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ABSTRACT

A Precise Measurement of the Weak Mixing Angle in

Neutrino—Nucleon Scattering

Geralyn P. Zeller

This dissertation reports a precise determination of the weak mixing angle,
sin? Oy, from measurement of the ratios of neutral current to charged current neu-
trino deep inelastic cross sections. High statistics samples of separately collected
neutrino and antineutrino events, resulting from exposure to the Fermilab neu-
trino beam during the period from 1996 to 1997, allowed the reduction of system-
atic errors associated with charm production and other sources. The final value,
sin? 0y =1 — M2, /M2 = 0.2277 + 0.0013 (stat) & 0.0009 (syst), lies three stan-
dard deviations above the prediction from global electroweak fits. The measurement
is currently the most precise determination of sin®#y, in neutrino—nucleon scatter-
ing, surpassing its predecessors by a factor of two in precision, and is statistics—
dominated. Within the standard model, this measurement of sin®#@y, indirectly
determines the W boson mass, My,, with a precision comparable to direct mea-
surements from high energy ete™ and pp colliders. Relaxing the standard model
assumptions, a model independent analysis recasts the same data into a measure-

ment of effective left and right handed neutral current quark couplings.
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PLAIN ENGLISH THESIS SUMMARY

— dedicated to my parents —

The NuTeV experiment at Fermilab studies the manner in which neutrinos in-
teract with matter. The unique feature of the experiment is the observation of
millions of neutrino interactions. This is, however, not an easy task as neutrinos
only rarely interact with matter. Sufficient numbers of neutrino events could be
collected only by bombarding a massive detector with energetic neutrinos produced
using the highest energy accelerator in the world (the Fermilab Tevatron).

To see these interactions, the NuTeV collaboration built a 700 ton stack of over
a hundred alternating slices of steel and particle detectors. Even with 700 tons
of material, approximately only one in a billion neutrinos from the accelerator in-
teracted in the detector. In such an interaction, the neutrino slams into an iron
nucleus in the NuTeV detector and breaks it apart. After the collision, the neutrino
might emerge intact or turn into a muon (the heavy cousin to the electron). The
measurement presented in this thesis involved counting the number of times the neu-
trino survived versus the number of times it changed into a muon. From this ratio,
NuTeV determined a value for the weak mixing angle (sin”fy), a key parameter in
particle physics which relates the W and Z boson masses. This parameter is very
precisely predicted by the standard theory of elementary particles to be 0.2227. The
NuTeV experiment instead found a rather surprising result, measuring sin? fy to be
0.227740.0016! This might not seem like a very large difference (the first two digits
match the theoretical prediction), but given the precision of the measurement, the

probability that it is consistent with the theoretical expectation is only 1 in 400.
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Currently there is no known explanation for the results. However, perhaps this isn’t
so out of the ordinary. Neutrinos have surprised researchers and theoreticians in the
past; first with their very existence and later with the unexpected experimental ev-
idence that they transform from one type into another. Neutrinos might once again
be pointing us in a new direction and thereby serendipitously providing us with a

greater understanding of the basic theory of particles and forces.

Dr. Geralyn P. Zeller
May 8, 2002
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Chapter 1

Introduction

This introductory chapter describes the standard model of elementary particles, deep
inelastic scattering kinematics, the quark parton model, and the cross sections for
neutrino deep inelastic scattering. This review is the foundation for the remainder
of this dissertation. The final section provides an overview of the organization and

content of the chapters to follow.

1.1 Standard Model of Fundamental Particles

In the current world view, all matter can be constructed from fundamental particles
which are not comprised of smaller entities and do not exhibit internal structure.
The fundamental particles we know of come in two varieties: fermions and bosons.
Figure 1.1 provides the high energy physics equivalent to the chemist’s periodic table;
it contains all currently known elementary particles. The easiest way to understand

the structure is to arrange the particles according to their interactions.



The fermions comprise two subgroups: quarks and leptons. Quarks interact via
the electromagnetic, weak, and strong forces. Leptons interact via the electromag-
netic (for those that carry electric charge) and weak forces. Both quarks and leptons
consist of three “generations” of doublets. The quarks include six varieties: up (u),
down (d), charm (c), strange (s), top (¢), and bottom (b). In the most simplistic
view, protons and neutrons inhabiting the nucleus of an atom are each comprised
of a combination of three quarks: uud in the case of the proton, ddu in the case of
the neutron. Table 1.1 indicates the charge assignments for each of the constituent
quarks. Note that the fractional quark charges sum to the observed charge of the
composite particle.

Leptons include both charged particles (electrons (e*), muons (p*), and taus

(7%)), as well as three electrically neutral neutrinos (ve, v, and v;).

3 Generations of Fermions Force Carriers

0
Strong
Q o Interactio
u O o
;
k 0
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d S A magnetisn
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e
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Figure 1.1: The standard model of fundamental particles. Each particle’s electric
charge is listed in the upper corner, their mass (in MeV) in the bottom corner.



At the right hand side of Figure 1.1 are the gauge bosons, named after the
“gauge” theory that describes them. The bosons include the photon that carries the
electromagnetic force, the W* and Z° bosons that carry the weak force, and the gluon
that carries the strong force. What do we mean by force carriers? Recall the simple
picture of two opposite charges repelling each other. Classical theory represents
the attractive force acting between them as electric “field lines” (Figure 1.2). On
the quantum level, this “field” representation reduces to the exchange of a single

particle.

Figure 1.2: Classical picture of the elec- e e
tromagnetic force acting between two Figure L.3: Quaptum level- picture of
oppositely charged particles. The force the electromagnetic force acting between

is represented by electric field lines. two oppositely charged electrons. The
force is mediated by the exchange of a

photon. Time flow is from left to right.

Figure 1.3 shows the quantum level depiction, a Feynman diagram, in which
the force between the two particles is assumed to be mediated by a force-carrying
particle. In this case, the two electrons (e~ and e™) attract each other because they
exchange a photon, a quantum of light. The massless photon carries the electromag-
netic force, transferring energy and momentum from one electron to the other. The

quantum theory of the electromagnetic field is known as Quantum Electrodynamics



(or QED).

Neutrinos, on the other hand, have no charge and therefore cannot interact elec-

tromagnetically. The interactions of neutrinos require introduction of another force,

the weak force, and another set of force carriers, the massive W and Z bosons. In

fact, neutrinos can weakly interact in one of two ways. In the charged current (CC)

case, the weak force is mediated by the exchange of a charged W boson (Figure 1.4).

In the neutral current (NC) case, the exchange particle is a Z° boson (Figure 1.5).

The need for two different weak mechanisms arises from the need to describe two

distinct final states.

q q

Figure 1.4: Quantum level picture of
a neutrino interacting via the weak
force through exchange of a W boson.
This type of interaction is known as
a charged current (CC) interaction be-
cause the mediator W boson is electri-
cally charged.

Figure 1.5: Quantum level picture of a
neutrino interacting via the weak force
through exchange of a Z boson. This
type of interaction is known as a neu-
tral current (NC) interaction because
the mediator Z boson is electrically neu-
tral.

Finally, gluons mediate the strong force between quarks (Figure 1.6). The quan-

tum theory of the strong force is known as Quantum Chromodynamics (or QCD).

According to QCD, each quark flavor may carry one of three possible strong charges,

called “color”. The quarks interact by exchanging spin—one, massless particles, called



gluons, which themselves carry colors. So unlike the other force—carriers, the gluons

can directly interact with each other.

q q

Figure 1.6: Quantum level picture of the strong force acting between quarks. The

force is mediated by the exchange of a gluon.

The combination of QED, weak interactions, and QCD form the so—called “stan-
dard model” of particle interactions. Table 1.1 summarizes the four fundamental

forces in nature and their corresponding field particles.

Force ‘ Relative Coupling ‘ Force Carrier ‘
strong > 1 gluon (g)
electromagnetic | ~ 1/137 photon (7)
weak ~ 107° W=, 7°
gravitational | ~ 107%2 graviton

Table 1.1: The four fundamental forces in nature arranged according to their relative
couplings to particles in low energy interactions.

Because the work of this dissertation is a neutrino measurement, neutrino inter-
actions require further discussion. Neutrinos can only interact weakly. It turns out
that the weak force is very aptly named. Neutrinos rarely interact with each other

or anything else. The mean free path length of 100 GeV neutrinos in steel is roughly



3 x 10° meters! As a result, detecting neutrino interactions requires both massive
detectors and large numbers of neutrinos to be successful. In the standard model,
the observed rarity of the weak interaction is not explained by a small coupling
constant but rather by its short range. It follows from the Heisenberg uncertainty
principle (AE At > h), that the range (R) of an interaction inversely depends on

the mass (M) of the exchanged virtual particle:

h
R=— 1.1
Mo (1.1)
So whereas the massless photon affords the electromagnetic force an infinite range,

the weak force has a very short range because of the massiveness of the W and Z

mediators.



1.2 Deep Inelastic Scattering

At NuTeV, neutrinos can inelastically scatter off nucleons in the iron target. This
section introduces variables specific to deep inelastic scattering (DIS) processes.

Figure 1.7 shows a generic deep inelastic scattering event which takes the form:
L(k) +p(p) = LK) + X (p) (1.2)

| (K)

X (p+q)

Figure 1.7: Schematic of a generic deep inelastic scattering event which consists of
a lepton beam (e,u,v) incident on a nucleon target.

The incoming lepton can be an electron, muon, or neutrino; the exchanged vector
boson can be a photon, W*, or Z°. The lepton scatters inelastically off the target
nucleon, either a proton or neutron, producing a final state which includes the scat-
tered lepton and the debris of the nucleon. Nucleon constituents, namely quarks and
gluons, recombine very rapidly into hadrons and thus appear as a hadronic shower.
Hadrons include any strongly-interacting composite particle, for example, protons,
neutrons, pions, and kaons. Because pions are the lightest hadrons, they are emitted

preferentially in such hadronic interactions. The X in Equation (1.2) indicates this



complex hadronic final state.
Consider the case of neutrino charged-current deep inelastic scattering. The
four-momenta of the incoming neutrino (k), outgoing muon (k’), exchanged virtual

W boson (g), target nucleon (p), and hadronic final state (p’) in the lab frame are:

k = (E,0,0,E,) (1.3)
K = (E,, pusinb,cos¢,,p,sinb,sin¢,,p,cosb,) (1.4)
p = (M,0,0,0) (1.5)
¢ = (nJ) (1.6)
pPo=pta=p+(k—F) (1.7)

where M is the nucleon mass, E, is the incoming neutrino energy, p, is the momen-
tum of the outgoing muon, 6, is the angle of the outgoing muon with respect to the
incoming beam direction, and v is the energy transfer to the nucleon. Several useful

variables include:

e Q% = the momentum of the exchanged boson which defines the energy scale of
the interaction; it is the “space—like” momentum transfer between the lepton

and hadron:

Q*=—=—(k—k)= mi +2E,(E,, —pucosb,) (1.8)

e v = the energy transferred from the lepton to the hadronic system:

p-q

—F = E,— E, = BEnua (1.9)

V=



e W? = the invariant mass of the hadronic system:

W?=(qg+p)? = M?+2Mv—Q* (1.10)

In addition, we define two dimensionless variables:

e y = inelasticity, the fraction of the total leptonic energy available in the target

rest frame transferred to the hadronic system:

. Ea.
y= L9 _ “had (1.11)

In terms of center-of-mass (CM) quantities (indicated by the *),

. v E} (14 cos 6*)
2vE}

1
y o~ :1—§(l+cos9*) (1.12)

where 7 is the Lorentz boost factor relating the CM to the lab frame

e 1 = the Bjorken scaling variable, the fraction of the total nucleon momentum

carried by the struck quark:

_q2 _ Q2 _ Q2
2p-q 2Mv 2ME,y

z = (1.13)
The NuTeV detector directly measures the energy (E,) and angle (,) of outgoing
muons in CC neutrino interactions, and the energy of final state hadrons (Epaq).
Given these parameters, the 2 and Q2 of the CC event can be determined. However,
2 and Q? cannot be determined in the case of NC scattering because the energy of

the outgoing neutrino is not known.
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1.3 Neutrino-Nucleon Cross Sections

The inclusive cross sections for deep inelastic neutrino-nucleon scattering processes:

v(W)+ N — p(pt)+ X (1.14)

(@) +N — v,([7,)+X (1.15)

are written in lowest order as the product of a leptonic tensor L,, and a hadronic

tensor WH" which describe the leptonic and hadronic vertices, respectively [8]:

d?o"? B G2y 1
dody — 167 (1+ Q?/M3, )

S L, W (1.16)

Here, the vector boson mass is My for CC interactions and M for NC interactions,

G is the Fermi constant, and y = Ey.q/FE. The leptonic tensor is given by:

Ly =2 Te[(F'+ m)y, (1 — v5) ¥l (1.17)

with m = m,, for the CC case and m ~ 0 for the NC case. The most general form for
the hadronic tensor is constructed in terms of scalar functions, W;, which describe

the structure of the nucleon [9]:

v __ v 2 pupy 2 . y)\gp)\Q(r 2
WhY = — g"" Wi(z,Q%) + e Wy(z, Q%) — ie” Wwa(%Q )
v
+ qu2 Wiz, Q%) + (p"¢” + p"¢") Ws(z, Q%) (1.18)

In practice, the functions W; are usually replaced by equivalent dimensionless struc-

ture functions, Fj;, which, as seen in the next section, have a simple representation
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in the quark parton model:

Fi(2,Q%) = Wi(z, Q%) (1.19)
Fy(2,Q%) = % Wo(z, Q%) (1.20)
Fy(2,Q%) = % Wi (x, Q%) (1.21)
Fiy(a,Q%) = % Wiz, Q%) (1.22)

Fy(w, Q%) = Ws(z, Q%) (1.23)

Contraction of the leptonic and hadronic tensors yields the doubly—differential neu-

trino nucleon deep inelastic scattering cross section:

(£ 4+ ™) 9 Fy (2, Q)
1—y— 5 — ’"22> Fy(z, Q%)
y(1-1) 4ME$,) v Fy(w, Q) (1.24)
+ (5 o+ ) B, @)

ZMEx xF},(:v Q )

+
/N

2o"7  GLME
dedy — m(1+ Q?/M‘%V’Z)2 (

Neglecting the lepton mass terms, this expression reduces to:

dzo'y’y _ G%ME %21‘FI("E7Q2) (]- - y Mwy) F2( Q ) (1 25)
dz dy m(1+ Q2/M3V,Z)2 +y (1 _ %) 2 Fy(z, QZ)

where the +(-) sign in the last term refers to the case of neutrino (antineutrino)
scattering. The structure functions Fj(x,Q?) in these expressions depend on the

type of interaction and the target. Assuming a quark parton model description, the
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structure functions can be expressed in terms of the quark composition of the target

nucleons. This connection is presented in the next section.

1.4 The Parton Model of Hadrons

The parton model allows the description of neutrino—nucleon scattering processes in

terms the scattering off nucleon constituents (Figure 1.8).

Figure 1.8: Feynman diagrams for CC and NC neutrino—quark scattering.

In the quark parton model, the nucleons consist of partons (quarks and gluons),
which behave as pointlike particles. Roughly half of the nucleon’s momentum is as-
cribed to gluons, which bind the quarks together but do not couple to the weak force.
The remaining momentum is attributed to quarks, both valence and sea varieties.
Valence quarks define the charge and spin of the nucleon. Protons, for instance,
contain two u valence quarks and one d valence quark. Neutrons contain one u
valence quarks and two d valence quark. The quarks interact primarily by exchang-
ing gluons, which can themselves fluctuate into a quark—antiquark pair, which are

generally called sea quarks.
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In the infinite momentum frame in which the parton model is valid, the nucleon’s
momentum is assumed to be much larger than the transverse momentum associated
with the strong interactions between the quarks. Hence, neutrino—nucleon scattering
can be described in terms of elastic scattering off a single non-interacting parton.
Because the partons are assumed to be essentially free, the nucleon structure func-
tions F; can then be written as the the sum of the probabilities of scattering from
single partons. Our formalism is to consistently express leading order cross sections

in terms of 2z F} and xF3, where:

20F(2,Q%) = 2 Y wgi(z) +27(x)

i=u,d,...

tF3(2,Q%) = 2 Z zq;(z) — 2q;(x) (1.26)

i=u,d, ...
where the sum is over all parton species. The parton carries a fraction x = Q*/2Mv
of the nucleon’s momentum, such that ¢;(z) is the probability of finding the parton
with a given momentum fraction. Assuming free spin 1/2 partons, to lowest order
in the quark parton model, Fy(z, @?) is related to F)(x,Q?) by the Callan-Gross

relation [10]:
Fy(x,Q%) =22 Fi(z,Q?) (1.27)

Given the parton densities, calculation of the neutrino cross section is straight-
forward. With the above quark assignment replacements in Equation (1.25), and
neglecting both target mass terms and the propagator factor, the charged current
neutrino and antineutrino cross sections become:

d*ote  2GLME
dx dy s

d*ofe  2GLME
dedy T

[zq(z) + (1 — ) 2q(z)]

[2q(x) + (1 — y)* 2q(2)] (1.28)
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The y dependence in the above cross section formulae follows from helicity argu-
ments. The V-A, v,(1—75), nature of the weak charged current operator selects only
left-handed particles and right-handed anti—particles. Both neutrinos and quarks
are left-handed particles with spin aligned opposite to their direction of motion:
they possess negative helicity. On the other hand, antineutrinos and antiquarks are
right-handed, so their spin is aligned with their direction of motion and they have
positive helicity. As a result, the spin-zero v ¢ and 7§ charged current cross sections
are isotropic (Figure 1.9), while the spin-one v G and 7 ¢ cross sections exhibit a

(1 — y)? angular dependence (Figure 1.10).

<--- -—-=> -—-=> <---

v . qg v -

=0

<

Figure 1.9: Allowed particle helicities for vq and 7§ CC scattering. The total spin
of the system is zero, hence there is no preferred scattering direction.

<--- <--- -—=>

-——>

v > q
=1

q
J

Figure 1.10: Allowed particle helicities for vg and vg CC scattering. The total spin
of the system is one, therefore it follows from angular momentum conservation that
backward scattering (cos@* =1,y = 1) is forbidden.

Unlike the CC case, the NC contains both a V-A and a V4+A component.
The V4+A, 7,(1 + v5), portion selects right-handed particles and left-handed anti-

particles; hence in analogy to Equation (1.28), we can write the neutral current

neutrino and antineutrino cross sections as:
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cgjgc _ 2G%]7\T/[Ep§ gilzq(z) + (1 —y)? 2q(z)] + (1.29)
Y | gHlea@) + (1 - y)?eq(@)] |

i;?c _ 2G%]7\T/./Epg gilxq(x) + (1 = y)? zq(x)] + (1.30)
/ | gilwa(n) + (1 - y)?aq(a)]

where g% and g% are the left and right-handed components of the weak neutral
current. Electroweak theory predicts the strength of the coupling of the Z boson to
each species of quark to scale as Is — Qe sin® 6y, where I3 is the third component
of the weak isospin and Q.,, is the fractional quark charge. The couplings to the

light quarks become:
1 2

up = §—§sin29w (1.31)
2

up = —gsin29w (1.32)
1 1.,

d, = —§+§sm Ow (1.33)
1

dR = gSiHQQV[/. (134)

The isoscalar couplings, g7 and g%, are defined as the sum of the squares of the

quark couplings:
2 2 o _ 1 S
g, = up+di = 5 ~sin 9W+§sm O (1.35)

5
g% = up+dy= 5 sin® Oy (1.36)

Similarly, isovector couplings are defined as 0% = u% —d% and 6% = u% — d%. Making

the above substitutions,
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d2 v 1 d2 v d2 z
Inc  _ I [<§—sin29w+gsin49w>- JCC+§sin49W- UCC]

dx dy dedy 9 dx dy
d*o%; [ (1 ., 5 . d*o?, 5 . d*c,

@one  _ L 20w+ Jsint g ) L L%cC 2 g P OcCC
d dy 2 5 sin” Oy + 9 sin” Oy dz dy + 9 sin” Oy, i dy

Thus far we have been speaking in only very general terms. To obtain the
structure functions for scattering off protons and neutrons, and in particular, spe-
cific quark flavors, first note that in CC interactions, neutrinos can only scatter off
d, 5,7 and € quarks while antineutrinos can only scatter off d, s, v and ¢ quarks (Ap-
pendix D). As a result, the structure functions for CC neutrino—proton scattering

are:
EyP(CC) = 2x[dy,+d+s+u+z]

eFy?(CC) = 2z[d,+d+s—u—¢] (1.37)

and for CC antineutrino—proton scattering:

FJP(CC) = 2r[uy+u+c+d+3]

eFyP(CC) = 2z[u,+U+c—d—3] (1.38)
Assuming isospin symmetry in the neutron scattering case, meaning exchange of

u and d the above expressions, the structure functions for CC neutrino—neutron

scattering become:

Fy™(CO) = 2zx|u,+U+s+d+7c]

zFy"(CC) = 2x|uy+u+s—d—c] (1.39)
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and similarly for CC antineutrino—neutron scattering:

FyM(CC) = 2z[dy+d+c+u+7]

eFY"(CC) = 2x[d,+d+c—u—73] (1.40)

As already mentioned, NC interactions involve scattering off both left and right
handed particles, and therefore the NC structure functions contain additional cou-

pling factors (Equation 1.34):

EJP(NC) = 2x[(u] +uy)(uy + 2T+ c+7¢) + (d] + dz)(d, +2d + s +3)]

eFyP(NC) = 2z[(u} — u})(uy +c—72) + (d} — d3)(dy + 5 —3)] (1.41)

Fy"(NC) = 2x[(ui +up)(dy +2d+c+e)+ (d] +dp)(uy +2U+ 5 +73)]

cFY"(NC) = 2z[(u3 —u3)(d, +c—¢) + (d5 — d3)(uy + 5 —3)] (1.42)

In the NC case, the neutrino and antineutrino expressions are identical, so FY (NC') =

FY(NC) and zFY(NC) = zFy(NC).
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1.5 Organization of the Thesis

The remainder of this thesis is divided into nine chapters:

e Chapter 2 provides a brief introduction to the theory of electroweak interac-

tions and a description of the quantities pertinent to the present analysis.

e Chapter 3 describes the experimental apparatus, tracing the data collection
path from the production of the neutrino beam, to the detection of neutrino

interactions in the NuTeV detector, and finally to the readout of events.

e Chapter 4 discusses handling of the data, including the reconstruction of
neutrino events, the selection criteria, the analysis procedure, the subtraction

of background events, and corrections to the final data sample.

e Chapter 5 provides a complete description of the Monte Carlo simulation,
which includes a neutrino cross section model, a neutrino flux simulation, and

a detector response model.

e Chapter 6 includes comparisons of event variable distributions in the data
and Monte Carlo as well as checks of the stability of the data/Monte Carlo

agreement.

e Chapter 7 presents an evaluation of the statistical and systematic errors

contributing to the overall sin? §yy uncertainty.

e Chapter 8 presents results of the electroweak fits and comparisons of those

results to the rest of the world.

e Chapter 9 offers some conclusions on the significance of the results.



Chapter 2

Electroweak Interactions

“Pure logical thinking cannot yield us any knowledge of
the empirical world. All knowledge of reality starts from
experience and ends on it.”

— FEinstein (1933)

In the late 1960’s, Sheldon Glashow, Abdus Salam, and Steven Weinberg [1]
independently formulated a gauge theory that unified the weak and electromagnetic
interactions*. A consequence of this theory was that it predicted the existence
of heavy intermediate bosons and neutral weak currents. The first weak neutral
current (NC) interaction was soon discovered in the summer of 1973 at CERN’s

large liquid bubble chamber, Gargamelle [2]. There, they observed the first muon

neutrino interaction without a charged muon in the final state:

v,t+e —v,+e

T, +e” =T, e

* It is interesting to note that Glashow, Weinberg, and Salam were awarded the Nobel Prize for
the unification of the weak and electromagnetic interactions exactly 100 years after Maxwell’s
formulation of a unified theory of electricity and magnetism. Perhaps this means we have to wait
until 2079 for a grand unified theory of the weak, electromagnetic, and strong interactions?

19
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This exciting result was later confirmed at Fermilab [3]. Following the discovery of
the neutral currents, a host of experiments proceeded to measure their strength and
structure. In the late 1970’s, parity violating weak NC effects were first observed in
the scattering of polarized electrons off deuteron [4] and in heavy atoms [5]. At the
same time, early measurements of sin® fy [6] successfully pinpointed the W and Z
boson mass predictions to the 80-95 GeV mass range, far beyond the energy reach of
any existing accelerator at the time. Several years later, the long awaited discovery
of the W and Z particles was announced by the UA1 and UA2 collaborations at
CERN.

Since then, the experimental accuracy of electroweak measurements has steadily
improved. Experiments in the 1980’s and early 90’s, of 1-5% precision, probed the
standard model at the level of radiative corrections, and hence set the first useful

limits on the top quark mass (Figure 2.1).
250 12 ’ I : T! ’ I a I

200 F

m, [GeVic?]

TN TR TN TN N NN TN TN T NN T O Y YO T T Y Y O T 1
~—

D [ 1 | 1 | 1 | 1 1 1
1988 1890 1992 1904 1896 18948

Year

Figure 2.1: Indirect determinations of M,,, (open circles) as a function of time. Also
shown are the 95% confidence level lower bounds from direct searches in ete™ (solid
line) and pp (dashed line) collisions, as well as from the W width in pp — (W or Z)
+ anything (dot dash line). Direct measurements of M,,, from CDF (triangles) and
DO (inverted triangles) are also indicated. Plot courtesy of C. Quigg [7].
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During this time, precision studies of W and Z properties, asymmetries in ete ™ scat-
tering, neutrino scattering, and parity violating effects in atoms continued. Today,
such experiments test the quantum structure of the electroweak standard model at
the few 1073 level. Present precision experiments aim to extract indirect informa-
tion on the Higgs boson mass, Miiges, and search for indications of new phenomena
(e.g., supersymmetry, extra Z bosons, leptoquarks, non-standard Higgs, etc.) at or
beyond the electroweak scale. Neutral currents have represented one of the most
important predictions of the standard model. Their discovery sparked an impressive
litany of experimental tests spanning more than three decades, and verified the stan-
dard model with a variety of probes over a wide kinematic range. The measurement

presented in this thesis continues in this tradition.
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2.1 sin*éy, RY, and R”

Neglecting fermion masses, mixing, and Mijges, electroweak observables can be ex-

pressed in terms of three free parameters which are known with high precision:

Gr = Fermiconstant = 1.16637 & 0.00001 x 107" (GeV) ™2

2

a = electromagnetic coupling constant = z— = 1/137.0359895 (61)
m

My, = Zboson mass = 91.1876 £ 0.0021

Knowing G, a, and M, one can predict all electroweak observables including the
weak mixing angle, sin? @y, and the W boson mass, My, at tree level. When loop
corrections are included, terms that depend quadratically in M;,, and logarithmi-
cally in Mg modify the predicted values of sin” €y and My,. The size of the
corrections depends on the choice of renormalization scheme. For instance, NuTeV
employs the Sirlin on—shell renormalization scheme [13], where to all orders sin? Oy
is expressed in terms of the physical boson masses:

My?
M,?

sin? ggr el = 1 — (2.1)

This definition is chosen because it is comparatively free of theoretical uncertainties
due to Mo, and Myiges. In the on—shell scheme, the leading contributions to the

renormalization factors almost perfectly cancel [14]:

t GF is known to 10 ppm from the muon lifetime [11], & is known to 45 ppb (200 ppm at M)
from the Quantum Hall effect [12], and My is known to 23 ppm from precise measurements at

LEP [12].
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3G M, i s2
ok = 8\/51;2 cot? Oy Mo, + O (ln ]\;7;%) + .. (2.2)
3Gy Miigss”
ép = 8\/§W2Mt0p +0 (ln Aoy + ... (2.3)

This scheme was chosen at a time when the top mass was not well known and such
cancellation was important. Today, the effects are small because M, is well-known
and the dependence in My, is logarithmic. Another choice is the modified minimal
subtraction (MS) scheme definition, where:

MW2(M)
MZZ(M)

MS

sin?fy - =1-— (2.4)

In this case, My (u), Mz (p) are the renormalized masses at an arbitrary scale, p,
where p is typically set equal to M for electroweak processes. Finally, on-resonance
measurements at LEP and SLD report a leptonic effective weak mixing angle. In

lept

this case, sinf; is defined in terms of the ratio of effective vector and axial-vector

couplings constants of the leptons (I = e, u, 7) to the Z:

. 1 g
plert — ~— (1 - 2V 2.5
Vet = < g%) (25)

These three definitions of sin®fy depend on the renormalization prescription, and
hence numerically differ from one another as a result of radiative corrections. The
relation between them depends on both M., and Mg, and has been explicitly

calculated in many theoretical papers [15].

In the present analysis, electroweak observables are extracted from the ratios of

neutral to charged current neutrino and antineutrino cross sections. Measurement
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of such ratios avoids complications related to the measurement of absolute cross
sections, in addition to reducing sensitivity to the neutrino spectrum and systematic
uncertainties common to both NC and CC interactions (e.g., parton distribution
functions). In standard electroweak theory, the ratio of neutral current to charged
current total cross sections directly relates to sin? fy,. Assuming only isospin symme-
try, the Llewellyn Smith formula relates these ratios to sin® fy for neutrino scattering
on isoscalar targets composed of light quarks [16]. To lowest order in both QCD and

electroweak theory:

R — o(vyN = 1,X) _ R
oy N = pX) o
= g, +79n
., 5 !
= 5 —sin Oy + 9 (14 ) sin® Oy, (2.6)
R — oW N =17, X) agc
o(7,N — ptX) 0tc
1
_ 21
= 9+ IR
1 5) 1
= 5= sin? Oy + 5 <1 + ;> sint Oy, (2.7)

where r = 0(U,N — pu*X) / o(v,N — p=X) = 0l | 0 is the ratio of neutrino
and antineutrino CC cross sections and the coupling factors, g2, g%, are given in
Equation (1.36). When integrated over all y, r ~ 0.5. For a typical detector without
full hadronic energy acceptance, r reduces to roughly 0.3-0.4. Figure 2.2 illustrates
the dependence of R and R” on sin® fy,. Assuming a value for r of 1/2, R” is about
three times more sensitive to shifts in sin®fy; than R”. However, assuming a value

for r more close to the experimental value, r ~ 1/3, R” is thirty times more sensitive
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to sin? Ay, than R”.
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Figure 2.2: Dependence of R’ and R” on sin? fy assuming 7 = 1/3. Over the region
of interest, R” has a larger slope than R” and as a result, roughly 30 times more
sensitivity to sin® Oy .

The above relations are, of course, exact only for the case of tree level scatter-
ing off an isoscalar target composed of light quarks. Necessary adjustments to this
naive model include corrections for the non—isoscalar target, quark mixing, radiative
effects, higher—twist processes, the longitudinal structure function (Ry), the W and
Z propagators, and the heavy quark content of the nucleon (charm and strange).
The last effect in the list contributes most to the uncertainty in the measurement of
sin? Oy from RY. Unfortunately, previous determinations of sin? fy measured in this
way suffered from large theoretical uncertainties associated with heavy quark pro-
duction thresholds, which mainly affect the CC denominator. These uncertainties,
resulting from imprecise knowledge of the charm quark mass, dominated the CCFR

measurement [17] and ultimately limited the precision of neutrino measurements of
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electroweak parameters. For example, combining the five most precise neutrino—
nucleon measurements yielded a value of sin®fy, = 0.2277 & 0.0036, [18] thereby

implying an equivalent W mass error of 190 MeV.

The Paschos—Wolfenstein combination [19] provides an alternative method for
determining sin? fy that is much less dependent on the details of charm production

and other sources of model uncertainty:

R = o(vyN - v,X)—-o(@,N—-7,X)  R'—rR”
T o(W,N > pu X)—o@,N—>ptX)  1-r
= 9.~ 9n
1,
= 5 —sin O (2.8)

Under the assumption that the neutrino—quark and antineutrino—antiquark cross
sections are equal, use of the Paschos—Wolfenstein relation removes the effects of
sea quark scattering which dominates the low x cross section. As a result, R~ is
much less sensitive to heavy quark processes provided these contributions are the
same for neutrinos and antineutrinos. Figure 2.3 illustrates the charm production
cancellation. In this case, the only remaining charm—producing contributors are
d, quarks, which are not only Cabibbo suppressed but also at higher fractional

momentum, x, where the mass suppression is less of an effect.

Inspired by the Paschos—Wolfenstein technique, the measurement presented here
extracts electroweak parameters from neutrino and antineutrino deep inelastic scat-
tering reactions. NuTeV, however, does not measure cross section ratios, such as
those appearing in the above expressions (R”, R”, R™) because of the inability to

measure NC interactions down to zero recoil energy and because of the presence
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Figure 2.3: v and 7 charm production diagrams illustrating the cancellation of sea
effects in the Paschos—Wolfenstein relation.

of experimental cuts, backgrounds, and detector acceptance. NuTeV instead mea-
sures experimental ratios of short to long events, RY  and RY . A detailed Monte
Carlo simulation of the experiment then predicts these ratios and their dependence
on electroweak parameters (Chapter 5). In the end, the NuTeV measurement has
comparable precision to other experimental tests. In addition, NuTeV is comple-
mentary because neutrino scattering is a different physical process (and hence is
sensitive to different new physics), it provides a precise measurement of NC neu-
trino couplings (the only other precise measurement is from the LEP I invisible line
width), a measurement of processes at moderate space-like momentum transfers (as
opposed to large time-like transfers probed at collider experiments), as well as a

precise determination of the parameters of the model itself (sin® 6y, My, po, g2,

and ¢%).



Chapter 3

The Apparatus

The three sections in this chapter describe the particle beam, detector, and triggering
system used to collect neutrino data. The particle beam originates as high energy
protons provided by the Fermilab Tevatron. The protons collide with a downstream
target resulting in a cascade of particles that includes neutrinos. The neutrinos can

be observed in the NuTeV detector which is triggered to record their interactions.

3.1 The Neutrino Beam

3.1.1 The Fermilab Tevatron

The NuTeV experiment operates in the Neutrino Center beamline at the Fermi Na-
tional Accelerator Laboratory (Fermilab) in Batavia, Illinois. Fermilab is home to
the Tevatron, the world’s highest—energy particle accelerator and source of ener-
getic protons needed to produce an intense neutrino beam. The Fermilab Tevatron
accelerates protons through a series of stages that includes a Cockcroft-Walton ac-
celerator, a linac, a booster, a main ring, and finally the superconducting Tevatron
ring. This chain is illustrated at the top of Figure 3.1.

The protons originate as a negative hydrogen ion (H™) beam, collected from a

28
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Figure 3.1: Schematic of the Fermilab Neutrino Center beamline.
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dense plasma of hydrogen gas. The H™ ions are first electrostatically accelerated
up to 750 keV by a five-stage Cockcroft—Walton generator before passing into a
79 m long two-stage linear accelerator (linac). The first stage of the drift-tube linac
accelerates the ions up to 116 MeV through a series of radio frequency (RF) cavities,
each of which resonates at 201 MHz. The second, more efficient stage, operates at
805 MHz and accelerates the beam to 400 MeV. The pulsed beam of 400 MeV H~
ions is then injected into the booster at a rate of 15 Hz. During injection, the ions
pass through a carbon foil, which strips the ions of their free electrons, leaving bare
protons. The process is known as charge—exchange injection.

The booster, a 140 m diameter synchrotron, constrains the protons to a closed
orbit via a series of combined function dipole/quadrupole bending magnets, at the
same time that RF accelerating fields increase the protons’ energies to 8 GeV. The
entire booster acceleration process takes about 0.033 seconds. The entire beam,
extracted in one turn, is sent into the 2 km diameter Main Ring. The Main Ring
is a 400 GeV proton synchrotron consisting of water—cooled dipole and quadrupole
magnets. Once accelerated to 150 GeV, the protons are finally injected into the
Tevatron, a superconducting synchrotron which shares the same tunnel enclosure as
the main ring. Unlike the Main Ring, all of the Tevatron magnets are superconduct-
ing and must be cooled by liquid helium to a temperature of 4.6 K. After the protons
are accelerated up to their maximum energy of 800 GeV, they are extracted from
the Tevatron and sent to a switchyard which directs the beam to the various fixed
target experimental areas: Meson, Proton or Neutrino*. Protons directed down the

Neutrino line enter NuTeV’s Sign—Selected Quadrupole Train.

* For more information on the operation of the Fermilab Tevatron, the interested reader should
consult review articles written by Helen Edwards [20] and Joey Thompson [21].
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3.1.2 The SSQT

The Sign Selected Quadrupole Train (SSQT) [22] was designed to reduce the largest
systematics plaguing earlier neutrino-based determinations of sin?fy [17]. For
CCFR, the two largest uncertainties in the determination of sin® @y, resulted from
the production of heavy charm quarks and the unknown rate at which neutral kaons
were produced at the proton target. To eliminate these errors, the SSQT provides
both separate v, and 7, beams, and through a series of vertical bends, eliminates

neutral kaon decays as the most significant source of v, uncertainty.

The SSQT is the source of neutrinos for the NuTeV experiment. Arriving at an
upward 7.8 mrad angle, the intense beam of 800 GeV protons from the Tevatron first
strikes a low—Z7 target located 1450 m upstream of the NuTeV detector. Specifically,
the target is a twelve inch long', one inch diameter beryllium oxide (BeO) rod,
segmented to resist thermal beam shock. The neutrino beam arises from the decay
of mesons, primarily 7, K — pu + v, among the multitude of secondary particles
produced at the primary target. A series of strong dipole magnets downstream of
the target selects mesons of one charge, for example 7+ and K*, and directs them at
a 6 mrad incline towards the NuTeV detector. Mesons of the opposite (“wrong”) sign
are bent away while non—interacting protons are stopped in beam dumps. Neutral
particles pass through the magnet chain undeflected, thereby missing the NuTeV
detector. Continuing their journey, right-sign pions and kaons decay in—flight in an
evacuated 440 m decay region. Most of the unwanted non—neutrino decay products,

including muons, “range out” in a 900 m earth and steel berm immediately following

t A1 for BeO is 30.99 cm, hence the target is roughly one interaction length. The density of the
target is 2.7 g/cm3.
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the decay region. Because of the large distance and thick shielding detector only

neutrinos reach the Lab E detector.

The charge selection of the SSQT results in a beam that is almost purely neutrino
or antineutrino. Antineutrinos contaminate 0.03% of the neutrino beam events, and
neutrinos 0.4% of the antineutrino beam events. Separate neutrino and antineutrino
mode running reduces the single largest systematic uncertainty in the determination

of sin? fyy: the uncertainty resulting from the production of heavy charm quarks.

Furthermore, the beam is mostly muon neutrino in flavor. This is important
because electron neutrinos are a large background to the analysis. The second
largest uncertainty in the CCFR sin? fy measurement resulted from the unknown
rate at which neutral kaons were produced at the proton target. Due to the series
of vertical bends in the SSQT, this source is almost completely eliminated, leaving
only a small component of electron neutrinos from K* — 7%*v,(7,.) decays. These

produce 1.7% of the observed interactions in neutrino mode and 1.6% in antineutrino

mode.

Figure 3.2 shows the expected event rates for neutrinos and antineutrinos in
the NuTeV detector, normalized to 10° protons on target (POT), as a function of

neutrino energy. The bulk of the neutrinos result from 7 and K decay in flight:

™ — uFy, (7)) (BR = 100%) (3.1)

K* — p* v, (7, (BR = 63.5%) (3.2)

For these dominant two—body decay modes, the maximum neutrino energy from

each species is:
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(3.3)

where v = Er x/my i, and 6, is the angle of the neutrino relative to the parent

particle direction. At #,, = 0, neutrinos from pion decays have an energy E, < 0.47-

E., and neutrinos from kaon decays have an energy E, < 0.95 - Ex. Consequently,

the neutrino energy spectrum exhibits two distinct peaks, with neutrinos from pion

decays concentrated at lower energies and neutrinos from kaon decays populating

higher energies (Figure 3.2). Further discussion of the Monte Carlo simulation of

the incoming neutrino beam can be found in Chapter 5.
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Figure 3.2: Contributions to the expected neutrino spectrum in the NuTeV detector
for running in both neutrino (top) and antineutrino (bottom) modes.
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3.1.3 Event Timing

In fixed target mode, the Tevatron operates on a 60.1 sec cycle. The neutrino
beamline, as described in the previous section, provides two types of beam to the
experimental area: the neutrinos are delivered in five “fast” 5 msec pulsest, and
the calibration beam arrives in a “slow” 18 sec uniform spill. Figure 3.3 shows the

accelerator time structure for each of these two components.

> Pings (v) Slow Spill
@ 0.5 sec (Calibration Beam )
3 iy
c AR

5 msec

N
1.4 sec
18 sec

Time

Figure 3.3: The accelerator time structure consists of two components: fast spill
(neutrino beam) and slow (calibration beam) spill.

As a result of this structure, events arrive at the detector in several “gates” or

“spills”:

e Fast Gate (gates 1-5): The fast spill consists of 5 short, intense pulses or
“pings”, each roughly 1-2 x 102 POT and lasting 5 msec. The pings are

separated by 0.5 sec. This is the neutrino gate.

t These fast resonant extractions are known as “pings”.
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e Slow Gate (gate 6): The slow spill has a duration of 18 sec. It begins 1.4
sec after the last fast spill ping, allowing for continuous calibration of the
detector concurrent with neutrino data taking. Gate 6 is the calibration beam
(or testbeam) gate. The calibration data are discussed in more detail in the

next section and at the end of Chapter 3.

e Cosmic Ray Gate (gate 7): Cosmic ray data are collected for 5 seconds
during each accelerator cycle in a separate “beam—off” gate during which the
detector is not receiving beam from the accelerator. The importance of the

data collected in this gate is discussed in Chapter 4.

3.1.4 The Calibration Beam

The NuTeV detector was exposed to a wide energy range (4.8 to 190 GeV) of hadrons,
muons, and electrons delivered independently of the neutrino beam (Figure 3.4).
This separate beamline allowed continuous calibration of the NuTeV detector in

tandem with neutrino data—taking.

U

testbeam V

Figure 3.4: Schematic of the NuTeV calibration beamline, a long low mass spec-
trometer. Calibration beam was incident upon the NuTeV calorimeter at a 43 mrad
angle. The momentum of testbeam particles ranged from 4.8 GeV to 190 GeV.
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The calibration beam both sets the energy scale of the detector and maps the re-
sponse of the detector to the products of neutrino interactions in the target. Further
discussion on the energy calibration can be found in Section 3.3.4, while details on
the modeling of the detector response can be found in Chapter 3. The collection
of large volumes of testbeam data throughout the course of the run was crucial to
the reduction of many systematic errors associated with the sin? 6y analysis. For
further details on the testbeam itself and calibration of the NuTeV detector, the

reader is referred to Reference [23].
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3.2 The NuTeV Detector

Neutrinos interact in the NuTeV detector [23], located 1450 m downstream of the
proton target. The tiny neutrino cross section (o/E ~ 1073 c¢m?/GeV) requires not
only a lot of incoming neutrinos but also a very massive neutrino detector in order
to collect large neutrino data samples. The NuTeV detector weighs over 1000 tons;
despite this, only a few interactions are observed for every billion neutrinos that pass

through it.

Figure 3.5: The NuTeV (Lab E) detector.

Specifically, the detector consists of two parts: a 18 m long, 690 ton steel-scintillator
target, followed by an instrumented 10 m long, 400 ton iron toroid spectrometer
(Figure 3.5). The target calorimeter® is composed of 168 steel plates interspersed
with active elements that include liquid scintillation counters (spaced every 2 plates
or 10.35 c¢m steel) and drift chambers (spaced every 4 plates or 20.7 cm steel). The

geometry of one calorimeter unit is shown in Figure 3.6. The basic model is that

§ The word “calorimeter” stems from the Greek word for heat. The idea is to absorb all of the
energy of a particle in a detecting medium and hence maintain a record of its developing energy.
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the particle showers develop in the (high Z) steel, and are sampled in the active (low
Z) material. Table 3.1 summarizes the calorimeter’s composition in terms of each

component’s length, radiation length, and interaction length®:

Plate

= Water B

= (1.25cm")3‘g
Scintillation

D Counter

] Drift

Chamber

1 2.5cm
} 2.5cm

JL - <« [
— -—

5cm 5cm 5cm 5cm 5cm

Figure 3.6: Side view of a single NuTeV detector target/calorimeter module. This
unit is repeated 42 times throughout the total length of the calorimeter. Note: the
scintillation counter on the right (left) hand side is an even (odd) numbered counter.

Length | Radiation Length | Interaction Length
Component (cm) (Xo) (A1)
4 steel plates 20.7 11.75 1.24
2 counters 13.0 0.51 0.16
1 drift chamber 3.7 0.17 0.03
Total | 374 | 12.43 1.43 |

Table 3.1: Composition of a NuTeV target/calorimeter unit in terms of each com-
ponent’s length, radiation length, and interaction length. Source: Reference [23].

¢ Note: a minimum ionizing particle (or “mip”) will lose approximately 0.2 GeV in the iron,
compared to 0.004 GeV in a single scintillation counter.
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A toroid spectrometer follows the target stack. A schematic is shown in Fig-
ure 3.7. In the case of CC neutrino interactions, the curvature of the final state
muon’s trajectory in the toroidal magnetic field determines the sign of the muon’s
charge as well as its momentum. For this analysis, the toroid is used only for the
muon neutrino flux measurement in CC events, since the laboratory energy of the
incident neutrinos, E,, can be determined from the sum of the muon energy and the

hadron shower energy: E, = Ey.q + E,.

Drift Chambers

\ A

Steel Toroids

Figure 3.7: Side view of a NuTeV detector toroid module. The magnetic field bends
right—sign muons inward.

The instrumentation of the detector provides the information necessary for perform-
ing the sin? @y analysis. The role of each detector element specific to this analysis

is listed below:
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e Target/Calorimeter:

- 168 Fe plates (3 m x 3 m X 5.1 cm)
— serve as the target for the incoming neutrinos

- 84 liquid scintillation counters (3 m x 3 m x 2.5 cm):

provide triggering information
— determine visible energy deposition
— locate neutrino interaction point

— measure event length
- 42 drift chambers (3 m x 3 m x 5 cm):
— determine localized transverse event vertex

e Toroidal Spectrometer (15 kG field, pr = 2.4 GeV/c):

— measures muon charge and momentum (for v, flux measurement)

The remainder of this chapter describes each of the active detector elements in
greater detail. Most of the detector components are the same as those used in the
earlier CCFR experiment, with the exception of new liquid scintillator oil and new

photomultiplier tubes.

3.2.1 Muon Spectrometer

While the toroidal spectrometer is not used directly in determining the kinematic
quantities necessary for this analysis, it is used to tune the v, and 7,, fluxes. Hence,

some discussion of its internal composition is warranted.
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The spectrometer is comprised of three toroidal magnets. A cross section view
of a toroid magnet is shown in Figure 3.8. Each magnet consists of eight 3.6 m
diameter steel washers with a 24 cm diameter inner hole. Current in four copper
coils magnetizes the steel in the washers, thereby producing a 15 kG field confined

to the volume of the toroids.
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Figure 3.8: Cross section view of a NuTeV toroid magnet.

In the beginning of the run, one of the coils on the western side of the second toroid
shorted to ground and had to be disconnected. Figure 3.9 shows the change in the
predicted magnetic field in the second toroidal magnet as a result of the missing
coil. Notice that the greatest effect is on the western side (—x in the ANSYS field

simulation coordinate system) in the location of the disabled coil.
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Figure 3.9: Effect of the disconnected coil on the ANSYS magnetic field simulation
in the second toroid.

Combined, the three toroids provide on average a 2.4 GeV/c transverse momen-
tum kick to muons traversing the spectrometer. The polarity of the current in the
coils, and hence the sense of the magnetic field, is set such that during neutrino (an-
tineutrino) mode running, negatively (positively) charged muons are bent towards
the center of the spectrometer (Figure 3.7). Hit information from single wire drift
chambers in the gaps downstream of each toroid allows the muon tracks to be recon-
structed and the momentum of the particle determined. Two sets of three chambers
located 2.4 m and 6.2 m downstream of the last chamber in the toroid comprise the
“blue cart”; these provide an additional lever arm in the measurement of high mo-

mentum muon tracks. The NuTeV drift chamber configuration (Figure 3.10) differs
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slightly from CCFR since five chambers were removed from the toroid system and
moved upstream of the Lab E detector to form the Lab F decay channel [25]. The
following section describes the functioning of the NuTeV drift chambers in greater

detail.

Gap 1 chambers  Gap 2 chambers Gap 3chambers ~ Blue cart chambers
1st toroid 2nd toroid 3rd toroid
R5,6,7,8,9 R14,15,17,18 R19,20,22,23 R24,2527 R28,30,32

Figure 3.10: Arrangement of drift chamber stations in the NuTeV toroidal spec-
trometer. The numbers listed at the bottom indicate the labelling convention for
each of the individual toroid drift chambers.

3.2.2 Drift Chambers

Drift chambers are a common instrument used in many high energy physics experi-
ments. Such chambers typically consist of a gas volume strung with a series of anode
wires. The gas is ionized by the passage of a charged particle. The subsequent ion-
ization drifts in the electric field created by the anode wire, such that the collection
and amplification of charge on the anode creates a detectable signal.

In the NuTeV experiment, there are a total of 42 three—wire drift chambers
distributed throughout the calorimeter and 19 single-wire chambers placed within
and behind the toroid. The chambers are constructed from 10 ft x 10 ft Hexcel-

covered aluminum walls. A given chamber consists of two orthogonally oriented
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planes, an X—view and a Y-view, each divided into 24 parallel cells 5 inches wide.
Figure 3.11 shows a cut-away view of a drift chamber cell. The upper and lower
surfaces of each cell are covered with copper—clad G10 panels, which are milled to
form a set of 19 cathode strips per cell. Strip voltage is supplied by I-beams at the
edge of each cell which are held at —~4500 V. This voltage is distributed decrementally
to each strip via a resistor card acting as a voltage divider; this maintains a uniform

electric field across the drift space.

10 feet

/
a. / A
A—r4
//¢7 10 feet
/7
7
/7
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£y //
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— - field wire +350 V
4500V sense wire +1750 v.r® @ _—— dift strip

9/16 in

5 inches

Figure 3.11: (a) Top view and (b) cross section of a three-wire drift chamber.

The chambers are filled with an equal mixture of argon and ethane gas. Charged
particles can be detected in the drift chambers because particles ionize the gas along
their flight path. The electrons drift towards the anode wire. The drift velocity, vp,
of the free electrons averages 52.4 pum/ns, so it takes an electron roughly 1.2 pus to

cross half a drift chamber cell. The 50/50 mix of argon—ethane is a common choice
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because the electron drift velocity in this mixture is essentially independent of the
electric field, as long as the field is large. Hence, given a constant drift velocity, the
drift time measurement becomes a linear measure of the distance traveled to the

anode wire (Equation 3.4).

The high electric field near the wire (E ~ 1/r) results in a cascading amplification,
as electrons are accelerated and cause further ionization. The multiplied electron
ionization is collected by anode (sense) wires running the length of the cell. The
two chamber models use slightly different wire configurations. Three—wire chambers
in the calorimeter are strung with two +1750 V sense wires separated by 156 mils.
The purpose of the two wires is to resolve the ambiguity of which side of the cell
the charged particle traversed. Between the two sense wires is a field shaping wire
held at +350 V, which acts as an accelerating potential between the two sense wires.
Support of the three—wire cell assemblies is accomplished by several short lengths of
monofilament nylon. The wires are melted into the monofilament segments, which
act much like rungs on a ladder. The entire assembly is then strung” into the
chamber and tensioned. Table 3.2 provides the sense and field wire specifications for

the NuTeV drift chambers.

Wire type Composition ‘ Wire diameter ‘ Operating voltage
field wire | silver—coated Cu-Be alloy | 127 +/- 51 um + 350 V
sense wire gold—plated tungsten 30 pm + 1750 V

Table 3.2: Specifications for the wires used in NuTeV drift chamber cell construction
and operation. Only three—wire chambers contain field wires.

AThis delicate process was accomplished using a computer controlled wire-laying machine, for
which T held much fondness in the very early stages of my graduate student career.
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For the single-wire chambers populating the toroid, only a single 41900 V sense
wire runs along the center of each cell. The optimal voltage for these sense wires
is slightly different because there is no field-shaping wire. Throughout the run, the
voltages for each drift chamber were monitored continuously to ensure their stability.

The anode signal from each sense wire is processed by a pre—amplification card
mounted directly to each pair of drift chamber cells. Each card is capable of reading
out two wires. For three—wire chambers, the pre—amps are staggered such that the
wires in a given cell are not read out by a single pre—amp. The pre—amps produce
an ECL logic pulse that is then fed into the time digitizing (TDC) system. Hence,
the recorded delay between the time of the passage of the charged particle (Tg) and
the time associated with the arrival of the drift electron pulse (T), allows the x or y

position of the charged particle track to be determined:

1‘:$0+UD'(T—T0)

y=yo+vp- (T —T) (3.4)

where x¢ and y, denote the sense wire locations. In this analysis, the drift chambers
are used only in the determination of the transverse coordinates of the neutrino

interaction vertex, as described in Section 4.1.

3.2.3 Scintillation Counters

A scintillator plus photomultuplier tube (PMT) system is used to measure the energy
deposited by charged particles in the calorimeter. There are 84 liquid scintillation
counters in the NuTeV detector, numbered from 84 to 1, starting at the upstream
end of the calorimeter. Each of the counters is a 3 m X 3 m X 2.5 cm lucite box

viewed by PMTs mounted at each of the counter corners. To provide additional
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structural support, 3 mm thick vertical lucite ribs, spaced approximately 2.5-5 cm
apart, run the length of each counter. Since the ribs do not scintillate, the counters
are staggered so that the ribs for consecutive counters do not align to create dead

regions. A schematic of a NuTeV scintillation counter is shown in Figure 3.12.
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Figure 3.12: Front and side views of a NuTeV scintillation counter.

The counters are filled with roughly 65 gallons of Bicron 517L liquid scintillator
oil. To balance the pressure of the liquid inside, each counter is flanked by two

plastic water—filled bags (one on each side). When a charged particle passes through
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the oil, it firsts excites a primary fluor which then de—excites and emits photons as
ultraviolet light. This light is quickly absorbed by a secondary fluor which emits in
the visible. The emitted blue light has a longer attenuation length in the oil and
hence dominates the light output. Eight half-inch thick wavelength-shifter (WLS)
bars surround the counter. These bars are doped with a third fluor which shifts
the blue light to a longer wavelength, better suiting the response of the phototubes.
This green light is then piped via total internal reflection to phototubes mounted on
each of the four corners of the counter. To collect the light response, NuTeV uses
10-stage Hamamatsu R2154 phototubes with green—extended photocathodes. The
photocathode, maintained at ~1400 volts, has a 20% probability of converting the
photon into a photoelectron by means of the photoelectric effect. A series of dynodes
multiply the single photoelectron by a factor on the order of 10°. Figure 3.13 shows
the typical response of a counter to a muon passing through its volume as a function
of position in the counter. The signal for a muon traversing the center of a counter
is roughly 30 photoelectrons. For muons traveling closer to the edge of the counter
(i.e., closer to the phototubes where light collection is more efficient) the response

is higher.

ADC counts

Figure 3.13: Average response of a NuTeV scintillation counter to the passage of a
muon as a function of position in the counter.



49

3.3 Event Triggering and Readout

3.3.1 Phototube Pulse Heights

Analog—to—digital converters (ADCs) integrate the signal from the phototubes and
turn that value into an ADC “count”. The relation between ADC counts and GeV
is determined from testbeam data (Section 3.1.4), but a rough estimate for muons
is that one minimum ionizing particle (or mip) is approximately 0.2 GeV. The pho-
totube signals from every target counter are stored in several ADC channels, each

of which has a different dynamic range:

e LOW: A low channel corresponds to the response from an individual pho-
totube; hence, there are four lows for each target counter. A muon passing
through the center of a counter will typically produce 2 ADC counts in the

lows.

¢ COMBINATION LOW: A combination low channel corresponds to the
combined signal from all four of the phototubes from a given counter. Typically

a muon passing through a counter will yield 8 ADC counts in this channel.

e HIGH: A high channel is the sum of the four low signals amplified by a factor
10, i.e., it is 10 x the combination low. A typical muon will generate 80 ADC

counts in this channel.

e SUPERLOW: A superlow channel is the sum of eight phototube signals
(lows) which come from eight different counters, each separated by ten coun-
ters. The signal is attenuated by a factor of 6 or 12 depending on the fan-in

used. A typical muon signal in this channel is 0.2 ADC counts.
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Figure 3.14: Readout configuration for a single scintillation counter.

The readout for a single counter is shown in Figure 3.14. The LOWSs are used to
measure hadron showers, which typically saturate the HIGHs. In the event that one
of the four LOW channels is saturated (i.e., a lot of energy is deposited in a single
counter or the neutrino interacts close to one of the phototubes), the attenuated
SUPERLOW channel is used. The HIGHs are used to measure muons, since their
signal is usually too small to be measured by the LOWs. COMBINATION LOWs

are primarily used to form event triggers (Section 3.3.2).

The signals are also repeated by a fan—out. The fan—out channel is discriminated
(tested for a minimum energy level) and its timing recorded in the TDCs. The

discriminated logical signals or “bits” are constructed as follows:
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e Sbit (single particle indicator): The linear sum of the signals from four pho-
totubes in a target counter (i.e., a combination low) is amplified by 100 and
put through a discriminator with a threshold of 150mV (~ 1/4 mip). Sbits

are designed to identify at least one single muon passing through a counter.

e Tbit (more than one particle indicator): The linear sum of the signals from
four phototubes in a target counter (i.e., a combination low) is amplified by 100
and put through a discriminator with a threshold of 450mV. Tbits are designed
to distinguish between showers and single muons; a Tbhit usually doesn’t fire

in the presence of a single charged particle.

e Nbit (shower indicator): The linear sum of the phototube signals from every
combination of eight consecutive counters is put through a discriminator with a
threshold of 55mV (5 GeV) with no amplification. Each counter in the middle

of the detector contributes to eight Nbits.

e NCbit (shower indicator): A logical unit that looks at the energy and Tbits
for each set of 4 consecutive target counters. The Tbits set the timing for
the NCbits. The NCbit requires two of the four Tbhits to fire, in addition to
the Nbit which measures the energy of that set of four counters and the four
immediately upstream (see Figure 3.15). NCbits identify energy deposition

plus a small longitudinal development.

3.3.2 Event Triggers

Twelve separate triggers were used during the NuTeV run. Each one is designed to

identify a particular event signature in the detector. Table 3.3 shows the number of
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Figure 3.15: Schematic of the NCbit requirement for a set of eight consecutive

scintillation counters.

events that were recorded for each trigger in both neutrino and antineutrino mode

running.
Trigger Description Neutrino Mode | Antineutrino Mode
1 Charged Current 2,612,830 908,161
2 Neutral Current 5,445,024 2,804,981
3 Penetrating Muon 4,306,217 3,065,412
6 Straight Thru Muon 1,712,591 735,222
9 Neutral Heavy Lepton 1,334,675 1,616,637
10 In—Spill Pedestal 189,855 183,794
11 Toroid Pedestal 785,040 153,461

Table 3.3: Number of recorded neutrino gate events for each of the NuTeV triggers.
The neutrino gate is described in Section 3.1.3. Note that an event can satisfy more

than one trigger.

The following list details each of the NuTeV event triggers.

e Trigger 1 (Charged Current): This trigger is designed to look for charged

current events, specifically events originating in the calorimeter with a toroid—

analyzed muon. It requires hits in the last calorimeter cart and in the toroid

gap(s). Specifically, one of two event topologies must be satisfied: there must
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be (a) either hits in at least two of the the last four counters (counters 1—
4) and hits in both toroid gaps; or (b) hits in at least two of the the last
four counters (counters 1-4), hits in at least two additional counters slightly
upstream (counters 9-12), and hits in only the first toroid gap. The dimuon
events which are used for the strange sea measurement and the single muon

events used in the flux extraction are both selected by trigger 1.

e Trigger 2 (Neutral Current): This trigger identifies showers with small pene-
tration. It is the trigger that selects events for the present analysis. The trigger
is an “OR” of the NCbits, and demands there be at least 5 GeV of energy in
eight consecutive scintillation counters. No muon requirement is made. This

trigger is described in further detail in the following section.

e Trigger 3 (Penetrating Muon): This trigger is designed to find short charged
current events in which the muon either ranges out or exits the calorimeter.
It requires sixteen possibly non—consecutive counters in the calorimeter to fire
with no additional minimum energy requirement. This is the trigger that is

used to test trigger 2 efficiency.

e Trigger 4 (Redundant Charged Current): This trigger is used to measure
trigger 1 efficiency. It has slightly stricter geometric requirements than trigger
one and uses different hardware (except for the veto). Instead of using hits
in counters 1-4 and 9-12, trigger 4 uses counters 5-8 and 13-16, in addition
to the toroid gap requirements from either trigger 3 or 6 in place of those for

trigger 1.

e Trigger 5 (Calibration Beam): Use of this trigger is reserved for testbeam
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running when either a hadron, muon, or electron beam is incident on the
calorimeter. It requires a coincidence between the two testbeam scintillation
counters but makes no requirement on the energy deposited in the calorimeter.
During the course of running, NuTeV collected roughly 17 million calibration

beam triggers.

Trigger 6 (Straight Through Muon): This trigger selects muons produced
upstream in the berm that traverse the entire detector. It requires a hit in
each target cart and hits throughout the toroid which stay within one quadrant.
The requirement that the hits remain confined within a toroid quadrant selects
higher energy (stiff) muon tracks. Specifically, counters 81 or 82 must fire, as
well as at least one counter from each set of four counters from each of the six
target carts, plus at least two out of each set of four toroid counters within the
same quadrant. Stiff track trigger 6 events are used for calibration, counter

X-rays (Section 5.3.6), and drift chamber alignment.

Trigger 8 (Cosmic Ray): This trigger requires at least 40 semi—consecutive
counters of penetration and hits in the first toroid gap. It is used to select

off—spill cosmic ray muons.

Trigger 9 (NHL): This trigger is used for the neutral heavy lepton (NHL)
analyses. It identifies events which have the characteristics of an NHL via a

muon or electron/hadron signature in the front of the calorimeter.

Trigger 10 (In—Spill Pedestal): This trigger randomly fires during the spill so

it is not correlated with beam activity.
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e Trigger 11 (Toroid Pedestal): The toroid shower trigger is correlated with
beam activity. However, it was found to occasionally fire due to neutrino
activity in the calorimeter (e.g., charged current events in which the muon
catastrophically loses energy in the toroid), and not just from interactions in
the toroid. It is designed to study the effect of an active toroid on the target

electronics and to correctly calculate beam pile—up.

e Trigger 12 (Pedestal): This trigger samples electronic levels outside of spill
in order to establish a zero level on our electronics. The trigger is prescaled
such that typically ten trigger 12 events are collected by the DAQ right after

the beginning of each accelerator cycle.

The first four triggers also include a veto requirement. The veto can be thought of
as an “anti-trigger”. Since the veto system is enlisted to detect incident charged
particles that may signal a false event, triggers 1-4 require that the veto not fire. For
a very small portion of the run, the veto was provided by a coincidence of upstream
and downstream counter planes in the “picture frame” veto wall positioned directly
in front of the Lab E detector combined with the signal from the two most—upstream
counters in the calorimeter (counters 83 and 84). In September of 1996, the veto
was switched to being provided by the Lab F veto wall [25]. This array of nineteen
scintillation counters, mounted far upstream of the calorimeter and decay channel,

was shielded by the berm and hence yielded smaller deadtime.

3.3.3 Trigger 2 Efficiency

The trigger used for the sin? fy analysis (trigger 2) selects events with small showers

in the calorimeter. The trigger scans regions consisting of four consecutive scintil-
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lation counters, requiring two out of the four consecutive counters to contain more
than one charged particle (> 0.15 GeV/counter), and the total energy deposit in
the four counters in addition to the four immediately upstream be larger than 5
GeV. Hence, the trigger 2 requirement is any NCbit (Figure 3.15). The efficiency
of this trigger is determined using an independent muon trigger (trigger 3), which
is sensitive to small single particle deposits of energy (> 0.05 GeV/counter) over
the entire calorimeter. Except for the veto, the hardware for trigger 2 and 3 are

separate, so the two do not overlap.
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Figure 3.16: The top plot shows the measured efficiency of the sin®#@y analysis
trigger as a function of hadronic energy. The bottom plot displays the inefficiency
of the trigger as a function of energy.

Figure 3.16 shows the measured efficiency of the sin®#y, analysis trigger as a

function of hadronic energy. The bottom plot of Figure 3.16 shows the trigger
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inefficiency as a function of energy. The trigger is 99% efficient at 7.5 GeV. Most
importantly, above the analysis cut, Ep.q > 20 GeV, the trigger is 100% for all events

used in the analysis.

3.3.4 Calibration of the Readout Electronics

As described in Section 3.2.3, the energy in a scintillation counter registers as an
electronic signal, the ADC pulse height. Calibration information converts this signal
into an equivalent energy measure in GeV. Specifically, the energy deposited by a
charged particle in the i'" single scintillation counter is derived from the pulse height
PH(i) registered in either the LOW or HIGH ADC channel modified by a number

of correction factors:
B Cr-h(i)- G(i,t) - PH(i)

ECI’]I‘ i .
ur (D) Map (i, Vx, Vy, t)

(3.5)

The pulse height, PH(i), is taken from the LOW channel as long as the signal is in
what is considered to be a “safe” linear region, i.e., greater than 35 ADC counts
in the LOWS, or else the HIGH is used. The SUPERLOWSs are used if the LOW
channel saturates with more than 1900 ADC counts™ Next, the pulse heights are
pedestal subtracted using a measure of the baseline activity in quiet regions of the
detector during neutrino data taking.

The counter gain factor, G(i,t), converts the pulse height response in ADC counts
into mips. Muons produced in upstream neutrino interactions in the berm track the
counter gains as a function of time. The average value is roughly 80 ADC counts in

the HIGHs for most counters (Figure 3.13).

>™The pulse height assignment and the use of the SUPERLOWS are improvements adopted after
release of the preliminary sin® Ay result [26].
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The hadron energy calibration constant, C, converts the pulse height mip re-
sponse into GeV and is known to 0.43%. The value for C, of 0.212 GeV/mip is
established from hadron testbeam data ranging in energy from 10 to 190 GeV, such
that the mean energy response in the detector for 75 GeV hadrons matches the
reconstructed mean momentum determined from the testbeam. Figure 3.17 shows
the energy dependence of the calorimeter hadron energy response. The NuTeV non—
linearity between 10 and 190 GeV is about 3%. Such a non—linearity is characteristic
of non—compensating calorimeters which have slightly different response to hadronic
and electromagnetic showers. The energy response is not necessarily linear because
hadron showers contain both a hadronic and an electromagnetic component. On av-
erage, hadronic cascades produce 2/3 charged pions and 1/3 neutral pions because
there is a nearly equal probability of producing 7+, 7, and 7°. The neutral pions
decay, with a mean lifetime of 107'% sec, into two photons each of which initiate
an electromagnetic cascade with a characteristic length much shorter than that of
the hadronic transport. Therefore, if h is the calorimeter calibration constant for
a “pure” hadronic shower and e for electromagnetic showers, then the calibration

constant for the “real” hadronic shower is in fact given by the combination:
Cr=c¢€-fr(E)+h-[1— fr(E)] (3.6)

where fro(E) is the fraction of 7%s produced in the shower. Fitting the hadron

energy response shown in Figure 3.17 one arrives at a value, e/h = 1.079 £ 0.011,

—0.184
assuming Groom’s parameterization, fro(E) =1 — (0.9Esh§2v) 27].

In addition, the pulse heights are corrected by a relative hadron gain factor, h(i),
which accounts for non—uniformities in the detector geometry, for example, varying

water bag or steel thicknesses.
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Figure 3.17: Hadron energy response as a function of testbeam momentum for test-
beam hadron data ranging in energy from 4.8 to 190 GeV. The larger band reflects
the overall 0.43% uncertainty in the hadron energy scale. The narrow inner curve is
the result of a fit to Groom’s parameterization [27] with e/h = 1.079 £ 0.011, where
e is the detector response to electrons and A is the response to hadrons.

Finally, because the response of the scintillation counters varies with position
as a result of the geometry of the light collection (Figure 3.13), the pulse heights
need correction from a muon map correction factor, Map(i,Vx,Vy,t). This factor is
determined from neutrino-induced muons which are used to map the response of
each counter as a function of position and time. It is simply the ratio of the counter
response at position (x,y) to that at the center (0,0) of the counter. Map values
typically range from 0.5 out to about 3 in the corners of the counter. Figure 3.18
displays map correction functions for several NuTeV counters. For each counter, the
value for the map correction is chosen at the transverse event vertex (Vx,Vy) and
is further required to be “reasonable”, namely 0.1 < Map(i,Vx,Vy,t) < 5.0 else no

map correction is applied.
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Figure 3.18: Muon map contours. These functions are used to correct for the position
dependence of the counter pulse heights. The first three counters (counters 80, 70,
and 60) were randomly selected; the last counter is an example of a counter with an
oil leak (counter 35) exhibiting skewed optical properties.

Since the calorimeter is an energy measuring device, one of its most important
characteristics is its energy resolution. Because the hadronic energy distribution
of the event sample is a steeply falling function, the finite energy resolution of the
calorimeter creates a smearing across energy bins. The calibration beam provides
a measure of this resolution. The distribution of energy measured in the detector
for a given hadron beam energy can be parametrized by a Poisson—like distribution

[23]. The Poisson widths determine the energy resolution as a function of energy;

for hadrons,
~ 0.86 £0.01

o
— = ————+0.022 4+ 0.001, 3.7
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where the stochastic 1/v/E term is due to fluctuations in sampling the number of
particles in the shower, and the constant term reflects calibration uncertainties. For

electromagnetic showers, the resolution is determined from testbeam electrons:

0.499 + 0.008
g R UYI0 L 0.042 + 0.002. (3.8)

E VE

The various calibration constants used in the sin? 6y, analysis are summarized in
Tables 3.4 and 3.5. Further discussion of their analogous use in the Monte Carlo

simulation appears in Chapter 5.

Particle Type | Calibration Constant (GeV /mip) ‘ Resolution o(E)/E ‘

hadrons C, = 0.212 0.86/VE @ 0.022
electrons C. = 0.195 0.50/VE @ 0.042
muons C, = 0.158 0.11 (toroid)

Table 3.4: NuTeV calibration constants used in this analysis; from Reference [23].

hadron energy scale uncertainty 0.43%
electron/hadron response (e/h) 1.08 £+ 0.011
hadron non-linearity (5.9 to 190 GeV) | 3.0 £+ 0.5%

Table 3.5: NuTeV calibration measurements used in this analysis; from Reference
[23].



Chapter 4

Data Analysis

This chapter describes the preparation of the data sample for the sin? §y analysis.
The five sections describe the algorithms that compute event parameters, the event
selection criteria, the procedure to classify events into NC and CC categories, the
subtraction of background events from the data, and the corrections for inefficiencies

in the vertex finding algorithms.

4.1 Event Reconstruction

This section introduces the event variables used in the sin? §y analysis. Five experi-
mental quantities are reconstructed for each event: the longitudinal vertex position,
the transverse vertex position, the hadronic shower energy, the event endpoint, and
the event length. Because this determination of sin®fy is based on the measure-
ment of the ratio of neutral current to charged current events, both types of events
must be treated as identically as possible to avoid bias. This requirement drives all

choices of how the event variables are reconstructed.

e Longitudinal Vertex Position (PLACE):

Ideally, the measured variable, PLACE, identifies the first scintillation counter

62
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immediately downstream of the neutrino interaction. This analysis uses the
NNPLACE definition, as developed by Alexandru Romosan [28]. As such,
PLACE is defined to be the most upstream of the first two consecutive coun-

ters, each with in—time Sbits and more than n mips of deposited energy, where:

n = max(—1.0679 4 0.9660 \/Epadz0, 3)- (4.1)

This value for n minimized the RMS of the difference between reconstructed
and generated PLACE for NC events studied in GEANT [28]. Figure 4.1
shows the results of this study. In particular, n is parameterized as a func-
tion of Ejaq20, the sum of the energy in the first 20 counters downstream of
PLACE (see Equation 4.2), and is at least 3 mips. Romosan found this energy—
dependent definition to be a much better indicator, than say a fixed mip defini-
tion, of the true interaction location for NC neutrino events. Note that in using
this recursive algorithm, PLACE is determined circularly; PLACE is obtained
from a PLACE-dependent energy sum; that energy sum is then recalculated

at PLACE, and so on, such that PLACE = PLACE(E}aq20 (PLACE(Epaq20)))-

A dimuon—based study of the accuracy of the PLACE algorithm in determining

the true location of neutrino interactions is discussed in Section 5.3.5.

Transverse Vertex Position (Vx, Vy):

Hits in the calorimeter drift chambers determine the transverse location of
the neutrino interaction. For each drift chamber, the average hit position is
determined by iteratively calculating the average hit centroid while simultane-

ously discarding chamber hits lying more than 20 inches from the calculated
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Figure 4.1: Difference between reconstructed PLACE, as determined from the
NNPLACE algorithm, and true PLACE for GEANT NC neutrino interactions in
Eha.d20 bins.
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centroid. The transverse vertex position is then obtained for each plane (x,y)
from the mean of the hit centroids in the first chamber upstream of PLACE
and the two nearest chambers downstream of PLACE. The hits are weighted
by the sum of the energies in the two counters adjacent to each chamber. The
choice of the number of chambers to sum includes an inherent trade-off: de-
creasing the number of chambers in the sum increases the inefficiency of the
algorithm, but also reduces bias between short and long events (Figure 4.2).
Because the latter is more important, we choose to sum the hits in only three

chambers.

Vx, Vy Failures Vx, Vy Fallures

Fraction of events
Fraction of events

TV11 algorithm

TV3 algorithm B -2

200-225 [
225-250[
250-350 [
350-600 [~

10

15
200-225[
225-250 [
250-350 [~
350-600
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Figure 4.2: Comparison of the number of transverse vertex failures using a 3—
chamber (top) versus an 11-chamber summation (bottom) for both short (solid)
and long (dotted) events. The 3—chamber sum exhibits less of a short/long effi-
ciency difference, while the 11-chamber sum is selectively more efficient for long
events due to the added hits from the muon track.

e Hadronic Shower Energy (Ep.g = Enadvar):
The hadronic shower energy is calculated by summing the energy registered in

the calorimeter scintillation counters. The conventional procedure selects the



66

energy deposited in a fixed number of counters, namely 20 counters* down-

stream of PLACE+41:
PLACE—19

Ehadg20 = Z Ecntr(i) (42)

i=PLACE+1

where Section 3.3.4 describes the determination of the energy in a single scin-
tillation counter, Eqy(i). The above energy definition contains almost all of
the shower energy, because the probability that a hadron will penetrate beyond
20 counters is small; however, for testbeam hadrons this energy definition does
not necessarily yield the most accurate shower energy estimate. For example,
if a shower does not extend out to 20 counters, the sum will include additional
pulse heights from pedestal noise or muons. It is therefore important to sum an
energy—dependent number of counters. For this analysis, the energy definition
is tuned to optimize containment. The process is iterative. To determine the
appropriate summation length, testbeam hadrons ranging in energy from 10
to 200 GeV determine the length containing 99% of the hadronic energy using

the Epaq00 energy definition:
LI

var

= int [4.4827 + 1.41042 - In (Epaaz0)] (4.3)

This dependence is chosen because the longitudinal energy deposition depends
logarithmically on energy. Based on this length, a new energy sum and resul-

tant length are then calculated:

PLACE—L/, +1

Boavar' = > Faueli) (4.4)

i=PLACE+1

* Twenty scintillation counters is roughly 2.1 m of steel; 14 nuclear interaction lengths (\r)
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Lyar = int[4.4827 + 1.41042 - In (Epadvar)] (4.5)

Lyar is the length that contains 99% of the total shower energy, thereby yielding
a variable length energy definition, Ejaqvar, which yields 99% energy contain-

ment when compared to testbeam hadrons:

PLACE—Lyar+1

Eha.dvar = Z Ecntr (1) (46)
i=PLACE+1

This is the energy definition used for both CC and NC events.

Event End (EXIT):

The EXIT algorithm searches the scintillation counters starting at PLACE,
and moving downstream until it finds three consecutive counters each either
without in—time Sbits or less than 0.3 mip energy deposition. The event end
is defined to be the last counter with deposition upstream of the gap of three;
therefore, EXIT is the last counter consistent with at least single muon energy

deposition.

Event Length (L)
The length of the neutrino event is simply defined to be the number of scintil-
lation counters spanned by the neutrino event. It is the distance between the

registered interaction location and the event end:
Length = L = PLACE — EXIT + 1 (4.7)

Figure 4.3 summarizes the determination of the event length and the ingredi-

ents that enter into its definition.
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Figure 4.3: Illustration of the event length determination for a CC neutrino inter-
action. The length of an event in the data is determined solely from the calorimeter
scintillation counters.
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4.2 Event Selection

During the 1996-1997 fixed target run at Fermilab, NuTeV received a total inte-
grated proton intensity of 3.22 x 10'® (Appendix C). Combined with an overall data-
taking efficiency of ~89%, NuTeV logged—to—tape events representing 1.27 x 10'8
protons on target in neutrino mode and 1.58 x 10'® in antineutrino mode. The
experiment could acquire up to 32 events/ping as determined by the trigger logic;
having 5 pings implied the collection of a total of ~160 events/spill. In the end,
NuTeV accumulated approximately 300 Gb of useful neutrino data. From this, the

following cuts select events of interest for the sin® )y, analysis:

e Bad Runs: Careful examination of the run logs and overall data quality
resulted in the removal of several runs (or portions of runs) because of known

problems with the detector, beam quality, or data processing.

e Data Gate: Events from gates other than the neutrino gate (gates 1-5) or
cosmic ray gate (gate 7) are discarded. Events collected during the cosmic ray
gate are analyzed in the same manner as neutrino events and then subtracted

as background (Section 4.4.1).

e Analysis Trigger: Events must satisfy the trigger 2 requirement. See Sec-

tion 3.3.2 for the specifics of this trigger.

e Event Time: The event time measured from the scintillation counters must
agree to within 72 ns of the time predicted by the trigger. This ensures that
the offline event time from the Sbits for the identified interaction agrees with

the online trigger time. Figure 4.4 shows the timing resolution for both short



and long events.
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Figure 4.4: Event time distribution for (a) short and (b) long events. Each TDC
clock count is 4ns. The analysis cut requires a trigger time in the range from 218 to

254 clock counts.

e Interaction Location: (P.; < PLACE < 80)

The longitudinal interaction vertex must lie within roughly 2m of the upstream

and downstream ends of the calorimeter. The upstream limit ensures that the

event is neutrino induced; the downstream limit allows adequate discrima-

tion between short and long events. As was the case for the length cut, the

downstream PLACE cut varies as a function of energy:

Pcut - 177 Ehad S 60 Gev
Py = 18, 60 < Epaqg < 100 GeV

P = 21, Epag > 100 GeV
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e Transverse Vertex Position: (|Vx| < 40 inches, |Vy| < 45 inches)
In the transverse place, the location of the neutrino interaction is restricted to
a 40 inch box surrounding the center of the detector that includes an additional
five inch section at the top and bottom. Figure 4.5 illustrates the chosen fidu-
cial volume. This requirement ensures hadron shower and muon containment
in the detector, and reduces the electron neutrino contamination because the

kinematics of kaon decay are such that v,’s preferentially populate the outer

edges of the detector.

1= 0-10"
2=10-20"
3=20-30"
4 =30 - 40"

+ 40 - 45" top, bottom

5 = 5" band surrounding
fiducial

Figure 4.5: Frame box or “square” bins in the the sin? fy analysis. Bins 1-4 repre-
sent the chosen fiducial volume. Bin four is the only fiducial bin that is not square;
it includes an added 40—45 inch section at the top and bottom of the detector. Bin
five is a 5 inch band around the fiducial which is used only to check that the analysis
results are stable outside the cut.
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e Energy Requirement: (20 < Ep,q < 180 GeV)
Events are required to deposit at least 20 GeV of visible hadronic energy
in the calorimeter, but not more than 180 GeV. The lower bound ensures
complete efficiency of the analysis trigger (Section 3.3.3), ensures vertex finding
efficiency (Section 4.5), and reduces cosmic ray contamination (Section 4.4.1).
The upper bound removes extremely high energy events that have large beam

backgrounds.

During the fast gate, a total of 5.44 x 10° trigger 2 events were collected in neutrino
mode and 2.80 x 10° in antineutrino mode. Roughly 0.06% of these events are
removed by the bad run and event time requirements. Table 4.1 shows the number
of events passing each of the remaining analysis cuts. After all cuts, the surviving

data sample consists of 1.62 x 10° neutrino and 0.35 x 10° antineutrino events.

‘ Analysis Cut Neutrino Events | Antineutrino Events
Fast Gate, Trig 2, Event Time, Bad Run 5,442,030 2,803,305
P < PLACE < 80 4,151,383 2,024,910
Vx| < 40 in, |Vy| < 45 in 2,734,312 1,205,891
Epag > 20 GeV 1,720,283 363,149
Ehaqa < 180 GeV 1,624,919 355,777

Table 4.1: Number of events sequentially passing each of the sin?fy, analysis cuts.
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4.3 Analysis Procedure

NuTeV detects neutrinos via their NC and CC interactions in our detector. Figures
4.6 and 4.7 show candidate NC and CC events. In each event display, the neutrino

beam is incident from the left.

.|HHH|..|... I T T TR L \% \Y
q q

Figure 4.6: A typical NC event in the NuTeV detector.

‘||||||h|||||||||||||||||H‘||\| 1 y y

||\||\|H||H|IIHH|\| LR L : q

Figure 4.7: A typical CC event in the NuTeV detector.

Both CC and NC neutrino interactions initiate a cascade of hadrons that registers
in the scintillation counters and drift chambers. In both cases, the hadronic shower
appears as a cluster of energy at the location of the neutrino interaction. CC events
distinguish themselves from NC events by the presence of a final state muon. The
muon typically penetrates well beyond the hadronic shower and deposits energy

in a large number of consecutive scintillation counters characteristic of a minimum
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ionizing particle. The muon track is clearly visible in Figure 4.7. For NC events,
the final state neutrino cannot be seen so that only the hadronic shower registers
in the detector. These different event topologies enable the statistical separation
of NC and CC interactions based solely on event length, i.e., longitudinal energy
deposition. Events with a long length are identified as CC candidates; those with a
short length are identified as NC candidates. Hence, the experimental quantity that

is measured in both neutrino and antineutrino modes is the ratio:

# short events  #L < Ley  # NC candidates

Bexp = #long events  #L > Ly  # CC candidates (4.9)
The separation length increases with energy:
Loyt = 16,  Epag < 60 GeV (4.10)
Loy = 17, 60 < Epaq < 100 GeV (4.11)
Leww = 18,  Epaq > 100 GeV (4.12)

and is based on the location where the NC and CC contributions are roughly equal
as determined from Monte Carlo (L., = 14,15,18). The decision to cut more
conservatively on length (L, = 14,15,18 — 16,17, 18) resulted in the reduction of
the systematic uncertainties associated with the event length determination: length
systematics dropped by 10% while the statistical error increased by only 0.6%.

The energy dependent length cut minimizes the number of short CC background
events in the NC sample (see below). Because we have chosen a simple length—
based selection, both the numerator and denominator of our measured ratios contain

backgrounds:
# short events  # true v, NC events + backgrounds

Rexp, = (4.13)

#long events  # true v, CC events + backgrounds
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The backgrounds to the short v, NC sample include short v, CC events, short v, CC

events, and cosmic rays. Short v, CCs are high y events that evolve either as wide

angle muons that exit out the side of the detector or low energy muons that range-

out in the calorimeter. Charged current v, events always manifest as short events

because the final state electron immediately showers inside the hadronic shower.

Because of their usually vertical angle, cosmic ray events tend to extend over a short

longitudinal distance in the detector, hence they primarily fall into the short length

NC class rather than the long length CC class.

The long sample is predominantly v, CC neutrino interactions, but also includes

small contaminations of showering beam muons and v, NC events in which the

hadron shower fluctuates longer than the length cut. Table 4.2 lists the size of the

background contributions to the short and long event samples for both neutrino and

antineutrino interactions.

Short Backgrounds:

Fraction of Short v Events

Fraction of Short 7 Events

Short v, CC events 17.2% 6.6%
Short v, CC events 5.1% 6.0%
Cosmic rays 0.9% 4.7%

Long Backgrounds: Fraction of Long v Events | Fraction of Long 7 Events
Long v, NC punch-through 0.7% 0.7%
Showering beam muons 0.2% 0.3%

Table 4.2: Percentage of background events in the short and long event samples.

In most cases, the backgrounds in the neutrino and antineutrino data samples have

comparable size.

However, in the antineutrino sample, a smaller background of

short CC events and a larger background of cosmic rays directly result from the

(1 —y)? dependence of the antineutrino cross section. There is also a slightly larger
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background of beam muons in the antineutrino data due to the leakage of testbeam

muons during fast-spill that occurred only during antineutrino running.

4.4 Background Subtraction

Two backgrounds are directly removed from the data sample. Cosmic ray events
are subtracted from the short event sample. Beam muon events are identified and
removed from the long event sample. The following two sections describe these

background subtractions in greater detail.

4.4.1 Cosmic Ray Subtraction

A significant background to the sin® @y, analysis sample, especially at low hadronic
energies, are cosmic ray events. Cosmic rays are soft showering particles that enter
the detector nearly vertically and therefore leave short tracks in the calorimeter.
Figure 4.8 shows a typical cosmic ray event in the NuTeV detector. Approximately

94% of cosmic ray events qualify as short events.

I

Figure 4.8: A sample cosmic ray event passing sin® fy analysis cuts.

t From an analysis of decay channel events, testbeam muon leakage was identified during runs
5961-5966 and runs 6154, 6159-6167. All of the events appeared during the fast gate and none
fired the upstream veto.
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These events are not identified during the neutrino gate, but during a separate
beam-off gate during each accelerator cycle. Cosmic rays are then subtracted from
the data sample, weighted by the relative ratio of neutrino to beam—off livetimes.
For the specific set of runs used in this analysis, this ratio is 0.404 for v running
and 0.405 for 7 running. After all cuts, approximately 0.9% (4.7%) of short events
in the v (7) data correspond to cosmic ray events. Figure 4.9 shows the cosmic ray
fraction as a function of E;,q. Extremely high energy cosmic ray events typically

result from real cosmic air showers that illuminate most of the detector.

Cosmic Ray Fraction
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Fraction of short events
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Figure 4.9: Fraction of short events that are cosmic rays for both v (top) and ¥
(bottom) events as a function of Ejp,q.
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4.4.2 Beam Muon Subtraction

Showering beam muons also influence the analysis. Muons produced upstream in
CC neutrino interactions in the berm (vN — uX) can evade the upstream veto
and shower in the calorimeter. Such events can fake real neutrino interactions by
potentially signaling a false event vertex. Figure 4.10 shows a so—called deep muon
event in which PLACE was identified at the start of the catastrophic energy loss.
Identification of these events is important because approximately 98% of deep muon

events classify as long events.

T

Figure 4.10: A sample beam muon background event passing sin” fy, analysis cuts.

Beam muons are identified by searching upstream of the interaction vertex for an
“upstream exit”. The upstream exit is located in the same way as the downstream
EXIT except the calorimeter is searched in the other direction (Section 4.1). If the
distance between this upstream exit and PLACE is greater than the larger of eight
counters or the shower length, Ly, then the event is a beam muon candidate. In
locating prospective beam muon events, an additional requirement ensures adequate
room to search upstream of the registered interaction vertex; hence, beam muon
events are identified only in the region 23 < PLACE < 60. The events are then

scaled to the full longitudinal fiducial volume and subtracted from the data in each
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length and square bin (Figure 4.5) of the analysis. After all cuts, approximately
0.2% (0.3%) of long events in the neutrino (antineutrino) data are identified as beam
muons. Figure 4.11 shows the fraction of beam muon background as a function of

shower energy.
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Figure 4.11: Fraction of long events that are deep muon events for both neutrino
(top) and antineutrino (bottom) events as a function of Ejp,q.

4.5 Data Corrections

Inefficiencies exist in both the longitudinal and transverse vertex finding algorithms.
Adding in the measured number of events in which the algorithms failed accounts for
events missing from the data that would naturally be included in the Monte Carlo

simulation. The following two sections describe these efficiency corrections.
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4.5.1 PLACE Efficiency

The data are corrected to account for inefficiencies in the longitudinal vertex finding
algorithm. Figure 4.12 shows the efficiency of the PLACE algorithm as a function
of hadronic energy. For neutrino events satisfying the sin®#y, analysis transverse

vertex cuts, the PLACE algorithm efficiency is 96% at 10 GeV, 99.5% at 15 GeV,

and 99.9% at 20 GeV. Hence, this is predominantly an effect at very low energies.

NNPLACE Efficiency, Neutrino Events

0.9 -

0.8

0‘7\\\\\\\\\\\\\\\\\\\\\\\\\\\
5 10 15 20 25 30

ehnc2 (GeV)

Figure 4.12: Efficiency of the longitudinal vertex finding algorithm as a function of
hadron energy (variable ehnc2).

Sbit quantities are used to retrieve information regarding the location and length of
events that fail the PLACE algorithm. These events are then added back into the
sample in each length and square fiducial bin (Figure 4.5). The efficiency correction
amounts to 0.006% (0.042%) of short events in neutrino (antineutrino) running.

Figure 4.13 shows the size of the correction as a function of shower energy.
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PLACE Efficiency Correction
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Figure 4.13: PLACE efficiency correction for short events as a function of Ey,q.

4.5.2 Transverse Vertex Efficiency

Similarly, the data are also corrected for failures in the transverse vertex finding
algorithm. Such failures occur mainly in very low energy events. Figure 4.14, how-
ever, shows an example of a high energy transverse vertex failure. In this event,
hit information is missing from the first three drift chambers downstream of the

interaction and hence the transverse vertex could not be identified.

‘“ | ‘l‘Hl "
Figure 4.14: An event with no transverse event vertex. Note there is signal in the
scintillation counters but no corresponding hits in the first three drift chambers.
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Such events are retrieved using a PMT-based vertex algorithm and added back into
the sample in length and square bins (Figure 4.5). The transverse vertex efficiency
correction amounts to a 0.44% (0.26%) addition to the number of short (long) events
in neutrino mode and 0.58% (0.37%) of short (long) events in antineutrino mode.
Figure 4.15 displays the size of the transverse vertex efficiency correction as a func-

tion of energy.
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Figure 4.15: Transverse vertex efficiency correction for both short (solid) and long
(dotted) events in as a function of Ep,g.

4.6 The Final Data Sample

Table 4.3 tallies the number of events that are either subtracted or added to the
short and long event samples in the data for each of the corrections described in this

chapter. The corrections are applied to the data in the order presented in the table.
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Data Correction v Short | v Long | 7 Short | 7 Long
Initial # of data events 459079 | 1165840 | 105605 | 250172
CR subtraction -4238 -242 -4995 -311

deep muon subtraction -62 -2005 -16 -846
PLACE efficiency correction +29 +44 +42 -39
Vx, Vy efficiency correction | +2030 | -+3004 +586 +935

Table 4.3: Adjustments to the number of short and long events in the data.

After all subtractions and corrections, the final neutrino data sample includes
456,838 short events and 1,166,441 long events. The final antineutrino data sample
consists of 101,222 short events and 249,911 long events. From the measured number

of short and long events, the experimental ratios in each mode are:

Ry, = 0.3916 £ 0.0007 (stat) (4.14)
RZ, = 0.4050 £ 0.0016 (stat) (4.15)

Note that the measured ratios are referred to as R;7. The connection between

the experimentally measured ratios of short to long events, RY.  and R”_, and the

exp exp’
theoretical predictions for the ratio of NC to CC events, R” and R”, is obtained by
building a detailed Monte Carlo simulation of the experiment. Using this relation as

determined from the Monte Carlo, electroweak parameters, such as sin? 8y, can then

be extracted from RY._ and R”

exp exp- Lhe following chapter describes the components

of the Monte Carlo simulation used in the analysis.



Chapter 5

The Monte Carlo Simulation

A standard model value of sin?#y can be directly extracted from the measured

short/long ratios, RS and RY,

oxp exp» Using a detailed Monte Carlo simulation of the

experiment. The Monte Carlo is designed to fully simulate neutrino interactions in
the NuTeV detector. It generates samples of neutrino and antineutrino events with
event length, vertex, and energy distributions which match those in the data sample
as closely as possible. To accomplish this, the Monte Carlo model includes three

main components:
e the neutrino cross section (p. 85)
e the incoming neutrino fluxes: v, 7, v,, and 7, (p. 158)
e a detailed description of the NuTeV detector response (p. 174)

Monte Carlo events are treated in exactly the same way as the data and are subject
to the same cuts as the data. However, the Monte Carlo does not attempt to simulate
background events, such as cosmic rays or beam muons, which are removed from the
data sample (Section 4.4), nor does it simulate inefficiencies in the vertex finding

algorithms which are instead corrected for in the data (Section 4.5).

84
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5.1 Cross Section Model

An enhanced leading order (LO) cross section model generates neutrino and an-
tineutrino interactions, both NC and CC. The following sections describe the var-
ious components of the cross section model. Unless otherwise indicated, all of the
formulae presented here are neutrino—proton cross sections. By invoking isospin
symmetry, the neutrino—neutron cross sections result from simple exchange of the
u and d quark assignments. The propagator factors (Section 5.1.9) do not appear
in these cross section expressions; however, the forms are properly normalized (Ap-
pendix E). The total quark momentum densities, xq(z), appearing in many of the

expressions denote the sum of the valence and sea densities: xq(z) = xq,(z)+2g(x).
Deep Inelastic Scattering at Tree Level

The standard neutrino cross section varies via three structure functions: zF, I3,
and xF3. As such, the basic tree (Born)-level cross section, as derived in Chapter 1,

is given by:

2o GAME | 520Fi(r,Q%) + (1 -y — ) Bo(w, Q?)

doe dy T
Y ty (1— 1) 2F(z, Q?)

where the + (-) sign in the last term refers to the neutrino (antineutrino) scattering
cross section and G is the Fermi constant. The multiplicative propagator factor,
1/(1 + Q*/Mg; 4)?, has been neglected in the above expression for simplicity. The
dimensionless variables, Bjorken z and inelasticity y, are defined in Chapter 1. Fig-
ures 5.1 and 5.2 display the event kinematics for Monte Carlo events passing analysis

cuts. The mean Q? is 25.6 GeV? for v events and 15.4 GeV? for ¥ events.
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Table 5.1: Distributions of z, y, and Q? for a representative sample of the final
Monte Carlo containing 3.6 x 10% v and 2.8 x 10° 7 events.
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Table 5.2: The z (top left) and Q? (top right) distributions as a function of Ejaq
for a representative sample of MC neutrino events. The bottom plot displays < x >
and < Q? > as a function of Ey,q for both v and 7 MC events passing cuts.
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Assuming the Callan—Gross relation, scattering off only w and d quarks, and
replacing Fy and zF3 with Equations (1.25), (1.37), and (1.38), the base quark

parton model cross sections for CC scattering become:

d2c’P 2GLME -

o = o WVl wd(@) + (1= ) (Vasl + [VaaP) am(@)] - (52
dzoﬁp 2G2ME —

e = ZEERE (Vi ad(o) + (L= 9?) (Vi + Vi) ()] (53

In the these expressions, target mass terms have been neglected, M — 0, and
|V;;|* are the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements [29] denoting
the strength of the charged current coupling to each quark species. The unitary
CKM matrix describes three generation quark mixing. The two generation sub—

matrix:

d Vid Vs d
= (5.4)

transforms the weak eigenstates (primed states) into mixtures of the mass eigenstates
(unprimed states). These matrix elements can be parametrized in terms of a single

mixing angle, the Cabibbo angle, ¢, such that:

Vuda Vs cosb- sinfco 0.9754 0.2205

Vea Vs —sinf¢c cosf¢ —0.2205 0.9754 (5.5)

The exact values for the quark mixing used in the sin® @y, analysis appear on the
right hand side of Equation (5.5). These factors govern the strength of the flavor-

changing transitions and multiply the parton densities in all of the CC scattering
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expressions.
Unlike the CC case, the base NC cross section is complicated by the fact that
neutrinos can scatter off both left and right handed particles (Chapter 1); therefore,

the NC cross sections include additional coupling factors, ¢? and ¢%:

2o%r,  2GEME | [uf +uk(l = )] wu(z) + [uf (1 — %) + up] 2u(z) +
dedy T _
! | [+ d3(1 - y?)] 2d(z) + [d (1 - y?) + d3) wd(z)
2o%r,  2GEME | [uf +uk(l - )] at(z) + [uf (1 - y*) + uf] vu(z) +
dx dy s _
| [d] +dR(1 — )] wd(x) + [d7 (1 — y*) + d}] wd(z) |
1 2 4
T 173 sin? Oy + 9 sin® Oy (5.6)
4
up = §sin4 Ow (5.7)
1 1 1
i 173 sin? Oy + 5 sin® Oy (5.8)
1
d?{ = §sin4 HW (59)

Note the cross section expressions for both NC and CC scattering assume zu(z) =
wuy (1) + 2u(z) and zd(z) = xd,(z) + 2d(z).

The preceding introductory equations describe the simplest case of scattering off
an isoscalar target composed of light quarks at tree level. The cross section model
used in the sin? fy analysis is instead a full Monte Carlo simulation which includes
radiative effects, non-quark-parton model contributions including the longitudinal
structure function and higher twist effects, heavy quark effects, quasi—elastic and
electron scattering, the W and 7 propagators, the non-isoscalar iron target, and
non-zero lepton mass terms. The remaining sections in this chapter describe these

components in detail.
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5.1.1 Radiative Corrections

The tree level cross sections are significantly modified by radiative effects. Radia-
tive corrections, as computed within the framework of the quark parton model, are
supplied by code provided by D. Yu. Bardin [30] and V6.34 of ZFITTER [31]. The
radiative corrections consist of higher order purely electromagnetic (QED) and weak

contributions.

QED Radiative Corrections

The 1-loop QED corrections correspond to the emission of real or virtual photons
by a fermion. Such corrections are finite and calculable. They are applied as an =z,

y, and E dependent factor, which multiplies the Born level (0-loop) cross section:

d*o B d*o / d*o d*o
dx dy_ dx dy 1 loop dr dy ) g dr dy ) g

Bardin

(5.10)

In practice, the QED corrections come from Bardin [30] and are interpolated from a
table to minimize Monte Carlo run time. Such corrections include the radiation of
real and virtual photons from the charged lepton and quark legs in addition to W—
v box diagrams. Figure 5.3 shows examples of several contributing diagrams. The
largest contribution comes from electromagnetic photon radiation from the final state
lepton in CC interactions, as displayed in Figure 5.3a, which has no NC counterpart.
The experimental effect is an increase in the measured hadron energy for CC events
due to the added electromagnetic shower. Note that the effect of this process is larger
for v, events due to the fact that the electron is lighter than the muon (Figure 5.2).

Smaller contributions include vertex and box diagrams (Figures 5.3b-c) and quark
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leg radiation (Figure 5.3d), which produce no extra particles in the final state but
do modify the overall scale of the total cross sections. Figure 5.1 displays the net
size of these corrections to both the muon neutrino and antineutrino Born level CC
cross sections; they can be as large as 20% in some kinematic regions. In contrast,
the QED corrections for NC processes, as shown in Figure 5.3, are much smaller.
Note that the QED corrections to neutrino and antineutrino scattering for y # 0 are
not the same because of the differing v, 7 helicities.

Several minor* modifications were made to the original Bardin code [30] in the
process of preparing the final Monte Carlo predicted cross sections. The adjustments
include incorporation of heavy charmf, m, # 0, and a change in the choice of initial
state quark mass from the CCFR convention [17], m; = Qmin = 1 GeV, to Bardin’s
recommendation, m; = x - my, where my is the nucleon mass. Figure 5.4 shows the
effect of these changes on the Bardin—predicted QED radiative corrections.

The application of QED corrections results in a large -0.0074 (-0.0109) decrease
in the predicted values for R, (R, ), resulting in a -0.00795 correction to sin? Oy
The magnitude is due to the dominant effect of increased energy deposit for CC

events, and hence an increase in the number of CC events passing the minimum

Epaq requirement.

* The net effect on sin” fyy is less than 0.0001.
t The radiative contribution from charm will be suppressed because of its large mass.
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Figure 5.1: Total size of the QED radiative corrections for 100 GeV v, (left) and 7,

(right) CC scattering as a function of y.
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Table 5.3: Examples of CC QED radiative correction diagrams. The NC diagrams
only include the initial and final state quark radiation processes depicted in (d).
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Weak Radiative Corrections

v, “ Vs Va

Table 5.4: WEAK radiative corrections that depend on Mo, and Migiggs.

The weak corrections, such as the self-energy diagrams depicted in Figure 5.4,
modify the electroweak propagators. The loop corrections are absorbed into effective

Q? dependent parameters, p, 4(Q?) and K, 4(Q?), which modify the neutrino—quark

couplings:
w" = p(Q?) (%—%mcz?) sin?f)W) (5.11)
uf = (@) <—§ @) sinZeW) (5.12)
B = pa(@) (—%+§w(@2) sin?f)W) (5.13)
G = (@) (Gra@)sno ) (5.14)
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The modifications are due to the process dependent substitutions:
Gr — p(QY)-Gr (5.15)

sin? Oy — K (Q?) - sin’ Oy (5.16)

involving corrective factors, p(Q?) and x(Q?), multiplying the overall scattering am-
plitude and sin? y, respectively. Because the couplings are functions of ¢* (Fig-
ure 5.5), the weak corrections are computed and applied on an event by event basis.
Note that the p and & factors are calculated using an upgraded electroweak package!
, ZFITTER v6.34 [31]. Their net effect is to increase R by +0.00052 and RY,

exp exXp

+0.00576, for a net -0.00159 shift in sin® @y .

ZFITTER couplings and NuTeV log;,Q* (dotted line)

0.3053 |-
0.305 |-
0.3048 |
0.3045 |
0.3043 <Q®> = 26.2GeV
0.304 |-

0.3038 |-
0.3035 |-
0.3033 |- .
0303 Dol bomdams=r 0T L b L Lt L

<gLeff)2

— 2
«10" log10Q

0.304 [

0.302

(gﬁeﬁ)2

0.3

0.298
0.296
0.294

0.292

029 Eilamioidaeacameek ™ L e L

|Og1oQ2

Figure 5.5: Q? dependence of (¢7;)? = (uf™;)? + (df™;)? from ZFITTER. The top
(bottom) dotted curve displays the Q? distributions for v (7) events in the analysis.

t The effect of upgrading from the 1986 Bardin [30] calculation of weak corrections to current
ZFITTER [31] is actually quite small: -6 x 10~5, -0.00016, +0.00005 in RY ., RY, sin? By

exp? “Yexp)
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Both p and x depend on the mass of the top quark, M;,,, and the Higgs boson,
Miiggs, through diagrams such as those depicted in Figure 5.4. This introduces a
M, and My, dependence to the result. The dependence is quadratic in M;,, and

logarithmic in Mijggs:

Moy — (175 GeV)?
Ssi 290n—shell — — 0.00022 - top
S (50 GeV)?
My
0.00032 - In | ——=5 5.17
- " <150 GeV> (5.17)

Because the calculations use the on—shell renormalization scheme (Equation 2.1),
the dependence on Mo, and Miggs is weak$. The shift in sin? 91,({,‘1_511811 for + 5 GeV
variation in M, is & 0.00015. Varying Miyiges over its potential mass range from
50 GeV up to 1 TeV results in less than a 0.0010 shift in the measured sin? HI?[}I’SheH.
Figure 5.6 shows the standard model prediction for sin? 015’[,“’5}19” plotted as a function

of Mtop and MHiggs-

- 2 —shell
S‘np&w(om shell)

N
% 0.227
0.8
O 0.226
O
0.6
© 0.225
=
~_ 0.4
g 0.224
490 2
T .
= 0.223
\g o
&> . 0.222
O—-0.
- 0.221
~0.4
! | | | o

L I L
160 165 170 185 190

My (GeV)
Figure 5.6: The prediction for sin? 91,({,‘1_511811 plotted as a function of M., and Miiggs.

. .
175 180

§ The Miop, MHiggs dependence of the final result is actually less than what was reported for the
preliminary analysis [26]. This is because the final analysis used less 7 data; when parametrized in
terms of on-shell sin® Ow, R” has a much larger dependence on Miop and Miygiggs than RY.
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5.1.2 Parton Distribution Functions

The cross section model incorporates leading order parton distribution functions
(PDFs) which are tightly constrained by charged current data measured using the
same target and cross section model as NuTeV. Using the prescription formulated
by Buras and Gaemers [33], we fit the measured CCFR differential cross section data
[34] and extract the individual quark momentum densities. Unlike CC interactions,
NC interactions discriminate between quark flavors, hence, a parameterization of the
individual quark flavors is essential: u(x,Q?), d(z,@?), s(z,@?), and c(x,Q?). In

this model (known as BGPAR), the quark distributions include five contributions:

e Valence: The valence distributions are characterized by the general form

z¥(1 — x)¥. The model assumes a softer d,(z) distribution: d, ~ (1 — x) u,.

e Sea: The fit initially assumes that the total number of anti-up and anti-down
quarks in the proton is the same, %(z) = d(x). Modifications to this assump-

tion are discussed at the end of this section.

e Strange Sea: The strange sea is constrained by CCFR/NuTeV dimuon data
(Section 5.1.2). The parameterization allows the strange sea to have a different
shape from the non-strange sea, but the strange and anti-strange seas have the

same momentum distributions, s(x) = 5(x).

e Charm Sea: In practice the charm sea, ¢(z), is neglected; however, a charm

sea component as indicated from EMC F;¢ data is added (Section 5.1.6).

e Gluons: This LO cross section model neglects gluon content, g(z) = 0. Gluons

enter only indirectly as missing quarks: [ zq(z) + zg(z)dz # 1.
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Exploiting the following symmetries further reduces the number of free parameters

in the differential cross section fit:

e Isospin: wP(z) = d"(z) = u(x),

sP(x) =35"(x) = 5(x)
(x) =c"(z) =c(x), ©e(x)=7"(x)=7¢(x)

e Light Quark Sea: u(z) = d(z)

e Strange Sea: s(x) =3(x)

e Charm Sea: ¢(x) = ¢(z)

The BGPAR model describes the behavior of these parton densities as a function of

x and their evolution in Q? as follows:

T uy (2, Q%)
v d,(r,Q°)
wu(r,Q%) = wd(r,Q?)

v 5(z, Q) = v5(x,Q%)

uy - [z (1

— )2 L AV 2B (1 — )P+ AV 2™ (1 — x)Eﬁ]
dt -z u,(z, Q%) - (1 — 1)

1
2ty )
1

ICE)) [AS(1 — 2)"% + ASy(1 — 2)"%2]
I 5SS (x, Q%)

K AS
2(k+2) ES+1

(ES 4 a+1)(1 — z)#5+e

The remaining sections describe the above components in greater detail.
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Valence Quark Distributions

Tuy(z, Q%) = u [z (1 —2)” + AV 2™ (1 — )" + AV 2™5(1 — 2) "]

()

vdy(z,Q%) = d° - zu,(r,Q?) (1 — 1) (5.18)

As can be seen from the above expressions, the BGPAR model assumes
dy ~ u,(1 — ). Furthermore, because the valence distributions do not vanish as
rapidly in x as the sea distributions, they are more sensitive to higher moments
and require the inclusion of additional z%(1 — x)*" terms. A variant of the Gross—
Llewellyn-Smith (GLS) sum rule [35] determines the normalization of the valence
densities:

dx dx

Auﬂ%ﬂg;z[?mmaQ%+m%mQ%w;:3(Lg%@%

™

) (5.19)

such that:
an = 2 31— AT - 4y/T7) (5.20)
! 3 B(E1,Ey+1)+ AVa f(Es, By + 1) + AV3 B(Es, Eg + 1) '
gt _ 1 - 3(1— AT — AyJT?) (5.21)
! 3 B(E1, Ey+2)+ AV, B(Es, By + 2) + AV3 B(Es, E + 2) '

The relative normalization between u, and d, results from the fact that the proton

contains two up valence quarks and one down valence quark:

/lxuv(x,QQ) de _ 2/1xdv(x,Q2) o= AT — 4)TY)  (5.22)
0 0 T

x
Hence, in analogy to Equation 5.19, the total number of valence quarks is:

1
/ (2 uy (7, Q%) + v dy (7, Q%)) v _ 3(1—A,/T — Ay/T?) = baryon number
0 J/‘

In addition, the following charge constraint is also satisfied:
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2 de 1

1 1
d
—/ xuv(x,QZ) — - —/ xdv(x,QZ) @ _ (1-A/T - A2/T2) — charge
3 0 T 3 0 T

Here, Ay, Ay, AV;, and AVj are fit parameters. Also recall that Euler’s 8 function

in these expressions is simply:

B(m, n) = E((Z)i(g)) _ (”En;i);(ﬁ)!l)’ _ /0 =2 de (5.23)

such that, for example, B(Ela E2 + 2) = B(Ela E2 + 1) : (1 + EZ)/(l + El + EZ) The
Q? dependence of the valence distributions is much simpler than that for the sea

and is contained in the analytic expressions:

E, = Eyp+FE;-s
Ey, = Ey+ By -s
Es = Es + Ei-s
Ey = Ey+ Ey -s

E5 = E50+E11'S

Ee = Eg + Eoi -5 (5.24)
where
_ In(Q?/A7)
s = o) (5.25)

Note that s = 0 at the starting momentum Q2. As can be seen from the above
expressions, B3 and E; vary with Q? in the same way as E;, while E, and E4 vary
with Q? in the same way as E,. The strength of the scaling violations, Ag, the initial

values, F;y, and slopes, E;;, are determined from the fit.
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Light Sea Quark Distributions

v, Q%) = 2d(z,Q?) = ﬁxsm,@% (5.26)

1 ES ESs
= m[AS(l—x) + ASy(1 — z)"%2]

Because the sea distributions decrease rapidly with x, they can be determined from

their first two moments, SQ, and SQ3, where in general:

1
SQ, = /Ox”QxS(x,QZ)dx (5.27)

In the context of a 4—flavor SU(3) gauge theory, SQs and SQs are represented by

the functions:

SQ, = %DQZ + iDm (5.28)

where: 5Qs = %D% + %DIS (5:29)
Dy, = Sy 0427 (5.30)

Dy3 = S3e 00675 (5.31)

Dy = [(1—0.429) (Sy + Vo) — 0.429 - Go] 707476 (5.32)

+[0.429 (Sy + Vig) + 0.429 - Gy] — Vg e 0427% (5.33)

Dy = [(1—0.925) (S5 + Vi3) — 0.288 - G] e~ 1380 (5.34)

4 10.925 (S5 4 Vis) + 0.288 - G5] 700095 — 14y ¢70667s  (5.35)

The numerical values in these expressions are fully specified by leading order QCD
(Table 1 in the original Buras-Gaemers paper [33]). The sea normalization constants,
Vio and Vg3, come from the valence distribution moments evaluated at the initial

momentum, Q2:
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Voo = w' - [B(B1+1,E+1)+ AV, 8(Es+1,E,+ 1) + AV3 8(Es + 1, Es + 1)] +
A [B(Ey +1,By +2) + AV, B(Fs + 1, By + 2) + AV3 B(Es + 1, Fg + 2)]
Vas = w,' - [B(F1+2,Ea+ 1)+ AV, 8(Es+2, B4+ 1) + AV3 8(Es + 2, Es + 1)] +

d°" - [B(Ey +2,Ey +2) + AV, B(E3 +2, By + 2) + AV B(Es + 2, Eg + 2)]

The parton distributions evolve from a starting value of Q2 = 12.6 GeV?, which
was the mean Q? of the previous Fermilab neutrino experiments E616/E701. The
evolution is coupled to that of the gluon via the third moment of the gluon density,
G3, which is a parameter in the fit. The second gluon moment, Gy = [ = g(z, Q?)dx,

constrains the momentum sum rule:

1 2
G +/0 11:4}5\2%’2%)2 [z uy(z,Q*) + v dy(2,Q%) + 2S(z,Q%)] dv =1 (5.36)

The remaining parameters, AS, and ES,, vary linearly with In(Q?):

ASQ == ASQ() + ASQI IH(QQ) (537)

ES, = ESy + ESy In(Q%) (5.38)

while ES and AS are chosen to give second and third moments which match SQ)»

d SQs:
and SQ3 b < S5Qy — ASy/(ESy + 1) ) _9 (5.39)
— \5Qs — ASy/(ESy +1)(ES, +2) |
AS = (BES+1) <Sggz;ffz> (5.40)

In practice, ASsy, ASa1, ESa, ESa1, So, S3, and G5 are the sea parameters that are

allowed to vary in the fit.
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Strange Sea Distributions

A leading order analysis of events with two oppositely charged muons in the final
state (VN — pTp~ X and N — ptp~ X) provides a reliable measurement of the

strange sea distribution [48]. Figure 5.7 shows a typical “dimuon” event.

Figure 5.7: An opposite-sign dimuon event in the NuTeV detector.

The underlying leading order process is a neutrino (antineutrino) charged current
scatter off an s or d (3 or d) quark in the nucleon, which results in the production
of charm. The subsequent semileptonic decay of the charm quark produces the
oppositely charged muon. The process is described using the slow rescaling formalism

as outlined in Section 5.1.4. Because scattering off d quarks is suppressed by a factor

|V.al> = 0.05 relative to s quark scattering, where |V, > = 0.95, the strange quark

contribution dominates despite the fact that its content is roughly ten times smaller.
Hence, dimuon events provide a unique probe of the strange content of the nucleon.

The fit to the CCFR dimuon data [48] uses the form:

rs(x) =x35(x) = ﬁ zSS(x, QZ)

— K AS ES+a
= 212 ES+1(ES+a+1)(1 )

X K ru(z) —;x&(w) (1—x)” (5.41)
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where a describes the shape of the strange quark distributions and E'S determines
the shape of the non-strange sea. The normalization of the strange sea is given by

Kk, the ratio of the strange to non-strange seas:

K= ———— = ——— (5.42)

where S = [z s(z)dx, S = [235(x) dv, D = [xd(z) dz, etc. The parameters
obtained from the fit, @ and &, are explicitly given in Table 5.6 in Section 5.1.4.
Although this parameterization differs slightly from Reference [42], both yield similar
strange sea distributions. A comparison of the leading order CCFR and NuTeV

strange sea distributions is shown in Figure 5.8.

Q* = 16 GeV?

o
~
I

Rabinowitz, CCFR LO

........... Max, NuTeV LO

0.08 -
0.06 -
0.04 [

0.02 -

[ S N N R R v e
0O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
X

Figure 5.8: A comparison of the LO strange sea distributions obtained from CCFR,
(solid) [48] and NuTeV (dotted) [42] fits to dimuon data with s(z) = 5(z). Plotted
are the = weighted s(x) distributions at Q* = 16 GeV?.
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The PDF Fit

A fit to the CCFR v and 7 CC differential cross section data in the region z < 0.7,
30 < E, < 360 GeV determines the parameters describing the parton momentum
densities [34]. In fitting the data, the PDFs include an external constraint on the
ratio of the antineutrino to neutrino total cross sections, o”/c” = 0.499 + 0.007 [36],
which effectively fixes the relative momentum fractions carried by the valence and
sea quarks. The parameters describing the strange sea, k and «, take their values
from the CCFR dimuon fit (Section 5.1.2). The BGPAR model has a total of 20 free
parameters® and provides a good fit to the data (see also Section 5.1.14). The x?/dof
for the fit is 2676/2750, which equates to a probability of 84.1%. The parameters
obtained from the fit are listed in Table 5.5.

Figure 5.9 shows the resultant contributions of the various parton distributions
as a function of z, evolved to the experimental mean momentum transfer, Q* = 20
GeV2. The modifications which give u(x) # d(r) and c(x) # 0, as shown in the
plot, are discussed later in this Chapter. At this Q2, roughly 33% of the proton’s
momentum is carried by valence quarks, 6% by v and d sea quarks, 1.3% by s quarks,

and 0.5% by ¢ quarks.

¢ In previous analyses, 9 parameter BGPAR fits had been employed. The upgrade to 20 parameters
achieves better agreement with the data, especially at low z.
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Figure 5.9: Parameterization of the BGPAR model parton distribution functions,
z q(z), plotted as a function of z at Q? = 20 GeV?2. The area underneath each curve
represents the total momentum fraction carried by each constituent.
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BGPAR parameter | Description Fit Value
Ay strength of scaling violations (A) 0.67029
A, overall valence normalization 0.50286
A, overall valence normalization -0.42750
AV, 2nd valence constant term 98.0710
AV, 3rd valence constant term 10.9900
Eio 1st valence term x exponent at Q3 0.60666
En valence x exponents slope in Q? 0.031154
Ea 1st valence term (1-z) exponent at Q3 2.8607
Eoq valence x exponents slope in Q? 1.5194
Eso 2nd valence term z exponent at Q2 3.8535
Eqo 2nd valence term (1-z) exponent at Q3 10.907
Eso 3rd valence term z exponent at Q3 1.9651
Eso 3rd valence term (1-z) exponent at Q3 30.711
So total sea 2nd moment in z at Q3 0.14379
S3 total sea 3rd moment in x at Q3 0.013643
Gs gluon 3rd moment (factors into Q* dep of sea) | 0.046198
ASy 2nd sea term constant at QF 0.48783
ASy; 2nd sea term constant slope in Q2 0.22661
ESq 2nd sea term (1-z) exponent at Q32 65.118
ESo1 2nd sea term (1-z) exponent slope in 2.6398

K strange sea level 0.373

Q strange sea shape 2.50
m, effective charm mass parameter (GeV) 1.32

Table 5.5: BGPAR parameters used in the sin? fy analysis from the best fit to the
final CCFR charged current differential cross section data [34]. The first 20 param-
eters are varied as fit parameters, the last three are held fixed. These parameters
are from the bgpar-jhk-ukcomb2-fixed pdf set and are used to specify the valence
and sea densities in the Monte Carlo cross section model.
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The d/u Correction

The simple BGPAR model operates under the assumption that d(z) = u(z). Ex-
ternal constraints from both NMC muon scattering [37] and E866 Drell-Yan data
[38, 40] modify the BGPAR u, d fit distributions to reproduce the suggested inher-
ent u,d asymmetry. These small adjustments are made under the assumption that
d?P = u"™ and u? = d" for both quark and antiquark distributions.

Since the NMC data has no sensitivity to separate out d,/u, from d/u, the
constraint on the sea ratio is based on a fit to E866 data [38]. In order to reproduce
the large flavor asymmetry in the proton sea as suggested by the E866 data, the
BGPAR u and d sea distributions are each modified by the factor:

1
max (1.0 — x (2.7 — 0.141n(Q?) — 1.9x),0.1)

f(d/a) = (5.43)

Under the constraint that the total sea is conserved, u' + d =1+ d, the light sea

distributions now become:

v = “'(mﬁ%/a))
d = E'<ﬂ+g-??8/ﬁ)>'f(a/ﬁ)

This parameterization was originally based on a fit to preliminary E866 data [38],
but is also consistent with their most recently published results [40]. The level of
agreement can be seen from Figure 5.10. Note there is only a very weak constraint
on the sea ratios at high x. NMC F¢/F} data provides a correction to the BGPAR

prediction for the valence ratio [63]:

d,/ul, = d,/u, + 6 (d/u). (5.44)
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Figure 5.10: Comparison of the BGPAR ratio d/u to the most recent E866 data
[40]. The NA51 data point [39] is also shown. The values are plotted as a function

of z for a fixed Q? value of 54 GeV2. The yellow band indicates our assigned 40%
uncertainty on the d/u sea correction.

Under the assumption that the total valence is conserved, d, + u! = d, + u,, the

modifications to the valence distributions can be written as:

Uy

U= TS () - oy ) (545)
e 5d€dj/Lul)LU- u5 %u )+ dy) (5.46)

The constraint on d,/u, arises from measurement of the ratio:
Fp  1/9[4 (dv+2(3+c))+uv+2(§+s)] (5.47)

F? 19[4 (up + 2(T + ) + dy + 2(d + 5)]
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which is extracted from the precise NMC F2/F} data after correcting for nuclear
effects [41]. Because F%/F? is approximately constant for Q? > 1 GeV?, the NMC
measurement is used to modify the z dependence of our BGPAR valence distribu-
tions (Figure 5.11). In particular, after fitting the difference between the NMC data

and the BGPAR model prediction (Table 5.5), we find [63]:

6 (d/u) = 0.12079 — 1.3303 x + 4.9829 2 — 8.4465 2* + 5.7324 2 (5.48)

Figure 5.12 shows the level of agreement between the NMC nuclear-corrected F2 /F5
data and the BGPAR prediction for F% /F} after both the d,/u, and d/%u corrections.
The effect of the external d/u constraints to both the valence and sea BGPAR

2
Rexp )

distributions is small; inducing 40.00023, 4+0.00022, 40.00028 shifts in R

exp’
and sin? 0y, respectively.
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Figure 5.11: The d,/u, correction to the BGPAR parton densities as a function of
x based on a parameterization of the difference between F2/F5 from NMC [37] and
the BGPAR model prediction. The functional form is provided in Equation 5.48.
Plot courtesy of U.K. Yang [63].
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Figure 5.12: Comparison of BGPAR F% /F% model prediction to NMC data [37, 41]
both before (top) and after (bottom) the d/u corrections have been applied to the
sea and valence.
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Low Q? Extrapolation

In the BGPAR model, the parton densities are not well-constrained at very low
Q2. In fact, the PDFs below Q? = 1 GeV? were traditionally assigned their values
at Q? = 1 GeVZ2 As a result of this unnatural flattening of the PDFs at low Q2
(Figure 5.13), the resultant cross section predictions were grossly overestimated in

this region (Figure 5.14).

x = 0.05

Figure 5.13: Parameterization of the BGPAR PDF extrapolation at low Q2. The
PDFs are plotted as a function of Q? for a fixed value of z = 0.05. The dotted
curve shows the original flat extrapolation, the solid curve displays the new param-
eterization using the GRV PDF shape below Q? = 1.35 GeV2. The second kink in
the curves at very low Q2 is a result of the GRV cutoff at Q? = 0.23 GeV?.

To improve the behavior of the BGPAR PDF's at very low Q?, the functional form for
the PDF Q2 evolution at low Q?, as inspired by GRV94LO PDFs, is used to extrap-

olate the BGPAR parameterization down to Q?=0.23 GeV? [63]. The normalization
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of the GRV PDFs is fixed to the BGPAR PDFs at Q? = 1.35 GeV2. While only
1.7% (3.7%) of the neutrino (antineutrino) data in this analysis lies below Q? = 1
GeV?, the dominant effect is the resultant change in the extremely low z radiative
corrections. Figure 5.15 shows the effect on the QED radiative corrections, and
Figure 5.14 shows the improvement in the low z differential cross section agreement

after incorporating the GRV-inspired PDF evolution for Q? < 1.35 GeV2.
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Figure 5.14: Improvement in the low z differential cross section model prediction
after incorporating the GRV-based low Q? extension to the BGPAR PDFs. The plot
displays CCFR neutrino (top) and antineutrino (bottom) cross section data at E, =
75 GeV. The dotted curve is the model prediction before the low Q? extrapolation,
the solid curve is the result after adopting the low Q? extrapolation.
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Figure 5.15: The effect of the low Q? pdf extrapolation on the QED radiative cor-
rections for both neutrino (left) and antineutrino (right) CC scattering processes.

Again, because the analysis includes few events below Q? of 1.0 GeV?, the effect
of better low Q2 modeling via the GRV shape extrapolation results in small shifts

in the predictions for R, R” . and sin®#y of -0.00020, -0.00012, and -0.00027,

exp’ exp’

respectively.
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5.1.3 Longitudinal Structure Function

0ol

Figure 5.16: Higher order pair production (left) and gluon emission (right) diagrams
illustrating how quarks can acquire transverse momentum.

In the simplest form of the parton model, the Callan-Gross relation [10] pre-
dicts Fy(z,Q?) = 2xF(r,Q?) as a consequence of the pointlike spin 1/2 nature
of quarks. This equality holds only if the boson initiating the scattering process
is completely transverse. A quark with transverse momentum, however, can ab-
sorb a longitudinally polarized boson. The struck quark can acquire a transverse
momentum component through higher order QCD processes such as those shown in

Figure 5.16. Violation of the Callan-Gross relation, as predicted by QCD, is included

in the Monte Carlo simulation by introducing the ratio, Ry, such that:

2
P, Q) = | s s 2010 @) (5.49)

Ry, is the ratio of the cross sections for absorption of longitudinally to transversely
polarized bosons. It is expressed in terms of the ratio of longitudinal and transverse

structure functions:
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oL
R 2 = — = =
L(aj,Q ) or 2.’L'F1 2.’L'F1

F F AN
L 2 <1 J) (5.50)

Q2
where F7p, is the longitudinal structure function. Ry is the same for both neutrino

and antineutrino scattering and is parametrized using an empirical fit to SLAC deep

inelastic electron scattering data [45]:

RI“(2,Q*) = Rwnitow(, Q%) =

_0.0635 o, 05747 03534
= @zo0n @)t o T v o
(5.51)
2 0.1252
O(z,Q*) = 1+12 (1 f@?) <0.1252 +x2> (5.52)

where Rwhitiow 15 assumed to be positive definite and valid down to Q? = 0.3 GeV?2.
Because of slow rescaling (next section), Ry, contains two contributions in the case
of neutrino scattering: a non—charm-producing part (Equation 5.49) and a charm-—
producing part (Equation 5.55). As a direct result, R; in neutrino scattering is
larger than what is expected from muon and electron scattering at low z and Q2.
Figure 5.18 displays Ry, predictions for both neutrino and charged lepton scattering
as compared to the world’s available lepton scattering data.

Because such longitudinal cross section terms constitute a non-quark-parton-

model contribution, radiative corrections are not applied to this portion of the cross

section” The effect of including a longitudinal cross section component is estimated

ASince longitudinal terms constitute roughly 3% (7%) of the total neutrino (antineutrino) cross
section, the effect of not radiatively correcting these contributions is small: +0.00053, +0.00138,
and 40.00018 in RY,_, RZ_, and sin® fy, respectively.

exp? “Yexp)
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by setting Ry to zero in the Monte Carlo and comparing to the default prediction
with R;, = Rwnitow (Figure 5.17). The effect is large —0.0034 and —0.0105 shifts
in RY, and R that partially cancel, for a resultant —0.0015 shift in sin®fy,. The

shifts, however, are an overestimate because the resultant R; = 0 cross section no

longer fits the CCFR differential cross section data.

Monte Carlo short/long ratios
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Figure 5.17: The effect of non-zero Rz, on the Monte Carlo predictions for Ry, and
R” . The inlays display the ratio of the MC prediction assuming Callan-Gross to
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the default prediction, Ry (R, = 0)/Rems’ (R, = Rwnhitiow)-
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Figure 5.18: Comparison of Ry, to lepton scattering data. The solid line is Ry, for
neutrino scattering (with m, = 1.3 GeV) and is labelled R” (eff). Shown as the dotted
line is Ry, for charged lepton scattering, Rwnitiow, Which is labelled R*/¢. Note that
R is larger than R*/¢ in the region of low z and low Q2 because it contains an
additional heavy quark component from the slow rescaling formalism. Plot courtesy

of U.K. Yang [63].
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5.1.4 Charm Production

s,d c s,d s,d

Figure 5.19: Leading order diagrams for neutrino scattering off of s or d quarks. The
CC interaction (left) results in the production of a heavy final state charm quark.
NC reactions (right) do not change the flavor of the struck quark.

Approximately 10% of the total CC cross section results from events in which a
charm quark is produced. Such processes involve a hard scatter off an s or d quark in
the nucleon (Figure 5.19). Because the standard model forbids NC flavor-changing
interactions, there is no analogous reaction in the neutral current sector™ As a
kinematic consequence of the heavy final state charm quark, the CC cross section is
suppressed relative to the NC channel. This threshold suppression is modeled with
a LO slow rescaling formalism [46, 47], whereby the normal scaling variable, z, no
longer represents the momentum fraction carried by the struck quark; instead, the
momentum fraction of the initial state parton, &, depends on the mass of the charm

quark:

T E=1- <1+r22022> (5.53)

= At LO, CC charm production is given by the direct process v + s,d — ¢. The NC process
v+ ¢ — v+ cis discussed in Section 5.1.6.
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This expression is derived as follows. Figure 5.20 shows the 4-vector assignments
for a general CC neutrino-nucleon scattering event with a light initial state quark

and a heavy final state quark.

(p)

Figure 5.20: Momentum vector assignments for CC charm production.

By momentum conservation it follows that:

(g+&p)?=p? = m?

¢ +2p-q+ &M = mS’

(L gm
2p-q
N Q2+m02 _Q2+mc2
& = 2Mv Q%[

£ ~ x-(l—i—rg;;)

where x is the usual Bjorken scaling variable, x = Q?*/2Mv. For the massless quark
case, £ = x. In this derivation, terms in 2°M? have been neglected. Target mass

terms are also not included in the Monte Carlo simulation'!

tLetting € =z - (1 + %02 ) (1 - ””ZQ—A?Z) in the Monte Carlo confirms the effect is small: -0.00007,
-0.00008, and -0.00009, in RY, ., R,

expr Loxpr and sin? Ay, respectively.
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The heavy quark threshold effects are contained in the following modifications

to the structure functions:

2 F(r,Q%) — g%ﬂ(f, @)
Fy(r, Q%) — Q%

2Fy(z, QY — %Fg(&, Q)

Using this substitution, the charged current differential cross section (Equation 1.25)

can be rewritten in terms of the new {—dependent structure functions:

Po"?  GEME | SE2F(6QY + (1—y— 42) B(&, QY

= (5.54)
dz dy T -
+y (1-%) ¢ EF3(E, Q?)
Further, including violation of the Callan-Gross relation:
1+ R (€Q°7
F(E,Q%) = (6, 6) 26F1(€,Q%) (5.55)

T 14 4MZE2)Q?

where Riwnpitiow (£,Q?) is assumed here for Ry, (£,Q?), it then follows that:

2€ 1A

d*o"”  GLME (y*z 14 R,(£,Q%) Mazy )

£y (1= DFER(E Q] (5:56)

In terms of quark distributions, the charm production cross sections for neutrino

scattering off of a proton and neutron target are each given by:

d*o(vp—cp”)  GEME [1+RL(§,Q2) ( Mxy) my]
dedy o« lxareee VT eE )T e

26 [[Veal? dy (&) + |Via* d(€) + |Vis* s(€) ] (5.57)



d*o(vn —cp”)  GLME [ 14 Ri(€,Q%) Mzy Ty
drdy 7 [1+4M2§2/Q2< Y- 2E>+?]'

26 [[Veal? wo(€) + [Vea? (&) + |Vis|* 5(6) ]

Hence, for an isoscalar target, the neutrino charm production cross section is:

d*’c(vN = cpu™) _ GAME¢ [1+RL(§,Q2) < o Mxy) zy |

dx dy T 1+ 4M2€%/Q? 2F " £

Vea? OW = My (do(€) + un(€)) +

Vea|? O(W — My, — M) (d(€) +7(€))) +

| 2V O(W = My, — M) 5(6)
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(5.58)

(5.59)

The analogous equation for antineutrinos is obtained by substituting ¢ «+— ¢ for

each quark flavor in the above expression:

d*’c(VN —cut) _ G%2ME ¢ {1+RL(§, Q?) < o Mxy) N Ty |

dz dy T 14 4M2€2/Q? 2F €

Vea|> O(W — M, — Mp — M) (d(&) +a(€)) +

(5.60)

Fast-rescaling threshold factors, ©(W), are implemented as step functions. This

requirement on the invariant mass of the hadronic system ensures that the produc-

tion of the final state charm quark (i.e., charmed meson or baryon) is kinematically

possible. In the absence of Callan—Gross violation, the charm suppression is simply

contained in the threshold factor:

|y Wy e
YT e T T OMEe

(5.61)
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which, for example, is the multiplicative factor appearing in the charm sea scattering
expressions in Section 5.1.6.

In addition, the charm production cross sections are limited by several kine-
matic thresholds. The struck quark momentum must not exceed the total proton

momentum (§ < 1), ensuring that Fy(&) is non—zero:

mCZ mCZ
< 1- <1- 5.62
o= OMEy =~ 2ME (562)
2 2
y > e e (5.63)

>
2ME(1—-z) — 2ME

Charm production is thus kinematically suppressed at large x and small y. However,
this does not mean that the struck quark carries away only a small fraction of

momentum. Because z > 0,

m,> m,>

E>——>
OMEy ~ 2ME

(5.64)

sea quarks with smaller £ are less effective at producing heavy charm than valence
quarks [47]. As a result of the kinematic thresholds and overall /£ structure function
rescaling (Equation 5.54), the effect is largest at small y and small  (where /£ is

smallest).

The parameters of the slow rescaling model are well constrained. They are ex-
tracted from opposite-sign dimuon data [48], because roughly 10% of the time the
charm quark can semi-leptonically decay resulting in events with two oppositely
charged muons (Figure 5.21). The leading muon comes from the neutrino vertex,

the second muon results from the semileptonic decay of the charm quark:

In this case, the dimuon cross section is given by:
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Figure 5.21: Opposite-sign dimuon production diagrams.

d’c(vN = pu ptX) d?c(vN —=cp)
_ .D(2) - B. X .
I dy I dy (2) - Be(c = pwX) (5.65)

where B.(c — prX) = 0.092 is the branching ratio for ¢ — u averaged over the
charmed particles produced at the hadronic vertex and D(z) describes the fragmen-
tation of the charm quark into a charmed hadron. Specifically, the hadronization

process is described using the Collins—Spiller [44] heavy quark fragmentation function*

D(z) = ——= (5.66)

where € is a free parameter and z is the fraction of the charm quark’s momentum
carried by the charmed hadron.
In the slow rescaling model, the production of p*p~ pairs is determined by an

effective charm mass parameter (m.), the level of the strange sea (k), the shape of

#There is a typo in References [42] and [43]. The correct form, (1 + 2?), as given by Equation
(14.3) in Reference [44] is what is used in the charm fragmentation model in the MC.
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the strange sea («), and V.4 (Section 5.1.2). In the Monte Carlo, the slow rescaling
parameters from the fit to CCFR dimuon data are used (Table 5.6); the parameters
are each varied within their experimental uncertainties in determining the final model

uncertainty on sin” fy (Chapter 7).

k| 0.373 £ 0.049
a | 250+ 0.65

Ve | 0.2205 + 0.012
m, | 1.32 + 0.024 GeV

Table 5.6: Values of the parameters used in the Monte Carlo slow rescaling model
as measured from CCFR dimuon data [48].

The dimuon data is well-described [48, 42, 43] by the LO heavy charm pro-
duction model described here, and provides an important test of the slow rescaling
hypothesis. The slow rescaling parameter which maintains the greatest impact on
the sin? fy analysis is, of course, m, (Section 7.3.1). Figure 5.22 shows the size of
the charm threshold suppression for various values of m.. The heavier the charm
mass, the greater the suppression. Figure 5.23 displays the result of assuming a
non-zero charm mass on the Monte Carlo predictions for R, and Rf, . Setting the

charm mass to zero in the Monte Carlo gives an estimate of the size of the effect:

approximately* —0.0052, —0.0117, —0.0033 in RY_, R”

wxpr Pep> and sin? Oy, respectively.

* Estimating the effect of massless charm is partially an ill-defined exercise because of the effects
of fast-rescaling, thresholds, and non—existing charm production events.
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Assuming lepton universality, the charm quark can also decay into an electron

roughly half of the time:

vy + —pu+ ¢ +X (5.67)
— e+, + X

Such processes are included in the Monte Carlo simulation with the same branching
ratio as for the muon case, B.(¢c — evX) = B.(¢c — prX) = 0.092, and result in the
production of long events with mostly soft electrons. In the case of v, scattering,

processes involving the production of wrong sign muons:

d

Ve + —e+ ¢ +X (5.68)
s

— w4+ X
and secondary electrons:

d

Ve + —e+ ¢ +X (5.69)
s

— et +uy,+ X'

are also included in the Monte Carlo simulation. Together they constitute roughly

1% of the total v, events passing cuts.
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5.1.5 Strange Sea Scattering

v 0

S u

s,S s,S

Figure 5.24: Diagrams for CC and NC strange sea scattering processes which do not
yield a heavy charm quark in the final state.

The Monte Carlo also includes strange sea scattering processes which do not
yield a charmed final state (Figure 5.24). In this case, the corresponding doubly

differential CC and NC cross sections are:

dos(v,+p— p +X)

da dy = 2|Vilzs(z) +05(CC) (5.70)
dos(v, +p = v, +X .
= dﬁdy - : = [2as(2)(s] + 3%{(1 — 1)) +225(x) (s2(1 — y)* + S%)

+ 0L(NO)| - O(W — My — Mg) (5.71)

The terms containing longitudinal contributions are:

- 1+ R, Mazy 1+ R,
os(CC) = {<1+4M2x2/Q2_1> 1=y - 2F <1+4M25U2/Q2>]

-2 Vsl ? ws () (5.72)
o§(NC) = (1—vy) (1 - iﬂ;jig/@ - 1) (57 + s7) 20F (v)

Mxy( 1+ Ry,

2E \1+ 4M2:v2/Q2> (57 + sg) 20F) () (5.73)
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where 2zF(z) = 2[zs(z) + 25(x)] and the NC coupling factors are s, = d; =

—5 + 3 sin” Oy, sg = dg = % sin®0fy. The strange sea distributions, s(z) = 5(z),

come from the measurement of CCFR and NuTeV opposite-sign dimuon events

(Section 5.1.2). Algebra further reduces these expressions to:

d?os(v, +p— =+ X)

d?os(v, +n— =+ X)

dx dy dx dy
_ G}ME (1, - Mzxy 1+ Ry(z,Q?)
- 7 Y Y7 r ) 1T a2/
22 |Vys|? s () (5.74)
Po(vy+p—=v,+X) o, +n—v,+X)
dx dy N dx dy
Mz 1+ Ry (2,Q?
(1-y— 5% (1;11\;2(9526/262)2)
2 ME | -2(s2 + s%)[xs(x) + 25(x
@ sl <o) |
T
+2ws(x) y[s] — (1 —y)sg]
+2a35(2) y [sf — (1 - y)si]

The same expressions hold in the case of antineutrino scattering with the replacement
s(x) — S(x). The CC cross sections written above include only the non—charm-—
producing remnant. As a result, the dominant effect of including this contribution
to the total cross section is an increase in the number of neutral current events

because the NC cross section for scattering off d, d, s, and 5 quarks is slightly larger

than for v and @ quarks.
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5.1.6 Charm Sea Scattering

c ds c,C c,C

Figure 5.25: LO diagrams for CC and NC charm sea scattering.

Neutrinos can also directly scatter off of the charm sea (Figure 5.25). The cross

sections for CC and NC charm sea scattering are:

2 -4 X 2ME
Pop(v,+p—p +X) _ Gp O (W — My, — My — M)
dz dy T
o) (Vi Vi) 26006) (1 — )
oMpg) et e
Pog(vy+p— v, + X) GEME

m,>
dx dy B T G(W_MEO)'<1_2ME§>

[(ci, + cr(1 = y)*) 28e(€) + (cL(1 — y)* + i) 282(6)]

assuming Fy(z, Q%) = 22F;(z, Q%) and neglecting target mass terms. In the above

expressions, the NC quark couplings are ¢;, = u;, = % - %sin2 0w and cp = up =

_2

3 sin? @y,. Note that the antineutrino cross sections are simply obtained by sub-

stituting c¢(x) <— ¢(x). Despite the underlying LO treatment, the cross sections

have been augmented to account for higher order boson—gluon fusion processes; for
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example, production of ¢¢ pairs from gluons in the nucleon such as those shown in
Figure 5.26. To account for such higher order contributions, which lead to a massive
¢ quark in the final state, the LO cross sections include additional slow rescaling

thresholds via the substitution x — ¢ (Equation 5.53) and through the threshold

m.?2

e (Equation 5.61). As in the LO charm production formalism outlined

factor 1—
in Section 5.1.4, the charm sea scattering processes are also subject to the same kine-
matic thresholds as presented in Equations (5.63) and (5.64). As a result, the NC
interaction is suppressed relative to its CC counterpart because the NC final state

contains two charm quarks; hence, for NC events, £ is modified by the substitution

m, — 2-m,.

o
ol

Figure 5.26: Higher order (NLO) diagrams for CC and NC charm sea scattering.

Unfortunately, measurement of the charm sea content of the nucleon is not very
precise. In our chosen LO charm sea model, CTEQ4LO pdfs provide an initial
estimate of the level of the charm sea, the charm sea shape is assumed to be the

same as that for the strange sea, and finally the substitution m. — 2-m. is employed
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in the slow rescaling formalism for NC events. This simple model is then tuned to
match European Muon Collaboration (EMC) c¢ production data [49]. EMC data is
chosen because it populates a region in x most relevant to our experimental data, and
because it is obtained from an iron target. The tuning procedure involves comparing
the measured charm contribution to Fy to our slow-rescaled prediction assuming a

heavy charm sea:

F* = 4/9[¢c() +£e(€)] = 8/9€¢(¢) (5.76)
£ = x.(1+rg;2) (5.77)

To reproduce the EMC data with this model, a 50% enhancement of the CTEQ4LO
charm sea level is required. Figure 5.27 compares the tuned model prediction, i.e.,
after the 50% charm level enhancement, to all available data on F§°. The final charm
content, C(z) = [ x ¢(x)dz, is found to be less than 0.5%, a factor two smaller than
the strange sea.

Finally, the charm sea is also measured at NuTeV through neutral current pro-
duction of wrong sign single muons, processes such as those shown in Figure 5.28.
Despite offering a less precise constraint than the EMC data, our charm model is
found to be consistent with the NuTeV measurement of the total NC charm cross
section, 05’ = 2.1 £ 1.8 fb at (E,) = 154 GeV [52].

Fortunately, sin? @y is not very sensitive to the charm sea. The result of includ-
ing charm sea scattering at this level is +0.00005 (-0.00004) in Ry, (RY,,), which

translates into a small +0.00010 effect in sin® 6y, .
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F2(ccbar)
|
F2(ccbar)
N

Q*=25 GeV?

F2(ccbar)
F2(ccbar)

F2(ccbar)
F2(ccbar)

Figure 5.27: Comparison of the tuned charm sea model to EMC [49], ZEUS [50], and
HERA [51] F data in various Q? bins. The shaded band indicates the systematic

error assigned to the intrinsic charm model (Section 7.3.5).

Figure 5.28: Wrong-sign single muon production from NC charm scattering.
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5.1.7 Quasi—Elastic Scattering

v (v.) u (&) 7,.(7.) ' (e")

w* w~

n p p n

Figure 5.29: Diagrams depicting v (left) and 7 (right) quasi-elastic scattering.

Quasi—elastic events result from nucleon scattering in which the nucleon remains

a single particle in the final state:

Vpyt+n — pu +p, Vet+tn—>e +p

Uy+p — pu +n,  TV.t+p—e+n

These z = 1 events lack a hadronic shower and have zero inelasticity, y = 0. While
v, quasi-elastic events are not energetic enough to pass the minimum E,q require-
ment, v, quasi—elastics can enter the sample because of the energy deposited by the
final state electron. Therefore, the Monte Carlo includes v, quasi—elastics, which
constitute approximately 1.3% (2.9%) of v, (7.) events passing analysis cuts. The
fractional contribution of quasi-elastic (QE) events to the total CC cross section is

assumed to be:
ohp = 1441-0¢c/E (107 cm?)

oo = 2.963-0¢c/E  (107%*cm?®)

and then checked against available data on neutrino quasi—elastic scattering [53] (Fig-

ure 5.30). The total size of the quasi—elastic contribution to the predicted short/long



ratios is +0.00032 for RY

exp

and +0.00089 for RY,

exp"”
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Hence, the inclusion of v, quasi—

elastic events leads to a net +0.00015 increase in sin® 6y .

1.1
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Figure 5.30: Monte Carlo v and 7 quasi—elastic cross section predictions plotted as
a function of neutrino energy. The data points are from Serpukhov [53]. The yellow
band indicates the 15% uncertainty assigned to this model.
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5.1.8 Neutrino—Electron Scattering

v 2

Figure 5.31: Diagrams depicting CC and NC v,—electron scattering.

Neutrinos striking the NuTeV detector will not only interact with the target
nucleons but also with atomic electrons (Figure 5.31). The purely leptonic process
of neutrino scattering off target electrons is included in our Monte Carlo cross section

model. These processes can proceed through both charged current (s-channel):

Vpt+e = Vet pT (5.78)

Ue+e — U,+p” (5.79)
and the elastic interactions:

v,t+e — v, +e (5.80)

v,+e — U,+e” (5.81)

Vet e~ — Ug+e (5.82)

Uo+e — T.+e (5.83)

The CC processes, given by Equations (5.78) and (5.79), typically do not deposit
enough energy to pass the minimum energy requirement for the analysis; hence, only

the elastic case (v+ e~ — v+ e~) contributes, where:
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dy o (g% + 95)% + (g7 — 92)* (1 = y)*)] (5.84)
da% o) - G%QﬁeE (g5 — %) + (gp + 99)° (1 — y)?)] (5.85)
daigj ? - G%;QE (g7 + 94 +2)* + (g7 — g2)* (1 = )*)] (5.86)
dagj ) - G%;QE (g5 — 99 + (gp + 95 +2)° (1 —y)?)] (5.87)

gy = 2sin? @y — %, g5 = _%

Note that in contrast to the NC v,e~™ — v, e reactions, v,e~ — v.e” elastic
scattering is mediated by both NC and CC interactions; the (g + ¢4 + 2)? term
accounts for the interference between these two contributions. Here, y is defined to
be the momentum fraction of the outgoing lepton (y = E./FE), E is the incident
neutrino energy, and gy, ¢4 are the vector and axial-vector couplings of the weak
current to the electron. Given Fermilab Tevatron energies, £ > m,, left-right
interference terms involving factors of m,./FE vanish. Due to the light mass of the
target, such reactions have very little available center of mass energy, s = 2m.F,
which implies a small cross section. The scale of o(v + e7) is on the order of
107*2 cm? GeV ™!, such that scattering off target electrons is roughly four orders of

magnitude less likely than scattering off nucleons.

The bound 0 < y < 1 imposes a further restriction on the kinematics of elastic
neutrino-electron scattering events. If we let k, k' be the 4-momentum vectors of
the incoming and outgoing neutrino, respectively, and likewise p, p’ for the electron,

then by energy and momentum conservation it follows that:

(k—p)? = (K —p)?
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E,E — Ep.cosf, = m.E'
E.E — Ep.cos, = m.(FE — E,+ m,)
E.E(1 —cosb,) = m.(F — E,)
E.(1—-cosb,) = m.(1—y)
E.0? = 2m.(1—vy)
Here, E is the incoming neutrino energy, E' is the outgoing neutrino energy (E' =
E + m, — E, by energy conservation), E, and p, are the outgoing electron energy
and momentum, and 6, is the angle of the outgoing electron with respect to the
incoming neutrino direction. From the kinematic constraint, 0 < y < 1, it follows
that the electron is emitted in a very forward direction:
E,0? < 2m, (5.88)
Hence, elastic neutrino scattering events manifest themselves with small likelihood

as a single forward—scattered electron in the detector.

5.1.9 The Propagator Term

The neutrino NC and CC cross sections in the simulation include the effect of the

massive Z or W boson propagator via the multiplication:

d*os, _ dZO'NC 1 (5.89)
dx dy drdy (1+ Q?/M2)? '
dzacc _ dQO'CC 1 (5.90)
dx dy dedy (14 Q2/MZ)? '

The effect of the propagator correction is a +0.00023 shift in R” and a +0.00015

shift in R”, resulting in a net +0.00031 shift in sin? Oy .
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5.1.10 Non-Isoscalar Target

An idealized isoscalar target consists of equal numbers of protons and neutrons;

however, the NuTeV detector is an iron target containing a 5.67% neutron excess:

N-Z N-Z
A N+Z

= 0.0567 (5.91)

where N, Z, and A=N+7 are the number of neutrons, protons, and nucleons in the
iron nucleus. Because a proton is composed of uud valence quarks, and a neutron
of ddu quarks, the neutron excess implies an unequal number of u and d quarks in
the target. In particular, assuming isospin symmetry, u? = d" and d? = u", this
translates into roughly a 2% excess of d quarks relative to v quarks. The dominant
effect is in the CC cross section. From charge conservation, neutrinos preferentially
scatter off of d quarks, and antineutrinos off of u quarks (see Appendix D). The
result is an enhancement in the CC neutrino cross section combined with a corre-
sponding reduction in the CC antineutrino cross section’. The NC cross section is
also enhanced, but by a smaller percentage.

The average nucleon cross section for our non-isoscalar target is obtained by
explicitly calculating the proton and neutron cross sections and correcting their

contributions by the weighted average of their densities:

d2O.VN 1 (Z dZO.Vp d2o.1/n>

— . N
dvdy A *

5.92
dx dy dx dy ( )

The non-isoscalarity of the NuTeV target results in a -0.0039 decrease in R, = and

exp

an +0.0043 increase in Rgxp. The result is a large -0.0080 shift in sin®fy, arising

mainly due to the fact that d, ~ u,(1 — z).

t The decrease in ¢ is slightly less than the increase in ¢” due to the add’l (1—y)? dependence.
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5.1.11 Lepton Mass Terms

The Monte Carlo includes terms in the charged current neutrino cross section that
are proportional to the lepton mass, m. The form for the additional cross section is

derived in Section 1.3 and follows the formalism of Reference [60]*:

d>ol, d*oll, GAME . m?y m?
- 2% F (1, Q%) — 2 Fy(x, Q?
dx dy (d:vdy - + i [4MEa: vhi(z, @) 4E? 27, )
m2y m? (Mxy — m?
F. 2 — — | F. 2
T ot n < 2E 4E2> 1z, Q%)
m? )
_ F, 5.93

2 vV, U

where (dd;g; )m:O is given by Equation (1.25), and m is either m,, or m, depending

on the flavor of the interacting neutrino. In computing this contribution to the inclu-
sive cross section, it is further assumed that 2z F) (z, Q%) = Fy(z, Q?), Fy(z,Q?) = 0,
and zFx(z, Q%) = Fy(z,Q*). The latter two constraints are known as the Albright-
Jarlskog relations. The effect of the inclusion of non-zero lepton mass terms results
in small shifts in RY,,, RZ,, and sin By of +0.00024, +0.00050, and +0.00018,

respectively.

t Beware, there is a sign mistake in the F3 term in Equation (3.4) in Reference [60] and a factor
of 1/ missing in the F} and F3 terms in Equation (6.3) in Reference [61].
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5.1.12 Higher Twist Effects

Figure 5.32: Diagrams illustrating several higher twist processes.

Non-perturbative higher twist effects arise from inter—quark interactions in the
nucleon, resulting in a kind of “cross-talk” between the struck and spectator quarks.
Because the quark involved in the hard scatter communicates via a gluon propagator,
the effect is suppressed by powers of 1/Q?. Therefore, higher twist effects are only
important at low Q2. Several Feynman diagrams illustrate higher twist processes in
Figure 5.32.

Because neither CCFR nor NuTeV has sufficient low Q?, high z differential cross
section data to constrain the BGPAR fit, the Q2 evolution of the F}, and zF; structure
functions must be augmented to account for such possible color interactions among
quarks. Remaining higher twist effects are measured by comparing SLAC electron
scattering and BCDMS muon scattering measurements of Fy(z,Q?) to the model

expectation and fitting deviations to the form 1 + ht(x)/Q? [62]. The fit finds:
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1'1'893

ht(z) = max 0.672 | ——————
1-1.138x

- 0.236> ,10} . 2>04 (5.94)

The resultant corrections increase the CC and NC cross section predictions at high

x and low Q%

2 2
ONe, cC ONe,cC ht(x)
) = —— .11 > 0.4 5.95

dx dy dx dy ( + Q? ) 7 (5.9)

Figure 5.33 shows the improved agreement with SLAC and BCDMS Fy(x,Q?) data
as a result of the modification to the BGPAR prediction at high x. The net effects

are +0.00012, +0.00013, +0.00014 increases in R , R

oxpr Flop»> and sin? Oy, respectively.
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Figure 5.33: LO BGPAR Fy(z,Q?) predictions before (dotted) and after (solid)

applying the higher twist correction as compared to SLAC and BCDMS F,(z,Q?)
data. Plot courtesy of U.K. Yang [63].
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5.1.13 Long Exit Correction

Figure 5.35: A typical long exit event
that has ranged out in the NuTeV
calorimeter.

Figure 5.34: A typical long exit event
that has exited the NuTeV calorimeter.

The cross section data used in the BGPAR fit requires a toroid analyzed muon,
hence we must verify applicability to highly inelastic events, y — 1, which lack a
toroid analyzed muon (see, for example, Figures 5.41 — 5.44). Given that the largest
background to the NC sample are these high y CC events (17% of short events in
v mode, 7% in 7 mode), it is crucial to verify the high y Monte Carlo simulation
to roughly a percent accuracy. For this purpose, we choose a control sample of
“long exit” events. Long exits have lengths greater than or equal to 31 counters,
originate in the calorimeter, but do not penetrate into the toroid. The length cut
at 31 safely ensure that there are no v, events and essentially no NC events in the
sample (< 0.1% contamination). As a result, long exit events include CC events in

which the muon exits out the side of the detector (Figure 5.34), with wide angle:

02— 2Mx (B, — Eyaa)  2Mazy

a E.E, B,

(5.96)

and also CC events with a low energy muon that “ranges out” in the calorimeter

(Figure 5.35). Figure 5.36 shows the kinematics of these events in comparison to
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CC events with a toroid muon; long exits are high y, moderate x events.

Monte Carlo Neutrino Events

35000 —

30000 L toroid events

25000
20000
15000

10000
long exit events

5000

18000 -
16000 E
14000 £
12000 £
10000 [
8000
6000 E long eﬂteven}g
s000 - e
2000 = p e

toroid events

Figure 5.36: Comparison of event kinematics for CC neutrino long exit (dashed) and
more common toroid events (solid).

Energy distribution comparisons reveal that the Monte Carlo reasonably predicts
the shape of long exits populating the outer region of the detector (30-50 inches), but
not the inner volume (0-30 inches). As shown in Figure 5.37, the Monte Carlo sys-
tematically overpredicts the number of inner radius long exits at moderate energies
(Epaa = 40-115 GeV), while underpredicting their level at higher energies (Ep.g =
115-160 GeV). The transition at 115 GeV occurs where the long exit distribution
falls most rapidly. Because the disagreement is localized in 2 and Q?, modifications
can be made directly to the high Q2 moderate x PDFs. The CCFR cross section

data does not include high y events, so the PDF is not otherwise constrained in this
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region. The adopted procedure is to decrease the BGPAR valence distributions by
2.6% in the region 0.005Q? < = < 0.0133 Q? and increase their contribution by 2.0%
in the region 0.003 Q? < x < 0.005 Q2. Simultaneously, the total quark content
(¢ +q) must be conserved, and the correction is limited to regions in which there is
appreciable valence content, namely z > 0.1. Given that the same correction is ap-
plied to both u and d distributions, the ratio d/u is preserved to maintain agreement

with d,/u, from NMC data and d/u from E866 data, as presented in Section 5.1.2.

Relative Calibration Fit, pass25, long exit (31+) events, R 0—30, all—nuecorr—fi
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Figure 5.37: Comparison of data and Monte Carlo Ey.q distributions for inner
radius (0-30 inches) long exit events before correction. The v (7) distribution is

displayed on the left (right). The band indicates the +10 systematic uncertainty.

This correction fixes the inner radius long exit disagreement, requires only small

changes to the LO BGPAR parton distributions, maintains Monte Carlo predictive
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power for the CC cross section both in shape and normalization, results in a well-
behaved flux, and leads to small changes in R” and R” with no observed radial
dependence. The effect of the long exit correction is a shift of —0.00021 (+0.00035)
in R, (RZ,,), for a net —0.00048 shift in the measured sin® fy,. Figure 5.38 displays
the resultant energy distributions for inner radius long exit events, which agrees
with data to within the assigned systematic uncertainties. Figure 5.39 displays the

level of agreement for all long exit events in the sample. Further information on this

correction can be found in Reference [54].

Relative Calibration Fit, pass25, long exit (31+) events, R 0—30, all—nuecorr—fi
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radius (0-30 inches) long exit events after correction. The v (¥) distribution is
displayed on the left (right). The band indicates the 10 systematic uncertainty.
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Relative Calibration Fit, pass25, long exit (31+) events, R 0—40, all—nuecorr—fi
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Figure 5.39: Comparison of data and Monte Carlo Ey,q distributions for all long
exit events in the analysis sample after correction. The neutrino (antineutrino)
distribution is displayed on the left (right) hand side of the plot. The band indicates
the 10 systematic uncertainty.
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5.1.14 Data/MC Cross Section Comparison

This self consistent, QCD—inspired, enhanced LO model describes our data extraor-
dinarily well. Figures 5.41 — 5.44 compare the final Monte Carlo and the CCFR
charged current differential cross section data after all of the aforementioned com-
ponents have been included in the Monte Carlo model. The comparisons are shown
both at the pion peak, F, = 75 GeV, and at the kaon peak, F, = 190 GeV. Ex-
cellent agreement is in fact exhibited across the full kinematic range. The x?/dof
for v < 0.7, E, < 360 GeV is 2741/2770 which equates to a probability of 65%.

Figure 5.40 subdivides the contributions to the net 2 in regions of z, y, and E,.
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Comparison to CCFR differential cross section data, E=75 GeV
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Comparison to CCFR differential cross section d20t0, E=75 GeV
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Figure 5.42: Final Monte Carlo prediction compared to CCFR antineutrino CC
differential cross section data at E,=75 GeV.
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Comparison to CCFR differential cross section data, E=190 GeV
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Figure 5.43: Final Monte Carlo prediction compared to CCFR neutrino CC differ-
ential cross section data at E,=190 GeV.



155

Comparison to CCFR differential cross section data, E=190 GeV
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Figure 5.44: Final Monte Carlo prediction compared to CCFR antineutrino CC
differential cross section data at E,=190 GeV.
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5.1.15 Cross Section with External PDFs

External PDFs do not fare nearly as well as our tuned BGPAR parameterization
in describing the neutrino data. Figures 5.46 and 5.47 demonstrate the poor per-
formance of the leading order CTEQ and GRV PDFs in reproducing the CCFR
differential cross section data after correcting the external PDFs for heavy target
effects (Figure 5.45). The x?/dof using external PDFs is a factor 2-3 worse than our
default fit: 7250/2570 for CTEQ4LO and 4420/2570 for GRV94LO. The deficiency
in the CTEQ and GRV PDF's results from their use of Ry, higher twist, and strange
sea parameters that are incompatible with our LO cross section model; hence, using
more recent CTEQ or GRV fits would not alter this conclusion. This the reason why

NuTeV must use its own internal parton distributions.
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Figure 5.45: The ratio of F, on heavy nuclei to F» on deuterium as measured
from charged lepton scattering data (SLAC [55], NMC [56], E665 [57]). The data
is parametrized by the functional form: Fy(N)/Fy(D) = 1.0963 — 0.36427 x —
0.27805 exp21-936% 49 7715 714417 [53].



157

Solid(Default MC, BG pdfs) Dotted(CTEQ4LO pdfs), E=75 GeV

) S $25 F ) E
X F " x=0.015 X E x 25 F x=0.08
15 - . | ? 2 E Y S
) W o F S 2F e
N S5y S s g
< vl s T B s B
0 0.5 1 0 0.5 1 0 0.5 1
y y y
2,5 E $25 F $0E
5 2.5 ; x=0.125 6 ‘2 i x=0.175 5 2 ; x=0.225
L2 Paree g |8 E N I R N et
° 45 © 1.5 o =
> N =] =} 1
S ¢ B 1l Y ELL L s N B
0 0.5 1 0 0.5 1 0 0.5 1
y y y
> E > 1.5 F >
3 2 E x=0275 S5 & x=0.35 Zos |
SIS - L 06
o 1 E o E
> > E 5 0.4 |
c R - - S R -t A
0 0.5 1 0 0.5 1 0 0.5 1
y y y
> 0.6 > F
% (o)i ;’x=0.55 % 0.2 i—
o 94 N D50.15 E_ E
© 0.3 7 P © o1 E - E__
> = s 0.1 & [ o
CO'ZEHH\HHC Ev vl | f002 B
0 0.5 1 0 0.5 1 0 0.5 1
y y y

Figure 5.46: LO cross section prediction using CTEQ4LO (dotted curve) versus
default BGPAR (solid curve) compared to CCFR data at E, = 75 GeV.
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Figure 5.47: LO cross section prediction using GRV94LO (dotted curve) versus
default BGPAR (solid curve) compared to CCFR data at E, = 75 GeV.
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5.2 Neutrino Flux

NuTeV produced separate neutrino and antineutrino beams that were roughly 98%
v, and v,, respectively, with small fluxes of electron and “wrong-sign” neutrinos
(Figure 5.48). A detailed beam Monte Carlo is used to predict the various sources
of neutrinos, whose numerical contributions are provided for reference in Table 5.7.
The following sections describe the simulation and tuning of the v, and v, beam

predictions.

‘ Neutrino Mode ‘ Antineutrino Mode ‘
0.982 | 0.973 |

‘ Source

‘ K+ — u*y, (7)) ‘

K3 0.01570 £ 0.00030 | 0.01150 = 0.00020
Kres, Kgses 0.00065 £ 0.00007 | 0.00290 = 0.00030
Charmed Meson — v, | 0.00042 £ 0.00006 | 0.00155 = 0.00020
> Ve 0.00007 £ 0.00001 | 0.00010 £ 0.00001
A, A X 0.00003 £ 0.00003 | 0.00023 = 0.00020

Table 5.7: Fraction of observed neutrino interactions by production process.

NuTeV Neutrino Flux Prediction
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Spectra of various contributions to the NuTeV neutrino beam.
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5.2.1 Muon Neutrino Flux

The dichromatic muon neutrino beam is dominated by the two—body decays of pions

and kaons in the NuTeV SSQT:

™ = pt+vy, 7 —>u +7, (BR=100%) (5.97)

K* = u"+v,, K —u +v, (BR=63.5%) (5.98)

The beam also includes three-body decays of both charged and neutral kaons to

muons and electrons.

Kt — %y, K —=1u 7, (5.99)
Kt — 7%%y, K —1l 7, (5.100)
K, - mu'v, K,—7pu v, (5.101)
K, — 7 e, K,—nte 1, (5.102)

The K* — 7%*v, (7,) decay are the dominant source of electron neutrinos in the
experiment. The neutrino flux simulation is based on the TURTLE beam trans-
port program [66] with charged pion and kaon production data from Atherton [67],
parametrized for thick targets by Malensek [68]. Provided with information on the
surveyed positions of the magnets, beam apertures, collimators, and measured mag-
netic fields in the SSQT, TURTLE uses ray tracing to project the trajectories of
particles to their decay point. As can be seen from Figure 5.49, the TURTLE-based
Monte Carlo does a reasonable job describing the energy distribution of v, CC events
in the data. The agreement is not perfect as a consequence of uncertainties in parent
particle production.

To compensate for these uncertainties, the Monte Carlo spectrum is tuned to
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the observed neutrino flux by varying the mean neutrino energies, both from 7 and
K decays, and the relative K /7 production rates. The v, flux tuning procedure
selects a high statistics sample of CC toroid events, not unlike the sample used in
the NuTeV structure function analyses. Table 5.8 reports the adjustments required
to fit the data, while Figures 5.50 and 5.51 display the comparisons after applying

these small but necessary corrections to the Monte Carlo flux predictions.

untuned TURTLE—based Monte Carlo prediction
10000 [

gooo -/
6000 [ o

4000 [ / gt "
2000 |/ e,

S 00 T80 200 350 300
Neutrino Mode E, (GeV)

4000 |-,
3500 [ &,
3000 F f N
2500 [ { 5
2000 [/

1500 F | R
1000 [/ n,
500 [/ e

£ I | I | I | I
50 100 150 200 250 300
Antineutrino Mode E, (GeV)

Figure 5.49: Neutrino energy spectrum for v, CC events compared to the untuned
TURTLE-based Monte Carlo prediction (solid curve).

Beam Type | E, | Ex | K/ |
Vs —0.2% | -1.3% | +2.7%
7, 0.4% | 0.9% | +2.8%

Table 5.8: Flux parameter adjustments required to fit the data.
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NU mode flux — Comparison to tuned MC prediction
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Figure 5.50: Comparison of CC v, data events in the flux tuning sample to the
Monte Carlo prediction (solid curve) after tuning.

NUBAR mode flux — Comparison to tuned MC prediction
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Figure 5.51: Comparison of CC 7, data events in the flux tuning sample to the
Monte Carlo prediction (solid curve) after tuning.
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5.2.2 Electron Neutrino Flux

Accurate modeling of the electron neutrino contamination in the NuTeV beam is
a necessity given our inability to discriminate between v, NC interactions and v,
CC interactions, both of which register as short events in the detector. Despite
comprising only ~ 2% of the neutrino beam, the v,’s are a significant background,
constituting roughly 5% of short events in both the v and 7 samples. As a direct
consequence, uncertainties in the v, content of the beam contribute the largest source
of experimental error in the sin® fy analysis (Chapter 7).

The vast majority, 93% of the electron neutrino interactions in » mode and 71%

in 7 mode, of electron neutrinos result from K decays:
Kt = m%4+ef 41,

K — n°+e +7, (5.103)

The Monte Carlo beam simulation is tuned to describe v, and 7, fluxes produced
from charged kaon decay with high accuracy because the K* decay contribution is
tightly constrained by the flux tuning procedure described in the previous section.
Small corrections to the predicted flux, measured from the tuning procedure, are
applied to the beam Monte Carlo prediction for v,.’s from charged kaon decays (Ta-
ble 5.8). Other smaller sources of v,’s, such as neutral kaon, charmed meson, p, A,
A, and X7 decays are also included. These contributions are displayed in Figure 5.52

and discussed in turn below.
Neutral Kaon Contribution

K — mreTy, (Kpe3) decays are also considered as a source of electron neutrinos;

however, because of the low acceptance for neutral particles in the NuTeV SSQT,
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NuTeV Electron Neutrino Flux (v+vbar/2)
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Figure 5.52: Contributions to the NuTeV v, flux as a function of neutrino energy
for both neutrino (top) and antineutrino (bottom) running.
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they contribute to electron neutrino rates only 4% (25%) of their charged counter-
parts in neutrino (antineutrino) running.
Given that kaon production is dominated by the strong interaction, the produc-

tion rate for neutral kaons is obtained from the charged kaon rates. Quark counting

yields: 1
Ngo = 3 (Ng+ + Ng-) (5.104)
Nz = Ng- (5.105)

This implies that the K production distribution, Nk, , is approximately equal to
%N K-+ iN x+. The Malensek parameterization for K* production from protons on
a Beryllium target [68] provides an estimate of the K™ and K~ production spectra.

The Fermilab E731 experiment [69] has directly measured K production at 5
mrad and observed a deviation from the Malensek predicted spectrum parametrized

by a multiplicative factor:

1+ (6.033 x 107%)p — (4.283 x 10~ %) p?

—(1.016 x 1077) p* + (1.802 x 107'%) p* (5.106)

where p is the kaon momentum. This correction increases the predicted number
of K;’s by roughly 50%. The E731 constraint together with the addition of Kg,.3
decays, which contribute ~ 5% of the total number of v.’s from neutral kaons,
results in a -0.00022 shift in the measured value of sin®#y, relative to the pure—
Malensek—Kr.3 model. Figure 5.53 shows the resultant momentum and angular
spectra of parent K;’s whose descendent electron neutrinos hit the NuTeV detector.
The mean K angle and energy are roughly 7 mrad and 100 GeV, respectively. An

estimate of the uncertainties in the K production model is provided in Chapter 7.
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K, production parameters, event weighted, neutrino mode
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Figure 5.53: v (top) and 7 (bottom) mode K} production parameters. Top plot
in each case is the angle versus momentum spectrum for K;’s producing v,’s in
the NuTeV detector. The bottom two plots show the K momentum and angular
distributions. The plots are weighted by the probability for producing a v, which
interacts in the detector.
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Charmed Mesons

Charmed mesons are also a source of electron neutrinos. Both protons that interact
in the BeO target and non-interacting protons that strike the beam dump have some
finite probability of producing a ¢¢ pair that can fragment into a charmed meson
(D%, D). Their inclusive production was measured by two Fermilab experiments.
Ammar et al. [70] reports total production cross sections measurements of 2272 +5.5
ub for D° and 26 £4 £6.5 ub for DT, both for 800 GeV protons incident on a liquid
hydrogen target. Kodama et al. [71] finds higher total cross sections: 38 +3 413 ub
for DY and 38 &9 4 14 ub for DT, both for 800 GeV protons incident on emulsion.

Combining the charged and neutral D production measurements,
o(D*) - BR(D* — u) +o(D%) - BR(D" — p) (5.107)

using BR(D* — p) = 0.17 and BR(D° — i) = 0.07, yields 5.9%]} ub for Ammar
and 9.0 4+ 3.0 pub for Kodama. The resultant Kodama—Ammar weighted average is
therefore 6.5 + 1.3 ub. Table 5.9 summarizes these computations. While the pure—
Kodama estimate is used to predict the rate of D meson production in the NuTeV
beamline simulation, the prediction is reweighted by a factor 6.5 ub/9.0 ub = 0.72
to yield a total cross section in accord with this weighted average. Changing from
the Kodama central value to the Kodama-Ammar average increases the sin?fy

measurement, by 0.00016.

Because the charmed mesons decay quickly, they leave no time for the wrong—sign
mesons to bend out of the beamline. Therefore, measurement of wrong-sign muons
in the NuTeV 7 sample provides a second constraint on the charm content of the

beam. Fits to the NuTeV wrong-sign data yield >, o(D;)- BR(D; = v,) = 9.6+2.4
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| op+p—>D*+X) | olp+p—> D"+ X)| S oBR |

Ammar 26 + 7.6 227105 59117
Kodama 38 +16.6 38 +13.3 9.0+ 3.0
Kodama—Ammar 6.5+1.3
NuTeV WS u 9.6 24

| All Combined | | | 73472

Table 5.9: Combination of the measurements of inclusive D meson production cross
sections (in units of ub) for 800 GeV proton data [70, 71, 52].

pb [52].  Although the NuTeV measurement is not as precise as the production

measurements it is included in evaluating the v, systematics (Chapter 7).

Other Smaller Sources

Other smaller sources of electron neutrinos, which contribute at the sub—percent
level include decays of muons, A, A, and ¥ particles. Roughly 0.4% (0.6%) of the
ve's in the neutrino (antineutrino) data result from the decays of muons:

pr=et v +v,, pw o—e +U. 4+, (5.108)
produced in the decays of pions and kaons. Combined, the decays of A, A., and X7 ’s
constitute approximately 0.2% (0.4%) of the v, flux in v (¥) mode. The charmed
baryons are a potential source of both v,.’s and 7.’s, through the decays:

A= A +et 4, (BR = 2.3%)

— pr+e +7, (BR =8.32 x 107" (5.109)
The ¥~ decays are a source of 7/,’s:
YT nte +7, (BR =1.02 x 107?) (5.110)

Their contributions negligibly affect the sin? fy measurement (dsin® 6y = 0.00007).
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5.2.3 Direct Measurement of the v, Flux

Rather than rely solely on the Monte Carlo, three direct measurements of the v,
content in the beam verify the simulation. As seen in the previous section, the
analysis of wrong-sign events in the antineutrino data checks the lower energy K7,
and charmed meson contributions [52]. This section discusses two additional direct
data constraints on the v, flux. In the region 80 < E;,q < 180 GeV, a shower shape
analysis provides a statistical determination of the v, flux [64]. Above 180 GeV,

length distribution fits provide the most precise determination of the v, content.

Shower Shape Analysis

A shower shape analysis statistically determines the total number of CC v, inter-
actions in the detector by exploiting the difference between the longitudinal energy

development in electromagnetic and hadronic showers (Figure 5.54).

; Planes Shower
A1 1 [~
//,/ %
HADRON
N—_
I~
\\\
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|
uouu g U Uy ud
B B2 B grrg;nbers
Evis

Figure 5.54: Illustration of the shower profile for a CC v, interaction, v, + N —
e~ +X. The electromagnetic shower develops more quickly than the overall hadronic
shower, typically depositing energy only in the first three scintillation counters.
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To describe the energy profile, we define the fractional quantity:

B+ Byt By

5.111
Ehad ( )

n3

where Fj; is the energy deposited in the i** scintillation counter downstream of the
neutrino interaction. The n3 distributions for CC v, events, sharply peaked near
unity, differ dramatically from their v, counterparts. Fitting the observed ns; dis-
tributions to a combination of v, and v, events, yields a direct measure of the v,
component. The measurement has the greatest statistical power in the region from
80 < Epag < 180 GeV (Figure 5.55); it is less precise, though consistent, with the

prediction from the beam Monte Carlo:

Nuneas/Npred (ve) = 1.05£0.03 (5.112)

Npeas/Norea (7o) = 1.0140.04 (5.113)

The data indicate a slightly larger number of v,’s than the prediction. The weighted
average of the two results forms a combined measurement, which increases the pre-

dicted number of v,’s from Kei3 decays by 2% in ¥ mode and < 1% in 7 mode.

Length Fits

Initial comparisons between data and Monte Carlo revealed a ~10% excess in the
number of short events observed in the data above 180 GeV (Figure 5.56) that was
not seen in the long event sample. Masked by a detector effect, the excess had
also not been observed in the preliminary sin®#fy, analysis [26]. Before switching
to the SUPERLOWS, saturation of the ADCs caused these events to migrate to
lower energies where they were not visible (Chapter 3). The effect accounts for the

entire 0.8¢ shift in sin? By (Jsin® @y = +0.0024) between the preliminary (1998) and
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Figure 5.55: Number of v,’s per GeV as a function of energy for v (top) and 7

(bottom) modes compared to the beam MC prediction (dotted curve).

final (2002) analyses. The excess events were eventually identified as high energy v,

interactions.
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Figure 5.56: Data/MC ratio of short event Ey,q distributions before including the
measurement of high energy v.’s from the data. The excess in the data exists above
180 GeV in both modes.

Very high energy v.’s are produced in the decays of wide angle, high transverse
momentum kaons. Such kaons populate the extreme high energy tail of the flux

spectrum (Figure 5.48) where no external production data exists. A check of the v,
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flux distributions (Figure 5.57) reveals the inadequacy of the beam Monte Carlo to

predict these extremely high energy kaons to better than 20-30%.
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Figure 5.57: Energy distribution of CC 7, data events compared to the beam Monte
Carlo prediction. The peak regions are tuned below 300 GeV (Section 5.2.1).

Although the v, flux tuning and shower shape analyses described previously do not
have the statistical power to constrain the highest energy kaons, a precise measure-
ment of the v, content in the high energy tail of the flux results from fits to NC
length distributions. Fitting for additional v, content is possible because the length
distributions are very well modeled in all energy regions. See Figure 5.58 for the
length distributions for antineutrino events with Ey.q > 180 GeV. The v.’s clearly
dominate extremely short events at high energy. Fitting the length distributions for
an overall NC level, in addition to a v, rescaling factor, yields a measurement of

38 + 9% more v, events observed in the 7 beam, and 32 + 4% in the v beam. An
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additional 4% systematic uncertainty is assigned based on discrepancies in the short
length agreement at low energy.

Such fits do not perform as well at low energies, where there are fewer v, events.
Fits in the lower energy region are consistent with zero v, enhancement, which

confirms the choice to use the shower shape results below 180 GeV.

Length fit, Antineutrino Mode, Ehad> 180 GeV
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Figure 5.58: Length distributions for 7 events above 180 GeV. The plots on the left
show the beam Monte Carlo prediction before the fit. The plots on the right show
the result after fitting for a level change in the predicted number of v,’s.

Despite the fact that the high energy v, content can be measured, NuTeV made
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the conservative decision to cut events with Ep.,q > 180 GeV from the analysis.
After incorporating the high energy v, measurement from the data, the short event
ratios flatten at high Ey,q (Figure 5.59), and moreover, the sin? fyy fit results become

consistent whether or not an upper Ey,q cut is applied®.
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Figure 5.59: Short event Ey.q distributions after including the measurement of high
energy v,’s from the data. The bands display the £10 systematic uncertainty.

§ The 1C fits yield sin? Ay = 0.22773 + 0.00163 for 20 < Ep.q < 180 GeV compared to sin® fy =
0.22795 4+ 0.00162 for Epaq > 20 GeV. The difference in the fit values is only 0.00022.
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5.3 Detector Response

The Monte Carlo not only includes a cross section and flux model, but must also
closely simulate the response of the NuTeV detector to the products of neutrino
interactions. To this end, the Monte Carlo includes all the calibration information
that affects the measurement of energy deposition in the calorimeter. The first four
subsections in this section describe the Monte Carlo model for hadron energy de-
position, muon energy loss, electromagnetic energy deposition, and potential energy

leakage out the side of the calorimeter.

-<—> Event Length
N7 N7
% Cross—Section Model
-V _ _
E..6
/ Counter Active Area
Counter Noise
Counter Efficiency //

M
Figure 5.60: Detector modeling most important to the sin? @y analysis.

Furthermore, anything that affects the length of an event is also important (Fig-
ure 5.60). Therefore, the Monte Carlo accurately simulates the determination of the
event vertex and end position. In order to mimic the data analysis as closely as pos-
sible, the Monte Carlo simulates biases in the PLACE algorithm in addition to pulls
in the transverse vertex determination. For CC events, the Monte Carlo includes
a muon simulation that accounts for detector effects such as counter positions, and
ineffiencies which can alter the end point of the event. Noise is included in both

NC and CC events. The Monte Carlo includes a shower length model which sets
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the length of most NC events. The bulk of the effects are modeled using either real
neutrino data or events from our extensive hadron, muon, and electron testbeam.
The remaining sections in this chapter describe these elements of the Monte Carlo

detector response model in detail.

5.3.1 Hadron Energy Determination

The hadronic energy generated for a given Monte Carlo process is dictated by the

kinematics of the event:

Ehadg =Yy- Eu (5114)

where the inelasticity, y, is randomly generated according to a flat distribution from
0.0 to 1.0, and the neutrino energy, E,, is set by beam Monte Carlo inputs. The
generated energy is first calibrated by correcting for the measured non-linearity of

the NuTeV calorimeter:

Fhad = Fhadg - Cx (5.115)

€ f7r0 (Ehadg) + h - [1 - f?ro (Ehadg)]
e- fﬂo(75) + h- [1 — fro (75)]

= Ehadg :

using Groom’s parameterization [27] for f,o(E) normalized to 75 GeV testbeam data
with e/h = 1.079 £ 0.011 (in exact analogy with the treatment of events in the data
in Chapter 3). The Monte Carlo randomly smears the hadronic energy according to

the energy resolution measured from hadron testbeam data:

~ 0.8640.01

o
— = 4+ 0.022 4+ 0.001 5.116
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The testbeam calibration constants and resolution smearing apply to an Ey.q defi-
nition using a fixed twenty counter sum. Recall that for data events in the sin® 6y,
analysis, Ep.q is obtained by summing the pulse heights in an energy—-dependent
number of scintillation counters, not always twenty (Chapter 4). To account for
this, shower libraries are generated from the same testbeam samples used in deter-
mining the 99% containment lengths for the data analysis (Equation 4.3). Stored in
the shower libraries are the single counter testbeam hadron energies sampled starting
at PLACE and normalized to the twenty counter energy sum. These shower library
ratios are used to correct the Monte Carlo hadronic energy to form single counter

responses:
Ehaa(i)

Enad20 ) TB shower library

Eontr (i) = Enaa * ( (5.117)

were i = PLACE, PLACE-19. Although the energy sum for data events includes the
energy in counter PLACE~+1, no such information can be included in the testbeam
shower libraries because of the entering charged hadron. An additional correction
(measured from neutrino data) accounts for the missing upstream energy in testbeam

events:

0.02353
_ 0, —0.002154 18
fl max < s + ln(max(l.Q, Ehadg))) ( )
f
EMC(i = PLACE + 1) = Ejaq % — (5:119)

141

which is about 0.2 GeV for a 50 GeV shower. The single counter energies are
corrected by the same counter map corrections as the data (Chapter 3) and are then
summed in the exact same manner as the data, first forming a length based on the

twenty counter quantity:
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= int [4.4827 + 1.41042 - In(Epaq)] (5.120)
PLACE-19

= int [4.4827 + 1.41042 - In (Ehaﬁ > E#,e(i)” (5.121)
i=PLACE+1

The NC and CC events are treated distinctly because in the data, the hadron en-

ergy sum includes the additional energy from muons (in v, CC interactions) and

from electrons (in v, CC interactions). The models for muon and electron energy

deposition are described in the following two sections. Based on the initial length

estimate, I, a new energy sum and resultant length are calculated:

PLACE-L/, (NC)+1
Ehadvar' (NC) = > EMC (i) (5.122)
i=PLACE+1
PLACE-L!_ (CC)+1
Ehadvar (CC) = > EMC(H) + B (i) (5.123)
i=PLACE+1
Luar(NC) = int [4.4827 4+ 1.41042 - In(Epadvar’(NC))] (5.124)
Lyar(CC) = int[4.4827 + 1.41042 - In(Epadvar’ (CC))] (5.125)

Lyar is chosen to the length that contains ~ 99% of the total recorded shower energy,

on average. Finally, the variable—length energy definition, Epaqvar, is:

PLACE—Lyar(NC)+1

Enadvar(NC) = > EMC (j) (5.126)
i=PLACE+1
PLACE—Lyar(CC)+1
Bhadvar(CC) = > EMC (i) + B .o (i) (5.127)
i=PLACE+1

This admittedly complicated iterative procedure ensures identical treatment for NC

and CC events both in the data and in the Monte Carlo.
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5.3.2 Muon Energy Deposition

The analysis is relatively insensitive to the hadronic shower energy determination
because both NC and CC events have similar hadronic energy distributions; however,
CC events differ in the presence of additional muon energy deposit in the shower

region. The muons, which have energy:
E,=(1-y)E, (5.128)

can deposit energy either by ionization loss, bremsstrahlung, or pair production. The
energy loss is simulated using measurements of the energy deposited by straight—

through (trigger 6) muons. On average, the muon deposits roughly 250 MeV /counter.

5.3.3 Electron Response

For CC electron neutrino events, the electromagnetic energy deposited by the final
state electron, F, = (1 —y) E,, contributes to the hadron shower. The Monte Carlo

first corrects to a detector energy:

b g Co_ g (0202
0.195

- > = E, - (1.087 + 0.020) (5.129)

and then map corrects the electron energy response in analogy to the treatment of
events in the data (Chapter 3). Observed energy is smeared by a Gaussian with
standard deviation:

0.499
= 10.042 (5.130)

o
E VE
The length of the electron shower in the Monte Carlo comes from the measurements

of testbeam electrons, ranging in energy from 5 to 170 GeV (Figure 5.62). The

electron shower lengths use the same length definition as data in the sin? 8y analysis.
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In most cases, the electron shower length is 4-5 scintillation counters, but fluctuates

to longer or shorter lengths following the probability observed in the testbeam data.
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Figure 5.61: Shower lengths for testbeam e~s ranging in energy from 5 to 50 GeV.
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Figure 5.62: Shower lengths for testbeam e~s ranging in energy from 75 to 170 GeV.



181

5.3.4 Shower Leakage

Because hadronic showers can be large in transverse size, shower particles can leak
out of the detector laterally, causing events to appear less energetic. Correspond-
ingly, the Monte Carlo must also simulate incomplete hadron shower containment
in the calorimeter. Although fiducial cuts minimize this effect, Figure 5.63 shows an
example of an event which may have had substantial leakage but passed the vertex
criteria. This event did not pass the minimum E.q requirement and was cut from

the data sample.

-3

Figure 5.63: An event with significant lateral shower leakage out the side of the
NuTeV detector. This event was recorded with Ey,q=17 GeV, PLACE=32, Vx=40
inches, Vy=-4 inches, and a length of 8 counters.

Modeling the effect of lateral shower leakage is important because it does not
cancel in the ratio, Rey, = short/long. As an example, consider the cases of a long
and a short CC event, both near the edge of the detector. To fit these descriptions,
the long CC event tends to have its muon pointing toward the center of the detector,
balanced by a hadronic shower that exits out the side (Figure 5.64). Short CC events
have the opposite geometry, in which case, the shorter the muon, the more contained
the hadron shower (Figure 5.65).

The leakage is parametrized as a function of energy and position using edge

events generated in GEANT. Letting d denote the distance from the edge of the
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.

Figure 5.64: Illustration of a long event
near the edge of the detector. The
shower leaks out the side of the detec-
tor.

Figure 5.65: Illustration of a short event
near the edge of the detector. The
shower is contained in the detector.

detector and calculating a corrected distance:

D = d — max(0,sin 6y, - (Enaqg +10)) — 3 - sin by, (5.131)

assuming the hadronic shower angle is positive if the shower is pointing towards the

edge of the detector:

Py <ﬂ> (5.132)

Y

the GEANT-based fractional shower leakage, parametrized as a function of energy,

position, and shower angle, is:

fL = 0.206 - (670.189-D 4 670.0702-D72.004)

[1—0.23 - In(Epaqg) + 0.0213 - In(Epaqg)’] (5.133)

where f7, is the fraction of missing energy for 7 < d < 40 inches. The hadronic
energies for edge events in the Monte Carlo become Eyp,q = Epaq(1 — f1). Hence, for
a 20 GeV event 10 inches from the edge of the detector with a 0.1 radian shower angle,
the correction is roughly 5%. The effect of cutting off showers that go over the edge of
the detector is an increase in the predicted short/long ratios as a result of the reduced

number of long events passing the minimum Ey.q requirement: 0Ry , = +0.00011,
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5RZXP = 40.00010. In addition to reducing the energy of edge events that are not
fully contained in the detector, their lengths are also adjusted, on average, by —0.10
counter for 40 < max(Vx, Vy) < 45 inches, and —0.35 counter for max(Vx, Vy) > 45

inches. The effect of the length correction, however, is small due to our choice of

fiducial volume: dRY = +3.0 x 107%, 6RY. = +2.5 x 107°.

exp exp

5.3.5 Longitudinal Vertex Determination

The Monte Carlo generates the location of the neutrino interaction according to the
distribution of material in the NuTeV detector. To simulate the determination of
the longitudinal event vertex in the data, the Monte Carlo includes the effects of
biases in the PLACEfinding algorithm, NC/CC differences, and mis—cabling. These

contributions are discussed in the following sections.

Even/Odd PLACE Effect

The NuTeV detector is not perfectly uniform, having additional material in front of
even—numbered scintillation counters (Figure 3.6). An even/odd PLACE difference
results from the slightly higher probability that a neutrino will interact in the in-
creased material in front of an even—numbered scintillation counter and register as
an even PLACE event. Figure 6.4 exhibits our resultant ability to model this effect,
where it can be seen that the Monte Carlo accurately tracks the dips in the PLACE
distribution from the data. However, it is not entirely important to model this effect
precisely because the even/odd counter difference is correlated between NC and CC

events and cancels in the ratio, R = V¢ /o¢C.



184

PLACE Shift

The counter-based PLACE algorithm does not necessarily find the exact location of
a neutrino interaction. PLACE can shift upstream if hadrons back-scatter (albedo
effect) or shift downstream if the shower develops slowly and leaves too little energy
in the first counter. The accuracy of the PLACE algorithm can be measured with
dimuon events, such as those shown in Figure 5.7 because an independent estimation
of the event vertex can be made by projecting the muon tracks back to their point

of intersection.

First, the full sample of CCFR dimuon data is reduced by a number of quality
cuts, including a restriction that the opening angle of the two muons be greater
than 20 milliradians in at least one view. The intersection point of the two muons
is determined by performing a linearized, vertex—constrained fit to the two tracks.
Accounting for multiple Coulomb scattering, the two tracks are forced to intersect
in both x and y by adjusting the track slopes and intercepts within errors until
the distance between the two tracks is minimized. The process is iterated until the
fit x? converges. The point of intersection is then calculated from the resultant
track positions. The difference between the muon track intersection and the vertex
determined by the PLACE algorithm is shown in Figure 5.66. The three energy
bins have roughly equal dimuon statistics in each. Table 5.10 summarizes the mean
differences in each bin. The units have been converted into inches using 8.319 inches
as the nominal counter separation in the NuTeV detector. The comparison shows
that, on average, the PLACE algorithm finds the vertex roughly one inch upstream

of the dimuon track intersection.

A GEANT-based, hit-level simulation, known as McNuTeV determines how ac-
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dimuon intersection - PLACE

Ehad < 50 GeV 0.658 & 0.169
50 < Epaq < 100 GeV 1.140 + 0.164
Ehaq > 100 GeV 1.266 & 0.211

Table 5.10: Mean difference (in inches) between the dimuon vertex and PLACE.

curately the dimuon track fitting routine finds event vertices. Analysis of McNuTeV
dimuon events with known vertex positions and opening angles, reveals that the con-
strained fit systematically pulls the vertex approximately two inches downstream of
the true interaction point. Figure 5.67 and Table 5.11 summarize the results of the

track—fitting accuracy study.

dimuon intersection — true vertex

Epad < 50 GeV 1.762 + 0.142
50 > Epaq < 100 GeV 2.111 £ 0.119
Epaqa > 100 GeV 2.151 £ 0.167

Table 5.11: Difference between the dimuon vertex calculated from the intersection
of the two muon tracks and the GEANT—generated event vertex in inches.

Combining the two results, we conclude that, on average, the PLACE algorithm
shifts the vertex approximately one inch downstream of the true interaction point
(Figure 5.68). Table 5.12 displays the final PLACE shift results implemented in
the Monte Carlo in units of scintillation counters. Discussion of the systematics

associated with the PLACE shift determination can be found in Chapter 7.
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Figure 5.66: CCFR dimuon data. Comparison of the longitudinal vertex determined
from the intersection of two muon tracks to that obtained from the counter—based
PLACE algorithm. The difference, measured in units of scintillation counters, is

shown in bins of E; 4.

Mean PLACE shift |

Epad < 50 GeV

0.132 £+ 0.026 (stat)

50 > Epag < 100 GeV

0.117 £ 0.024 (stat)

Ehad Z 100 GeV

0.106 + 0.032 (stat)

Table 5.12: Mean number of counters PLACE is shifted downstream of the true
neutrino interaction. Error is statistical only.
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Figure 5.67: McNuTeV generated dimuon events. Test of the muon track extrapola-
tion. Comparison of the vertex determined from the intersection of two muon tracks
to the generated McNuTeV vertex. The horizontal axis is in units of inches.
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Figure 5.68: Illustration of the PLACE shift results. Diagram is not shown to scale.
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NC/CC Correction

The muon energy deposit present in CC interactions provides a small but measurable
bias to the PLACE determination, sometimes shifting it upstream. To simulate the
effect, the Monte Carlo vertex for CC events is corrected using the PLACE shift
measured from studies of NC events with an artificially added muon [64]. Figure 5.69
shows the size of the effect as a function of energy. The smaller the shower energy,
the larger the effect of the added muon pulse height in pushing the single counter
response above the threshold (Section 4.1). Accounting for an NC/CC PLACE
difference in the Monte Carlo results in -0.00009, +0.00019, -0.00021 shifts in the

predictions for R”__, R” . and sin? )y, respectively.

exp’ * exp?

(n)(n) = (n+1)(n+1) PLACE
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Figure 5.69: PLACE correction for CC events in the Monte Carlo. The correction
accounts for the added pulse height from the muon in CC events. The difference
between (n)(n) and (n+ 1)(n + 1) PLACE for NC events is equivalent to the shift
from the addition of a muon to the event.
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Cable Swaps

The Monte Carlo reproduces cabling mistakes that affect the longitudinal vertex de-
termination. For a large portion of the NuTeV run, phototubes from counters 73 and
74 (as well as counters 9 and 12) were interchanged in the HIGH/Sbit summation.
This meant any event with PLACE=73 automatically registered as PLACE=74. We
randomly throw for this probability in the Monte Carlo. Figure 6.4 displays how well
the Monte Carlo reproduces the effect; especially note the dip and peak at counters

73 and 74.

5.3.6 Muon Simulation

The event energy profile determines the length of an event. In the data, EXIT is the
first counter downstream of PLACE which is followed by three or more counters each
with less than 0.25 mip of energy (Section 4.1). This end point results from either
the muon in the case of most CC interactions or the hadronic shower in the case of
NC interactions. Here, we discuss the case in which the muon sets the event length.
The hadron shower length model will be addressed at the end of this chapter.

In the simulation of CC events, the muon is propagated through the calorimeter
in one counter increments, accounting for muon energy loss and multiple scattering
in each step. Proper simulation of the end of the muon track depends on accurate
modeling of the NuTeV scintillation counters. For CC events in which the muon
exits out the side of the detector, knowledge of the positions and effective sizes
of the counters is crucial. In addition, the Monte Carlo must simulate the effects
of counter inefficiency, which can potentially shorten the length of an event, and

counter noise, which can artificially extend the length of an event. Modeling of the
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counter widths, positions, efficiency, and noise are each discussed in turn below.
Counter Width

Simulation of the fiducial volume of the detector requires measurement of both the
position and effective dimensions of the scintillation counters. Determination of the
counter locations and edges allows accurate estimation of the short CC background
to the NC event sample. To determine their active area and location, the counters are
imaged with both neutrino-induced and testbeam muons. Hits in the drift chambers
provide a precise estimate of the location of the muon track which is then projected
to determine the location of the muon in each scintillation counter. Requiring the
response in the counter to be greater than 0.25 mip (i.e., Sbhit—on) thus allows the
counter response to be mapped out, or “X-rayed”, in x and y.

The primary analysis of the counter edges and their internal structure used
neutrino-induced muons, specifically a high statistics sample of trigger 1, 3, and
6 muons (Chapter 3). Figure 5.70 shows a typical counter X-ray. The active region
of the counter is a 119 x 119 inch square surrounded by a two inch thick acrylic
support frame and a 5/8 inch wide wavelength shifter bar (Figure 3.12). The overall
efficiency of the counter is nearly 100% throughout its active region and nearly-so
for muons passing through the wavelength shifter bars, but is close to zero for muons
hitting the acrylic supports. The X-ray also very clearly shows the position of the
support ribs. The Monte Carlo assumes the acrylic supports are insensitive to muons
and sets the efficiency of both the scintillator oil and the wavelength shifter bars to
100% pending a possible correction for counter inefficiency (Section 5.3.6).

The measured edges determine the total active size of the counters. Assum-

ing all of the counters have the same width, and using the position measurements
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Figure 5.70: X-ray of counter edge using muons. Plotted is the counter efficiency
as a function of x—position in inches. An offset of 58.5 inches from the x—coordinate
allows the counter edge to appear within a +5 inch window around 0.

from only the first two (most downstream) calorimeter carts®, the counter width is
119.24 £ 0.02 (stat) £ 0.05 (syst) inches. The systematic uncertainty includes half
of the spread in all of the individual counter width measurements, combined with
an overall 0.03 inch uncertainty from the track projection. X-ray data from a sam-
ple of 50 GeV testbeam muons hitting the extreme eastern edge of the calorimeter
provide only a partial cross—check because they illuminated only one edge of coun-

ters upstream of counter 38. The counter width from the testbeam measurement,

¢ The downstream counters in carts 1 and 2 have the smallest projection errors and most sharply

defined edges.



192

119.10+0.02 (stat) £0.03 (syst) inches, is consistent with the neutrino data measure-
ment. Combining the two, the resultant counter width is 119.1240.08 inches, where
half of the discrepancy between the neutrino and testbeam data measurements has

been included a systematic.
Counter Position

Counter X-rays also determine the locations of the scintillation counters in the
NuTeV coordinate system (Appendix B). Figure 5.71 shows the counter coordinates
as measured in inches from the east, west, top, and bottom edges of each counter.
On average, the counters are very close to the center of the NuTeV coordinate system
in x, and roughly one inch above the center in y. The final values for the counter
x and y coordinates (Tables 5.13 and 5.14) are averages of the measurements from
the two sides.

The z positions of each counter were measured by hand“and verified using Survey
and Alignment data. The counter z positions were tied into the Lab E coordinate
system (Appendix B) using the relative distance between the most downstream
counter and drift chamber in the calorimeter. The measured z positions employed

for both data and Monte Carlo reconstruction appear in Table 5.15.

AThe counter z positions in NuTeV differ from CCFR. due to the movement of the carts; for
NuTeV, the counters were moved several inches upstream and spread further apart.
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| Counter | X center || Counter | X center

1 0.12
2 -0.10
3 0.21
4 -0.30
) -0.05
6 -0.16
7 0.47
8 -0.18
9 0.02
10 0.18
11 0.02
12 -0.47
13 -0.17
14 -0.90
15 -0.62
16 -0.20
17 -0.42
18 -0.17
19 -0.05
20 0.31
21 0.14
22 -0.23
23 -0.20
24 0.22
25 -0.05
26 0.88
27 0.26
28 0.26
29 -0.35
30 -0.09
31 -0.64
32 -0.38
33 -0.13
34 -0.33
35 -0.15
36 0.13
37 -0.07
38 0.08
39 0.29
40 0.73
41 0.40
42 0.50

43
44
45
46
47
48
49
30
51
92
93
o4
35
96
57
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

0.25
0.22
0.53
-0.09
-0.04
0.11
-0.13
-0.28
0.11
-0.13
0.17
0.10
0.10
0.01
-0.47
-0.41
-0.41
-0.57
-0.04
0.30
0.15
0.12
-0.14
-0.03
0.28
-0.11
0.30
0.01
0.24
0.40
0.17
0.08
0.22
0.18
0.55
0.27
0.14
0.12
0.21
0.10
0.12
0.15
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Table 5.13: x—coordinate of the center of each scintillation counter in inches.



| Counter | Y center || Counter | Y center

1 0.91
2 0.82
3 0.81
4 0.90
) 0.82
6 0.43
7 0.54
8 -0.14
9 0.38
10 0.68
11 0.64
12 -0.37
13 -0.16
14 -0.58
15 0.82
16 0.95
17 0.97
18 1.02
19 1.02
20 0.97
21 1.14
22 1.12
23 1.13
24 1.23
25 1.45
26 1.28
27 1.38
28 1.42
29 0.98
30 0.92
31 1.00
32 0.95
33 1.02
34 1.00
35 0.74
36 1.09
37 1.01
38 1.06
39 1.04
40 0.91
41 1.05
42 0.99

43
44
45
46
47
48
49
30
51
92
93
o4
35
96
57
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

0.98
0.96
0.97
1.04
1.19
0.98
1.05
1.22
1.26
1.15
1.15
1.33
1.30
1.31
0.77
0.27
0.39
0.28
1.22
1.16
1.12
1.23
1.10
1.08
1.04
1.06
0.96
1.05
1.04
1.13
1.08
1.07
1.12
1.26
1.18
0.99
1.11
1.19
1.28
1.31
1.33
1.48
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Table 5.14: y—coordinate of the center of each scintillation counter in inches.



| Counter | 7 center || Counter | 7 center

1 -17.18
2 -23.81
3 -33.68
4 -39.31
5 -50.18
6 -56.68
7 -66.56
8 -72.93
9 -83.31
10 -89.56
11 -99.31
12 -106.18
13 -116.18
14 -122.68
15 -135.05
16 -141.68
17 -151.55
18 -158.18
19 -168.05
20 -174.55
21 -184.30
22 -191.05
23 -200.93
24 -207.68
25 -217.55
26 -224.30
27 -233.80
28 -240.43
29 -253.18
30 -259.68
31 -269.80
32 -276.43
33 -285.80
34 -292.68
35 -302.55
36 -309.18
37 -319.30
38 -325.80
39 -335.68
40 -342.18
41 -351.93
42 -358.55

43
44
45
46
47
48
49
30
51
92
93
o4
35
96
57
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

-370.80
-377.53
-387.80
-394.43
-404.18
-410.80
-420.68
-427.30
-437.05
-443.18
-453.55
-460.30
-470.30
-476.80
-489.05
-495.68
-505.68
-512.30
-522.05
-528.55
-538.55
-544.93
-554.93
-561.68
-971.55
-578.18
-588.05
-594.55
-606.80
-613.55
-623.30
-629.93
-639.80
-646.55
-656.18
-662.93
-672.93
-679.68
-689.55
-696.55
-706.55
-713.18
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Table 5.15: z—coordinate of the center of each scintillation counter in inches.
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Counter Efficiency

Next, the simulation checks for inefficiencies along the muon track. An inefficiency
gap of three or more counters along the path of the single muon can signal a false
event end, causing the event to appear artificially shorter. The Monte Carlo as-
sumes no inefficiencies inside hadronic showers or when two or more muons overlap.
Counter efficiencies are measured using straight—through muons (trigger 6’s) which
pass though all 84 scintillation counters. The muons are required to be momentum
analyzed with at least 10 GeV of energy at the front face of the toroid, and the
upstream and downstream ends of the muon track are required to lie within a 50
inch box cut. The efficiencies are measured separately for neutrino and antineu-
trino running by looking for gaps of one, two, or three or more counters along the
muon track. Figure 5.72 shows the probability of a gap of three or more coun-
ters compared to the probability for a single counter gap. Because the response
of neighboring counters is correlated, the average probability for three consecutive
unresponsive counters is about 3 x 107, compared to the O(107%) expectation if
counter responses were completely uncorrelated. A look—up table in the Monte
Carlo stores the random probabilities for a gap of one, two, three or more counters
for each of the 84 calorimeter counters. No position dependence is observed, so none

is applied in the Monte Carlo.

Counter Noise

The counters also have some probability of firing even when a muon is not present.
Noise in the scintillation counters can artificially extend the length of an event caus-

ing a short event to become long. The counter simulation is further complicated
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Counter Efficiency, NU mode (solid), NUBAR (dotted)
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Figure 5.72: The top plot shows the measured single counter inefficiency for both
v (solid) and 7 (dotted) mode events. The bottom plot displays the probability of
three or more consecutive counters not firing along the muon track. Both are plotted
as a function of counter number.

by multiple interactions which can occur in the data (Figure 5.73). In this sense,
“noise” loosely refers to anything that can extend the event length. Because such ef-
fects are correlated with neutrino activity, they are studied in high statistics samples

of neutrino events by examining sections far from the interaction region.

The noise probabilities are measured using trigger 10 events (Chapter 3). Trigger
11 was originally designed for this purpose; however, the trigger occasionally fired

due to neutrino activity in the calorimeter and not just from interactions in the
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toroid as desired for noise studies. Since trigger 10 randomly fires during the fast
gates and is not correlated with beam activity. The effect of beam pile—up must be
added as a correction. A multiplicative pile—up correction is determined from the
ratio of correlations between trigger 11 and trigger 10 events with in—time hits firing
counter 84’s Shits but not the veto. To ensure that beam—uncorrelated noise is not
scaled as consequence, cosmic ray gate trigger 10’s are subtracted prior to the scaling
procedure and then added back into the sample. The noise probabilities result from
requiring greater than 0.25 mip (minimum ionizing particle) and an S-bit in each of

three consecutive counters that are otherwise supposed to be quiet.

u||ul”ﬂ",llnunnunmmn i J||||n|||||||||\“||||[|H||i|ﬂ (i

| R

Figure 5.73: Examples of overlapping events in the NuTeV detector.
Like the counter efficiencies, separate noise files are generated for neutrino and

antineutrino events. If three counters along the muon track are inefficient, then no
noise is generated because the event necessarily terminated upstream of the noisy
region. Figure 5.74 shows the multi-counter noise probabilities used in the Monte
Carlo to determine the likelihood of noise hits extending the length of an event. The
length can be extended up to a maximum number of 84 noisy counters, for instance,

in the case of an overlay muon traversing the entire length of the calorimeter.
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Neutrino Mode Noise
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Figure 5.74: The final multi-counter noise probabilities used in the Monte Carlo.
Plotted on the vertical axis is the number of counters the event length would be
extended; on the horizontal axis is the counter number from which the search starts.
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5.3.7 Hadron Shower Length

The hadronic shower determines the length of NC neutrino interactions in the de-
tector. Approximately 0.7% of the NC events register as long events. This NC back-
ground to the CC sample, in which the shower “punches through” to longer lengths,
must be modeled to roughly 10% to ensure small uncertainties in the final result.
Single pion testbeam data measures shower lengths at discrete hadron energies but
are insufficient alone to predict NC punch-through at the required level of precision.
Instead, an augmented LEPTO simulation is employed to produce neutrino-induced
hadron showers based on testbeam single pion and electron inputs. The procedure
is as follows. LEPTO generates products of neutrino interactions, including elec-
trons, 7’s, and both charged and neutral hadrons. The distribution of lengths of
electrons and +’s are set by testbeam electron data (e.g., Figure 5.62), while the
distribution of hadron lengths is set by testbeam single pion data (Figures 5.75 and
5.76). All particles are allowed to propagate before they shower and are tracked
based on their interaction probability. Neutral particles creating gaps of three or
more consecutive scintillation counters truncate the length of the hadron shower, as
in the data. A small modification to the LEPTO simulation prevents generation of
charm final states (¢ — p) so as not to duplicate the charm semileptonics that are
already included in the primary Monte Carlo muon tracking model (Section 5.1.4).

Figure 5.77 compares the resultant Monte Carlo length predictions to the distri-
butions in the data. Toroid events, comprising ~ 60% of the total sample, normalize
the Monte Carlo events to the data, but have been excluded from the plot for clarity.
In the remaining CC events, either the muon has a low energy and ranges out in the

calorimeter or the muon has a large opening angle and exits out the side of the
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detector. Excellent agreement results in the region of the length cut, as indicated by
the plot inlays, as well as in the > 31 counter region. The later provides additional

confidence in the Monte Carlo estimate of the v, short CC background in the NC

region.
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Figure 5.77: Comparison of data and MC length distributions for both v (top) and
v (bottom) events. The dashed curve shows the total CC Monte Carlo prediction
(v, +1e). The inlays display data/MC ratios in the region of the length cut. In each
case, the length cut is represented by the pale vertical line. The bands indicate the
+10 systematic uncertainty.
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Tables 5.16 through 5.19 list the number of events in each length bin for both data
and Monte Carlo. The Monte Carlo listing includes a breakout of the individual v,
v, NC, and v, CC contributions in each bin.

Figure 5.78 displays the level of agreement between data and Monte Carlo at very
short lengths. The marginal ability of the shower length model to describe hadronic
showers spanning only a few counters to better than 10% is covered by systematics

and does not affect the analysis.
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Figure 5.78: Short length data/MC agreement in several energy bins for both v (left)
and 7 (right) events. The locations of the length cut and the place where the NC
and CC content are equal (as determined from MC) are also indicated. The shaded
bands show the 10 systematic uncertainty.



Monte Carlo | Monte Carlo | Monte Carlo | Monte Carlo
Length | Data Total Ve + e v + o) v +v°

1 0 133 19 109 5

2 102 526 53 463 10

3 3040 4003 458 3435 110
4 15224 16310 2070 13692 548
5 27677 30650 3485 25813 1352
6 38948 41020 3357 35189 2474
7 48826 48919 3166 41835 3918
8 53647 53194 3344 44516 5334
9 54341 53494 3225 43567 6702
10 49774 49423 2911 38962 7550
11 42515 41946 2399 31757 7790
12 34459 33655 1826 24128 7701
13 26533 26416 1334 17457 7625
14 20801 20591 909 12428 7254
15 16543 16336 657 8463 7216
16 13576 13282 380 5598 7304
17 11211 11069 274 3689 7106
18 9727 9698 180 2410 7108
19 8674 8561 121 1521 6919
20 8150 7950 86 1002 6862
21 7478 7592 53 655 6884
22 7378 7203 32 428 6743
23 6977 7203 26 308 6869
24 6815 6974 26 217 6731
25 6745 6847 17 158 6672
26 6507 6793 11 118 6664
27 6623 6721 7 92 6622
28 6466 6456 5 76 6375
29 6253 6434 3 64 6367
30 6334 6356 6 52 6298
31 6159 6164 10 42 6112
32 6170 6184 4 40 6140
33 5850 6060 5 31 6024
34 5832 5827 4 32 5791
35 5722 5773 2 30 5741
36 5629 5765 6 22 5737
37 5497 5585 1 19 5565
38 5371 5352 2 22 5328
39 5144 5303 5 16 5282
40 5174 5143 3 23 5117

Table 5.16: Number of neutrino events in each length bin (L=0-40).
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Monte Carlo | Monte Carlo | Monte Carlo | Monte Carlo
Length | Data Total Ve + e vC + ) v +v°
41 4849 5054 1 23 5030
42 4802 4853 2 22 4829
43 4716 4689 0 17 4672
44 4635 4590 4 23 4563
45 4498 4520 3 16 4501
46 4476 4435 1 17 4417
47 4176 4256 2 9 4245
48 4141 4133 1 12 4120
49 3961 3864 1 10 3853
50 3734 3859 2 7 3850
51 3646 3678 1 8 3669
52 3465 3639 1 6 3632
53 3458 3434 3 5 3426
54 3204 3314 2 6 3306
55 3102 3092 1 4 3087
56 3026 3004 0 4 3000
57 2814 2858 0 3 2855
58 2757 2729 1 3 2725
59 2634 2581 1 1 2579
60 2515 2548 0 2 2546
61 2419 2416 0 1 2414
62 2291 2263 2 1 2260
63 2109 2140 0 0 2140
64 2039 2015 1 2 2013
65 1936 1927 0 1 1926
66 1743 1847 0 2 1845
67 1680 1647 0 1 1646
68 1520 1564 0 0 1564
69 1410 1480 0 0 1479
70 1318 1340 0 2 1338
71 1182 1195 0 0 1194
72 1034 1032 0 0 1032
73 1025 1027 0 0 1027
74 847 862 0 0 861
75 751 766 0 0 766
76 629 683 0 0 683
7 572 572 0 0 572
78 417 481 0 0 481
79 279 319 0 0 319
80 0 0 0 0 0
toroid | 912739 912742 112 768 911854

Table 5.17: Number of neutrino events in each length bin (L=41+).
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Monte Carlo | Monte Carlo | Monte Carlo | Monte Carlo
Length | Data Total Ve + e v + o) v +v°
1 0 53 10 42 1
2 33 184 25 157 3
3 1198 1403 224 1163 16
4 4927 5370 947 4353 69
5 8209 9165 1232 7804 129
6 10922 11293 1028 10048 217
7 12597 12579 813 11422 344
8 13179 12683 748 11464 471
9 12120 11782 652 10558 572
10 10082 10108 560 8902 647
11 8284 8039 423 6968 648
12 6121 6073 297 5103 673
13 4593 4478 213 3601 664
14 3231 3205 143 2441 621
15 2338 2381 94 1653 634
16 1853 1826 66 1077 683
17 1376 1451 40 703 708
18 1189 1139 24 442 674
19 989 996 12 287 696
20 916 887 10 187 690
21 813 826 8 122 696
22 796 821 5 82 734
23 791 803 4 59 740
24 815 770 2 40 727
25 756 769 1 32 735
26 755 764 2 24 739
27 798 759 1 21 738
28 764 749 2 16 731
29 731 762 1 14 747
30 736 760 1 12 747
31 738 747 2 10 736
32 754 784 1 8 775
33 744 747 0 7 739
34 749 750 1 8 741
35 730 736 1 5 730
36 794 732 1 5 726
37 711 745 0 5 740
38 723 705 0 5 699
39 693 691 0 5 686
40 665 719 1 6 712

Table 5.18: Number of antineutrino events in each length bin (L=0-40).
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Monte Carlo | Monte Carlo | Monte Carlo | Monte Carlo
Length | Data Total Ve + e vC + ) v +v°

41 715 689 1 5 683
42 678 696 1 6 689
43 660 691 0 5 685
44 681 665 1 4 661
45 651 668 0 3 665
46 647 637 0 4 632
47 636 643 1 2 640
48 635 634 0 2 632
49 696 595 0 3 592
50 593 599 0 2 597
51 605 573 0 1 571
52 574 568 0 1 567
53 555 553 0 1 553
54 537 526 0 1 525
55 509 504 0 1 503
56 527 506 0 2 504
57 490 473 0 1 472
58 527 466 0 1 465
59 423 452 1 0 452
60 431 413 0 0 413
61 425 420 0 1 419
62 407 397 0 0 397
63 394 360 0 1 360
64 355 358 0 0 357
65 370 337 0 0 337
66 332 326 0 0 326
67 288 307 0 0 307
68 288 305 0 0 305
69 293 283 0 0 283
70 245 244 0 0 244
71 240 224 0 0 223
72 194 202 0 0 201
73 210 202 0 0 202
74 180 189 0 0 188
75 162 158 0 0 158
76 152 134 0 0 134
77 124 118 0 0 118
78 121 100 0 0 100
79 65 7 0 0 7
80 0 0 0 0 0
99 214644 214669 25 167 214477

Table 5.19: Number of antineutrino events in each length bin (L=40+).
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Chapter 6

Data—Monte Carlo Comparisons

6.1 Comparison of Event Variable Distributions

To demonstrate that the Monte Carlo accurately simulates neutral and charged
current neutrino interactions in our detector, we compare data and Monte Carlo
distributions of all event variables in the analysis. In all cases, the Monte Carlo
assumes the best—fit sin? @y of Chapter 8 and has been normalized to the data using
the total number of events reaching the toroid. The data is cosmic ray subtracted
in all figures. The x? calculations of this chapter include only the statistical errors,
which have been rescaled to account for Monte Carlo statistics. Of interest are

comparisons of:

e Enaq: Figure 6.2 shows shower energy distributions for the entire analysis sam-
ple and including events above 180 GeV (the measurement of v, events above
180 GeV is included in the Monte Carlo prediction). Good agreement is exhib-
ited across the entire energy range. The Monte Carlo also accurately simulates
changes in the number of counters used in the variable-length hadronic energy

summation, Ep,q..r. These dips appear because most events have a final state
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muon which contributes, on average, 0.2 GeV of energy to each counter. To il-
lustrate the effect, Figure 6.1 shows the ratio of Epaqvar/Enag2o for Monte Carlo

events.
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Figure 6.1: The top plot shows the number of counters employed in the variable
length Ep.q sum as a function of energy. The bottom plot shows the resultant
ratio of Epadvar/Enad20, again for Monte Carlo events. The discontinuities reveal the
boundaries where the length sum changes.
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Figure 6.2: Comparison of data and Monte Carlo (solid curve) Epaq distributions
for both v (top) and 7 (bottom) events. The vertical lines with arrows indicate the
range of data included in the analysis, 20 < Ej.q < 180 GeV.
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e Length: Figure 6.3 compares the length distributions in the data and Monte
Carlo for events that pass the analysis requirements. Of primary importance
is the excellent agreement in the region of the length cut (L=16-18) and for
short v, CC events where the muon either ranges out or left the detector at a
wide angle (31 < L < 99). The marginal statistical agreement between data
and Monte Carlo near the NC peak and at very low lengths (L N 10) does not
affect the determination of Ry, because it is within assigned systematics. The
disagreement probably results from uncertainties in the modeling of very short
hadron shower lengths, not from an error in the estimation of the short v, CC
events (as evinced by the excellent agreement in the 31 < L < 99 region), and
not from the level of v, contamination (which has been constrained by direct

measurements).
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Figure 6.3: Comparison of data and Monte Carlo (solid curve) length distributions
for both neutrino (left) and antineutrino (right) events passing analysis cuts. Toroid
events are assigned a length of 99 counters by default.
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e PLACE: The Monte Carlo accurately tracks the even/odd differences and sin-
gle counter dips observed in the PLACE distribution in the data (Figure 6.4).

Modeling of the PLACE determination was discussed in detail in Chapter 5.

e Vx,Vy: Figures 6.5 and 6.6 display vertex distributions in both x and y for
data and Monte Carlo. Good agreement is observed even beyond the analysis

cuts at 40 inches in x and 45 inches in y.

In general, the agreement between data and Monte Carlo shown in these figures
is quite good; without exception the agreement is more than satisfactory for the
purposes of the present analysis. The agreement certainly inspires confidence in the
ability of the Monte Carlo model to simulate the distribution of events in the data.
However, to ensure that the apparent accuracy of the Monte Carlo is not accidental
in some way, the next section probes the stability of the agreement relative to changes

in the analysis cuts.
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Figure 6.4: Data and MC (solid curve) PLACE distributions for both v (top) and
7 (bottom) events. The calorimeter counters are numbered from 1 to 84, counter 1
being the most downstream. MC events are generated from PLACE = 12 to 82.
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Figure 6.5: Comparison of data and MC (solid curve) Vx distributions for both v
(left) and 7 (right) events. The arrows indicate the range included in the analysis.
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Figure 6.6: Comparison of data and MC (solid curve) Vy distributions for both v
(left) 7 (right) events. The arrows indicate the range included in the analysis.
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6.2 Stability Checks

Careful checks of possible systematic effects due to detector instabilities verify the
consistency of the ratios under changes in fiducial cuts and over different ranges of
event variables. The following sections discuss the stability of R, as a function of

time, length cut, vertex position, and hadronic energy.

6.2.1 Time Dependence

Figure 6.7 displays the time dependence of Ry, in the data during both neutrino
and antineutrino running. No single v (¥) run differs by more than 30 (3.50) from
the average. Furthermore, the ratios exhibit no trend over time (the slopes are less

than 10~% in each case).

CR subtracted short/long ratios as a function of run number
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Figure 6.7: Reyp, plotted as a function of run number for runs accepted in the analysis.
The data have been cosmic ray subtracted.
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6.2.2 Length Cut Variation

To check the chosen NC/CC separation, the short/long ratios are extracted under
several choices of length cuts. Figure 6.8 compares R, in the data and Monte
Carlo as a function of length cut, varying from a NC/CC separation that contains
less than 0.5% CC background to one which contains roughly 99% CC events. Data

and Monte Carlo agree well over this entire range.
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Figure 6.8: Variation in the agreement between Ry, in data and MC under various
length cut choices. The data point with no error bars indicates the default length
cut at 16,17,18 counters (Section 4.3). The point to the left indicates a tighter length
cut; cutting closer to the NC peak. The two points to the right indicate looser cuts;
cutting further away from the NC peak. The errors on these points are relative
to the default length cut and include both statistical uncertainties as well as the
largest systematic uncertainties which affect the length determination. The large
bands indicate the statistical error on the measurement of Ry, in the data.
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6.2.3 Position Dependence

A comparison of Ry, in data and Monte Carlo as a function of longitudinal event
vertex checks the uniformity of the detector (Figure 6.9). The agreement is flat as
a function of PLACE with high probability as expected for neutrino interactions.
This would not be the case, for example, if there were a neutron background present
in the data sample that had not been properly accounted for. Such neutrons would
preferentially populate the upstream end of the detector because the neutron inter-
action length is small compared to the dimensions of the detector. In this were the
case, one would observe an exponential falloff consistent with neutron interactions

rather than the observed flat behavior expected for neutrinos.
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Figure 6.9: Plot of the agreement between R, in data and Monte Carlo as a

function of longitudinal vertex position, PLACE. The incoming neutrino direction

is from right to left in this plot. Errors are statistical only.
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The short/long ratios in data and Monte Carlo are also extracted as a function of
the transverse vertex of the event. Figure 6.10 compares Ry, in data and Monte
Carlo for four independent 10 inch frame bins. The bin numbering is as indicated in
Chapter 4: bins 1-4 are included in the analysis while bin 5 is included as a cross-
check. Such a comparison validates the NC background predictions, both v, and
short CC, which preferentially populate the outer edges of the detector. Reasonable,
flat agreement spans the entire fiducial region. The y? probability for these results

is 26% in v mode, 76% in 7 mode.
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Figure 6.10: Plot of the variation Ry, in data and Monte Carlo as a function of
frame box bins, moving from the inner region of the detector (left) to the outer edge
of the detector (right). The bins are mutually exclusive, for example, bin 2 does not
contain events from bin 1 and vice versa. The error bars represent the statistical
and systematic uncertainties. The band indicates the statistical uncertainty on the
measurement of R, in the data.
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Moreover, the agreement is not unreasonable if a fiducial bin beyond the standard
analysis region were to be included in the comparison (Figure 6.11). Including
the additional outer-most bin, actually improves the agreement in 7 mode, the

probability in ¥ mode remains acceptable at 11%.
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Figure 6.11: Fit results after including one bin beyond the standard fiducial region.

6.2.4 Energy Dependence

Finally, the result is stable as a function of energy. Figures 6.12 and 6.13 display
the agreement between the hadronic energy distributions in the data and Monte
Carlo for short and long events, respectively. This comparison checks the sum of
all effects: backgrounds, neutrino flux, detector modeling, cross section model, etc.

Reasonable agreement is exhibited. In all cases, the systematics have been added in



221

quadrature and are included in the calculation of the x?’s. The x?’s include bin to

bin correlations, and the structure in these plots is not outside systematics.

Relative Calibration Fit, pass25, short events, R 0—-40, all—nuecorr—final
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Figure 6.12: Ep,q distributions in data and Monte Carlo for short (NC candidate)
events. The band on the lower data/MC ratio plot indicates the + 1 o systematic
uncertainty. The arrows indicate the range of data included in the final analysis,
namely 20 < E;.q < 180 GeV. Note that the measurement of v, events above 180
GeV has been included in the MC (Section 5.2.3).

Because the Monte Carlo accurately simulates the individual short and long energy
distributions, the short/long ratios are also in good agreement. (Figure 6.15).

A summary of the y? probabilities from the stability tests presented in this
section shows no obvious indication of a problem. Figure 6.14 plots the probabilities

for both the neutrino and antineutrino mode tests. The mean probability is 55%.
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Relative Calibration Fit, pass25, long events, R 0—40, all-nuecorr—final

dN/dE (Gev™)
)
.

N
o
[

Neutrino Antineutrino

-
o
N

v o
ONONONONONOOONONOOONODONONONONOOOONONOOONOO

[t s NN || L e NN
LOONONOVOVOWOS | 1 I 111111 [oowononananoo | 11111
—NNPM F FODOON O TONODOONO—NNMIM FFINOON OO ONONOOONO

mo~m¢©mgg£ DO—M¥OOOND

Ehad (GeV)

Data/MC ratio
o
a

%;*‘nm *¢*+¥—+¥¥a+r+ +—;~— Tt - +++~+~—+L+*+ +

0.95 —= ; +‘ +

[ f— H f_
0s [ x/dgf=27.6/22 X9 25.3/22

o JF - \\\\ Y I A
omomomomomoooomomooomooomomomonomoooomomoo
NMIMF FODOON 0RO M O©OONDNDNNMMT LD <©
\IIIIIIIIII\I ﬁﬁﬁﬁﬁﬁ NNNWIIIII\IIIIIIIfﬁffffNN M
OLNONONONOS [ T L1111 1 [1HononNOHOONOO | |11 1
FNNmn¢¢mmo©hwoomomooomo~NNnn¢¢mm©mmwoomomooo o
HO—MFOOOND DO—MFO0O

04
5
[0}
0

e NN ——————

Ehad (GeV)

Figure 6.13: Ey,q distributions in data and Monte Carlo for long (CC candidate)
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Figure 6.14: x? probabilities from the stability checks presented in this section.
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Figure 6.15: Ry, distributions in data and Monte Carlo as a function of Ey,q. The
band on the bottom data/MC ratio plot indicates the + 1 o systematic uncertainty.
The arrows indicate the range of data included in the final analysis, namely 20 <
Eha,d S 180 GeV.



Chapter 7

Uncertainties

This chapter discusses the determination of the statistical and systematic uncertain-
ties relevant to the present analysis. The numerical values pertain to the default,
single parameter 1C fit to sin® fy. Evaluation of the uncertainties for the alternative

0C sin? Oy, sin® Oy — po, and giﬂZ — gﬁ{f? fits reside in Chapter 8.

7.1 Statistical Uncertainties

7.1.1 Data Statistics

The largest single source of uncertainty in this measurement is statistical. The total

numbers of short and long events observed in the final data sample,

456,838
vo= 20T 0.3916 4 0. 1
R 166, 610 ~ (3010 % 0.0007 (7.1)
. 101, 222
R = — = 0.4050 £ 0.0016 (7.2)
249,911

imply a statistical uncertainty on sin® @y of 0.00135. This statistical uncertainty
from the 1C fit, which also determines m. does not include the effect of the statistical

uncertainty on m,; that is included as a systematic (Table 7.10).
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7.1.2 Monte Carlo Statistics

To ensure a negligibly small Monte Carlo statistical uncertainty, a grand total of
32 x 10° neutrino and 21 x 10° antineutrino events comprise the final sample. After
cuts, the Monte Carlo contains roughly 9 times the neutrino data statistics, and 22
times the antineutrino data statistics.

The total Monte Carlo neutrino event sample consists of a summation of sixteen
dst samples, each generated with 2 x 10° events. Similarly, the final antineutrino
event sample results from six 1.5 x 10® event dsts combined with twelve 1 x 10° event
dsts. Because our Monte Carlo events are generated simultaneously as correlated
NC and CC events, it is not appropriate to take statistical errors as an estimate
of the uncertainty. The Monte Carlo statistical uncertainty is instead calculated
by evaluating the spread in the Ry, values obtained for each of these subsamples.
Figure 7.1 shows the distribution of Re., values, which is a Gaussian distribution
with an RMS spread of 0.00029 for the v samples and 0.00045 for the 7 samples.

tiag v .
Hence, the uncertainties in Ry, and R :

SRY;. = 0.00029/v/16 = 0.00007 (7.3)
SR, = 0.00045/v/17 = 0.00011 (7.4)

imply an error on sin? Ay of 0.00011 resulting from the statistics of the final MC.

7.2 Experimental Uncertainties

The experimental uncertainties relate to the simulation of the NuTeV neutrino beam
and detector. The largest source of experimental error in the measurement of sin? 6y

results from the determination of the electron neutrino background. Smaller uncer-
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Figure 7.1: Spread in dst sample Ry, values used to determine the Monte Carlo
statistical uncertainty. Plots on the left (right) are from the v (7) dsts.
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tainties arise from the energy, v, flux, length, and vertex determinations. Table 7.14
provides a breakdown of the individual error sources which are also discussed below.
In each case, the systematic is evaluated by shifting the relevant parameters by +1o

in the Monte Carlo and measuring the difference before and after the shift.

7.2.1 Emergy Measurement and the v, Flux

The largest uncertainty in the v, flux determination arises from the calibration of
the hadron and muon energy scales. The absolute sizes of the uncertainties are
determined either from testbeam and/or neutrino flux constraints.

Using NuTeV calibration data, the absolute hadron energy scale is determined
to within +0.43%. The sin? fy analysis is affected by possible miscalibration in two
ways. First, a variation in Ey,q changes the number of short and long events that
pass the energy cut (remember the length cut depends on energy). This accounts
for roughly 70% of the total error. Second, changes in the energy scale modify the
neutrino flux. For example, a +1% hadron energy mismeasurement in the data

changes the flux parameters by a few tenths of a percent (Table 7.1).

Flux Parameter ‘ Neutrino Mode ‘ Antineutrino Mode ‘

SE, +0.31% +0.23%
SEx +0.40% +0.31%
5K/ -0.11% +0.11%

Table 7.1: Change in the flux parameters for a +1% Ej.q shift in the data.

Given a +0.43% hadron energy miscalibration along with the associated v, flux

changes, the shift in RY  (RY.) is 0.00009 (0.00008), which produces an overall

exp exp

uncertainty in sin® @y of 0.00012. The quoted shifts apply only to the v, flux deter-
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mination, the resultant changes in the v, flux prediction are discussed in the next
section.

Although the muon energy measured in the toroid is not directly used in this
analysis, the effect of a miscalibration enters indirectly through the v, flux tuning
procedure. Calibration data determines the absolute E,, scale to approximately 1%.
Requiring the flux to be y-independent further constrains the relative Eyaq/E, scale
to & 0.25% in neutrino mode, and + 0.4% in antineutrino mode. The effect of the v,
flux change associated with this level of muon miscalibration (Table 7.2) produces
shifts in Ry, and szp of 0.00006 and 0.00011, respectively, which are conservatively
assumed to be uncorrelated. The resultant uncertainties in sin® fy, for each mode

(0.00009 for v and 0.00005 for 7) yield a combined error of 0.00010.

Flux Parameter ‘ Neutrino Mode ‘ Antineutrino Mode ‘

SE, +0.62% +0.42%
SEx +0.56% +0.54%
K /m +0.01% +0.32%

Table 7.2: Change in the flux parameters for a +1% E,, shift in the data.

Table 7.3 summarizes the energy uncertainties affecting the determination of the
v, and 7, fluxes. The errors from the hadron and muon energy scale uncertainties

are comparable.
Hadron Energy Resolution

Energy resolution describes how observed energies are affected by random event—
to—event fluctuations in showering behavior. These fluctuations can “smear” the
measured energy distributions as described in Chapter 3. The hadron energy smear-

ing correction is conservatively varied by +10% of itself, yielding small 0.00003
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Energy Scale Systematic ‘ ORY., | ORZ, H dsin? Oy
Ehaa (£0.43%) | 0.00009 | 0.00008 || 0.00012

E,, v (£0.25%) | 0.00006 | —— || 0.00009

E,, 7 (£0.40%) | — | 0.00011 || 0.00005

Total : | 0.00011 | 0.00014 || 0.00016

Table 7.3: Contributions to the v, flux systematic resulting from uncertainties in
the hadron and muon energy calibrations.

(0.00006) shifts in R (R”_), which imply a mere 0.00002 uncertainty in sin® fyy .

exp exp
Muon Energy Deposition

A 1% uncertainty is assigned to the energy deposited by muons in CC events. The
muon contribution to the shower is coherently shifted by +2 MeV /counter, resulting
in a 0.00009 (0.00019) shift in RY_ (RY.), which translates into a 0.00007 uncer-

exp exp

tainty in sin® @y .

7.2.2 Electron Neutrino Background

Ry is sensitive to uncertainties in the absolute flux of electron neutrinos because
almost all of the v,—induced CC interactions qualify as short events, and therefore
affect only the numerator of the ratio. Uncertainties in the K* — 7l*y, (K3)
branching ratio and energy calibrations dominate the error in the v, background
prediction. Based on a constrained fit to K= branching ratios, the Particle Data
Group (PDG) [12] estimates the fractional uncertainty in the K% branching ratio
to be:

(K% — 1%*v,.(v,))

= 0.0759 £ 0.0011 7.5
['(K* — 7*v,(7,)) (7.5)

including a scale factor of 1.4 to account for the poor fit x2. The final 1.5% error

assignment arises from this fractional uncertainty estimate from the PDG combined



230

with a 0.5% uncertainty from SSQT alignment tolerances. Propagation of the 1.5%

error in the K% branching ratio results in a 0.00034 uncertainty in sin® .

The second largest v, error results from energy scale uncertainties. As described
in Chapter 5, the v, flux prediction is inherently tied to the v, flux determination;
hence, energy scale uncertainties that affect the v, flux prediction also affect the v,
prediction. Propagating the 0.43% hadron energy scale uncertainty to the v/s in
combination with the associated changes to the flux prediction (Table 7.1) yields
0.00014, 0.00002, 0.00022 uncertainties in RY,_, RY,

expr lesep> and sin? Oy, respectively. The

flux changes resulting from a 0.25% (0.40%) mismeasurement of the muon energy in
v (¥) mode (Table 7.2), propagate to give another net 0.00022 error in sin? fy. In
comparing with Table 7.3, note that the calibration errors primarily impact sin® @y
through the resultant changes to the v, flux prediction (and to a much lesser degree

through changes in the v, flux).

Despite having large fractional uncertainties, other sources of v,’s, such as K,
charmed meson, and muon decays, contribute to a much lesser degree because they
constitute much smaller contributions to the total v, flux. Although an estimated
20% uncertainty in K production dominated the CCFR v, systematics, this con-
tribution is suppressed for NuTeV because of the low acceptance for neutral particle
propagation in the SSQT. In addition, the K}, uncertainty is re-evaluated for NuTeV
to reflect the new beam geometry. In the NuTeV beamline simulation, the K7, pre-
diction from Malensek [68] is tuned to match data from E731 [69] (Chapter 5). The
overall accuracy of the K production rate prediction considers three sources of er-
ror. First, a 6% normalization error accounts for the range in the number of protons

on target recorded during the running of E731. Second, a 2.5% uncertainty covers
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the extrapolation of the E731 results above 160 GeV. The E731 kaon momentum
spectrum is very well constrained in the region 40-160 GeV (c.f. Figure 90 in Ref-
erence [69]). Given that 11% of NuTeV’s events result from kaons above 160 GeV,
and assuming a conservative 25% uncertainty in the K fraction above 160 GeV,
yields the 2.5% estimate. Third, the E731 data had a fixed production angle of 5.5
mrad, whereas NuTeV has a mean production angle of roughly 7 mrad. Assuming
the E731 5.5 mrad production angle changes the predicted number of v,.’s by ~ 16%
(Figure 7.2).

K, Production, Top is defoult, Bottom is shifted to E731 angle
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Figure 7.2: Change in K production after correcting to the 5.5 mrad E731 produc-
tion angle (bottom). Top plot is the default K, prediction (< # >~ 7 mrad).

If the angular dependence is known to 50%, an 8% uncertainty results from the
angular extrapolation from E731 to NuTeV. Table 7.4 summarizes the three con-
tributing K7 production uncertainties, which combined yield an overall 10% error

assignment.
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E731 normalization 6.0%

Extrapolation above 160 GeV | 2.5%

Angular extrapolation 8.0%
Total : | 10% |

Table 7.4: Calculation of the total uncertainty in Kj production at NuTeV.

Muon decays receive a very conservative 10% uncertainty* Charm contributions
receive a 15% fractional uncertainty based on ¢¢ cross section measurements from
800 GeV p-N data [70, 71] and the analysis of wrong—sign events in 7 mode at
NuTeV [52] (Chapter 5). Table 7.5 summarizes the contributions to the total v,

systematic error.

‘ Energy Scale Systematic ‘ R, ORY H Ssin? Oy

K% (£1.2%) | 0.00028 | 0.00027 || 0.00034
Ehaa (£0.43%) | 0.00014 | 0.00002 || 0.00022
v, E,, (£0.25%) | 0.00012 | —— || 0.00019
v, B, (iO 40%) | — | 0.00006 || 0.00003

)
)
)
Ky, (£10%) | 0.00010 | 0.00051 || 0.00005
)
)

p decay (£10%) | 0.00003 | 0.00004 || 0.00003
Charm (+15%) | 0.00011 | 0.00048 || 0.00001

Total : | 0.00037 | 0.00075 || 0.00045

Table 7.5: Uncertainties in the determination of the v, and 7, backgrounds.

Constraints from the analysis of wrong-sign events [52] and direct measurements
of the v, content of the beam [64] further reduces the v, uncertainties. The corre-
lation matrix is built numerically by finding the change in x? that results from lo
variations in each of the v, systematics and combinations of systematics. Combin-

ing the two independent analyses with the apriori constraint from the beam Monte

* Reference [52] cites a 3% variation resulting from changes in the average muon polarization. The
fit to 7 WS data constrains p decay sources to better than 7% [52].
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Carlo, and assuming no apriori correlations except for the very weak correlation
(—0.085) between charm and K, from the wrong—sign analysis, yields the following

covariance matrix:

0K .5 0Enaa  O0E,(v) OE,(7) ocharm 0K,
+0.627 —0.087 +0.062 —0.061 —0.161 —0.055
—0.087 +0.974 —0.046 —0.027 +0.034 +0.022
—0.062 —0.045 +0.985 +0.008 +0.022 +0.010 (7.6)
—0.061 —0.028 +0.008 +0.976 +0.010 +0.016

—-0.161 +40.034 +0.021 -0.001 +0.807 —0.180

—0.055 +0.022 +0.010 +0.015 —-0.180 +0.882

Simultaneous use of all of the v, information, in both neutrino and antineutrino

running, reduces the total sin® fy uncertainty in Table 7.5 from 0.00045 to 0.00039.

Electron Response

The electron response systematic includes two contributions. First, a £2% electron
energy scale uncertainty applied to electrons in CC v, events accounts for uncertain-
ties in the energy response of counters 83 and 84. Testbeam electrons deposit energy
only in the most upstream counters; therefore the uncertainty in the calibration of
these counters relative to the average gain of the remaining calorimeter counters

adds to the overall electron energy calibration uncertainty. This leads to very small

shifts in both RY. _and RY,

oxp expy IMPlying a negligible uncertainty in sin? Oy of 4 x 1076,
Second, a 1.1% hadron non-linearity uncertainty accounts for the relative response

of the calorimeter to electromagnetic versus hadronic showers. This yields a compa-
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rably small 2 x 107 uncertainty in sin? fy,. Both of these uncertainties are negligible

because only a handful of v, events have hadron energies close to the 20 GeV cut.

7.2.3 Event Length

Uncertainties associated with the event length determination include errors asso-
ciated with the hadron shower length model, the PLACE determination, and the
calorimeter counter simulation. The later includes contributions resulting from mod-
eling of the counter efficiencies, noise, and size. This subsection discusses each of

the contributions to the length systematic.
Hadron Shower Length

The hadron shower length model receives an energy dependent uncertainty based on
varying tuning parameters of the model within reasonable range suggested by data
in the long NC region. These variations cause shifts in the high length tail of the
distribution which are then parametrized as additive shifts to the predicted shower

length. The contributions are tabulated in Table 7.6.

energy bin | length uncertainty | 6Ry, | 0RZ, H dsin? Oy

Ehaa < 20 GeV 0.20 counter | 0.00001 | 1 x 1075 || 0.00002

20 < Epag <60 GeV 0.10 counter | 0.00016 | 0.00018 | 0.00018
Ehaq > 60 GeV 0.05 counter | 0.00015 | 0.00008 | 0.00020

Total : | 0.00021 | 0.00020 || 0.00027

Table 7.6: Contributions to the hadron shower length systematic in bins of Ej,q.

PLACE Determination

As presented in Chapter 5, dimuon events provide a measure of the accuracy of

the PLACE algorithm; however, PLACE is sensitive to the presence or absence of
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muons in an event (Figure 5.69). A systematic thereby arises from the additional
muons present in the study sample. The effect of the two muons is measured using
a high statistics sample of NC events. Figure 7.8 shows the difference between
(n)(n) and (n + 2)(n + 2) PLACE for short neutrino events passing analysis cuts.
The difference between (n)(n) and (n — 2)(n — 2) place provides a symmetry check.
The mean difference estimates the 1o effect of the two muons on the PLACE shift
determinationf. From this, we determine that the accuracy of the interaction point
is measured to 0.08 counter for E;.q < 50 GeV, 0.04 counter for 50 < E; .4 < 100
GeV, and 0.02 counter for E;,q > 100 GeV. Half of the difference is taken as a
correction to our original measurement and the other half as a systematic. Table 7.7

summarizes the contributions to the final PLACE systematic.

energy bin | PLACE systematic | dRY | O0RZ, H dsin? Oy
Epaa < 50 GeV 0.04 counter 0.00018 | 0.00011 || 0.00024
50 < Epag < 100 GeV 0.02 counter 0.00011 | 0.00007 || 0.00015

Ehad > 100 GeV | 0.01 counter | 0.00002 | 0.00003 | 0.00003
Total : 0.00021 | 0.00013 || 0.00028

Table 7.7: Contributions to the PLACE systematic in bins of Ey,q. Shown are the

resultant uncertainties in Ry, , RY and sin? Oy .

t Raising the threshold in the PLACE algorithm by two mips is equivalent to the addition of two
muons which deposit, on average, two mips per counter.
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Table 7.8: The effect of the presence of two muons on the PLACE algorithm mea-
sured for a sample of short v events in three energy bins: Ey,q=20-50 GeV, 50-100
GeV, and 100-500 GeV. Plotted on the top in each case is the difference between
(n)(n) and (n + 2)(n + 2) PLACE; on the bottom is the difference between (n)(n)
and (n — 2)(n — 2) PLACE. Horizontal axis is in units of counters.
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Counter Noise and Efficiency

We estimate that we have measured counter inefficiencies leading to gaps of three
or more counters and counter noise probabilities to better than 3%. The choice of
length (Ley = 16,17,18) and PLACE (P,.,=17,18,21) cuts force a reliance on the
noise and efficiency in the most downstream counter to distinguish between short
and long events in the lowest two energy bins. As a result, the noise and efficiency
uncertainties are not negligible. Both uncertainties are conservatively assumed to
be uncorrelated between neutrino and antineutrino mode running. The 3% counter
noise uncertainty leads to 0.00013, 0.00005, 0.00022 uncertainties in Ry, RZXP, and

sin? @y, respectively. The 3% counter efficiency systematic implies 0.00003, 0.00003,
RU

expy and sin? @y, respectively.

0.00005 uncertainties in RY

exp?

Counter Width

The sin? @y result is sensitive to the active area of the scintillation counters. As
described in Chapter 5, the effective counter widths are measured to an accuracy
of 0.08 inch using muons to illuminate the counter edges. The uncertainty comes
from the the spread in the individual counter width measurements combined with
the difference between the measurements obtained from neutrino data and from
testbeam. This covers any uncertainty in the assumption that all counters have the
exact same width, as well as any unaccounted systematic effects from the fitting
procedure [65]. Changing the counter half widths by 0.08 inch in the Monte Carlo
results in a 0.00003 (0.00001) shift in Ry, , (R, ,), and a resultant 0.00004 uncertainty

in sin? 6y .
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The transverse vertex determination has three sources of error related to the pull of

the hadron shower, the muon, and the detector edge. The hadron shower and muon

pulls are varied independently according to the multiplicative form:

shower pull =

muon pull =

shower pull - [1 +a+ b (In(Epagg) — 3.4)]

muon pull - [1 +a+ b (In(Ehaqg) — 3.6)]

(7.7)

(7.8)

The offset (a) and slope (b) are uncorrelated for independent variations in the muon

and hadron shower pulling, so their effects are added in quadrature; however, be-

cause the muon and hadron shower pulling are highly correlated their individual

uncertainties are summed. Table 7.9 tabulates the contributions for 1o limits on the

contributing shifts.

VPULL systematic | 6RY | Ry | dsin’6y

muon pulling a = 0.02 0.00002 | 0.00002 | 0.00003
muon pulling b = 0.03 0.00001 | 0.00001 || 0.00001
0.00002 | 0.00002 | 0.00003

shower pulling a = 0.005 5x 107% | 0.00009 | 0.00003
shower pulling b = 0.007 6x 10763 x1075 | 8 x 107°
8 x 107 | 0.00009 | 0.00003

Total : 0.00003 | 0.00011 | 0.00006

Table 7.9: Contributions to the transverse vertex pulling systematic. Shown are the
R” _ and sin® Oy .

resultant uncertainties in RY,

exp? *exp

The uncertainty of the detector edge correction receives a very conservative es-

timate: a correlated 1o shift to each one inch bin across the detector. The effect,
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parametrized as a function of position in the detector, shifts the shower—pulled ver-

tices in each view by:

v
Vx = Vx + —(0.015 + 6 x 10~ - Vx2)
Vx|

v
Vy = Vy + |V—y|(o.o15 16 %10 Vy?) (7.9)
y

The result of the systematic, which on average moves the vertex ~ 0.015 — 0.03
inches further towards the edge of the detector, is a change of 0.00006 and 0.00005
in RY_ and R”

exp exp> Which translates into a 0.00007 uncertainty in sin? Oy .

7.3 Physics Model Uncertainties

Theoretical errors are induced by uncertainties in the Monte Carlo parameterization.
Charm production remains the largest model uncertainty in the present measurement
of sin? y,. Smaller sources of error arise from uncertainties in Ry, oy/oy, higher
twist, radiative corrections, the charm sea, and the non—isoscalar target. In each
case, the systematic is evaluated by shifting the relevant parameters in the Monte
Carlo by £10 and measuring the difference in the results after the shift. In some
cases, the PDF's are re—extracted to ensure consistent treatment within the Monte

Carlo cross section model.

7.3.1 Charm Production and Strange Sea

Because the production of a charm quark from an s or d quark only occurs via a
charged—current process, it is not susceptible to cancellation in the ratio R“=NC/CC.
As a result, uncertainties in the production model contributed the single largest

source of error in the previous CCFR sin® fy analysis [17]. Unlike CCFR, NuTeV’s
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use of separate, high statistics v and 7 samples greatly reduces sensitivity to uncer-
tainties in cross sections resulting from scattering off ¢ — g symmetric seas. Specif-
ically, the vs and 7s contributions cancel, leaving only a residual charm producing
component from d, scattering. This remaining component is not only Cabbibo
suppressed? but also less affected by m, threshold effects because d, quarks typi-
cally carry a large fraction of the nucleon’s momentum. NuTeV enjoys a factor six
reduction in the sin? @y uncertainty due to charm production relative to CCFR.
Determination of the total charm production uncertainty requires evaluation of
several contributions. The systematics include +1¢ variations in the effective charm
mass (m.), the strange sea level (k), the strange sea shape («), and the CKM matrix
element (V.4). For each parameter variation, the PDFs are re—extracted so as to

constrain the generated charged—current cross section to data. The resultant shifts

in R, RZ.,, and sin® By are listed below in Table 7.10.
oRY, | R || osin® Oy
1C fit m, = 1.34 £ 0.09 GeV | 0.00086 | 0.00186 || 0.00045
a = 2.50%0.65 0.00017 | 0.00041 || 0.00011
k= 0.373 £ 0.049 0.00010 | 0.00017 || 0.00009
Vs = 0.2205 + 0.012 0.00008 | 0.00008 || 0.00010

| 0.00089 | 0.00191 || 0.00048

Table 7.10: Uncertainties in Ry, , R, , and sin? Oy for 1o variations in the charm

production model and strange sea parameters [48, 42].

The correlations between the strange sea parameters, m., x, and «, are measured
from CCFR/NuTeV dimuon data [72] (Table 7.11). The o — k correlation reduces

the combined sin?fy uncertainty from 0.00048 (obtained by naively adding the

t Scattering off d quarks is suppressed by the factor |V.q4|> ~ 0.05 whereas scattering off s quarks
is favored by the factor |V.s|? ~ 0.95.
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uncertainties in quadrature) to 0.00047.

m,. K «
m. | 1.0 0.445 0.036
k | 0.445 1.0 -0.465
a | 0.036 -0.465 1.0

Table 7.11: Correlation coefficients obtained in the joint CCFR/NuTeV dimuon fit
with s(x) =3(z) [72].

7.3.2 Longitudinal Structure Function, R

The second largest theoretical uncertainty arises from imprecise knowledge of the
longitudinal structure function, Ry. Rather than follow the CCFR [17] convention
of assigning a +15% systematic, R; is shifted by a constant offset so as not to
underestimate the effect in regions where R;, is zero. At low x and Q?, where there
are large differences between the model predictions for Ry, the data indicate a £0.03
uncertainty (Figure 5.18). A smaller shift is applied in the high z and moderate Q?
region, which is well constrained by SLAC and NMC data. Here, the difference
between the NLO and NNLO predictions, which appears to be less than 0.01 in this

region, provides the magnitude of the systematic (Figure 7.3).
T
R, £ 0.01, z>0.15 Q> —
- o RAEENE
R;, £ 0.03, otherwise (7.10)

Applying the above offsets to R, and re-fitting the CCFR differential cross section

data results in large shifts in the predicted short/long ratios: 0.00045 in RY_ and

exp

0.00101 in RY

exp*

in sin? Ay is reduced to 0.00032.

Because of the inherent v —7 cancellation, the resulting uncertainty
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Figure 7.3: Difference between the NLO and NNLO predictions for R, plotted as a
function of = and log;((Q?). The lines indicate the boundaries where z = 0.15 and
Q% = 2/0.15. Data is courtesy of U.K. Yang [63].

7.3.3 Relative v, v Cross Sections

Because we are relying on a combination of neutrino and antineutrino data to extract
sin? @y, the measurement is sensitive to differences in the ratio of antineutrino—
nucleon and neutrino—nucleon total cross sections. The world average from neutrino
measurements, o” /o’ = 0.499 £ 0.007 [36], provides an estimate of the uncertainty.

Varying 0”/c” by £1.4% results in a 0.00022 uncertainty in sin® fyy.

7.3.4 Higher Twist

Higher twist contributions are constrained by fits to SLAC and BCDMS F; data
on hydrogen and deuterium targets (Chapter 5). The model is assigned a 100%
uncertainty. The systematic is estimated by turning off the higher twist correction

in the Monte Carlo, resulting in a 0.00014 shift in sin® fy;.
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7.3.5 Radiative Corrections

The uncertainties in the Bardin/ZFITTER electroweak radiative corrections [30, 31]
result from the variation of all® possible parameters and settings in the radiative
correction code. The variations which produce non-negligible (> 10~%) shifts appear

in Table 7.12. These include changes in the handling of M} corrections and in

top
choices of the hadronic vacuum polarization. Varying the final state quark masses
from the constituent to current scale (~10 MeV-1 GeV) produces large changes in
the NC and CC cross sections individually, which cancel in the ratio. Finally, recall
that the radiative corrections are a combination of QED corrections calculated by
Bardin [30] and weak corrections computed from ZFITTER [31] (Chapter 5). Our
approximation that the corrections to the effective NC couplings can be factored from
the remainder of the electroweak corrections, however, is not exact. We approximate

the systematic uncertainty in this procedure by the numerical difference between the

two procedures. This error is the largest of the radiative correction uncertainties.

| | oy, | o0RZ, | dsin®0w
M, terms (IAMT4) 0.00002 | 7 x 1075 | 0.00003

QED vacuum polarization (IHVP) | 8 x 1076 | 2 x 107¢ || 0.00001
final state quark masses (QPMFI) | 0.00007 | 0.00016 || 0.00001
Weak-QED separation 0.00005 | 0.00006 | 0.00010

| Total : | 0.00009 | 0.00017 | 0.00011

Table 7.12: Uncertainties resulting from the Bardin/ZFITTER electroweak radiative
corrections. Where applicable, the variables in parentheses indicate the parameters
that are varied in the radiative correction code.

§ Believe me, this was no picnic.
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Charm Sea

The c¢ production model in the Monte Carlo is tuned to match EMC measurement
of F5° on iron [49] (Chapter 5). The charm sea model is assigned a 100% uncertainty.
In addition, a 50% uncertainty is attributed to the level of the charm sea, effectively
attributing a 100% uncertainty to the tuning procedure itself. The resultant sin® 6y,
uncertainty is tabulated in Table 7.13. Fortunately, the present analysis is not

particularly sensitive to large fractional uncertainties in the charm sea.

| | ory | oRY, | osin® Oy |

charm sea model (100%) | 0.00005 | 0.00004 || 0.00010
charm sea level (50%) | 0.00002 | 0.00001 || 0.00003

| Total : | 0.00005 | 0.00004 || 0.00010 |

Table 7.13: Uncertainties in the LO Monte Carlo charm sea model.

7.3.6 Non—Isoscalar Target

Corrections to d,/u, and d/u are obtained from fits to NMC and E866 data (Chap-
ter 5). To estimate uncertainties associated with this evaluation, a 1o scale factor
of 1.4 is applied to both the valence and sea functions, d/u — 1. The resultant shifts

in R”_ and R”_ are both 0.00004, implying a 0.00005 uncertainty in sin® @y .

exp exp
7.3.7 Quasi—Elastic Cross Section

Quasi—elastic v,~N reactions produce electromagnetic showers that can satisfy the
minimum Ey,4 criteria for the analysis. The v, quasi—elastic cross section model is
tuned to match Serpukhov data [53] and assigned a 15% uncertainty (Figure 5.30).

Varying the quasi—elastic prediction by this amount results in 0.00005 and 0.00013
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shifts in R%_ and RY

exp exp» 1Mplying a small 0.00002 uncertainty in sin? Oy .

7.4 Table of Uncertainties

Table 7.14 summarizes the contributions to the total sin?fy, error. The values
listed here pertain to the single-parameter 1C sin® @y fit, as described in the next
Chapter. The uncertainties are generally combined in quadrature except in the few

cases outlined in the text.

7.5 Comparison with CCFR

As a proof of principle, Figure 7.4 compares the final NuTeV sin? §yy errors relative to
those obtained in CCFR [17]. The largest systematic plaguing the CCFR analysis,
the uncertainty in the charm production model, is reduced by a factor of six for
NuTeV because of the use of separate neutrino and antineutrino inputs. In addition,
the v, flux systematic decreased by a factor of four because of the reduced Kj,
acceptance in the NuTeV beamline. Many of the experimental uncertainties are
minimized as a result of rigorous constraints from extensive NuTeV calibration data.
NuTeV also enjoys a cancellation in many of the theoretical uncertainties that are

common to both neutrino and antineutrino interactions.
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SOURCE OF UNCERTAINTY | Ry, | oR%, | dsin®0y

Data Statistics | 0.00069 | 0.00159 || 0.00135

Monte Carlo Statistics | 0.00007 | 0.00011 || 0.00010

TOTAL STATISTICS 0.00069 | 0.00159 || 0.00135
Ve, Ve Flux: | 0.00025 | 0.00044 || 0.00039

ENERGY: Hadron Calibration (£0.43%, v,) | 0.00009 | 0.00008 || 0.00012
Muon Calibration (£0.25% v, £0.4% 7,) | 0.00006 | 0.00011 | 0.00010
Energy Resolution (10%) | 0.00003 | 0.00006 || 0.00002

Muon Energy Deposition (2 MeV /entr) | 0.00009 | 0.00019 || 0.00007

e/h (£1.1%), B, (£2%) | 2x 1078 | 2 x 1075 || 4 x 10~

EVENT LENGTH: Shower Length Model | 0.00021 | 0.00020 || 0.00027
PLACE Determination | 0.00021 | 0.00013 | 0.00028

Counter Noise (3%) | 0.00013 | 0.00005 || 0.00022

Counter Efficiency (3%) | 0.00003 | 0.00003 || 0.00005

Counter Half Width (40.08 inch) | 0.00003 | 0.00001 | 0.00004
TRANSVERSE VERTEX: p, Shwr Pulling | 0.00003 | 0.00011 | 0.00006
Edge Correction | 0.00006 | 0.00005 | 0.00007

TOTAL EXPERIMENTAL 0.00044 | 0.00057 || 0.00063
Charm Production, Strange Sea | 0.00089 | 0.00184 || 0.00047

Ry, (£0.03, £0.01) | 0.00045 | 0.00101 || 0.00032

o”/o¥ (£1.4%) | 0.00007 | 0.00026 || 0.00022

Higher Twist (100%) | 0.00012 | 0.00013 || 0.00014

Radiative Corrections | 0.00009 | 0.00017 | 0.00011

Charm Sea (100%) | 0.00005 | 0.00004 || 0.00010

Non-Isoscalar Target (1o) | 0.00004 | 0.00004 | 0.00005

ve Quasi-Elastics (£15%) | 0.00005 | 0.00013 | 0.00002

TOTAL PHYSICS MODEL 0.00101 | 0.00212 || 0.00065

TOTAL UNCERTAINTY

| 0.00130 | 0.00272 || 0.00162

Table 7.14: Uncertainties for the single parameter sin? fy 1C fit.




NuTeV/CCFR Error Comparison

Data Statistics ke

MC Statistics g

v, Flux

Calibrations

u Energy Deposition i
Energy Resolution | B
Hadron Shower NuTev <Pi)
Vertex Determination
Counter Edge j CCER (Py)

Counter Efficiency/noise
Charm Prod/Strange Sea
Charm Sea g

Cross Section Diff
Non—isoscalar Target g
Higher Twist b

Riong

Radiative Corrections ‘ ‘ ‘ ‘ ‘
v b b b b b

5 10 15 20 25
Error on sin®0,(x107)

247

Figure 7.4: Itemized comparison between the NuTeV and CCFR sin? fyy errors.



Chapter 8

Electroweak Fits

“Only a few important particles remain to be discovered
and many of their properties are alleged to be known in
advance. Surely this is not the way things will be, for
Nature must still have some surprises in store for us.”

— S.L. Glashow (1980)

This section describes the procedure for extracting electroweak parameters from

the precise measurements of RY_ and R”_. Single parameter fits for sin? 6y and

exp exp”
po appear in the beginning of the section. To explore the disagreement with the
standard model, we also perform two parameter fits for (sin® 6y — po) and (g¢7)% —

(¢4M)2. The chapter concludes with a comparison of the results to measurements

from other experiments around the world.

8.1 The 1C sin’#y Fit

The default electroweak fit is a single parameter fit for sin? fy, chosen apriori before
NuTeV took data because it can take full advantage of the cancellation afforded in
the Paschos—Wolfenstein technique. This section describes the results of the fit of

the precisely determined ratios, RY _ and RY_, to their predictions as a function of

exp exp?

electroweak parameters.

248
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Recall that NuTeV does not measure ratios of NC to CC cross total sections, R”

and R, but instead measures experimental ratios of short to long events, Ry, and

RY,- The detailed Monte Carlo simulation of the experiment predicts these ratios
for both neutrinos and antineutrinos as well as their dependence on electroweak
parameters. The fit relies on a first order Taylor expansion of the Ry, prediction

about its expected central value:

OR OR,
C ~ d exp ) exp
RN ~ Rdata 4 o b Asin® Oy + om,

Am, (8.1)

In this (1C) case, m,, the phenomenological parameter determining the threshold
for heavy charm production, is explicitly included as a fit parameter. Because Rexp
has a very weak dependence on sin? @y, (Table 8.1), the antineutrino data effectively
“measures” m,. The result is improved sensitivity to sin® @y. The single parameter

fit relies on the minimization of:

oo [ R R ey o
v,U (Re()i(affa) 0'(H1(Cia‘ta‘)2

with respect to shifts in sin? fy and m, from their central values. Because the effect
of m, is so significant, two further corrections are made. First, to account for terms

quadratic in m,:

0% Reyp

om,2

RMC RMC—|—

exp exp

Am (8.3)

multiplicative factors obtained from quadratic fits to Re, as a function of m,

are applied to the predicted ratios (Figure 8.1). The quadratic corrections are

0.945 + 0.055 (F<5=2) for R, and 0.966 + 0.029 (F<12) for RY, . Second, the

exp exp”

non—negligible m .« correlation (Table: 7.11) is treated as a constant factor (0.975
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for RY_, and 0.991 for RZ ) multiplying the m, dependence of Rexp.

exp exp
Non—Linear dependence of R and Rbar in m,
1.25 P1 0.000 o
1 P2 0.9451

P3 0.5540E-01
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Figure 8.1: The non-linear dependence of Ry, (top) and R, , (bottom) on m,.

exp

MINUIT performs the fit to the data. Table 8.1 summarizes the inputs to the fit.
The partial derivatives are determined numerically by shifting the relevant param-
eters, in this case sin? fy and m,, in the Monte Carlo and evaluating the changes
in the predictions for RYY. In addition to the data measurements of Ry, 5 and Ry,
the charm mass required to reproduce the experimental data on neutrino—induced

dimuon production serves as an additional constraint, m. = 1.38 + 0.14 GeV [42].

The simultaneous fit to sin? f and m, yields:

sin?fy = 0.22773 = 0.00135 (stat) = 0.00091 (syst) (8.4)
m, = 1.3440.09 (stat) &+ 0.06 (syst) GeV (8.5)
(uncertainty correlation, p = 0.638) (8.6)

The x? for the fit is 0.334/1 equating to a probability of 56.3%. Figure 8.2 shows

the variation in the sin? §y fit result as a function of input m,. We also quote the
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dependence of the result on M., and Myjgs. Leading terms in the one-loop elec-
troweak radiative corrections to the W and Z self-energies produce a weak residual

dependence that is quadratic in M., and logarithmic in My;ggs:

sin?@y = 0.22773 + 0.00163 (8.7)
Miop? — (175 GeV)?
— 0.00022 -
< (50 GeV)?
M
0.00032 - In | ——=28° 8.8
* " <150 Ge\/> (8:8)

The prediction from the standard model, with parameters determined by a fit to all
other electroweak measurements, is 0.2227 = 0.0004 [73, 74]. The NuTeV measure-

ment lies approximately 30 above the standard model expectation.

‘ Neutrino Mode ‘ Antineutrino Mode

Data Measurement | 0.39158 £ 0.00069 | 0.40503 £ 0.00159
Reference MC 0.39251 0.40673
ORey,/Osin® Oy —0.630 -0.040
ORexp/0m, 0.0066 0.0137
mdata (GeV) 1.38 £ 0.014 1.38 £ 0.014

Table 8.1: Inputs to the 1C sin? @y fit. The data are compared to a reference Monte
Carlo which assumes sin? @y = 0.227 and m, = 1.4 GeV as starting values.

intercep 0.2217
slope 0.4333E—-02

0.229 |

0.2285 F

1C fit sin®9,

0.228
0.2275 F
0.227

0.2265 |

L L L L L L FTIRI IR
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
m. (GeV)

0.226 k&

Figure 8.2: sin? fy from the 1C fit as a function of input charm mass.
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8.2 The 0C sin’#fy Fit

A 0C fit is also performed by dropping the charm mass constraint from the dimuon
measurement and allowing m, to vary as a free parameter in the fit. This gives a
result based on a combination more similar to the Paschos-Wolfenstein quantity,
R, than the aforementioned fit. In these fits, sin® @y is effectively determined from

a quantity, R-— = R, — xR”,

exp exp"*

Recalling that the Paschos-Wolfenstein quantity,
R~ = (R —rR")/(1 —r) = (R” —0.5R")/0.5 = 1/2 — sin? fy, one might expect
x = 0.5 and dR~/dsin® @y, = —0.5 if the fit is indeed similar to a pure Paschos—

Wolfenstein determination. Table 8.2 compares these values for the 1C and 0C fits.

‘ ‘ X ‘ dR~/dsin? Oy
1C fit | 0.249 -0.617
0C fit | 0.453 -0.612

Table 8.2: The R~ approximation to the NuTeV 1C and 0C fits. In each case,
sin? Oy is determined from a quantity much like R~ = RY_ — xR”_. The 0C fit is

exp exp*
based on a combination more like the Paschos—Wolfenstein ratio.

The x? minimization in this case becomes:

RMC o Rda‘ua)?

XZ _ Z ( e;_p(Rdatae;c;) (8.9)

exp

v,V

The results for the 0C fit to sin? fy yield:

sin By = 0.22738 4 0.00164 (stat) £ 0.00076 (syst) (8.10)
Miop? — (175 GeV)?
(50 GeV)?

M
0.00050 - In [ ——-Hiees
+ o <150 GeV>

m, = 1.30+0.13 (stat) £ 0.11 (syst) GeV (8.11)

—0.00037 - <
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The effective charm mass from this fit, m. = 1.30£0.17 GeV, provides a consistency
check on the measurement from the dimuon data, m, = 1.38 & 0.14 GeV. Dropping
the m, constraint, however, increases the overall uncertainty in sin” fy by ~ 10%.
The change is dominated by a 20% increase in the statistical error as a result of

using more ¥ data (Table 8.2), which is insensitive to sin? fy, to reduce systematics.

8.3 The Lo Fit

Although the primary goal of the experiment is to measure sin? 8y, we can fix sin? 6y
to the standard model value and instead fit for an overall NC coupling strength. In
this case, all of the squared NC quark couplings receive a scale factor pg (see, for

example, Equation 1.30 in Chapter 1). The fit for p, yields:

po = 0.99420 + 0.00132 (stat) & 0.00162 (syst) (8.12)
M;op? — (175 GeV)?
(50 GeV)?

M
0.00130 - In [ ——tiess_
* ! (150 Ge\/)

— 0.00084 - (

Unlike the sin? @y fit, both the neutrino and antineutrino data are sensitive to py
(ORY,,/0po = 0.612 and ORY_ /0py = 0.710), so there is less control over the charm

exp exp

production systematics, and the systematic uncertainties are much larger.

8.4 The sin’6y — p, Fit

Two parameter fits dilute the discrepancy by increasing both the statistical and

systematic uncertainties*. Despite the degeneracy of the two sets of parameters

* Correlated systematics cancel between v and 7 modes in the one parameter fits, i.e., R~, but do
not cancel in the two parameter fits.



254

(R¢p» RZ,), we quote both model-dependent and “model-independent” fit results.
The former is a simultaneous fit for sin®#y, and py, described here. The later is a
chiral coupling fit, described in the next section.

Because there is no apriori constraint on m., the two parameter fits reduce to a

linearized problem in a given set of parameters, X, where:

i 02 eff2
S xry sin” Oy, g
X = = or| °F (8.13)
2
T2 Po g%ﬁ

A Jacobian, which relates the experimental observables, I, and RZXP, to the elec-

troweak fit parameters allows solution for X without resorting to a full fit minimiza-

tion:
aRgxp aRgxp
Jr[X] = dz1 O 8.14
I &40
or1 oxa

In analogy with Equation 8.1, 5X = JR[)?]_15E, where 6 = Rdata — BMC G

exp exp *

larly, assuming a covariance matrix for Rexp:

o(Ry)? po(Rey) o(Rey)

Ve = (8.15)
po(R,) o(Re,) o(Re,)?

exp exp exp

the approximate error matrix for X is then Vy = (Jz[X]) Vi (Jg[X]T) .
Solution for the central values and errors of the two parameter quantities, X ,
requires knowledge of §R. A reference Monte Carlo provides predictions for Rex,
assuming m, = 1.4 GeV, M, = 175 GeV, Mpjzes = 150 GeV, and the standard
model value for sin?fy, from ZFITTER v6.34 [31]. The differences between the

measurement in the data and the prediction from the reference Monte Carlo are:
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SRV, = —0.00306 = 0.00069 (stat) + 0.00074 (syst)

+0.00612 (m, — 1.4) + 0.00089 (m, — 1.4)? (8.16)
SRY, = —0.00135+0.00159 (stat) + 0.00142 (syst)

+0.0133 (m, — 1.4) + 0.00100 (m, — 1.4)* (8.17)

Using the linear term to evaluate the error from the £0.14 GeV uncertainty on m,:

SRV = —0.00319 %+ 0.00069 (stat) £ 0.00074 (syst) & 0.00086 (m.) (8.18)

exp

= —0.00319 £ 0.00131

SRV = —0.00162 + 0.00159 (stat) £ 0.00142 (syst) £+ 0.00179 (m.) (8.19)

exp

= —0.00162 £+ 0.00278

R¢,, has been measured to an accuracy of 0.3%, and R, to an accuracy of 0.7%.

Systematic uncertainties lead to a correlation between the two of 0.636. Figure 8.3

displays the experimental constraint on RY _ and R”_. As can be seen from the

exp exp*
plot, the antineutrino ratio is consistent with the standard model expectation, while

the neutrino mode ratio is roughly 0.8% low at 2.4¢ significance.

| | oRY /0 | ORT, /0]

exp exp
sin? Oy -0.630 -0.040
20 0.612 0.710

Table 8.3: Inputs to the two parameter sin? Oy — py fit.

Using the above formalism and the Jacobian entries as determined from the
Monte Carlo (Table 8.3), one can solve for X = (sin? 6y, po). Relaxing the assump-

tion that py = 1, the simultaneous two parameter fit yields:
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687%,90%,95%,99% C.L. Contours, Grid of SM £ 10 mtop, My

0.41

0.405

vbar
R exp

0.4

Large Mg

0.388 0.39 0.392 0.394 0.396
RV
exp
Figure 8.3: Experimental constraint on R, and RY . Ellipses indicate the allowed

regions at 68%, 90%, 95% and 99% confidence levels. The standard model expec-
tation is indicated by the small dot; the “wings” indicate how the standard model
prediction would shift for +1o variations in M, and Miyjges. The large arrows
indicate the direction of increasing My, and Myiggs.

sin 0y = 0.22647 & 0.00290 — 0.0080 (m, — 1.38 GeV) (8.20)
po = 0.99789 4 0.00314 — 0.0183 (m, — 1.38 GeV) (8.21)

(uncertainty correlation, p = 0.862)
If the charm mass dependence is explicitly incorporated into the systematics:

sinfy = 0.22647 + 0.00311 (8.22)
po = 0.99789 + 0.00405 (8.23)

(uncertainty correlation, p = 0.850)
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Figure 8.4 shows the allowed regions for various levels of confidence. Given the
standard model predictions, sin? fy, = 0.2227 £ 0.0004 and py = 1, either sin? y or

po might be consistent with the standard model prediction, but not both.

68%,907%,95%,99% C.L. Contours

1.01 =

Po

0.99 -

[ | |
0.215 0.22 0.2

sin?

|
25 0.23
(on—shell)
w

|
0.235

Figure 8.4: Experimental constraint on sin? fy and py. Ellipses indicate the allowed
regions at 68% CL (inner ellipse) to 99% CL (outer-most ellipse). The arrows
indicate how the fit result would shift for increasing Mo, and Migiggs. The small dot
marks the standard model expectation.

8.5 The (¢57)% — (¢%)* Fit

Model-independent two parameter fits, in terms of the isoscalar combinations of

effective NC quark couplings, are also performed where:

(951" = (ui)* + (dfT)*,  (95)" = (uf’)* + (d)’ (8.24)
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Scattering off an isoscalar target is essentially only sensitive to the isoscalar cou-
plings. A weak dependence’ on the isovector couplings, 5%,1{ = ufffRQ — dfffRQ, arises
from the strange and charm components in the nucleon sea, and from the slight non—

isoscalarity of the NuTeV target. The fit uses the coupling dependences, 0 Rex, /097

and 0Rex,/0g%, calculated under the assumption that 67 and 6% are constant:

ORexpy _ 1 (ORex, | ORexp ORexp 1 (ORexy  ORexp
2 T 5 2 2 ) 5 = 5 ) 2 (825)
g7 2\ Ouj od; g7, 2\ Oup ody,
With these inputs (Table 8.4) and the measurements of Ry, , and R :
(¢5")? = 0.30005 + 0.00115 — 0.0053 (m, — 1.38 GeV) (8.26)
(g9 = 0.03076 £ 0.00098 — 0.0036 (m. — 1.38 GeV) (8.27)

(uncertainty correlation, p = —0.355)

where these are the measured couplings after electroweak radiative corrections. Ex-

plicitly incorporating the charm mass dependence:

(g5)* = 0.30005 + 0.00137 (8.28)
(951)? = 0.03076 = 0.00110 (8.29)
(uncertainty correlation, p = —0.017)

Figure 8.5 shows the solution in the (g¢")? — (¢4")? plane, for various confidence
levels. The standard model values, as indicated on the plot, are (g¢7)% = 0.3042 and
(¢81)2 = 0.0301. While the right-handed coupling appears to be compatible with
the standard model, the NuTeV data clearly prefer a smaller left—handed effective

coupling.

t Roughly 3% of the isoscalar sensitivity.



| oRv /0 | R, /0 |

bxp o
ur, | 0.87297 [ 0.73070
d;, | 0.96909 | 0.90236
ug | 0.30748 | 2.19978
dp | 0.37783 | 2.42962
g2 [ 09210 | 0.8165
g% | 03427 | 2.3197

Table 8.4: Inputs to the two parameter g%fﬂ —

68%,90%,95%,99% C.L. Contours, Crid of SM £ 10 mtop, Miiggs

0.034
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S—. . large my,
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Figure 8.5: Experimental constraint on (¢¢7)? and (¢$f)2. Shown are the allowed
regions at 68% CL out to 99% CL. The standard model expectation is indicated
by the small dot; the “wings” indicate how that prediction would shift for +1o
variations in M, and Mpiges. The large arrows indicate the direction of increasing

Mtop and MHiggs .
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8.6 Comparisons to the Rest of the World

Comparisons to past neutrino-nucleon determinations of sin®#y,, direct measure-
ments of My, and the world’s current precision electroweak data place the NuTeV

results into greater context.

8.6.1 Past vIN Measurements of sin’ 6y

The NuTeV result lies three standard deviations above the standard model expec-
tation, however, it is in good agreement with previous neutrino—nucleon determi-
nations of sin?#y,. Figure 8.6 demonstrates the consistency of the NuTeV result
with past neutrino-nucleon determinations of the weak mixing angle. Combining
the earlier measurements, after correcting the results for our improved knowledge of
Mo, = 175 GeV and m, = 1.38 £ 0.14 GeV, the average of the five most precise

neutrino-nucleon measurements of sin? fy, before NuTeV is:

sin? By (combined) = 0.2277 % 0.0024 (exp) = 0.0019 (theory)

= 0.2277 +0.0031 (8.30)

The statistics—dominated NuTeV measurement, which coincidentally has the same
central value as the above combination, is twice as precise as the previous neutrino—
nucleon experiments. It is interesting to note that all of the measurements lie sys-

tematically above the standard model expectation.
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World Average sin®39,
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Figure 8.6: History of neutrino-nucleon measurements of sin? fy,. The band indi-
cates the correlated charm production uncertainty (not present in NuTeV). Note:
earlier experiments have been corrected for our improved knowledge: m, = 1.38
GeV and Mo, > My
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8.6.2 Direct My

In the on—shell renormalization scheme,

My

.. 2 non—shell _
sin” 0y =1 e
Z

(8.31)

where My, and M, are the physical gauge boson masses, the NuTeV result implies
My, = 80.1440.08 GeV. This value lies more than 30 below the direct world average,
My = 80.45+ 0.03 GeV [73]. Figure 8.7 compares the NuTeV result to the various
direct measurements of My,. The NuTeV measurement is just as precise as any other
single measurement. The more precise indirect world average of My, = 80.38 & 0.02
GeV is a combination of results from LEP I, SLD, APV, and direct M,,, [74]. NuTeV

is slightly less consistent with the direct measurements than with the indirect.

80.433 +/- 0.079 e CDF

80.483 +/- 0.084 —e— DO

80.471 +/- 0.049 e ALEPH*

80.401 +/- 0.066 e DELPHI*

80.398 +/- 0.069 o L3*

80.490 +/- 0.065 e OPAL*

80.451 +/- 0.033 m Direct World Average

80.136 +/- 0.084 3
H—o— 3 NuTeV

*: Preliminary

800802804 80,6
Mw (GeV)

Figure 8.7: Comparison of the NuTeV result to direct measurements of My,. Also
shown is the indirect world average not including NuTeV [74].
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Figure 8.8 shows the experimental constraints on My, versus M,,,. The bulk
of the data tend to collectively favor a light Higgs mass. The central value from
recent global fits to all precision data is Migiges = 8113 GeV with an upper bound of
Migiges < 196 GeV at 95% CL [73]. The discrepancy in the NuTeV sin? 0‘?[,“’Shell from
My, however, makes it difficult to reconcile the result with other precision data in

terms of changes to Miges O Miop.

My vs M,,, 68% Confidence Regions
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> 8
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Figure 8.8: Comparison of 68% CL allowed regions for both direct and indirect
measurements of My, and M,,,. The shaded bands indicate the standard model
predictions for Myiges = 114 GeV and Mpyjees = 1 TeV. The width of the bands is
primarily due to the uncertainty in a(Mz?).
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8.6.3 Global Standard Model Fits

Figure 8.9 exhibits the results of the LEP Electroweak Working Group (LEPEWWG)
global fit to all precision electroweak data including the NuTeV measurement of
sin? @y, [73]. The largest pulls are coming from the NuTeV sin®fy result and the
LEP IT measurement of A%’%. The inclusion of the NuTeV measurement in the
standard model fit increases the global x?/dof to 28.8/15. The probability of the x?

being worse than 28.8 is only 1.7%.
Winter 2002

Measurement Pull  (OM-QfM)gmeas
3-2-1012 3

m,[GeV] 91.1875:0.0021 .01
r,[GeVl  2.4952+0.0023  -.42
Opg[Nb]  41.540£0.037  1.63

R, 20.767 £0.025  1.05
Ay 0.01714 +0.00095 .70
AP, 0.1465+0.0033  -.53
Ry 0.21646 + 0.00065 1.06
R, 0.1719+0.0031  -.11
AP 0.0994 +0.0017  -2.64
AL 0.0707 £ 0.0034  -1.05
A, 0.922+0.020  -.64
A, 0.670 £ 0.026 .06
A(SLD) 0.1513+0.0021  1.50
sin’8P(Q,,) 0.2324£0.0012 .86
my [GeV] 80.451+0.033  1.73
w[Gev] 2.134 £ 0.069 59
m, [GeV] 1743 +5.1 -.08

sin’g,,(WN)  0.2277 +0.0016  3.00

-3-2-10123

Figure 8.9: Current global electroweak fit including NuTeV sin?fy;,. Bars indicate
the pull of each measurement, in standard deviations, from its standard model ex-
pectation. The x?/dof is 28.8/15 (1.7% probability). Plot courtesy of LEPEWWG.

If one arbitrarily excludes the NuTeV results the fit is adequate. Without NuTeV,
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the x?/dof is 19.6/14 which equates to a probability of 14.3%. This value is largely
driven by the 3¢ discrepancy between the two most precise determinations of sin® 6y,
at the Z pole: the leptonic measurement, Ay at SLD, and the hadronic measure-
ment, A% at LEP.

These results should, of course, be interpreted with caution. Discarding one or
two measurements can improve the fit, but at the same time drastically change the
predicted Higgs boson mass (Figure 8.10). If the two most discrepant measurements,
A%’% and NuTeV sin? fyy, are arbitrarily removed from the fit, the global x? improves
to 6.84/9, a robust 65% probability [75]; however, disregarding A[l],’% implies that the
favored value of the Higgs mass from the standard model fit drops to 43 GeV* [76],
well below the direct search limits set by the non—discovery of the Higgs at LEP II,
Migiggs > 114 GeV [73]. Winter 2002

A(SLD)
s’ (Qy,)
m,, [GeV]
Iy [GeV]

sin%6,,(VN)
Qu(Cs)

Figure 8.10: Sensitivity of the precision electroweak data to Migiges. Most of the data
is consistent with a low Mg, except for A% and NuTeV sin®6,,. The NuTeV

result favors large Mpyiggs, but not with sufficient precision to pull the overall fit.
Plot courtesy of LEPEWWG [73].

t At 90% confidence level, 17 < Miggs < 105 GeV [75].
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Figure 8.11 shows the global fit results if, instead of using the NuTeV sin? 0y

measurement, the results from the two parameter (g¢")?, (¢¢f)? fit are included. In

this case, the reported global agreement is similarly poor, x*/dof = 29.2/16 (2.2%

probability). The NuTeV discrepancy is almost entirely in the left-handed effective

coupling, (¢¢7)2, which lies 30 below the standard model expectation.

Winter 2002

Measurement

Pull

(o) meas_ofit) Jgmeas

3-2-10123

A(SLD)
Sinze‘eef'fjt(be)
m,, [GeV]
ry[GeV]
m, [GeV]
g:(VN)
gHVN)

91.1875 +0.0021
2.4952 +0.0023
41.540 + 0.037
20.767 £ 0.025

0.01714 + 0.00095
0.1465 + 0.0033

0.21646 + 0.00065
0.1719 + 0.0031
0.0994 + 0.0017
0.0707 £ 0.0034

0.922 £ 0.020
0.670 + 0.026
0.1513 + 0.0021
0.2324 + 0.0012
80.451 + 0.033
2.134 + 0.069

1743 +5.1
0.3000 + 0.0014
0.0308 + 0.0011

.01
-.43
1.64
1.03

.70
-.53
1.06
-11

-2.65
-1.06

-.64
.06
1.49
.86
1.74
.59
-.05

-3.01

.61

3210123

Figure 8.11: Winter 2002 global electroweak fit including NuTeV (¢¢)2 and (g¢T)2.
Bars indicate the pull of each measurement, in standard deviations, from its standard
model expectation. The y?/dof is 29.2/16 (2.2% probability). Plot courtesy of the

LEPEWWG [73].



Chapter 9

Conclusions

“Physics will change even more ... we think that the
future will be only more radical and not less, only more
strange and not more familiar, and that it will have its
own new insights for the inquiring human spirit.”

— J.R. Oppenheimer (1953)

The weak neutral current has long provided a quantitative test of the standard
electroweak model. Continuing this tradition, this dissertation presents a precise
determination of the weak mixing angle, from the measurement of ratios of neu-
tral to charged current cross sections, using high statistics samples of neutrino and
antineutrino events:

on—shell)

sin? Oy = 0.2277 4 0.0013 (stat) & 0.0009 (syst) (9.1)

which is currently the most precise determination of sin?fy, from neutrino scatter-
ing. Although previous neutrino—nucleon measurements obtained a similar central
value, the current determination is the first with sufficient precision to observe a de-
viation from the standard model. The result lies three standard deviations above the
standard model prediction. Given this 30 inconsistency, results are also extracted
within a model-independent framework. NuTeV precisely measures effective left

and right handed neutral current quark couplings:

267



268

(g5)* = 0.30005 =+ 0.00137 (9.2)
(g5h)? = 0.03076 £ 0.00110 (9.3)

which, when compared to the standard model expectations, (¢¢7)? = 0.3042 and
(¢8)2 = 0.0301, suggest that the data prefer a lower effective left-handed coupling.

At present, both expressions of the result stand unchallenged.

9.1 Interpretations

Interpretations of the discrepant NuTeV result include the possibility of symmetry
violating parton distributions, additional Z bosons, or unexpected neutral current
neutrino interactions. Each is briefly considered below.

The NuTeV result is extracted assuming isospin symmetry in the nucleon, u? =
d", d? =u", w’ =d", and d = u". While all global parton distribution fits (CTEQ,
GRV, MRST) are performed under this assumption, the present analysis is sensitive
because of the need to assign u and d flavors (which have different NC couplings)
to the neutrino scatterers. Several classes of non—perturbative models calculate the
potential effect of isospin violation in the nucleon [81, 82, 83]. Estimating the effect
of the single quark mass difference (mg,—m,, = 4.3 MeV), the earliest calculation [81]
predicts a large —0.0020 shift in sin? fy,, which could account for roughly 40% of the
observed discrepancy. However, more complete calculations that include differences
in the nucleon masses (m, —m, = 1.3 MeV), diquark masses (mgq — My,), and
nucleon radii predict much smaller shifts in the result. For example, the Thomas et

al. bag model calculation [82] predicts dsin® Oy (NuTeV) = —0.00010 as a result of
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the cancellation of opposing shifts at low and high . A meson cloud model prediction
[83] yields a similarly small +0.00020 shift in the NuTeV measurement. Figure 9.1
compares the various predictions. While the more recent calculations don’t suggest
a very large isospin violation, such a possibility cannot be firmly excluded as a
potential explanation for the NuTeV results. However, a nucleon isospin violating
model which successfully accounts for the NuTeV discrepancy needs to be evaluated
in the context of a global fit so as not to violate existing experimental data in the

attempt to accommodate NuTeV.

Thomas Calculation, Sather Estimate, and Meson Cloud Model

0.006

Sather x&d,

0.004 —

0.002

Thomas Xdy .o

Meson Cloud xddy

-0.002 -

o e e b e e e e e e e e b e e
0.1 0.2 0.3 0.4 0.5 0.6 0.7

X
Figure 9.1: Various model predictions for an isospin violating difference in the mi-

nority quark distribution, dd, = d? — v, as a function of .

The analysis also assumes that the strange and antistrange seas are symmetric,
s(x) = $(x); however it has been noted that non-perturbative QCD processes can
potentially generate a momentum asymmetry between the strange and anti-strange
seas [84]. Such an asymmetry can be directly measured using the same parton
distribution formalism and cross section model as were employed in the sin®#y,

measurement. Leading order fits to the NuTeV neutrino and antineutrino dimuon
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data samples [42] yield a negative asymmetry* (Figure 9.2):
/x s(x) — z3(z) de = —0.0027 + 0.0013 (9.4)
and a corresponding increase in the NuTeV measurement of sin? fyy:
sin? By = 0.2297 £ 0.0019 (9.5)

when compared to the result, sin? 0y = 0.2277 & 0.0016, assuming s(z) = 5(z).
Including the measured strange sea asymmetry increases the NuTeV discrepancy

with the standard model to 3.70 significance; hence, this is not a likely explanation.

LO dimuon fit results

o 01 o0z o3 04 05

_0.01 E xs(x) — xsbar(x)

X

Figure 9.2: Measurement of the strange and anti-strange seas from the NuTeV LO
analysis of dimuon processes vN — pu*p~X and N — ptp~X [42]. The bottom
plot displays the measured asymmetry x s(z) — 2 3(x) as a function of z.

* The result applies only within the specific PDF formalism and LO cross section model used in the
NuTeV LO dimuon and sin? fy analyses and is not a more general statement about the existence
of an asymmetric strange sea.
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In addition to evaluating the effects of unexpected parton asymmetries (see the
appended publication in Appendix F), we also consider several non—standard physics
cases. The existence of an additional Z boson would impact the NuTeV measure-
ment by shifting the effective neutrino—quark couplings away from their standard
model values. These shifts can arise from both pure Z’' exchange as well as from
7Z-7' mixing. A popular class of Z' models involves the introduction of extra U(1)
symmetries. The Eg model in particular has been considered as a candidate for grand
unified theories. In this specific model, the coupling shifts are well determined [85],
however because the NuTeV result requires an enhancement in the effective left—
handed quark couplings (Figure 8.5), it is difficult to explain the entire discrepancy
with the inclusion of such a Z’. While this specific model can produce large right—
handed coupling shifts, appreciable Z-Z' mixing is required to induce sizable shifts in
the left—-handed couplings. The size of the mixing is severely limited, at the ~ 1073
level, by measurements from LEP and SLD [86], hence making it difficult to accom-
modate the NuTeV measurement. On the other hand, it is possible to explain the
entire NuTeV discrepancy with the inclusion of an “almost” sequential’ Z' with a
mass in the 1.2703 TeV range. Both the Tevatron Run II and the LHC offer the
hope of discovering such a Z’.

Finally, while such a solution is not model-independent or unique, it is interesting
to interpret the entire NuTeV discrepancy as a deviation in the overall NC coupling
strength pg. The result, as presented in Section 8.3, is a neutral current rate that is

1% lower than the standard model expectation at almost 30 significance:

p? = 0.9884 4 0.0026 (stat) + 0.0032 (syst) (9.6)

t A 7' with standard couplings but which interferes destructively with the standard model Z.
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Figure 9.3 displays the NuTeV result in comparison to all other existing neutrino
data. The only other precise experimental constraint, the LEP I measurement of
Z decays into invisible channels, allows deduction of the number of light neutrino
species. The result, N, = 3- % = 3-(0.9947 £0.0028), is 20 shy of the three
known neutrino species [73]. Given this particular interpretation, one might suspect

the neutral current couplings of neutrinos, since the only two precise measurements

are both lower than the standard model expectation.

x’/dof =1.7/3

l.OQ +/- 0.05 . CHARM Il et aI
1.00 +/- 0.02 | , LEP =I Direct
0.995 +/- 0.003 ol LEP | Lineshape

0.96 0.98 1.00 1.02
Neutrino NC Rate/Prediction

Figure 9.3: Experimental constraints on neutrino neutral current interaction rates
relative to the standard model prediction. The two most precise measurements, LEP
[ T(Z — vv) and NuTeV p, are both below expectation.

Despite investigation of these avenues, the cause of the NuTeV discrepancy is
not currently known. So what does the future hold? NuTeV was dismantled several
years after data—taking and holds no hope of remeasuring electroweak parameters
in neutrino scattering, but two future experiments are preparing to also test the low
energy prediction of sin?@y,. To illustrate, Figure 9.4 shows the running of sin® 6y
in the MS scheme (Chapter 2).

Although very precise measurements of asymmetry parameters at the Z pole set

the overall scale of the prediction, the two experimental constraints off the Z peak,
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namely the atomic parity violation (APV) [77] and NuTeV sin? fy measurements,
deviate from the predicted evolution of sin?fy,. Two polarized electron scattering
experiments: an ete™ Mpller scattering experiment, E158 at SLAC [78] and an
electron—proton scattering experiment, QWEAK at Jefferson Lab [79] plan to probe
this low Q? regime in the near future. These two experiments fall between the scales
relevant for the APV and NuTeV measurements and propose to have improved
precision. Any significant deviation in their measurements would provide striking
evidence for new physics. However, if the deviation in the NuTeV measurement
somehow results from new physics specific only to the neutrino or muon sector (i.e.,
beyond the Standard Model physics that is not flavor universal), then the discrepancy
would surely not manifest itself in these two future experiments.

During the past three decades many experiments have performed a wealth of pre-
cision electroweak measurements to quantitatively test all aspects of the Standard
Model. Unfortunately, the end of the decade precision measurements leave us with
an incomplete picture. Despite current quests for ever higher energies, unexplained
discrepancies still persist in existing data sets. While issues raised by the current
data certainly heightens the excitment in high energy physics at the moment, this
author hopes that in addition to pushing the experimental energy reach, there re-
mains room in the high energy physics program for further exploration in the “low

energy frontier”.
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weak mixing angle

scale dependence in MS-bar scheme
025 T T T T T

0.245

0.24 -
=
L / MSSM
% | | old Q(APV)
0.235 - QWEAK I E158 .
new Q,,(APV)
Z—pole

0.23 - F

0.225 : : :

1 1 1 1
0.001 o0.01 0.1 10 100 1000
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Figure 9.4: Scale dependence of sin €y in the MS renormalization scheme (solid
line). Shown are the experimental results from Z pole asymmetries (LEP, SLC), deep
inelastic neutrino—nucleon scattering (NuTeV), and atomic parity violation (APV)
measurements. The values for the APV measurement result from two recent recal-
culations of vacuum polarization effects. Expectations for E158 [78] and QWEAK
[79] are also shown with arbitrary central values and projected uncertainties. Plot
is courtesy of J. Erler [80].
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Appendix B

Lab E Coordinate System

The lab E coordinate system is a right-handed cartesian coordinate system. The
origin of the system resides roughly halfway between the calorimeter and the toroid,
with the incoming neutrino beam direction chosen to be the 4z direction. A diagram

of the coordinate system is provided in Figure B.1.

+ X

vV Beam @ ty

Calorimeter Toroid

- X

Figure B.1: Schematic of the Lab E coordinate system as illustrated by a bird’s eye
view of the NuTeV detector; +z is referred to as the downstream direction.
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Appendix C

Protons on Target

NuTeV: Integrated Protons on
Target

3.5E+18

Total Protons to Target
3.0E+18 Logged: Neutrino Mode
------- Logged: Anti-Neutrino Mode
Protons on Tape (All Dead/Downtime Removed)

2.5E+18

2.0E+18

1.5E+18

Total Protons on Target

1.0E+18

5.0E+17

0.0E+00
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Figure C.1: Accumulation of protons on target as a function of time during NuTeV’s
1996-1997 fixed target running. Also shown are the total number logged to tape in
each mode.
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Appendix D

CC Cross Section Facts

In charged current neutrino-nucleon interactions, the struck quark undergoes a flavor

changing transition:

vit+tq — po+q

Vptq — p+q (D.1)

Hence, charged current neutrino interactions proceed via exchange of a W, while
antineutrino interactions proceed via exchange of a W~. In order to conserve charge
at the quark vertex, only negatively charged quarks participate in CC neutrino inter-
actions while only positively charged quarks participate in CC antineutrino interac-
tions. Hence, neutrinos can only scatter off of d, s, w and ¢ quarks in CC interactions.

Antineutrinos can only scatter off of d, 3, v and ¢ quarks in CC interactions.

v = d,s,u,¢ CC scattering (D.2)
— d,5,u,c CC scattering (D.3)

N
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Appendix E

Monte Carlo ¢ Normalization

It is worth noting that the NUMONTE Monte Carlo code returns a cross section
value that is normalized by a factor (G%ME/m)~'. Hence, to translate the output
from the Monte Carlo routine, SIGMCQ), into a physical cross section an additional
normalization factor of @ =158 fb GeV ! - E (GeV) = 1.58 x 10 *%cm? GeV !

- E (GeV) must be applied, such that:

2 2 2
d*o _GFME'<d0 (E.1)

dedy 7 dx dy> SIGMCQ

As such, the Monte Carlo returns total isoscalar neutrino and antineutrino cross

section values of:

o'/E = 0.643 x 107% cm? - GeV ™!

o’/E = 0.319 x 10 % cm? - GeV ™!
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Appendix F

Publications

The remainder of this dissertation contains articles on this topic that were submitted
for publication. The first paper was accepted and published in Physical Review
Letters in February 2002 [88]. The second paper, also appended, was submitted to

Physical Review D in March 2002 and is still awaiting formal approval [89].
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The NuTeV Collaboration has extracted the electroweak parametdt,sifiom the measurement
of the ratios of neutral current to charged currerand 7 cross sections. Our value, S, ©nshel) =
0.2277 = 0.0013(stap = 0.0009(sysb, is 3 standard deviations above the standard model prediction. We
also present a model independent analysis of the same data in terms of neutral-current quark couplings.

DOI: 10.1103/PhysRevLett.88.091802 PACS numbers: 12.15.Ji, 12.15.Mm, 13.15.+g
Neutrino-nucleon scattering is one of the most precisavhere
probes of the weak neutral current. The Lagrangian for o(FN — €+X) 1
weak neutral current-g scattering can be written as rE T 5 3)

o(vN — €7X) 27
s Grpo s and gl = (el r)? + (efR)% Corrections to Eq. (2) re-

= A [Fy*(1 = y)v] sult from the presence of heavy quarks in the sea, the pro-

a s q_ 5 duction of heavy quarks in the target, higher order terms

X [ergyu(l = v)g + ergyu(l + ¥7)ql, (1) in the cross section, and any isovector component of the

. ) light quarks in the target. In particular, in the case where

where deviations frompo = 1 describe nonstandard jfina|-state charm quark is produced frord ar s quark

sources of SU(2) breaking, ang x are the chiral %ark in the nucleon, there are large uncertainties resulting from
couplings. For the weak charged currerf, = Iy the mass suppression of the charm quark. This uncertainty
and ez = 0, but for the neutral currené/ and ez each  has limited the precision of previous measurements of elec-

contain an additional term:Q sir*gy, whereQ is the  troweak parameters in neutrino-nucleon scattering [3—5].

quark’s electric charge in units ef By measuring ratios To reduce the effect of uncertainties resulting from
of the charged and neutral current processes on a hadrorgharm production, Paschos and Wolfenstein [6] suggested

target, one can thus extract 3, and po. consideration of the observable:

In the context of the standard model, this measurement ~ o(WuN = v,X) — c@,N — 7,X)
of sir’@y is comparable in precision to direct measure- R™ = = — "
ments ofMy,. Outside of the standard model, neutrino- o(wuN —HK X) = o@uN = p*X)
nucleon scattering provides one of the most precise _ R — 1R = (g2 — ¢2) 4
constraints on the weak couplings of light quarks, and 1 —r 8L 8k)- @

tests the validity of electroweak th_eory in a range ofp- is more difficult to measure thar”, primarily be-
momentum transfer far fromM;. This process is also cqse the neutral-current scatterings @ndw yield iden-
sensitive to nonstandard interactions, including possiblgca) opserved final states which can be distinguished only
contributions from leptoquark arid’ exchange [1]. througha priori knowledge of the initial state neutrino.

The ratio of neutral current to charged current cross Method-— High-purity » and7 beams were provided by
sections for either or v scaﬁering from isoscalar targets e Sign Selected Quadrupole Train (SSQT) beam line at
of u andd quarks can be written as [2] the Fermilab Tevatron during the 1996—1997 fixed target
run. Neutrinos were produced from the decay of pions and
=—— " =(g2+r"Vg%), (2) kaonsresulting from interactions of 800 GeV protons in a

o(vN — ¢~(HX) BeO target. Dipole magnets immediately downstream of

(=) (—),
RV = o(vN — vX)

091802-1 0031-900/02/88(9)/091802(4)$20.00 © 2002 The American Physical Society 091802-1
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the proton target bent pions and kaons of sfpedicharge vertex and the last counter consistent with at least single
in the direction of the NuTeV detector, while oppositely muon energy deposition. Events withlang’ length are
charged and neutral mesons were stopped in beam dumpdentified as CC candidates, whilshort events are most
The resulting beam was almost purer 7, depending on likely NC induced. The separation between short and long
the charge of the parent mesons. Antineutrino interactionsvents is made at 16 countersi(.7 m of steel) fork., <
comprised 0.03% of the neutrino beam events, and neutringd GeV, at 17 counters fo60 < E.,; < 100 GeV, and
interactions 0.4% of the antineutrino beam events. In adetherwise at 18 counters. The ratios of short to long events
dition, the beams of almost pure muon neutrinos containetheasured in thee and7 beams are
a small component of electron neutrinos (mostly fr&h
decays) which created 1.7% of the observed interactions Rexp = 03916 = 0.0007 (5)
in the neutrino beam and 1.6% in the antineutrino beam. and Rz(p = 0.4050 = 0.0016.

Neutrino interactions were observed in the NuTeV de-

tector [7], located 1450 m downstream of the proton tar_sinzaw can be extracted directly from these measured ra-

get. The detector consisted of an 18 m long, 690 torfios by comparison with a detailed Monte Carlo simulation
steel-scintillator target, followed by an iron-toroid spec-Of the experiment. The Monte Carlo must include neutrino

trometer. The target calorimeter was composed of 162f)Juxes, the neutrino cross sections, and a detailed descrip-
(3 m X 3m x 5.1 cm) steel plates interspersed with lig- “02‘ %f th‘?l %etgctor re_spolns_e. . d dict th
uid scintillation counters (spaced every two plates) and ealled beam Simuiation IS used o predict e

drift chambers (spaced every four plates). The scintilla2nd? fluxes. In particular, a precise determination of the

tion counters provided triggering information as well as aelr(]ectror] ”93"'”°d°°gtam'”at'°” In tr?e beam is esfselntlal.
measurement of the longitudinal interaction vertex, evenf "€ "alOSR¢,, and R, increase in the presence of elec-
length, and energy deposition. The mean position of hits iffo" Neutrinos in the data sample because electron neutrino
the drift chambers established the transverse vertex for th@a;geld currertlt_ |r:tera(i_t|ons are almost always ifledths
event. The toroid spectrometer, used to determine muofieutral-current interactions. . o
charge and momentum, also provided a measurement of The bulk of the qbserved electron neutrinos, 93% in the
the muon neutrindlux in charged current events. In ad- » Péam and 70% in the beam, result fronK,; decays.

dition, the detector was calibrated continuously throughThe beam simulation can be tuned with high accuracy to

exposure to beams of hadrons, electrons, and muons ng?scribeve and7, production from charged kaon decay

a wide energy range [7] ecause th& = contribution is constrained by the observed
For inclusion in this analysis, events are required to’# and Vﬂ.fluxes. Because of the precise alignment of

deposit at least 20 GeV of visible energg.() in the the beam line elements and the low acceptance for neutral

calorimeter, which ensures full fefiency of the trigger particles, the largest uncertainty in the calculated electron
allows an accurate vertex determination, and reduces coButrinoflux is the 1.4% uncertainty in th&,; branching
mic ray background. Events witi.,, > 180 GeV are also ratio [8]. Other sources of electron neutrinos include

. ta
removed. Fiducial criteria restrict the location of the neu_nehl_JtLalhkaonsl, charrfned _hadrlons, and_m_uon ig;;goy/s’ all of
trino interaction to the central region of the calorimeter.WNICN have larger ractional uncertainties ( 0).

The choserfiducial volume enhances interactions that are Nally. small uncertainties in the calibration of the
calorimeter and the muon toroid affect the muon and elec-

contained in the calorimeter, and minimizes the fraction trinofl ts. Additi | traint
of events from electron neutrinos or non-neutrino sourceiron neutrinotiux measurements. iional constraints

After all selections, the resulting data sample consistd©™ the data, including direct measurementsvofand
of 1.62 X 105 » and0.35 X 10° 7 events with a mean Pe charged current events and measurements, afvents

visible energy E..;) of 64 and 53 GeV, respectively. in the7,, beam (which also result from charm and neutral
ca ’ . . . .
In order to extract sitgy,, the observed neutrino events kaon de_cay) [9] redu_ce the electron neutrino uncertainties.
must be separated into charged current (CC) and neutrAlt (€ highest energiesty, > 350 for v, andE, > 180
current (NC) candidates. Both CC and NC neutrino in-1o" v,), th_e beam Monte Carlo underpredicts the measured
teractions initiate a cascade of hadrons in the target that flu’)\(l anq 1S thusl not udsed. inelasti .
registered in both the scintillation counters and drift cham- egtrlnlo-néjc eon er dl_ne aSt('jC scaéterlngd plrc]:cesrs1es
bers. Muon neutrino CC events are distinguished by th&"® Simulated using a leading order (LO) model for the
presence of #inal state muon that typically penetrates be-CTOSS Seéction augmented with longitudinal scattering and
yond the hadronic shower and deposits energy in a Iarg!é"gher tWt'St tﬁg's' tThedgr?gs-?ectlc;n p?rametrljléagon
number of consecutive scintillation counters. NC eventg \COTPOrates parton distribution functions (PDFs)

usually have ndinal state muon and deposit energy over'°M charged current data measured, obtained with the
a range of counters typical of a hadronic shower. same target gnd model as used in this prgrlmsnt [10,11].
These differing event topologies enable the statistical "eS€ PDFs include an external ct.)nstrglqbdrja (_[,11]'
separation of CC and NC neutrino interactions based solefgnd make the standard assumptions k) = d, (x),
on event length. For each event, this length ifirdel by  d,(x) = u,(x), ands(x) = 5(x). Small modifications ad-

the number of scintillation counters between the interactiofjust the parton densities to produce the inherent up-down
091802-2 091802-2
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quark asymmetry consistent with muon scattering [12] anair’y . Events reaching the toroid, which comprise about
Drell-Yan [13] data. A LO analysis o N — utu~X  80% of the CC sample, have been left out for clarity, but
events [14] provides the shape and magnitude of thére included in the normalization of the data. Excellent
Strange sea. Mass Suppression from Charged Cun—eﬁgreement within uncertainties is observed in the overlap
charm production is modeled using a LO slow rescaling€gion of long NC and short CC events. _
formalism [15] whose parameters and uncertainties come Results—Having precisely determinedy,,, R, and
from the same high-statistice * .~ sample. A model their predicted values as a function of electroweak parame-
for ¢ production is chosen to match EMC data [16]; ters sif@y andpy, we proceed to extract the best values of
it is assigned a 100% uncertainty. A global analysisSifw andpy. This is done by means offi that also in-
[17] provides a parametrization of the longitudinal struc-cludes the slow-rescaling mass for charm productiog) (
ture function, Rz, which is allowed to vary within its With its a priori constraint fromu ™ w~ data [14]. R” is
experimental and theoretical uncertainties. QED andnuch less sensitive to Siéw thanR”, but both are sensi-
electroweak radiative corrections to the scattering crostive to m. and po.
section are applied using code supplied by Bardin [18] When fitting with the assumptiorp, = 1, si*gy is
and fromve.34 of zFITTER [19], and uncertainties are Simultaneouslyfit with the slow-rescaling parameter..
estimated by varying the parameters in these correctionskike an explicit calculation oR ™, this procedure reduces

The Monte Carlo must also accurately simulate the reuncertainties related to sea quark scattering as well as
sponse of the detector to the products of neutrino interagnany experimental systematics common to bettand
tions in the target. The critical parameters that must b@ samples. Statistical and systematic uncertainties in the
modeled are the calorimeter response to muons, the me8iPfw fit and in the comparison ot and R” with the
surement of the position of the neutrino interactions, andionte Carlo prediction are shown in Table I.
the range of hadronic showers in the calorimeter. Precise The single parametdit for sir’6y, measures
determination of these effects is made through extensivesir? gy, ©nshell) — 02277 + 0.0013(stad = 0.0009(sysh
use of both neutrino and calibration beam data. Measured M2 — (175 GeV)>?

. o . : to

detector parameters are then varied within their uncertain- — 0.00022 X (W)

ties to estimate systematic errors.
Ani tant test of the simulation is its ability t - My;
n important test of the simulation is its ability to pre + 0.00032 X |n<150HégeSV>' ®)

dict the length distribution of events. Figure 1 shows event
Leading terms in the one-loop electroweak radiative cor-

length distributions in théinal data sample compared to
the Monte Carlo prediction for our measured value Ofrections [18] produce the small residual dependence of our
result onM,, and Myiges. The prediction from the stan-

dard model with parameters determined bfiteto other

60000 42+

P | B, electroweak measurements 02227 *+ 0.0004 [20,21],
50000 £ 0.8 i %%** 12 approximately3o from our result. In the on-shell scheme,
20000 E v [ SOREROSC10] | where siRfy = 1 — M%/M2%, and whereMy, and M,

F 121 il 08 are the physical gauge boson masses, our result implies
30000 £ - L‘(’;i’:CMC 1 ;owlfiffffdf_lf My = 80.14 = 0.08 GeV. The world average of the di-
s0000 E| & 7 0.8 bt R rect measurements oy is 80.45 + 0.04 GeV [20].

3 1520 25 For the simultaneouit to sirtdy and po, we obtain
10000 p| o po = 0.9983 = 0.0040

[ 0o — Y. — U B

o A I T I T E S . 7
14000 [ 7020730 4‘% ) 5660 70 80 sinfy = 0.2265 + 0.0031, 0
12000 £ 1,05 ot ybit g bt with a correlation codfcient of 0.85 between the
10000 [ v 0.7 f hRErerEes 14 two parameters. This suggests one but not both of

8000 F totorme FreessibibRTEpE] 105 sirtdy, el or o may be consistent with expectations.
6000 - - c(::(:wc 1.4 W 0.7 We have also performed a two-parameierin terms of
- 1,05 Fprty +1t: ﬁ{# the isoscalar combinations [22] of effective [23J neutral-
4000 0.7 b L *55 1. current quark couplinggg z)? = (uf ) + (di'z)? at
2000 B] (¢*) = —20 GeV?, which yields
0 ~0 304050 60 70 80 (g5)? = 0.3005 + 0.0014,
length (counters) (8)

(g5)? = 0.0310 + 0.0011,

FIG. 1. Comparison o> and 7 event length distributions in

b with a negligibly small correlation coi€ient. The pre-
data and Monte Carlo (MC). The MC prediction for CC events .
is shown separately. Insets show JARE ratio comparisons dicted values from standard model parameters correspond-

in the region of the length cut with bands to indicate the ingffto the electrowealtfift described earlier [20,21] are
systematic uncertainty in this ratio. (gf")? = 0.3042 and (g% ')? = 0.0301.
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TABLE I._ Uncertainties for both the single parameter?sip fit and for the comparison of
R” and R” with model predictions.

Source of uncertainty 5sirtfy SR SR”
Data statistics 0.00135 0.00069 0.00159
Monte Carlo statistics 0.00010 0.00006 0.00010
Total statistics 0.00135 0.00069 0.00159
v, 7, flux 0.000 39 0.00025 0.00044
Energy measurement 0.00018 0.00015 0.000 24
Shower length model 0.000 27 0.00021 0.000 20
Counter eficiency, noise, size 0.00023 0.00014 0.000 06
Interaction vertex 0.000 30 0.00022 0.00017
Total experimental 0.00063 0.00044 0.00057
Charm production, strange sea 0.000 47 0.00089 0.00184
Charm sea 0.000 10 0.00005 0.000 04
o”/a” 0.000 22 0.00007 0.000 26
Radiative corrections 0.00011 0.00005 0.000 06
Nonisoscalar target 0.00005 0.00004 0.00004
Higher twist 0.00014 0.00012 0.00013
R. 0.000 32 0.00045 0.00101
Total model 0.000 64 0.00101 0.00212
Total uncertainty 0.00162 0.00130 0.00272
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with the standard model expectation for ), (on-shell) [10] A.J. Buras and K.J.F. Gaemers, Nucl. Ph432 249

In a model-independent analysis, this result suggests a (1978).

-~ : - hl11] U.K. Yanget al., Phys. Rev. Lett86, 2742 (2001).
smaller left-handed neutral current coupling to the Ilght[12] M. Ameodoet al., Nucl. Phys B487, 3 (1997).
quarks than expected.

. [13] E. A. Hawkeret al., Phys. Rev. Lett80, 3715 (1998).
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The NuTeV collaboration recently reported a valuaiaf 6y measured in neutrino-nucleon scattering that
is 3 standard deviations above the standard model prediction. This result is derived assuming that (1) the strange
sea is quark-antiquark symmetridz) = s(z), and (2) up and down quark distributions are symmetric under
the simultaneous interchangew» d andp < n. We report the impact of violations of these symmetries on
sin? By and discuss the theoretical and experimental constraints on such asymmetries.

PACS numbers: 11.30.Hv,12.15.Mm, 12.38.Qk, 13.15.+g

I. INTRODUCTION AND FORMALISM and

Based on measurements of neutral current and charged cur-

rent neutrino-nucleon scattering in bqth neutrino and anti- = 1_ sin? Oy + Esin4 Ow,
neutrino beams, the NuTeV collaboration recently reported a s 2 , v 9
measurement oiin? 80" "'V The result [1], gr = ()" + (€g)”
4
_ = —sin” Oy 4)
sin® 60" M = 0.2277 + 0.0013(stat.) £ 0.0009(syst.)
10,0002 x (Mt’op (175 GeV)? For the experimental values efandsin? yy, it follows that
. (50 GeV)2 RY is much more sensitive &in? fy than isR”.
Mpigys Inspired by the Paschos-Wolfenstein relationship [5]:
+ 0.00032 x In(——22), 1)
150 GeV P~ 0N 2 nX) —o(@N = 7,X)
is approximately 3 standard deviations above the expected T o(uN = pX) - o(FyN = ptX)
value 0f0.2227 + 0.0004 [2, 3]. RY — rR” . .
. . — —_ 2 2 5
Ratios of neutral current to charged current cross sections = 1=y "9 ®)

on isoscalar targets of andd quarks are experimental ob-
servables that can be related to fundamental electroweak phliTeV uses high Stat'St'CS separated neutrino and anti-
rameters. Before NuTeV, high statistics neutrino experiment§eutrino beams to measusin” 6y and thereby reduces its
measuredin? Aw using the Llewellyn Smith cross section ra- sensitivity to uncertainties in cross sections resulting from
tios [4]: scattering offg-g symmetric quark seas. Using the separate
neutrino and antineutrino data sets, NuTeV also extracts ef-
(=) . (=) o fective neutral current quark couplinggg)? and(g¢ff)? [1].
(v N2V X) 2+ (2) Let (¢(z)) denote the momentum distribution of a particu-
J((,j) N = (- X) lar flavor of quark averaged over the nucleons in the NuTeV
target, and letQ) = [(q(x))dz, the total momentum carried
where by quark flavorg. Let nucleon-specific quark momentum dis-
tributions be denoted by, (z) andg, (), with corresponding
o(PN = (tX) 1 integrals@, and@,, respectively. Both the Llewellyn Smith

"= cwN 5 X))~ 2 () and Paschos-Wolfenstein relationships assytie = (D)

R'® =
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and (U) = (D). The Llewellyn Smith interpretation of
RY assumes additionally thdtS) = (S) = (C) = (C)
(clearly (S) = (C) is experimentally not a good assump-
tion), while the Paschos-Wolfensteid~ formula assumes
only (S) = (S) and(C) = (C).

The NuTeVsin? 6y analysis accounts for the violations of 0.5
the assumption thatu(z)) = (d(z)) and (@(z)) = (d(z))
which result from the excess of neutrons over protons in 0.25 {
the target. From a material inventory of the NuTeV target
calorimeter, we measure5a67 + 0.05% fractional excess of 0F
neutrons over protons [6]. However, the NuTeV result as- t
sumes exact isospin symmetry in neutron and proton quark =925 [

- (=) (=) - r
distributions, @', (z) = 'd n(z), d p(x) = Wn(z). The 05|

NuTeV analysis assumes furthermore thatz)) = (3(z)) Y
and{(c(z)) = (¢(z)). It has been pointed out that such as- —-0.75 ¢
sumptions, if incorrect, produce sizable shifts in the NuTeV r
sin? Oy [7-10]. -r

Although the NuTeV experiment does not exactly measure ENS
R, in part because it is not possible experimentally to mea- 12 0.2 05 0.4 0.6 06 0.7 08 0.8
sure neutral current reactions down to zero recoil energy, it is X
nevertheless illustrative to calculate the effect of these viola-
tions onR™~. Denote the neutron excess of the NuTeV targeir|G. 1: The functionals describing the shift in the NuTeM? 6y
aséN = A — 2Z/A and the total valence momentum carried caused by not correcting the NuTeV analysis for isospin violating
by the proton a¥, = U, — U, + D, — D, Letthe following  andd valence and sea distributions or {a(z)) # (5(z)). The shift

in sin? @y is determined by convolving the asymmetric momentum

Tr

0.75 f Fsinzg

Flsin®@y,T,(x) —d.(x);x]

Flsin®@y,d,(x) ~Ua(x);x1

FIsin’@u,s(x)~5(x);x]

6Dy = Dp—Dp—U,+ U, distribution with the plotted functional.

U, = Uy—-Up,-D,+D,

52 = EP 72” these symmetry violating terms in the way that Equations 5
oU = U,—D, and 7 would suggest.
65 = (S) —(S) (6) To examine the exact effect of various symmetry violations

o ) on the NuTeV analysis, we first define a functiohdt , J; z|
denote deviations from the above symmetry assumptions. Tgch that the shift in an experimental quantify,due to a

first order ind N, §Q,,, 4Q andds, we obtain symmetry violating quark fractional momentum distribution,
R~ ~ A2 4 A2 o(z), is given by:

U,—-D . .
+ 0N (ﬁ) (3A2 + A2) .
5T, — §D ’ AE = / FIE,8;2] () da. (8)
%(?Ai + A?%) 0
S v All of the details of the NuTeV Monte Carlo simulation and
+ V(QA?’ - 3(A3 + A2)e.), (7)  measurement can be parameterized in ternfs[6f J; |, and
p

therefore, this formalism provides a way to determine the
WhereA';’L’d — (62,4)2 _ (6}%@)2 and where:,. denotes the ra- shif@ in t_he NuTeV n_]easurement for arbitrary symmetry vi-
tio of the Scattering cross section from the strange sea includ2/ation in PDFs.  Figures 1 and 2 shalf(¢, ¢; ] for an

ing kinematic suppression of heavy charm production to thatSoSPin symmetry violating. andd valence and sea and for
without kinematic suppression. In this calculation, we assumg®()) # (5(x)). Figure 1 shows the functionals for the
the massless quark-parton model which implies no longitudiNuTeV measurement ofin BW& \(th|le F'g‘;”ze 2 shows the
nal cross section, no target mass effects, and we also assufffgresponding functionals fgy7")* and(gg')".

(€)=(C)=0. s
As already noted, to extragin” 6y, NuTeV does not mea-
sure directlyR—, but rather measures ratios of experimental Il. ASYMMETRIC STRANGE SEA

candidates within kinematic criteria and compares this to a

full Monte Carlo simulation which accounts for neutral cur-  If the strange sea is generated by purely perturbative QCD
rent and charged current cross-talk, non-quark-parton mod@rocesses, then neglecting electromagnetic effects, one ex-
contributions to the cross section, radiative corrections, elegects(s(z)) = (s(z)). However, it has been noted that
tron neutrino backgrounds, and detector resolution [1]. Thereaon-perturbative QCD effects can generate a significant mo-
fore, the NuTeVsin® 6y, measurement does not depend onmentum asymmetry between the strange and anti-strange seas



F la’s(x)=s(x);x]

F Lg%, (x)—u"(x);x)
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0.1 0.2 0.3 0.4 0

Loves
.5 0.

N I
0.7 0.8 0.9
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FIG. 2: The functionals describing the shifts in the NuTep")?
and(g%T)? caused by not correcting the NuTeV analysis for isospin
violating » and d valence and sea distributions or f¢s(z)) #
(3(x)). The shifts in(g$T)? and (¢%T)? are determined by convolv-
ing the asymmetric momentum distribution with the plotted func-

tional.
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and a covariance matrix[24] incorporating both statistical and
systematic uncertainties on these parameters:

0.0034 0.0027 —0.028 —0.007
0.0027 0.0031 —0.024 —0.008 (11)
—0.028 —0.024 0.78 0.18
—0.007 —0.008 0.18 0.29

Within this particular model, the measurement implieseg-
ativeasymmetry,

(S) — (S) = —0.0027 £+ 0.0013, (12)
and a resulting increase in the NuTeV valusiaf 8y,
Asin? By = 40.0020 £ 0.0009. (13)

The initial NuTeV measurement, which assumeér)) =
(3(x)), becomesin® fy = 0.2297 & 0.0019. Hence, if we
use the experimental measurement of the strange sea asym-
metry, the discrepancy with the standard model is increased to
3.70 significance.

A recent calculation [10] claims thatpositivestrange sea
asymmetry of(S) — (S) = +0.0020 could explain half of
the NuTeV discrepancyYsin® 8y 0.0026). It should be
noted, however, that this is an overestimate, as Figure 1 makes
clear, due to the fact that charged current charm suppression
threshold effects have been neglected in their analysis, and
because NuTeV does not exactly measire[25].

Reference [15] reports favoring a significant positive
strange sea asymmetr§ (— S ~ +0.0020) at highz. A

[11-14]. Lending weight to this possibility, a joint fit t0 ;¢4 the form assumed in Equation 9 does not necessarily ex-
CDHS neutrino charged-current inclusive cross sections [16{,,qe such an asymmetry as it is dominated by data at low
(but not including CCFR [17] and NuTeV data or neutrino , - The asymmetry of Reference [15] would imply at least a
dimuon cross sections) and charged lepton structure functiogly increase in the totat dimuon cross section in the region
data reports some improvement in their fits if they allow for, 5 (5 However, NuTeV has looked for such an excess

an asymmetry in the strange sea at higfil5]. The CCFR

at highz and excludes additional dimuon sources larger than

and CDHS charged current neutrino cross-sections differ sigy 5o, (0.6%) in thev (7) data at 98 confidence [18].

nificantly at highz where this joint fit finds a large strange sea
asymmetrys > s.
By measuring the processes, 7y — putp~ X the CCFR

Ill.  ISOSPIN VIOLATING PDFS

and NuTeV experiments constrain the difference between the

momentum distributions of the strange and anti-strange seas.

For studying the effect on the NuTe¥h? 6y, it is important

to study such effects within the same PDF formalism and cor:

responding cross sections as were used in the measurem
itself [1]. In this enhanced leading order cross section mode
the CCFR/NuTeVy, 7 dimuon data were fit [18] to the fol-
lowing form for the strange and anti-strange seas [23]:

o) = T o
Gy = AT 5
obtaining central values of
K .352
2 )= Do 0
a —2.04

Several recent classes of non-perturbative models predict
isospin violation in the nucleon [7-9]. We evaluate the shift
in the NuTeV value ofin? y under the assumption that the
%'gg/mmetry occurs in nature and is not corrected for in the
NuTeV analysis. The earliest estimation in the literature, a
bag model calculation [7], predicts large valence asymmetries
of opposite sign int, — d,, andd,, — u,, at allz, which would
produce a shift in the NuTeWn? Ay of —0.0020. However,
this estimate neglects a number of effects, and a complete cal-
culation by Thomast al. [8] concludes that asymmetries at
very highz are larger, but the asymmetries at moderasee
smaller and of opposite sign at low thereby reducing the
shift in sin” fy to a negligible—0.0001. Finally, the effect
is also evaluated in the Meson Cloud model [9], and there the
asymmetries are much smaller atallresulting in a modest
shift in the NuTeVsin? 6y of +0.0002.

The calculation of Thomast al. [8] is particularly use-
ful in evaluating uncertainties because it decomposes isospin



288

violating effects into different parts that are driven by ex-isting data [22].

perimental or theoretical inputs. The largest contributions

to a shift insin? fy in this calculation come from the sin-

gle qUark (77,(1 —my, ~ 4 MeV) and nUCIeonMn —my & IV. CONCLUSIONS
1.29 MeV) mass differences. The former has a significant

theoretical uncertainty, and we assign a fractional error of .
25% to this source of isospin violation based on the uncer- The fact that NuTeV does not measure diredtly or exact

A A . ratios of neutral to charged current cross sections makes it dif-
tainty inmgq — m,,[19, 20]; such an uncertainty translates to ficul dict the eff £ level iolati
a0.0001 uncertainty in the NuTeVin? 8. Another contri- icult to predict the effect of parton level symmetry violations.

TR h . e .. _Hence, we present a framework for evaluating the effects of
bution in this calculation with large theoretical uncertainties : S - >
) B - . bothisospin violating andd parton densities and asymmetric
is the effect of diquarkr4q — m.,,) mass differences. This strange seas on the NuTeV measurementady, (¢57)?
causes isospin breaking predominantly at higivhere both g wo g )

the PDFs are smadindthe effect on the NuTeV measurement and(gg;')?. While itis possible, i principle, to induce sizable
h b A L shifts in the NuTe\in? fy with variations in the former, the

is negligible. The uncertainty is therefore significantly smaller._. FR/NuTeV f d ) ino di d
than that from the single quark mass shift. joint CC uTeV neutrino and anti-neutrino dimuon data

In general, nuclear effects can also cause isospin-breakin
thereby p_roducm@p) # (D) in the NuTeV target, which is CCFR/NuTeV dimuon data increases the NuTeV discrepancy
primarily iron. While less theoretically certain, one estlmatewith the standard model
of the effect exists [21] and would predict a modest increase '
in the NuTeVsin? 6y .

Although a particular nucleon or nuclear charge symme-
try violation model could account for the NuTeV discrepancy Acknowledgments
with the standard model, such models, in their attempt to ex-
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