\right)+\frac{t^{3}}{3!} E\left(X^{3}\right)+\cdots=1+t p+\frac{t^{2}}{2!} p+\frac{t^{3}}{3!} p+\ldots
$$

which equals

$$
M(t)=(1-p)+p e^{t}
$$

In $\S 5.2$, we discussed independence of events. Now we do the same for random variables. Let X and Y be random variables. We say X and Y are uncorrelated if the expectations multiply,

$$
E(X Y)=E(X) E(Y)
$$

Otherwise, we say X and Y are correlated.
By (5.3.2), a random variable X is always correlated to itself, unless it is a constant.

Suppose X and Y take on the values $X= \pm 1$ and $Y=0,1$ with the probabilities

$$
(X, Y)=\left\{\begin{array}{lc}
(1,1) & \text { with probability } a \tag{5.3.3}\\
(1,0) & \text { with probability } b \\
(-1,1) & \text { with probability } b \\
(-1,0) & \text { with probability } c
\end{array}\right.
$$

We investigate when X and Y are uncorrelated. Here $a>0, b>0$, and $c>0$.

First, because the total probability equals 1,

$$
\begin{equation*}
a+2 b+c=1 . \tag{5.3.4}
\end{equation*}
$$

Also we have
$\operatorname{Prob}(X=1)=a+b=\operatorname{Prob}(Y=1), \quad \operatorname{Prob}(X=-1)=b+c=\operatorname{Prob}(Y=0)$,
and

$$
E(X)=a-c, \quad E(Y)=a+b
$$

Now X and Y are uncorrelated if

$$
\begin{equation*}
a-b=E(X Y)=E(X) E(Y)=(a-c)(a+b) \tag{5.3.5}
\end{equation*}
$$

Solving (5.3.4), (5.3.5) using Python,

```
from sympy import *
a,b,c = symbols('a,b,c')
eq1 = a + 2*b + c - 1
eq2 = a - b - (a-c)*(a+b)
solutions = solve([eq1,eq2],a,b)
print(solutions)
```

we see X and Y are uncorrelated if

$$
\begin{equation*}
b=\sqrt{c}-c, \quad a=c-2 \sqrt{c}+1 . \tag{5.3.6}
\end{equation*}
$$

For example, X and Y are uncorrelated when $c=1 / 4$, which leads to $a=$ $b=1 / 4$. Also, X and Y are uncorrelated if $c=.01$, which leads to $a=.81$ and $b=.09$.

Let X and Y be random variables. We say X and Y are independent if all powers of X are uncorrelated with all powers of Y,

$$
\begin{equation*}
E\left(X^{n} Y^{m}\right)=E\left(X^{n}\right) E\left(Y^{m}\right) \tag{5.3.7}
\end{equation*}
$$

Clearly, if X and Y are independent, then, by taking $n=1$ and $m=1$, X and Y are uncorrelated.

Suppose X and Y satisfy (5.3.3) and (5.3.6). Since $X= \pm 1, X^{n}=1$ for n even and $X^{n}=X$ for X odd. Since $Y=0,1, Y^{n}=Y$ for all n. This is enough to show that, in this case, X and Y uncorrelated is equivalent to X and Y independent. However, this is certainly not true in general.

Here is an example of uncorrelated random variables that are dependent. Let X, Y be as above with $a=b=c=1 / 4$. Then, as we have seen, X and Y are uncorrelated. Let $U=X Y$. Then

$$
E(U)=E(X Y)=E(X) E(Y)=0 \cdot \frac{1}{2}=0
$$

Since $U Y=X Y Y=X Y=U, E(U Y)=E(U)=0$. Hence Y and U are uncorrelated. But, since $U^{2}=Y, Y$ and U^{2} are correlated, so Y and U are not independent.

Let X and Y be random variables. Expanding the exponentials into their series, and using (5.3.7), one can show

Independence and Moment Generating Functions

Let X and Y be random variables. Then X and Y are independent if their moment generating functions multiply,

$$
M_{X, Y}(a, b) \equiv E\left(e^{a X+b Y}\right)=E\left(e^{a X}\right) E\left(e^{b Y}\right)=M_{X}(a) M_{Y}(b)
$$

The expectation on the left is the joint moment generating function $M_{X, Y}(a, b)$ of the pair (X, Y). One may have joint moment generating functions for triples (X, Y, Z), by writing

$$
M_{X, Y, Z}(a, b, c)=E\left(e^{a X+b Y+c Z}\right) .
$$

Then we say X, Y, Z are independent if

$$
M_{X, Y, Z}(a, b, c)=M_{X}(a) M_{Y}(b) M_{Z}(c) .
$$

Of course, this generalizes to any tuple of random variables.
As an illustration, consider an ordinary dice with $X=1, X=2, \ldots, X=$ 6 equally probable. Then $\operatorname{Prob}(X=k)=1 / 6, k=1,2, \ldots, 6$. Evaluating the geometric sum,

$$
M_{X}(t)=E\left(e^{t X}\right)=\sum_{k=1}^{6} \frac{1}{6} e^{6 k}=\frac{1}{6} \frac{e^{7 t}-e^{t}}{e^{t}-1}
$$

Now suppose we have a non-standard dice with unknown probabilities for $Y=0, Y=1, \ldots, Y=6$. if we are told the probabilities of the sum $X+Y$ is uniform over $1 \leq X+Y \leq 12$, how should we choose the probabilities for Y ?

To answer this, use

$$
M_{X+Y}(t)=E\left(e^{t(X+Y)}\right)=E\left(e^{t X}\right) E\left(e^{t Y}\right)
$$

Since

$$
M_{X+Y}(t)=\frac{1}{12} \sum_{k=1}^{12} e^{t k}=\frac{1}{12} \frac{e^{13 t}-e^{t}}{e^{t}-1}
$$

we obtain

$$
\frac{1}{12} \frac{e^{13 t}-e^{t}}{e^{t}-1}=M_{Y}(t) \cdot \frac{1}{6} \frac{e^{7 t}-e^{t}}{e^{t}-1}
$$

Factoring

$$
e^{13 t}-e^{t}=e^{t}\left(e^{6 t}-1\right)\left(e^{6 t}+1\right), \quad e^{7 t}-e^{t}=e^{t}\left(e^{6 t}-1\right)
$$

we obtain

$$
M_{Y}(t)=\frac{1}{2}\left(e^{6 t}+1\right)
$$

This says

$$
\operatorname{Prob}(Y=0)=\frac{1}{2}, \quad \operatorname{Prob}(Y=6)=\frac{1}{2}
$$

and all other probabilities are zero.

Let X and Y be random variables. We say X and Y are identically distributed if their moments are equal,

$$
E\left(X^{n}\right)=E\left(Y^{n}\right), \quad n \geq 1
$$

This is equivalent to X and Y having equal probabilities,

$$
\operatorname{Prob}(a<X<b)=\operatorname{Prob}(a<Y<b) .
$$

For example, if X and Y satisfy (5.3.3), then X and $2 Y-1$ are indentically distributed. However, X and $2 Y-1$ are independent if and only if X and Y are independent, which, as we saw above, happens only when (5.3.6) holds.

On the other hand, Let X be any random variable, and let $Y=X$. Then X and Y are identically distributed, but are certainly correlated. So identical distributions does not imply independence, nor vice-versa.

Let X be a random variable. A simple random sample of size n is a sequence of random variables $X_{1}, X_{2}, \ldots, X_{n}$ that are independent and identically distributed. We also say the sequence $X_{1}, X_{2}, \ldots, X_{n}$ is an i.i.d. sequence (independent identically distributed).

For example, going back to the smartphone example, suppose we select n students at random, where we are allowed to select the same student twice. We obtain numbers $x_{1}, x_{2}, \ldots, x_{n}$. So the result of a single selection experiment is a sequence of numbers $x_{1}, x_{2}, \ldots, x_{n}$. To make statistical statements about the results, we repeat this experiment many times, and we obtain a sequence of numbers $x_{1}, x_{2}, \ldots, x_{n}$ each time.

This process can be thought of n machines producing $x_{1}, x_{2}, \ldots, x_{n}$ each time, or n random variables $X_{1}, X_{2}, \ldots, X_{n}$ (Figure 5.14). By making each of the n selections independently, we end up with an i.i.d. sequence, or a simple random sample.

Figure 5.14: When we sample $X_{1}, X_{2}, \ldots, X_{n}$, we get $x_{1}, x_{2}, \ldots, x_{n}$.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a simple random sample. Then $X_{1}, X_{2}, \ldots, X_{n}$ are identically distributed. Let μ be their common mean $E(X)$. The sample mean is

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k} .
$$

Then
$E(\bar{X})=\frac{1}{n} E\left(X_{1}+X_{2}+\cdots+X_{n}\right)=\frac{1}{n}\left(E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots+E\left(X_{n}\right)\right)=\frac{1}{n} \cdot n \mu=\mu$.

We conclude the mean of the sample mean equals the population mean.
Now let σ^{2} be the common variance of $X_{1}, X_{2}, \ldots, X_{n}$. Since $\sigma^{2}=$ $E\left(X^{2}\right)-E(X)^{2}$, we have

$$
E\left(X_{k}^{2}\right)=\mu^{2}+\sigma^{2} .
$$

When $i \neq j$, by independence,

$$
E\left(X_{i} X_{j}\right)=E\left(X_{i}\right) E\left(X_{j}\right)=\mu \cdot \mu=\mu^{2} .
$$

Putting this all together,

$$
\begin{aligned}
E\left(\bar{X}^{2}\right) & =\frac{1}{n^{2}} E\left(\left(\sum_{k=1}^{n} X_{k}\right)^{2}\right) \\
& =\frac{1}{n^{2}} \sum_{i, j} E\left(X_{i} X_{j}\right) \\
& =\frac{1}{n^{2}}\left(\sum_{i \neq j} E\left(X_{i} X_{j}\right)+\sum_{k} E\left(X_{k}^{2}\right)\right) \\
& =\frac{1}{n^{2}}\left(n(n-1) \mu^{2}+n\left(\mu^{2}+\sigma^{2}\right)\right)=\mu^{2}+\frac{1}{n} \sigma^{2} .
\end{aligned}
$$

Since the variance of \bar{X} equals

$$
E\left(\bar{X}^{2}\right)-E(\bar{X})^{2}=E\left(\bar{X}^{2}\right)-\mu^{2}
$$

we conclude the variance of \bar{X} equals σ^{2} / n. The standard deviation of \bar{X} is the standard error.

Independence and Variances

If $X_{1}, X_{2}, \ldots, X_{n}$ is a simple random sample (i.i.d. sequence) with mean μ and variance σ^{2}, then the mean and variance of \bar{X} are

$$
E(\bar{X})=\mu \quad \text { and } \quad \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}
$$

In particular, when $X_{1}, X_{2}, \ldots, X_{n}$ is a bernoulli simple random sample, the mean and variance of \bar{X} are p and $p(1-p) / n$.

More generally, by a similar calculation, we have

Independence and Variances

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of independent random variables with means $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$, and variances $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{n}^{2}$, and let

$$
S_{n}=X_{1}+X_{2}+\cdots+X_{n}
$$

Then the mean and variance of S_{n} are

$$
\begin{equation*}
\mu_{1}+\mu_{2}+\cdots+\mu_{n} \quad \text { and } \quad \sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{n}^{2} \tag{5.3.8}
\end{equation*}
$$

Now we restate the two fundamental results of probability in the language of this section. Let X_{1}, X_{2}, \ldots, be independent identically distributed random variables, each with mean μ and variance σ^{2}.

Let

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}, \quad n \geq 1
$$

and let Z be a normal random variable with mean μ and variance σ^{2}.

1. Law of Large Numbers. For every ${ }^{2}$ sample x_{1}, x_{2}, \ldots,

$$
\lim _{n \rightarrow \infty} \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=\mu
$$

2. Central Limit Theorem. For every $a<b$,

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}(a<\bar{X}<b)=\operatorname{Prob}(a<Z<b)
$$

5.4 Normal Distribution

A random variable Z has a standard normal distribution if its moment generating functionfunction!moment generating!normal satisfies

$$
M_{Z}(t)=E\left(e^{t Z}\right)=e^{t^{2} / 2}=\exp \left(t^{2} / 2\right)
$$

In this case, we write $Z \sim N(0,1)$.
This is equivalent to specifying the probability density that Z lies in a small interval $[a, b]$ containing z. This is specified by the famous formula

$$
\begin{equation*}
\frac{\operatorname{Prob}(a<Z<b)}{b-a}=\frac{1}{N} \cdot e^{-z^{2} / 2}, \quad a<z<b \tag{5.4.1}
\end{equation*}
$$

Here N is a constant to make the total area under the graph equal to one (Figure 5.15). In other words, (5.4.1) is the pdf of the normal distribution.

When the interval $[a, b]$ is not small, the correct formula is obtained by integration, which means dividing $[a, b]$ into many small intervals and summing. We will not use this density formula directly.

Using Python, the normal probability density is plotted by

[^8]```
from scipy.stats import norm as Z
from numpy import *
from matplotlib.pyplot import *
mu, sdev = 0,1
grid()
z = arange(mu-3*sdev,mu+3*sdev,.01)
if mu, sdev not specified, then Z is standard
plot(z,Z(mu,sdev).pdf(z))
show()
```

Here pdf stands for probability density function.


Figure 5.15: The standard normal distribution.

Expand both sides of the definition of $M_{Z}(t)$ in exponential series. This results in

$$
\begin{aligned}
1+t E(Z)+\frac{t^{2}}{2!} E\left(Z^{2}\right) & +\frac{t^{3}}{3!} E\left(Z^{3}\right)+\frac{t^{4}}{4!} E\left(Z^{4}\right)+\ldots \\
& =1+\frac{t^{2}}{2}+\frac{1}{2!}\left(\frac{t^{2}}{2}\right)^{2}+\frac{1}{3!}\left(\frac{t^{2}}{2}\right)^{3}+\ldots
\end{aligned}
$$

From this, the odd moments of $Z$ are zero, and the even moments are

$$
E\left(Z^{2 n}\right)=\frac{(2 n)!}{2^{n} n!}, \quad n=0,1,2, \ldots
$$

By separating the even and the odd factors, this simplifies to

$$
\begin{align*}
E\left(Z^{2 n}\right) & =\frac{(1 \cdot 3 \cdot 5 \cdots(2 n-1))(2 \cdot 4 \cdots \cdot 2 n)}{2^{n} n!} \\
& =\frac{(1 \cdot 3 \cdot 5 \cdots(2 n-1)) 2^{n} n!}{2^{n} n!}  \tag{5.4.2}\\
& =1 \cdot 3 \cdot 5 \cdots(2 n-1), \quad n \geq 1
\end{align*}
$$

For example,

$$
E(Z)=0, E\left(Z^{2}\right)=1, E\left(Z^{3}\right)=0, E\left(Z^{4}\right)=3, E\left(Z^{5}\right)=0, E\left(Z^{6}\right)=15
$$

More generally, we say $X$ has a normal distribution with mean $\mu$ and variance $\sigma^{2}$, and we write $X \sim N(\mu, \sigma)$, if

$$
\begin{equation*}
M_{X}(t)=E\left(e^{t X}\right)=\exp \left(\mu t+\sigma^{2} t^{2} / 2\right) \tag{5.4.3}
\end{equation*}
$$

Then

$$
X \sim N(\mu, \sigma) \quad \Longleftrightarrow \quad Z=\frac{X-\mu}{\sigma} \sim N(0,1)
$$

A normal distribution is a standard normal distribution when $\mu=0$ and $\sigma=1$.

As mentioned in $\S 5.3$, the important result is

## Central Limit Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent identically distributed random variables. Then, for large $n$,

$$
S_{n}=X_{1}+X_{2}+\cdots+X_{n}
$$

and $\bar{X}=S_{n} / n$ have approximately normal distributions. More precisely, if $\mu$ and $\sigma$ are the mean and standard deviation of each $X$, and $(a, b)$ is an interval,

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\mu+a \cdot \frac{\sigma}{\sqrt{n}}<\bar{X}<\mu+b \cdot \frac{\sigma}{\sqrt{n}}\right)=\operatorname{Prob}(a<Z<b) .
$$

The standard normal distribution is symmetric about zero, and has a specific width. Because of the symmetry, a random number $Z$ following this distribution is equally likely to satisfy $Z<0$ and $Z>0$, so $\operatorname{Prob}(Z<0)=$ $\operatorname{Prob}(Z>0)$. Since the total area equals 1,

$$
\operatorname{Prob}(Z<0)+\operatorname{Prob}(Z>0)=1,
$$

we expect the chance that $Z<0$ should equal $1 / 2$. In other words, because of the symmetry of the curve, we expect to be $50 \%$ confident that $Z<0$, or 0 is at the 50 -th percentile level. So

$$
\text { chance }=\text { confidence }=\text { percentile }=\text { area }
$$

To summarize, we expect $\operatorname{Prob}(Z<0)=1 / 2$.


Figure 5.16: $z=$ norm.ppf(p) and $p=n o r m . c d f(z)$.
When

$$
\operatorname{Prob}(Z<z)=p,
$$

we say $z$ is the $z$-score $z$ corresponding to the $p$-value $p$. Equivalently, we say our confidence that $Z<z$ is $p$, or the percentile of $z$ equals $100 p$. In Python, the relation between $z$ and $p$ (Figure 5.16) is specified by

```
from scipy.stats import norm as Z
p = Z.cdf(z)
z = Z.ppf(p)
```

ppf is the percentile point function, and cdf is the cumulative distribution function.

In Figure 5.17, the red areas are the lower tail p-value $\operatorname{Prob}(Z<z)$, the two-tail p-value $\operatorname{Prob}(|Z|>z)$, and the upper tail p-value $\operatorname{Prob}(Z>z)$.


Figure 5.17: Confidence (green) or significance (red) (lower-tail, two-tail, upper-tail).

By symmetry of the graph, upper-tail and two-tail $p$-values can be computed from lower tail $p$-values.

$$
\operatorname{Prob}(a<Z<b)=\operatorname{Prob}(Z<b)-\operatorname{Prob}(Z<a)
$$

and

$$
\operatorname{Prob}(|Z|<z)=\operatorname{Prob}(-z<Z<z)=\operatorname{Prob}(Z<z)-\operatorname{Prob}(Z<z)
$$

and

$$
\operatorname{Prob}(Z>z)=1-\operatorname{Prob}(Z<z)
$$

To go backward, suppose we are given $\operatorname{Prob}(|Z|<z)=p$ and we want to compute the cutoff $z$. Then $\operatorname{Prob}(|Z|>z)=1-p$, so $\operatorname{Prob}(Z>z)=$ $(1-p) / 2$. This implies

$$
\operatorname{Prob}(Z<z)=1-(1-p) / 2=(1+p) / 2 .
$$

In Python,

```
from scipy.stats import norm as Z
```



Figure 5.18: 68\%, 95\%, $99 \%$ confidence cutoffs for standard normal.

```
p = P(|Z| < z)
z = Z.ppf((1+p)/2)
```

Now let's zoom in closer to the graph and mark off 1, 2,3 on the horizontal axis to obtain specific colored areas as in Figure 5.18. These areas are governed by the 68-95-99 rule (Table 5.19). Our confidence that $|Z|<1$ equals the blue area 0.685 , our confidence that $|Z|<2$ equals the sum of the blue plus green areas 0.955 , and our confidence that $|Z|<3$ equals the sum of the blue plus green plus red areas 0.997. This is summarized in Table 5.19 .

The possibility $|Z|>1$ is called a 1-sigma event, $|Z|>2$ a 2-sigma event, and so on. So a 2 -sigma event is $95.5 \%$ unlikely, or $4.5 \%$ likely. An event is considered statistically significant if it's a 2 -sigma event or more. In other words, something is significant if it's unlikely. A six-sigma event $|Z|>6$ is 2 in a billion. You want a plane crash to be six-sigma.

Figure 5.18 is not to scale, because a 1-sigma event should be where the curve inflects from convex to concave (in the figure this happens closer to 2.7). Moreover, according to Table 5.19, the left-over white area should be $.03 \%$ ( 3 parts in 10,000 ), which is not what the figure suggests.

| cutoff | abs confidence | two-tail $p$-value |
| :---: | :---: | :---: |
| $z$ | $1-p$ | $p$ |
| 1 | .685 | .315 |
| 2 | .955 | .045 |
| 3 | .997 | .003 |

Table 5.19: Cutoffs, confidence levels, $p$-values.

An event is statistically significant if its $p$-value is $5 \%$ or less (Table 5.20). For example, $Z>z$ is statistically significant if $\operatorname{Prob}(Z>z)$ is .05 or less, which means $z$ is greater than $1.64, Z<z$ is statistically significant if $\operatorname{Prob}(Z<z)$ is .05 or less, which means $z$ is less than -1.64 , and $|Z|>z$ is statistically significant if $\operatorname{Prob}(|Z|>z)$ is .05 or less, which means $|z|$ is greater than 1.96.

An event is highly significant if its $p$-value is $1 \%$ or less (Table 5.20). For example, $Z>z$ is highly significant if $\operatorname{Prob}(Z>z)$ is .01 or less, which means $z$ is greater than $2.33, Z<z$ is highly significant if $\operatorname{Prob}(Z<z)$ is . 01 or less, which means $z$ is less than -2.33 , and $|Z|>z$ is highly significant if $\operatorname{Prob}(|Z|>z)$ is .01 or less, which means $|z|$ is greater than 2.56.

| event | type | $p$-value | $z$-score |
| :---: | :---: | :---: | :---: |
| $Z>z$ | upper tail | .05 | 1.64 |
| $Z<z$ | lower tail | .05 | -1.64 |
| $\|Z\|>z$ | two-tail | .05 | 1.96 |
| $Z>z$ | upper tail | .01 | 2.33 |
| $Z<z$ | lower tail | .01 | -2.33 |
| $\|Z\|>z$ | two-tail | .01 | 2.56 |

Table 5.20: $p$-values at $5 \%$ and at $1 \%$.


In general, the normal distribution is not centered at the origin, but elsewhere. We say $X$ is normal with mean $\mu$ and standard deviation (SD) $\sigma$


Figure 5.21: $68 \%, 95 \%$, $99 \%$ cutoffs for non-standard normal.
if

$$
Z=\frac{X-\mu}{\sigma}
$$

is distributed according to a standard normal. We write $N(\mu, \sigma)$ for the normal with mean $\mu$ and $\mathrm{SD} \sigma$. As its name suggests, it is easily checked that such a random variable $X$ has mean $\mu$ and SD $\sigma$. For the normal distribution with mean $\mu$ and standard deviation $\sigma$, the cutoffs are as in Figure 5.21. In Python, norm ( $\mathrm{m}, \mathrm{s}$ ) returns the normal with mean $m$ and standard devistion $s$.

Here is a sample computation. Let $X$ be a normal random variable with mean $\mu$ and standard deviation $\sigma$, and suppose $\operatorname{Prob}(X<7)=.15$, and $\operatorname{Prob}(X<19)=.9$. Given this data, we find $\mu$ and $\sigma$ as follows.

With $Z$ as above, we have

$$
\operatorname{Prob}(Z<(7-\mu) / \sigma)=.15, \quad \text { and } \quad \operatorname{Prob}(Z<(19-\mu) / \sigma)=.9 .
$$

Also, since $Z$ is standard, we compute
$\mathrm{a}=\mathrm{Z} \cdot \mathrm{ppf}(.15)$
$\mathrm{b}=\mathrm{Z} . \operatorname{ppf}(.9)$
By definition of ppf (see above), we then have

$$
a=\frac{7-\mu}{\sigma}, \quad b=\frac{19-\mu}{\sigma} .
$$

These are two equations in two unknowns. Multiplying both equations by $\sigma$ then subtracting, we obtain $\mu$ and $\sigma$,

$$
\sigma=\frac{19-7}{b-a}, \quad \mu=7-a \sigma
$$



Let $\bar{X}$ be the sample mean

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

drawn from a normally distributed population with mean $\mu$ and standard deviation $\sigma$. As we saw in $\S 5.3$, the standard deviation of $\bar{X}$, the standard error, is $\sigma / \sqrt{n}$.

To compute probabilities for $\bar{X}$ when $X$ has mean $\mu$ and standard deviation $\sigma$, standardize $\bar{X}$ by writing

$$
Z=\sqrt{n} \cdot \frac{\bar{X}-\mu}{\sigma}
$$

then compute standard normal probabilities.


Here are three examples. In the first example, suppose student grades are normally distributed with mean 80 and variance 16 . This says the average of all grades is 80 , and the SD is 4 . If a grade is $g$, the standardized grade is

$$
z=\frac{g-80}{4} .
$$

A student is picked and their grade was $g=90$. Is this significant? Is it highly significant? In effect, we are asking, how unlikely is it to obtain such a grade? Remember,

$$
\text { significant }=\text { unlikely }
$$

Since the standard deviation is 4 , the student's $z$-score is

$$
z=\frac{g-80}{4}=\frac{90-80}{4}=2.5 .
$$

What's the upper-tail $p$-value corresponding to this $z$ ? It's

$$
\operatorname{Prob}(Z>z)=\operatorname{Prob}(Z>2.5)=.0062
$$

or . $62 \%$. Since the upper-tail $p$-value is less than $1 \%$, yes, this student's grade is both significant and highly significant.

For the second example, suppose a sample of $n=9$ students are selected and their sample average grade is $\bar{g}=84$. Is this significant? Is it highly significant? This time we take

$$
z=\sqrt{n} \cdot \frac{\bar{g}-80}{4}=3 \frac{84-80}{4}=3 .
$$

What's the upper-tail $p$-value corresponding to this $z$ ? It's

$$
\operatorname{Prob}(Z>z)=\operatorname{Prob}(Z>2.5)=0.0013,
$$

or . $13 \%$. Since the upper-tail $p$-value is less than $1 \%$, yes, this sample average grade is both significant and highly significant.

For the third example, suppose a single selected student has the same grade as the sample average, $g=84$. Is this significant? Here

$$
z=\frac{g-80}{4}=\frac{84-80}{4}=1
$$

Since the upper-tail significance corresponding to $z=1$
$\operatorname{Prob}(Z>1)=\frac{1}{2} \operatorname{Prob}(|Z|>1)=\frac{1}{2}(1-\operatorname{Prob}(|Z|<1))=\frac{1}{2}(1-.68)=.16$, or $16 \%$, this grade is not significant.

The constructor numpy.random.normal returns samples of normally distributed real numbers. For example.

```
from numpy.random import default_rng
from numpy import sqrt
rng = default_rng()
mean, sdev, n = 80, 4, 20
rng.normal(mean,sdev,n)
```

returns 20 normally distributed numbers, with specified mean and variance.
Suppose student grades are normally distributed with mean 80 and variance 16. How many students should be sampled so that the chance that at least one student's grade lies below 70 is at least $50 \%$ ?

To solve this, if $p$ is the chance that a single student has a grade below 70 , then $1-p$ is the chance that the student has a grade above 70. If $n$ is the sample size, $(1-p)^{n}$ is the chance that all sample students have grades above 70 . Thus the requested chance is $1-(1-p)^{n}$. The following code shows the answer is $n=112$.

```
from scipy.stats import norm as Z
x = 70
mean, sdev = 80, 4
p = Z(mean,sdev).cdf(x)
for n in range(2,200):
 q=1 - (1-p)**n
 print(n, q)
```

Here is the code for computing tail probabilities for the sample mean $\bar{X}$ drawn from a normally distributed population with mean $\mu$ and standard deviation $\sigma$. When $n=1$, this applies to a single normal random variable.

```
########################
P-values
########################
from numpy import *
from scipy.stats import norm as Z
def pvalue(mean,sdev,n,xbar,type):
 Xbar = Z(mean,sdev/sqrt(n))
 if type == "lower-tail": p = Xbar.cdf(xbar)
 elif type == "upper-tail": p = 1 - Xbar.cdf(xbar)
```

```
 elif type == "two-tail": p = 2 *(1 - Xbar.cdf(abs(xbar)))
 else:
 print("What's the tail type?")
 return
 print("type: ",type)
 print("mean,sdev,n,xbar: ",mean,sdev,n,xbar)
 print("p-value: ",p)
 z = sqrt(n) * (xbar - mean) / sdev
 print("z-score: ",z)
type = "upper-tail"
mean = 80
sdev = 4
n = 1
xbar = 90
pvalue(mean,sdev,n,xbar,type)
```


### 5.5 Chi-squared Distribution

Let $X$ and $Y$ be independent standard normal random variables. Then $(X, Y)$ is a random point in the plane. What is the probability that the point $(X, Y)$ lies inside a square (Figure 5.22)? Specifically, assume the square is $|X| \leq 1$ and $|Y| \leq 1$. Since $X$ and $Y$ independent, the probability $(X, Y)$ lies in the square is

$$
\begin{aligned}
\operatorname{Prob}(|X|<1 \text { and }|Y|<1) & =\operatorname{Prob}(|X|<1) \operatorname{Prob}(|Y|<1) \\
& =\operatorname{Prob}(|X|<1)^{2}=.685^{2}=.469 .
\end{aligned}
$$

What is the probability $(X, Y)$ lies inside the unit circle,

$$
\operatorname{Prob}\left(X^{2}+Y^{2}<1\right) ?
$$

Here the answer is not as straightforward, and leads us to introduce the chi-squared distribution.


Figure 5.22: $(X, Y)$ in the square and in the circle.


A random variable $U$ has a chi-squared distribution with degree 1 if

$$
M_{U}(u)=E\left(e^{u U}\right)=\frac{1}{\sqrt{1-2 u}} .
$$

To compute the moments of $U$, we use the binomial theorem (7.1.22)

$$
(1+x)^{p}=\sum_{n=0}^{\infty}\binom{p}{n} x^{n}=1+p x+\binom{p}{2} x^{2}+\binom{p}{3} x^{3}+\ldots
$$

to write out $M_{U}(u)$. Taking $p=-1 / 2$ and $x=-2 u$,

$$
\frac{1}{\sqrt{1-2 u}}=(1-2 u)^{-1 / 2}=\sum_{n=0}^{\infty}\binom{-1 / 2}{n}(-2 u)^{n} .
$$

Since

$$
\frac{1}{\sqrt{1-2 u}}=E\left(e^{u U}\right)=\sum_{n=0}^{\infty} \frac{u^{n}}{n!} E\left(U^{n}\right),
$$

comparing coefficients of $u^{n} / n$ ! shows

$$
\begin{equation*}
E\left(U^{n}\right)=(-2)^{n} n!\binom{-1 / 2}{n}, \quad n=0,1,2, \ldots \tag{5.5.1}
\end{equation*}
$$



Figure 5.23: Chi-squared distribution with different degrees.
Using the definition

$$
\binom{p}{n}=\frac{p \cdot(p-1) \cdots \cdots(p-n+1)}{n!}
$$

$\binom{p}{n}$ makes sense for fractional $p$ (see (4.3.12)). With this, we have

$$
\begin{aligned}
E\left(U^{n}\right) & =(-2)^{n} n!\frac{(-1 / 2) \cdot(-1 / 2-1) \cdots \cdots(-1 / 2-n+1)}{n!} \\
& =1 \cdot 3 \cdot 5 \cdot 7 \cdots \cdot(2 n-1) .
\end{aligned}
$$

But this equals the right side of (5.4.2). Thus the left sides of (5.4.2) and (5.5.1) are equal. This shows

## Chi-squared is the Square of Normal

If $Z$ is standard normal, then $U=Z^{2}$ is chi-squared with degree 1 .

More generally, we say $U$ is chi-squared with degree $d$ if

$$
\begin{equation*}
U=U_{1}+U_{2}+\cdots+U_{d}=Z_{1}^{2}+Z_{2}^{2}+\cdots+Z_{d}^{2} \tag{5.5.2}
\end{equation*}
$$

with independent standard normal $Z_{1}, Z_{2}, \ldots, Z_{d}$.
By independence, the moment generating functions multiply (§5.3), so the moment generating function for chi-squared with degree $d$ is

$$
M_{U}(t)=E\left(e^{t U}\right)=\frac{1}{(1-2 t)^{d / 2}}
$$

Going back to the question posed at the beginning of the section, we have $X$ and $Y$ independent standard normal and we want

$$
\operatorname{Prob}\left(X^{2}+Y^{2}<1\right)
$$

If we set $U=X^{2}+Y^{2}$, we want ${ }^{3} \operatorname{Prob}(U<1)$. Since $U$ is chi-squared with degree $d=2$, we use chi2.cdf (u,d). Then the code
from scipy.stats import chi2 as $U$
$\mathrm{d}=2$
$\mathrm{u}=1$
$\mathrm{U}(\mathrm{d}) . \operatorname{cdf}(\mathrm{u})$
returns 0.39.

Let us compute the mean and variance of a chi-squared $U$ with degree $d$. By (5.5.2),

$$
E(U)=\sum_{k=1}^{d} E\left(Z_{k}^{2}\right)=\sum_{k=1}^{d} 1=d
$$

By (5.4.2) and independence,

$$
\begin{aligned}
E\left(U^{2}\right) & =\sum_{k, \ell=1}^{d} E\left(Z_{k}^{2} Z_{\ell}^{2}\right) \\
& =\sum_{k \neq \ell} E\left(Z_{k}^{2}\right) E\left(Z_{\ell}^{2}\right)+\sum_{k=1}^{d} E\left(Z_{k}^{4}\right) \\
& =d(d-1) \cdot 1+d \cdot 3=d^{2}+2 d
\end{aligned}
$$

[^9]Since the variance equals $E\left(U^{2}\right)-E(U)^{2}$, we conclude

## Mean and Variance

The mean and variance of a chi-squared with degree $d$ are

$$
E(U)=d, \quad \text { and } \quad \operatorname{Var}(U)=2 d
$$



Figure 5.24: With degree $d \geq 2$, the chi-squared distribution peaks at $d-2$.

Note that the peak (maximum likelihood point) in a chi-squared distribution with degree $d$ is not at the mean $d$. It is at $d-2$ (Figure 5.24).

Because

$$
\frac{1}{(1-2 t)^{d / 2}} \frac{1}{(1-2 t)^{d^{\prime} / 2}}=\frac{1}{(1-2 t)^{\left(d+d^{\prime}\right) / 2}},
$$

we obtain

## Independence and Chi-squared

If $U$ and $U^{\prime}$ are independent chi-squared with degrees $d$ and $d^{\prime}$, then $U+U^{\prime}$ is chi-squared with degree $d+d^{\prime}$.


To compute distributions for sample variances (below) and Pearson's Test (§6.7), we need to derive chi-squared for correlated normal samples. This is best approached using random vectors.

A random vector is a vector $X=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ in $\mathbf{R}^{d}$ whose components are random variables. For example, a simple random sample $X_{1}, X_{2}$, $\ldots, X_{n}$ may be collected into the random vector

$$
X=\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

in $\mathbf{R}^{n}$.
If $X$ is a random vector in $\mathbf{R}^{d}$, its mean is the vector

$$
\mu=E(X)=\left(E\left(X_{1}\right), E\left(X_{2}\right), \ldots, E\left(X_{d}\right)\right)=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{d}\right)
$$

Assume the mean of $X$ equals zero. The variance of $X$ is the $d \times d$ matrix $Q$ whose ( $i, j$ )-th entry is

$$
Q_{i j}=E\left(X_{i} X_{j}\right), \quad 1 \leq i, j \leq d
$$

In the notation of $\S 2.2$,

$$
Q=E(X \otimes X)
$$

Clearly, $Q$ is a nonnegative matrix, since

$$
v \cdot Q v=v \cdot E(X \otimes X) v=E(v \cdot(X \otimes X) v)=E\left((v \cdot X)^{2}\right)
$$

is never negative.
A random vector $X$ is normal with mean $\mu$ and variance $Q$ if for every vector $w, w \cdot X$ is normal with mean $w \cdot \mu$ and variance $w \cdot Q w$.

Then $\mu$ is the mean of $X$, and $Q$ is the variance $X$. The random vector $X$ is standard normal if $\mu=0$ and $Q=I$.

From §5.3, we see

## Normal Random Vectors

$Z_{1}, Z_{2}, \ldots, Z_{d}$ is a simple random sample of standard normal random variables if and only if

$$
Z=\left(Z_{1}, Z_{2}, \ldots, Z_{d}\right)
$$

is a standard normal random vector in $\mathbf{R}^{d}$.
If $X$ is a normal random vector with mean zero and variance $Q$, then, by definition, $w \cdot X$ is normal with mean 0 and variance $w \cdot Q w$. Using (5.4.3) with $t=1$, the moment generating function of the random vector $X$ is

$$
M_{X}(w)=E\left(e^{w \cdot X}\right)=e^{w \cdot Q w / 2}
$$

In $\S 5.3$ we studied correlation and independence. We saw how independence implies uncorrelatedness, but not conversely. Now we show that, for normal random vectors, they are in fact the same.

## Independence and Correlation

If $(X, Y)$ is a normal random vector, then $X$ and $Y$ are uncorrelated iff $X$ and $Y$ are independent.

To see this, we write down

$$
E(X \otimes X)=A, \quad E(X \otimes Y)=B, \quad E(Y \otimes Y)=C
$$

Then the variance of $(X, Y)$ is

$$
Q=\left(\begin{array}{cc}
E(X \otimes X) & E(X \otimes Y) \\
E(Y \otimes X) & E(Y \otimes Y)
\end{array}\right)=\left(\begin{array}{cc}
A & B \\
B^{t} & C
\end{array}\right)
$$

. From this, we see $X$ and $Y$ are uncorrelated when $B=0$.
With $w=(u, v)$, we write

$$
w \cdot Q w=\binom{u}{v} \cdot\left(\begin{array}{cc}
A & B \\
B^{t} & C
\end{array}\right)\binom{u}{v}=u \cdot A u+u \cdot B v+v \cdot B^{t} u+v \cdot C v
$$

Then

$$
M_{X, Y}(w)=E\left(e^{w \cdot(X, Y)}\right)=e^{w \cdot Q w / 2}=M_{X}(u) M_{Y}(v) e^{\left(u \cdot B v+v \cdot B^{t} u\right) / 2}
$$

From this, $X$ and $Y$ are independent when $B=0$. Thus, for normal random vectors, independence and uncorrelatedness are the same.

If $Z$ is a standard normal random vector in $\mathbf{R}^{d}$, then above we saw $|Z|^{2}$ is chi-squared with degree $d$. Now we generalize this result to correlated normal random vectors.

Recall the pseudo-inverse $Q^{+}$of the matrix $Q$ (§2.3).

## Correlated Normal Random Vector

Let $X$ be a normal random vector with mean zero and variance $Q$. Then

$$
U=X \cdot Q^{+} X
$$

is chi-squared of degree $r$, where $r$ is the rank of the matrix $Q$.
To derive this, we use the eigenvalue decomposition (§3.2) of $Q$,

$$
Q=U S U^{t}
$$

Here $S$ is a square diagonal matrix and $U$ is an orthogonal matrix, $U^{t} U=I$. The diagonal entries of $S$ are the eigenvalues of $Q$.

Since the rank of $Q$ is $r$, and this equals the rank of $S$, only $r$ of these eigenvalues are positive, $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}>0$, and $\lambda_{r+1}=\cdots=\lambda_{n}=0$.

Moreover,

$$
S^{+}=\left(\begin{array}{ccccc}
1 / \lambda_{1} & 0 & 0 & \ldots & 0 \\
0 & 1 / \lambda_{2} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 0 & 1 / \lambda_{r} & 0 \\
0 & 0 & 0 & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

and

$$
Q^{+}=U S^{+} U^{t}
$$

If we set $Y=U^{t} X=\left(Y_{1}, Y_{2}, \ldots, Y_{d}\right)$, then

$$
E(Y \otimes Y)=E\left(\left(U^{t} X\right) \otimes\left(U^{t} X\right)\right)=U^{t} E(X \otimes X) U=U^{t} Q U=S
$$

Writing this out, the random variables $Y_{1}, Y_{2}, \ldots, Y_{d}$ satisfy

$$
E\left(Y_{i} Y_{j}\right)= \begin{cases}\lambda_{i}, & i=j \\ 0, & i \neq j\end{cases}
$$

Since $\lambda_{i}=0$ for $i>r$, we see $Y_{i}=0$ for $i>r$. If we set

$$
Z_{i}=\frac{1}{\sqrt{\lambda_{i}}} Y_{i}, \quad i=1,2, \ldots, r
$$

then $Z$ is a standard normal $r$-vector. By (5.5.2),

$$
|Z|^{2}=Z_{1}^{2}+Z_{2}^{2}+\cdots+Z_{r}^{2}
$$

is chi-squared with degree $r$. But

$$
|Z|^{2}=\sum_{k=1}^{r} Z_{k}^{2}=\sum_{k=1}^{r} \frac{Y_{k}^{2}}{\lambda_{k}}=Y \cdot S^{+} Y=\left(U^{t} X\right) \cdot S^{+}\left(U^{t} X\right)=X \cdot\left(U S^{+} U^{t}\right) X=X \cdot Q^{+} X
$$

This completes the proof of the theorem.

Let $v$ be a unit vector, and let $Q=I-v \otimes v$. Suppose $X$ is a normal random vector with mean zero and variance $Q$. Then

$$
E\left((X \cdot v)^{2}\right)=v \cdot Q v=v \cdot(I-v \otimes v) v=v-(v \cdot v) v=0
$$

so $X \cdot v=0$.
It is easy to check $Q^{3}=Q$ and $Q^{2}$ is symmetric, so (§2.3) $Q^{+}=Q$. Since $X \cdot v=0$,

$$
X \cdot Q^{+} X=X \cdot Q X=X \cdot(X-(v \cdot X) v)=|X|^{2}
$$

We conclude

## Singular Chi-squared

Let $v$ be a unit vector, and let $X$ be a normal random vector in $\mathbf{R}^{d}$ with mean zero and variance $I-v \otimes v$. Then $|X|^{2}$ is chi-squared with degree $d-1$.

We use the above to derive the distribution of the sample variance. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample, and let $\bar{X}$ be the sample mean,

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n} .
$$

Let $S^{2}$ be the sample variance,

$$
\begin{equation*}
S^{2}=\frac{\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}+\cdots+\left(X_{n}-\bar{X}\right)^{2}}{n-1} \tag{5.5.3}
\end{equation*}
$$

Since $(n-1) S^{2}$ is a sum-of-squares similar to (5.5.2), we expect $(n-1) S^{2}$ to be chi-squared. In fact this is so, but the degree is $n-1$, not $n$. We will show

## Independence of Sample Mean and Sample Variance

Let $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)$ be independent standard normal random variables, let $\bar{Z}$ be the sample mean, and let $S^{2}$ be the sample variance. Then $(n-1) S^{2}$ is chi-squared with degree $n-1$, and $\bar{Z}$ and $S^{2}$ are independent.

To see this, let

$$
v=\left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}}\right) .
$$

Then $v$ is a unit vector, and

$$
Z \cdot v=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} Z_{k}=\sqrt{n} \bar{Z}, \quad(Z \cdot v) v=(\bar{Z}, \ldots, \bar{Z})
$$

Now let

$$
X=Z-(Z \cdot v) v=\left(Z_{1}-\bar{Z}, Z_{2}-\bar{Z}, \ldots . Z_{n}-\bar{Z}\right)
$$

Then $E(X)=0$ and

$$
E\left((Z \cdot v)^{2}\right)=E(v \cdot(Z \otimes Z) v)=v \cdot I v=1 .
$$

From this, it follows that

$$
E(X \otimes X)=I-v \otimes v .
$$

Hence

$$
(n-1) S^{2}=|X|^{2}
$$

is chi-squared with degree $n-1$.
Now $X$ and $Z \cdot v$ are uncorrelated, since

$$
E(X(Z \cdot v))=E\left(Z(Z \cdot v)-E\left((Z \cdot v)^{2}\right) v=v-v=0\right.
$$

Since they are normal, $X$ and $Z \cdot v$ are independent. Since $(n-1) S^{2}=|X|^{2}$, and $\sqrt{n} \bar{Z}=Z \cdot v, S^{2}$ and $\bar{Z}$ are independent.

## Chapter 6

## Statistics

### 6.1 Estimation

In statistics, like any science, we start with a guess or an assumption or hypothesis, then we take a measurement, then we accept or modify our guess/assumption based on the result of the measurement. This is common sense, and applies to everything in life, not just statistics.

For example, suppose you see a sign on the UNH campus saying
There is a lecture in Buckman B120.
How can you tell if this is true/correct or not? One approach is to go to Buckman B120 and look. Either there is a lecture or there isn't. Problem solved.

But then someone might object, saying, wait, what if there is a lecture in Buckman B120 tomorrow? To address this, you go every day to Buckman B120 and check, for 100 days. You find out that in 85 of the 100 days, there is a lecture, and in 15 days, there is none. Based on this, you can say you are $85 \%$ confident there is a lecture there. Of course, you can never be sure, it depends on which day you checked, you can only provide a confidence level.

In general, the measurement is significant if it is unlikely. When we obtain a significant measurement, then we are likely to reject our guess/assumption. So

$$
\text { significance }=1 \text { - confidence. }
$$

In practice, our guess/assumption allows us to calculate a $p$-value, which is the probability that the measurement is not consistent with our assumption.

In the above scenario, the $p$-value is .15 , determined by repeatedly sampling the room.

This is what statistics is about, summarized in Figure 6.1. Of course, the details may be more or less complicated depending on the problem situation or setup, but this is the central idea.


Figure 6.1: Statistics flowchart: $p$-value $p$ and significance $\alpha$.


Here is a geometric example. The null hypothesis and the alternate hypothesis are

- $H_{0}$ : The angle between two randomly selected vectors in 784 dimensions is approximately $90^{\circ}$
- $H_{a}$ : The angle between two randomly selected vectors in 784 dimensions is approximately $60^{\circ}$.

In $\S 2.2$, there is code (2.2) returning the angle angle ( $u, v$ ) between two vectors. To test this hypothesis, we run the code

```
from numpy import *
from numpy.random import randn
randn is standard normal
N = 784
for _ in range(20):
u = randn(N)
v = randn(N)
print(angle(u,v))
```

to randomly select $u, v$ twenty times. This code returns

```
86.27806537791886
87.91436653824776
93.00098725550777
92.73766421951748
90.005139015804
87.99643434444482
89.77813370637857
96.09801014394806
90.07032573539982
89.37679070400239
91.3405728939376
86.49851399221568
87.12755619082597
88.87980905998855
89.80377324818076
91.3006921339982
91.43977096117017
88.52516224405458
86.89606919838387
90.49100744167357
```

Here we see strong evidence supporting $H_{0}$. On the other hand, if we run the code

```
from numpy import *
from numpy.random import binomial
N = 784
n = 1 # one coin toss
#n = 3 # three coin tosses
for _ in range(20):
 u = binomial(n, .5,N)
 v = binomial(n, .5,N)
 print(angle(u,v))
```

to randomly select $u, v$ twenty times, we obtain

$$
\begin{aligned}
& 59.43464627897324 \\
& 59.14345748418916 \\
& 60.31453922165891 \\
& 60.38024365702492 \\
& 59.24709660805488 \\
& 59.27165957992343 \\
& 61.21424657806321 \\
& 60.55756381536082 \\
& 61.59468919876665 \\
& 61.33296028237481 \\
& 60.03925473033243 \\
& 60.25732069941224 \\
& 61.77018692842784 \\
& 60.672901794058326 \\
& 59.628519516164666 \\
& 59.41272458020638 \\
& 58.43172340007064 \\
& 59.863796136907744 \\
& 59.45156367988921 \\
& 59.95835532791699
\end{aligned}
$$

Here we see strong evidence that $H_{0}$ is false, as the angles are now close to $60^{\circ}$.


The difference between the two scenarios is the distribution. In the first scenario, we have $\operatorname{randn}(\mathrm{n})$ : the components are distributed according to a standard normal. In the second scenario, we have binomial ( $1, .5, N$ ): the components are distributed according to a fair coin toss. To see how the distribution affects things, we bring in the law of large numbers, which is discussed in §5.3.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a simple random sample from some population, and let $\mu$ be the population mean. Recall this means $X_{1}, X_{2}, \ldots, X_{n}$ are i.i.d. random variables, with $\mu=E(X)$. The sample mean is

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

Then we have the

## law of large numbers

For almost every simple random sample, for large sample size, the sample mean $X$ approximately equals the population mean $\mu$. More precisely, as the sample size $n$ approaches infinity, $\bar{X}$ approaches $\mu$.

We use the law of large numbers to explain the closeness of the vector angles to specific values.

Assume $u=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, and $v=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ where all components are selected independently of each other, and each is selected according to the same distribution.

Let $U=\left(X_{1}, X_{2}, \ldots, X_{n}\right), V=\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$, be the corresponding random variables. Then $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent and identically distributed (i.i.d.), with population mean $E(X)=E(Y)$.

From this, $X_{1} Y_{1}, X_{2} Y_{2}, \ldots, X_{n} Y_{n}$ are i.i.d. random variables with population mean $E(X Y)$. By the law of large numbers, ${ }^{1}$

$$
\frac{X_{1} Y_{1}+X_{2} Y_{2}+\cdots+X_{n} Y_{n}}{n} \approx E(X Y)
$$

so

$$
U \cdot V=X_{1} Y_{1}+X_{2} Y_{2}+\cdots+X_{n} Y_{n} \approx n E(X Y)
$$

[^10]Similarly, $U \cdot U \approx n E\left(X^{2}\right)$ and $V \cdot V \approx n E\left(Y^{2}\right)$. Hence (check that the $n$ 's cancel)

$$
\cos (U, V)=\frac{U \cdot V}{\sqrt{(U \cdot U)(V \cdot V)}} \approx \frac{E(X Y)}{\sqrt{E\left(X^{2}\right) E\left(Y^{2}\right)}}
$$

Since $X$ and $Y$ are independent with mean $\mu$ and variance $\sigma^{2}$,

$$
E(X Y)=E(X) E(Y)=\mu^{2}, \quad E\left(X^{2}\right)=\mu^{2}+\sigma^{2}, \quad E\left(Y^{2}\right)=\mu^{2}+\sigma^{2}
$$

If $\theta$ is the angle between $U$ and $V$, we conclude

$$
\cos (\theta)=\frac{U \cdot V}{\sqrt{(U \cdot U)(V \cdot V)}} \approx \frac{\mu^{2}}{\mu^{2}+\sigma^{2}}
$$

When the distribution is $N(0,1), \mu=0$, so the angle is approximately $90^{\circ}$. When the distribution is bernoulli with parameter $p$,

$$
\frac{\mu^{2}}{\mu^{2}+\sigma^{2}}=\frac{p^{2}}{p^{2}+p(1-p)}=p
$$

For $p=.5$, this results in an angle of $60^{\circ}$.
The general result is

## Random Vectors in High Dimensions

Let $U$ and $V$ be two vectors selected randomly. Assume the components of $U$ and $V$ are independent and identically distributed with mean $\mu$ and variance $\sigma^{2}$. Let $\theta$ be the angle between them. When the vector dimension is high,

$$
\cos (\theta) \quad \text { is approximately } \quad \frac{\mu^{2}}{\mu^{2}+\sigma^{2}}
$$

## 6.2 $Z$-test

Suppose we want to estimate the proportion of American college students who have a smart phone. Instead of asking every student, we take a sample and make an estimate based on the sample.


Figure 6.2: Histogram of sampling $n=25$ students, repeated $N=1000$ times.

The population proportion $p$ is the actual proportion of students that in fact have a smart phone. Then $0<p<1$. Pick a student, and let

$$
X= \begin{cases}1, & \text { if the student has a smartphone } \\ 0, & \text { if not }\end{cases}
$$

Then $X$ is a bernoulli random variable with mean $p$.
For example, suppose the population proportion of students that have a smartphone is $p=.7$, and we sample $n=25$ students, obtaining a sample proportion $\bar{X}$. If we repeat the sampling $N=1000$ times, we will obtain 1000 values for $\bar{X}$. Figure 6.2 displays the resulting histogram of $\bar{X}$ values. Here is the code

```
from numpy import *
from matplotlib.pyplot import *
from numpy.random import binomial
p = . }
n = 25
N = 1000
v = binomial(n,p,N)/n
hist(v,edgecolor ='Black')
show()
```

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a simple random sample of size $n$. This means $n$ students were selected randomly and independently and whether or not they had smartphones was recorded in the variables $X_{1}, X_{2}, \ldots, X_{n}$. Each of these variables equals one or zero with probability $p$ or $1-p$.

The sample mean (§5.3) is

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k} .
$$

Because each $X_{k}$ is 0 or 1, this is the sample proportion of the students in the sample that have smartphones. Like $p, \bar{X}$ is also between zero and one.

Because the samples vary, it is impossible to make absolute statements about the population. Instead, as we see below, the best we can do is make statements that come with a confidence level. Confidence levels are expressed as percentages, such as a $95 \%$ confidence level, or as a proportion, such as a .95 confidence level.

Often levels are expressed as significance levels. The significance level is the corresponding tail probability, so

$$
\text { significance level }=1-\text { confidence level. }
$$

A confidence level of zero indicates that we have no faith at all that selecting another sample will give similar results, while a confidence level of 1 indicates that we have no doubt at all that selecting another sample will give similar results.

When we say $p$ is within $\bar{X} \pm \epsilon$, or

$$
|p-\bar{X}|<\epsilon,
$$

we call $\epsilon$ the margin of error.. The interval

$$
(L, U)=(\bar{X}-\epsilon, \bar{X}+\epsilon)
$$

is a confidence interval.
With the above setup, we have the population proportion $p$, and the four sample characteristics

- sample size $n$
- sample proportion $\bar{X}$,
- margin of error $\epsilon$,
- confidence level $\alpha$.

Suppose we do not know $p$, but we know $n$ and $\bar{X}$. We say the margin of error is $\epsilon$, at confidence level $\alpha$, if

$$
\operatorname{Prob}(|p-\bar{X}|<\epsilon)=\alpha .
$$

Here are some natural questions:

1. Given a sample of size $n=20$ and sample proportion $\bar{X}=.7$, what can we say about the margin of error $\epsilon$ with confidence $\alpha=.95$ ?
2. Given a sample proportion $\bar{X}=.7$, what sample size $n$ should we take to obtain a margin of error $\epsilon=.15$ with confidence $\alpha=.95$ ?
3. Given a sample proportion $\bar{X}=.7$, what sample size $n$ should we take to obtain a margin of error $\epsilon=.15$ with confidence $\alpha=.99$ ?
4. Given a sample of size $n=20$ and sample proportion $\bar{X}=.7$, with what confidence level $\alpha$ is the margin of error $\epsilon=.1$ ?

The answers are at the end of the section.


Suppose each $X_{k}$ in the sample $X_{1}, X_{2}, \ldots, X_{n}$ has mean $\mu$ and standard deviation $\sigma$. From $\S 5.3$, we know the mean and standard deviation of $\bar{X}$ are $\mu$ and $\sigma / \sqrt{n}$. In particular, when $X_{1}, X_{2}, \ldots, X_{n}$ is a bernoulli sample, the mean and variance of the sample proportion $\bar{X}$ are $p$ and $p(1-p) / n$.

Therefore, the mean and variance of the standardized random variable

$$
Z=\sqrt{n} \frac{\bar{X}-p}{\sqrt{p(1-p)}}
$$

are zero and one.
Returning to our smartphone question, how close is the sample mean $\bar{X}$ to the population mean $E(X)=p$ ? Remember, both $\bar{X}$ and $p$ are between 0 and 1. More specifically, given a margin of error $\epsilon$, we want to compute the confidence level

$$
\operatorname{Prob}(|\bar{X}-p|<\epsilon) .
$$

This corresponds to the confidence interval

$$
L, U=\bar{X}-\epsilon, \bar{X}+\epsilon
$$

The key result is the central limit theorem (§5.3): $Z$ is approximately normal. How large should the sample size $n$ be in order to apply the central limit theorem? When we have success-failure condition

$$
n p \geq 10, \quad n(1-p) \geq 10
$$

For example, $p=.7$ and $n=50$ satisfies the success-failure condition.
Let $\alpha$ be the two-tail significance level, say $\alpha=.05$. Assuming $Z$ is exactly normal, let $z^{*}$ be the $z$-score corresponding to significance $\alpha$,

$$
\operatorname{Prob}\left(|Z|>z^{*}\right)=\alpha .
$$

Let $\sigma / \sqrt{n}$ be the standard error. By the central limit theorem,

$$
\alpha \approx \operatorname{Prob}\left(\frac{|\bar{X}-p|}{\sqrt{p(1-p)}}>\frac{z^{*}}{\sqrt{n}}\right) .
$$

To compute the confidence interval $(L, U)$, we solve

$$
\begin{equation*}
\frac{|\bar{X}-p|}{\sqrt{p(1-p)}}=\frac{z^{*}}{\sqrt{n}} \tag{6.2.1}
\end{equation*}
$$

for $p$. But (6.2.1) may be rewritten as a quadratic equation in $p$, leading to the approximate solution

$$
L, U=\bar{X} \pm \epsilon=\bar{X} \pm \frac{z^{*}}{\sqrt{n}} \cdot \sqrt{\bar{X}(1-\bar{X})} .
$$

From here we obtain the margin of error

$$
\epsilon=\frac{z^{*}}{\sqrt{n}} \cdot \sqrt{\bar{X}(1-\bar{X})} .
$$



More generally, let $z^{*}$ be the $z$-score corresponding to significance level $\alpha$, so

```
zstar = Z.ppf(alpha) # lower-tail, zstar < 0
zstar = Z.ppf(1-alpha) # upper-tail, zstar > 0
zstar = Z.ppf(1-alpha/2) # two-tail, zstar > 0
```

Given a population with known standard deviation $\sigma$, sample size $n$, and sample mean $\bar{X}$, the margin of error is

$$
\epsilon=z^{*} \cdot \frac{\sigma}{\sqrt{n}},
$$

and the intervals

$$
(L, U)= \begin{cases}(\bar{X}-\epsilon, \bar{X}), & \text { lower-tail } \\ (\bar{X}, \bar{X}+\epsilon), & \text { upper-tail } \\ (\bar{X}-\epsilon, \bar{X}+\epsilon), & \text { two-tail }\end{cases}
$$

are the confidence intervals at significance level $\alpha$. When not specified, a confidence interval is usually taken to be two-tail.

In the Python code below, instead of working with the standardized statistic $Z$, we work directly with the $\bar{X}$. When $\sigma$ is not known, we have to replace the normal distribution by the $t$ distribution (§6.3).

```
##########################
Confidence Interval - Z
##########################
from numpy import *
from scipy.stats import norm as Z
significance level alpha
def confidence_interval(xbar,sdev,n,alpha,type):
 Xbar = Z(xbar,sdev/sqrt(n))
 if type == "two-tail":
 U = Xbar.ppf(1-alpha/2)
 L = Xbar.ppf(alpha/2)
 elif type == "upper-tail":
 U = Xbar.ppf(1-alpha)
 L = xbar
```

```
 elif type == "lower-tail":
 L = Xbar.ppf(alpha)
 U = xbar
 else: print("what's the test type?"); return
 return L, U
when X is not bernoulli 0,1,
Z-test assumes sdev is known!!!
when X is bernoulli, sdev = sqrt(xbar*(1-xbar))
alpha = . 02
sdev = 228
n = 35
xbar = 95
L, U = confidence_interval(xbar,sdev,n,alpha,type)
print("type: ", type)
print("significance, sdev, n, xbar: ", alpha,sdev,n,xbar)
print("lower, upper: ",L, U)
```

Now we can answer the questions posed at the start of the section. Here are the answers.

1. When $n=20, \alpha=.95$, and $\bar{X}=.7$, we have $[L, U]=[.5, .9]$, so $\epsilon=.2$.
2. When $\bar{X}=.7, \alpha=.95$, and $\epsilon=.15$, we run confidence_interval for $15 \leq n \leq 40$, and select the least $n$ for which $\epsilon<.15$. We obtain $n=36$.
3. When $\bar{X}=.7, \alpha=.99$, and $\epsilon=.15$, we run confidence_interval for $1 \leq n \leq 100$, and select the least $n$ for which $\epsilon<.15$. We obtain $n=62$.
4. When $\bar{X}=.7, n=20$, and $\epsilon=.1$, we have

$$
z^{*}=\frac{\epsilon \sqrt{n}}{\sigma}=.976 .
$$

Since $\operatorname{Prob}\left(Z>z^{*}\right)=.165$, the confidence level is $1-2 * .165=.68$ or $68 \%$.


The speed limit on a highway is $\mu_{0}=120$. Ten automatic speed cameras are installed along a stretch of the highway to measure passing vehicles speeds. Because the cameras aren't perfect, the average speed $\bar{X}$ measured by the cameras may not equal a vehicle's true speed $\mu$. As a consequence, some drivers who were driving at the speed limit may be fined. These drivers are false positives.

Suppose the distribution of a vehicle's measured speed is normal with standard deviation 2 . What measured speed cutoff $\mu^{*}$ should the authorities use to keep false positives below $1 \%$ ? Here we are asked for the upper-tail confidence interval $(L, U)=\left(\mu_{0}, \mu^{*}\right)$ at significance level .01. A driver will be fined if their average measured speed $\bar{X}$ is higher than $\mu^{*}$.

Using the above code, the cutoff $\mu^{*}$ equals 121.47.


One use of confidence intervals is hypothesis testing. Here we have two hypotheses, a null hypothesis and an alternate hypothesis. In the above setting where we are estimating a population parameter $\mu$, the null hypothesis is that $\mu$ equals a certain value $\mu_{0}$, and the alternate hypothesis is that $\mu$ is not equal to $\mu_{0}$. Hypothesis testing is of three types, depending on the alternate hypothesis: $\mu \neq \mu_{0}, \mu>\mu_{)}, \mu<\mu_{0}$. These are two-tail, lower-tail, and upper-tail hypotheses.

- $H_{0}: \mu=\mu_{0}$
- $H_{a}: \mu \neq \mu_{0}$ or $\mu<\mu_{0}$ or $\mu>\mu_{0}$.

For example, going back to our smartphone setup, if we sample $n=20$ students, obtaining a mean $\bar{x}=.7$, then $\sigma=\sqrt{\bar{x}(1-\bar{x})}=.46$, and the twotail $5 \%$ confidence interval is then [.5,.9]. If $\mu_{0}$ lies outside the confidence interval, we reject $H_{0}$ and accept $H_{a}$, at the $5 \%$ level. Otherwise, if $\mu_{0}$ lies within the interval, we do not reject $H_{0}$.

Suppose 35 people are randomly selected and the accuracy of their wristwatches is checked, with positive errors representing watches that are ahead of the correct time and negative errors representing watches that are behind the correct time. The sample has a mean of 95 seconds and a population
standard deviation of 228 seconds. At the $2 \%$ significance, can we claim the population mean is $\mu_{0}=0$ ?

Here

- $H_{0}: \mu=0$
- $H_{a}: \mu \neq 0$.

Here the significance level is $\alpha=.02$ and $\mu_{0}=0$. To decide whether to reject $H_{0}$ or not, compute the standardized test statistic

$$
z=\sqrt{n} \cdot \frac{\bar{x}-\mu_{0}}{\sigma}=2.465 .
$$

Since $z$ is a sample from an approximately normal distribution $Z$, the $p$-value

$$
p=\operatorname{Prob}(|Z|>z)=.0137
$$

On the other hand, the $z$-score corresponding to the requested significance level is $z^{*}=2.326$, since

$$
\operatorname{Prob}(|Z|>2.326)=.02
$$

Since $p$ is less than $\alpha$, or equivalently, since $|z|>z^{*}$, we reject $H_{0}$. In other words, when the $p$-value is smaller than the significance level, it is more significant, and we reject $H_{0}$.

Equivalently, the $98 \%$ confidence interval is

$$
(\bar{x}-\epsilon, \bar{x}+\epsilon)=(5.3,184.6) .
$$

Since $\mu_{0}=0$ is outside this interval, we reject $H_{0}$.

## Hypothesis Testing

There are three types of alternative hypotheses $H_{a}$ :

$$
\mu<\mu_{0}, \quad \mu>\mu_{0}, \quad \mu \neq \mu_{0}
$$

These are lower-tail, upper-tail, and two-tail tests. In every case, we
have a sample of size $n$, a statistic $\bar{x}$, a standard deviation $\sigma$, a standardized statistic

$$
z=\sqrt{n} \cdot \frac{\bar{x}-\mu_{0}}{\sigma}
$$

a significance level $\alpha$, the $p$-value

$$
p=\operatorname{Prob}(Z<z), \quad p=\operatorname{Prob}(Z>z), \quad p=\operatorname{Prob}(|Z|>z)
$$

and the critical cutoff $z^{*}$,

$$
\operatorname{Prob}\left(Z<z^{*}\right)=\alpha, \quad \operatorname{Prob}\left(Z>z^{*}\right)=\alpha, \quad \operatorname{Prob}\left(|Z|>z^{*}\right)=\alpha
$$

Then we reject $H_{0}$ whenever $z$ is more significant than $z^{*}$, which is the same as saying whenever the p-value $p$ is less than the significance level $\alpha$.

In the Python code below, instead of working with the standardized statistic $Z$, we work directly with $\bar{X}$, which is normally distributed with mean $\mu_{0}$ and standard deviation $\sigma / \sqrt{n}$.

```
###################
Hypothesis Z-test
###################
from numpy import *
from scipy.stats import norm as Z
significance level alpha
def ztest(mu0, sdev, n, xbar,type):
 Xbar = Z(mu0,sdev/sqrt(n))
 print("mu0, sdev, n, xbar: ", mu0,sdev,n,xbar)
 if type == "lower-tail": p = Xbar.cdf(xbar)
 elif type == "upper-tail": p = 1 - Xbar.cdf(xbar)
 elif type == "two-tail": p = 2 * (1 - Xbar.cdf(abs(xbar)))
 print("type: ",type)
```

```
 print("pvalue: ",p)
 if p < alpha: print("reject HO")
 else: print("do not reject HO")
xbar = 122
n = 10
type = "upper-tail"
muO = 120
sdev = 2
alpha = . 01
ztest(mu0, sdev, n, xbar,type)
```

Going back to the driving speed example, the hypothesis test is

- $H_{0}: \mu=\mu_{0}$
- $H_{a}: \mu>\mu_{0}$

If a driver's measured average speed is $\bar{X}=122$, the above code rejects $H_{0}$. This is consistent with the confidence interval cutoff we found above.

There are two types of possible errors we can make. a Type I error is when $H_{0}$ is true, but we reject it, and a Type 2 error is when $H_{0}$ is not true but we fail to reject it.

|  | $H_{0}$ is true | $H_{0}$ is false |
| :---: | :---: | :---: |
| do not reject $H_{0}$ | $1-\alpha$ | Type II error: $\beta$ |
| reject $H_{0}$ | Type I error: $\alpha$ | Power: $1-\beta$ |

Table 6.3: The error matrix.
We reject $H_{0}$ when the $p$-value of $Z$ is less than the significance level $\alpha$, which happens when $z<z^{*}$ or $z>z^{*}$ or $|z|>z^{*}$. In all cases, the chance of this happening is by definition $\alpha$. In other words,

$$
\operatorname{Prob}(\text { Type I error })=\operatorname{Prob}\left(p \text {-value }<\alpha \mid H_{0}\right)=\alpha .
$$

Thus the probability of a type I error is the significance level $\alpha$.
We make a Type II error when we do not reject $H_{0}$, but $H_{0}$ is false. To compute the probability of a Type II error, suppose the true value of $\mu$ is $\mu_{1}$. Then we do not reject $H_{0}$ if $|z|<\left|z^{*}\right|$, which is when $\mu_{0}$ lies in the confidence interval $\bar{x} \pm z^{*} \sigma / \sqrt{n}$, or when $\bar{x}$ lies in the interval

$$
\mu_{0}-\frac{z^{*} \sigma}{\sqrt{n}}<\bar{x}<\mu_{0}+\frac{z^{*} \sigma}{\sqrt{n}} .
$$

But when $\mu=\mu_{1}, \bar{X}$ is $N\left(\mu_{1}, \sigma\right)$, so the probability of this event can be computed.

Standardize $\bar{X}$ by subtracting $\mu_{1}$ and dividing by the standard error. Then we have a Type II error when

$$
\sqrt{n} \frac{\left(\mu_{0}-\mu_{1}\right)}{\sigma}-z^{*}<z<\sqrt{n} \frac{\left(\mu_{0}-\mu_{1}\right)}{\sigma}+z^{*} .
$$

If we set $\delta$ to equal the standardized difference in the means,

$$
\delta=\sqrt{n} \frac{\left(\mu_{0}-\mu_{1}\right)}{\sigma},
$$

then we have a Type II error when

$$
\delta-z^{*}<Z<\delta+z^{*},
$$

or when $|Z-\delta|<z^{*}$. Hence

$$
\operatorname{Prob}(\text { Type II error })=\operatorname{Prob}\left(|Z-\delta|<z^{*}\right) .
$$

This calculation was for a two-tail test. When the test is upper-tail or lower-tail, a similar calculation leads to the code

```
############################
Type1 and Type2 errors - Z
############################
from numpy import *
from scipy.stats import norm as Z
```

```
def type2_error(type,mu0,mu1,sdev,n,alpha):
 print("significance,mu0,mu1, sdev, n: ",
 \hookrightarrow alpha,mu0,mu1,sdev,n)
 print("prob of type1 error: ", alpha)
 delta = sqrt(n) * (mu0 - mu1) / sdev
 if type == "lower-tail":
 zstar = Z.ppf(alpha)
 type2 = 1 - Z.cdf(delta + zstar)
 elif type == "upper-tail":
 zstar = Z.ppf(1-alpha)
 type2 = Z.cdf(delta + zstar)
 elif type == "two-tail":
 zstar = Z.ppf(1 - alpha/2)
 type2 = Z.cdf(delta + zstar) - Z.cdf(delta - zstar)
 else: print("what's the test type?"); return
 print("test type: ",type)
 print("zstar: ", zstar)
 print("delta: ", delta)
 print("prob of type2 error: ", type2)
 print("power: ", 1 - type2)
mu0 = 120
mu1 = 122
sdev = 2
n = 10
alpha = . 01
type = "upper-tail"
type2_error(type,mu0,mu1,sdev,n,alpha)
```

A type II error is when we do not reject the null hypothesis and yet it's false. The power of a test is the probability of rejecting the null hypothesis when it's false (Figure 6.3). If the probability of a type II error is $\beta$, then the power is $1-\beta$.

Going back to the driving speed example, what is the chance that someone driving at $\mu_{1}=122$ is not caught? This is a type II error; using the above
code, the probability is

$$
\beta=\operatorname{Prob}(\bar{X}=120 \mid \mu=122)=20 \% .
$$

Therefore this test has power $80 \%$ to detect such a driver.

### 6.3 T-test

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a simple random sample from a population. We repeat the previous section when we know neither the population mean $\mu$, nor the population variance $\sigma^{2}$. We only know the sample mean

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

and the sample variance

$$
S^{2}=\frac{1}{n-1} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}
$$

For example, assume $X_{1}, X_{2}, \ldots, X_{n}$ are bernoulli 0,1 random variables. Then as we've seen before,

$$
(n-1) S^{2}=\sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}=n \bar{X}(1-\bar{X}) .
$$

When the sample $Z_{1}, Z_{2}, \ldots, Z_{n}$ is normal, we have

$$
\bar{Z}=\frac{Z_{1}+Z_{2}+\cdots+Z_{n}}{n}
$$

and

$$
S^{2}=\frac{1}{n-1} \sum_{k=1}^{n}\left(Z_{k}-\bar{Z}\right)^{2}
$$

In this case, from §5.5,

- $(n-1) S^{2}$ is chi-squared of degree $n-1$, and
- $\bar{X}$ and $S^{2}$ are independent.


A random variable $T$ has a $t$-distribution with degree $d$ if the probability that $T$ lies in a small interval $[a, b]$ containing $t$ is

$$
\begin{equation*}
\frac{\operatorname{Prob}(a<T<b)}{b-a}=\frac{1}{N} \cdot\left(1+\frac{t^{2}}{d}\right)^{-(d+1) / 2}, \quad a<t<b . \tag{6.3.1}
\end{equation*}
$$

Here $N$ is a constant to make the total area under the graph equal to one (Figure 6.4). In other words, (6.3.1) is the pdf of the $t$-distribution.

When the interval $[a, b]$ is not small, the correct formula is obtained by integration, which means dividing $[a, b]$ into many small intervals and summing. We will not use this density formula directly.


Figure 6.4: $t$-distribution, against normal (dashed).

By the compound-interest formula for the exponential (4.4.6), the $t$ distribution (6.3.1) approaches the standard normal distribution (5.4.1) as $d \rightarrow \infty$.

```
from numpy import *
from scipy.stats import t as T, norm as Z
from matplotlib.pyplot import *
for d in [3,4,7]:
 t = arange(-3,3,.01)
 plot(t,T(d).pdf(t),label="d = "+str(d))
plot(t,Z.pdf(t),"--",label=r"d = ∞")
grid()
legend()
show()
```

Using calculus, one can derive

## Relation Between $Z, U$, and $T$

Suppose $Z$ and $U$ are independent, where $Z$ is standard normal, and $U$ is chi-squared with $d$ degrees of freedom. Then

$$
T=\frac{Z}{\sqrt{U / d}}
$$

is a $t$-distribution with degree $d$.

In the previous section, we normalized a sample mean by subtracting the mean $\mu$ and dividing by the standard error $\sigma / \sqrt{n}$. Since now we don't know $\sigma$, it is reasonable to divide by the sample standard error, obtaining

$$
\sqrt{n} \cdot \frac{\bar{X}-\mu}{S}=\sqrt{n} \cdot \frac{\bar{X}-\mu}{\sqrt{\frac{1}{n-1} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}}}
$$

If we standardize each variable by

$$
X_{k}=\mu+\sigma Z_{k},
$$

then we can verify

$$
\bar{X}=\mu+\sigma \bar{Z}, \quad \bar{Z}=\frac{Z_{1}+Z_{2}+\cdots+Z_{n}}{n},
$$

and

$$
S^{2}=\sigma^{2} \frac{1}{n-1} \sum_{k=1}^{n}\left(Z_{k}-\bar{Z}\right)^{2} .
$$

From this, we have

$$
\sqrt{n} \cdot \frac{\bar{X}-\mu}{S}=\sqrt{n} \cdot \frac{\bar{Z}}{\sqrt{\frac{1}{n-1} \sum_{k=1}^{n}\left(Z_{k}-\bar{Z}\right)^{2}}}=\sqrt{n} \cdot \frac{\bar{Z}}{\sqrt{U /(n-1)}}
$$

Using the last result with $d=n-1$, we arrive at the main result in this section.

## Samples and $T$ Distributions

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent normal random variables with mean $\mu$. Let $\bar{X}$ be the sample mean, let $S^{2}$ be the sample variance, and let

$$
T=\sqrt{n} \cdot \frac{\bar{X}-\mu}{S}
$$

Then $T$ is distributed according to a $t$-distribution with degree $(n-1)$.

The takeaway here is we do not need to know the standard deviations $\sigma$ of $X_{1}, X_{2}, \ldots, X_{n}$ to compute $T$.

The $t$-score $t^{*}$ corresponding ${ }^{2}$ to significance $\alpha$ is

```
tstar = T(d).ppf(alpha) # lower-tail, tstar < 0
tstar = T(d).ppf(1-alpha) # upper-tail, tstar > 0
```

[^11]```
tstar = T(d).ppf(1-alpha/2) # two-tail, tstar > 0
```

Here d is the degree of T. Then we have

```
##########################
# Confidence Interval - T
##########################
from numpy import *
from scipy.stats import t as T
def confidence_interval(xbar,s,n,alpha,type):
    d = n-1
    if type == "two-tail":
        tstar = T(d).ppf(1-alpha/2)
        L = xbar - tstar * s / sqrt(n)
        U = xbar + tstar * s / sqrt(n)
    elif type == "upper-tail":
        tstar = T(d).ppf(1-alpha)
        L = xbar
        U = xbar + tstar* s / sqrt(n)
    elif type == "lower-tail":
        tstar = T(d).ppf(alpha)
        L = xbar + tstar* s / sqrt(n)
        U = xbar
    else: print("what's the test type?"); return
    print("type: ",type)
    return L, U
n = 10
xbar = 120
s = 2
alpha = . 01
type = "upper-tail"
print("significance, s, n, xbar: ", alpha,s,n,xbar)
L,U = confidence_interval(xbar,s,n,alpha,type)
print("lower, upper: ", L,U)
```

Going back to the driving speed example from $\S 6.2$, instead of assuming the population standard deviation is $\sigma=2$, we compute the sample standard deviation and find it's $S=2$. Recomputing with $T(9)$, instead of Z, we see $(L, U)=(120,121.78)$, so the cutoff now is $\mu^{*}=121.78$, as opposed to $\mu^{*}=121.47$ there.

We turn now to hypothesis testing. As before, we have two hypotheses, a null hypothesis and an alternate hypothesis. In the above setting where we are estimating a population parameter, the null hypothesis is that μ equals a certain value μ_{0}, and the alternate hypothesis is that μ is not equal to μ_{0}.

- $H_{0}: \mu=\mu_{0}$
- $H_{a}: \mu \neq \mu_{0}$.

Here is the code:

```
###################
# Hypothesis T-test
###################
from numpy import *
from scipy.stats import t as T
def ttest(mu0, s, n, xbar,type):
        d = n-1
        print("mu0, s, n, xbar: ", mu0,s,n,xbar)
        t = sqrt(n) * (xbar - mu0) / s
        print("t: ",t)
        if type == "lower-tail": p = T(d).cdf(t)
        elif type == "upper-tail": p = 1 - T(d).cdf(t)
        elif type == "two-tail": p = 2 * (1 - T(d).cdf(abs(t)))
        print("pvalue: ",p)
        if p < alpha: print("reject HO")
        else: print("do not reject HO")
xbar = 122
```

```
\(\mathrm{n}=10\)
type = "upper-tail"
mu0 \(=120\)
\(\mathrm{s}=2\)
alpha = . 01
ttest(mu0, s, n, xbar,type)
```

Going back to the driving speed example, the hypothesis test is

- $H_{0}: \mu=\mu_{0}$
- $H_{a}: \mu>\mu_{0}$

If a driver's measured average speed is $\bar{X}=122$, the above code rejects H_{0}. This is consistent with the confidence interval cutoff we found above. However, the p-value obtained here is greater than the corresponding p-value in §6.2.

For Type I and Type II errors, the code is

```
########################
# Type1 and Type2 errors
########################
from numpy import *
from scipy.stats import t as T
def type2_error(type,mu0,mu1,n,alpha):
    d = n-1
    print("significance,mu0,mu1,n: ", alpha,mu0,mu1,n)
    print("prob of type1 error: ", alpha)
    delta = sqrt(n) * (muO - mu1) / sdev
    if type == "lower-tail":
        tstar = T(d).ppf(alpha)
        type2 = 1 - T(d).cdf(delta + tstar)
    elif type == "upper-tail":
```

```
        tstar = T(d).ppf(1-alpha)
        type2 = T(d).cdf(delta + tstar)
    elif type == "two-tail":
        tstar = T(d).ppf(1 - alpha/2)
        type2 = T(d).cdf(delta + tstar) - T(d).cdf(delta -
    tstar)
    else: print("what's the test type?"); return
print("test type: ",type)
print("tstar: ", tstar)
print("delta: ", delta)
print("prob of type2 error: ", type2)
print("power: ", 1 - type2)
type2_error(type,mu0,mu1,n,alpha)
```

Going back to the driving speed example, if a driver's measured average speed is $\bar{X}=122$, what is the chance they will not be fined? From the code, the probability of this Type II error is 37%, and the power to detect such a driver is 63%.

6.4 Two Means

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a simple random sample from a population. Let Y_{1}, Y_{2}, \ldots, Y_{m} be another simple random sample, and assume the two samples are independent. Assume also that each X_{k} is $N\left(\mu_{X}, \sigma\right)$, and each Y_{k} is $N\left(\mu_{Y}, \sigma\right)$. The goal is to estimate $\mu_{X}-\mu_{Y}$.

As before, let

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}, \quad \bar{Y}=\frac{X_{1}+Y_{2}+\cdots+Y_{m}}{m}
$$

and let

$$
S_{X}^{2}=\frac{1}{n-1} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}, \quad S_{Y}^{2}=\frac{1}{m-1} \sum_{k=1}^{m}\left(Y_{k}-\bar{Y}\right)^{2} .
$$

Then S_{X}^{2} and S_{Y}^{2} are unbiased estimators of σ_{X}^{2} and σ_{Y}^{2}, which means

$$
E\left(S_{X}^{2}\right)=\sigma_{X}^{2}, \quad E\left(S_{Y}^{2}\right)=\sigma_{Y}^{2}
$$

From before, we know

$$
\frac{(n-1) S_{X}^{2}}{\sigma_{X}^{2}}
$$

is chi-squared with degree $n-1$. Since the variance of chi-squared with degree r equals $2 r$, the variance of $(n-1) S_{X}^{2} / \sigma_{X}^{2}$ equals $2(n-1)$. Thus

$$
\operatorname{Var}\left(S_{X}^{2}\right)=\frac{\sigma_{X}^{4}}{(n-1)^{2}} \operatorname{Var}\left(\frac{(n-1) S_{X}^{2}}{\sigma_{X}^{2}}\right)=\frac{\sigma_{X}^{4}}{(n-1)^{2}} \cdot 2(n-1)=\frac{2 \sigma_{X}^{4}}{n-1} .
$$

Similarly,

$$
\operatorname{Var}\left(S_{Y}^{2}\right)=\frac{2 \sigma_{Y}^{4}}{m-1}
$$

Before, with a single mean, we used the result that

$$
T=\frac{Z}{\sqrt{U / n}}
$$

is a t-distribution with n degrees of freedom when

1. Z and U are independent
2. Z is $N(0,1)$
3. U is chi-squared with n degrees of freedom.

We apply this same result this time, but we proceed more carefully. To begin, \bar{X} and \bar{Y} are normal with means μ_{X} and μ_{Y} and variances σ^{2} / n and σ^{2} / m respectively. Hence

$$
\frac{(\bar{X}-\bar{Y})-\left(\mu_{X}-\mu_{Y}\right)}{\sqrt{\frac{\sigma^{2}}{n}+\frac{\sigma^{2}}{m}}} \sim N(0,1)
$$

Next,

$$
(n-1) \frac{S_{X}^{2}}{\sigma^{2}} \quad \text { and } \quad(m-1) \frac{S_{Y}^{2}}{\sigma^{2}}
$$

are chi-squared of degrees $n-1$ and $m-1$ respectively, so their sum

$$
(n-1) \frac{S_{X}^{2}}{\sigma^{2}}+(m-1) \frac{S_{Y}^{2}}{\sigma^{2}}
$$

is chi-squared with degree $(n-1)+(m-1)=n+m-2$. If we let

$$
S_{p}^{2}=\frac{(n-1) S_{X}^{2}+(m-1) S_{Y}^{2}}{n+m-2}
$$

be the pooled sample variance, then the above sum is $(n+m-2) S_{p}^{2} / \sigma^{2}$. We conclude $(n+m-2) S_{p}^{2} / \sigma^{2}$ is chi-squared with degree $n+m-2$.

By our main result above (the σ 's cancel),

$$
T=\frac{\bar{X}-\bar{Y}-\left(\mu_{X}-\mu_{Y}\right)}{S_{p} \sqrt{\frac{1}{n}+\frac{1}{m}}}
$$

is distributed according to a t-distribution with degree $n+m-2$.
Based on this, let t_{α}^{*} be the critical t-score of degree $n+m-2$ at significance α. Then a confidence interval for $\mu_{X}-\mu_{Y}$ at significance α is

$$
\bar{X}-\bar{Y} \pm S_{p} \cdot t_{\alpha}^{*} \cdot \sqrt{\frac{1}{n}+\frac{1}{m}} .
$$

Here is code for computing confidence intervals for two means.

```
##################################
# Confidence Interval - Two means
##################################
import numpy as np
from scipy.stats import t
T = t
def confidence_interval(xbar,ybar,varx,vary,nx,ny,alpha):
    tstar = T.ppf(1-alpha/2, nx+ny-2)
    varp = (nx-1)*varx+(ny-1)*vary
    n = nx+ny-2
    varp = varp/n
    s_p = np.sqrt(varp)
    h = 1/nx + 1/ny
    L = xbar - ybar - tstar * s_p * np.sqrt(h)
    U = xbar - ybar + tstar * s_p * np.sqrt(h)
```

return L, U
Now we turn to the question of what to do when the variances σ_{X}^{2} and σ_{Y}^{2} are not equal. In this case, by independence, the population variance of $\bar{X}-\bar{Y}$ is the sum of the population variances of \bar{X} and \bar{Y}, which is

$$
\begin{equation*}
\sigma_{B}^{2}=\frac{\sigma_{X}^{2}}{n}+\frac{\sigma_{Y}^{2}}{m} . \tag{6.4.1}
\end{equation*}
$$

Hence

$$
\frac{(\bar{X}-\bar{Y})-\left(\mu_{X}-\mu_{Y}\right)}{\sqrt{\frac{\sigma_{X}^{2}}{n}+\frac{\sigma_{Y}^{2}}{m}}} \sim N(0,1)
$$

We want to replace the population variance (6.4.1) by the sample variance

$$
S_{B}^{2}=\frac{S_{X}^{2}}{n}+\frac{S_{Y}^{2}}{m}
$$

Because S_{B}^{2} is not a straight sum, but is a more complicated linear combination of variances, S_{B}^{2} is not chi-squared.

Welch's approximation is to assume it is chi-squared with degree r, and to figure out the best r for this. More exactly, we seek the best choice of r so that

$$
\frac{r S_{B}^{2}}{\sigma_{B}^{2}}=\frac{r S_{B}^{2}}{\frac{\sigma_{X}^{2}}{n}+\frac{\sigma_{Y}^{2}}{m}}
$$

is close to chi-squared with degree r. By construction, we multiplied S_{B}^{2} by r / σ_{B}^{2} so that its mean equals r,

$$
E\left(\frac{r S_{B}^{2}}{\sigma_{B}^{2}}\right)=\frac{r}{\sigma_{B}^{2}} E\left(S_{B}^{2}\right)=r .
$$

Since the variance of a chi-squared with degree r is $2 r$, we compute the variance and set it equal to $2 r$,

$$
\begin{equation*}
2 r=\operatorname{Var}\left(\frac{r S_{B}^{2}}{\sigma_{B}^{2}}\right)=\frac{r^{2}}{\left(\sigma_{B}^{2}\right)^{2}} \operatorname{Var}\left(S_{B}^{2}\right) \tag{6.4.2}
\end{equation*}
$$

By independence,

$$
\operatorname{Var}\left(S_{B}^{2}\right)=\operatorname{Var}\left(\frac{S_{X}^{2}}{n}\right)+\operatorname{Var}\left(\frac{S_{Y}^{2}}{m}\right)=\frac{1}{n^{2}} \operatorname{Var}\left(S_{X}^{2}\right)+\frac{1}{m^{2}} \operatorname{Var}\left(S_{Y}^{2}\right)
$$

But $(n-1) S_{X}^{2} / \sigma_{X}^{2}$ and $(m-1) S_{Y}^{2} / \sigma_{Y}^{2}$ are chi-squared, so

$$
\begin{equation*}
\operatorname{Var}\left(S_{B}^{2}\right)=2 \frac{\sigma_{X}^{4}}{n^{2}(n-1)}+2 \frac{\sigma_{Y}^{4}}{m^{2}(m-1)} \tag{6.4.3}
\end{equation*}
$$

Combining (6.4.2) and (6.4.3), we arrive at Welch's approximation for the degrees of freedom,

$$
r=\frac{\sigma_{B}^{4}}{\frac{\sigma_{X}^{4}}{n^{2}(n-1)}+\frac{\sigma_{Y}^{4}}{m^{2}(m-1)}}=\frac{\left(\frac{\sigma_{X}^{2}}{n}+\frac{\sigma_{Y}^{2}}{m}\right)^{2}}{\frac{\sigma_{X}^{4}}{n^{2}(n-1)}+\frac{\sigma_{Y}^{4}}{m^{2}(m-1)}} .
$$

In practice, this expression for r is never an integer, so one rounds it to the closest integer, and the population variances σ_{X}^{2} and σ_{Y}^{2} are replaced by the sample variances S_{X}^{2} and S_{Y}^{2}.

We summarize the results.

Welch's T-statistic

If we have independent simple random samples, then the statistic

$$
T=\frac{\bar{X}-\bar{Y}-\left(\mu_{X}-\mu_{Y}\right)}{\sqrt{\frac{S_{X}^{2}}{n}+\frac{S_{Y}^{2}}{m}}}
$$

is approximately distributed according to a T-distribution with degrees of freedom

$$
r=\frac{\left(\frac{S_{X}^{2}}{n}+\frac{S_{Y}^{2}}{m}\right)^{2}}{\frac{S_{X}^{4}}{n^{2}(n-1)}+\frac{S_{Y}^{4}}{m^{2}(m-1)}}
$$

6.5 Variances

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a normally distributed simple random sample with mean 0 and variance 1 .

Then we know

$$
U=X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2}
$$

is chi-squared with n degrees of freedom.
Throughout we let $\chi_{\alpha, n}^{2}$ be the score corresponding to significance $1-\alpha$,

$$
\operatorname{Prob}\left(U \leq \chi_{\alpha, n}^{2}\right)=\alpha
$$

More generally, let $X_{1}, X_{2}, \ldots, X_{n}$ be a normally distributed simple random sample with mean μ and variance σ^{2}, and let

$$
S^{2}=\frac{1}{n-1} \sum_{k=1}^{n}\left(X_{k}-\bar{X}\right)^{2}
$$

be the sample variance. Then

$$
\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2} .
$$

Let

$$
\begin{equation*}
a=\chi_{\alpha / 2, n-1}^{2}, \quad b=\chi_{1-\alpha / 2, n-1}^{2} . \tag{6.5.1}
\end{equation*}
$$

By definition of the score $\chi_{\alpha, n}^{2}$, we have

$$
\operatorname{Prob}\left(a \leq \frac{(n-1) S^{2}}{\sigma^{2}} \leq b\right)=1-\alpha .
$$

From this, we get

$$
\operatorname{Prob}\left(\frac{(n-1) S^{2}}{b^{2}} \leq \sigma^{2} \leq \frac{(n-1) S^{2}}{a^{2}}\right)=1-\alpha .
$$

We conclude

Confidence Interval

A $(1-\alpha) 100 \%$ confidence interval for the population variance σ^{2} is

$$
\left(\frac{(n-1) S^{2}}{b^{2}} \leq \sigma^{2} \leq \frac{(n-1) S^{2}}{a^{2}}\right)
$$

where a and b are the χ_{n-1}^{2} scores at significance $1-\alpha / 2$ and $\alpha / 2$.

```
##############################
# Confidence Interval - Chi2
##############################
from scipy.stats import chi2
def confidence_interval(s2,n,alpha):
    a = chi2.ppf(alpha/2,n-1)
    b = chi2.ppf(1-alpha/2,n-1)
    L = (n-1)*s2/b
    U = (n-1)*s2/a
    return L, U
```

Here is an example: A large candy manufacturer produces, packages and sells packs of candy targeted to weigh 52 grams. A quality control manager working for the company was concerned that the variation in the actual weights of the targeted 52 -gram packs was larger than acceptable. That is, he was concerned that some packs weighed significantly less than 52grams and some weighed significantly more than 52 grams. In an attempt to estimate σ^{2}, he took a random sample of $\mathrm{n}=10$ packs off of the factory line. The random sample yielded a sample variance of 4.2 grams. Use the random sample to derive a 95% confidence interval for σ^{2}.

Here $S^{2}=4.2, n=10$, and $\alpha=.05$, resulting in

$$
L, U=1.99,14.0
$$

For hypothesis testing, given hypotheses

- $H_{0}: \sigma=\sigma_{0}$
- $H_{a}: \sigma \neq \sigma_{0}$
the standardized test statistic is

$$
\frac{(n-1) S^{2}}{\sigma_{0}^{2}}
$$

and one compares the p-value of the standardized test statistic to the required significance score, whether two-tail, upper-tail, or lower-tail.

Figure 6.5: Fisher F-distribution.

Now we consider two populations with two variances. For this, we introduce the F-distribution. If U_{1}, U_{2} are independent chi-squared distributions with degrees n_{1} and n_{2}, then

$$
F=\frac{U_{1} / n_{1}}{U_{2} / n_{2}}
$$

is distributed according to an F-distribution with degrees $(d f n, d f d)=\left(n_{1}, n_{2}\right)$. The F-distribution for a range of degrees is shown in Figure 6.5. Here $d f n$ and $d f d$ stand for degrees of freedom for the numerator and denominator.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a simple random sample from a normally distributed population with mean μ_{X} and variance σ_{X}^{2}. Similarly, let Y_{1}, Y_{2}, \ldots, Y_{m} be a simple random sample from a normally distributed population with mean μ_{Y} and variance σ_{Y}^{2}.

Then

$$
\frac{(n-1) S_{X}^{2}}{\sigma_{X}^{2}}, \quad \text { and } \quad \frac{(m-1) S_{Y}^{2}}{\sigma_{Y}^{2}}
$$

are independent chi-squared with degrees n and m respectively.
Hence

$$
\frac{S_{X}^{2}}{S_{Y}^{2}} \cdot \frac{\sigma_{Y}^{2}}{\sigma_{X}^{2}}
$$

is F-distributed with degrees (n, m).
For example, suppose we sample two populations independently. Suppose the first sample size is 10 , the second sample size is 5 , and the first sample variance is $\sigma_{X}^{2}=1.5$, the second sample variance is $\sigma_{Y}^{2}=2.3$. What is a 95% confidence interval for σ_{X} / σ_{Y} ?

Let a_{α} and b_{α} be the critical f-scores corresponding to $\alpha=.05$, with degrees $(d f n, d f d)=(10,5)$,

```
from scipy.stats import f
alpha = . 05
a = f.ppf(alpha/2,dfn,dfd)
b = f.ppf(1-alpha/2,dfn,dfd)
```

Then

$$
\operatorname{Prob}\left(a_{\alpha}<\frac{S_{X}^{2}}{S_{Y}^{2}} \frac{\sigma_{Y}^{2}}{\sigma_{X}^{2}}<b_{\alpha}\right)=1-\alpha,
$$

which may be rewritten

$$
\operatorname{Prob}\left(\frac{1}{b_{\alpha}} \frac{S_{X}^{2}}{S_{Y}^{2}}<\frac{\sigma_{X}^{2}}{\sigma_{Y}^{2}}<\frac{1}{a_{\alpha}} \frac{S_{X}^{2}}{S_{Y}^{2}}\right)=1-\alpha .
$$

Hence a $100 \%(1-\alpha)$ confidence interval for σ_{X} / σ_{Y} is

$$
L=\frac{1}{\sqrt{b_{\alpha}}} \frac{S_{X}}{S_{Y}}, \quad U=\frac{1}{\sqrt{a_{\alpha}}} \frac{S_{X}}{S_{Y}} .
$$

Plugging in, we obtain,

$$
L=0.31389215230779993, \quad U=1.6621265193149342
$$

for the 95% confidence interval.

6.6 Maximum Likelihood Estimates
 \star under construction \star

6.7 Chi-Squared Tests

Let $X_{1}, X_{2}, \ldots, X_{n}$ be i.i.d. random variables, where each X_{k} is categorical. This means each X_{k} is a discrete random variable taking values in one of d categories. For simplicity, assume the categories are

$$
X_{k}=0,1,2, \ldots, d-1 .
$$

When $d=2$, this reduces to the bernoulli case $X_{k}=0,1$.
When $d=2$ and $X_{k}=0,1$, the sample mean \bar{X} is a proportion, the population mean is $p=\operatorname{Prob}\left(X_{k}=1\right)$, the population standard deviation is $\sqrt{p(1-p)}$, and the sample standard deviation is $\sqrt{\bar{X}(1-\bar{X})}$. By the central limit theorem, the test statistic

$$
\begin{equation*}
Z=\sqrt{n} \cdot \frac{\bar{X}-p}{\sqrt{p(1-p)}} \tag{6.7.1}
\end{equation*}
$$

is approximately standard normal for large enough sample size, and consequently $U=Z^{2}$ is approximately chi-squared with degree one. Pearson's test generalizes this from $d=2$ categories to $d>2$ categories.

Given a category j, let $\#_{j}$ denote the number of times $X_{k}=j, 1 \leq k \leq n$. Then $\#_{j}$ is the count that $X_{k}=j$, and $\hat{p}_{j}=\#_{j} / n$ is the observed frequency, in n samples. Let p_{j} be the expected frequency,

$$
p_{j}=\operatorname{Prob}\left(X_{k}=j\right), \quad 0 \leq j<d
$$

Since X_{k} are identically distributed, this does not depend on k.
By the central limit theorem,

$$
\sqrt{n}\left(\hat{p}_{j}-p_{j}\right)=\sqrt{n}\left(\frac{\#_{j}}{n}-p_{j}\right), \quad 0 \leq j<d,
$$

are approximately normal for large n. Based on this, Pearson [19] showed

Goodness-Of-Fit Test

Let $\hat{p}=\left(\hat{p}_{1}, \hat{p}_{2}, \ldots, \hat{p}_{d}\right)$ be the observed frequencies and $p=$
$\left(p_{1}, p_{2}, \ldots, p_{d}\right)$ the expected frequencies. Then, for large n, the statistic

$$
\begin{equation*}
n \sum_{j=0}^{d-1} \frac{\left(\hat{p}_{j}-p_{j}\right)^{2}}{p_{j}} \tag{6.7.2}
\end{equation*}
$$

is approximately chi-squared with degree $d-1$.

By clearing denominators, (6.7.2) may be rewritten in terms of counts as follows,

$$
\sum_{j=0}^{d-1} \frac{\left(\#_{j}-n p_{j}\right)^{2}}{n p_{j}}=\sum_{j=0}^{d-1} \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}
$$

When $d=2$, this statistic reduces to Z^{2}, where Z is given by (6.7.1). Here is the code.

```
from numpy import *
from scipy.stats import chi2 as U
def goodness_of_fit(observed,expected):
    # assume len(observed) == len(expected)
    d = len(observed)
    n = sum(observed)
    u = sum([ (observed[i] - expected[i])**2/expected[i] for i
    \hookrightarrow in range(d) ])
    deg = d-1
    pvalue = 1 - U(deg).cdf(u)
    return pvalue
```

Suppose a dice is rolled $n=120$ times, and the observed counts are

$$
O_{1}=17, O_{2}=12, O_{3}=14, O_{4}=20, O_{5}=29, O_{6}=28
$$

Notice

$$
O_{1}+O_{2}+O_{3}+O_{4}+O_{5}+O_{6}=120 .
$$

If the dice is fair, the expected counts are

$$
E_{1}=20, E_{2}=20, E_{3}=20, E_{4}=20, E_{5}=20, E_{6}=20
$$

Based on the observed counts, at 5% significance, what can we conclude about the dice?

Here there are $d=6$ categories, and $\alpha=.05$. The Pearson statistic (6.7.2) equals

$$
u=12.7
$$

The dice is fair if u is not large and the dice is unfair if u is large. At significance level α, the large/not-large cutoff u^{*} is

```
from scipy.stats import chi2 as U
d = 6
ustar = U(d-1).ppf(1-alpha)
```

Since this returns $u^{*}=11.07$ and $u>u^{*}$, we can conclude the dice is not fair.

We now derive the goodness-of-fit test. For each category $0 \leq j<d$, let

$$
\tilde{X}_{k}^{j}= \begin{cases}\frac{1}{\sqrt{p_{j}}} & \text { if } X_{k}=j \\ 0 & \text { if } X_{k} \neq j\end{cases}
$$

Then $E\left(\tilde{X}_{n}^{j}\right)=\sqrt{p_{j}}$, and

$$
E\left(\tilde{X}_{k}^{i} \tilde{X}_{k}^{j}\right)= \begin{cases}1 & \text { if } i=j, \\ 0 & \text { if } i \neq j\end{cases}
$$

If

$$
\mu=\left(\sqrt{p_{1}}, \sqrt{p_{2}}, \ldots, \sqrt{p_{d}}\right) \quad \text { and } \quad \tilde{X}_{k}=\left(\tilde{X}_{k}^{1}, \tilde{X}_{k}^{2}, \ldots, \tilde{X}_{k}^{d}\right),
$$

then

$$
E\left(\tilde{X}_{k}\right)=\mu, \quad E\left(\tilde{X}_{k} \otimes \tilde{X}_{k}\right)=I
$$

From this,

$$
\operatorname{Var}\left(\tilde{X}_{k}\right)=E\left(\tilde{X}_{k} \otimes \tilde{X}_{k}\right)-E\left(\tilde{X}_{k}\right) \otimes E\left(\tilde{X}_{k}\right)=I-\mu \otimes \mu
$$

From (5.3.8), we conclude the random vector

$$
Z=\sqrt{n}\left(\frac{1}{n} \sum_{k=1}^{n} \tilde{X}_{k}-\mu\right)
$$

has mean zero and variance $I-\mu \otimes \mu$. By the central limit theorem, Z is approximately normal for large n.

Since

$$
|\mu|^{2}=\left(\sqrt{p_{0}}\right)^{2}+\left(\sqrt{p_{1}}\right)^{2}+\cdots+\left(\sqrt{p_{d-1}}\right)^{2}=p_{0}+p_{1}+\cdots+p_{d-1}=1
$$

μ is a unit vector. By the singular chi-squared result in $\S 5.5,|Z|^{2}$ is approximately chi-squared with degree $d-1$. Using

$$
Z_{j}=\sqrt{n}\left(\frac{\hat{p}_{j}}{\sqrt{p_{j}}}-\sqrt{p_{j}}\right)
$$

we write $|Z|^{2}$ out,

$$
|Z|^{2}=\sum_{j=1}^{d} Z_{j}^{2}=n \sum_{j=1}^{d}\left(\frac{\hat{p}_{j}}{\sqrt{p_{j}}}-\sqrt{p_{j}}\right)^{2}=n \sum_{j=1}^{d} \frac{\left(\hat{p}_{j}-p_{j}\right)^{2}}{p_{j}}
$$

obtaining (6.7.2).

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ are samples measuring two possibly related effects. Suppose the X variables take on d categories, $X=1,2, \ldots, d$, and the Y variables take on e categories, $Y=1,2, \ldots, e$. The goal is test whether the two effects are independent or not.

For example, suppose 300 people are polled and the results are collected in a contingency table (Figure 6.6).

	Democrat	Republican	Independent	Total
Women	68	56	32	156
Men	52	72	20	144
Total	120	128	52	300

Table 6.6: Contingency table [22].

Is a person's gender correlated with their party affiliation, or are the two variables independent? To answer this, we use the

Chi-squared Independence Test

Let $\hat{p}=\left(\hat{p}_{1}, \hat{p}_{2}, \ldots, \hat{p}_{d}\right)$ be the observed frequencies corresponding to $X_{1}, X_{2}, \ldots, X_{n}$, and let $\hat{q}=\left(\hat{q}_{1}, \hat{q}_{2}, \ldots, \hat{q}_{e}\right)$ be the observed frequencies corresponding to $Y_{1}, Y_{2}, \ldots, Y_{n}$. Let $\hat{r}_{i j}$ be the joint observed frequencies

$$
\hat{r}_{i j}=\frac{\#\left\{k: X_{k}=i, Y_{k}=j\right\}}{n}, \quad i=1,2, \ldots, d, j=1,2, \ldots, e .
$$

If $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independent, then, for large n, the statistic

$$
\begin{equation*}
n \sum_{i, j=1}^{d, e} \frac{\left(\hat{r}_{i j}-\hat{p}_{i} \hat{q}_{j}\right)^{2}}{\hat{p}_{i} \hat{q}_{j}} \tag{6.7.3}
\end{equation*}
$$

is approximately chi-squared with degree $(d-1)(e-1)$.
By clearing denominators, (6.7.3) may be rewritten in terms of counts as follows,

$$
\begin{aligned}
\sum_{i, j=1}^{d, e} \frac{\left(n \#_{i j}^{X Y}-\#_{i}^{X} \#_{j}^{Y}\right)^{2}}{n \#_{i}^{X} \#_{j}^{Y}} & =-n+n \sum_{i, j=1}^{d, e} \frac{\left(\#_{i j}^{X Y}\right)^{2}}{\#_{i}^{X} \#_{j}^{Y}} \\
& =-n+n \sum_{i, j=1}^{d, e} \frac{(\text { observed })^{2}}{\text { expected }} .
\end{aligned}
$$

The code

```
def chi2_independence(table):
observed = table
n = sum(observed)
d = len(observed)
e = len(observed.T)
```

```
rowsum = array([ sum(observed[i,:]) for i in range(d) ])
colsum = array([ sum(observed[:,j]) for j in range(e) ])
expected = outer(rowsum,colsum)
u = -n + n*sum([[ observed[i,j]**2/expected[i,j] for j in
\hookrightarrow range(e) ] for i in range(d) ])
deg = (d-1)*(e-1)
pvalue = 1 - U(deg).cdf(u)
return pvalue
table = array([[68,56,32],[52,72,20]])
chi2_independence(table)
```

returns a p-value of 0.0401 , so, at the 5% significance level, the effects are not independent.

The independence test is Fisher's modification [6] of goodness-of-fit, and the derivation depends on maximum likelihood estimates.

Chapter 7

Calculus

7.1 Calculus

In this section, we focus on single-variable calculus, and in $\S 7.3$, we review multi-variable calculus. Recall the slope of a line $y=m x+b$ equals m.

Let $y=f(x)$ be a function as in Figure 7.1, and let a be a fixed point. The derivative of $f(x)$ at the point a is the slope of the line tangent to the graph of $f(x)$ at a. Then the derivative at a point a is a number $f^{\prime}(a)$ possibly depending on a.

Figure 7.1: $f^{\prime}(a)$ is the slope of the tangent line at a.
Since the tangent line at a passes through the point $(a, f(a))$, and its
slope is $f^{\prime}(a)$, the equation of the tangent line at a is

$$
y=f(a)+f^{\prime}(a)(x-a) .
$$

Based on the definition, natural properties of the derivative are
A. The derivative at x of $f(x)-m x$ is $f^{\prime}(x)-m$.
B. If $f^{\prime}(x) \geq 0$ on an interval $[a, b]$, then $f(b) \geq f(a)$.
C. If $f^{\prime}(x) \leq 0$ on an interval $[a, b]$, then $f(b) \leq f(a)$.

Using these properties, we determine the formula for $f^{\prime}(a)$. Suppose the derivative is bounded between two extremes m and L at every point x in an interval $[a, b]$, say

$$
m \leq f^{\prime}(x) \leq L, \quad a \leq x \leq b
$$

Then by A, the derivative of $h(x)=f(x)-m x$ at x equals $h^{\prime}(x)=f^{\prime}(x)-m$. By assumption, $h^{\prime}(x) \geq 0$ on $[a, b]$, so, by $\mathbf{B}, h(b) \geq h(a)$. Since $h(a)=$ $f(a)-m a$ and $h(b)=f(b)-m b$, this leads to

$$
\frac{f(b)-f(a)}{b-a} \geq m
$$

Repeating this same argument with $f(x)-L x$, and using \mathbf{C}, leads to

$$
\frac{f(b)-f(a)}{b-a} \leq L
$$

We have shown

First Derivative Bounds

If $m \leq f^{\prime}(x) \leq L$ for $a \leq x \leq b$, then

$$
\begin{equation*}
m \leq \frac{f(b)-f(a)}{b-a} \leq L \tag{7.1.1}
\end{equation*}
$$

When b is close to a, we expect both extremes m and L to be close to $f^{\prime}(a)$. From (7.1.1), we arrive at the formula for the derivative,

Derivative Definition

$$
\begin{equation*}
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} . \tag{7.1.2}
\end{equation*}
$$

From (7.1.2), the derivative of a line $f(x)=m x+b$ equals $f^{\prime}(a)=m$: If the graph of a function is a line, then the tangent line to the graph is that line.

Below we also write

$$
y^{\prime}=f^{\prime}(x)=\frac{d y}{d x}
$$

or

$$
f^{\prime}(a)=\left.\frac{d y}{d x}\right|_{x=a}
$$

When the particular point a is understood from the context, we write y^{\prime}.

From (7.1.2), the basic properties of the derivative are

- Sum rule. $h=f+g$ implies $h^{\prime}=f^{\prime}+g^{\prime}$,
- Product rule. $h=f g$ implies $h^{\prime}=f^{\prime} g+f g^{\prime}$,
- Quotient rule. $h=f / g$ implies $h^{\prime}=\left(f^{\prime} g-f g^{\prime}\right) / g^{2}$.
- Chain rule. $u=f(x)$ and $y=g(u)$ implies

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

To visualize the chain rule, suppose

$$
\begin{aligned}
& u=f(x)=\sin x \\
& y=g(u)=u^{2}
\end{aligned}
$$

These are two functions f, g in composition, as in Figure 7.2.

Figure 7.2: Composition of two functions.

Suppose $x=\pi / 4$. Then $u=\sin (\pi / 4)=1 / \sqrt{2}$, and $y=u^{2}=1 / 2$. Since

$$
\frac{d y}{d u}=2 u=\frac{2}{\sqrt{2}}, \quad \frac{d u}{d x}=\cos x=\frac{1}{\sqrt{2}}
$$

by the chain rule,

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=\frac{2}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}=1
$$

Since the chain rule is important for machine learning, it is discussed in detail in §7.4.

Since a constant function $f(x)=c$ is a line with slope zero, the derivative of a constant is zero. Since $f(x)=x$ is a line with slope $1,(x)^{\prime}=1$.

By the product rule,

$$
\left(x^{2}\right)^{\prime}=x^{\prime} x+x x^{\prime}=1 x+x 1=2 x
$$

Similarly one obtains the power rule

$$
\begin{equation*}
\left(x^{n}\right)^{\prime}=n x^{n-1} . \tag{7.1.3}
\end{equation*}
$$

Using the chain rule, the power rule can be derived for any rational number n, positive or negative. For example, since $(\sqrt{x})^{2}=x$, we can write $x=f(g(x))$ with $f(x)=x^{2}$ and $g(x)=\sqrt{x}$. By the chain rule,

$$
1=(x)^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)=2 g(x) g^{\prime}(x)=2 \sqrt{x}(\sqrt{x})^{\prime}
$$

Solving for $(\sqrt{x})^{\prime}$ yields

$$
(\sqrt{x})^{\prime}=\frac{1}{2 \sqrt{x}}
$$

which is (7.1.3) with $n=1 / 2$. In this generality, the variable x is restricted to positive values only.

The second derivative $f^{\prime \prime}(x)$ of $f(x)$ is the derivative of the derivative,

$$
f^{\prime \prime}(x)=\left(f^{\prime}(x)\right)^{\prime}
$$

For example,

$$
\left(x^{n}\right)^{\prime \prime}=\left(n x^{n-1}\right)^{\prime}=n(n-1) x^{n-2}=\frac{n!}{(n-2)!} x^{n-2}=P(n, 2) x^{n-2}
$$

(for $n!$ and $P(n, k)$ see $\S 4.1$).
More generally, the k-th derivative $f^{(k)}(x)$ is the derivatives taken k times, so
$\left(x^{n}\right)^{(k)}=n(n-1)(n-2) \ldots(n-k+1) x^{n-k}=\frac{n!}{(n-k)!} x^{n-k}=P(n, k) x^{n-k}$.
When $k=0, f^{(0)}(x)=f(x)$, and, when $k=1, f^{(1)}(x)=f^{\prime}(x)$.

We use the above to derive the Taylor series. Suppose $f(x)$ is given by a finite or infinite sum

$$
\begin{equation*}
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots \tag{7.1.4}
\end{equation*}
$$

Then $f(0)=c_{0}$. Taking derivatives, by the sum, product, and power rules,

$$
\begin{align*}
f^{\prime}(x) & =c_{1}+2 c_{2} x+3 c_{3} x^{2}+4 c_{4} x^{3}+\ldots \\
f^{\prime \prime}(x) & =2 c_{2}+3 \cdot 2 c_{3} x+4 \cdot 3 c_{4} x^{2}+\ldots \\
f^{\prime \prime \prime}(x) & =3 \cdot 2 c_{3}+4 \cdot 3 \cdot 2 c_{4} x+\ldots \tag{7.1.5}\\
f^{(4)}(x) & =4 \cdot 3 \cdot 2 c_{4}+\ldots
\end{align*}
$$

Inserting $x=0$, we obtain $f^{\prime}(0)=c_{1}, f^{\prime \prime}(0)=2 c_{2}, f^{\prime \prime \prime}(0)=3 \cdot 2 c_{3}, f^{(4)}(0)=$ $4 \cdot 3 \cdot 2 c_{4}$. This can be encapsulated by $f^{(n)}(0)=n!c_{n}, n=0,1,2,3,4, \ldots$, which is best written

$$
\frac{f^{(n)}(0)}{n!}=c_{n}, \quad n \geq 0
$$

Going back to (7.1.4), we derived

Taylor Series About 0

For almost every function $f(x)$,

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2}+f^{\prime \prime \prime}(0) \frac{x^{3}}{6}+f^{(4)}(0) \frac{x^{4}}{24}+\ldots \tag{7.1.6}
\end{equation*}
$$

More generally, let a be a fixed point. Then any function $f(x)$ can be expanded in powers $(x-a)^{n}$, and we have

Taylor Series About a

For almost every function $f(x)$,

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+f^{\prime}(a)(x-a)+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2}+\ldots \tag{7.1.7}
\end{equation*}
$$

We review the derivative of sine and cosine. Recall the angle θ in radians is the length of the subtended arc (in red) in Figure 7.3. Following the figure, with $P=(x, y)$, we have $x=\cos \theta, y=\sin \theta$. By the figure, the arclength θ is greater than the diagonal, which in turn is greater than y. Moreover θ is less than $1-x+y$, so

$$
y<\theta<1-x+y .
$$

Figure 7.3: Angle θ in the plane, $P=(x, y)$.

From this we have

$$
\sin \theta<\theta<1-\cos \theta+\sin \theta
$$

which implies

$$
\begin{equation*}
1-\frac{1-\cos \theta}{\theta}<\frac{\sin \theta}{\theta}<1 . \tag{7.1.8}
\end{equation*}
$$

From the Figure, $0<\sin \theta<\theta$, and $\sin ^{2} \theta+\cos ^{2} \theta=1$, so

$$
0 \leq \frac{1-\cos \theta}{\theta}=\frac{1-\cos ^{2} \theta}{\theta(1+\cos \theta)}=\frac{\sin \theta}{\theta} \cdot \frac{\sin \theta}{1+\cos \theta} \leq \sin \theta \leq \theta
$$

This implies

$$
\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}=0
$$

Taking the limit $\theta \rightarrow 0$ in (7.1.8), this implies

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 .
$$

From (1.5.5),

$$
\sin (\theta+\phi)=\sin \theta \cos \phi+\cos \theta \sin \phi
$$

so

$$
\lim _{\phi \rightarrow 0} \frac{\sin (\theta+\phi)-\sin \theta}{\phi}=\lim _{\phi \rightarrow 0} \sin \theta \cdot \frac{\cos \phi-1}{\phi}+\cos \theta \cdot \frac{\sin \phi}{\phi}=\cos \theta
$$

Thus the derivative of sine is cosine,

$$
(\sin \theta)^{\prime}=\cos \theta
$$

Similarly,

$$
(\cos \theta)^{\prime}=-\sin \theta
$$

Using the chain rule, we compute the derivative of the inverse $\arcsin x$ of $\sin \theta$. Since

$$
\theta=\arcsin x \quad \Longleftrightarrow \quad x=\sin \theta
$$

we have

$$
1=x^{\prime}=(\sin \theta)^{\prime}=\theta^{\prime} \cdot \cos \theta=\theta^{\prime} \cdot \sqrt{1-x^{2}}
$$

or

$$
(\arcsin x)^{\prime}=\theta^{\prime}=\frac{1}{\sqrt{1-x^{2}}}
$$

We use this to compute the derivative of the arcsine law (3.2.13). With $x=\sqrt{\lambda} / 2$, by the chain rule,

$$
\begin{align*}
\left(\frac{2}{\pi} \arcsin \left(\frac{1}{2} \sqrt{\lambda}\right)\right)^{\prime} & =\frac{2}{\pi} \frac{1}{\sqrt{1-x^{2}}} \cdot x^{\prime} \\
& =\frac{2}{\pi} \frac{1}{\sqrt{1-\lambda / 4}} \cdot \frac{1}{4 \sqrt{\lambda}}=\frac{1}{\pi \sqrt{\lambda(4-\lambda)}} \tag{7.1.9}
\end{align*}
$$

This shows the derivative of the arcsine law is the density in Figure 3.11.

For the parabola in Figure 7.4, $y=x^{2}$ so, by the power rule, $y^{\prime}=2 x$. Since $y^{\prime}>0$ when $x>0$ and $y^{\prime}<0$ when $x<0$, this agrees with the increase/decrease of the graph. In particular, the minimum of the parabola occurs when $y^{\prime}=0$.

Figure 7.4: Increasing or decreasing?

For the curve $y=x^{4}-2 x^{2}$ in Figure 7.5,

$$
y^{\prime}=4 x^{3}-4 x=4 x\left(x^{2}-1\right)=4 x(x-1)(x+1),
$$

so y^{\prime} is a product of the three factors $4 x, x-1, x+1$. Since the zeros of these factors are 0,1 , and -1 , and $y^{\prime}>0$ when all factors are positive, or two of them are negative, this agrees with the increase/decrease in the figure.

Here $y^{\prime}=0$ occurs at the two minima $x= \pm 1$ and at the local maximum 0 . Notice 0 is not a global maximum as there is no highest value for y.

Figure 7.5: Increasing or decreasing?

Let $y=f(x)$ be a function. A critical point is a point x^{*} where the derivative equals zero, $f^{\prime}\left(x^{*}\right)=0$. Above we saw local or global maximizers or minimizers are critical points. In general, however, this need not be so. A critical point may be neither. For example, for $f(x)=x^{3}, x^{*}=0$ is a critical point, but is neither a maximizer nor a minimizer. Here, for $y=x^{3}, x^{*}=0$ is a saddle point.

Now we look at the increase/decrease in y^{\prime}, rather than in y. Applying the above logic to y^{\prime} instead to y, we see y^{\prime} is increasing when $y^{\prime \prime} \geq 0$, and y^{\prime} is decreasing when $y^{\prime \prime} \leq 0$. In the first case, we say $f(x)$ is convex, while in the second case, we say $f(x)$ is concave.

If we look at Figure 7.4, the slope at x equals $y^{\prime}=2 x$. Thus as x increases, y^{\prime} increases. Even though the parabola height y decreases when $x<0$ and increases when $x>0$, its slope y^{\prime} is always increasing: When $x<0$, as x increases, $y^{\prime}=2 x$ is less and less negative, while, when $x>0$, as x increases, y^{\prime} is more and more positive.

Since y^{\prime} increases when its derivative is positive, the parabola's behavior is encapsulated in

$$
y^{\prime \prime}=\left(y^{\prime}\right)^{\prime}=(2 x)^{\prime}=2>0
$$

In general,

Second Derivative Test for Convexity

$y=f(x)$ is convex iff $y^{\prime \prime} \geq 0$, and concave if $y^{\prime \prime} \leq 0$.
A point where $y^{\prime \prime}=0$ is an inflection point. For example, the parabola in Figure 7.4 is convex everywhere. Analytically, for the parabola, $y^{\prime \prime}=2>0$ everywhere,

For the graph in Figure 7.5 it is clear the graph is convex away from 0, and concave near 0. Analytically,

$$
y^{\prime \prime}=\left(x^{4}-2 x^{2}\right)^{\prime \prime}=\left(4 x^{3}-4 x\right)^{\prime}=12 x^{2}-4=4\left(3 x^{2}-1\right),
$$

so the inflection points are $x= \pm 1 / \sqrt{3}$. Hence the graph is convex when $|x|>1 / \sqrt{3}$, and the graph is concave when $|x|<1 / \sqrt{3}$. Since $1 / \sqrt{3}<1$, the graph is convex near $x= \pm 1$.

A function $f(x)$ is strictly convex if $y^{\prime \prime}>0$. Geometrically, $f(x)$ is strictly convex if each chord joining any two points on the graph lies strictly above the graph. Similarly, one defines strictly concave to mean $y^{\prime \prime}<0$.

Second Derivative Test for Strict Convexity

Suppose $y=f(x)$ has a second derivative $y^{\prime \prime}$. Then y is strictly convex if $y^{\prime \prime}>0$, and strictly concave if $y^{\prime \prime}<0$.

For example, x^{2} and e^{x} are strictly convex everywhere, and $x^{4}-2 x^{2}$ is strictly convex for $|x|>1 / \sqrt{3}$.

This was also derived in (4.4.12). Since

$$
\left(e^{x}\right)^{(n)}=e^{x}, \quad n \geq 0
$$

writing the Taylor series centered at zero for the exponential function yields the exponential series (4.4.10).

Suppose $y=f(x)$ is convex, so y^{\prime} is increasing. Then $a \leq t \leq x \leq b$ implies $f^{\prime}(a) \leq f^{\prime}(t) \leq f^{\prime}(x) \leq f^{\prime}(b)$. Taking $m=f^{\prime}(a)$ and $L=f^{\prime}(x)$ in (7.1.1),

$$
f^{\prime}(a) \leq \frac{f(x)-f(a)}{x-a} \leq f^{\prime}(x), \quad a \leq x \leq b
$$

Since the tangent line at a is $y=f^{\prime}(a)(x-a)+f(a)$, rearranging this last inequality, we obtain

Convex Function Graph Lies Above the Tangent Line

If $f(x)$ is convex on $[a . b]$, then

$$
f(x) \geq f(a)+f^{\prime}(a)(x-a), \quad a \leq x \leq b
$$

For example, the function in Figure 7.6 is convex near $x=a$, and the graph lies above its tangent line at a.

Let $p_{m}(x)$ be the parabola

$$
p_{m}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{m}{2}(x-a)^{2} .
$$

Then $p_{m}^{\prime \prime}(x)=m$. Moreover the graph of $p_{m}(x)$ is tangent to the graph of $f(x)$ at $x=a$, in the sense $f(a)=p_{m}(a)$ and $f^{\prime}(a)=p_{m}^{\prime}(a)$. Because of this, we call $p_{m}(x)$ a tangent parabola.

When y is convex, we saw above the graph of y lies above its tangent line. When $m \leq y^{\prime \prime} \leq L$, we can specify the size of the difference between the graph and the tangent line. In fact, the graph is constrained to lie above or below the lower or upper tangent parabolas.

Second Derivative Bounds

If $m \leq f^{\prime \prime}(x) \leq L$ on $[a, b]$, the graph lies between $p_{m}(x)$ and $p_{L}(x)$,

$$
\begin{equation*}
\frac{m}{2}(x-a)^{2} \leq f(x)-f(a)-f^{\prime}(a)(x-a) \leq \frac{L}{2}(x-a)^{2} . \tag{7.1.10}
\end{equation*}
$$

$a \leq x \leq b$.

To see this, suppose $f^{\prime \prime}(x) \geq m$. then $g(x)=f(x)-p_{m}(x)$ satisfies

$$
g^{\prime \prime}(x)=f^{\prime \prime}(x)-p_{m}^{\prime \prime}(x)=f^{\prime \prime}(x)-m \geq 0
$$

so $g(x)$ is convex, so $g(x)$ lies above its tangent line at $x=a$. Since $g(a)=0$ and $g^{\prime}(a)=0$, the tangent line is 0 , and we conclude $g(x) \geq 0$, which is the left half of (7.1.10). Similarly, if $f^{\prime \prime}(x) \leq L$, then $p_{L}(x)-f(x)$ is convex, leading to the right half of (7.1.10).

Figure 7.6: Tangent parabolas $p_{m}(x)$ (green), $p_{L}(x)$ (red), $L>m>0$.

Now suppose $f(x)$ is strongly convex in the sense $L \geq f^{\prime \prime}(x) \geq m$ on an interval $[a, b]$, for some positive constants m and L. By (7.1.1),

$$
t=\frac{f^{\prime}(b)-f^{\prime}(a)}{b-a} \Longrightarrow L \geq t \geq m
$$

which implies

$$
t^{2}-(m+L) t+m L=(t-m)(t-L) \leq 0, \quad a \leq t \leq b
$$

This yields

Coercivity for Strongly Convex Functions

If $m \leq f^{\prime \prime}(x) \leq L$ for $a \leq x \leq b$, then

$$
\begin{equation*}
\frac{f^{\prime}(b)-f^{\prime}(a)}{b-a} \geq \frac{m L}{m+L}+\frac{1}{m+L}\left|\frac{f^{\prime}(b)-f^{\prime}(a)}{b-a}\right|^{2} \tag{7.1.11}
\end{equation*}
$$

We now compute the derivatives of the exponential function (§4.4). By (4.4.10),

$$
\frac{e^{x}-1}{x}=1+\frac{x}{2}+\frac{x^{2}}{6}+\ldots
$$

so

$$
\left.\left(e^{x}\right)^{\prime}\right|_{x=0}=\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1
$$

By the law of exponents and $t=x-a$,

$$
\lim _{x \rightarrow a} \frac{e^{x}-e^{a}}{x-a}=e^{a} \cdot \lim _{x \rightarrow a} \frac{e^{x-a}-1}{x-a}=e^{a} \cdot \lim _{t \rightarrow 0} \frac{e^{t}-1}{t}=e^{a} \cdot 1=e^{a} .
$$

This derives

Derivative of the Exponential Function

The exponential function satisfies

$$
\left(e^{x}\right)^{\prime}=e^{x}, \quad\left(e^{x}\right)^{\prime \prime}=e^{x} .
$$

In particular, since $e^{x}>0$, the exponential function is convex.

The logarithm function is the inverse of the exponential function,

$$
y=\log x \quad \Longleftrightarrow \quad x=e^{y} .
$$

This is the same as saying

$$
\log \left(e^{y}\right)=y, \quad e^{\log x}=x
$$

Figure 7.7: The logarithm function $\log x$.

From here, we see the logarithm is defined only for $x>0$ and is strictly increasing (Figure 7.7).

Since $e^{0}=1$,

$$
\log 1=0
$$

Since $e^{\infty}=\infty$ (Figure 4.10),

$$
\log \infty=\infty
$$

Since $e^{-\infty}=1 / e^{\infty}=1 / \infty=0$,

$$
\log 0=-\infty
$$

We also see $\log x$ is negative when $0<x<1$, and positive when $x>1$.
Moreover, by the law of exponents,

$$
\log (a b)=\log a+\log b
$$

For $a>0$ and b real, define

$$
a^{b}=e^{b \log a}
$$

Then, by definition,

$$
\log \left(a^{b}\right)=b \log a
$$

and

$$
\left(a^{b}\right)^{c}=\left(e^{b \log a}\right)^{c}=e^{b c \log a}=a^{b c} .
$$

By definition of the logarithm, $y=\log x$ is shorthand for $x=e^{y}$. Use the chain rule to find y^{\prime} :

$$
x=e^{y} \quad \Longrightarrow \quad 1=x^{\prime}=\left(e^{y}\right)^{\prime}=e^{y} y^{\prime}=x y^{\prime} \text {, }
$$

so

$$
y=\log x \quad \Longrightarrow \quad y^{\prime}=\frac{1}{x}
$$

Derivative of the Logarithm

$$
\begin{equation*}
y=\log x \quad \Longrightarrow \quad y^{\prime}=\frac{1}{x} \tag{7.1.12}
\end{equation*}
$$

For gradient descent, we need the relation between a convex function and its dual. If $f(x)$ is convex, its convex dual is

$$
\begin{equation*}
g(p)=\max _{x}(p x-f(x)) \tag{7.1.13}
\end{equation*}
$$

Below we see $g(p)$ is also convex. This may not always exist, but we will work with cases where no problems arise.

Let $q>0$. The simplest example is

$$
f(x)=\frac{q}{2} x^{2} \quad \Longrightarrow \quad g(p)=\frac{1}{2 q} p^{2} .
$$

For each p, the point x where $p x-f(x)$ equals the maximum $g(p)$ - the maximizer - depends on p. If we denote the maximizer by $x=x(p)$, then

$$
g(p)=p x(p)-f(x(p))
$$

Since the maximum occurs when the derivative is zero, we have

$$
0=(p x-f(x))^{\prime}=p-f^{\prime}(x) \quad \Longleftrightarrow \quad x=x(p)
$$

Hence

$$
g(p)=p x-f(x) \quad \Longleftrightarrow \quad p=f^{\prime}(x)
$$

Also, by the chain rule, differentiating with respect to p,

$$
g^{\prime}(p)=(p x-f(x))^{\prime}=x+p x^{\prime}-f^{\prime}(x) x^{\prime}=x .
$$

From this, we conclude

$$
\begin{equation*}
p=f^{\prime}(x) \quad \Longleftrightarrow \quad x=g^{\prime}(p) \tag{7.1.14}
\end{equation*}
$$

Thus $f^{\prime}(x)$ is the inverse function of $g^{\prime}(p)$. Since $g(p)=p x-f(x)$ is the same as $f(x)=p x-g(p)$, we have

Dual of the Dual

If $g(p)$ is the convex dual of a convex $f(x)$, then $f(x)$ is the convex dual of $g(p)$.

Since $f^{\prime}(x)$ is the inverse function of $g^{\prime}(p)$, we have

$$
f^{\prime}\left(g^{\prime}(p)\right)=p
$$

Differentiating with respect to p again yields

$$
f^{\prime \prime}\left(g^{\prime}(p)\right) g^{\prime \prime}(p)=1
$$

We derived

Second Derivatives of Dual Functions

Let $f(x)$ be a strictly convex function, and let $g(p)$ be the convex dual of $f(x)$. Then $g(p)$ is strictly convex and

$$
\begin{equation*}
g^{\prime \prime}(p)=\frac{1}{f^{\prime \prime}(x)} \tag{7.1.15}
\end{equation*}
$$

where $x=g^{\prime}(p), p=f^{\prime}(x)$.

Since $f^{\prime \prime}(x)>0$, also $g^{\prime \prime}(p)>0$, so $g(p)$ is strictly convex.

The logistic function

$$
\begin{equation*}
p=\sigma(x)=\frac{e^{x}}{1+e^{x}}=\frac{1}{1+e^{-x}}, \quad-\infty<x<\infty \tag{7.1.16}
\end{equation*}
$$

was defined in $\S 5.1$. By the quotient and chain rules, its derivative is

$$
\begin{equation*}
p^{\prime}=-\frac{-e^{-x}}{\left(1+e^{-x}\right)^{2}}=\sigma(x)(1-\sigma(x))=p(1-p) \tag{7.1.17}
\end{equation*}
$$

The logistic function is also called the expit function and the sigmoid function.
The inverse of the logistic function is the logit function. The logit function is found by solving $p=\sigma(x)$ for x, obtaining

$$
\begin{equation*}
x=\sigma^{-1}(p)=\log \left(\frac{p}{1-p}\right) \tag{7.1.18}
\end{equation*}
$$

The logit function is also called the log-odds function. Its derivative is

$$
x^{\prime}=\frac{1-p}{p} \cdot\left(\frac{p}{1-p}\right)^{\prime}=\frac{1-p}{p} \cdot \frac{1}{(1-p)^{2}}=\frac{1}{p(1-p)} .
$$

Notice the derivatives of σ and its inverse σ^{-1} are reciprocals. This result holds in general, and is called the inverse function theorem.

The partition function is

$$
\begin{equation*}
Z(x)=\log \left(1+e^{x}\right) \tag{7.1.19}
\end{equation*}
$$

Then $Z^{\prime}(x)=\sigma(x)$ and $Z^{\prime \prime}(x)=\sigma^{\prime}(x)=\sigma(1-\sigma)>0$. This shows $Z(x)$ is strictly convex.

The maximum

$$
\max _{x}(p x-Z(x))
$$

is attained when $(p x-Z(x))^{\prime}=0$, which happens when $p=Z^{\prime}(x)=\sigma(x)$. Inserting the log-odds function $x=\sigma^{-1}(p)$, we obtain

$$
\begin{equation*}
\max _{x}(p x-Z(x))=p \log \left(\frac{p}{1-p}\right)-Z\left(\log \left(\frac{p}{1-p}\right)\right) \tag{7.1.20}
\end{equation*}
$$

which simplifies to $I(p)$. Thus the convex dual of the partition function is the information. The information is studied further in $\S 7.2$.

For the chi-squared distribution (§5.5), we will need Newton's generalization of the binomial theorem to general exponents.

Newton's Binomial Theorem

Let n be any real number. For $a>0$ and $-a<x<a$,

$$
(a+x)^{n}=a^{n}+n a^{n-1} x+\binom{n}{2} a^{n-2} x^{2}+\binom{n}{3} a^{n-3} x^{3}+\ldots
$$

This makes sense because the binomial coefficient $\binom{n}{k}$ is defined for any real number n (4.3.12), (4.3.13).

In summation notation,

$$
\begin{equation*}
(a+x)^{n}=\sum_{k=0}^{\infty}\binom{n}{k} a^{n-k} x^{k} \tag{7.1.21}
\end{equation*}
$$

The only difference between (4.3.7) and (7.1.21) is the upper limit of the summation, which is set to infinity. When n is a whole number, by (4.3.10), we have

$$
\binom{n}{k}=0, \quad \text { for } k>n,
$$

so (7.1.21) is a sum of $n+1$ terms, and equals (4.3.7) exactly. When n is not a whole number, the sum (7.1.21) is an infinite sum.

Actually, in $\S 5.5$, we will need the special case $a=1$, which we write in slightly different notation,

$$
\begin{equation*}
(1+x)^{p}=\sum_{n=0}^{\infty}\binom{p}{n} x^{n} \tag{7.1.22}
\end{equation*}
$$

Newton's binomial theorem (7.1.21) is a special case of the Taylor series centered at zero (7.1.6). To see this, set

$$
f(x)=(a+x)^{n}
$$

Then, by the power rule,

$$
f^{(k)}(x)=n(n-1)(n-2) \ldots(n-k+1)(a+x)^{n-k}
$$

so

$$
\frac{f^{(k)}(0)}{k!}=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!} a^{n-k}=\binom{n}{k} a^{n-k} .
$$

Writing out the Taylor series,

$$
(a+x)^{n}=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!}=\sum_{k=0}^{\infty}\binom{n}{k} a^{n-k} x^{k}
$$

which is Newton's binomial theorem.

7.2 Entropy and Information

A function $f(x)$ is concave if $-f(x)$ is convex. We use convexity of e^{x} to show concavity of $\log x$.

Let $a=e^{x}$ and $b=e^{y}$. Then $x=\log a$ and $y=\log b$. Taking the \log of both sides of (4.4.12), since $\log x$ is increasing, we have

$$
(1-t) x+t y \leq \log ((1-t) a+t b)
$$

or

$$
(1-t) \log a+t \log b \leq \log ((1-t) a+t b) .
$$

Since the inequality sign is reversed, this shows

Concavity of the Logarithm Function

The logarithm function is strictly concave,

$$
\begin{equation*}
\log ((1-t) a+t b) \geq(1-t) \log a+t \log b, \quad a>0, b>0 \tag{7.2.1}
\end{equation*}
$$

for $0 \leq t \leq 1$.
We use calculus to derive the strict concavity. By the power rule,

$$
y^{\prime \prime}=(\log x)^{\prime \prime}=\left(\frac{1}{x}\right)^{\prime}=\left(x^{-1}\right)^{\prime}=-1 x^{-2}
$$

Since $x>0, y^{\prime \prime}<0$, which shows $\log x$ is in fact strictly concave everywhere it is defined.

Since $\log x$ is strictly concave,

$$
\log \left(\frac{1}{x}\right)=-\log x
$$

is strictly convex.

Let p be a probability, i.e. a number between 0 and 1 . The entropy of p is

$$
\begin{equation*}
H(p)=-p \log p-(1-p) \log (1-p), \quad 0<p<1 \tag{7.2.2}
\end{equation*}
$$

This is sometimes called absolute entropy to contrast with relative entropy which we see below.

To graph $H(p)$, we compute its first and second derivatives. Here the independent variable is p. By the product rule,

$$
H^{\prime}(p)=(-p \log p-(1-p) \log (1-p))^{\prime}=-\log p+\log (1-p)=\log \left(\frac{1-p}{p}\right)
$$

Thus $H^{\prime}(p)=0$ when $p=1 / 2, H^{\prime}(p)>0$ on $p<1 / 2$, and $H^{\prime}(p)<0$ on $p>1 / 2$. Since this implies $H(p)$ is increasing on $p<1 / 2$, and decreasing on $p>1 / 2, p=1 / 2$ is a global maximum of the graph.

Notice as p increases, $1-p$ decreases, so $(1-p) / p$ decreases. Since log is increasing, as p increases, $H^{\prime}(p)$ decreases. Thus $H(p)$ is concave.

Taking the second derivative, by the chain rule and the quotient rule,

$$
H^{\prime \prime}(p)=\left(\log \left(\frac{1-p}{p}\right)\right)^{\prime}=-\frac{1}{p(1-p)}
$$

which is negative, leading to the strict concavity of $H(p)$.

Figure 7.8: The absolute entropy function $H(p)$.
A crucial aspect of Figure 7.8 is its limiting values at the edges $p=0$ and $p=1$,

$$
H(0)=\lim _{p \rightarrow 0} H(p) \quad \text { and } \quad H(1)=\lim _{p \rightarrow 1} H(p)
$$

Figure 7.8 suggests $H(0)=0$ and $H(1)=0$.
To check this, for the first limit, since $H(p)$ is increasing near $p=0$, it is clear there is a definite value $H(0)$. The entropy is the sum of two terms, $-p \log p$, and $-(1-p) \log (1-p)$. When $p \rightarrow 0$, the second term approaches $-\log 1=0$, so $H(0)$ is the limit of the first term,

$$
H(0)=-\lim _{p \rightarrow 0} p \log p
$$

When $p \rightarrow 0$, also $2 p \rightarrow 0$. Replacing p by $2 p$,

$$
\begin{aligned}
H(0) & =-\lim _{p \rightarrow 0} p \log p \\
& =-\lim _{p \rightarrow 0} 2 p \log (2 p) \\
= & \lim _{p \rightarrow 0}-2 p \log 2+2 H(0)=2 H(0) .
\end{aligned}
$$

Thus $H(0)=0$. Since $H(p)$ is symmetric, $H(1-p)=H(p)$, we also have $H(1)=0$. This completes the discussion of Figure 7.8.

We can now explain the meaning of the entropy function. Suppose an event has probability p. If p is near 1 , then we have confidence that the event is likely, and, if p is near 0 , we have confidence the event is unlikely. If $p=1 / 2$, then we have no information either way. Thus we can view the entropy as the negative of our information about the event: High entropy equals low information, or

Entropy and Information

Entropy equals negative information.

Because of this, we call

$$
\begin{equation*}
I(p)=-H(p)=p \log p+(1-p) \log (1-p) \tag{7.2.3}
\end{equation*}
$$

the information in p. In (7.1.20), we saw the information is the convex dual of the partition function. The derivative of $I(p)$ is

$$
\begin{equation*}
I^{\prime}(p)=\log \left(\frac{p}{1-p}\right) \tag{7.2.4}
\end{equation*}
$$

Then $I^{\prime}(p)$ is the inverse of the derivative $\sigma(x)$ (7.1.16) of the dual $Z(x)$ (7.1.19) of $I(p)$, as it should be (7.1.14).

The clearest explanation of $H(p)$ is in terms of counting coin tosses. Recall the binomial coefficient $\binom{n}{k}$ is the number of ways of selecting k objects from n objects (4.3.10).

Toss a coin n times, and let $\#_{n}=\#_{n}(p)$ be the number of outcomes where the proportion k / n of heads is p. Then the number of heads is $k=n p$, so,

$$
\#_{n}(p)=\binom{n}{n p} .
$$

When p is an irrational, $n p$ is replaced by the floor $\lfloor n p\rfloor$, but we ignore this point. Using (4.1.1), a straightforward calculation results in

Entropy and Coin-Tossing Counting
Toss a coin n times, and let $\#_{n}(p)$ be the number of outcomes where the proportion of heads is p. Then we have the approximation

$$
\#_{n}(p) \sim e^{n H(p)}, \quad \text { for } n \text { large }
$$

Figure 7.9: Asymptotics of binomial coefficients.
In more detail, using (4.1.6), one can derive the asymptotic equality

$$
\begin{equation*}
\#_{n}(p) \approx \frac{1}{\sqrt{2 \pi n}} \cdot \frac{1}{\sqrt{p(1-p)}} \cdot e^{n H(p)}, \quad \text { for } n \text { large } \tag{7.2.5}
\end{equation*}
$$

Figure 7.9 is returned by the code below, which compares both sides of the asymptotic equality (7.2.5) for $n=10$.

```
from numpy import *
from scipy.special import comb
from matplotlib.pyplot import *
```

```
n = 10
def H(p): return - p*log(p) - (1-p)*log(1-p)
p = arange(.01,.99,.01)
grid()
plot(p, comb(n, n*p), label="binomial coefficient")
plot(p, exp(n*H(p))/sqrt(2*n*pi*p*(1-p)), label="entropy
    approximation")
title("number of tosses " + "$n=" + str(n) +"$", usetex=True)
legend()
show()
```

The usetex=True option assumes $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ is installed on your system.

Let p and q be two probabilities,

$$
0<p<1, \quad \text { and } \quad 0<q<1
$$

When do we consider p and q close to each other? If p and q were just numbers, p and q are considered close if the distance $|p-q|$ is small or the distance squared $|p-q|^{2}$ is small. But here p and q are probabilities, so it makes sense to consider them close if their information content is close.

To this end, we define the relative information $I(p, q)$ by

$$
I(p, q)=p \log \left(\frac{p}{q}\right)+(1-p) \log \left(\frac{1-p}{1-q}\right) .
$$

Then

$$
I(q, q)=0
$$

which agrees with our understanding that $I(p, q)$ measures the difference in information between p and q. Because $I(p, q)$ is not symmetric in p, q, we think of q as a base or reference probability, against which we compare p.

Equivalently, instead of measuring relative information, we can measure the relative entropy,

$$
H(p, q)=-I(p, q) .
$$

Since $-\log (x)$ is strictly convex,

$$
\begin{aligned}
I(p, q) & =-p \log \left(\frac{q}{p}\right)-(1-p) \log \left(\frac{1-q}{1-p}\right) \\
& >-\log \left(p \cdot \frac{q}{p}+(1-p) \cdot \frac{1-q}{1-p}\right) \\
& =-\log 1=0 .
\end{aligned}
$$

This shows $I(p, q)$ is positive and $H(p, q)$ is negative, when $p \neq q$.

Figure 7.10: The relative information $I(p, q)$ with $q=.7$.

Since

$$
I(p, q)=-H(p)-p \log (q)-(1-p) \log (1-q)
$$

and $H(0)=0=H(1), I(p, q)$ is well-defined for $p=0$, and $p=1$,

$$
I(1, q)=-\log q, \quad I(0, q)=-\log (1-q) .
$$

Taking derivatives (with independent variable p),

$$
\frac{d^{2}}{d p^{2}} I(p, q)=-H^{\prime \prime}(p)=\frac{1}{p(1-p)}
$$

hence I is strictly convex in p. Thus q is a global minimum of the graph of $I(p, q)$ (Figure 7.10). Also

$$
\frac{d^{2}}{d q^{2}} I(p, q)=\frac{p}{q^{2}}+\frac{1-p}{(1-q)^{2}},
$$

so $I(p, q)$ is strictly convex in q as well.

Assume the probability of heads in a single toss of a coin is q. Then we expect the long-term proportion of heads in n tosses to equal roughly q. Now let p be another probability, $0 \leq p \leq 1$.

Toss a coin n times, and let $P_{n}(p, q)$ be the probability of obtaining outcomes where the proportion of heads equals p, given that the base headsprobability is q.

If p is not equal to q, we expect this outcome to be unlikely. In other words, we expect $P_{n}(p, q)$ to be small for large n. In fact, as $n \rightarrow \infty$, we expect $P_{n}(p, q) \rightarrow 0$.

We derive a formula for the speed of this decay. With $k=n p$ in the binomial distribution (5.1.5),

$$
P_{n}(p, q)=\binom{n}{n p} q^{n p}(1-q)^{n-n p}
$$

Using (4.1.1), a straightforward calculation results in

Relative Entropy and Coin-Tossing Probabilities

Assume the heads-probability of a coin is q. Toss the coin n times, and let $P_{n}(p, q)$ be the probability of obtaining outcomes where the proportion of heads is p. Then we have the approximation

$$
\begin{equation*}
P_{n}(p, q) \sim e^{n H(p, q)}, \quad \text { for } n \text { large. } \tag{7.2.6}
\end{equation*}
$$

In more detail, using (4.1.6), one can derive the asymptotic equality

$$
\begin{equation*}
P_{n}(p, q) \approx \frac{1}{\sqrt{2 \pi n}} \cdot \frac{1}{\sqrt{p(1-p)}} \cdot e^{n H(p, q)}, \quad \text { for } n \text { large } \tag{7.2.7}
\end{equation*}
$$

The law of large numbers (§6.1) states that the proportion of heads equals approximately q for large n. Therefore, when $p \neq q$, we expect the probability that the proportion of heads equal p should become successively smaller as n get larger, and in fact vanish when $n=\infty$. Since $H(p, q)<0$ when $p \neq q$, (7.2.7) implies this is so. Thus (7.2.7) may be viewed as a quantitative strengthening of the law of large numbers, in the setting of coin-tossing.

7.3 Multi-variable Calculus

Let

$$
f(x)=f\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

be a scalar function of a point $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$, and suppose x_{0} is a point, both in \mathbf{R}^{d}. In this notation, the components $x_{1}, x_{2}, \ldots, x_{d}$ are real numbers, and x_{0} is a point in \mathbf{R}^{d}, itself consisting of d components. For example, $f(x)$ could be the temperature at x or the height of a landscape above sea level at x.

Suppose v is a unit vector in \mathbf{R}^{d}, and we walk along the line $x=x_{0}+t v$, starting from x_{0} at $t=0$. Then $g(t)=f\left(x_{0}+t v\right)$ changes as we walk.

Since $g(t)$ is a function of the single variable t, its derivative $g^{\prime}(0)$ at $t=0$ is well-defined. Since this rate of change depends on the point x_{0} and on the direction v, this rate of change is called the directional derivative of $f(x)$ at x_{0} in the direction v.

More precisely, for any quantity $f(x)$, the directional derivative of $f(x)$ at x_{0} in the direction v is

$$
\begin{equation*}
D_{v} f\left(x_{0}\right)=\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t v\right)-f\left(x_{0}\right)}{t} \tag{7.3.1}
\end{equation*}
$$

In multiple dimensions, there are many directions v emanating from a point x_{0}, we may ask the following questions: How does the direction v affect the rate of change of temperature f ? More specifically, in which direction v does the temperature f increase? In which direction v does the temperature decrease? In which direction does the temperature have the greatest increase?

In which direction does the temperature have the greatest decrease? In one dimension, there are only two directions, so the directional derivative is either $f^{\prime}\left(x_{0}\right)$ or $-f^{\prime}\left(x_{0}\right)$.

When we select specific directions, the directional derivatives have specific names. Let $e_{1}, e_{2}, \ldots, e_{d}$ be the standard basis in \mathbf{R}^{d}. The partial derivative in the k-th direction, $k=1, \ldots, d$, is

$$
\frac{\partial f}{\partial x_{k}}\left(x_{0}\right)=\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t e_{k}\right)-f\left(x_{0}\right)}{t} .
$$

The partial derivative in the k-th direction is just the one-dimensional derivative considering x_{k} as the independent variable and considering all other x_{j} 's as constants.

Below we exhibit the multi-variable chain rule in two ways. The first interpretation is geometric, and involves motion in time and directional derivatives. This interpretation is relevant to gradient descent, §8.3.

The second interpretation is combinatorial, and involves repeated compositions of functions. This interpretation is relevant to computing gradients in networks, specifically backpropagation $\S 7.4, \S 8.2$.

These two interpretations work together when training neural networks, §8.4.

For the first interpretation of the chain rule, suppose the components x_{1}, x_{2}, \ldots, x_{d} are functions of a single variable t (usually time), so we have

$$
x_{1}=x_{1}(t), \quad x_{2}=x_{2}(t), \quad x_{3}=x_{3}(t), \quad \ldots
$$

Inserting these into $f\left(x_{1}, x_{2}, \ldots, x_{d}\right)$, we obtain a single function

$$
f(t)=f\left(x_{1}(t), x_{2}(t), \ldots, x_{d}(t)\right)
$$

of a single variable t. Then we have

Multi-Variable Chain Rule

With $f(t)=f\left(x_{1}(t), x_{2}(t), \ldots, x_{d}(t)\right)$,

$$
\frac{d f}{d t}=\frac{\partial f}{\partial x_{1}} \cdot \frac{d x_{1}}{d t}+\frac{\partial f}{\partial x_{2}} \cdot \frac{d x_{2}}{d t}+\cdots+\frac{\partial f}{\partial x_{d}} \cdot \frac{d x_{d}}{d t}
$$

The gradient of $f(x)$ is the vector

$$
\begin{equation*}
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{d}}\right) \tag{7.3.2}
\end{equation*}
$$

The \mathbf{R}^{d}-valued function $x(t)=\left(x_{1}(t), x_{2}(t), \ldots, x_{d}(t)\right)$ represents a curve or path in \mathbf{R}^{d}, and the vector

$$
x^{\prime}(t)=\left(x_{1}^{\prime}(t), x_{2}^{\prime}(t), \ldots, x_{d}^{\prime}(t)\right)
$$

represents its velocity at time t.
With this notation, the chain rule may be written

$$
\frac{d f}{d t}=\nabla f(x(t)) \cdot x^{\prime}(t)
$$

Let $v=\left(v_{1}, v_{2}, \ldots, v_{d}\right)$. The simplest application of the multi-variable chain rule is to select a parametric line $x(t)=x_{0}+t v$. In terms of components, this is

$$
x_{1}(t)=\left(x_{0}\right)_{1}+t v_{1}, \quad x_{2}(t)=\left(x_{0}\right)_{2}+t v_{2}, \quad \ldots
$$

Then

$$
\left(x_{1}^{\prime}(t), x_{2}(t), \ldots\right)=\left(v_{1}, v_{2}, \ldots\right)=v
$$

so the chain rule becomes

Directional Derivative Formula

The directional derivative of $f(x)$ in the direction v is the dot product of the gradient $\nabla f(x)$ and v,

$$
D_{v} f(x)=\nabla f(x) \cdot v
$$

Here is an example of the second interpretation of the chain rule. Suppose

$$
\begin{aligned}
r & =f(x)=\sin x, \\
s & =g(x)=\frac{1}{1+e^{-x}}, \\
t & =h(x)=x^{2}, \\
u & =r+s+t, \\
y & =k(u)=\cos u .
\end{aligned}
$$

These are multiple functions in composition, as in Figure 7.11.

Figure 7.11: Composition of multiple functions.
The input variable is x and the output variable is y. The intermediate variables are r, s, t, u. Suppose $x=\pi / 4$. Then

$$
x, r, s, t, u, y=0.79,0.71,0.69,0.62,2.01,-0.43
$$

To compute derivatives, start with

$$
\frac{d y}{d u}=k^{\prime}(u)=-\sin u=-0.90 .
$$

Next, to compute $d y / d r$, the chain rule says

$$
\frac{d y}{d r}=\frac{d y}{d u} d u d r=-0.90 * 1=-0.90
$$

and similarly,

$$
\frac{d y}{d s}=\frac{d y}{d t}=-0.90
$$

By the chain rule,

$$
\frac{d y}{d x}=\frac{d y}{d r} \cdot \frac{d r}{d x}+\frac{d y}{d s} \cdot \frac{d s}{d x}+\frac{d y}{d t} \cdot \frac{d t}{d x} .
$$

By (7.1.17), $s^{\prime}=s(1-s)=0.22$, so

$$
\frac{d r}{d x}=\cos x=0.71, \quad \frac{d s}{d x}=s(1-s)=0.22, \quad \frac{d t}{d x}=2 x=1.57
$$

We obtain

$$
\frac{d y}{d x}=-0.90 * 0.71-0.90 * 0.22-0.90 * 1.57=-2.25
$$

The chain rule is discussed in further detail in $\S 7.4$.

Let $y=f(x)$ be a function. A critical point is a point x^{*} satisfying

$$
\nabla f\left(x^{*}\right)=0 .
$$

Let x^{*} be a local or global minimizer of $y=f(x)$. Then for any vector v and scalar t near zero, $f\left(x^{*}\right) \leq f\left(x^{*}+t v\right)$. Hence

$$
\nabla f(x) \cdot v=\left.\frac{d}{d t}\right|_{t=0} f\left(x^{*}+t v\right)=\lim _{t \rightarrow 0} \frac{f\left(x^{*}+t v\right)-f\left(x^{*}\right)}{t} \geq 0
$$

This is so for any direction v. Replacing v by $-v$, we conclude $\nabla f\left(x^{*}\right) \cdot v=0$. Since v is any direction, $\nabla f\left(x^{*}\right)=0, x^{*}$ is a critical point. Thus a minimizer is a critical point. Similarly, a maximizer is a critical point.

As in the single-variable case, a critical point may be neither a minimizer nor a maximizer, for example $x^{*}=(0,0)$ and $y=x_{1}^{2}-x_{2}^{2}$. Such a point is a saddle point.

If x^{*} is a critical point and $D^{2} f\left(x^{*}\right)>0$, then x^{*} is a local or global minimizer. This is the same as saying all eigenvalues of the symmetric matrix $D^{2} f\left(x^{*}\right)$ are positive. When $D^{2} f\left(x^{*}\right)<0, x^{*}$ is a local or global maximum.

If $D^{2} f\left(x^{*}\right)$ has both positive and negative eigenvalues, x^{*} is a saddle point.

Let Q be a $d \times d$ symmetric matrix, let b be a vector, and let

$$
\begin{equation*}
f(x)=\frac{1}{2} x \cdot Q x-b \cdot x=\frac{1}{2} \sum_{i, j=1}^{d} q_{i j} x_{i} x_{j}-\sum_{j=1}^{d} b_{j} x_{j} . \tag{7.3.3}
\end{equation*}
$$

When Q is a covariance matrix and $b=0, f(x)$ is the variance corresponding to covariance matrix Q.

In this case,

$$
\frac{\partial f}{\partial x_{i}}=\frac{1}{2} \sum_{j=1}^{d} q_{i j} x_{j}+\frac{1}{2} \sum_{j=1}^{d} q_{j i} x_{j}-b_{i}=(Q x-b)_{i}
$$

Here we used $Q=Q^{t}$. Thus $\nabla f(x)=Q x-b$, and

$$
D_{v} f(x)=v \cdot(Q x-b) .
$$

A multi-variable function $f(x)$ is convex if its restriction to any line is convex. Explicitly, $f(x)$ is convex if the single-variable function $g(t)=f\left(x_{0}+\right.$ $t v$) is convex for for every point x_{0} and every direction v.

For example, when $f(x)$ is given by (7.3.3),

$$
\begin{align*}
g(t) & =f\left(x_{0}+t v\right) \\
& =\frac{1}{2}\left(x_{0}+t v\right) \cdot Q\left(x_{0}+t v\right)-b \cdot\left(x_{0}+t v\right) \\
& =\frac{1}{2} x_{0} \cdot Q x_{0}-b \cdot x_{0}+t v \cdot\left(Q x_{0}-b\right)+\frac{1}{2} t^{2} v \cdot Q v \tag{7.3.4}\\
& =f\left(x_{0}\right)+t v \cdot\left(Q x_{0}-b\right)+\frac{1}{2} t^{2} v \cdot Q v .
\end{align*}
$$

From this follows

$$
g^{\prime}(t)=v \cdot\left(Q x_{0}-b\right)+t v \cdot Q v, \quad g^{\prime \prime}(t)=f(v)=\frac{1}{2} v \cdot Q v
$$

This shows

Quadratic Convexity

Let Q be a symmetric matrix and b a vector. The quadratic function

$$
f(x)=\frac{1}{2} x \cdot Q x-b \cdot x
$$

has gradient

$$
\begin{equation*}
\nabla f(x)=Q x-b \tag{7.3.5}
\end{equation*}
$$

Moreover $f(x)$ is convex everywhere exactly when Q is a covariance matrix, $Q \geq 0$.

By (2.2.2),

$$
D_{v} f(x)=\nabla f(x) \cdot v=|\nabla f(x)||v| \cos \theta,
$$

where θ is the angle between the vector v and the gradient vector $\nabla f(x)$.
Since $-1 \leq \cos \theta \leq 1$, we conclude

Gradient is Direction of Greatest Increase

Let v be a unit vector and let x_{0} be a point in \mathbf{R}^{d}. As the direction v varies, the directional derivative varies between the two extremes

$$
-\left|\nabla f\left(x_{0}\right)\right| \leq D_{v} f\left(x_{0}\right) \leq\left|\nabla f\left(x_{0}\right)\right|
$$

The directional derivative achieves its greatest value when v points in the direction of $\nabla f\left(x_{0}\right)$, and achieves its least value in the opposite direction, when v points in the direction of $-\nabla f\left(x_{0}\right)$.

7.4 Back Propagation

In this section, we compute outputs and derivatives on a graph. We consider two cases, when the graph is a chain, or the graph is weighed and directed
(§4.2). The derivatives are taken with respect to the outputs at each node of the graph. In $\S 8.2$, we consider a third case, and compute outputs and derivatives on a neural network.

To compute node outputs, we do forward propagation. To compute derivatives, we do back propagation. Corresponding to the three cases, we will code three versions of forward and back propagation. In all cases, back propagation depends on the chain rule.

The chain rule (§7.1) states

$$
r=f(x), y=g(r) \quad \Longrightarrow \quad \frac{d y}{d x}=\frac{d y}{d r} \cdot \frac{d r}{d x} .
$$

In this section, we work out the implications of the chain rule on repeated compositions of functions.

Suppose

$$
\begin{aligned}
& r=f(x)=\sin x, \\
& s=g(r)=\frac{1}{1+e^{-r}}, \\
& y=h(s)=s^{2}
\end{aligned}
$$

These are three functions f, g, h composed in a chain (Figure 7.12).

Figure 7.12: Composition of three functions in a chain.
The chain in Figure 7.12 has four nodes and four edges. The outputs at the nodes are x, r, s, y. Start with output $x=\pi / 4$. Evaluating the functions in order,

$$
x=0.785, \quad r=0.707, \quad s=0.670, \quad y=0.448
$$

Notice these values are evaluated in the forward direction: x then r then s then y. This is forward propagation.

Now we evaluate the derivatives of the output y with respect to x, r, s,

$$
\frac{d y}{d x}, \quad \frac{d y}{d r}, \quad \frac{d y}{d s} .
$$

With the above values for x, r, s, we have

$$
\frac{d y}{d s}=2 s=2 * 0.670=1.340
$$

Since g is the logistic function, by (7.1.17),

$$
g^{\prime}(r)=g(r)(1-g(r))=s(1-s)=0.670 *(1-0.670)=0.221
$$

From this,

$$
\frac{d y}{d r}=\frac{d y}{d s} \cdot \frac{d s}{d r}=1.340 * g^{\prime}(r)=1.340 * 0.221=0.296
$$

Repeating one more time,

$$
\frac{d y}{d x}=\frac{d y}{d r} \cdot \frac{d r}{d x}=0.296 * \cos x=0.296 * 0.707=0.209
$$

Thus the derivatives are

$$
\frac{d y}{d x}=0.209, \quad \frac{d y}{d r}=0.296, \quad \frac{d y}{d s}=1.340
$$

Notice the derivatives are evaluated in the backward direction: First $d y / d y=$ 1 , then $d y / d s$, then $d y / d r$, then $d y / d x$. This is back propagation.

Here is another example. Let

$$
\begin{aligned}
& r=x^{2} \\
& s=r^{2}=x^{4} \\
& y=s^{2}=x^{8}
\end{aligned}
$$

This is the same function $h(x)=x^{2}$ composed with itself three times. With $x=5$, we have

$$
x=5, \quad r=25, \quad s=625, \quad y=390625
$$

Applying the chain rule as above, check that

$$
\frac{d y}{d x}=625000, \quad \frac{d y}{d r}=62500, \quad \frac{d y}{d s}=1250
$$

To evaluate x, r, s, y in Figure 7.12, first we built the list of functions and the list of derivatives

```
from numpy import *
def f(x): return sin(x)
def g(r): return 1/(1+ exp(-r))
def h(s): return s**2
# this for next example
def k(t): return cos(t)
func_chain = [f,g,h]
def df(x): return cos(x)
def dg(r): return g(r)*(1-g(r))
def dh(s): return 2*s
# this for next example
def dk(t): return -sin(t)
der_chain = [df,dg,dh]
```

Then we evaluate the output vector $x=(x, r, s, y)$, leading to the first version of forward propagation,

```
# first version: chains
def forward_prop(x_in,func_chain):
    x = [x_in]
    while func_chain:
        f = func_chain.pop(0) # first func
        x_out = f(x_in)
        x.append(x_out) # insert at end
        x_in = x_out
    return x
from numpy import *
x_in = pi/4
x = forward_prop(x_in,func_chain)
```

Now we evaluate the gradient vector $\delta=(d y / d x, d y / d r, d y / d s, d y / d y)$. Since $d y / d y=1$, we set

```
# dy/dy = 1
delta_out = 1
```

The code for the first version of back propagation is

```
# first version: chains
def backward_prop(delta_out,x,der_chain):
    delta = [delta_out]
    while der_chain:
        # discard last output
        x.pop(-1)
        df = der_chain.pop(-1) # last der
        der = df(x[-1])
        # chain rule -- multiply by previous der
        der = der * delta[0]
        delta.insert(0,der) # insert at start
    return delta
delta = backward_prop(delta_out,x,der_chain)
```

Note forward propagation must be run prior to back propagation.

To apply this code to the second example, use

```
d = 3
func_chain, der_chain = [h]*d, [dh]*d
x_in, delta_out = 5, 1
x = forward_prop(x_in,func_chain)
delta = backward_prop(delta_out,x,der_chain)
```

Now we work with the network in Figure 7.13, using the multi-variable chain rule (§7.3). The functions are

$$
\begin{aligned}
a & =f(x, y) \\
b & =x+y \\
& =g(y, z)=\max (y, z), \\
J & =h(a, b)=a b
\end{aligned}
$$

The composite function is

$$
J=(x+y) \max (y, z)
$$

Figure 7.13: A network composition [24].
Here there are three input nodes x, y, z, and three hidden nodes + , max, *. Starting with inputs $(x, y, z)=(1,2,0)$, and plugging in, we obtain node outputs

$$
(x, y, z, a, b, J)=(1,2,0,3,2,6)
$$

(Figure 7.15). This is forward propagation.

Now we compute the derivatives

$$
\frac{\partial J}{\partial x}, \quad \frac{\partial J}{\partial y}, \quad \frac{\partial J}{\partial z}, \quad \frac{\partial J}{\partial a}, \quad \frac{\partial J}{\partial b} .
$$

This we do in reverse order. First we compute

$$
\frac{\partial J}{\partial a}=b=2, \quad \frac{\partial J}{\partial b}=a=3
$$

Then

$$
\frac{\partial a}{\partial x}=1, \quad \frac{\partial a}{\partial y}=1
$$

Figure 7.14: The function $g=\max (y, z)$.
Let

$$
\mathbf{1}(y>z)= \begin{cases}1, & y>z \\ 0, & y<z\end{cases}
$$

By Figure 7.14, since $y=2$ and $z=0$,

$$
\frac{\partial b}{\partial y}=\mathbf{1}(y>z)=1, \quad \frac{\partial b}{\partial z}=\mathbf{1}(z>y)=0 .
$$

By the chain rule,

$$
\begin{gathered}
\frac{\partial J}{\partial x}=\frac{\partial J}{\partial a} \frac{\partial a}{\partial x}=2 * 1=2 \\
\frac{\partial J}{\partial y}=\frac{\partial J}{\partial a} \frac{\partial a}{\partial y}+\frac{\partial J}{\partial b} \frac{\partial b}{\partial y}=2 * 1+3 * 1=5, \\
\frac{\partial J}{\partial z}=\frac{\partial J}{\partial b} \frac{\partial b}{\partial z}=3 * 0=0 .
\end{gathered}
$$

Hence we have

$$
\left(\frac{\partial J}{\partial x}, \frac{\partial J}{\partial y}, \frac{\partial J}{\partial z}, \frac{\partial J}{\partial a}, \frac{\partial J}{\partial b}, \frac{\partial J}{\partial J}\right)=(2,5,0,2,3,1) .
$$

The outputs (blue) and the derivatives (red) are displayed in Figure 7.15.

Figure 7.15: Forward and backward propagation [24].
Summarizing, by the chain rule,

- derivatives are computed backward,
- derivatives along successive edges are multiplied,
- derivatives along several outgoing edges are added.

To do this in general, recall a directed graph (§4.2) as in Figure 7.13 has an adjacency matrix $W=\left(w_{i j}\right)$ with $w_{i j}$ equal to one or zero depending on whether (i, j) is an edge or not.

Suppose a directed graph has d nodes, and, for each node i, let x_{i} be the outgoing signal. Then $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ is the outgoing vector. In the case of Figure 7.13, $d=6$ and

$$
x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=(x, y, z, a, b, J) .
$$

With this order, the adjacency matrix is

$$
W=\left(\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

This we code as a list of lists,

```
d = 6
w = [ [None]*d for _ in range(d) ]
w[0][3] = w[1][3] = w[1][4] = w[2][4] = w[3][5] = w[4][5] = 1
```

More generally, in a weighed directed graph, the weights $w_{i j}$ are numeric scalars. In this case, for each node j, let

$$
\begin{equation*}
x_{j}^{-}=\left(w_{1 j} x_{1}, w_{2 j} x_{2}, \ldots, w_{d j} x_{d}\right) . \tag{7.4.1}
\end{equation*}
$$

Then x_{j}^{-}is the list of node signals, each weighed accordingly. If (i, j) is not an edge, then $w_{i j}=0$, so x_{i} does not appear in x_{j}^{-}: In other words, x_{j}^{-} is the weighed list of incoming signals at node j.

An activation function at node j is a function f_{j} of the incoming signals x_{j}^{-}. Then the outgoing signal at node j is

$$
\begin{equation*}
x_{j}=f_{j}\left(x_{j}^{-}\right)=f_{j}\left(w_{1 j} x_{1}, w_{2 j} x_{2}, \ldots, w_{d j} x_{d}\right) . \tag{7.4.2}
\end{equation*}
$$

By the chain rule,

$$
\frac{\partial x_{j}}{\partial x_{i}}= \begin{cases}\frac{\partial f_{j}}{\partial x_{i}} \cdot w_{i j}, & \text { if }(i, j) \text { is an edge } \tag{7.4.3}\\ 0, & \text { if }(i, j) \text { is not an edge }\end{cases}
$$

For example, if $(1,5),(7,5),(2,5)$ are the edges pointing to node 5 and we ignore zeros in (7.4.1), then $x_{5}^{-}=\left(w_{15} x_{1}, w_{75} x_{7}, w_{25} x_{2}\right)$, so

$$
x_{5}=f_{5}\left(x_{5}^{-}\right)=f_{5}\left(w_{15} x_{1}, w_{75} x_{7}, w_{25} x_{2}\right) .
$$

The incoming vector is

$$
x^{-}=\left(x_{1}^{-}, x_{2}^{-}, \ldots, x_{d}^{-}\right) .
$$

Then x^{-}is a list of lists. In the case of Figure 7.13, if we ignore zeros,

$$
x^{-}=\left(x_{1}^{-}, x_{2}^{-}, x_{3}^{-}, x_{4}^{-}, x_{5}^{-}, x_{6}^{-}\right)=((),(),(),(x, y),(y, z),(a, b)),
$$

and

$$
f_{4}(x, y)=x+y, \quad f_{5}(y, z)=\max (y, z), \quad J(a, b)=a b
$$

Note there is nothing incoming at the input nodes, so there is no point defining f_{1}, f_{2}, f_{3}.

```
activate = [None]*d
activate[3] = lambda x,y: x+y
activate[4] = lambda y,z: max(y,z)
activate[5] = lambda a,b: a*b
```

Assume activate[j] is the function at node j. To compute the outgoing signal x_{j} at node j, we collect the incoming signals x_{j}^{-}following (7.4.1)

```
def incoming(x,w,j):
    return [ outgoing(x,w,i) * w[i][j] if w[i][j] else 0 for i
        \hookrightarrow in range(d) ]
```

then plug them into the activation function,

```
def outgoing(x,w,j):
    if x[j] != None: return x[j]
    else: return activate[j](*incoming(x,w,j))
```

Here * is the unpacking operator.
Summarizing, at each node j, we have the outgoing signal x_{j}, and a list x_{j}^{-}of incoming signals.

A network is a directed weighed graph with an activation function attached at each node. The code in this section works for any network. In §8.2, we specialize to neural networks. Neural networks are networks with a restricted class of activation functions.

Let $x_{\text {in }}$ be the outgoing vector over the input nodes. If there are m input nodes, and d nodes in total, then the length of $x_{\text {in }}$ is m, and the length of x is d. In the example above, $x_{\mathrm{in}}=(x, y, z)$.

We assume the nodes are ordered so that the initial portion of x equals $x_{\text {in }}$,

```
m = len(x_in)
x[:m] = x_in
```

Here is the second version of forward propagation.

```
# second version: networks
def forward_prop(x_in,w):
    d = len(w)
    x = [None]*d
    m = len(x_in)
    x[:m] = x_in
    for j in range(m,d): x[j] = outgoing(x,w,j)
    return x
```

For this code to work, we assume there are no cycles in the graph: All backward paths end at inputs.

Let $x_{\text {out }}$ be the output nodes. For Figure 7.13, this means $x_{\text {out }}=(J)$. Then by forward propagation, J is also a function of all node outputs. For Figure 7.13, this means J is a function of x, y, z, a, b.

Therefore, at each node i, we have the derivatives

$$
\delta_{i}=\frac{\partial J}{\partial x_{i}}\left(x_{i}\right), \quad i=1,2, \ldots, d .
$$

Then $\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{d}\right)$ is the gradient vector. We first compute the derivatives of J with respect to the output nodes $x_{\text {out }}$, and we assume these derivatives are assembled into a vector $\delta_{\text {out }}$.

In Figure 7.13, there is one output node J, and

$$
\delta_{J}=\frac{\partial J}{\partial J}=1 .
$$

Hence $\delta_{\text {out }}=(1)$.
We assume the nodes are ordered so that the terminal portion of x equals $x_{\text {out }}$ and the terminal portion of δ equals $\delta_{\text {out }}$,

```
\(d=\operatorname{len}(x)\)
\(\mathrm{m}=\) len(x_out)
x[d-m:] = x_out
delta[d-m:] = delta_out
```

For each i, j, let

$$
g_{i j}=\frac{\partial f_{j}}{\partial x_{i}} .
$$

Then we have a $d \times d$ gradient matrix $g=\left(g_{i j}\right)$. When (i, j) is not an edge, $g_{i j}=0$.

These are the local derivatives, not the derivatives obtained by the chain rule. For example, even though we saw above $\partial J / \partial y=1$, here the local derivative is zero, since J does not depend directly on y.

For the example above, with $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=(x, y, z, a, b, J)$,

```
g = [ [None]*d for _ in range(d) ]
    # note g[i][i] remains undefined
    g[0][3] = lambda x,y: 1
    g[1][3] = lambda x,y: 1
    g[1][4] = lambda y,z: 1 if y>z else 0
    g[2] [4] = lambda y,z: 1 if z>y else 0
    g[3] [5] = lambda a,b: b
    g[4] [5] = lambda a,b: a
```

By the chain rule and (7.4.3),

$$
\frac{\partial J}{\partial x_{i}}=\sum_{i \rightarrow j} \frac{\partial J}{\partial x_{j}} \cdot \frac{\partial x_{j}}{\partial x_{i}}=\sum_{i \rightarrow j} \frac{\partial J}{\partial x_{j}} \cdot \frac{\partial f_{j}}{\partial x_{i}} \cdot w_{i j},
$$

SO

$$
\delta_{i}=\sum_{i \rightarrow j} \delta_{j} \cdot g_{i j} \cdot w_{i j}
$$

The code is

```
def derivative(x,delta,g,i):
    if delta[i] != None: return delta[i]
    else:
        return sum([ derivative(x,delta,g,j) *
    \hookrightarrowg[i][j](*incoming(x,g,j)) * w[i][j] if g[i][j] != None
    \hookrightarrow else 0 for j in range(d) ])
```

This leads to our second version of back propagation,

```
# second version: networks
def backward_prop(x,delta_out,g):
    d = len(g)
    delta = [None]*d
    m = len(delta_out)
    delta[d-m:] = delta_out
    for i in range(d-m): delta[i] = derivative(x,delta,g,i)
    return delta
```


7.5 Convex Functions

Let $f(x)$ be a scalar function of points $x=\left(x_{1}, \ldots, x_{d}\right)$ in \mathbf{R}^{d}. For example, in two dimensions,

$$
f(x)=f\left(x_{1}, x_{2}\right)=\max \left(\left|x_{1}\right|,\left|x_{2}\right|\right), \quad f(x)=f\left(x_{1}, x_{2}\right)=\frac{x_{1}^{2}}{4}+x_{2}^{2}
$$

are scalar functions of points in \mathbf{R}^{2}. More generally, if Q is a $d \times d$ matrix, $f(x)=x \cdot Q x$ is such a function. Here, to obtain $x \cdot Q x$, we think of the point x as a vector, then use row-times-column multiplication to obtain $Q x$, then take the dot product with x. We begin with functions in general.

A level set of $f(x)$ is the set

$$
E: \quad f(x)=1
$$

Here we write the level set of level 1. One can have level sets corresponding to any level $\ell, f(x)=\ell$. In two dimensions, level sets are also called contour lines.

Figure 7.16: Level sets and sublevel sets in two dimensions.
For example, the covariance ellipsoids $x \cdot Q x=1$ are level sets. In two dimensions, the square and ellipse in Figure 7.16 are level sets

$$
\max \left(\left|x_{1}\right|,\left|x_{2}\right|\right)=1, \quad \frac{x_{1}^{2}}{4}+x_{2}^{2}=1
$$

The contour lines of

$$
f(x)=f\left(x_{1}, x_{2}\right)=\frac{x_{1}^{2}}{16}+\frac{x_{2}^{2}}{4}
$$

are in Figure 7.17.

Figure 7.17: Contour lines in two dimensions.

A sublevel set of $f(x)$ is the set

$$
E: \quad f(x) \leq 1
$$

Figure 7.18: Line segment $\left[x_{0}, x_{1}\right]$.
Here we write the sublevel set of level 1. One can have sublevel sets corresponding to any level $c, f(x) \leq c$. For example, in Figure 7.16, the (blue) interior of the square, together with the square itself, is a sublevel set. Similarly, the interior of the ellipse, together with the ellipse itself, is a sublevel set. The interiors of the ellipsoids, together with the ellipsoids themselves, in Figure 7.21 are sublevel sets. Note we always consider the level set to be part of the sublevel set.

The level set $f(x)=1$ is the boundary of the sublevel set $f(x) \leq 1$. Thus the square and the ellipse in Figure 7.16 are boundaries of their respective sublevel sets, and the covariance ellipsoid $x \cdot Q x=1$ is the boundary of the sublevel set $x \cdot Q x \leq 1$.

Given points x_{0} and x_{1} in \mathbf{R}^{d}, the line segment joining them is

$$
\left[x_{0}, x_{1}\right]=\left\{(1-t) x_{0}+t x_{1}: 0 \leq t \leq 1\right\}
$$

A scalar function $f(x)$ is convex if ${ }^{1}$ for any two points x_{0} and x_{1} in \mathbf{R}^{d},

$$
\begin{equation*}
f\left((1-t) x_{0}+t x_{1}\right) \leq(1-t) f\left(x_{0}\right)+t f\left(x_{1}\right), \quad \text { for } \quad 0 \leq t \leq 1 \tag{7.5.1}
\end{equation*}
$$

This says the line segment joining any two points $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$ on the graph of $f(x)$ lies above the graph of $f(x)$. For example, in two dimensions, the function $f(x)=f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2} / 4$ is convex because its graph is the paraboloid in Figure 7.19.

More generally, given points $x_{1}, x_{2}, \ldots, x_{N}$, a linear combination

$$
t_{1} x_{1}+t_{2} x_{2}+\cdots+t_{N} x_{N}
$$

[^12]

Figure 7.19: Convex: The line segment lies above the graph.
is a convex combination if $t_{1}, t_{2}, \ldots, t_{N}$ are nonnegative, and

$$
t_{1}+t_{2}+\cdots+t_{N}=1
$$

For example, if $0 \leq t \leq 1,(1-t) x_{0}+t x_{1}$ is a convex combination of x_{0} and x_{1}. Then a convex function also satisfies

$$
\begin{equation*}
f\left(t_{1} x_{1}+\cdots+t_{N} x_{N}\right) \leq t_{1} f\left(x_{1}\right)+\cdots+t_{N} f\left(x_{N}\right) \tag{7.5.2}
\end{equation*}
$$

for any convex combination.

Recall (§2.2) a nonnegative matrix is a symmetric matrix Q satisfying $x \cdot Q x \geq 0$ for all x, and every such matrix is the covariance matrix of some dataset.

Quadratic is Convex

If Q is a nonnegative matrix and b is a vector, then

$$
f(x)=\frac{1}{2} x \cdot Q x-b \cdot x
$$

is a convex function.

Figure 7.20: Convex hull of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$.

This was derived in the previous section, but here we present a more geometric proof.

To derive this result, let x_{0} and x_{1} be any points, and let $v=x_{1}-x_{0}$. Then $x_{0}+t v=(1-t) x_{0}+t x_{1}$ and $x_{1}=x_{0}+v$. Let $g_{0}=Q x_{0}-b$. By (7.3.4),
$f\left(x_{0}+t v\right)=f\left(x_{0}\right)+t v \cdot\left(Q x_{0}-b\right)+\frac{1}{2} t^{2} v \cdot Q v=f\left(x_{0}\right)+t v \cdot g_{0}++\frac{1}{2} t^{2} v \cdot Q v$.
Inserting $t=1$ in (7.5.3), we have $f\left(x_{1}\right)=f\left(x_{0}\right)+v \cdot g_{0}+v \cdot Q v / 2$. Since $t^{2} \leq t$ for $0 \leq t \leq 1$ and $v \cdot Q v \geq 0$, by (7.5.3),

$$
\begin{aligned}
f\left((1-t) x_{0}+t x_{1}\right) & =f\left(x_{0}+t v\right) \\
& \leq f\left(x_{0}\right)+t v \cdot g_{0}+\frac{1}{2} t v \cdot Q v \\
& =(1-t) f\left(x_{0}\right)+t f\left(x_{0}\right)+t v \cdot g_{0}+\frac{1}{2} t v \cdot Q v \\
& =(1-t) f\left(x_{0}\right)+t f\left(x_{1}\right) .
\end{aligned}
$$

A convex set is a subset E in \mathbf{R}^{d} that contains the line segment joining any two points in it: If x_{0} and x_{1} are in E, then the line segment $\left[x_{0}, x_{1}\right]$ is in E. To be consistent with sublevel sets, we only consider convex sets that contain their boundaries.

More generally, given points $x_{1}, x_{2}, \ldots, x_{N}$ in E, the convex combination

$$
x=t_{1} x_{1}+t_{2} x_{2}+\cdots+t_{N} x_{N}
$$

is also in E. The set of all convex combinations of $x_{1}, x_{2}, \ldots, x_{N}$ is the convex hull of $x_{1}, x_{2}, \ldots, x_{N}$ (Figure 7.20). If E is convex and contains x_{1}, x_{2}, \ldots, x_{N}, then E contains their convex hull.

The interiors of the square and the ellipse in Figure 7.16, together with their boundaries, are convex sets. The interior of the ellipsoid in Figure 7.21, together with the ellipsoid, is a convex set.

If $f(x)$ is a function, its graph is the set of points (x, y) in \mathbf{R}^{d+1} satisfying $y=f(x)$, and its epigraph is the set of points (x, y) satisfying $y \geq f(x)$. If $f(x)$ is defined on \mathbf{R}^{d}, its sublevel sets are in \mathbf{R}^{d}, and its epigraph is in \mathbf{R}^{d+1}. Then $f(x)$ is a convex function exactly when its epigraph is a convex set (Figure 7.19). From convex functions, there are other ways to get convex sets:

Sublevel of Convex is Convex

If $f(x)$ is a convex function, then the sublevel set

$$
E: \quad f(x) \leq 1
$$

is a convex set.
This is an immediate consequence of the definition: $f\left(x_{0}\right) \leq 1$ and $f\left(x_{1}\right) \leq 1$ implies

$$
f\left((1-t) x_{0}+t x_{1}\right) \leq(1-t) f\left(x_{0}\right)+t f\left(x_{1}\right) \leq(1-t)+t=1 .
$$

From these results, we have

Ellipsoids are Boundaries of Convex Sets

If Q is a covariance matrix, then $x \cdot Q x \leq 1$ is a convex set.

Figure 7.21: Convex set in three dimensions with supporting hyperplane.

Let n be a nonzero vector in \mathbf{R}^{d}. In two dimensions, the vectors orthogonal to n form a line (Figure 7.22). In three dimensions, the vectors orthogonal to n form a plane (Figure 7.22). In d dimensions, these vectors form the orthogonal complement $n^{\perp}(2.7 .5)$, which is a $(d-1)$-dimensional subspace. This subspace is a hyperplane passing through the origin.

Figure 7.22: Hyperplanes in two and three dimensions.

In general, given a point x_{0} and a nonzero vector n, the hyperplane through
x_{0} with normal n consists of all solutions x of

$$
\begin{equation*}
H: \quad n \cdot\left(x-x_{0}\right)=0 . \tag{7.5.4}
\end{equation*}
$$

A hyperplane separates the whole space \mathbf{R}^{d} into two half-spaces,

$$
n \cdot\left(x-x_{0}\right)<0 \quad n \cdot\left(x-x_{0}\right)=0 \quad n \cdot\left(x-x_{0}\right)>0 .
$$

The vector n is the normal vector to the hyperplane. Note replacing n by any nonzero multiple of n leaves the hyperplane unchanged.

Separating Hyperplane

Let E be a convex set and let x^{*} be a point not in E. Then there is a hyperplane separating x^{*} and E : For some x_{0} in E and nonzero n,

$$
\begin{equation*}
n \cdot\left(x-x_{0}\right) \leq 0 \quad \text { and } \quad n \cdot\left(x^{*}-x_{0}\right)>0 . \tag{7.5.5}
\end{equation*}
$$

Figure 7.23: Separating hyperplane theorem.

A diagram of the proof is Figure 7.23. Let x_{0} be the point in E closest to x^{*}. This means x_{0} minimizes $\left|x-x^{*}\right|^{2}$ over x in E. If x is in E, then by convexity, the line segment $\left[x_{0}, x\right]$ is in E, hence $x_{0}+t v, v=x-x_{0}$, is in E for $0 \leq t \leq 1$. Since x_{0} is the point of E closest to x^{*},

$$
\left|x_{0}-x^{*}\right|^{2} \leq\left|x_{0}+t v-x^{*}\right|^{2} \quad \text { for } \quad 0 \leq t \leq 1
$$

Expanding, we have

$$
\left|x_{0}-x^{*}\right|^{2} \leq\left|x_{0}-x^{*}\right|^{2}+2 t\left(x_{0}-x^{*}\right) \cdot v+t^{2}|v|^{2}, \quad 0 \leq t \leq 1 .
$$

Canceling $\left|x_{0}-x^{*}\right|^{2}$ then, for $t>0$, canceling t, we obtain

$$
0 \leq 2\left(x_{0}-x^{*}\right) \cdot v+t|v|^{2}, \quad 0 \leq t \leq 1
$$

Since this is true for small positive t, sending $t \rightarrow 0$, results in $v \cdot\left(x_{0}-x^{*}\right) \geq 0$. Setting $n=x^{*}-x_{0}$, we obtain

$$
n \cdot\left(x-x_{0}\right) \leq 0 \quad \text { and } \quad n \cdot\left(x^{*}-x_{0}\right)>0
$$

Now suppose x_{0} is a point in the boundary of a convex set E. Since x_{0} is in E, we cannot find a separating hyperplane for $x^{*}=x_{0}$. In this case, the best we can hope for is a hyperplane passing through x_{0}, with E to one side of the hyperplane:

$$
\begin{equation*}
x \text { in } E \quad \Longrightarrow \quad\left(x-x_{0}\right) \cdot n \leq 0 \tag{7.5.6}
\end{equation*}
$$

Such a hyperplane is a supporting hyperplane for E at x_{0}. Figures 7.16 and 7.21 display examples of supporting hyperplanes. Here is the basic result relating convex sets and supporting hyperplanes.

Supporting Hyperplane for Convex Set

Let E be a convex set and let x_{0} be a point on the boundary of E. Then there is a supporting hyperplane at x_{0}.

If x_{0} is in the boundary of E, there are points x^{\prime} not in E approximating x_{0} (Figure 7.23). Applying the separating hyperplane theorem to x^{\prime}, and taking the limit $x^{\prime} \rightarrow x_{0}$, results in a supporting hyperplane at x_{0}. We skip the details here.

Supporting hyperplanes characterize convex sets in the following sense: If through every point x_{0} in the boundary of E, there is a supporting hyperplane, then E is convex.

In Figure 7.16, there are multiple supporting hyperplanes. However, at every other point a on the boundary of the square, there is a unique (up to
scalar multiple) supporting hyperplane. For the ellipse or ellipsoid, at every point of the boundary, there is a unique supporting hyperplane.

Now we derive the analogous concepts for convex functions.
Let $f(x)$ be a function and let a be a point at which there is a gradient $\nabla f(a)$. The tangent hyperplane for $f(x)$ at a is

$$
\begin{equation*}
y=f(a)+\nabla f(a) \cdot(x-a) \tag{7.5.7}
\end{equation*}
$$

Convex Function Graph Lies Above the Tangent Hyperplane

If $f(x)$ is convex and has a gradient $\nabla f(a)$, then

$$
\begin{equation*}
f(x) \geq f(a)+\nabla f(a) \cdot(x-a) \tag{7.5.8}
\end{equation*}
$$

This vector result is obtained by applying the corresponding scalar result in $\S 7.1$ to the function $f(a+t v)$, where $v=x-a$. As in the scalar case, there is a similar result (7.5.11) with tangent paraboloids.

We now address the existence of a global minimizer of a convex function. A (global) minimizer for $f(x)$ is a vector x^{*} satisfying

$$
f\left(x^{*}\right)=\min _{x} f(x),
$$

where the minimum is taken over all vectors x. A minimizer is the location of the bottom of the graph of the function. For example, the parabola (Figure 7.4) and the relative information (Figure 7.10) both have global minimizers.

We say a function $f(x)$ is strictly convex if $g(t)=f(a+t v)$ is strictly convex for every point a and direction v. This is the same as saying the inequality (7.5.1) is strict for $0<t<1$.

We say a function $f(x)$ is proper if the sublevel set $f(x) \leq c$ is bounded for every level c. This is same as saying $f(x)$ rises to $+\infty$ as $|x| \rightarrow \infty$. Remember, if x is a scalar, $|x|= \pm x$ is the absolute value, and if $x=$ $\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ is in \mathbf{R}^{d},

$$
|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{d}^{2}}
$$

For example, the functions in Figure 7.4 is proper and strictly convex, while the function in Figure 7.5 is proper but neither convex nor strictly convex.

Intuitively, if $f(x)$ goes up to $+\infty$ when x is far away, then its graph must have a minimizer at some point x^{*}.

Existence of Global Minimizer

Suppose $f(x)$ is a continuous proper function defined on all of \mathbf{R}^{d}. Then $f(x)$ has a global minimizer x^{*},

$$
\begin{equation*}
f\left(x^{*}\right) \leq f(x) \tag{7.5.9}
\end{equation*}
$$

To see this, pick any point a. Then the sublevel set S given by $f(x) \leq$ $f(a)$ is bounded. By continuity of $f(x)$, there is a minimizer x^{*} (see $\S A .2$). Since for all x outside the sublevel set, we have $f(x)>f(a), x^{*}$ is a global minimizer.

Existence and Uniqueness of Global Minimizer

Suppose $f(x)$ is a continuous strictly convex proper function defined on all of \mathbf{R}^{d}. Then $f(x)$ has a unique global minimizer x^{*}.

Let x_{1} be another global minimizer. Then $f\left(x_{1}\right)=f\left(x^{*}\right)$. Let $x_{2}=$ $\left(x^{*}+x_{1}\right) / 2$ be their midpoint. By strict convexity,

$$
f\left(x_{2}\right)<\frac{1}{2}\left(f\left(x^{*}\right)+f\left(x_{1}\right)\right)=f\left(x^{*}\right)
$$

contradicting the fact that x^{*} is a global minimizer. Thus there cannot be another global minimizer.

The global minimizer x^{*} is located by the first derivative test.

First Derivative Test for Global Minimizer

Let $f(x)$ be a strictly convex proper function having a gradient $\nabla f(x)$ at every point. Then the global minimizer x^{*} is the unique point satisfying

$$
\begin{equation*}
\nabla f\left(x^{*}\right)=0 \tag{7.5.10}
\end{equation*}
$$

Let a be any point, and v any direction, and let $g(t)=f(a+t v)$. Then

$$
g^{\prime}(0)=\nabla f(a) \cdot v
$$

If a is a minimizer, then $t=0$ is a minimum of $g(t)$, so $g^{\prime}(0)=0$. Since v is any direction, this shows $\nabla f(a)=0$.

If there were another point b satisfying $\nabla f(b)=0$, let $v=b-a$. Then $b=a+v$ and $g(t)$ is strictly convex in t, and also $g^{\prime}(1)=\nabla f(b) \cdot v=0$. By convexity, $g^{\prime}(t)$ is increasing in t. If $g^{\prime}(0)=0$ and $g^{\prime}(1)=0$, then $g^{\prime}(t)=0$ for $0<t<1$. This implies $g(t)$ is a linear on $0<t<1$, contradicting strict convexity. This establishes the first derivative test.

Suppose the second partials

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}, \quad 1 \leq i, j \leq d
$$

exist. Then the second derivative of $f(x)$ is the symmetric matrix

$$
D^{2} f(x)=\left(\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}} & \cdots \\
\ldots & \cdots & \cdots \\
\frac{\partial^{2} f}{\partial x_{d} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{d} \partial x_{2}} & \cdots
\end{array}\right)
$$

By the chain rule,

$$
g(t)=f(a+t v) \quad \Longrightarrow \quad g^{\prime \prime}(0)=v \cdot D^{2} f(a) v
$$

Thus we have

Second Derivative Test for Multi-variable Strict Convexity
Suppose $f(x)$ has a second derivative $D^{2} f(x)$, and assume $D^{2} f(x)$ is positive definite, at every x. Then $f(x)$ is strictly convex.

An important example of a strictly convex proper function is $f(x)=$ $x \cdot Q x / 2-b \cdot x$ when $Q>0$, since $D^{2} f(x)=Q$. Also (§8.5) the loss functions in linear regression and logistic regression are strictly convex and proper under the right assumptions.

Recall $m \leq Q \leq L$ means the eigenvalues of the symmetric matrix Q are between L and m. The following is the multi-variable version of (7.1.10). The proof is the same as in the scalar case.

Second Derivative Bounds

If $m \leq D^{2} f(x) \leq L$, then

$$
\begin{equation*}
\frac{m}{2}|x-a|^{2} \leq f(x)-f(a)-\nabla f(a) \cdot(x-a) \leq \frac{L}{2}|x-a|^{2} . \tag{7.5.11}
\end{equation*}
$$

If we choose $a=x^{*}$, where x^{*} is the global minimizer, then by (7.5.10), we see the graph of $f(x)$ lies between two quadratics globally.

Upper and Lower Paraboloids

If $m \leq D^{2} f(x) \leq L$ and x^{*} is the global minimum, then

$$
\begin{equation*}
\frac{m}{2}\left|x-x^{*}\right|^{2} \leq f(x)-f\left(x^{*}\right) \leq \frac{L}{2}\left|x-x^{*}\right|^{2} \tag{7.5.12}
\end{equation*}
$$

We describe the convex dual in the multi-variable setting (the singlevariable case was done in (7.1.13)). If $f(x)$ is a scalar convex function of x, and $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ has d features, the convex dual is

$$
\begin{equation*}
g(p)=\max _{x}(p \cdot x-f(x)) \tag{7.5.13}
\end{equation*}
$$

Here the maximum is over all vectors x, and $p=\left(p_{1}, p_{2}, \ldots, p_{d}\right)$, the dual variable, also has d features. We will work in situations where a maximizer exists in (7.5.13).

Let $Q>0$ be a positive matrix. The simplest example is

$$
f(x)=\frac{1}{2} x \cdot Q x \quad \Longrightarrow \quad g(p)=\frac{1}{2} p \cdot Q^{-1} p
$$

This is established by the identity

$$
\begin{equation*}
\frac{1}{2}(p-Q x) \cdot Q^{-1}(p-Q x)=\frac{1}{2} p \cdot Q^{-1} p-p \cdot x+\frac{1}{2} x \cdot Q x . \tag{7.5.14}
\end{equation*}
$$

To see this, note the left side is greater or equal to zero. Since the left side equals zero iff $p=Q x$, we are led to (7.5.13). The next simplest example is the partition function, see below.

If x is a maximizer in (7.5.13), then the derivative is zero,

$$
0=\nabla(p \cdot x-f(x)) \quad \Longrightarrow \quad p=\nabla f(x)
$$

Here ∇ is with respect to x. The maximizer $x=x(p)$ depends on p, so by the chain rule

$$
\begin{aligned}
\nabla g(p) & =\nabla(p \cdot x(p)-f(x(p))) \\
& =x+p \nabla x(p)-\nabla f(x) \nabla x(p)=x+(p-\nabla f(x)) \nabla x(p)=x
\end{aligned}
$$

Here ∇ is with respect to p and, since $x=x(p)$ is vector-valued, $\nabla x(p)$ is a $d \times d$ matrix. We conclude

$$
p=\nabla f(x) \quad \Longleftrightarrow \quad x=\nabla g(p)
$$

Thus the vector-valued function $\nabla f(x)$ is the inverse of the vector-valued function $\nabla g(p)$, or

$$
\nabla g(\nabla f(x))=x
$$

Differentiating, we obtain

$$
D^{2} g(\nabla f(x)) D^{2} f(x)=I
$$

This yields

Second Derivatives of Dual Functions

Let $f(x)$ be a strictly convex function with second derivative $D^{2} f(x)$, and let $g(p)$ be its convex dual. Then

$$
D^{2} g(p)=\left(D^{2} f(x)\right)^{-1}, \quad p=\nabla f(x)
$$

Moreover, if $m \leq D^{2} f(x) \leq L$, then

$$
\frac{1}{L} \leq D^{2} g(p) \leq \frac{1}{m}
$$

Using this, and writing out (7.5.11) for $g(p)$ instead of $f(x)$ (we skip the details) yields

Dual Second Derivative Bounds

Let $p=\nabla f(x)$ and $q=\nabla f(a)$. If $f(x)$ is convex and $m \leq D^{2} f(x) \leq L$, then

$$
\begin{equation*}
\frac{1}{2 m}|p-q|^{2} \geq f(x)-f(a)-q \cdot(x-a) \geq \frac{1}{2 L}|p-q|^{2} \tag{7.5.15}
\end{equation*}
$$

This is used in gradient descent.

Now let $f(x)$ be strongly convex in the sense $m \leq D^{2} f(x) \leq L$. Then we have the vector version of (7.1.11).

Coercivity of the Gradient

Let $p=\nabla f(x)$ and $q=\nabla f(a)$. If $m \leq D^{2} f(x) \leq L$, then

$$
\begin{equation*}
(p-q) \cdot(x-a) \geq \frac{m L}{m+L}|x-a|^{2}+\frac{1}{m+L}|p-q|^{2} . \tag{7.5.16}
\end{equation*}
$$

This is derived by using (7.5.15), the details are in [2]. This result is used in gradient descent.

As in the single variable case,

Dual of the Dual

Let $g(p)$ be the convex dual of $f(x)$. Then the convex dual of $g(p)$ is $f(x)$.

7.6 Multinomial Probability

In multinomial probability, there are d classes or categories, and p is a vector of probabilities, $p=\left(p_{1}, p_{2}, \ldots, p_{d}\right)$. Here p_{k} is the probability we are in class k. Then each p_{k} is nonnegative, $p_{k} \geq 0$, and the sum is one,

$$
p_{1}+p_{2}+\cdots+p_{d}=1
$$

The partition function is

$$
\begin{equation*}
Z(z)=\log \left(e^{z_{1}}+e^{z_{2}}+\cdots+e^{z_{d}}\right) . \tag{7.6.1}
\end{equation*}
$$

Then Z is a function of d scalar variables $z=\left(z_{1}, z_{2}, \ldots, z_{d}\right)$. If we insert $z=0$, we obtain $Z(0)=\log d$.

Let

$$
\mathbf{1}=(1,1, \ldots, 1)
$$

Then

$$
p \cdot \mathbf{1}=\sum_{k=1}^{d} p_{k}=1
$$

Because

$$
Z(z+a \mathbf{1})=Z\left(z_{1}+a, z_{2}+a, \ldots, z_{d}+a\right)=Z(z)+a
$$

Z is not bounded below and does not have a minimum.

The softmax function is the vector-valued function $q=\sigma(z)$ with components

$$
q_{k}=\sigma_{k}(z)=\frac{e^{z_{k}}}{e^{z_{1}}+e^{z_{2}}+\cdots+e^{z_{d}}}=\frac{e^{z_{k}}}{e^{Z}}, \quad k=1,2, \ldots, d
$$

By the chain rule, the gradient of the partition function is the softmax function,

$$
\begin{equation*}
\nabla Z(z)=\sigma(z) . \tag{7.6.2}
\end{equation*}
$$

When $d=2$, the vector softmax function reduces to the scalar logistic function (5.1.12), since

$$
\begin{aligned}
& q_{1}=\frac{e^{z_{1}}}{e^{z_{1}}+e^{z_{2}}}=\frac{1}{1+e^{-\left(z_{1}-z_{2}\right)}}=\sigma\left(z_{1}-z_{2}\right), \\
& q_{2}=\frac{e^{z_{2}}}{e^{z_{1}}+e^{z_{2}}}=\frac{1}{1+e^{-\left(z_{2}-z_{1}\right)}}=\sigma\left(z_{2}-z_{1}\right) .
\end{aligned}
$$

Because of this, the softmax function is the multinomial analog of the logistic function.

```
from scipy.special import softmax
z = array([z1,z2,z3])
q = softmax(z)
```

In the previous section, we studied convex functions and the existence and uniqueness of the global minimum. As we saw above, Z does not have a global minimum.

Since $\sigma(z)=\nabla Z(z)$, a critical point z^{*} of Z must satisfy $\sigma\left(z^{*}\right)=0$. For Z, a critical point cannot be unique, because

$$
\sigma\left(z_{1}, z_{2}, \ldots, z_{d}\right)=\sigma\left(z_{1}+a, z_{2}+a, \ldots, z_{d}+a\right)
$$

or

$$
\sigma(z)=\sigma(z+a \mathbf{1})
$$

To guarantee uniqueness of a global minimum of Z, we have to restrict attention to the subspace of vectors $z=\left(z_{1}, z_{2}, \ldots, z_{d}\right)$ orthogonal to $\mathbf{1}$, the vectors satisfying

$$
z_{1}+z_{2}+\cdots+z_{d}=0
$$

Now suppose z is orthogonal to 1 . Since the exponential function is convex,

$$
\frac{e^{Z}}{d}=\frac{1}{d} \sum_{k=1}^{d} e^{z_{k}} \geq \exp \left(\frac{1}{d} \sum_{k=1}^{d} z_{k}\right)=e^{0}=1 .
$$

This establishes

Global Minimum of the Partition Function

If z satisfies $z_{1}+z_{2}+\cdots+z_{d}=0$, then $Z(z) \geq Z(0)=\log d$.

The inverse of the softmax function is obtained by solving $p=\sigma(z)$ for z, obtaining

$$
\begin{equation*}
z_{k}=Z+\log p_{k}, \quad k=1,2, \ldots, d . \tag{7.6.3}
\end{equation*}
$$

Define

$$
\log p=\left(\log p_{1}, \log p_{2}, \ldots, \log p_{d}\right)
$$

Then the inverse of $p=\sigma(z)$ is

$$
\begin{equation*}
z=Z 1+\log p \tag{7.6.4}
\end{equation*}
$$

The function

$$
\begin{equation*}
I(p)=\sum_{k=1}^{d} p_{k} \log p_{k} \tag{7.6.5}
\end{equation*}
$$

is the (absolute) information. Since $0 \leq p \leq 1, \log p \leq 0$, hence $I(p) \leq 0$. We show

Information is Convex Dual of Partition

For all p,

$$
\begin{equation*}
I(p)=\max _{z}(p \cdot z-Z(z)) . \tag{7.6.6}
\end{equation*}
$$

At the maximum in (7.6.6), the gradient is zero,

$$
\nabla_{z}\left(\sum_{k=1}^{d} p_{k} z_{k}-Z\left(z_{1}, z_{2}, \ldots, z_{d}\right)\right)=0 .
$$

By (7.6.2), this happens when $p=\sigma(z)$. Inserting $z=\log p+Z 1$ into (7.6.6),

$$
\max _{z}(p \cdot z-Z(z))=p \cdot(\log p+Z \mathbf{1})-Z(z)=p \cdot \log p+Z-Z=I(p)
$$

This establishes (7.6.6). Inserting $z=0$ in (7.6.6), we have

Absolute Information is Bounded

For all $p=\left(p_{1}, p_{2}, \ldots, p_{d}\right)$,

$$
\begin{equation*}
0 \geq I(p) \geq-\log (d) \tag{7.6.7}
\end{equation*}
$$

The (absolute) entropy, the analog of (7.2.2), is then

$$
\begin{equation*}
H(p)=-I(p)=-\sum_{k=1}^{d} p_{k} \log \left(p_{k}\right) \tag{7.6.8}
\end{equation*}
$$

Since

$$
D^{2} I(p)=\operatorname{diag}\left(\frac{1}{p_{1}}, \frac{1}{p_{2}}, \ldots, \frac{1}{p_{d}}\right)
$$

we see $I(p)$ is strictly convex, and $H(p)$ is strictly concave.
In numpy, the entropy is
from scipy.stats import entropy
p = array([p_1,p_2,p_3])
entropy (p)

Now

$$
\frac{\partial^{2} Z}{\partial z_{j} \partial z_{k}}=\frac{\partial \sigma_{j}}{\partial z_{k}}= \begin{cases}\sigma_{j}-\sigma_{j} \sigma_{k}, & \text { if } j=k \\ -\sigma_{j} \sigma_{k}, & \text { if } j \neq k\end{cases}
$$

Hence we have

$$
\begin{equation*}
D^{2} Z(z)=\nabla \sigma(z)=\operatorname{diag}(q)-q \otimes q, \quad q=\sigma(z) \tag{7.6.9}
\end{equation*}
$$

Let $\bar{v}=v \cdot q=\sum q_{k} v_{k}$. Since $Q=D^{2} Z(z)$ satisfies

$$
v \cdot Q v=\sum_{k=1}^{d} q_{k} v_{k}^{2}-(v \cdot q)^{2}=\sum_{k=1}^{d} q_{k}\left(v_{k}-\bar{v}\right)^{2}
$$

which is nonnegative, Q is a covariance matrix, and Z is convex.
In fact Z is strictly convex in directions v orthogonal to $1=(1,1, \ldots, 1)$. If $v \cdot Q v=0$, then, since $q_{k}>0$ for all $k, v=\bar{v} \mathbf{1}$. If v is orthogonal to $\mathbf{1}$, this forces $\bar{v}=0$, which, by using $v \cdot Q v=0$ again, implies $v=0$. This shows Z is strictly convex in directions v orthogonal to 1 .

Moreover, Z is proper (§7.5) in directions orthogonal to 1 . To see this, suppose $z \cdot \mathbf{1}=0$ and $Z(z) \leq c$. Then $e^{Z} \leq e^{c}$, which implies

$$
z_{j} \leq c, \quad j=1,2, \ldots, d
$$

Given $1 \leq j \leq d$, add the inequalities $z_{k} \leq c$ over all indices $k \neq j$. Since $z \cdot \mathbf{1}=0,-z_{j}=\sum_{k \neq j} z_{k}$. Hence

$$
-z_{j} \leq(d-1) c, \quad j=1,2, \ldots, d
$$

Combining the last two inequalities,

$$
\left|z_{j}\right|=\max \left(z_{j},-z_{j}\right) \leq(d-1) c, \quad j=1,2, \ldots, d
$$

We conclude

$$
\begin{equation*}
Z(z) \leq c \quad \text { and } \quad z \cdot \mathbf{1}=0 \quad \Longrightarrow \quad|z| \leq d(d-1) c \tag{7.6.10}
\end{equation*}
$$

We have shown

The Partition Function is Proper and Strictly Convex

On the subspace $z \cdot \mathbf{1}=0, Z(z)$ is proper and strictly convex.

The relative information is

$$
\begin{equation*}
I(p, q)=\sum_{k=1}^{d} p_{k} \log \left(p_{k} / q_{k}\right) . \tag{7.6.11}
\end{equation*}
$$

Here $p=\left(p_{1}, p_{2}, \ldots, p_{d}\right)$ and $q=\left(q_{1}, q_{2}, \ldots, q_{d}\right)$ are probability distributions.
Similarly, the relative entropy is

$$
\begin{equation*}
H(p, q)=-I(p, q) \tag{7.6.12}
\end{equation*}
$$

In numpy, the code

```
from scipy.stats import entropy
p = array([p1,p2,p3])
q = array([q1,q2,q3])
entropy (p,q)
```

returns the relative information, not the relative entropy. See below for more on this terminology confusion.

The relative partition function is

$$
Z(z, q)=\log \left(\sum_{k=1}^{d} e^{z_{k}} q_{k}\right)
$$

Let

$$
\log q=\left(\log q_{1}, \log q_{2}, \ldots, \log q_{d}\right)
$$

Then

$$
p \cdot \log q=\sum_{k=1}^{d} p_{k} \log q_{k}
$$

If we insert $q_{k}=\exp \left(\log \left(q_{k}\right)\right)$ in the definition of $Z(z, q)$, one obtains

$$
Z(z, q)=Z(z+\log q)
$$

From this, using the change of variable $z^{\prime}=z+\log q$,

$$
\begin{aligned}
\max _{z}(p \cdot z-Z(z, q)) & =\max _{z}(p \cdot z-Z(z+\log q)) \\
& =\max _{z^{\prime}}\left(p \cdot\left(z^{\prime}-\log q\right)-Z\left(z^{\prime}\right)\right) \\
& =\max _{z}(p \cdot z-Z(z))-p \cdot \log q \\
& =I(p)-p \cdot \log q \\
& =I(p, q)
\end{aligned}
$$

This shows
Relative Information is Convex Dual of Relative Partition
For all p and q,

$$
\begin{equation*}
I(p, q)=\max _{z}(p \cdot z-Z(z, q)) . \tag{7.6.13}
\end{equation*}
$$

Since the dual of the dual of $f(z)$ is $f(z)$ (§7.5), we also have

Relative Partition is Convex Dual of Relative Information

The convex dual of the relative information is the relative partition function,

$$
Z(z, q)=\max _{p}(p \cdot z-I(p, q)) .
$$

In logistic regression (§8.5), the computed output is $q=\sigma(z)$, the desired output or target is p, and the error function is $I(p, \sigma(z))$. To compute the error function, by (7.6.4),

$$
q=\sigma(z) \quad \Longrightarrow \quad \log q=z-Z(z) \mathbf{1}
$$

This yields

$$
\begin{equation*}
I(p, \sigma(z))=I(p)-p \cdot \log q=I(p)-p \cdot z+Z(z) \tag{7.6.14}
\end{equation*}
$$

This identity is the direct analog of (7.5.14). The identity (7.5.14) arises naturally in least squares, or linear regression. Similarly, (7.6.14) arises in logistic regression.

The cross-information is

$$
I_{\text {cross }}(p, q)=-\sum_{k=1}^{d} p_{k} \log q_{k},
$$

and the cross-entropy is

$$
H_{\text {cross }}(p, q)=-I_{\text {cross }}(p, q)=\sum_{k=1}^{d} p_{k} \log q_{k}
$$

The cross-information is usually erroneously called cross-entropy, see the discussion at the end of the section.

Cross-information and relative information are related by

$$
I(p, q)=I(p)+I_{\text {cross }}(p, q)
$$

When the target probabilities p_{k} are all 0 or 1 , then

$$
\begin{equation*}
I(p, q)=I_{\text {cross }}(p, q) . \tag{7.6.15}
\end{equation*}
$$

In general, from (7.6.14),

$$
I_{\mathrm{cross}}(p, \sigma(z))=-p \cdot z+Z(z)
$$

From (7.6.2) and (7.6.14),

$$
\begin{equation*}
\nabla_{z} I(p, \sigma(z))=\sigma(z)-p \tag{7.6.16}
\end{equation*}
$$

Since $I(p, \sigma(z))$ and $I_{\text {cross }}(p, \sigma(z))$ differ by the constant $I(p)$, we also have

$$
\nabla_{z} I_{\text {cross }}(p, \sigma(z))=\sigma(z)-p .
$$

This will be useful in logistic regression. Table 7.24 summarizes the situation.

$H=-I$	Information	Entropy
Absolute	$I(p)$	$H(p)$
Cross	$I_{\text {cross }}(p, q)$	$H_{\text {cross }}(p, q)$
Relative	$I(p, q)$	$H(p, q)$
Curvature	Convex	Concave
Error	$I(p, q)$ with $q=\sigma(z)$	

Table 7.24: The third row is the sum of the first and second rows.

Here is the multinomial analog of (7.2.6). Suppose a dice has d faces, and suppose the probability of rolling the k-th face in a single roll is q_{k}. Then $q=\left(q_{1}, q_{2}, \ldots, q_{d}\right)$ is a probability distribution. Roll the dice n times, and let $P_{n}(p, q)$ be the probability that the proportion of times k is rolled equals $p_{k}, k=1,2, \ldots, d$. Then $p=\left(p_{1}, p_{2}, \ldots, p_{d}\right)$ is a probability distribution, and we have the approximation

$$
P_{n}(p, q) \sim e^{n H(p, q)}, \quad \text { for } n \text { large }
$$

In the literature, in the industry, in Wikipedia, and in Python, the terminology is confused: The relative information $I(p, q)$ is almost always called relative entropy.

Since the entropy is the negative of the information, this is looking at things upside-down. In other settings, $I(p, q)$ is called the Kullback-Leibler divergence, which is not informative terminology.

Also, in machine learning, $I_{\text {cross }}(p, q)$ is called the cross-entropy, continuing the confusion.

Rubbing salt into the wound, in Python, $I(p, q)$ is entropy (p, q). Given these realities, the confusion won't go away anytime soon.

How does one keep things straight? By remembering that it's convex functions that we like to minimize, not concave functions: At the end of the day, information I, in any form, is convex, and entropy $H=-I$, in any form, is concave.

Chapter 8

Machine Learning

8.1 Overview

This first section is an overview of the chapter. Here is a summary of the structure of neural networks.

- A graph consists of nodes and edges (§4.2).
- In a graph, there are input nodes, output nodes, and hidden nodes.
- If a node has an activation function attached to it, it is a neuron (§8.2).
- Each neuron j has incoming signals x_{j}^{-}, and an outgoing signal x_{j}.
- A network is a weighed directed graph (§4.2), where the nodes are neurons (§8.2).
- A neural network is a network where each activation function is the sum of the incoming signals x_{j}^{-}.

The goal is to train a neural network. To train a neural network means to find weights W so that the input-output behavior of the network is as close as possible to a given dataset of sample pairs $\left(x_{k}, y_{k}\right), k=1,2 \ldots, N$. Here is a summary of how neural networks are trained (§8.4).

1. Start with a sample pair (x, y).
2. Given a weight matrix W, using $x_{\mathrm{in}}=x$ as inputs, compute the network's outputs x at all nodes (forward propagation).
3. Using y as targets, compute the error $J(x, y, W)$ between the outputs $x_{\text {out }}$ at the output nodes and y.
4. Compute the derivatives $\delta_{\text {out }}$ of J at the output nodes.
5. Compute the derivatives δ of J at all nodes (back propagation).
6. Then the weight gradient is given by $\nabla_{W} J=x \otimes \delta$.
7. Update W using gradient descent (§8.3), $W^{+}=W-t \nabla_{W} J$ (§8.4).
8. Repeat steps 1-7 over all sample pairs $\left(x_{k}, y_{k}\right), k=1,2, \ldots, N(\S 8.9)$.
9. Repeat step 8 until convergence.

Steps 1-7 is an iteration, and step 8 is an epoch. An iteration uses a single sample (more generally a batch of samples), and an epoch uses the entire dataset. The mean error over the dataset is

$$
J(W)=\sum_{k=1}^{N} J\left(x_{k}, y_{k}, W\right)
$$

Sometimes $J(W)$ is normalized by dividing by N, but this does not change the results. With the dataset given, the mean error is a function of the weights.

A weight matrix W^{*} is optimal if it is a minimizer of the mean error,

$$
J\left(W^{*}\right) \leq J(W), \quad \text { for all } W
$$

Convergence means W is close to W^{*}. Now we turn to the details.

8.2 Neural Networks

In §7.4, we saw two versions of forward and back propagation. In this section we see a third version. We begin by reviewing the definition of graph as given in §4.2.

A graph consists of nodes and edges. Nodes are also called vertices, and an edge is an ordered pair (i, j) of nodes. Because the ordered pair (i, j) is not the same as the ordered pair (j, i), our graphs are directed.

The edge (i, j) is incoming at node j and outgoing at node i. If a node j has no outgoing edges, then j is an output node. If a node i has no incoming edges, then i is an input node. If a node is neither an input nor an output, it is a hidden node.

We assume our graphs have no cycles: every path terminates at an output node in a finite number of steps.

A graph is weighed if a scalar weight $w_{i j}$ is attached to each edge (i, j). If (i, j) is not an edge, we set $w_{i j}=0$. If a network has d nodes, the edges are completely specified by the $d \times d$ weight matrix $W=\left(w_{i j}\right)$.

A node with an attached activation function (7.4.2) is a neuron. A network is a directed weighed graph where the nodes are neurons. In the next paragraph, we define a special kind of network, a neural network.

我第

In a network, in $\S 7.4$, the activation function f_{j} at node j was allowed to be any function of the incoming list (7.4.1) at node j

$$
\left(w_{1 j} x_{1}, w_{2 j} x_{2}, \ldots, w_{d j} x_{d}\right)
$$

Because $w_{i j}=0$ if (i, j) is not an edge, the nonzero entries in the incoming list at node j correspond to the edges incoming at node j.

A neural network is a network where every activation function is restricted to be a function of the sum of the entries of the incoming list.

For example, all the networks in this section are neural networks, but the network in Figure 7.13 is not a neural network.

Let

$$
\begin{equation*}
x_{j}^{-}=\sum_{i \rightarrow j} w_{i j} x_{i} \tag{8.2.1}
\end{equation*}
$$

be the sum of the incoming list at node j. Then, in a neural network, the outgoing signal at node j is

$$
\begin{equation*}
x_{j}=f_{j}\left(x_{j}^{-}\right)=f_{j}\left(\sum_{i \rightarrow j} w_{i j} x_{i}\right) \tag{8.2.2}
\end{equation*}
$$

If the network has d nodes, the outgoing vector is

$$
x=\left(x_{1}, x_{2}, \ldots, x_{d}\right),
$$

and the incoming vector is

$$
x^{-}=\left(x_{1}^{-}, x_{2}^{-}, \ldots, x_{d}^{-}\right) .
$$

In a network, in $\S 7.4, x_{j}^{-}$was a list; in a neural network, x_{j}^{-}is a scalar.
Let W be the weight matrix. If the network has d nodes, the activation vector is

$$
f=\left(f_{1}, f_{2}, \ldots, f_{d}\right)
$$

Then a neural network may be written in vector-matrix form

$$
x=f\left(W^{t} x\right)
$$

However, this representation is more useful when the network has structure, for example in a dense shallow layer (8.2.12).

A perceptron is a network of the form

$$
y=f\left(w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{d} x_{d}\right)=f(w \cdot x)
$$

(Figure 8.1). This is the simplest neural network.
Thus a perceptron is a linear function followed by an activation function. By our definition of neural network,

Neural Network

Every neural network is a combination of perceptrons.

Figure 8.1: A perceptron with activation function f.

When an input x_{0} is fixed to equal $1, x_{0}=1$, the corresponding weight w_{0} is called a bias,

$$
y=f\left(w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{d} x_{d}+w_{0}\right)=f\left(w \cdot x+w_{0}\right) .
$$

There is no computational advantage in separating out the bias.
Nevertheless, the bias is important, as it shifts the threshhold in the activation function.

In $\S 5.1$, Bayes theorem is used to express a conditional probability in terms of a perceptron,

$$
\operatorname{Prob}(H \mid x)=\sigma\left(w \cdot x+w_{0}\right)
$$

This is a basic example of how a perceptron computes probabilities.

Perceptrons gained wide exposure after Minsky and Papert's famous 1969 book [15], from which Figure 8.2 is taken.

Figure 8.2: Perceptrons in parallel [15].

Here is a listing of common activation functions.

- The identity function,

$$
\operatorname{id}(x)=x
$$

and its derivative $\mathrm{id}^{\prime}=1$.

- The binary output,

$$
\operatorname{bin}(x)= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { if } x<0\end{cases}
$$

and its derivative $\operatorname{bin}^{\prime}=0, x \neq 0$, and $\operatorname{bin}^{\prime}(0)$ undefined.

- The logistic or sigmoid function (Figure 5.2)

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

and its derivative $\sigma^{\prime}=\sigma(1-\sigma)$.

- The hyperbolic tangent function

$$
\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

and its derivative $\tanh ^{\prime}=1-\tanh ^{2}$.

- The rectified linear unit relu,

$$
\operatorname{relu}(x)= \begin{cases}x & \text { if } x>0 \\ 0 & \text { if } x<0\end{cases}
$$

and its derivative relu ${ }^{\prime}=$ bin.

Here is the code

```
# activation functions
def relu(x): return 0 if x < O else x
def bin(x): return 0 if x < O else 1
def sigmoid(x): return 1/(1+exp(-x))
def id(x): return x
# tanh already part of numpy
def one(x): return 1
def zero(x): return 0
# derivative of relu is bin
# derivative of bin is zero
# derivative of s=sigmoid is s*(1-s)
# derivative of id is one
# derivative of tanh is 1-tanh**2
def D_relu(x): return bin(x)
def D_bin(x): return 0
def D_sigmoid(x): return sigmoid(x)*(1-sigmoid(x))
def D_id(x): return 1
def D_relu(x): return bin(x)
def D_tanh(x): return 1 - tanh(x)**2
der_dict = { relu:D_relu, id:D_id, bin:D_bin,
    \hookrightarrow ~ s i g m o i d : D \_ s i g m o i d , ~ t a n h : ~ D \_ t a n h \} ~
```

The neural network in Figure 8.3 has weight matrix

$$
W=\left(\begin{array}{cccccc}
0 & 0 & w_{13} & w_{14} & 0 & 0 \tag{8.2.3}\\
0 & 0 & w_{23} & w_{24} & 0 & 0 \\
0 & 0 & 0 & 0 & w_{35} & w_{36} \\
0 & 0 & 0 & 0 & w_{45} & w_{46} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

and activation functions $f_{3}, f_{4}, f_{5}, f_{6}$. Here 1 and 2 are plain nodes, and 3, $4,5,6$ are neurons.

Figure 8.3: Network of neurons.
Let $x_{\text {in }}$ and $x_{\text {out }}$ be the outgoing vectors corresponding to the input and output nodes. Then the network in Figure 8.3 has outgoing vectors

$$
x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right), \quad x_{\text {in }}=\left(x_{1}, x_{2}\right), \quad x_{\text {out }}=\left(x_{5}, x_{6}\right) .
$$

Here are the incoming and outgoing signals at each of the four neurons f_{3}, f_{4}, f_{5}, f_{6}.

Neuron	Incoming	Outgoing
f_{3}	$x_{3}^{-}=w_{13} x_{1}+w_{23} x_{2}$	$x_{3}=f_{3}\left(w_{13} x_{1}+w_{23} x_{2}\right)$
f_{4}	$x_{4}^{-}=w_{14} x_{1}+w_{24} x_{2}$	$x_{4}=f_{4}\left(w_{14} x_{1}+w_{24} x_{2}\right)$
f_{5}	$x_{5}^{-}=w_{35} x_{3}+w_{45} x_{4}$	$x_{5}=f_{5}\left(w_{35} x_{3}+w_{45} x_{4}\right)$
f_{6}	$x_{6}^{-}=w_{36} x_{3}+w_{46} x_{4}$	$x_{6}=f_{6}\left(w_{36} x_{3}+w_{46} x_{4}\right)$

Table 8.4: Incoming and Outgoing signals.

Now we specialize the forward propagation code in $\S 7.4$ to neural networks. The key diagram is Figure 8.5.

Figure 8.5: Forward and back propagation between two neurons.

Assume the activation function at node j is activate[j]. By (8.2.1) and (8.2.2), the code is

```
def incoming(x,w,j):
    return sum([ outgoing(x,w,i)*w[i][j] if w[i][j] != None
    else O for i in range(d) ])
def outgoing(x,w,j):
    if x[j] != None: return x[j]
    else: return activate[j](incoming(x,w,j))
```

We assume the nodes are ordered so that the initial portion of x equals $x_{\text {in }}$,

```
m = len(x_in)
\(\mathrm{x}[: \mathrm{m}]=\mathrm{x}\) _in
```

Here is the third version of forward propagation.

```
# third version: neural networks
def forward_prop(x_in,w):
    d = len(w)
    x = [None]*d
    m = len(x_in)
    x[:m] = x_in
    for j in range(m,d): x[j] = outgoing(x,w,j)
    return x
```

For Figure 8.3, we define a weight matrix as follows,

$$
W=\left(\begin{array}{cccccc}
0 & 0 & 0.1 & -2.0 & 0 & 0 \tag{8.2.4}\\
0 & 0 & 0.1 & -2.0 & 0 & 0 \\
0 & 0 & 0 & 0 & -0.3 & -0.3 \\
0 & 0 & 0 & 0 & 0.22 & 0.22 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

and activation functions

```
activate = [None]*d
activate[2] = relu
activate[3] = id
activate[4] = sigmoid
activate[5] = tanh
```

The code for W is

```
w = [ [None]*d for _ in range(d) ]
\# remember in Python, index starts from 0
\(\mathrm{w}[0][2]=\mathrm{w}[1][2]=0.1\)
\(\mathrm{w}[0][3]=\mathrm{w}[1][3]=-2.0\)
\(\mathrm{w}[2][4]=\mathrm{w}[2][5]=-0.3\)
\(\mathrm{w}[3][4]=\mathrm{w}[3][5]=0.22\)
```

Then the code

```
x_in = [1.5,2.5]
x = forward_prop(x_in,w)
```

returns the outgoing vector

$$
\begin{equation*}
x=(1.5,2.5,0.4,-8.0,0.132,-0.954) \tag{8.2.5}
\end{equation*}
$$

From this, the incoming vector is

$$
x^{-}=(0,0,0.4,-8.0,-1.88,-1.88) .
$$

and the outputs are

$$
x_{\text {out }}=(0.132,-0.954) .
$$

Let

$$
y_{1}=0.427, \quad y_{2}=-0.288, \quad y=\left(y_{1}, y_{2}\right)
$$

be targets, and let $J\left(x_{\text {out }}, y\right)$ be a function of the outputs $x_{\text {out }}$ of the output nodes, and the targets y. For example, for Figure 8.3, $x_{\text {out }}=\left(x_{5}, x_{6}\right)$ and we may take J to be the mean square error

$$
\begin{equation*}
J\left(x_{\mathrm{out}}, y\right)=\frac{1}{2}\left(x_{5}-y_{1}\right)^{2}+\frac{1}{2}\left(x_{6}-y_{2}\right)^{2}, \tag{8.2.6}
\end{equation*}
$$

The code for this J is

```
def J(x_out,y):
```

 \(\mathrm{m}=\operatorname{len}(\mathrm{y})\)
 return \(\operatorname{sum}\left(\left[\left(x _o u t[i]-y[i]\right) * * 2 / 2\right.\right.\) for \(i\) in range(m)])
 and the code

```
y0 = [0.132,-0.954]
y = [0.427, -0.288]
J(x_out,y0), J(x_out,y)
```

returns 0 and 0.266 .

By forward propagation, J is also a function of all nodes. Then, at each node j, we have the derivatives

$$
\begin{equation*}
\frac{\partial J}{\partial x_{j}^{-}}, \quad f_{j}^{\prime}\left(x_{j}^{-}\right), \quad \frac{\partial J}{\partial x_{j}} . \tag{8.2.7}
\end{equation*}
$$

These are the downstream derivative, local derivative, and upstream derivative at node j. (The terminology reflects the fact that derivatives are computed backward.)

Figure 8.6: Downstream, local, and upstream derivatives at node i.
From (8.2.2),

$$
\begin{equation*}
\frac{\partial x_{j}}{\partial x_{j}^{-}}=f_{j}^{\prime}\left(x_{j}^{-}\right) \tag{8.2.8}
\end{equation*}
$$

By the chain rule and (8.2.8), the key relation between these derivatives is

$$
\begin{equation*}
\frac{\partial J}{\partial x_{i}^{-}}=\frac{\partial J}{\partial x_{i}} \cdot f_{i}^{\prime}\left(x_{i}^{-}\right), \tag{8.2.9}
\end{equation*}
$$

or

$$
\text { downstream }=\text { upstream } \times \text { local } .
$$

```
def local(x,w,i):
    return der_dict[activate[i]](incoming(x,w,i))
```

Let

$$
\delta_{i}=\frac{\partial J}{\partial x_{i}^{-}}, \quad i=1,2, \ldots, d
$$

Then we have the outgoing vector $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ and the downstream gradient vector $\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{d}\right)$. Strictly speaking, we should write δ_{i}^{-} for the downstream derivatives. However, in $\S 8.4$, we don't need upstream derivatives. Because of this, we will write δ_{i}.

Let $x_{\text {out }}$ be the output nodes, and let $\delta_{\text {out }}$ be the downstream derivatives of J corresponding to $x_{\text {out }}$. Then $\delta_{\text {out }}$ is a function of $x_{\text {out }}, y, w$. We assume the nodes are ordered so that the terminal portions of x and δ equal $x_{\text {out }}$ and $\delta_{\text {out }}$ respectively,

```
d = len(x)
m = len(x_out)
```

```
x[d-m:] = x_out
delta[d-m:] = delta_out
```

Once we have the incoming vector x^{-}and outgoing vector x, we can differentiate J and compute the downstream derivatives $\delta_{\text {out }}$ with respect to each node in $x_{\text {out }}$. For example, in Figure 8.3, there are two output nodes x_{5}, x_{6}, and we compute

$$
\delta_{5}=\frac{\partial J}{\partial x_{5}^{-}}, \quad \delta_{6}=\frac{\partial J}{\partial x_{6}^{-}}, \quad \delta_{\text {out }}=\left(\delta_{5}, \delta_{6}\right)
$$

as follows. Using (8.2.5) and (8.2.6), the upstream derivative is

$$
\frac{\partial J}{\partial x_{5}}=\left(x_{5}-y_{1}\right)=-0.294
$$

At node 5, the activation function is $f_{5}=\sigma$. Since $\sigma^{\prime}=\sigma(1-\sigma)$, the local derivative at node 5 is

$$
\sigma^{\prime}\left(x_{5}^{-}\right)=\sigma\left(x_{5}^{-}\right)\left(1-\sigma\left(x_{5}^{-}\right)\right)=x_{5}\left(1-x_{5}\right)=0.114
$$

Hence the downstream derivative at node 5 is

$$
\delta_{5}=\text { upstream } \times \text { local }=-0.294 * 0.114=-0.0337
$$

Similarly,

$$
\delta_{6}=-0.059
$$

We conclude

$$
\delta_{\text {out }}=(-0.0337,-0.059) .
$$

The code for this is

```
# delta_out for mean square error
def delta_out(x_out,y,w):
```

```
    d =len(w)
    m = len(y)
    return [ (x_out[i] - y[i]) * local(x,w,d-m+i) for i in
    \hookrightarrow range(m) ]
delta_out(x_out,y_star,w)
```

We compute δ recursively via back propagation as in $\S 7.4$. From Figure 8.5 and (8.2.1) and (8.2.8),

$$
\begin{aligned}
\frac{\partial J}{\partial x_{i}^{-}} & =\sum_{i \rightarrow j} \frac{\partial J}{\partial x_{j}^{-}} \cdot \frac{\partial x_{j}^{-}}{\partial x_{i}} \cdot \frac{\partial x_{i}}{\partial x_{i}^{-}} \\
& =\left(\sum_{i \rightarrow j} \frac{\partial J}{\partial x_{j}^{-}} \cdot w_{i j}\right) \cdot f_{i}^{\prime}\left(x_{i}^{-}\right) .
\end{aligned}
$$

This yields the downstream derivative at node i,

$$
\begin{equation*}
\delta_{i}=\left(\sum_{i \rightarrow j} \delta_{j} \cdot w_{i j}\right) \cdot f_{i}^{\prime}\left(x_{i}^{-}\right) . \tag{8.2.10}
\end{equation*}
$$

The code is

```
def downstream(x,delta,w,i):
    if delta[i] != None: return delta[i]
    else:
        upstream = sum([ downstream(x,delta,w,j) * w[i][j] if
    u[i][j] != None else 0 for j in range(d) ])
        return upstream * local(x,w,i)
```

Using this, we have the third version of back propagation,

```
# third version: neural networks
```

```
def backward_prop(x,y,w):
    d = len(w)
    delta = [None]*d
    m = len(y)
    x_out = x[d-m:]
    delta[d-m:] = delta_out(x_out,y_star,w)
    for i in range(d-m): delta[i] = downstream(x,delta,w,i)
    return delta
```

With W, x, and targets y as above, the code

```
delta = backward_prop(x,y,w)
```

returns

$$
\delta=(0.0437,0.0437,0.0279,-0.0204,-0.0337,-0.059)
$$

Above we computed the upstream, downstream, and local derivatives of J at a given node (8.2.7). Since the incoming signals x_{j}^{-}depend also on the weights $w_{i j}, J$ also depends on $w_{i j}$. By (8.2.1),

$$
\frac{\partial x_{j}^{-}}{\partial w_{i j}}=x_{i},
$$

see also Table 8.4. From this,

$$
\frac{\partial J}{\partial w_{i j}}=\frac{\partial J}{\partial x_{j}^{-}} \cdot \frac{\partial x_{j}^{-}}{\partial w_{i j}}=\delta_{j} \cdot x_{i} .
$$

We have shown

Weight Gradient of Output

If (i, j) is an edge, then

$$
\begin{equation*}
\frac{\partial J}{\partial w_{i j}}=x_{i} \cdot \delta_{j} . \tag{8.2.11}
\end{equation*}
$$

This result is key for neural network training (§8.4).

Perceptrons can be assembled in parallel (Figure 8.2). If a network has no hidden nodes, the network is shallow. In a shallow network, all nodes are either input nodes or output nodes (Figure 8.7).

A shallow network is dense if all input nodes point to all output nodes: $w_{i j}$ is defined for all i, j. A shallow network can always be assumed dense by inserting zero weights at missing edges.

Neural networks can also be assembled in series, with each component a layer (Figure 8.8). Usually each layer is a dense shallow network. For example, Figure 8.3 consists of two dense shallow networks in layers.

The weight matrix W (8.2.3) is 6×6, while the weight matrices W_{1}, W_{2} of each of the two dense shallow network layers in Figure 8.3 are 2×2.

In a single shallow layer with n input nodes and m output nodes (Figure 8.7), let x and z be the layer's input node vector and output node vector. Then x and z are n and m dimensional respectively, and W is $m \times n$.

Figure 8.7: A shallow dense layer.
If we have the same activation function f at every output node, then we may apply it componentwise,

$$
f\left(z^{-}\right)=f\left(z_{1}^{-}, z_{2}^{-}, \ldots, z_{m}^{-}\right)=\left(f\left(z_{1}^{-}\right), f\left(z_{2}^{-}\right), \ldots, f\left(z_{m}^{-}\right)\right) .
$$

Our convention is to let $w_{i j}$ denote the weight on the edge (i, j). With this convention, the formulas (8.2.1), (8.2.2) reduce to the matrix multiplication formulas

$$
\begin{equation*}
z^{-}=W^{t} x, \quad z=f\left(W^{t} x\right) \tag{8.2.12}
\end{equation*}
$$

Thus a dense shallow network can be thought of as a vector-valued perceptron. This allows for vectorized forward and back propagation.

Figure 8.8: Layered neural network [8].

8.3 Gradient Descent

Let $f(w)$ be a scalar function of a vector $w=\left(w_{1}, w_{2}, \ldots, w_{d}\right)$ in \mathbf{R}^{d}. A basic problem is to minimize $f(w)$, that is, to find or compute a minimizer w^{*},

$$
f(w) \geq f\left(w^{*}\right), \quad \text { for every } w
$$

This goal is so general, that anything concrete one insight one provides towards this goal is widely useful in many settings. The setting we have in mind is $f=J$, where J is the error from the previous section.

Usually $f(w)$ is a measure of cost or lack of compatibility. Because of this, $f(w)$ is called the loss function or cost function.

A neural network is a black box with inputs x and outputs y, depending on unknown weights w. To train the network is to select weights w in response to training data (x, y). The optimal weights w^{*} are selected as minimizers of a loss function $f(w)$ measuring the error between predicted outputs and actual outputs, corresponding to given training inputs.

From $\S 7.5$, if the loss function $f(w)$ is continuous and proper, there is a global minimizer w^{*}. If $f(w)$ is in addition strictly convex, w^{*} is unique. Moreover, if the gradient of the loss function is $g=\nabla f(w)$, then w^{*} is a critical point, $g^{*}=\nabla f\left(w^{*}\right)=0$.

Let $g(w)$ be any function of a scalar variable w. From the definition of derivative (7.1.2), if b is close to a, we have the approximation

$$
g(b)-g(a) \approx g^{\prime}(a)(b-a)
$$

Inserting $a=w$ and $b=w^{+}$,

$$
g\left(w^{+}\right) \approx g(w)+g^{\prime}(w)\left(w^{+}-w\right)
$$

Assume w^{*} is a root of $g(w)=0$, so $g\left(w^{*}\right)=0$. If w^{+}is close to w^{*}, then $g\left(w^{+}\right)$is close to zero, so

$$
0 \approx g(w)+g^{\prime}(w)\left(w^{+}-w\right)
$$

Solving for w^{+},

$$
w^{+} \approx w-\frac{g(w)}{g^{\prime}(w)}
$$

Since the global minimizer w^{*} satisfies $f^{\prime}\left(w^{*}\right)=0$, we insert $g(w)=f^{\prime}(w)$ in the above approximation,

$$
w^{+} \approx w-\frac{f^{\prime}(w)}{f^{\prime \prime}(w)}
$$

This leads to Newton's method of computing approximations $w_{0}, w_{1}, w_{2}, \ldots$ of w^{*} using the recursion

$$
w_{n+1}=w_{n}-\frac{f^{\prime}\left(w_{n}\right)}{f^{\prime \prime}\left(w_{n}\right)}, \quad n=1,2, \ldots
$$

Because calculating $f^{\prime \prime}(w)$ is computationally expensive, first-order descent methods replace the second derivative terms $f^{\prime \prime}\left(w_{n}\right)$ by constants, known as learning rates.

In the multi-variable case, Newton's method becomes

$$
w_{n+1}=w_{n}-D^{2} f\left(w_{n}\right)^{-1} \nabla f\left(w_{n}\right), \quad n=1,2, \ldots
$$

and the second-derivative term is even more expensive to compute.
These first-order methods, collectively known as gradient descent, are the subject of this chapter. In presenting $\S 8.3$ and $\S 8.8$, we follow [2], [16], [25], [27].

Here is code for Newton's method.

```
from numpy import *
def newton(loss,grad,curv,w,num_iter):
    g = grad(w)
    c = curv(w)
    trajectory = array([[w],[loss(w)]])
    for _ in range(num_iter):
        w -= g/c
        trajectory = column_stack([trajectory,[w,loss(w)]])
        g = grad(w)
        c = curv(w)
        if allclose(g,0): break
    return trajectory
```

When applied to the function

$$
f(w)=w^{4}-6 w^{2}+2 w,
$$

the code returns trajectory

```
def loss(w): return w**4 - 6*W**2 + 2*w # f(w)
def grad(w): return 4*W**3 - 12*w + 2 # f'(w)
def curv(w): return 12*W**2 - 12 # f''(w)
```

```
u0 = -2.72204813
w0 = 2.45269774
num_iter = 20
trajectory = newton(loss,grad,curv,w0,num_iter)
```

which can be plotted

Figure 8.9: Double well newton descent.

```
from matplotlib.pyplot import *
def plot_descent(a,b,loss,curv,delta,trajectory):
    w = arange(a,b,delta)
    plot(w,loss(w),color='red',linewidth=1)
    plot(w,curv(w),"--",color='blue',linewidth=1)
    plot(*trajectory,color='green',linewidth=1)
    scatter(*trajectory,s=10)
    title("num_iter= " + str(len(trajectory.T)))
    grid()
    show()
```

with the code

```
ylim(-15,10)
delta = .01
plot_descent(u0,w0,loss,curv,delta,trajectory)
```

returning Figure 8.9.

A descent sequence is a sequence $w_{0}, w_{1}, w_{2}, \ldots$ where the loss function decreases

$$
f\left(w_{0}\right) \geq f\left(w_{1}\right) \geq f\left(w_{2}\right) \geq \ldots
$$

In a descent sequence, the point after the current point $w=w_{n}$ is the successive point $w^{+}=w_{n+1}$, and the point before the current point is the previous point $w^{-}=w_{n-1}$. Then $\left(w^{-}\right)^{+}=w=\left(w^{+}\right)^{-}$.

Recall (§7.3) the gradient $\nabla f(w)$ at a given point w is the direction of greatest increase of the function, starting from w. Because of this, it is natural to construct a descent sequence by moving, at any given w, in the direction $-\nabla f(w)$ opposite to the gradient.

A gradient descent is a descent sequence $w_{0}, w_{1}, w_{2}, \ldots$ where each successive point w^{+}is obtained from the previous point w by moving in the direction opposite to the gradient $g=\nabla f(w)$ at w,

Basic Gradient Descent Step

$$
\begin{equation*}
w^{+}=w-t \nabla f(w) \tag{8.3.1}
\end{equation*}
$$

The step-size t, which determines how far to go in the direction opposite to g, is the learning rate.

Let us unpack (8.3.1), so we understand how it applies to weights in networks (§7.4). In a neural network, weights w_{1}, w_{2}, \ldots are attached to edges, and the final outputs are combined into a loss function. As a result, the loss function is a function of the weights,

$$
f(w)=f\left(w_{1}, w_{2}, \ldots\right)
$$

In (8.3.1), $w=\left(w_{1}, w_{2}, \ldots\right)$ is the weight vector, consisting all of weights combined into a single vector. By the gradient formula (7.3.2), (8.3.1) is equivalent to

$$
\begin{aligned}
w_{1}^{+} & =w_{1}-t \frac{\partial f}{\partial w_{1}} \\
w_{2}^{+} & =w_{2}-t \frac{\partial f}{\partial w_{2}} \\
\ldots & =\ldots
\end{aligned}
$$

In other words,

Each Weight is Computed Separately

To update a weight in a specific edge using gradient descent, one needs only the derivative of the loss function relative to that specific weight.

Of course, the derivative relative to a specific weight may depend on other derivatives and other weights, when one applies backpropagation (§7.4). This principle also holds for modified gradient descent (§8.8).

In practice, the learning rate is selected by trial and error. Which learning rate does the theory recommend?

Given an initial point w_{0}, the sublevel set at w_{0} (see §7.5) consists of all points w where $f(w) \leq f\left(w_{0}\right)$. Only the part of the sublevel set that is connected to w_{0} counts.

Figure 8.10: Double well cost function and sublevel sets at w_{0} and at w_{1}.

In Figure 8.10, the sublevel set at w_{0} is the interval $\left[u_{0}, w_{0}\right]$. The sublevel set at w_{1} is the interval $\left[b, w_{1}\right]$. Notice we do not include any points to the left of b in the sublevel set at w_{1}, because points to the left of b are separated from w_{1} by the gap at the point b.

Suppose the second derivative $D^{2} f(w)$ is never greater than a constant L on the sublevel set. This means

$$
\begin{equation*}
D^{2} f(w) \leq L, \quad \text { on } f(w) \leq f\left(w_{0}\right) \tag{8.3.2}
\end{equation*}
$$

in the sense the eigenvalues of $D^{2} f(w)$ are never greater than L.
Because the second derivative is the derivative of the first derivative, $D^{2} f(w)$ measures how fast the gradient $\nabla f(w)$ changes from point to point. From this point of view, $D^{2} f(w)$ is a measure of the curvature of the function $f(w)$, and (8.3.2) says the rate of change of the gradient is never greater than L.

Given such a bound L on the curvature, If the learning rate t is no larger than $1 / L$, we say we are doing short step gradient descent. Then we have

Short Step Gradient Descent

Let L be as above and w^{+}as in (8.3.1). If $t \leq 1 / L$, then

$$
\begin{equation*}
f\left(w^{+}\right) \leq f\left(w_{0}\right)-\frac{t}{2}\left|\nabla f\left(w_{0}\right)\right|^{2} \tag{8.3.3}
\end{equation*}
$$

To see this, fix w and let S be the sublevel set $\left\{w^{\prime}: f\left(w^{\prime}\right) \leq f(w)\right\}$. Since the gradient pushes f down, for $t>0$ small, w^{+}stays in S. Insert $x=w^{+}$ and $a=w$ into the right half of (7.5.11) and simplify. This leads to

$$
f\left(w^{+}\right) \leq f(w)-\left(\frac{2 t-t^{2} L}{2}\right)|\nabla f(w)|^{2}
$$

Since $t L \leq 1$ when $0 \leq t \leq 1 / L$, this derives (8.3.3).
The curvature of the loss function and the learning rate are inversely proportional. Where the curvature of the graph of $f(w)$ is large, the learning rate $1 / L$ is small, and gradient descent proceeds in small time steps.

When the sublevel set is bounded, there is a bound L satisfying (8.3.2). From $\S 7.5$, the sublevel set is bounded when $f(w)$ is proper: Large $|w|$ implies high cost $f(w)$. The graphs in Figures 7.4, 7.5, 8.10, are proper.

In practice, when the loss function is not proper, it is modified by an extra term that forces properness. This is called regularization. If the extra term is proportional to $|w|^{2}$, it is ridge regularization, and if the extra term is proportional to $|w|$, it is $L A S S O$ regularization.

Now let $w_{0} w_{1}, w_{2} \ldots$ be a short-step gradient descent sequence, $t \leq 1 / L$. By (8.3.3), w_{n} remains in the sublevel set $f(w) \leq f\left(w_{0}\right)$. If this sublevel set is bounded, w_{n} subconverges to a limit w^{*} (Appendix A.2). Inserting $w=w_{n}$, $w^{+}=w_{n+1}$ in (8.3.3),

$$
f\left(w_{n+1}\right) \leq f\left(w_{n}\right)-\frac{1}{2 L}\left|\nabla f\left(w_{n}\right)\right|^{2}
$$

Since $f\left(w_{n}\right)$ and $f\left(w_{n+1}\right)$ both converge to $f\left(w^{*}\right)$, and $\nabla f\left(w_{n}\right)$ converges to $\nabla f\left(w^{*}\right)$, we conclude

$$
f\left(w^{*}\right) \leq f\left(w^{*}\right)-\frac{1}{2 L}\left|\nabla f\left(w^{*}\right)\right|^{2}
$$

Since this implies $\nabla f\left(w^{*}\right)=0$, we have derived the following.

Gradient Descent Converges to a Critical Point

Fix an initial weight w_{0} and let L be as above. If the short-step gradient descent sequence starting from w_{0} converges to some point w^{*}, then w^{*} is a critical point.

For example, let $f(w)=w^{4}-6 w^{2}+2 w$ (Figures 8.9, 8.10, 8.11). Then

$$
f^{\prime}(w)=4 w^{3}-12 w+2, \quad f^{\prime \prime}(w)=12 w^{2}-12
$$

Thus the inflection points (where $f^{\prime \prime}(w)=0$) are ± 1 and, in Figure 8.10, the critical points are a, b, c.

Let u_{0} and w_{0} be the points satisfying $f(w)=5$ as in Figure 8.11. Then $u_{0}=-2.72204813$ and $w_{0}=2.45269774$, so $f^{\prime \prime}\left(u_{0}\right)=76.914552$ and $f^{\prime \prime}\left(w_{0}\right)=60.188$. Thus we may choose $L=76.914552$. With this L, the short-step gradient descent starting at w_{0} is guaranteed to converge to one of the three critical points. In fact, the sequence converges to the right-most critical point c (Figure 8.10).

This exposes a flaw in basic gradient descent. Gradient descent may converge to a local minimizer, and miss the global minimizer. In §8.8, modified gradient descent will address some of these shortcomings.

Figure 8.11: Double well gradient descent.

The code for gradient descent is

```
from numpy import *
from matplotlib.pyplot import *
def gd(loss,grad,w,learning_rate,num_iter):
    g = grad(w)
    trajectory = array([[w],[loss(w)]])
    for _ in range(num_iter):
        w -= learning_rate * g
        trajectory = column_stack([trajectory,[w,loss(w)]])
        g = grad(w)
        if allclose(g,0): break
    return trajectory
```

When applied to the double well function $f(w)$,

```
u0 = -2.72204813
w0 = 2.45269774
L = 76.914552
learning_rate = 1/L
num_iter = 100
trajectory = gd(loss,grad,w0,learning_rate,num_iter)
ylim(-15,10)
delta = .01
plot_descent(u0,w0,loss,curv,delta,trajectory)
```

the code returns Figure 8.11.

8.4 Network Training

A neural network with weight matrix W defines an input-output map

$$
x_{\text {in }} \quad \rightarrow \quad x_{\text {out }} .
$$

Given inputs $x_{\text {in }}$ and target outputs y, we seek to modify the weight matrix W so that the input-output map is

$$
x_{\text {in }} \quad \rightarrow \quad y .
$$

This is training.
Let (§8.2)

$$
x^{-}=\left(x_{1}^{-}, x_{2}^{-}, \ldots, x_{d}^{-}\right), \quad x=\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

be the network's incoming vector and outgoing vector, and let

$$
\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{d}\right)
$$

be the downstream gradient vector, relative to some output function J.
From (8.2.1),

$$
\begin{equation*}
\frac{\partial J}{\partial w_{i j}}=\frac{\partial J}{\partial x_{j}^{-}} \cdot \frac{\partial x_{j}^{-}}{\partial w_{i j}}=\frac{\partial J}{\partial x_{j}^{-}} \cdot x_{i}=x_{i} \delta_{j} . \tag{8.4.1}
\end{equation*}
$$

This we derived as (8.2.11), but here it is again:

The Weight Gradient of J is a Tensor Product

Let $w_{i j}$ be the weight along an edge (i, j), let x_{i} be the outgoing signal from the i-th node, and let δ_{j} be the downstream derivative of the output J with respect to the j-th node. Then the derivative $\partial J / \partial w_{i j}$ equals $x_{i} \delta_{j}$. In this partial sense,

$$
\begin{equation*}
\nabla_{W} J=x \otimes \delta \tag{8.4.2}
\end{equation*}
$$

When W is the weight matrix between successive layers in a layered neural network (Figure 8.8), (8.4.2) is not partial, it is exactly correct.

Using (8.4.1), we update the weight $w_{i j}$ using gradient descent

```
def update_weights(x,delta,w,learning_rate):
    d = len(w)
    for i in range(d):
        for j in range(d):
            if w[i][j]:
                w[i][j] = w[i][j] - learning_rate*x[i]*delta[j]
```

The learning rate is discussed in $\S 8.3$. The triple

$$
\text { forward propagation } \rightarrow \text { backward propagation } \rightarrow \text { update weights }
$$

is an iteration. Starting with a given W_{0}, we repeat this iteration until we obtain the target outputs y. Here is the code.

```
def train_nn(x_in,y,w0,learning_rate,n_iter):
    trajectory = []
    cost = 1
    # build a local copy
    w = [ row[:] for row in wO ]
    d = len(w0)
    for _ in range(n_iter):
        x = forward_prop(x_in,w)
        delta = backward_prop(x,y,w)
        update_weights(x,delta,w,learning_rate)
        m = len(y)
        x_out = x[d-m:]
```

```
        cost = J(x_out,y)
        trajectory.append(cost)
        if allclose(O,cost): break
return w, trajectory
```

Here $\mathrm{n}_{\text {_ }}$ iter is the maximum number of iterations allowed, and the iterations stop if the cost J is close to zero.

The cost or error function J enters the code only through the function delta_out, which is part of the function backward_prop.

Let W_{0} be the weight matrix (8.2.4). Then

```
x_in = [1.5,2.5]
learning_rate = . 01
y0 = 0.4265356063
y1 = -0.2876478137
y = [y0,y1]
n_iter = 10000
w, trajectory = train_nn(x_in,y,w0,learning_rate,n_iter)
```

returns the cost trajectory, which can be plotted using the code

```
from matplotlib.pyplot import *
for lr in [.01,.02,.03,.035]:
    w, trajectory = train_nn(x_in,y,w0,lr,n_iter)
    n = len(trajectory)
    label = str(n) + ", " + str(lr)
    plot(range(n),trajectory,label=label)
grid()
legend()
show()
```

resulting in Figure 8.12.

Figure 8.12: Cost trajectory and number of iterations as learning rate varies.
The convergence here is surprisingly easy to attain. However, the convergence here is a mirage. It is a reflection of overfitting, in the sense that we tuned the weights to obtain the input-output map corresponding to a single sample: There is no reason the tuned weights produce the input-output map for other samples.

Only after we tune the weights repeatedly against all samples in a training dataset, can we hope to achieve training with some predictive power. This is the subject of §8.9.

8.5 Loss Functions

Let $x_{1}, x_{2}, \ldots, x_{N}$ be a dataset, with corresponding labels or targets y_{1}, y_{2}, \ldots, y_{N}. In this section, we study the loss function

$$
\begin{equation*}
J(W)=\sum_{k=1}^{N} J\left(x_{k}, y_{k}, W\right) \tag{8.5.1}
\end{equation*}
$$

We study two cases,

- linear regression, and
- logistic regression.

With any loss function J, the goal is minimize J. With this in mind, from $\S 7.5$, we recall

Ideal Loss Function

If a loss function J is proper and strictly convex, then J has a unique global minimum, characterized as the unique critical point.

Often, in machine learning, J is neither convex nor proper. Nevertheless, this result is an important benchmark to start with. Lack of properness is often addressed by regularization, which is the modification of J by a proper forcing term. Lack of convexity is addressed by using some type of accelerated gradient descent.

Given this result, our goal in this section is to determine conditions on the dataset that guarantee properness and strict convexity of J in the two cases.

The first loss function is (8.5.1) with

$$
\begin{equation*}
J(x, y, W)=\frac{1}{2}\left|W^{t} x-y\right|^{2} . \tag{8.5.2}
\end{equation*}
$$

Then (8.5.1) is the mean square loss, and the problem of minimizing (8.5.1) is linear regression (Figure 8.13).

To check convexity, expand $J(x, y, W)$ as a quadratic

$$
J(x, y, W)=\frac{1}{2}\left(x \cdot W W^{t} x-2 x \cdot W y+|y|^{2}\right) .
$$

Using (2.2.10),

$$
J(x, y, W)=\frac{1}{2} \operatorname{trace}\left(W^{t}(x \otimes x) W-2 W^{t}(x \otimes y)+y \otimes y\right) .
$$

From this, the weight gradient is

$$
\nabla_{W} J(x, y, W)=(x \otimes x) W-x \otimes y
$$

Figure 8.13: Linear regression neural network.
Let X be the matrix with rows $x_{1}, x_{2}, \ldots, x_{N}$, and let Y be the matrix with rows $y_{1}, y_{2}, \ldots, y_{N}$. Then from (2.2.7),

$$
X^{t} X=\sum_{k=1}^{N} x_{k} \otimes x_{k}, \quad X^{t} Y=\sum_{k=1}^{N} x_{k} \otimes y_{k}
$$

and the weight gradient of $J(W)$ is

$$
\nabla_{W} J(W)=X^{t} X W-X^{t} Y
$$

At a minimizer W^{*} of J, we have a critical point: $\nabla_{W} J\left(W^{*}\right)=0$. It follows that a minimizer satisfies

$$
X^{t} X W=X^{t} Y
$$

But this is exactly the regression equation (2.6.2).
The regression equation has a unique solution when $X^{t} X$ is invertible. Since $X^{t} X$ is square, this happens iff $X^{t} X$ is full rank, which happens iff X is full rank (§2.9). When this happens, $J(W)$ is also strictly convex (§7.5).

If we take the second derivative, we have

$$
\begin{equation*}
D_{W}^{2} J(W)=X^{t} X \tag{8.5.3}
\end{equation*}
$$

This is another way of recovering strict convexity when X has full rank.
Recall we say a dataset in \mathbf{R}^{d} is full rank if the span of the dataset is all of \mathbf{R}^{d}. We conclude

Linear Regression: Strict Convexity and Properness

Suppose the dataset $x_{1}, x_{2}, \ldots, x_{N}$ is full rank. Then the mean square loss $J(W)$ is proper and strictly convex. It follows $J(W)$ has a unique global minimum, characterized as the unique critical point.

This is a simple, clear geometric criterion for convergence of gradient descent to the global minimum of J, valid for linear regression.

Let $x_{1}, x_{2}, \ldots, x_{N}$ be a dataset, with corresponding labels or targets p_{1}, p_{2}, \ldots, p_{N}. In logistic regression, we assume the targets p reflect finitely many (say d) classes or categories. Hence each target p is a probability vector $p=\left(p_{1}, p_{2}, \ldots, p_{d}\right)$. Because of this, we use p instead of y to denote the targets.

In logistic regression, there are two main sub-cases where things work out: Strict probabilities and one-hot encoded probabilities.

A probability $p=\left(p_{1}, p_{2}, \ldots, p_{d}\right)$ is strict if $p_{1}, p_{2}, \ldots, p_{d}$ are all positive (none are zero).

A probability $p=\left(p_{1}, p_{2}, \ldots, p_{d}\right)$ is one-hot encoded if for some $j, p_{j}=1$. When p is one-hot encoded with $p_{j}=1$, then $p_{i}=0$ for $i \neq j$, and we say p is one-hot encoded at slot j.

For example, in classification problems, each sample x lies in one of d classes, and p is one-hot encoded at the slot corresponding to the class: If there are three classes $0,1,2$, then p_{k} is

$$
(1,0,0), \quad(0,1,0), \quad(0,0,1)
$$

depending on which class x_{k} lies in.
In logistic regression, the loss function is (8.5.1), with

$$
J(x, p, W)=I\left(p, \sigma\left(W^{t} x\right)\right)
$$

When p is one-hot encoded, by (7.6.15),

$$
J(x, p, W)=I_{\text {cross }}\left(p, \sigma\left(W^{t} x\right)\right)
$$

This is logistic loss, and the problem of minimizing (8.5.1) is logistic regression (Figure 8.14).

This terminology is standard even though I is the relative information, not the relative entropy (see $\S 7.6$ for a discussion of this inconsistent terminology). Table 7.24 is a useful summary of information and entropy.

Since we will be considering both strict and one-hot encoded probabilities, we work with $I(p, q)$ rather than $I_{\text {cross }}(p, q)$.

Figure 8.14: Logistic regression neural network.

We turn now to the convexity of the loss function. By (7.6.14),

$$
\begin{equation*}
\nabla_{z} I(p, \sigma(z))=\nabla_{z} Z(z)=q-p, \quad q=\sigma(z) \tag{8.5.4}
\end{equation*}
$$

and

$$
D_{z}^{2} I(p, \sigma(z))=D^{2} Z(z)=\operatorname{diag}(q)-q \otimes q, \quad q=\sigma(z)
$$

By the chain rule, since $z=W^{t} x$,

$$
\nabla_{W} J(x, p, W)=x \otimes(q-p), \quad q=\sigma(z), z=W^{t} x
$$

Recall (§7.6) we have strict convexity of $Z(z)$ in directions orthogonal to $\mathbf{1}$, or $z \cdot \mathbf{1}=0$. Since $z=W^{t} x$, to obtain $z \cdot \mathbf{1}=0$, we impose the constraint

$$
\begin{equation*}
W \mathbf{1}=0 \tag{8.5.5}
\end{equation*}
$$

on the weight matrix, or

$$
\sum_{j=1}^{d} w_{i j}=0, \quad i=1,2, \ldots, d
$$

When W satisfies this constraint, we say W is orthogonal to 1 . Now we can state

Logistic Regression: Strict Convexity

Suppose the dataset $x_{1}, x_{2}, \ldots, x_{N}$ is full rank. Then the logistic loss $J(W)$, restricted to the subspace $W \mathbf{1}=0$, is strictly convex. It follows $J(W)$ has at most one global minimum, and at most one critical point, on this subspace.

Notice here properness is not automatic, as in linear regression. Properness needs additional conditions, discussed below.

Verifying this result involves standard but lengthy matrix manipulations. Here we present the main steps of the proof.

Let \tilde{W} be any weight matrix satisfying $\tilde{W} \mathbf{1}=0$. Then $W_{\epsilon}=W+\epsilon \tilde{W}$ satisfies $W_{\epsilon} \mathbf{1}=0$, for any $\epsilon>0$. Now set $z_{\epsilon}=W_{\epsilon}^{t} x, \tilde{z}=\tilde{W}^{t} x$, and $q=\sigma(z)$. Then $z_{\epsilon} \cdot \mathbf{1}=0, \tilde{z} \cdot \mathbf{1}=0$, and the second derivative satisfies

$$
\begin{equation*}
\left.\frac{d^{2}}{d \epsilon^{2}}\right|_{\epsilon=0} J\left(x, p, W_{\epsilon}\right)=\sum_{i=1}^{d} \tilde{z}_{i}^{2} q_{i}-\left(\sum_{i=1}^{d} \tilde{z}_{i} q_{i}\right)^{2} \tag{8.5.6}
\end{equation*}
$$

In matrix form, this follows from (7.6.9), and may be written

$$
D_{W}^{2} J(x, p, W)=x \otimes(\operatorname{diag}(q)-q \otimes q) \otimes x
$$

Given a vector v, set $\bar{v}=\sum_{j=1}^{d} v_{j} q_{j}$. Then

$$
\sum_{j=1}^{d} v_{j}^{2} q_{j}-\left(\sum_{j=1}^{d} v_{j} q_{j}\right)^{2}=\sum_{j=1}^{d}\left(v_{j}-\bar{v}\right)^{2} q_{j}
$$

If either side is zero, and q is strict, then $v=\bar{v} \mathbf{1}$, so v is a multiple of $\mathbf{1}$.
From this, the second derivative (8.5.6) is nonnegative, establishing the convexity of $J(x, p, W)$. If

$$
\begin{equation*}
\left.\frac{d^{2}}{d \epsilon^{2}}\right|_{\epsilon=0} J\left(x, p, W_{\epsilon}\right)=0 \tag{8.5.7}
\end{equation*}
$$

then \tilde{z} is a multiple of $\mathbf{1}$. But \tilde{z} is orthogonal to $\mathbf{1}$, so (8.5.7) implies $\tilde{z}=0$.
Summing over all samples, we have

$$
D_{W}^{2} J(W)=\sum_{k=1}^{N} x_{k} \otimes\left(\operatorname{diag}\left(q_{k}\right)-q_{k} \otimes q_{k}\right) \otimes x_{k}
$$

Now suppose the second derivative of $J(W)$ at W in the direction \tilde{W} vanishes,

$$
\left.\frac{d^{2}}{d \epsilon^{2}}\right|_{\epsilon=0} J\left(W_{\epsilon}\right)=0
$$

Since the second derivative of $J(W)$ is a sum of nonnegative terms, one for each sample, (8.5.7) holds for every $(x, p)=\left(x_{k}, p_{k}\right)$. From the previous paragraph, this implies

$$
\tilde{z}_{k}=\tilde{W}^{t} x_{k}=0, \quad k=1,2, \ldots, N .
$$

When the dataset is full-rank, this implies $\tilde{W}=0$. This establishes strict convexity of $J(W)$ in the subspace $W \mathbf{1}=0$.

Now we turn to properness of $J(W)$. There are two cases: Strict probabilities, and one-hot encoded probabilities.

When the targets are all strict, $J(W)$ is proper. When the targets are one-hot encoded, and there is sufficient overlap between the groups, $J(W)$ is proper.

Here is the first case.

Logistic Regression, Strict: Properness

Let $x_{1}, x_{2}, \ldots, x_{N}$ be a dataset, with corresponding targets p_{1}, p_{2}, \ldots, p_{N}. If the dataset is full rank and the targets are strict probabilities, then the logistic loss $J(W)$ is proper on the subspace $W \mathbf{1}=0$.

Let x be a sample with target p satisfying $p_{k} \geq \epsilon$ for $k=1,2, \ldots, d$, and let $z=W^{t} x$, with $W \mathbf{1}=0$. We first establish

$$
\begin{equation*}
J(x, p, W) \leq c \quad \Longrightarrow \quad\left|W^{t} x\right| \leq c^{\prime} \tag{8.5.8}
\end{equation*}
$$

for some constant c^{\prime} depending only on c, d, and ϵ.
From the definition of $Z, Z-z_{k}>0$, for $k=1,2, \ldots, d$. Since $z \cdot \mathbf{1}=0$,

$$
Z-p \cdot z=\sum_{k=1}^{d} p_{k}\left(Z-z_{k}\right) \geq \epsilon \sum_{k=1}^{d}\left(Z-z_{k}\right)=\epsilon d Z .
$$

By (7.6.14), $J(x, p, W) \leq c$ implies

$$
I(p)+\epsilon d Z \leq I(p)-p \cdot z+Z=I(p, \sigma(z))=J(x, p, W) \leq c
$$

By (7.6.7), this implies

$$
Z(z) \leq \frac{c+\log d}{\epsilon d}
$$

By (7.6.10), this implies

$$
|z| \leq \frac{(d-1)(c+\log d)}{\epsilon}
$$

establishing (8.5.8).
Now suppose $J(W) \leq c$. Then, by nonnegativity of $J\left(x_{k}, p_{k}, W\right)$, we have $J\left(x_{k}, p_{k}, W\right) \leq c$, for all samples. Since all targets are strict, there is a constant $\epsilon>0$ such that $p_{k} \geq \epsilon$ for $k=1,2, \ldots, d$, for every target p. By (8.5.8),

$$
\left|W^{t} x_{k}\right| \leq c^{\prime}, \quad k=1,2, \ldots, N .
$$

Since the dataset is full rank, this implies the boundedness of W, and completes the derivation.

Here is the second case.

Logistic Regression, One-hot Encoded: Properness

Let $x_{1}, x_{2}, \ldots, x_{N}$ be a dataset with corresponding one-hot encoded targets $p_{1}, p_{2}, \ldots, p_{N}$, and, for each class i, let K_{i} be the convex hull (§7.5) of the samples whose corresponding targets are one-hot encoded at slot i. If for each i and j, the span of the intersection $K_{i} \cap K_{j}$ is full rank, then the logistic loss $J(W)$ is proper on the subspace $W \mathbf{1}=0$.

In the next section, we show a simple example of how this works. Note if the span of $K_{i} \cap K_{j}$ is full rank, then the dataset itself is full rank, hence, from a previous result, $J(W)$ is strictly convex.

Suppose $J(W) \leq c$. Then $J(x, p, W) \leq c$ for every sample x and corresponding target p.

Let x be a sample in K_{i}, and let $z=W^{t} x$. Then the corresponding target p satisfies $p_{i}=1$, and $I(p)=0$. If $j \neq i$, by (7.6.14),

$$
z_{j}-z_{i}<Z(z)-z_{i}=I(p, \sigma(z))=J(x, p, W) \leq c
$$

By taking convex combinations of samples x in $K_{i}, z_{j}-z_{i} \leq c$ remains valid for all x in K_{i}.

Similarly, if x is in K_{j}, then $z_{i}-z_{j} \leq c$. We conclude

$$
\left|z_{i}-z_{j}\right| \leq c
$$

for x in $K_{i} \cap K_{j}$.
Let e_{1}, e_{2}, \ldots be the standard basis in the sample feature space. Since the span of $K_{i} \cap K_{j}$ is full rank, there is a constant C such that

$$
\left.\mid\left(W^{t} x\right)_{i}-\left(W^{t} x\right)_{j}\right)\left|=\left|z_{i}-z_{j}\right| \leq C, \quad \text { for every } i \text { and } j,\right.
$$

for every basis vector $x=e_{k}$.
Let d be the number of classes, so $z=\left(z_{1}, z_{2}, \ldots, z_{d}\right)$. Since $z \cdot \mathbf{1}=0$, $z_{i}=-\sum_{j \neq i} z_{j}$. Summing over $j \neq i$,

$$
d\left|z_{i}\right|=\left|(d-1) z_{i}+z_{i}\right|=\left|\sum_{j \neq i}\left(z_{i}-z_{j}\right)\right| \leq(d-1) C
$$

This implies

$$
|z|=\left(\sum_{i=1}^{d} z_{i}^{2}\right)^{1 / 2} \leq C \sqrt{d}
$$

for every basis vector $x=e_{k}$. We conclude

$$
\left|W^{t} e_{k}\right| \leq C \sqrt{d}
$$

for every basis vector e_{k} in feature space. This implies boundedness of W, and establishes the properness of $J(W)$ on the subspace $W \mathbf{1}=0$.

We end the section by comparing the three regressions: linear, strict logistic, and one-hot encoded logistic.

In classification problems, it is one-hot encoded logistic that is relevant. Because of this, in the literature, logistic regression often defaults to the one-hot case.

In linear regression, not only does $J(W)$ have a minimum, but so does $J(x, y, W)$. Properness ultimately depends on properness of a quadratic $|z|^{2}$,

In strict logistic regression, by (8.5.4), the critical point equation

$$
\nabla_{z} J(x, p, W)=0
$$

can always be solved, so there is at least one minimum for each $J(x, p, W)$. Here properness ultimately depends on properness of the partition function $Z(z)$.

In one-hot encoded regression, $\nabla_{z} J(x, p, W)=0$ can never be solved, because $q=\sigma(z)$ is always strict and p is one-hot encoded. Nevertheless, properness of $J(W)$ is achievable if there is sufficient overlap between the categories.

In linear regression, the minimizer is expressible in terms of the regression equation, and thus can be solved in principle using the pseudo-inverse. In practice, when the dimensions are high, gradient descent may be the only option for linear regression. In logistic regression, the minimizer cannot be found in closed form, so we have no choice but to apply gradient descent, even for low dimensions.

8.6 Regression Examples

Let $\left(x_{k}, y_{k}\right), k=1,2, \ldots, N$, be a dataset in the plane. The simplest regression problem is to determine the line $y=m x+b$ minimizing the residual

$$
\begin{equation*}
J(m, b)=\sum_{k=1}^{N}\left(y_{k}-m x_{k}-b\right)^{2} . \tag{8.6.1}
\end{equation*}
$$

Then the line is the regression line.

Figure 8.15: Population versus employed: Linear Regression.

GNP.deflator	GNP	Unemployed	Armed Forces	Population	Year	Employed
83	234.289	235.6	159	107.608	1947	60.323
88.5	259.426	232.5	145.6	108.632	1948	61.122
88.2	258.054	368.2	161.6	109.773	1949	60.171
89.5	284.599	335.1	165	110.929	1950	61.187
96.2	328.975	209.9	309.9	112.075	1951	63.221
98.1	346.999	193.2	359.4	113.27	1952	63.639
99	365.385	187	354.7	115.094	1953	64.989
100	363.112	357.8	335	116.219	1954	63.761
101.2	397.469	290.4	304.8	117.388	1955	66.019
104.6	419.18	282.2	285.7	118.734	1956	67.857
108.4	442.769	293.6	279.8	120.445	1957	68.169
110.8	444.546	468.1	263.7	121.95	1958	66.513
112.6	482.704	381.3	255.2	123.366	1959	68.655
114.2	502.601	393.1	251.4	125.368	1960	69.564
115.7	518.173	480.6	257.2	127.852	1961	69.331
116.9	554.894	400.7	282.7	130.081	1962	70.551

Table 8.16: Longley Economic Data [12].

More generally, given a dataset $x_{1}, x_{2}, \ldots, x_{N}$ in \mathbf{R}^{d}, and scalar targets $y_{1}, y_{2}, \ldots, y_{N}$, we want to minimize

$$
J(w)=\sum_{k=1}^{N}\left(y_{k}-w \cdot x_{k}\right)^{2}
$$

over all weight vectors in \mathbf{R}^{d}. Here we are fitting a regression hyperplane

$$
y=w \cdot x=w_{1} x_{1}+w_{2} x_{2}+\cdots+w_{d} x_{d} .
$$

For example, Figure 8.16 is a dataset and Figure 8.15 is a plot of population versus employed, with the mean and the regression line shown.

Let X be the $N \times d$ matrix with rows $x_{1}, x_{2}, \ldots, x_{N}$, and let Y be the vector $\left(y_{1}, y_{2}, \ldots, y_{N}\right)$. Then we can rewrite the residual as

$$
\begin{equation*}
J(w)=|X w-Y|^{2} \tag{8.6.2}
\end{equation*}
$$

From §2.3, any weight w^{*} minimizing (8.6.2) is a solution the regression equation

$$
\begin{equation*}
X^{t} X w^{*}=X^{t} Y \tag{8.6.3}
\end{equation*}
$$

Since the pseudo-inverse provides a solution of the regression equation, we have

Linear Regression

The weight $w^{*}=X^{+} Y$ minimizes the residual (8.6.2) and solves the regression equation (8.6.3).

We work out the regression equation in the plane, when both features x and y are scalar. In this case, $w=(m, b)$ and

$$
X=\left(\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\ldots & \ldots \\
x_{N} & 1
\end{array}\right), \quad Y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\ldots \\
y_{N}
\end{array}\right)
$$

In the scalar case, the regression equation (8.6.3) is 2×2. To simplify the computation of $X^{t} X$, let

$$
\bar{x}=\frac{1}{N} \sum_{k=1}^{N} x_{k}, \quad \bar{y}=\frac{1}{N} \sum_{k=1}^{N} y_{k}
$$

Then (\bar{x}, \bar{y}) is the mean of the dataset. Also, let x and y denote the vectors $\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ and $\left(y_{1}, y_{1}, \ldots, y_{N}\right)$, and let, as in $\S 1.6$,

$$
\operatorname{cov}(x, y)=\frac{1}{N} \sum_{k=1}^{N}\left(x_{k}-\bar{x}\right)\left(y_{k}-\bar{y}\right)=\frac{1}{N} x \cdot y-\bar{x} \bar{y}
$$

Then $\operatorname{cov}(x, y)$ is the covariance between x and y,

$$
X^{t} X=N\left(\begin{array}{cc}
x \cdot x & \bar{x} \\
\bar{x} & 1
\end{array}\right), \quad X^{t} Y=N\binom{x \cdot y}{\bar{y}}
$$

With $w=(m, b)$, the regression equation reduces to

$$
\begin{aligned}
(x \cdot x) m+\bar{x} b & =x \cdot y, \\
m \bar{x}+b & =\bar{y} .
\end{aligned}
$$

The second equation says the regression line passes through the mean (\bar{x}, \bar{y}). Multiplying the second equation by \bar{x} and subtracting the result from the first equation cancels the b and leads to

$$
\operatorname{cov}(x, x) m=\left(x \cdot x-\bar{x}^{2}\right) m=(x \cdot y-\bar{x} \bar{y})=\operatorname{cov}(x, y) .
$$

This derives

Linear Regression in the Plane

The regression line in two dimensions passes through the mean (\bar{x}, \bar{y}) and has slope

$$
m=\frac{\operatorname{cov}(x, y)}{\operatorname{cov}(x, x)} .
$$

Now we use linear regression to do polynomial regression. Return to the dataset $\left(x_{k}, y_{k}\right)$ in \mathbf{R}^{2} (Figure 8.15). We can expand or "lift" the dataset from \mathbf{R}^{2} to \mathbf{R}^{6} by working with the vectors ($\left.1, x_{k}, x_{k}^{2}, x_{k}^{3}, x_{k}^{4}, y_{k}\right)$ instead of $\left(x_{k}, y_{k}\right)$.

Assuming the data is given by Figure 8.16, we build the code for Figures 8.15 and 8.17 . We begin by assuming the data is given as arrays,

```
from numpy import *
from pandas import read_csv
df - read_csv("longley.csv")
X = df["Population"].to_numpy()
Y = df["Employed"].to_numpy()
```

Then we standardize the data

```
X = X - mean(X)
Y = Y - mean(Y)
varx = sum(X**2)/len(X)
vary = sum(Y**2)/len(Y)
X = X/sqrt(varx)
Y = Y/sqrt(vary)
```

After this, we compute the optimal weight w^{*} and construct the polynomial. The regression equation is solved using the pseudo-inverse (§2.3).

```
from numpy.linalg import pinv
# polynomial function - degree d-1
def f(x,d):
    A = column_stack([ X**i for i in range(d) ]) # Nxd
    Aplus = pinv(A)
    b = Y # Nx1
    theta = dot(Aplus,b)
    return sum([ x**i*theta[i] for i in range(d) ],axis=0)
```


Figure 8.17: Polynomial regression: Degrees $2,4,6,8,10,12$.
Then we plot the data and the polynomial in six subplots.
from matplotlib.pyplot import *
xmin, ymin $=\operatorname{amin}(X), \operatorname{amin}(Y)$
$x \max , y \max =\operatorname{amax}(X), \operatorname{amax}(Y)$
figure(figsize=(12,12))

```
# six subplots
rows, cols = 3,2
# x interval
x = arange(xmin,xmax,.01)
for i in range(6):
    d = 3 + 2*i # degree = d-1
    subplot(rows, cols,i+1)
    plot(X,Y,"o",markersize=2)
    plot([0],[0],marker="o",color="red",markersize=4)
    plot(x,f(x,d),color="blue",linewidth=.5)
    xlabel("degree = %s" % str(d-1))
    grid()
show()
```

Running this code with degree 1 returns Figure 8.15. Taking too high a power can lead to overfitting, for example for degree 12.

Figure 8.18: Exam outcomes (0 or 1) and logistic regression fit [26].

Here is an example of a simple logistic regression problem. A group of students takes an exam. For the k-th student, we know the amount of time x_{k} they studied, and the outcome p_{k}, whether or not they passed the exam.

Plotting these points on the (x, p) plane, the goal is to fit a curve as in Figure 8.18.

More generally, we may only know the amount of study time x_{k}, and the probability p_{k} that the student passed, where now $0 \leq p_{k} \leq 1$.

For example, the data may be as follows, where p_{k} equals 1 or 0 according to whether they passed or not.

x	p								
0.5	0	.75	0	1.0	0	1.25	0	1.5	0
1.75	0	1.75	1	2.0	0	2.25	1	2.5	0
2.75	1	3.0	0	3.25	1	3.5	0	4.0	1
4.25	1	4.5	1	4.75	1	5.0	1	5.5	1

Table 8.19: Hours studied and outcomes.
Let $\sigma(z)$ be the sigmoid function. Then, as in the previous section, the goal is to minimize the loss function

$$
\begin{equation*}
J(m, b)=\sum_{k=1}^{N} I\left(p_{k}, q_{k}\right), \quad q_{k}=\sigma\left(m x_{k}+b\right), \tag{8.6.4}
\end{equation*}
$$

Once we have the minimizer (m, b), we have the best-fit curve

$$
q=\sigma(m x+b)
$$

(Figure 8.18).
If the targets p_{k} are one-hot encoded, the dataset is as follows.

x	p								
0.5	$(1,0)$.75	$(1,0)$	1.0	$(1,0)$	1.25	$(1,0)$	1.5	$(1,0)$
1.75	$(1,0)$	1.75	$(0,1)$	2.0	$(1,0)$	2.25	$(0,1)$	2.5	$(1,0)$
2.75	$(0,1)$	3.0	$(1,0)$	3.25	$(0,1)$	3.5	$(1,0)$	4.0	$(0,1)$
4.25	$(0,1)$	4.5	$(0,1)$	4.75	$(0,1)$	5.0	$(0,1)$	5.5	$(0,1)$

Table 8.20: Hours studied and one-hot encoded outcomes.
Here is the code for Figure 8.18,

```
from matplotlib.pyplot import *
from scipy.special import expit
X = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 1.75, 2.0, 2.25, 2.5,
        \hookrightarrow.75, 3.0, 3.25, 3.5, 4.0, 4.25, 4.5, 4.75, 5.0, 5.5]
P = [0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1]
x = arange(0,6,.01)
plot(x,expit(m*x+b))
scatter(X,P)
grid()
show()
```

To apply the results from the previous section, first we incorporate the bias and rewrite the dataset as

$$
\left(x_{1}, 1\right),\left(x_{2}, 1\right), \ldots,\left(x_{N}, 1\right), \quad N=20
$$

Then each sample x in the dataset is in \mathbf{R}^{2}, and each target is one-hot encoded as $(p, 1-p)$. The weight matrix must satisfy (8.5.5) $W \mathbf{1}=0$. so

$$
W=\left(\begin{array}{cc}
b & -b \\
m & -m
\end{array}\right)
$$

Since $z=W^{t} x$, the outputs must satisfy $z_{1}=z$ and $z_{2}=-z$. This leads to a neural network with two inputs and two outputs (Figure 8.21).

Figure 8.21: Neural network for student exam outcomes.

Clearly the dataset is full rank in \mathbf{R}^{2}, hence $J(w), w=(m, b)$, is strictly convex.

Referring to Figure 8.18, the convex hull K_{0} of the samples corresponding to $p_{k}=0$ is the line segment joining $(.5,1)$ and $(3.5,1)$, and the convex hull K_{1} of the samples corresponding to $p_{k}=1$ is the line segment joining $(1.75,1)$ and $(5.5,1)$. Since $K_{0} \cap K_{1}$ is the line segment joining $(1.75,1)$ and $(3.5,1)$, the span of $K_{0} \cap K_{1}$ is \mathbf{R}^{2}. By the results of the previous section, $J(w)$ is proper.

Here is the descent code.

```
from numpy import *
from scipy.special import expit
X = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 1.75, 2.0, 2.25, 2.5,
    \hookrightarrow.75, 3.0, 3.25, 3.5, 4.0, 4.25, 4.5, 4.75, 5.0, 5.5]
P = [0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1]
def gradient(m,b):
    return sum([ (expit(m*x+b) - p) * array([x,1]) for x,p in
        uip(X,P) ],axis=0)
# gradient descent
w = array([0,0]) # starting m,b
g = gradient(*W)
t = . 01 # learning rate
while not allclose(g,0):
    w_new = w - t * g
    if allclose(w,w_new): break
    else: w = w_new
    g = gradient(*W)
print("descent result: ",w)
print("gradient: ",gradient(*W))
```


Figure 8.22: Projection of Iris dataset onto \mathbf{R}^{2}.

The Iris dataset consists of 150 samples divided into three groups. leading to three convex hulls K_{0}, K_{1}, K_{2} in \mathbf{R}^{4}. If the dataset is projected onto the top two principal components, then the projections of these three hulls do not pair-intersect (Figure 8.22). It follows that K_{0}, K_{1}, K_{2} do not triple-intersect in \mathbf{R}^{4}, so we have no guarantee the logistic loss is proper.

On the other hand, the MNIST dataset consists of 60,000 samples divided into ten groups. If the MNIST dataset is projected onto the top two principal components, the projections of the ten convex hulls $K_{0}, K_{1}, \ldots, K_{9}$ onto \mathbf{R}^{2}, do intersect (Figure 8.23).

Figure 8.23: Convex hulls of projections of MNIST dataset classes onto \mathbf{R}^{2}.
This does not guarantee that the ten convex hulls $K_{0}, K_{1}, \ldots, K_{9}$ in \mathbf{R}^{784} intersect, but at least this is so for the 2d projection of the MNIST dataset. Therefore the logistic loss of the 2 d projection of the MNIST dataset is proper.

8.7 Strict Convexity

In this section, we work with loss functions that are smooth and strictly convex. While this is not always the case, this assumption is a base case against which we can test different optimization or training models.

By smooth and strictly convex, we mean there are positive constants m and L satisfying

$$
\begin{equation*}
m \leq D^{2} f(w) \leq L, \quad \text { for every } w \tag{8.7.1}
\end{equation*}
$$

Recall this means the eigenvalues of the symmetric matrix $D^{2} f(w)$ are between L and m. In this situation, the condition number ${ }^{1} r=m / L$ is between

[^13]zero and one: $0<r \leq 1$.
In the previous section, we saw that basic gradient descent converged to a critical point. If $f(x)$ is strictly convex, there is exactly one critical point, the global minimum. From this we have

Gradient Descent on a Strictly Convex Function

If the short-step gradient descent sequence starting from w_{0} converges to w^{*}, then w^{*} is the global minimum.

The simplest example of a convex loss function is the quadratic case

$$
\begin{equation*}
f(w)=\frac{1}{2} w \cdot Q w-b \cdot w \tag{8.7.2}
\end{equation*}
$$

where Q is a covariance matrix. Then $D^{2} f(w)=Q$. If the eigenvalues of Q are between positive constants m and L, then $f(w)$ is smooth and strictly convex.

By (7.3.5), the gradient for this example is $g=Q w-b$. Hence the minimizer is the unique solution $w^{*}=Q^{-1} b$ of the linear system $Q w=$ b. Thus gradient descent is a natural tool for solving linear systems and computing inverses, at least for covariance matrices Q.

By (7.5.12), $f(w)$ lies between two quadratics,

$$
\begin{equation*}
\frac{m}{2}\left|w-w^{*}\right|^{2} \leq f(w)-f\left(w^{*}\right) \leq \frac{L}{2}\left|w-w^{*}\right|^{2} \tag{8.7.3}
\end{equation*}
$$

How far we are from our goal w^{*} can be measured by the error $E(w)=$ $\left|w-w^{*}\right|^{2}$. Another measure of error is $E(w)=f(w)-f\left(w^{*}\right)$. The goal is to drive the error between w and w^{*} to zero.

When $f(w)$ is smooth and strictly convex in the sense of (8.7.1), the estimate (8.7.3) shows these two error measures are equivalent. We use both measures below.

Let $t=1 / L$. Inserting $x=w$ and $a=w^{*}$ in the left half of (7.5.15) and using $\nabla f\left(w^{*}\right)=0$ implies

$$
f(w) \leq f\left(w^{*}\right)+\frac{1}{2 m}|\nabla f(w)|^{2}
$$

Let $E(w)=f(w)-f\left(w^{*}\right)$. Combining this inequality with (8.3.3), and recalling $r=m / L=m t$, we arrive at

$$
\begin{equation*}
E\left(w^{+}\right) \leq(1-r) E(w) \tag{8.7.4}
\end{equation*}
$$

Iterating this implies

$$
E\left(w_{2}\right) \leq(1-r) E\left(w_{1}\right) \leq(1-r)(1-r) E\left(w_{0}\right)=(1-r)^{2} E\left(w_{0}\right)
$$

In general, this leads to

Gradient Descent I

Let $r=m / L$ and set $E(w)=f(w)-f\left(w^{*}\right)$. Then the descent sequence $w_{0}, w_{1}, w_{2}, \ldots$ given by (8.3.1) with learning rate

$$
t=\frac{1}{L}
$$

converges to w^{*} at the rate

$$
\begin{equation*}
E\left(w_{n}\right) \leq(1-r)^{n} E\left(w_{0}\right), \quad n=1,2, \ldots \tag{8.7.5}
\end{equation*}
$$

This is the basic gradient descent result GD-I.

Using coercivity of the gradient (7.5.16), we can obtain an improved result GD-II.

Let $E(w)=\left|w-w^{*}\right|^{2}$ and set the learning rate at $t=2 /(m+L)$. Inserting $x=w$ and $a=w^{*}$ in (7.5.16) and using $\nabla f\left(w^{*}\right)=0$ implies

$$
g \cdot\left(w-w^{*}\right) \geq \frac{m L}{m+L}\left|w-w^{*}\right|^{2}+\frac{1}{m+L}|g|^{2} .
$$

Using this and (8.3.1) and $t=2 /(m+L)$,

$$
\begin{aligned}
E\left(w^{+}\right) & =E(w)-2 t g \cdot\left(w-w^{*}\right)+t^{2}|g|^{2} \\
& \leq\left(1-2 t \frac{m L}{m+L}\right) E(w)+\left(t^{2}-\frac{2 t}{m+L}\right)|g|^{2} \\
& =\left(\frac{L-m}{L+m}\right)^{2} E(w) .
\end{aligned}
$$

This implies

Gradient Descent II

Let $r=m / L$ and set $E(w)=\left|w-w^{*}\right|^{2}$. Then the descent sequence $w_{0}, w_{1}, w_{2}, \ldots$ given by (8.3.1) with learning rate

$$
t=\frac{2}{m+L}
$$

converges to w^{*} at the rate

$$
\begin{equation*}
E\left(w_{n}\right) \leq\left(\frac{1-r}{1+r}\right)^{2 n} E\left(w_{0}\right), \quad n=1,2, \ldots \tag{8.7.6}
\end{equation*}
$$

GD-II improves GD-I in two ways: The learning rate is larger,

$$
\frac{2}{m+L}>\frac{1}{L}
$$

and the convergence rate is smaller,

$$
\left(\frac{1-r}{1+r}\right)^{2}<(1-r)
$$

implying faster convergence.
For example, if $L=6$ and $m=2$, then $r=1 / 3$, the learning rates are $1 / 6$ versus $1 / 4$, and the convergence rates are $2 / 3$ versus $1 / 4$. Even though GD-II improves GD-I, the improvement is not substantial. In the next section, we use momentum to derive better convergence rates.

Let g be the gradient of the loss function at a point w. Then the line passing through w in the direction of g is $w-t g$. When the loss function is quadratic (7.3.5), $f(w-t g)$ is a quadratic function of the scalar variable t. In this case, the minimizer t along the line $w-t g$ is explicitly computable as

$$
t=\frac{g \cdot g}{g \cdot Q g} .
$$

This leads to gradient descent with varying time steps $t_{0}, t_{1}, t_{2}, \ldots$ As a consequence, one can show the error is lowered as follows,

$$
E\left(w^{+}\right)=\left(1-\frac{1}{(u \cdot Q u)\left(u \cdot Q^{-1} u\right)}\right) E(w), \quad u=\frac{g}{|g|}
$$

Using a well-known inequality, Kantorovich's inequality, one can show that here the convergence rate is also (8.7.6). Thus, after all this work, there is no advantage here, it simpler to stick with GD-II!

Nevertheless, the idea here, the line-search for a minimizer, is a sound one, and is useful in some situations.

8.8 Accelerated Gradient Descent

In this section, we modify the gradient descent method by adding a term incorporating previous gradients, leading to gradient descent with momentum. After this, we consider other variations, leading to the most frequently used descent methods.

Recall in a descent sequence, the current point is w, the next point is w^{+}, and the previous point is w^{-}.

In gradient descent with momentum, we add a momentum term to the current point w, obtaining the lookahead point

$$
\begin{equation*}
w^{\circ}=w+s\left(w-w^{-}\right) \tag{8.8.1}
\end{equation*}
$$

Here s is the decay rate. The momentum term reflects the direction induced by the previous step. Because this mimics the behavior of a ball rolling downhill, gradient descent with momentum is also called heavy ball descent.

Then the descent sequence $w_{0}, w_{1}, w_{2}, \ldots$ is generated by

Momentum Gradient Descent Step

$$
\begin{equation*}
w^{+}=w-t \nabla f(w)+s\left(w-w^{-}\right) \tag{8.8.2}
\end{equation*}
$$

Here we have two hyperparameters, the learning rate and the decay rate.

We study convergence for the simplest case of a quadratic (8.7.2). In this case, $\nabla f(w)=Q w-b$, and the sequence satisfies the recursion

$$
\begin{equation*}
w_{n+1}=w_{n}-t\left(Q w_{n}-b\right)+s\left(w_{n}-w_{n-1}\right), \quad n=0,1,2, \ldots \tag{8.8.3}
\end{equation*}
$$

To initialize the recursion, we set $w_{-1}=w_{0}^{-}=w_{0}$. This implies $w_{1}=$ $w_{0}-t\left(Q w_{0}-b\right)$.

We measure the convergence using the error $E(w)=\left|w-w^{*}\right|^{2}$, and we assume $m<Q<L$ strictly, in the sense every eigenvalue λ satisfies

$$
\begin{equation*}
m<\lambda<L \tag{8.8.4}
\end{equation*}
$$

As before, we set $r=m / L$.
Let v be an eigenvector of Q with eigenvalue λ. To solve (8.8.3), we assume a solution of the form

$$
\begin{equation*}
w_{n}=w^{*}+\rho^{n} v, \quad Q v=\lambda v \tag{8.8.5}
\end{equation*}
$$

Inserting this into (8.8.3) and using $Q w^{*}=b$ leads to the quadratic equation

$$
\rho^{2}=(1-t \lambda+s) \rho-s
$$

By the quadratic formula,

$$
\rho=\rho_{ \pm}=\frac{(1-\lambda t+s) \pm \sqrt{(1-\lambda t+s)^{2}-4 s}}{2}
$$

Assume the discriminant $(1-\lambda t+s)^{2}-4 s$ is negative. This happens exactly when

$$
\begin{equation*}
\frac{(1-\sqrt{s})^{2}}{\lambda}<t<\frac{(1+\sqrt{s})^{2}}{\lambda} . \tag{8.8.6}
\end{equation*}
$$

If we assume

$$
\begin{equation*}
\frac{(1-\sqrt{s})^{2}}{m} \leq t \leq \frac{(1+\sqrt{s})^{2}}{L} \tag{8.8.7}
\end{equation*}
$$

then (8.8.6) holds for every eigenvalue λ of Q.
Multiplying (8.8.7) by λ and factoring the discriminant as a difference of two squares leads to

$$
\begin{equation*}
4 s-(1-\lambda t+s)^{2} \geq(1-s)^{2} \frac{(L-\lambda)(\lambda-m)}{m L} \tag{8.8.8}
\end{equation*}
$$

When (8.8.6) holds, the roots are conjugate complex numbers $\rho, \bar{\rho}$, where

$$
\begin{equation*}
\rho=x+i y=\frac{(1-\lambda t+s)+i \sqrt{-(1-\lambda t+s)^{2}+4 s}}{2} . \tag{8.8.9}
\end{equation*}
$$

It follows the absolute value of ρ equals

$$
|\rho|=\sqrt{x^{2}+y^{2}}=\sqrt{s}
$$

To obtain the fastest convergence, we choose s and t to minimize $|\rho|=\sqrt{s}$, while still satisfying (8.8.7). This forces (8.8.7) to be an equality,

$$
\frac{(1-\sqrt{s})^{2}}{m}=t=\frac{(1+\sqrt{s})^{2}}{L} .
$$

These are two equations in two unknowns s, t. Solving, we obtain

$$
\sqrt{s}=\frac{1-\sqrt{r}}{1+\sqrt{r}}, \quad t=\frac{1}{L} \cdot \frac{4}{(1+\sqrt{r})^{2}} .
$$

Let $\tilde{w}_{n}=w_{n}-w^{*}$. Since $Q w_{n}-b=Q \tilde{w}_{n}$, (8.8.3) is a 2-step linear recursion in the variables \tilde{w}_{n}. Therefore the general solution depends on two constants A, B.

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$ be the eigenvalues of Q and let $v_{1}, v_{2}, \ldots, v_{d}$ be the corresponding orthonormal basis of eigenvectors.

Since (8.8.3) is a 2 -step vector linear recursion, A and B are vectors, and the general solution depends on $2 d$ constants $A_{k}, B_{k}, k=1,2, \ldots, d$.

If $\rho_{k}, k=1,2, \ldots, d$, are the corresponding roots (8.8.9), then (8.8.5) is a solution of (8.8.3) for each of $2 d$ roots $\rho=\rho_{k}, \rho=\bar{\rho}_{k}, k=1,2, \ldots, d$. Therefore the linear combination

$$
\begin{equation*}
w_{n}=w^{*}+\sum_{k=1}^{d}\left(A_{k} \rho_{k}^{n}+B_{k} \bar{\rho}_{k}^{n}\right) v_{k}, \quad n=0,1,2, \ldots \tag{8.8.10}
\end{equation*}
$$

is the general solution of (8.8.3). Inserting $n=0$ and $n=1$ into (8.8.10), then taking the dot product of the result with v_{k}, we obtain two linear equations for two unknowns A_{k}, B_{k},

$$
\begin{aligned}
A_{k}+B_{k} & =\left(w_{0}-w^{*}\right) \cdot v_{k} \\
A_{k} \rho_{k}+B_{k} \bar{\rho}_{k} & =\left(w_{1}-w^{*}\right) \cdot v_{k}=\left(1-t \lambda_{k}\right)\left(w_{0}-w^{*}\right) \cdot v_{k}
\end{aligned}
$$

for each $k=1,2, \ldots, d$. Solving for A_{k}, B_{k} yields

$$
A_{k}=\left(\frac{1-t \lambda_{k}-\bar{\rho}_{k}}{\rho_{k}-\bar{\rho}_{k}}\right)\left(w_{0}-w^{*}\right) \cdot v_{k}, \quad B_{k}=\bar{A}_{k} .
$$

Let

$$
\begin{equation*}
C=\max _{\lambda} \frac{(L-m)(L-m)}{(L-\lambda)(\lambda-m)} \tag{8.8.11}
\end{equation*}
$$

Using (8.8.8), one verifies the estimate

$$
\left|A_{k}\right|^{2}=\left|B_{k}\right|^{2} \leq C\left|\left(w_{0}-w^{*}\right) \cdot v_{k}\right|^{2} .
$$

Now use (2.9.4) twice, first with $v=w_{n}-w^{*}$, then with $v=w_{0}-w^{*}$. By (8.8.10) and the triangle inequality,

$$
\begin{aligned}
\left|w_{n}-w^{*}\right|^{2} & =\sum_{k=1}^{d}\left|\left(w_{n}-w^{*}\right) \cdot v_{k}\right|^{2} \\
& =\sum_{k=1}^{d}\left|A_{k} \rho_{k}^{n}+B_{k} \bar{\rho}_{k}^{n}\right|^{2} \\
& \leq \sum_{k=1}^{d}\left(\left|A_{k}\right|+\left|B_{k}\right|\right)^{2}\left|\rho_{k}\right|^{2 n} \\
& \leq 4 C s^{n} \sum_{k=1}^{d}\left|\left(w_{0}-w^{*}\right) \cdot v_{k}\right|^{2} \\
& =4 C s^{n}\left|w_{0}-w^{*}\right|^{2}
\end{aligned}
$$

This derives the following result.

Momentum Gradient Descent - Heavy Ball

Suppose the loss function $f(w)$ is quadratic (8.7.2), let $r=m / L$, and set $E(w)=\left|w-w^{*}\right|^{2}$. Let C be given by (8.8.11). Then the descent sequence $w_{0}, w_{1}, w_{2}, \ldots$ given by (8.8.2) with learning rate and decay rate

$$
t=\frac{1}{L} \cdot \frac{4}{(1+\sqrt{r})^{2}}, \quad s=\left(\frac{1-\sqrt{r}}{1+\sqrt{r}}\right)^{2}
$$

converges to w^{*} at the rate

$$
\begin{equation*}
E\left(w_{n}\right) \leq 4 C\left(\frac{1-\sqrt{r}}{1+\sqrt{r}}\right)^{2 n} E\left(w_{0}\right), \quad n=1,2, \ldots \tag{8.8.12}
\end{equation*}
$$

This heavy ball descent, due to Polyak [18], is an improvement over GDII (8.7.6), because \sqrt{r} is substantially larger than r when r is small. The downside of this momentum method is that the convergence (8.8.12) is only
guaranteed for $f(w)$ quadratic (8.7.2). In fact, there are examples of nonquadratic $f(w)$ where heavy ball descent does not converge to w^{*}. Nevertheless, this method is widely used.

The momentum method can be modified by evaluating the gradient at the lookahead point w° (8.8.1),

Momentum Descent Step With Lookahead Gradient

$$
\begin{align*}
w^{\circ} & =w+s\left(w-w^{-}\right), \\
w^{+} & =w^{\circ}-t \nabla f\left(w^{\circ}\right) . \tag{8.8.13}
\end{align*}
$$

This leads to accelerated gradient descent, or momentum descent with lookahead gradient. This result, due to Nesterov [16], is valid for any convex function satisfying (8.7.1), not just quadratics.

The iteration (8.8.13) is in two steps, a momentum step followed by a basic gradient descent step. The momentum step takes us from the current point w to the lookahead point w°, and the gradient descent step takes us from w° to the successive point w^{+}.

Starting from w_{0}, and setting $w_{-1}=w_{0}$, here it turns out the loss sequence $f\left(w_{0}\right), f\left(w_{1}\right), f\left(w_{2}\right), \ldots$ is not always decreasing. Because of this, we seek another function $V(w)$ where the corresponding sequence $V\left(w_{0}\right)$, $V\left(w_{1}\right), V\left(w_{2}\right), \ldots$ is decreasing.

To explain this, it's best to assume $w^{*}=0$ and $f\left(w^{*}\right)=0$. This can always be arranged by translating the coordinate system. Then it turns out

$$
\begin{equation*}
V(w)=f(w)+\frac{L}{2}\left|w-\rho w^{-}\right|^{2}, \tag{8.8.14}
\end{equation*}
$$

with a suitable choice of ρ, does the job. With the choices

$$
t=\frac{1}{L}, \quad s=\frac{1-\sqrt{r}}{1+\sqrt{r}}, \quad \rho=1-\sqrt{r}
$$

we will show

$$
\begin{equation*}
V\left(w^{+}\right) \leq \rho V(w) \tag{8.8.15}
\end{equation*}
$$

In fact, we see below (8.8.22), (8.8.23) that V is reduced by an additional quantity proportional to the momentum term.

The choice $t=1 / L$ is a natural choice from basic gradient descent (8.3.3). The derivation of (8.8.15) below forces the choices for s and ρ.

Given a point w, while w^{+}is well-defined by (8.8.13), it is not clear what w^{-}means. There are two ways to insert meaning here. Either evaluate $V(w)$ along a sequence $w_{0}, w_{1}, w_{2}, \ldots$ and set, as before, $w_{n}^{-}=w_{n-1}$, or work with the function $W(w)=V\left(w^{+}\right)$instead of $V(w)$. If we assume $\left(w^{+}\right)^{-}=w$, then $W(w)$ is well-defined. With this understood, we nevertheless stick with $V(w)$ as in (8.8.14) to simplify the calculations.

We first show how (8.8.15) implies the result. Using $\left(w_{0}\right)^{-}=w_{0}$ and (8.7.3),

$$
V\left(w_{0}\right)=f\left(w_{0}\right)+\frac{L}{2}\left|w_{0}-\rho w_{0}\right|^{2}=f\left(w_{0}\right)+\frac{m}{2}\left|w_{0}\right|^{2} \leq 2 f\left(w_{0}\right)
$$

Moreover $f(w) \leq V(w)$. Iterating (8.8.15), we obtain

$$
f\left(w_{n}\right) \leq V\left(w_{n}\right) \leq \rho^{n} V\left(w_{0}\right) \leq 2 \rho^{n} f\left(w_{0}\right)
$$

This derives

Momentum Descent - Lookahead Gradient

Let $r=m / L$ and set $E(w)=f(w)-f\left(w^{*}\right)$. Then the sequence w_{0}, w_{1}, w_{2}, \ldots given by (8.8.13) with learning rate and decay rate

$$
t=\frac{1}{L}, \quad s=\frac{1-\sqrt{r}}{1+\sqrt{r}}
$$

converges to w^{*} at the rate

$$
\begin{equation*}
E\left(w_{n}\right) \leq 2(1-\sqrt{r})^{n} E\left(w_{0}\right), \quad n=1,2, \ldots \tag{8.8.16}
\end{equation*}
$$

While the convergence rate for accelerated descent is slightly worse than heavy ball descent, the value of accelerated descent is its validity for all convex functions satisfying (8.7.1), and the fact, also due to Nesterov [16], that this convergence rate is best-possible among all such functions.

Now we derive (8.8.15). Assume $\left(w^{+}\right)^{-}=w$ and $w^{*}=0, f\left(w^{*}\right)=0$. We know $w^{\circ}=(1+s) w-s w^{-}$and $w^{+}=w^{\circ}-t g^{\circ}$, where $g^{\circ}=\nabla f\left(w^{\circ}\right)$.

By the basic descent step (8.3.1) with w° replacing w, (8.3.3) implies

$$
\begin{equation*}
f\left(w^{+}\right) \leq f\left(w^{\circ}\right)-\frac{t}{2}\left|g^{\circ}\right|^{2} \tag{8.8.17}
\end{equation*}
$$

Here we used $t=1 / L$.
By (7.5.11) with $x=w$ and $a=w^{\circ}$,

$$
\begin{equation*}
f\left(w^{\circ}\right) \leq f(w)-g^{\circ} \cdot\left(w-w^{\circ}\right)-\frac{m}{2}\left|w-w^{\circ}\right|^{2} . \tag{8.8.18}
\end{equation*}
$$

By (7.5.11) with $x=w^{*}=0$ and $a=w^{\circ}$,

$$
\begin{equation*}
f\left(w^{\circ}\right) \leq g^{\circ} \cdot w^{\circ}-\frac{m}{2}\left|w^{\circ}\right|^{2} \tag{8.8.19}
\end{equation*}
$$

Multiply (8.8.18) by ρ and (8.8.19) by $1-\rho$ and add, then insert the sum into (8.8.17). After some simplification, this yields

$$
\begin{equation*}
f\left(w^{+}\right) \leq \rho f(w)+g^{\circ} \cdot\left(w^{\circ}-\rho w\right)-\frac{r}{2 t}\left(\rho\left|w-w^{\circ}\right|^{2}+(1-\rho)\left|w^{\circ}\right|^{2}\right)-\frac{t}{2}\left|g^{\circ}\right|^{2} \tag{8.8.20}
\end{equation*}
$$

Since

$$
\left(w^{\circ}-\rho w\right)-t g^{\circ}=w^{+}-\rho w
$$

we have

$$
\frac{1}{2 t}\left|w^{+}-\rho w\right|^{2}=\frac{1}{2 t}\left|w^{\circ}-\rho w\right|^{2}-g^{\circ} \cdot\left(w^{\circ}-\rho w\right)+\frac{t}{2}\left|g^{\circ}\right|^{2} .
$$

Adding this to (8.8.20) leads to

$$
\begin{equation*}
V\left(w^{+}\right) \leq \rho f(w)-\frac{r}{2 t}\left(\rho\left|w-w^{\circ}\right|^{2}+(1-\rho)\left|w^{\circ}\right|^{2}\right)+\frac{1}{2 t}\left|w^{\circ}-\rho w\right|^{2} . \tag{8.8.21}
\end{equation*}
$$

Let

$$
R(a, b)=r\left(\rho s^{2}|b|^{2}+(1-\rho)|a+s b|^{2}\right)-|(1-\rho) a+s b|^{2}+\rho|(1-\rho) a+\rho b|^{2}
$$

Solving for $f(w)$ in (8.8.14) and inserting into (8.8.21) leads to

$$
\begin{equation*}
V\left(w^{+}\right) \leq \rho V(w)-\frac{1}{2 t} R\left(w, w-w^{-}\right) \tag{8.8.22}
\end{equation*}
$$

If we can choose s and ρ so that $R(a, b)$ is a positive scalar multiple of $|b|^{2}$, then, by (8.8.22), (8.8.15) follows, completing the proof.

Based on this, we choose s, ρ to make $R(a, b)$ independent of a, which is equivalent to $\nabla_{a} R=0$. But

$$
\nabla_{a} R=2(1-\rho)\left(\left(r-(1-\rho)^{2}\right) a+\left(\rho^{2}-s(1-r)\right) b\right)
$$

so $\nabla_{a} R=0$ is two equations in two unknowns s, ρ. This leads to the choices for s and ρ made above. Once these choices are made, $s(1-r)=\rho^{2}$ and $\rho>s$. From this,

$$
\begin{equation*}
R(a, b)=R(0, b)=\left(r s^{2}-s^{2}+\rho^{3}\right)|b|^{2}=\rho^{2}(\rho-s)|b|^{2} \tag{8.8.23}
\end{equation*}
$$

which is positive.

8.9 Stochastic Gradient Descent

\star under construction \star

Chapter A

Appendices

A. 1 SQL

Recall matrices (§2.1), datasets, CSV files, spreadsheets, arrays, dataframes are basically the same objects.

Databases are collections of tables, where a table is another object similar to the above. Hence

$$
\begin{equation*}
\text { matrix }=\text { dataset }=\text { CSV file }=\text { spreadsheet }=\text { table }=\text { array }=\text { dataframe } \tag{A.1.1}
\end{equation*}
$$

One difference is that each entry in a table may be a string, or code, or an image, not just a number. Nevertheless, every table has rows and columns; rows are usually called records, and columns are columns.

A database is a collection of several tables that may or may not be linked by columns with common data. Software that serves databases is a database server. Often the computer running this software is also called a database server, or a server for short. Databases created by a database server (software) are stored as files on the database server.

There are many varieties of database server software. Here we use Mari$a D B$, a widely-used open-source database server. By using open-source software, one is assured to be using the "purest" form of the software, in the sense that proprietary extensions are avoided, and the software is compatible with the widest range of commercial variations.

Because database tables can contain millions of records, it is best to access a database server programmatically, using an application programming interface, rather than a graphical user interface. The basic API for inter-
acting with database servers is SQL (structured query language). SQL is a programming language for creating and modifying databases.

Any application on your laptop that is used to access a database is called an SQL client. The database server being accessed may be local, running on the same computer you are logged into, or remote, running on another computer on the internet. In our examples, the code assumes a local or remote database server is being accessed.

Because SQL commands are case-insensitive, by default we write them in lowercase. Depending on the SQL client, commands may terminate with semicolons or not. As mentioned above, data may be numbers or strings.

The basic SQL commands are

```
select from
limit
select distinct
where/where not <column>
where <column> = <data> and/or <column> = <data>
order by <column1>,<column2>
insert into table (<column1>,<column2>,...) \
    values (<data1>, <data2>, ...)
is null
update <table> set <column> = <data> where ...
like <regex> (%, _, [abc], [a-f], [!abc])
delete from <table> where ...
select min(<column>) from <table> (also max, count, avg)
where <column> in/not in (<data array>)
between/not between <data1> and <data2>
as
join (left, right, inner, full)
create database <database>
drop database <database>
create table <table>
truncate <table>
alter table <table> add <column> <datatype>
alter table <table> drop column <column>
insert into <table> select
```

All the objects in (A.1.1) are also equivalent to a Python list-of-dicts. In this section we explain how to convert between the objects
list-of-dicts $\Longleftrightarrow J S O N$ string \Longleftrightarrow dataframe \Longleftrightarrow CSV file \Longleftrightarrow SQL table
For all conversions, we use pandas. We begin describing a Python list-ofdicts, because this does not require any additional Python modules.

A Python dictionary or dict is a Python object of the form (prices are in cents)

```
item1 = {"dish": "Hummus", "price": 800, "quantity": 5}
```

This is an unordered listing of key-value pairs. Here the keys are the strings dish, price, and quantity. Keys need not be strings; they may be integers or any unmutable Python objects. Since a Python list is mutable, a key cannot be a list. Values may be any Python objects, so a value may be a list. In a dict, values are accessed through their keys. For example, item1 [\hookrightarrow "dish"] returns 'Hummus'.

A list-of-dicts is simply a Python list whose elements are Python dicts, for example,

```
item2 = {"dish": "Avocado", "price": 900, "quantity": 2}
L = [item1,item2]
```

Here L is a list and

```
len(L), L[0]["dish"]
```

returns

```
(2,'Hummus')
```

In other words, L is a list-of-dicts,

```
L == [{"dish": "Hummus", "price": 800, "quantity": 5},
    \hookrightarrow {"dish": ... }]
```

returns True.

A list-of-dicts L can be converted into a string using the json module, as follows:

```
frpm json import *
s = dumps(L)
```

Now print L and print s. Even though L and s "look" the same, L is a list, and s is a string. To emphasize this point, note

- $\operatorname{len}(\mathrm{L})==2$ and $\operatorname{len}(\mathrm{s})==99$,
- $\mathrm{L}[0: 2]==\mathrm{L}$ and $\mathrm{s}[0: 2]==$ ' [\{'
- L[8] returns an error and $s[8]==$ ':'

To convert back the other way, use

```
from json import *
L1 = loads(s)
```

Then L == L1 returns True. Strings having this form are called JSON strings, and are easy to store in a database as VARCHARs (see Figure A.4).

The basic object in the Python module pandas is the dataframe (Figures A.1, A.2, A.4, A.5). The pandas module can convert a dataframe df to many, many other formats

```
df.to_dict(), df.to_csv(), df.to_excel(), df.to_sql(),
    \hookrightarrowdf.to_json(), ...
```

To convert a list-of-dicts to a dataframe is easy. The code

```
from pandas import *
df = DataFrame(L)
df
```

returns the dataframe in Figure A. 1 (prices are in cents).

	dish	price	quantity
$\mathbf{0}$	Hummus	800	5
1	Avocado	900	2

Figure A.1: Dataframe from list-of-dicts.

	dish	price
$\mathbf{0}$	Hummus	800
$\mathbf{1}$	Baba Ghanouj	800
$\mathbf{2}$	Avocado	900
$\mathbf{3}$	Muhammara	800
$\mathbf{4}$	Mujaddara	800
\ldots	\ldots	\ldots
73	Lahmbajeen Pizza, two dips	2400
74	Merguez Kebab and Moussaka	2600
75	Chicken Kebab, one dip, baklava	2300
76	Margherita Pizza, Chicken Wings, Baklava	2500
77	Any three pizzas	5000

78 rows $\times 2$ columns

Figure A.2: Menu dataframe and SQL table.

To go the other way is equally easy. The code

```
L1 = df.to_dict('records')
L == L1
```

returns True. Here the option 'records ' returns a list-of-dicts; other options returns a dict-of-dicts or other combinations.

To convert a CSV file into a dataframe, use the code

```
menu_df = read_csv("menu.csv")
menu_df
```

This returns Figure A. 2 (prices are in cents).

To go the other way, to convert the dataframe df to the CSV file menu1 \hookrightarrow.csv, use the code

```
df.to_csv("menu1.csv")
df.to_csv("menu2.csv",index=False)
```

The option index=False suppresses the index column, so menu2.csv has two columns, while menu1.csv has three columns. Also useful is the method .to_excel, which returns an excel file.

Now we explain how to convert between a dataframe and an SQL table. What we have seen so far uses only the module pandas. To convert to SQL, we need two more modules, sqlalchemy and pymysql.

The module sqlalchemy allows us to connect to a database server from within Python, and the module pymysql is the code necessary to complete the connection to our version of database server. For example, if we are connecting to an Oracle database server, we would use the module cx-Oracle instead of pymysql.

In Python, the standard module installation method is to use pip. To install sqlalchemy and pymysql, type within jupyter:

```
pip install sqlalchemy
pip install pymysql
```

To connect using sqlalchemy, we first collect the connection data into one URI string,

```
protocol = "mysql+pymysql://"
credentials = "username:password"
server = "@servername"
port = ":3306"
uri = protocol + credentials + server + port
```

This string contains your database username, your database password, the database server name, the server port, and the protocol. If the database is "\rawa", the URI is

```
database = "/rawa"
uri = protocol + credentials + server + port + database
```

Using this uri, the connection is made as follows

```
from sqlalchemy import create_engine
engine = sqlalchemy.create_engine(uri)
```

(In sqlalchemy, a connection is called an "engine".) After this, to store the dataframe df into a table Menu, use the code

```
df.to_sql('Menu',engine,if_exists='replace')
```

The if_exists = 'replace' option replaces the table Menu if it existed prior to this command. Other options are if_exists='fail' and if_exists $\hookrightarrow ~=' a p p e n d '$. The default is if_exists='fail', so

```
df.to_sql('Menu',engine)
```

returns an error if Menu exists.
To read a table into a dataframe, use for example the code

```
from sqlalchemy import text
query1 = text("select * from rawa.OrdersIn")
query2 = text("select * from rawa.OrdersIn where items
    \hookrightarrow like '%Hummus%';")
connection = engine.connect()
df1 = read_sql(query1, connection)
df2 = read_sql(query2, connection)
```

Better Python coding technique is to place read_sql and to_sql in a with block, as follows

```
with engine.connect() as connection:
    df = pd.read_sql(query, connection)
    df.to_sql('Menu',engine)
```

One benefit of this syntax is the automatic closure of the connection upon completion. This completes the discussion of how to convert between dataframes and SQL tables, and completes the discussion of conversions between any of the objects in (A.1.2).

Figure A.3: Rawa restaurant.
As an example how all this goes together, here is a task:
Given two CSV files menu.csv and orders.csv downloaded from a restaurant website (Figure A.3), create three SQL tables Menu, OrdersIn, OrdersOut.

The two CSV files are (click)
orders.csv and menu.csv.

The three SQL table columns are as follows (price, tip, tax, subtotal, total are in cents)

	rderld	created	customerld	items
0	1	6/29/19 2:37	1497	[$[$ "dish": "Citrus Chicken", "price": 1000, "quantity": 8\}]
1	5	7/1/19 14:30	1600	[$[$ "dish": "Hummus", "price": 800, "quantity": 10\}]
2	11	7/9/19 17:07	1704	[\{"dish": "Hummus", "price": 800, "quantity": 1\}, \{"dish": "Baba G...
3	12	7/10/19 12:14	1431	[\{"dish": "Hummus", "price": 800, "quantity": 9\}]
4	13	7/10/19 18:50	1458	[\{"dish": "Labne", "price": 800, "quantity": 1\}, \{"dish": "Garden"...
...	...	\cdots	\cdots	\cdots
3965	3985	1/20/23 17:23	1787	[\{"dish": "Hummus", "price": 800, "quantity": 1\}, \{"dish": "Chicke...
3966	3986	1/20/23 17:37	10	[\{"dish": "Falafel", "price": 1300, "quantity": 1\}, \{"dish": "Chic...
3967	3987	1/20/23 19:16	1354	[\{"dish": "Lentil", "price": 800, "quantity": 1\}, \{"dish": "Marghe...
3968	3988	1/21/23 12:06	152	[\{"dish": "Mamyaldi Vegan", "price": 1700, "quantity": 2\}]
3969	3989	1/21/23 17:00	1579	[\{"dish": "Sampler Plate", "price": 1800, "quantity": 1\}, \{"dish":...

Figure A.4: OrdersIn dataframe and SQL table.

```
/* Menu */
dish varchar
price integer
/* ordersin */
orderid integer
created datetime
customerid integer
items json
/* ordersout */
orderid integer
subtotal integer
tip integer
tax integer
total integer
```

To achieve this task, we download the CSV files menu.csv and orders \hookrightarrow.csv, then we carry out these steps. (price and tip in menu.csv and
orders.csv are in cents so they are INTs.)

1. Read the CSV files into dataframes menu_df and orders_df.
2. Convert the dataframes into list-of-dicts menu and orders.
3. Create a list-of-dicts OrdersIn with keys orderId, created, customerId \hookrightarrow whose values are obtained from list-of-dicts orders.
4. Create a list-of-dicts OrdersOut with keys orderId, tip whose values are obtained from list-of-dicts orders (tips are in cents so they are INTs).
5. Add a key items to OrdersIn whose values are JSON strings specifying the items ordered in orders, using the prices in menu (these are in cents so they are INTs). The JSON string is of a list-of-dicts in the form discussed above L = [item1, item2] (see row 0 in Figure A.4).

Do this by looping over each order in the list-of-dicts orders, then looping over each item in the list-of-dicts menu, and extracting the quantity ordered of the item item in the order order.
6. Add a key subtotal to OrdersOut whose values (in cents) are computed from the above values.

Add a key tax to OrdersOut whose values (in cents) are computed using the Connecticut tax rate 7.35%. Tax is applied to the sum of subtotal and tip.

Add a key total to OrdersOut whose values (in cents) are computed from the above values (subtotal, tax, tip).
7. Convert the list-of-dicts OrdersIn, OrdersOut to dataframes OrdersIn_df \hookrightarrow, OrdersOut_df.
8. Upload menu_df, OrdersIn_df, OrdersOut_df to tables Menu, OrdersIn \hookrightarrow, OrdersOut.

The resulting dataframes ordersin_df and ordersout_df, and SQL tables OrdersIn and OrdersOut, are in Figures A. 4 and A. 5.

	orderld	tip	subtotal	tax	total
0	0	0	4000	294	4294
1	1	0	8000	588	8588
2	2	0	2200	161	2361
3	3	0	8800	646	9446
4	4	0	10400	764	11164
...
3985	3985	434	7800	605	8839
3986	3986	0	3000	220	3220
3987	3987	1275	8200	696	10171
3988	3988	180	3400	263	3843
3989	3989	885	5800	491	7176

Figure A.5: OrdersOut dataframe and SQL table.

Complete Code for the Task

```
# step 1
from pandas import *
protocol = "https://"
server = "math.temple.edu"
path = "/~hijab/teaching/csv_files/restaurant/"
url = protocol + server + path
menu_df = read_csv(url + "menu.csv")
orders_df = read_csv(url + "orders.csv")
# step 2
menu = menu_df.to_dict('records')
orders = orders_df.to_dict('records')
# step 3
OrdersIn = h
```

```
for r in orders:
    d = {}
    d["orderId"] = r["orderId"]
    d["created"] = r["created"]
    d["customerId"] = r["customerId"]
    OrdersIn.append(d)
# step 4
OrdersOut = h
for r in orders:
    d = {}
    d["orderId"] = r["orderId"]
    d["tip"] = r["tip"]
    OrdersOut.append(d)
# step 5
from json import *
for i,r in enumerate(OrdersIn):
    itemsOrdered = h
    for item in menu:
        dish = item["dish"]
        price = item["price"]
        if dish in orders[i]:
            quantity = orders[i][dish
            if quantity > 0:
                    d = {"dish": dish, "price": price,
    \hookrightarrow "quantity": quantity}
            itemsOrdered.append(d)
    r["items"] = dumps(itemsOrdered)
# steps 6
for i,r in enumerate(OrdersOut):
    items = loads(OrdersIn[i]["items"])
    subtotal = sum([ item["price"]*item["quantity"] for item
    \hookrightarrow in items ])
    r["subtotal"] = subtotal
    tip = OrdersOut[i]["tip"]
    tax = int(.0735*(tip + subtotal))
```

```
    total = subtotal + tip + tax
    r["tax"] = tax
    r["total"] = total
# step 7
ordersin_df = DataFrame(OrdersIn)
ordersout_df = DataFrame(OrdersOut)
# step 8
from sqlalchemy import create_engine, text
# connect to the database
protocol = "mysql+pymysql://"
credentials = "username:password@"
server = "servername"
port = ":3306"
database = "/rawa"
uri = protocol + credentials + server + port + database
engine = create_engine(uri)
dtype1 = { "dish":sqlalchemy.String(60),
    \hookrightarrow"price":sqlalchemy.Integer }
dtype2 = {
    "orderId":sqlalchemy.Integer,
    "created":sqlalchemy.String(30),
    "customerId":sqlalchemy.Integer,
    "items":sqlalchemy.String(1000)
    }
dtype3 = {
    "orderId":sqlalchemy.Integer,
    "tip":sqlalchemy.Integer,
    "subtotal":sqlalchemy.Integer,
    "tax":sqlalchemy.Integer,
    "total":sqlalchemy.Integer
    }
```

```
with engine.connect() as connection:
    menu_df.to_sql('Menu', engine,
        if_exists = 'replace', index = False, dtype = dtype1)
    ordersin_df.to_sql("OrdersIn", engine,
        index = False, if_exists = 'replace', dtype = dtype2)
    ordersout_df.to_sql("OrdersOut", engine,
        index = False, if_exists = 'replace', dtype = dtype3)
```


Moral of this section

In this section, all work was done in Python on a laptop, no SQL was used on the database, other than creating a table or downloading a table. Generally, this is an effective workflow:

- Use SQL to do big manipulations on the database (joining and filtering).
- Use Python to do detailed computations on your laptop (analysis).

Now we consider the following simple problem. The total number of orders in 3970. What is the total number of plates? To answer this, we loop through all the orders, summing the number of plates in each order. The answer is 14,949 plates.

```
from json import *
from pandas import *
from sqlalchemy import create_engine, text
protocol = "mysql+pymysql://"
credentials = "username:password@"
server = "servername"
port = ":3306"
database = "/rawa"
uri = protocol + credentials + server + port + database
engine = sqlalchemy.create_engine(uri)
connection = engine.connect()
```

```
query = text("select * from OrdersIn")
df = read_sql(query, connection)
num = 0
for item in df["items"]:
    plates = loads(item)
    num += sum( [ plate["quantity"] for plate in plates ])
print(num)
```

A more streamlined approach is to use map. First we define a function whose input is a JSON string in the format of df["items"], and whose output is the number of plates.

```
from json import *
def num_plates(item):
    dishes = loads(item)
    return sum( [ dish["quantity"] for dish in dishes ])
```

Then we use map to apply to this function to every element in the series $\mathrm{df}[$ "items"], resulting in another series. Then we sum the resulting series.

```
num = df["items"].map(num_plates).sum()
print(num)
```

Since the total number of plates is 14,949 , and the total number of orders is 4970 , the average number of plates per order is 3.76 .

A. 2 Minimizing Sequences

Several times in the text, we dealt with minimizing functions, most notably for the pseudo-inverse of a matrix ($\S 2.3$), for proper continuous functions (§7.5), and for gradient descent (§8.3).

Throughout, the technical foundations underlying the existence of mini-
mizers were ignored. In this section, which may safely be skipped, we review the foundational material supporting the existence of minimizers.

The first issue that must be clarified is the difference between the minimum and the infimum. In a given situation, it is possible that there is no minimum. By contrast, in any reasonable situation, there is always an infimum.

For example, since $y=e^{x}$ is an increasing function, the minimum

$$
\min _{0 \leq x \leq 1} e^{x}=\min \left\{e^{x} \mid 0 \leq x \leq 1\right\}
$$

is $y^{*}=e^{0}=1$, and the minimizer, the location at which the minimum occurs, is $x^{*}=0$. Here we have one minimizer.

For the function $y=x^{4}-2 x^{2}$ in Figure 7.5, the minimum over $-2 \leq x \leq 2$ is $y^{*}=-1$, which occurs at the minimizers $x^{*}= \pm 1$. Here we have two minimizers.

On the other hand, if we attempt to minimize the function $y=1 / x$ over the open interval $1<x<\infty$, we have no minimizer, since $1 / x$ approaches 0 as x approaches ∞. Here we say there is an infimum, and we have

$$
\inf _{1<x<\infty} 1 / x=\inf \{1 / x \mid 1<x<\infty\}=0
$$

In this situation, the minimizer does not exist, but, since the values of $1 / x$ are arbitrarily close to 0 , we say the infimum is 0 . Since there is no minimizer, there is no minimum value. Also, even though 0 is the infimum, we do not say ∞ is the "infimizer", since ∞ is not an actual number.

Let S be a collection of real numbers. A lower bound for S is a number b satisfying $b \leq x$ for every x in S. For example, 0 is a lower bound for the closed interval $0 \leq x \leq 1$, and also 0 is a lower bound for the open interval $0<x<1$. Any number less than 0 is also a lower bound, for example, -1 is a lower bound, in either case.

Not every collection S of numbers has a lower bound, for example the entire real line has no lower bound, since $-\infty$ is not a number. If S does have a lower bound, we say S is bounded below.

If S has a lower bound m that is in S, then we say m is the minimum of S. If S is a finite set, then S has a minimum. However, as we saw above, if
S is infinite, a minimum need not exist. When the minimum exists, we write $m=\min S$.

If S is bounded below, then S has many lower bounds. The greatest among these lower bounds is the infimum of S. A foundational axiom for real numbers is that the infimum always exists. When m is the infimum of S, we write $m=\inf S$.

Existence of Infima

Any collection S of real numbers that is bounded below has an infimum: There is a lower bound m for S that is greater than any other lower bound b for S.

For example, for $S=[0,1]$, $\inf S=0$ and $\min S=0$, and, for $S=(0,1)$, $\inf S=0$, but $\min S$ does not exist. For both these sets S, it is clear that 0 is the infimum. The power of the axiom comes from its validity for any set S of scalars that is bounded below, no matter how complicated.

By definition, the infimum of S is the lower bound for S that is greater than any other lower bound for S. From this, if $\min S$ exists, then $\inf S=$ $\min S$.

A sequence is an infinite ordered listing x_{1}, x_{2}, \ldots of vectors. An error sequence is a sequence of nonnegative scalars e_{1}, e_{2}, \ldots that is decreasing

$$
e_{1} \geq e_{2} \geq \cdots \geq 0
$$

We say an error sequence converges to zero if

$$
\inf _{n \geq 1} e_{n}=0
$$

In this case, we write $e_{n} \rightarrow 0$ as $n \rightarrow \infty$. Let's unpack this.
Suppose $e_{1} \geq e_{2} \geq \ldots$ is an error sequence converging to zero. Since 0 is the greatest lower bound of the set $S=\left\{e_{1}, e_{2}, \ldots\right\}$, given any positive $\epsilon>0$, there is a term e_{N} satisfying $e_{N}<\epsilon$. Since the sequence is decreasing, we conclude $0 \leq e_{n}<\epsilon$ for $n \geq N$.

Error Sequence

An error sequence $e_{1} \geq e_{2} \geq \cdots \geq 0$ converges to zero iff for any $\epsilon>0$, there is an $N>0$ with

$$
0 \leq e_{n}<\epsilon, \quad n \geq N .
$$

Now let x_{1}, x_{2}, \ldots be a sequence of vectors. We say the sequence converges to x^{*} or approaches x^{*} if there is an error sequence e_{1}, e_{2}, \ldots converging to zero with

$$
\left|x_{n}-x^{*}\right| \leq e_{n} \quad n \geq 1
$$

In this case, we write

$$
\lim _{n \rightarrow \infty} x_{n}=x^{*}
$$

or we write $x_{n} \rightarrow x^{*}$.
Note this definition of convergence is consistent with the previous definition, since an error sequence e_{1}, e_{2}, \ldots converges to zero (in the first sense) iff

$$
\lim _{n \rightarrow \infty} e_{n}=0
$$

(in the second sense).

Let x_{1}, x_{2}, \ldots be a sequence. A subsequence is a selection of terms

$$
x_{n_{1}}, x_{n_{2}}, x_{n_{3}}, \ldots, \quad n_{1}<n_{2}<n_{3}<\ldots
$$

Here it is important that the indices $n_{1}<n_{2}<n_{3}<\ldots$ be strictly increasing.

If a sequence x_{1}, x_{2}, \ldots has a subsequence $x_{1}^{\prime}, x_{2}^{\prime}, \ldots$ converging to x^{*}, then we say the sequence x_{1}, x_{2}, \ldots subconverges to x^{*}. For example, the sequence $1,-1,1,-1,1,-1, \ldots$ subconverges to 1 and also subconverges to -1 , as can be seen by considering the odd-indexed terms and the evenindexed terms separately.

Note a subsequence of an error sequence converging to zero is also an error sequence converging to zero. As a consequence, if a sequence converges to x^{*}, then every subsequence of the sequence converges to x^{*}. From this
it follows that the sequence $1,-1,1,-1,1,-1, \ldots$ does not converge to anything: it bounces back and forth between ± 1.

We say a set S is bounded if $|x| \leq b$ for all x in S, for some constant b.

Bounded Sequences Must Subconverge

Let x_{1}, x_{2}, \ldots be a bounded sequence of vectors. Then there is a subsequence $x_{1}^{\prime}, x_{2}^{\prime}, \ldots$ converging to some x^{*}.

To see this, assume first x_{1}, x_{2}, \ldots are scalars, and let x_{1}, x_{2}, \ldots be a bounded sequence of numbers, say $a \leq x_{n} \leq b$ for $n \geq 1$. Bisect the interval $I_{0}=[a, b]$ into two equal subintervals. Then at least one of the subintervals, call it I_{1}, has infinitely many terms of the sequence. Select x_{1}^{\prime} in I_{1} and let x_{1}^{*} be the right endpoint of I_{1}.

Now bisect I_{1} into two equal subintervals. Then at least one of the subintervals, call it I_{2}, has infinitely many terms of the sequence. Select x_{2}^{\prime} in I_{2} and let x_{2}^{*} be the right endpoint of I_{2}. Continuing in this manner, we obtain a subsubsequence $x_{1}^{\prime}, x_{2}^{\prime}, \ldots$ with x_{n}^{\prime} in I_{n}, and a sequence $x_{1}^{*}, x_{2}^{*}, \ldots$.

Since the intervals are nested

$$
I_{0} \supset I_{!} \supset I_{2} \supset \ldots,
$$

the sequence $x_{1}^{*}, x_{2}^{*}, \ldots$ is decreasing and

$$
x^{*}=\inf _{n \geq 1} x_{n}^{*}
$$

exists. Thus $e_{n}=x_{n}^{*}-x^{*}$ is an error sequence converging to zero.
Since the length of I_{n} equals $(b-a) / 2^{n}$,

$$
0 \leq x_{n}^{*}-x_{n}^{\prime} \leq(b-a) 2^{-n}
$$

hence by the triangle inequality (2.2.4)

$$
\left|x_{n}^{\prime}-x^{*}\right| \leq\left|x_{n}^{\prime}-x_{n}^{*}\right|+\left|x_{n}^{*}-x^{*}\right| \leq(b-a) 2^{-n}+e_{n} .
$$

Since $(b-a) 2^{-n}+e_{n}$ is an error sequence converging to zero, this establishes $x_{n}^{\prime} \rightarrow x^{*}$.

Now let x_{1}, x_{2}, \ldots be a sequence of vectors in \mathbf{R}^{d}, and let v be a vector; then $x_{1} \cdot v, x_{2} \cdot v, \ldots$ are scalars, so, from the previous paragraph, there is a subsequence $x_{n}^{\prime} \cdot v$ (depending on v) converging to some x_{v}^{*}.

Let $e_{1}, e_{2}, \ldots, e_{d}$ be the standard basis in \mathbf{R}^{d}. By choosing $v=e_{1}$, there is a subsequence $x_{1}^{\prime}, x_{2}^{\prime}, \ldots$ such that the first features of x_{n}^{\prime} converge. By choosing $v=e_{2}$, and focusing on the subsequence $x_{1}^{\prime}, x_{2}^{\prime}, \ldots$, there is a sub-subsequence $x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, \ldots$ such that the first and second features of $x_{n}^{\prime \prime}$ converge. Continuing in this manner, we obtain a subsequence $x_{1}^{*}, x_{2}^{*}, \ldots$ such that the k-th feature of the subsequence converges to the k-th feature of a single x^{*}, for every $1 \leq k \leq d$. From this, it follows that x_{n}^{*} converges to x^{*}.

Let S be a set of vectors and let $y=f(x)$ be a scalar-valued function bounded below on $S, f(x) \geq b$ for some number b, for all x in S. Then, by the above axiom, the infimum

$$
\begin{equation*}
m=\inf _{S} f(x)=\inf \{f(x) \mid x \operatorname{in} S\} \tag{A.2.1}
\end{equation*}
$$

must exist.
A minimizer is a vector x^{*} satisfying $f\left(x^{*}\right)=m$. As we saw above, a minimizer may or may not exist, and, when the minimizer does exist, there may be several minimizers.

A minimizing sequence for $f(x)$ over S is a sequence x_{1}, x_{2}, \ldots of vectors in S such that the corresponding values $f\left(x_{1}\right), f\left(x_{2}\right), \ldots$ are decreasing and converge to $m=\inf _{S} f(x)$ as $n \rightarrow \infty$. In other words, x_{1}, x_{2}, \ldots is a minimizing sequence for $f(x)$ over S if

$$
f\left(x_{1}\right) \geq f\left(x_{2}\right) \geq f\left(x_{3}\right) \geq \ldots
$$

and

$$
\inf _{S} f(x)=\inf _{n \geq 1} f\left(x_{n}\right)
$$

If there is a minimizer x^{*} in S, then $\inf _{S} f(x)=\min _{S} f(x)=f\left(x^{*}\right)$, and the sequence x^{*}, x^{*}, \ldots is a minimizing sequence in S. However, in general, there may be no such minimizer.

Existence of Minimizing Sequences

If S is a collection of vectors, and $y=f(x)$ is bounded below on S, then there is a minimizing sequence x_{1}, x_{2}, \ldots in S.

If there is a minimizer x^{*} in S, the sequence x^{*}, x^{*}, \ldots is a minimizing sequence in S. Otherwise, if there is no minimizer in S, pick any x_{0} in S. Since m is the greatest lower bound for $f(x), f\left(x_{0}\right)$ is not a lower bound, so there is x_{1} in S with

$$
m<f\left(x_{1}\right)<\left(f\left(x_{0}\right)+m\right) / 2
$$

or

$$
0<f\left(x_{1}\right)-m<\left(f\left(x_{0}\right)-m\right) / 2 .
$$

Similarly, there is x_{2} with

$$
0<f\left(x_{2}\right)-m<\left(f\left(x_{1}\right)-m\right) / 2
$$

Continuing in this manner, we have x_{n} with

$$
0<f\left(x_{n}\right)-m<\left(f\left(x_{n-1}\right)-m\right) / 2 .
$$

Since this implies

$$
0<f\left(x_{n}\right)-m<2^{-n}\left(f\left(x_{0}\right)-m\right)
$$

this yields a minimizing sequence in S.
We note a subsequence of a minimizing sequence is also a minimizing sequence.

A function $y=f(x)$ is continuous if $f\left(x_{n}\right)$ approaches $f\left(x^{*}\right)$ whenever x_{n} approaches x^{*}.

Now we can establish

Existence of Minimizers

If $f(x)$ is continuous on \mathbf{R}^{d} and S is a bounded set in \mathbf{R}^{d}, then there is a minimizer x^{*},

$$
\begin{equation*}
f\left(x^{*}\right)=\inf _{x \text { in } S} f(x) . \tag{A.2.2}
\end{equation*}
$$

In general, the minimizer x^{*} may lie outside the set S. To guarantee x^{*} belongs to S, typically one assumes an additional requirement, the closedness of S.

To establish the result, let m be as in (A.2.1), and let x_{1}, x_{2}, \ldots be a minimizing sequence for $f(x)$ in S. Then x_{1}, x_{2}, \ldots is bounded, so by the previous result, there is a subsequence $x_{1}^{\prime}, x_{2}^{\prime}, \ldots$ converging to some x^{*}. Since $x_{1}^{\prime}, x_{2}^{\prime}, \ldots$ is also a minimizing sequence, and $f(x)$ is continuous,

$$
f\left(x^{*}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}^{\prime}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=m .
$$

This shows x^{*} is a minimizer for $f(x)$.

Bibliography

[1] Joshua Akey, Genome 560: Introduction to Statistical Genomics, 2008. https://ww w.gs.washington.edu/academics/courses/akey/56008/lecture/lecture1.pdf.
[2] Sébastien Bubeck, Convex Optimization: Algorithms and Complexity, Foundations and Trends in Machine Learning, vol. 8, Now Publishers, 2015.
[3] Harald Cramér, Mathematical Methods of Statistics, Princeton University Press, 1946.
[4] A. Aldo Faisal Marc Peter Deisenroth and Cheng Soon Ong, Mathematics for Machine Learning, Cambridge University Press, 2020.
[5] J. L. Doob, Probability and Statistics, Transactions of the American Mathematical Society 36 (1934), 759-775.
[6] R. A. Fisher, The conditions under which χ^{2} measures the discrepancy between observation and hypothesis, Journal of the Royal Statistical Society 87 (1924), 442-450.
[7] Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016.
[8] Google, Machine Learning. https://developers.google.com/machine-learning.
[9] Robert M. Gray, Toeplitz and Circulant Matrices: A Review, Foundations and Trends in Communications and Information Theory 2 (2006), no. 3, 155-239.
[10] T. L. Heath, The Works of Archimedes, Cambridge University, 1897.
[11] Lily Jiang, A Visual Explanation of Gradient Descent Methods, 2020. https://towa rdsdatascience.com/a-visual-explanation-of-gradient-descent-methods-m omentum-adagrad-rmsprop-adam-f898b102325c.
[12] J. W. Longley, An Appraisal of Least Squares Programs for the Electronic Computer from the Point of View of the User, Journal of the American Statistical Association 62.319 (1967), 819-841.
[13] David G. Luenberger and Yinyu Ye, Linear and Nonlinear Programming, Springer, 2008.
[14] Ioannis Mitliagkas, Theoretical principles for deep learning, lecture notes, 2019. http s://mitliagkas.github.io/ift6085-dl-theory-class-2019/.
[15] Marvin Minsky and Seymour Papert, Perceptrons, An Introduction to Computational Geometry, MIT Press, 1988.
[16] Yurii Nesterov, Lectures on Convex Optimization, Springer, 2018.
[17] Roger Penrose, A generalized inverse for matrices, Proceedings of the Cambridge Philosophical Society 51 (1955), 406-413.
[18] Boris Teodorovich Polyak, Some methods of speeding up the convergence of iteration methods, USSR Computational Mathematics and Mathematical Physics 4(5) (1964), 1-17.
[19] Karl Pearson, On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling, Philosophical Magazine Series 50:302 (1900), 157-175.
[20] Sebastian Raschka, PCA in three simple steps, 2015. https://sebastianraschka.c om/Articles/2015_pca_in_3_steps.html.
[21] Herbert Robbins and Sutton Monro, A Stochastic Approximation Method, The Annals of Mathematical Statistics 22 (1951), no. 3, $400-407$.
[22] Sheldon M. Ross, Probability and Statistics for Engineers and Scientists, Sixth Edition, Academic Press, 2021.
[23] Mark J. Schervish, Theory of Statistics, Springer, 1995.
[24] Stanford University, CS224N: Natural Language Processing with Deep Learning. ht tps://web.stanford.edu/class/cs224n.
[25] Irène Waldspurger, Gradient Descent With Momentum, 2022. https://www. cerema de.dauphine.fr/~waldspurger/tds/22_23_s1/advanced_gradient_descent.pd f.
[26] Wikipedia, Logistic Regression, 2015. https://en.wikipedia.org/wiki/Logistic _regression.
[27] Stephen J. Wright and Benjamin Recht, Optimization for Data Analysis, Cambridge University, 2022.

Python

*, 8, 16
all, 187
append, 186
def.angle, 23, 73
def.assign_clusters, 186
def.backward_prop, 359, 367, 404
def.ball, 61
def.chi2_independence, 321
def.confidence_interval, 293, 305, 310, 313
def.delta_out, 403
def.derivative, 366
def.dimension_staircase, 128
def.downstream, 404
def.ellipse, 50, 57
def.find_first_defect, 126
def.forward_prop, 358, 365, 399
def.gd, 415
def.goodness_of_fit, 318
def.H, 345
def.hexcolor, 10
def.incoming, 364, 399
def.J, 401
def.local, 402
def.nearest_index, 186

```
def.newton, 409
def.num_plates,465
def.outgoing, 364, 399
def.pca, 179
def.pca_with_svd, 180
def.plot_cluster, 188
def.plot_descent,410
def.project, 118
def.project_to_ortho, 120
def.pvalue, 271
def.random_batch_mean, 248
def.random_vector, 187
def.tensor, 32
def.train_nn, 417
def.ttest, 306
def.type2_error, 299, 307
def.update_means, 187
def.update_weights, 417
def.zero_variance, 105
def.ztest, 297
diag, 173
dict,453
display, 148
enumerate, 180
floor,164
import,8
```

itertools.product, 61
join, 10
json.dumps, 454
json.loads, 454
keras
datasets
mnist.load_data, 4
lambda, 363
list, 6
matplotlib.pyplot.axes, 185
matplotlib. pyplot.contour, 57
matplotlib.pyplot.figure, 180
matplotlib.pyplot.grid, 6
matplotlib.pyplot.hist, 241
matplotlib.pyplot.imshow, 8
matplotlib.pyplot.legend, 164
matplotlib.pyplot.meshgrid, 57
matplotlib.pyplot.plot, 44
matplotlib.pyplot.scatter, 6
matplotlib.pyplot.show, 6
matplotlib.pyplot.stairs, 128
matplotlib. pyplot.subplot, 180
matplotlib.pyplot.text, 166
matplotlib.pyplot.title, 345
matplotlib.pyplot.xlabel, 433
numpy.allclose, 80
numpy.amax, 433
numpy.amin, 433
numpy. arange, 57, 164
numpy.arccos, 23, 73
numpy.argsort, 179
numpy.array, 8, 63
numpy.column_stack, 84, 97
numpy.corrcoef, 53
numpy.cov, 46
numpy. cumsum, 177
numpy.degrees, 23
numpy.dot, 71
numpy.exp, 345
numpy.isclose, 156
numpy.linalg.eig, 142
numpy.linalg.eigh, 142, 177
numpy.linalg.inv, 82
numpy.linalg.matrix_rank, 126
numpy.linalg.norm, 21, 186
numpy.linalg.pinv, 118
numpy.linalg.svd, 173
numpy.linspace, 61
numpy.log, 345
numpy.mean, 14
numpy.meshgrid, 61
numpy.outer, 321
numpy.pi, 345
numpy.random.binomial, 240
numpy.random.default_rng, 248
numpy.random.default_rng.
\hookrightarrow shuffle, 248
numpy.random.normal, 270
numpy.random.randn, 284
numpy.random.random, 44
numpy.reshape, 177
numpy.roots, 42
numpy.row_stack, 67
numpy.shape, 63
numpy.sqrt, 23
pandas.DataFrame, 454
pandas.DataFrame.drop, 70
pandas. DataFrame.to_csv, 456
pandas.DataFrame.to_dict, 455
pandas.DataFrame.to_numpy, 70
pandas.DataFrame.to_sql, 457
pandas.read_csv, 432, 455
pandas.read_sql, 457
random.choice, 10
random.random, 15
scipy.linalg.null_space, 96, 97
scipy.linalg.orth, 91
scipy.linalg.pinv, 84
scipy.special.comb, 216
scipy.special.expit, 236, 435
scipy.special.softmax, 383
scipy.stats.chi2, 275
scipy.stats.norm, 261
scipy.stats.t, 302, 305
sklearn.datasets.load_iris, 2
sklearn.decomposition PCA, 181
sklearn.preprocessing .StandardScaler, 80
sort, 177
sqlalchemy.create_engine, 457
sqlalchemy.text, 457
sympy.*, 71
sympy.diag, 70
sympy.diagonalize, 147
sympy.eigenvects, 147
sympy.init_printing, 147
sympy.Matrix, 63
sympy.Matrix.col, 68
sympy.Matrix.cols, 68
sympy.Matrix.columnspace, 90
sympy.Matrix.eye, 69
sympy.Matrix.hstack, 66, 84
sympy.Matrix.inv, 82
sympy.Matrix.nullspace, 95
sympy.Matrix.ones, 69
sympy.Matrix.rank, 132
sympy.Matrix.row, 68
sympy.Matrix.rows, 68
sympy.Matrix.rowspace, 93
sympy.Matrix.zeros, 69
sympy.RootOf, 42
sympy.shape, 63
sympy.solve, 255
sympy.symbols, 42
tuple, 18
zip, 184

Index

angle, 73,134
approaches, 468
approximate equality, 165
Archimedes, 38
arcsine law, 165, 329
asymptotic equality, 196
attributes, 1
average, 10
basis, 123
of eigenvectors, 146
of singular vectors, 169
orthonormal, 123, 135, 146
standard, 64
Bayes theorem, 233
perceptron, 238
binomial, 209
coefficient, 194, 210, 212
theorem, 209, 211
Newton's, 340
cartesian plane, 16
Cauchy-Schwarz inequality, 23, 73
central limit theorem, 242, 261, 263
circle, 22
unit, 21
coin-tossing, 227
entropy, 345
relative, 348
column space, 90
columns, 66 orthonormal, 77
combination, 192
complex
conjugate, 36
division, 35, 36
hermitian product, 36
multiplication, 35, 36
numbers, 35
plane, 35
polar representation, 38
roots of unity, 39
concave, 331, 341
condition number, 439
confidence, 266
interval, 292
level, 290
contingency table, 320
convex, 331
combination, 370
dual, $337,379,384,388$
function, 369
hull, 372, 427
set, 371
strictly, 332
correlation
coefficient, 52
matrix, 52, 80
covariance, 45, 79
and correlation, 80
and variance, 49
biased, 46
ellipse, 49
inverse ellipse, 49
inverse ellipsoid, 156
matrix, 45
unbiased, 46
CSV file, 68
dataset, 1
centered, 12
covariance, 45
dimension, 135
example, 1
features, 1
Iris, 1
mean, 43
projected, 48, 102, 121, 181
reduced, 48, 102, 121, 181
standardized, 52, 80
vectors or points, 12
degree, 209
derivative
definition, 325
directional, 349
logarithm, 337
partial, 350
second, 326
convexity, 332
descent
gradient, 409, 441, 442
heavy ball, 446
sequence, 411
with lookahead gradient, 448
with momentum, 446
diagonalizable, 145
diagonalization
eigen, 146
singular, 172
dimension, 123
staircase, 127
direct sum, 121
distance formula, 20
distribution
bernoulli, 232
binomial, 232
chi-squared, 273, 274
cumulative, 250
normal, 261, 263
dot product, 23, 71
eigenspace, 156
eigenvalue, 140
bottom, 154
clustering, 165
decomposition, 146
minimum variance, 154
projected variance, 152
top, 152
transpose, 143
eigenvector, 140
eigenvectors
best-aligned vector, 152
is right singular vector, 173
orthogonal, 144
entropy, 342, 385
cross-, 389
relative, 346, 387
epigraph, 372
error
standard, 260
Euler's constant, 218
experiment, 238
exponential
function, 220
series, 222
factorial, 192
function
cumulative distribution, 250
moment generating, 254
chi-squared, 275
independence, 257
probability density, 262
fundamental theorem of algebra, 42
gradient, 351
weight, 405, 417
graph, 196
bipartite, 206
complement, 203
complete, 198
connected, 200
cycle, 198, 200
directed, 196
edge, 196, 392
incoming, 393
outgoing, 393
isomorphism, 205
laplacian, 208
nodes, 196, 392
adjacent, 196
connected, 200
degree, 199
dominating, 199
hidden, 393
input, 393
isolated, 199
output, 393
order, 197
path, 200
regular, 200
simple, 197
size, 197
sub-, 198
undirected, 196
walk, 200
weighed, 196
weight
matrix, 393
hyperplane, 102, 374
separating, 374
suporting, 375
tangent, 376
hypothesis
alternate, 295
null, 295
testing, 295
iff, 77, 143
incoming edge, 393
independence, 243
infimum, 466, 467
information, 344
cross-, 388
relative, 346, 386
inverse, 81
pseudo-, 111
Iris dataset, 1
Jupyter, 4
law of large numbers, 242, 261, 287, 349
line-search, 443
linear
combination, 88
dependence, 94
independence, 94
system, 82, 149
homogeneous, 26, 95
inhomogeneous, 27
transformation, 131, 137
log-odds, 339
logistic, 236, 339
logit, 339
loss
logistic, 423
mean square, 420
loss function, 407, 420
lower bound, 466
margin of error, 290
mass-spring system, 159
matrix, 64
$2 \times 2,28$
addition, 69
adjacency, 201
augmented, 92
circulant, 158
eigenvalues, 163
columns, 28
covariance, 45
dataset, 68
diagonal, 68
identity, 81
incidence, 208
inverse, 30, 81
nonnegative, 78
orthogonal, 134
positive, 78
projection, 116
rows, 28
scaling, 69
square, 68
symmetric, 31, 78
trace, 32
transpose, 28, 65
weight, 393
maximizer, 337
mean, 10, 43, 251, 277
population, 251
sample, 259
mean square error, 401
minimizer, 466, 470
existence, 377
global, 376
uniqueness, 377
minimizers
existence, 472
minimum, 466
network, 393
iteration, 417
neural, 393
layered, 406
training, 416
perceptron, 394
shallow, 406
dense, 406
Newton's method, 408
norm, 20
null space, 95
orthogonal, 73
complement, 98, 121
orthonormal, 74
outgoing edge, 393
partition, 339, 382
Pascal's triangle, 212
perceptron, 238, 394

Bayes theorem, 395
parallel, 406
permutation, 192
point, 63
critical, 331, 353, 414
inflection, 332, 414
saddle, 331, 353
point of best-fit, 43
population, 9
power of a test, 300
principal axes, 56
principal components, 146, 176
probability, 238
binomial, 227
coin-tossing, 228
conditional, 228, 244
multinomial, 382
one-hot encoded, 422
strict, 422
product
dot, 23, 71, 134
matrix-matrix, 75
matrix-vector, 74
tensor, 32,77
projection, 116
onto null space, 122
onto row space, 120
propagation
back, 357, 359
chain, 359
network, 367
neural, 404
forward, 356, 358
chain, 358
network, 365
neural, 399
proper, 376
pseudo-inverse, 111

Pythagoras theorem, 24
Python, 4
installation, 4
quadratic form, 33
random variables, 244, 245
bernoulli, 232, 245
correlation, 255
identically distributed, 258
independence, 256
moments, 254
standard, 253
rank, 132
and eigenvalues, 148
and singular values, 169
column, 90
full-, 132
nonzero eigenvalues, 148
row, 93
regression
linear, 420, 429, 430
convexity, 422
neural network, 420
properness, 422
logistic, 423
convexity, 424
neural network, 423
one-hot encoded, 427
properness, 426, 427
strict, 426
regularization, 414
residual, 107
minimizer, 108
minimum norm, 110
pseudo-inverse, 111
regression equation, 109
vanishing, 108
row space, 93
rows, 66
orthonormal, 77
scaling
factor, 138
principle, 61
sequence, 467
convergent, 468
error, 467
minimizing, 470
sub-, 468
subconvergent, 468
series
alternating, 215
exponential, 222
Taylor, 327, 328
singular
value, 167
decomposition, 169
of pseudo-inverse, 175
vector, 167
vectors
left, 167
right, 167
slope, 323
softmax, 382
space
column, 90
feature, 1, 63, 93
null, 95
row, 93
sample, 9
source, 131
sub-, 100
target, 131
vector, 11
span, 89
spherical coordinates, 61
statistic, 13
Stirling's approximation, 196
sublevel set, 368
sum
direct, 121
of spans, 121
of vectors, 64
t-distribution, 302
tangent
line, 323
parabola, 333
test
goodness of fit, 317
independence, 321
T, 306
Z, 297
transpose, 65
triangle inequality, 74
unit circle, 21
variance, 45, 102, 252
population, 252
projected, 49, 102, 139, 144
sample, 281
total, 47
zero, 102
vectors, $12,17,63$
addition, 17, 64
best aligned, 53
cartesian, 17
dimension, 63
dot product, 23
gradient, 351
downstream, 402
incoming, 394
length, 20, 72
magnitude, 72
norm, 20, 72
orthogonal, 73
orthonormal, 74, 97
outgoing, 362, 393
polar, 20
projected, 116, 117, 119, 120
random, 277, 284
reduced, 116, 117, 119, 120
scaling, 19
shadow, 17
span, 89
standardized, 80
subtraction, 20
unit, 21, 72
zero, 17, 64
weight, 393
gradient, 405, 417

Dr. Omar Hijab obtained his doctorate in mathematics from the University of California at Berkeley. Currently he is Professor Emeritus at Temple University, Philadelphia, Pennsylvania, USA.

[^0]: ${ }^{1}$ The National Institute of Standards and Technology (NIST) is a physical sciences laboratory and non-regulatory agency of the United States Department of Commerce.

[^1]: ${ }^{2} P \bar{P}^{\prime}$ is the hermitian product of P and P^{\prime}.

[^2]: ${ }^{1}$ Iff is short for if and only if.

[^3]: ${ }^{1}$ Iff is short for if and only if.

[^4]: ${ }^{2}$ This is an approximate equality: The ratio of the two sides approaches 1 as $d \rightarrow \infty$.

[^5]: ${ }^{1} \sim$ means approximately equal.

[^6]: ${ }^{2}$ Alternating means the plus-minus pattern $+-+-+-\ldots$.

[^7]: ${ }^{1}$ The standard terminology is inaccurate, because the variability of the samples x is implied by the term random; the term variable is superfluous and may suggest something like double-randomness (whatever that is), which is not the case.

[^8]: ${ }^{2}$ This holds for almost every sample, in the sense that the exceptions form a negligible set of samples.

[^9]: ${ }^{3}$ Geometrically, $\operatorname{Prob}(U<1)$ is the probability that a normally distributed point is inside the unit sphere in d-dimensional space.

[^10]: ${ }^{1} \approx$ means the ratio of the two sides approaches 1 as n grows without bound.

[^11]: ${ }^{2}$ Geometrically, $\operatorname{Prob}(T>1)$ is the probability that a normally distributed point is inside the light cone in $(d+1)$-dimensional spacetime with speed of light d.

[^12]: ${ }^{1}$ We only consider convex functions that are continuous.

[^13]: ${ }^{1}$ In the literature, the condition number is often defined as L / m.

