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Abstract

A method is introduced to decrease the computational labor of
the standard level set method for propagating interfaces. The fast
approach uses only points close to the curve at every time step. We
describe this new algorithm and compare its efficiency and accuracy
with the standard level set approach.

1 A Fast Level Set Implementation

The level set technique was introduced in [9] to track moving interfaces in
a wide variety of problems. It relies on the relation between propagating
interfaces and propagating shocks. The equation for a front propagating
with curvature dependent speed is linked to a viscous hyperbolic conserva-
tion law for the propagating gradients of the fronts. The central idea is to
follow the evolution of a function ¢ whose zero—level set always corresponds
to the position of the propagating interface. The motion for this evolving
function ¢ is determined from a partial differential equation in one higher
dimension which permits cusps, sharp corners, and changes in topology in
the zero-level set describing the interface. (For details, see [11].)

Since its introduction, the level set approach has been used to compute
and analyze a broad array of physical and mathematical phenomena, in-
cluding singularities in mean curvature flow [10, 3] motivated by work in [5],
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crystal growth and dendrite solidification [12], combustion [13], shape recog-
nition [7, 6], minimal surface generation [2], two fluid problems [8] and triple
junction problems [1]. In addition it has formed the basis for several theoret-
ical investigations, see [4]. A review of the level set approach may be found
in [11]. The generality of this approach makes it very attractive, especially
for problems in three space dimensions, problems with sensitive dependence
on curvature (such as surface tension problems) and problems with complex
changes of topology.

For a one-dimensional interface evolving in two space dimensions, the
level set algorithm is an O(n?) method per time step, where n is the number
of points in the spatial direction. One drawback of the technique stems
from the expense; by embedding the interface as the zero-level set of a
higher dimensional function, a one—dimensional interface problem has been
transformed into a two—dimensional problem. In three space dimensions,
considerable computational labor (O(n?)) is required per time step.

In this paper we provide a technique to reduce the computational labor
involved in the level set technique for two space dimensions. The central
idea is to build an adaptive mesh around the propagating interface; that is,
a thin band of neighboring level sets, and perform computation only on these
grid points. While some programming complexity is introduced, the savings
in computational labor are significant and desirable in certain applications.

There is another, more substantial, reason to focus the level set update on
a narrow band around the zero—level set. In some problems, the velocity field
is only given on the interface, see, for example, the boundary integral crystal
growth formulation given in [12]. In such problems, the construction of an
appropriate speed function for the entire domain that identifies with the
speed function of the zero-level set can be a significant modeling problem;
this is known as the “extension problem”, see [7, 12]. By performing a
narrow band update of the level set, one need only construct this speed
function close to the zero-level set.

1.1 The standard level set method and fast tube approach

A brief summary of the level set approach is as follows: Suppose we wish to
follow the evolution of a curve 7y as it propagates in a direction normal to
itself with speed F'. We can then match the one parameter family of moving
curves ; with a one parameter family of moving surfaces in such a way that
the zero—level sets always yield the moving front. All that remains is to find
an equation of motion for the evolving surface.
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Figure 1: The signed distance function, defined on a rectangle.

Here, we follow the derivation given in [8]. Let ¢ be a closed, non-
intersecting curve. Assume ¢(x,t), * € R?, is a scalar function such that
at time ¢ the zero—level set of ¢(x,t) is the curve ;. We further assume
¢(x,0) = +d(x), where d(x) is the distance from x to the curve v5. We
use the plus sign if @ is inside v and the minus sign if @ is outside. As an
example, if the initial front 7 is a circle in the (z,y) plane with radius 1,
the z = ¢(z,y,t = 0) surface given in figure 1.

Let each level set of ¢ flow along its gradient field with speed F'. This
speed function should match the desired speed function for the zero—level
set of ¢. Now consider the motion of some level set ¢(x,t) = C. Let x(t)
be the trajectory of a particle located on this level set, so

P(=(t),1) = C.

The particle speed dz /3t in the direction n normal to the level set is given
by the speed function F'. Thus

oz
E n = F,
where the normal vector n is given by n = —V¢/|V¢|. This is a vector

pointing outward, given our initialization of ¢. By the chain rule,

ox
¢t+§'v¢—0.



Therefore ¢ is the solution to the differential equation

bt — F|V¢| = 0,
¢(x,t =0) = =d(z).

At any time, the moving front -y; is just the zero—level set of ¢.

If the speed function F' of the front depends on the curvature, the cur-
vature may be expressed in terms of ¢ by

. ¢yy¢’% B 2¢’z¢y¢my + ¢’zz¢§
B (63 +63)°/2 '

This is called an Eulerian formulation for front propagation, because it
is written in terms of a fixed coordinate system in the physical domain.
There are three advantages to such an approach. First, since the underlying
coordinate system is fixed, discrete mesh points do not move and the stabil-
ity problems that plagued the Lagrangian approximations may be avoided.
Second, topological changes are handled naturally, since the zero—level set of
¢ need not be simply connected. Third, the above obviously extends easily
to moving surfaces in three dimensions with appropriate expressions for the
curvature (such as the mean or Gaussian curvature).

The above initial value partial differential equation may be approximated
using spatial and temporal derivatives on a fixed grid. Since the evolution
equation admits non—differentiable solutions (that is, corners and cusps in
the propagating front), care must be taken to choose an approximation to
the gradient which produces a conservative scheme satisfying the entropy
solution posed in [10]. Details of such a construction are found in [11, 9].

Here, we modify the level set technique in a way that saves substantial
computational expense. We consider points close to the curve at each time.
One way to do so is to choose points that lie less than some given distance
away from the curve, confining computations to these points, gives a tube—
like domain containing the zero—level set; see, for example, the tube surface
associated with figure 1 is given in figure 2.

With such a construction, the work is cut down to O(nk), where k is the
width of the tube. With careful programming, a commensurate reduction
in required memory is possible.

F

1.2 Building and Evolving the Narrow Band

In this section we present an overview of the fast level set algorithm.
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Figure 2: The signed distance function, defined on a tube.

1.2.1 The tube

To execute the fast level set approach, we begin by building the tube where
the ¢ function will be defined. We make a tube containing all the points with
distance to the curve less than maxzDist by calculating the distance func-
tion and using that to select the points. Rather than calculate the distance
from each grid point to the initial curve (which would require O(n?®) oper-
ations), we extend out from the initial curve approximately k& grid points,
and accurately calculate the distance function only at such points; this re-
quires O(nk?) operations. The ¢ function is then initialized to be the signed
distance function.

As the zero—level set corresponding to the front evolves, we must ensure
that it stays within the tube. One way to do so would be to reconstruct a
new tube around the curve at each time step. This requires at every time
step the time—consuming procedure of determining which points make up
the domain, deciding how to take the differentials at the edge points, and
deciding how to define the surface on all the points inside the domain.

Instead, we use a given tube for as many iterations as possible; and
devise a technique to trigger tube reinitialization when the front is close to
the edge of the domain. During the life of a given tube, we can use the same
initialization of ¢, and design a data structure to speed up calculations.

1.2.2 Calculating the derivatives

Particular care must be taken when calculating partial derivatives at the
edge points of the tubular domain. We can calculate the first order deriva-
tives with central or one-sided differences at all the points in the domain.
We calculate the second order derivatives by standard stencils in the inte-
rior and get the values on the edges by linear extrapolation from the newly



computed values (see page ??7.). To do so, we must smooth the domain to
simplify the analysis and to exclude points where one-sided differences for
the first order derivatives are not available, or where there is some ambiguity
about which direction to use for the extrapolation. Higher order derivatives
are evaluated by repeated use of first or second order derivatives.

1.2.3 Rebuilding the tube

The above algorithm must detect when the curve is getting too close to the
edge of the tube. Detection can not wait until the curve has moved out of the
domain because of accuracy degredation near the tube edges. Additionally
some forms of constructing the boundary derivatives can result in a slight
instability. This can be avoided through a careful monitoring of the evolving
front. When a new tube is required, we reinitialize, using the current zero—
level set as the initial curve; in the case of the observed instability we must
undo the last time step.

Finally, the computational labor may be further decreased by noting
that the tube is lying inside a rectangular array. If the front propagates
inward, the full square array is unnecessarily large and it is made smaller
to decrease both the memory and the computational time. Conversely, if
the front is expanding, the matrix size is increased to make sure that the
curve always remains in the computational domain. A border around the
tube is always kept to ease the calculation of the signed distance for the
next reinitialization.

1.3 The algorithm

Given an initial curve,

1. Calculate the signed distance on a tube around the curve. Precalculate
as much as possible to decrease the computation for each time step.

2. Calculate the update matrix on the domain and evolve the function ¢
on the tubular domain.

3. If the curve is within a set distance of the tube boundary, or instability
is developing on the tube boundary, reinitialize the surface by going to
step 1, and resize the rectangular square where we do the calculations.

4. Otherwise go to step 2.



The outline of this paper is as follows. In Section 2 we provide the
details about the update of the tube around the front. In Section 3 we
present timing results comparing the narrow band approach with the full
level set technique.

2 Technical Details

Here we consider two different methods for updating the values inside the
tube. The methods differ in their treatment of the boundary values on the
edge of the tube. The first fixes the values on the boundary, while the second
extends values from the interior to the edges.

In both cases there are several common steps, such as calculating the
signed distance, finding when to reinitialize the surface and storage tech-
niques. There are some extra technical difficulties in extending the values
to the edges, and they will be described later.

2.1 Calculating the signed distance in a tube

The signed distance function is defined as the distance from the given point
to the curve and the sign is chosen to be positive if the point is inside the
curve, and negative if outside. In our case we want to calculate the function
only on the tubular domain. Outside the domain the value is defined to be
+maxDist depending on whether the point lies inside or outside the curve.
This “far—field” value for the signed distance function is useful when finding
the correct signs during next reinitialization.

As mentioned in the introduction, rather than computing the signed
distance function for each grid point, we turn the roles around, and go
along the curve first and then the evaluate the distance function at those
points of the grid that lie close to the curve. This is a technique that can be
used in other places, for example in the extension of a speed function from
the curve to the tube.

Thus, we keep an array containing the current minimum distances. Ini-
tially, all the entries are set equal to maxDist. All segments on the curve
are then tested by taking a square around each such segment and, for all
points in that square, calculating the minimum distance to the curve seg-
ment. This yields the same matrix as if we had calculated the distance for
all possible points and then truncated values at distance = maxDist. In
order to construct the initial tube, we proceed as follows. First, we Initial-
ize all points on the grid to be equal to maxzDist?. Then, for every curve



segment in the curve, we take a box around the curve segment that includes
all points that could be closer than maxDist from it, and for every point
(7,7) in that box calculate the square of the distance from the curve segment
to that point and if it is less than Grid(Z,j) put it into Grid(i, 7). Finally
when all the segments have been treated, we take the square root of each
entry to produce the final matrix.

Finally, we must set the signs correctly. When the curve is the zero—level
set of a known array, the sign of the signed distance function at (i, 7) is the
same as the sign of the array at that point. Therefore we define the points
outside the domain to be £maxDist, even though they are not used at each
time step. During the first initialization of the ¢ field, we determine the sign
by other means, for example, by finding curve intersections.

2.2 Barriers

Next, we design a scheme to detect when the curve is getting closer to the
edge than a preset minimum howClose.

One obvious technique is to calculate the exact distance between the
curve and the edge. Such an approach is expensive and would dominate the
time spent in each iteration. Note, however, that there is no real need to
know the exact distance; we need only check whether the distance is less
than a certain minimum distance or not. Thus, we use the ¢ value of the
surface; if a point on the grid has a negative value it lies outside the curve,
else it lies inside the curve. If the curve is less than howClose away from
the edge, we can find a point less than howClose away from the edge that
was initially inside the curve but is now outside or vice versa.

Therefore when we initialize the domain we find the level sets at heights
+(maxzDist — howClose). We round those coordinates to the nearest points
on the grid, and use the sign at those points. This constructs a barrier
approximately mazDist — howClose away from the initial curve (howClose
away from the edge). We store two sets of points, the barrier lying inside
(the values should be > 0) and the barrier lying outside. At each time step
we check if any of these points changes sign.

We must also be able to detect when there is an instability forming at
the edge, i.e., if any of the edge points changes sign. To do this, we have to
put edge points into two bins; those lying inside the curve, and those lying
outside the curve.



2.3 Storage and data structures

When the curve gets too close to the edge, we must reinitialize and prepare
a data structure that will speed up the calculation during the lifetime of
that tube. This data structure includes:

e Information on the interior of the domain, used when taking the deriva-
tives.

e Information on the total domain, used when updating the surface.
e The barriers, used for deciding when reinitialization is required.

The majority of the values in the domain are interior points. This part,
where most of the calcuation takes place, is essentially contiguous in memory,
and should be handled in the same way as in the standard method, that is,
as a consecutive list of numbers in an array. However, the lists are different
in length, and start and end at different locations. In our implementation,
the matrix is stored such that (7,5) and (i + 1, j) lay side by side in memory,
and for each j coordinate we store the start and end 7 coordinate of the list.
For example for the y coordinate j = 35 we might store {[5,30], [40,80]}
meaning that (5,35)---(30,35) and (40,35)---(80,35) are in the interior.
We could also just store the offsets of the beginning and end points of each
segment. For the edges and the barriers we store the offsets from the first
point in the array (everything is done with pointers to allow the resizing).
This is considerably faster than storing the pairs (7,7). Since we know the
dimensions of the array it is easy to find where (i = 1,j £ 1) is in memory
if we know the location of (i, 7).

One of the benefits of the tube method is less memory use. To make
implementation easier the surface is stored in a full size grid, but all derived
quantities, such as curvature and gradients, only have to be stored at the
interior points. This reduces memory consumption considerably.

2.4 Technical details in extensions

If the tube values are fixed, this is straight forward. If they are not fixed, and
are obtained by interpolating from the interior, we need to store information
how interpolation should be done. In this implementation we use a linear
interpolation from the two closest points in some direction. It is not always
possible to choose these points to be interior points, and some cases can be



ambiguous. For example, let X be an interior point and O be an exterior
point in the following drawing:

OO XX XXX 0000000
X XOXKXX OO0OX0O0O0
KX KK XXX OX XXX XO
KX AKXXOOX HKAXAKX XX
XAXAKXXXOO HAXAKAKXAK XX,

It is not clear how to interpolate the surface at the point marked by .

However by removing some points from the tube it is possible to choose
a direction in which the points are either interior points or edge points that
can be interpolated by using only interior points, that is,

OO XX XXX 0000000
KXOX KX X 0000000
KX XK OXXX OX XXX XO
HKAXAKXXOOX HKAXAKXXXK
HKAXAKXXOO HKAXAKXXKX

This process is called smoothing.

2.4.1 Smoothing

In this implementation we only need to remove points X where the neigh-
borhood contains one of the following four patterns:

O @) O
OF @) * X S
O O O

To remove those effectively we construct a byte map of the matrix. The
neighborhood of each point can be represented by a 8 bit number where the
neighboring points have been assigned different powers of 2. Bit operations
can be used to find out how the neighborhood looks like and if it contains a
specific pattern. Bit opererations are also used when removing points from
the neighborhood.

As an example the number 121 = (01111001),;, might correspond to the
neighborhood:!

XXO
X% X
XOO

!By starting at the upper left corner and going in a clockwise direction around X.

10



2.4.2 Choosing extension direction

We distinguish between 3 different types of edge points when doing the
extension. Every edge point belongs to one of these types.

1. A point is of type 1 if the only exterior point in the neighborhood is a
corner point and a diagonal can be exploited using only interior points
when doing the extrapolation.

2. A point is of type 2 if a horizontal or vertical direction can be exploited
using only interior points when doing the extrapolation.

3. A point is of type 3 if one of the side points is an exterior point and a
diagonal can be exploited using interior points or points of the previous
types when doing the extrapolation.

When the edge points have been sorted into these 3 types, the extrap-
olation can be performed by first finding the values at type 1 and type 2
edge points, and then finding the values at type 3 edge points. This then
requires 2 sweeps. Each sweep can be done in any order.

In this implemenation we split the edgepoints into 12 bins, depending
on the type of the point and direction of the extension. This information is
stored along with the domain and barrier information.

2.4.3 Sorting the edgepoints

It is simple to determine what type a given edgepoint is. Assume that the
edgepoint has the coordinate (7, 7). Without loss of generality we can assume
that the neighborhood as one of the three following forms (Here we use the
fact that we have excluded some neighborhoods).

OXX @) @)
XEAX XXX OXxX
XXX X X

In the first case, the point is either of type 1 or type 2, in the second case
the point is either of type 2 or type 3, and in the third case the point is of
type 3.

More precisely:

e First case:
1. If (i+1,7 —1) and (i + 2, j — 2) are interior points, put (7, j) into
a type 1 bin.

11



2. If point (Z 4+ 2,7) is in the interior we go to the right, else we go
down. (Because then (¢,j — 2) is in the interior). (¢,7) is put in
a type 2 bin.

e Second case:

1. If (¢,7 — 2) is an interior point, put (7,5) into a type 2 bin.
2. If (¢ + 1,7 — 2) is of the form

XX
XXX
X

Y

we can go down to the right. Else we go down to the left. (i,7)
is put into a type 3 bin.

e In the third case it is possible to go down to the right, interpolating
over points of type 1 or type 2; thus this point is of type 3.

2.4.4 Proof

The proof that this algorithm clasifies all edge points involves taking all
the cases seperately, and is somewhat tedious but straightforward. We only
show how this is done for one of the cases.

But first we need to introduce a technique that is used in proving all the
cases.

To begin, imagine an interior point (that is, a point inside the tube).
That point has a well-defined closest point p on the front that was used to
make the domain. Take any point in the exterior, and draw the line which
is always equidistant to it and the interior point. Then we know that p is
on the same side of the line as the interior point. If we take several exterior
points, but always the same interior point, we can restrict the area where p
can lie. This argument, which we call the “triangle argument”, can be used
to show that a certain point has to be an interior point.

As an example, assume that the neighborhood is given schematically by
X
OXO,
We want to show that the neighborhood in fact must be of the type

X
X
OXO.

12



Assume not. Using the triangle argument on the point directly above the X,
we get the following picture:

O
OXO

Here, the arrows indicate on which side of the line the point p has to lie. The

symbol X is the point we use in the triangle argument. This picture gives

a contradiction, since it indicates that p lies inside the triangle, however we

know that p has to lie further than maxDist away from all exterior points.
We now introduce a notation for this argument, and write

X
X x
OXO — OXO,

Using the same point, we can add one more interior point on top. Since
we use the same point, we include it on the same picture and the notation
becomes

X

X
X x
OXO —= OXO,

This example creates a triangle in which p has to lie. Note that the
shape might be more general, such as a rectangle.

Note that the above assumes that a O point is an exterior point. Since
we will remove some edge points, this does not necessarily have to be true.
In such cases however, two points to each side will be exterior points, which
further reduces the area where p can lie.

Proof: Take the first neighborhood. (The others are similar) Either the
neighborhood looks like

OX X
XK X X
XX XXX
XXX X
XXX,

in which the point is of type 1, or one of the following:

OXX OXX OXX OXX OXX OXX
XAKX XAEXX XAEKXX XKXX XXX X XK XX
XXX KXX HAXARKX T KAAXAKX T KAKXAXXXK XXAKXX
@) X O XX XXO XXX X X
O X X O

13



in which it is possible to extrapolate over interior points by going to the
right. Therefore the point is of type 2. For the first case, the proof consists
of the following diagram:

OXX OX XXX OX XXX

HKAEXX —= XKXX  —= XHKXXX

XAXAKXKXK HXAXAKXXK HXARKXXX
XXX XXX KX X
X O X O X O

The other cases are similar.

3 Results

3.1 Order of the method

In the standard level set method each step costs at least O(n?) operations.
Each step of the tube method costs O(nk) operations, where k is the width
of the tube. This is because at each time step we have to calculate the
derivatives at O(nk) points, and then update the array at only O(nk) points.

Reinitializing the domain costs O(nk?), and the bulk of the work is in
computing the signed distance on the tube. Sorting the points into the dif-
ferent edges and barriers costs O(nk). The calculation of the signed distance
is a fairly simple calculation so the constant in front of nk? is fairly small.
The signed distance also has to be calculated infrequently. In practice an in-
significant amount of time is used to calculate the signed distance compared
to evolving the surface.

3.2 Topological changes

In figures 3 and 4 we run tests to show that the ability to change topology
is preserved. There are approximately 50 timesteps between each plotted
curve. We reinitialized roughly 3 to 5 times between each plotted curve.
The tube radius is 12 cells in each of these examples, and the gridsize is
approximately 200 by 200.

3.3 Movement by curvature

We start with a circle of radius 1 and let it shrink according to its
curvature. The exact solution shows that the curve vanishes at ¢ = 0.5.
We compare the exact solution with the computed solution at two times
t = 0.1 and £ = 0.3 and by also compare extinction times. To estimate the

14



distance from the exact solutions, we calculate the area of the path and get
an average radius. We run the test runs for dr equal to 0.04, 0.02, 0.01.
For each of these step sizes we will compute with tube width 6 and 12 cells
and where the tube width is always 0.24 units. For comparison we also run
the same test using the standard level set technique on a rectangular array.
Results are given in Tables 1-4.

3.4 Movement by constant speed

We consider an initial circle of radius 1 propagating outward with speed 1
and perform the same tests as before. The time step is fixed to be 0.0008 in
all tests. Results are given in Tables 1-4.

3.5 Three alternate methods

We analyze three variations of the method:

Approach 1: Calculate the derivatives only in the interior. Calculate the update
matrix by using the derivatives in the interior, and extend the result
to the edges to get the update matrix.

Approach 2: Use the extension to determine the values of the derivatives on all of
the domain. Use those derivatives to produce the update matrix on
all of the domain.

Approach 3: Fix the values on the edge, and only calculate the update matrix on
the interior.

3.6 Description of terms in the tables

Type (r,b) gives the tube radius r in in cells, and how many cells the path
is allowed to move b before it is reinitialized.

Timings (T1,T3) is the execution time in seconds. The first number, 77, is the
time it took to run up to ¢ = 0.1, the second, T3, is the time required
to run up to ¢ = 0.3.

Dimensions This is the dimension of the square matrix. This is not applicable for
the tube method, since the number of points changes at each reinitial-
ization.

15



Stops

Total

Reinit

Error

3.7

This is the error in the stopping time. The circle should vanish at
t=0.50s, but the numerical curve will not necessarily vanish at ex-
actly that time. This is how many extra time steps it took to vanish.
Therefore the absolute time would be 0.50 + dt«Time steps.

This is the time it took the curve to vanish, measured in seconds.

This is the number of times the domain had to be reinitialized. The
first number of times we reinitialize because the curve gets too close
to the edge of the domain. The second one is the number of reinitial-
izations due to instability on the edge.

This is the difference between the exact radius and the calculated
radius. Measured radius = Exact radius + Error.

Conclusions

In comparing the three different methods, we see that keeping the values
fixed on the edges is disastrous when evolving with the curvature. If we
calculate the update matrix by using the derivatives in the interior, and
using the extension to get the values at the edges, we get no instability on
the edges. If we calculate the derivatives (using extensions for the second
order derivatives) on all the domain we get instability on the edges.

Therefore the best approach is to calculate the derivatives in the interior
by standard stencils, use that to compute the update in the interior, and
then extend the values onto the edges.

16



|| dx | dt | Timings | Dimensions | Stops | Total | Error ||
0.04 | 8e-4 (5.0,15.1) (75,75) 1 25 | (2.1e-04,3.6e-04)
0.02 | 2e-4 | (78.5,235.8) (149,149) 1 390 | (5.5e-05,8.7e-05)
0.01 | 5e-5 | (1300,3902) (301,301) 1| 6500 | (1.3e-05,2.1e-05)
Table 1: A circle shrinking by curvature on a square
|| Type || dx | Timings | Reinit | Stops | Total | Error ||
Case 1: Smoothing the update
(6,3) || 0.04 (2.0,5.3) (9,0) -2 7.3 (4.6e-4,1.6e-3)
(6,3) || 0.02 (17 43) | (19,0) -5 58 (1.8e-4,7.1e-4)
(6,3) || 0.01 | (133,347) | (38,0) -11 460 (7.0e-5,3.2e-4)
(12,5) || 0.04 | (3.6,10.3) (3,0) 0 14 (2.1e-4,6.1e-4)
(12,5) || 0.02 (30 80) (7,0) -1 110 (5.5e-5,2.7e-4)
(12,5) || 0.01 | (235,624) | (15,0) -4 840 (3.3e-5,1.6e-4)
(6,3) | 0.04 | (2.05.3) | (9,0) 2| 72| (4.6e-4,1.6e3)
(12,6) || 0.02 (30 80) | (8,0 -1| 110 | (5.5e-5,2.9¢-4)
(24,12) || 0.01 | (450,1200) | (8,0) -1 | 1600 | (1.3e-5,7.0e-5)
Case 2: Smoothing the derivatives
(6,3) || 0.04 (1.9,5.2) (6,4) -4 7.0 (4.3e-4,3.9¢-3)
(6,3) || 0.02 (16.2,42) | (6,18) -0 57 | (8.2e-5,-6.4e-4)
(6,3) || 0.01 | (130,341) | (18,39) -16 456 (1.8e-4,6.5e-4)
(12,5) || 0.04 (3.5,9.9) (2,2) -1 14 (2.5e-4,1.2¢-3)
(12,5) || 0.02 (29,79) | (1,13) 2| 106 | (1.4e-4,5.0e-4)
(12,5) || 0.01 | (231,611) | (2,40) 8| 824 | (7.8e-5,3.1e-4)
(6,3) || 0.04 | (2.0,5.3) | (64) 4 7| (4.3e-4,3.9e-3)
(12,6) || 0.02 (29,78) | (1,13) 3| 106 | (1.4e-4,5.0e-4)
(24,12) || 0.01 | (438,1163) | (2,34) -7 | 1580 (5.5e-5,2.6e-4)
Case 3: Fixed boundary
(6,3) || 0.04 (1.9,5.1) (9,0) -58 6.5 (9.0e-3,5.0e-2)
(6,3) || 0.02 (16,42) | (18,0) | -136 55 (3.3e-3,1.8¢-2)
(6,3) || 0.01 | (131,345) | (40,0) 380 480 | (-6.2e-3,-3.2e-2)
(12,5) |[ 0.04 | (3.6,10.2) | (3,0) 5 14 | (1.2e-4,3.0e-3)
(12,5) || 0.02 (30,78) (7,0) | -167 100 (7.0e-3,4.4e-2)
(12,5) || 0.01 | (232,607) | (15,0) | -892 760 (8.7e-3,4.8¢-2)
(6,3) || 0.04 | (2.0,5.2) | (9,0)| -58| 6.5 (9.0e-3,5.0e-2)
(12,6) || 0.02 (30,78) (8,0) -64 100 (5.2e-3,2.0e-2)
(24,12) || 0.01 | (445,1190) (8,0) 85 | 1600 | (-8.8e-4,-5.9¢-3)

Table 2: A circle shrinking by curvature on a tube.
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dx|

dt | Timings | Dimensions |

Error ||

0.04
0.02
0.01

8e-4
8e-4
8e-4

(3.3,9.7)
(13,38)
(51,154)

(75,75)
(149,149)
(301,301)

(9.7e-4,2.4e-3)
(4.4e-4,1.2¢-3)
(2.1e-4,5.7e-4)

Table 3: Expanding with speed 1 on a square

|| Type || dx | Timings | Reinits | Error ||
Case 1: Smoothing the update
(6,3) || 0.04 | (1.2,4.2) (3,0) | (9.7e-4,2.6e-3)
(6,3) || 0.02 | (2.9,10.3) (7,0) | (4.8e-4,1.3e-3)
(6,3) || 0.01 (7.9,29) | (16,0) | (2.4e-4,6.6e-4)
(12,5) || 0.04 | (2.2,7.3) (1,0) | (9.7e-4,2.5¢e-3)
(12,5) || 0.02 (4.8,17) (3,0) | (4.4e-4,1.2¢-3)
(12,5) || 0.01 | (11.3,39) (6,0) | (2.2e-4,6.0e-4)
(6,3) | 0.04 | (1.1,43)| (3,0) | (9.7e-4,2.6e-3)
(12,6) || 0.02 | (4.8,17) | (3,0) | (4.4e-4,1.2¢-3)
(24,12) || 0.01 | (18,68) | (3,0) | (2.1e-4,5.8¢-4)
Case 2: Smoothing the derivatives
(6,3) || 0.04 | (1.2,4.2) (3,0) | (9.7e-4,2.6e-3)
(6,3) || 0.02 | (2.9,10.3) (7,0) | (4.8e-4,1.3e-3)
(6,3) || 0.01 (7.8,29) | (16,0) | (2.4e-4,6.6e-4)
(12,5) || 0.04 | (2.3,7.4) (1,0) | (9.7e-4,2.5¢e-3)
(12,5) || 0.02 | (4.7,17) | (3,0) | (4.4e-4,1.2¢-3)
(12,5) || 0.01 | (11,39) |  (6,0) | (2.2-4,6.0e-4)
(6,3) || 0.04 | (1.1,41) | (3,0) | (9.7e-4,2.6e-3)
(12,6) || 0.02 | (4.7,17) | (3,0) | (4.4e-4,1.2¢-3)
(24,12) || 0.01 (18,67) (3,0) | (2.1e-4,5.8¢-4)
Case 3: Fixed boundary
(6,3) || 0.04 | (1.1,4.0) (3,0) | (1.0e-3,2.8¢-3)
(6,3) || 0.02 | (2.9,10.2) (7,0) | (5.2e-4,1.4e-3)
(6,3) || 0.01 (7.8,29) | (16,0) | (2.6e-4,7.3e-4)
(12,5) |[ 0.04 | (2.2,7.2) | (1,0) | (9.7e-4,2.5¢-3)
(12,5) || 0.02 | (4.7,16.6) |  (3,0) | (4.4e-4,1.2¢-3)
(12,5) || 0.01 | (11.1,38) |  (6,0) | (2.2¢-4,6.0e-4)
(6,3) || 0.04 | (1.1,42) | (3,0) | (1.0e-3,2.8¢-3)
(12,6) || 0.02 (4.7,17) (3,0) | (4.4e-4,1.2e-3)
(24,12) || 0.01 (18,67) (3,0) | (2.1e-4,5.8¢-4)

Table 4: Expanding with speed 1 on a tube.

18



OO0

Figure 3: Two circles expanding with constant speed.

Figure 4: Spiral growing with constant speed.



Figure 5: Spiral shrinking under curvature.
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