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Abstract

We have applied and generalized the Lie algebraic formalism developed by
E. Forest to calculate smear and tune shifts due to random and systematic multi-
pole errors for the SSC. In particular, we have calculated smear to the first order
in the multipole strength, and tune shifts to the second order. Systematic errors
up to octupoles, random errors up to decapoles, and feed-down effects due to
closed orbit distortions have been included. For random errors the spread of the
smear for an ensemble of accelerators has also been calculated.

The analytical results have been compared with extensive tracking results
(averages over 100 seeds have been used for random errors). A histogram of the
smear is presented. By Fourier analyzing the tracking results, we have been able
to isolate and compare contributions to the smear from different multipoles.

Calculations have been done to study the performance of candidates for the
SSC lattice with 4, 5 or 6 dipoles per half cell, 1 or 2 TeV injection energy,
and 4 or 5 cm magnet aperture. The improvement obtained by correcting the
systematic multipole errors have also been included.

" Present address: Lawrence Berkeley Laboratory, One Cyelorron Roadl.
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T Present address: Stanford Linear Accelerator Center, P.O. Box 4349,
Stanford, CA 94309
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1. Introduction

Early in the design process for the SSC, the concepts of tune shift and smear
were chosen as first order measures of merit of machine designs. Smear was to be
a measure of departure from linearity. It has been used extensively by the SSC
Central Design Group recently in comparing various systematic multipole error
correction schemes. {1,2] The intention of the concept is clear. Unfortunately,
several different quantitative definitions of this term have appeared in the litera-
ture. Recently, Furman and Peggs [3] addressed this problem and have suggested

a convention for the use of this word which we will follow in this paper.

E. Forest [4] pointed out that tune shifts and smear could be easily calculated
from generators that appear in the Lie algebraic analysis of one-turn maps. Other
analytical methods have been reported. [5, 6] In this paper, we follow the a.pproach

of E. Forest and extend his results in the following ways:

) We include random decapole errors in the dipole magnets and show that

indeed their contribution to the smear is negligible.

1) We derive analytical expressions for the spread of the smear for an ensemble

of machines with specified rms magnet errors.

112) We derive expressions for the smear in the presence of closed orbit distor-
tions (from dipole field errors, quadrupole misalignment, and beam position

monitor {bpm) displacement errors).

1) We compare our numerical results for the average smear and the spread of
the smear with extensive tracking results, using values obtained from 100
different random seeds in the case of random multipoles for the SSC lattice.

We are, therefore, also able to present a histogram of the smear.
o) We are able. by Fourier analysis of the tracking data, to isolate and compare
contributions to the smear from different multipoles.

vt) We analyze and compute the first and the second order contributions of

systematic sextupoles and octupoles to tune shifts.



As a result of this work we can make the following claims:

i} At important amplitudes, the analytical expressions adequately reproduce
in detail the average smear, the spread of the smear, and tune shifts derived
from tracking. Thus, one can with confidence use analytical techniques to
study a wide variety of operating points and lattice configurations. Com-
putation times for each working point are reduced from hours on the CRAY

{needed to obtain results with good statistical significance) to seconds on
the VAX.

it) The contributions of various multipoles and closed orbit errors and depen-
dence on amplitude, momentum, and working tune are now clear and the

meaning of smear is transparent.

1) The spread in smear values is typically 40% of its average value. This fact

is significant in assessing the confidence that a specified set of parameters
will yield the desired linearity. The need for an additional specification,
such as long-term dynamic aperture (with modulation included) is clear,
and one will want to do long-term tracking for a set of seeds for selected

working points.

2. Estimates of Smear and Tune Shifts
2.1 'THE DEFINITION OF SMEAR

We take the point of view that smear is to be a measure of machine non-
linearity. Under circumstances where quadrupole and skew-quadrupole errors
are present, or where a non-zero closed orbit results i feed-down to produce
quadrupole and skew-quadrupole errors, we analyze the resultant linear lattice
to obtain linear eigensolutions and describe the motion by reference to their
respective eigen-amplitudes and eigen-actions. We then follow the recommenda-

tions of Ref. (3] and define the smear S{4;) and S{42) of the eigen-actions A4,



and Az. When there is no linear coupling, we have

5= VAR AT
T4, 2Tz

if  AJ, < Js (2.1)

where A; is the horizontal betatron amplitude and A, the average. For ran-
dom errors, we will calculate the averages over an ensemble of accelerators. For

computation, we will use the following average

- < AJZ>
< Sg Zseeds= 4}2 seeds (2.2)

T

and for the o

2
<AJE —-<ATE>E >
053 = \[ z — seeds~ seeds . (23)
4JI

To first order in the multipoles strength, J, may be replaced by J,. Similar
expression holds for the vertical plane. For comparison reasons, the square root

of these quantities will be presented.

2.2 SOURCES OF SMEAR AND TUNE SHIFTS

With the exception of random errors, we assume that the lattice is a repeti-
tion of identical cells. We wish to find the tune shifts and smear from chromatic-
ity sextupoles, errors in dipole magnets, and misalignment errors of the main
quadrupoles. Some of these contributions are the same for each cell, namely
from the chrométicity sextupoles, and from the systematic errors in the dipole
magnets. Some vary randomly from cell to cell, namely the contribution from the
random multipole errors in the dipole magnets, and the misalignment errors. The
random misalignment errors of the quadrupoles contribute to a random closed
orbit in the dipoles and chromaticity sextupoles, and in this way produce random

perturbations.



Since a tolerable design must have both tiny tune shifts and small smear
within the usable aperture, it follows quite simply that the machine may be
regarded as basically linear, and departures from linearity may be introduced as

perturbations.

For evaluating systematic perturbations it is sufficient to limit the analysis
to one cell. Clearly, the tune shift of the machine will be equal to the tune shift
of one cell times the number of cells. On the other hand, the smear of the full
machine will be identical to that for one cell. This is clear if one notes that smear
measures the departure from linear orbits, and a one-cell machine is indeed the
endless iteration of identical cells. The smear measured in the second cell of a
two-cell machine must then be identical to that in the first cell, and no different
than the smear measured in a one-cell machine. To obtain a low smear per cell,
one needs to choose a working point so that the phase advance per cell is not near
a resonance. This choice of tune implies that systematic errors will contribute

importantly to tune shifts but little to smear.

On the other hand, for the random errors the full lattice has to be studied.

If we consider amplitude resonances

Mgy + Nyly =P, ng ,Ny,p = integer (2.4)

the statement of the previous paragraph implies that the systematic errors will
only excite resonances for which the harmonic P is equal to 0 or the number of
cells (due to the symmetry of the lattice). For the random errors, many more
resonances can contribute to the smear. The tune shifts remain small since the

random perturbations of the phase fluctuate around zero from cell to cell.

Since the tune shift is an average over many turns of the phase shift per
turn, 1t can be equivalently regarded as an average over initial phase. It follows
that the first order “odd” multipoles, such as sextupoles and decapoles, cannot
contribute to tune shift. This fortunate circumstance means that the tolerances

on the sextupole can be loosened. However, second order perturbations then



come in to play. Hence, second order contributions to tune shift from sextupoles
must be computed. All other perturbations for tune shift and smear can be

adequately calculated from first-order perturbation theory.
2.3 [ESTIMATES OF SMEAR AND TUNE SHIFTS

We begin by assuming that the linear lattice has been analyzed, that coupling
is negligible, and that the solution to the linear motion is given by the usual

Floquet solution [7]

z(38) = \/28z(8)Jy cos[fz + ¢z(s)] (2.5)

where

_ f dr
$a(s) = 0/ s (26)

Jz is the invariant action associated with the z-degree of freedom (2J, is the
Courant—Snyder invariant), #; the initial phase, and 8;(s) the beta function. It

follows that

g =—4/ B—i—é—)-{sin[ﬂx + ¢:(5)] + az(s) cos[0z(s) + éz(s)]} (2.7)

where
as(s) = ~364(s) (2.8)

Then the action and the initial phase are given by the values of z and 2’ through

the equations

1 ) - ! )
Jr = o+ [ Fels )’ + ap(s)e]”
25, 17T ol )
(2.9)
ot <
f, = — arctan Pr(3)7 + az(s)a — o,(s)

€I



To first order, the change in action and the change in phase produced by a small

change in ¢’ is then given by

z
2Jy

AT = [Bz(s)z’ + az(s)z]Az’, | Al = — Az . (2.10)

We note that
Bu()e' +ax(r = —/BIT, sinles + gu(o)] = Tt ZL O
(2.11)

so that if the kick Az’ can be given in terms of the derivative of a potential

function through

v (,y) 8V (z,y) |
Az = - —2%2 = .
z e Ay 3y , (2.12)
then we can write Eqs. (2.10) as
oV ov
AJQ; —_ "‘aax 3 Agz —_ (’)Jx I (2-13)

where now V(z,y) is expressed in terms of action-angle variables by writing «
and y in terms of action-angle variables. Egs. (2.13) are reminiscent of Hamilton’
equations of motion if interpreted as giving the additional change in J and € from
a perturbing term V in the Hamiltonian.[8,9] We will come back to this theme

in Chapter 3.

Let us first show that indeed there exists such a V" for the kicks from magnetic
multipoles which we are considering, Indeed, rhe potential 1V is proportional to
the longitudinal component of the magnetic vector potential, Ag. Since when we
neglect end effects there are only transverse components to the magnetic field,

the fields may then be expressed as the derivative of 45, From B =V x A, we



have

0As 04,
Be=% B="%

The kick from the magnetic field is given by [ Fdt, where F = gv x B. Thus,

(2.14)

Axf — AP:C — _QLBy , Ayl — qLBz (2.15)
Po Po Do
Hence
L oA gL 0A
Ar =208 Ay = 1205 2.16
po Oz v po Oy (2.16)
from which we may deduce that
L
Viz,y) = ﬂ—i—oAa(a:,y) : (2.17)

The first order expressions for phase shift and smear can now be easily found.
The tune shift is the phase advance (divided by 27) per turn averaged over many
turns. The action variables are approximately constant, so the average over turns

can be taken as an average over initial phase angle. Thus,

oV
2rAvy = (Afy)g =< >g . 2.18
TAvz = (Ab;)g ;Ma (2.18)
The sum over k indicates the sum over multipoles in the lattice. To find the smear
requires a bit more thought. The changes in J that are given by Eqgs. (2.13) result
in a distortion of the phase space surfaces for the system. Letting J,(8) and .J,(8)
denote the phase space surface, then Egs. (2.13) imply

Vi
- 06,

If we define an operator, R, that takes any function of (8,.6,) into the sume

function evaluated at {8z + 27y, 8, + 27wy ), then Eq. (2.19) may be written

Vi

(R—1)J;(0:,6y) = — - 06

(2.20)

|



Formally this may be solved in the form

1 Vi
R-1 - 08, '

J(02,0y) = J; — (2.21)
where 1/(R — 1) is the inverse operator to R — 1. Since the V} are polynomial
. functions in = and y, and hence in cos 8 ,sin 8z, cos 8, and sin 8y, it follows that
Vi can be written as a polynomial in exp{%in,8; Jexp(+iny8,). R — 1 operating
on such a term yields a complex number times the original function. Hence,
1/(R — 1) is also well defined on such monomials, and by extension, on the poly-
nomial V}, assuming no monomials with n, = n,; = 0 occur in the decomposi-

tion. The smear is the rms value of AJ, divided by two times its average value

(Eg. (2.1)), hence,
1/2

2
1 1 oV
S(Ax)zi <(R—1 k 39;) >9 : (2.22)

As an example, we will calculate (to first order) tune shifts for random normal

octupoles and smear for random normal sextupoles. First order tune shift for
sextupoles is zero since the 8 average of ™2 y" is zero if ng, ny, or ny +ny is odd.
The magnetic multipoles in the SSC dipoles are usually parametrized through
the formula[10]
oo
By+iBy =Bg Y (bn +ian)(z +iy)" (2.23)
n=0
where By is the design bending field and by, a, are the normal and skew multipole

strengths with the dimension m™". It is customary to quote an, and b, In units

of 10™* measured at a reference radius ry = 107° m. If we write
= . oy g ~
B,, +B, = Dy Z”)H + iy e . by = By 1()7‘1 . (2.24)
. re==[} "

then for the SSC these parameters range from 0.1 to 10. (See Table S-1{11]).

Given Eq. (2.23) for the magnetic field, it follows that the potential function V



is given by

A 1 z 4\ " :
V =re8R — .
Tobg enzz;) n+1(bn+zan)( . ) , (2.25)
where 8; = qLBy/py - 107% = L/p-10"* is 107* times the bend angle of the
reference orbit in the dipole magnets, about 27 /4000-10~%. Hence, the potential

for the normal octupole located at s = s;, 1s

N as 1 v
V3N = roadb3km(xg —6ziyl +y) . (2.26)
0
A simple way to find the averages over 8 is to write the cosine of Eq. (2.5) as
a sum of complex exponentials, and use the binomial theorem to extract the 8

independent term. For example,

- 3
< costly >= 3 < cos’ @, >= —;— (2.27)
50
A~ 1
<V 5= 9db3k% (882472 — 1265k ByrJady + 384 TE] . (2.28)

Next we need to sum this quantity over all k. For random octupoles, the strength
byr will be kO s where the rip are normally distributed random numbers with
an rms spread of unity. This, in turn, implies that the sum over ¥ when various

random seeds are considered, will be

A 1
Yo <V > =ryv Nbyojy5— (3 < Bor > J2 =12 < BurBy > JoJy
i "0 (2.29)
where IV is the total number of dipoles, r# is a random number chosen from a

normal distribution of unit width, and the averages of the powers of the beta

functions can be taken over any single cell. The derivative of Eq. (2.29) with

9



respect to J; or Jy will give 27 times the z and y tune shift, respectively. For

example,
.. 3
2rAygy = r#\/Neda,,q; [< B2k > Tz — 2 < BriBy > Jy) . (2.30)
0

«

To carry this one step further, it is usual to express such a result in terms of the
maximum amplitude of oscillation at a point in the arcs where the beta function

is maximum; namely, we write J; = z2,,,/(267°*%) and Jy = y2,,,/(287%%).

T ‘\/Néd&bg 3
£ 3 [< 32:1: > x%naz -2< 5zkﬁyk > y?nar} s (2.31)

2wy, = Spres 4]

where N = 4000,0; = 27/4000 - 107 o5, = 0.3, A7 x A7 ~ 360m, <
2. >=4.3x10*m? and < BrkByk >= 2.8 x 10*m?. [12] The order of magnitude

here is given by the combination of factors:

Avy = VN
1
~63-107% ——.0.3-1.2-10%(0.6)% ~ 0.007

4000

More precisely

Av, 0.0041 —0.0052 72 /T%
=Tru ( maz .}> i (2.33)
Avy ~0.0052  0.0040 | \Yhes /T2
We see here that the first order tune shifts from the random octupoles are nor-

mally distributed.
To calenlate the smear from sextupoles. we beein with Eq. 12.22), For the

normal sextupole, we have

3] ol 1 D)
vy = edbzkg-;_,-(mﬁ. ~3ayi) . (2.34)

LN

10



" Next, we expand zj, x‘;’c, and y,% in terms of complex exponentials. For example,

3/2 '
-T";l;c — (ﬁzgjz) [e3i(l9x+¢zk) +3ei(92+¢'zk) —}—cc] ) (2.35)

where cc stands for the complex conjugate. The operator 1/(R — 1) and the

derivative with respect to 6, on this term give

+cc (2.36)

1 awz BexJz 3/2 e (0stdax) 37102+ dak)
R—-1086; ( 2 ) ei2xdv: — 1 et s — 1

The operations must be performed for ——xky,%. Then these are added, summed
over k, multiplied times itself (summed over j), averaged over €, and finally the
square root is taken to get the smear. Instead of proceeding further with this

example, we write down a more general expression -

__ - _ 1 aVk _ ]. in-8
AL(B) = 1(6) = To = 575 > 5t = s > o (Bnke + cc)
k k,"xZO’"y

inge Pk 0
= 2 (TkA"ke_zmem +ee

knz>0,n,
(2.37)

Here, the in, comes from the derivative with respect to 8;, the denominator is
the R — 1 factor, the A, is real and is a polynomial in the beta functions and
the action variables. The sum is restricted to n; > 0 since the n, < 0 terms then

appear in the complex conjugate (cc) terms.

If we square this result and average over 8, we get

2
A,]I(r#) =< AJI(G) >p= <(R ) - agr) >H

1 .
== > BB+ e (2.38
- Jkn>20m,
1 scosn - (¢; — dp)
E .. 4 . 2 J
= ")_..- TJTkAnJ\Anan - 3 —
2T e Som, sin” 7n - v

11



Here we see the “resonance denominators” that are important to the smear cal-
culation. If we ask for the average value of the above expression, averaged over

random seeds, then only the 7 = k terms survive, and we get

————— 1 3?@ 2 1
< AJHrR) > = <<R—IZ(39¢,) >e> T D BaiBu

k k,ny
. . ne20 (2.39)
2 .2
T Z A"knzsinz(i-rn V)
kny
nzr>0

In addition to this average it is of interest to calculate the spread over random

seeds of the expression in Eq. (2.37).

2 2
E Amj — AppAnjAngnim;
2k 230

ny >0
my,ny

R

< DIHrg) > — < DIX(rg) > =

cosm- (¢»J — ¢p)cosn - (fibg — @)

2

sin®7m - vsin®7Tn- v

(2.40)

The precise analytic expressions will be presented in Chapter 4.

Taking the specifications in Table S-1,[{11] for nonlinear multipole errors
present in the dipoles, the principal contributions typically come from the sex-
tupole and the octupole errors. This result depends, of course, on the operating

tunes. Higher multipoles are quite negligible.

Since the total integrated length of the quadrupoles is much smaller than the
dipoles, the nonlinearities in the quadrupoles give a negligible contribution to the
nonlinearity of the machine at injection. For collision optics, the nonlinearities
from the interaction region quadrupoles can become dominant., Here we linit

our attention to the situation at injection.

Random quadrupole and skew-quadrupole errors in the dipoles do not con-

tribute directly to the smear, but they create a slight randomness in the cell-to-

12



cell phase advance and beta function. As a result, there is a random contribution
to the nonlinear contributions of the systematic dipole multipoles. This arises also
when closed orbit errors are present since they give normal and skew quadrupole

terms through feed-down.

3. Smear and Tune Shifts from Lie Generators

In this chapter, we derive expressions for smear and tune shift using Lie
algebra techniques. It is possible to extend the above results to higher orders,
and as an example, we derive the expression for second order tune shift which we
need for sextupoles. Additionally, the Lie algebraic formulation affords insight

into the quantities we are computing.

3.1 THE EXPONENTIAL LIE OPERATOR

There have been several descriptions of the Lie algebra techniques. [13, 4, 14, 2]
We present here the main results with explanatory comments. The exponential
Lie operator is written exp(: f :). It operates on a function space, and is defined

by

=g+ lfol+ AN+ (3.1)

where {f, g] is the Poisson bracket of f and ¢. If exp(: f :) operates on a coordinate

function, then the result
f. ...,
x5 = elie = x4+ [fa] + U]+ (3.2)

can be interpreted as the value of the coordinate at a time ¢t = 1, expressed
as a function of the coordinates at time ¢t = 0, for a dynamical system with a

Hamiltonian H = — f. Since the Poisson bracket viewed as an operator falls into

13



a class of operators which are derivations (: f : can be viewed as the operator

—d/dt), it follows that
elz™ = 2} (3.3)

and thus for polynomial functions

eéfiglz)=g¢ (c:f:z) ) - (3.4)
Of special interest is the case where f(z,pz,y,py) is only a function of ¢ and y.
Then, B

0 of
Ty =14, Yr=14, mezpa:.‘*‘gf'_'a and pyf:Pye+a_y7 . (3.5)

) 1
We call this a kick Hamiltonian; it can be an accurate representation of a thin

magnetic lens. For the multipole kicks described in Chapter 2, Eq. (2.17),

f(zy) = —V(e,y) = i—fAs(x,w | (3.6)

3.2 THE ALGEBRA OF EXPONENTIAL LIE OPERATORS

The operator exp(: f :) interpreted as a map, is necessarily a symplectic
map, since it produces a coordinate transformation generated by a Hamiltonian
function. Thus these maps may be composed to create an algebra of symplectic

maps. Suppose’ we have two operators
zp = e NEd g mapping z1 to 23 (3.7)
and
z3 = 222y mapping z2 to z3 (3.8)
then the composition
23 = Eff-l(:gj-'({:fl(:lJ::} — e feE i, (3.9)

has one exponent expressed in terms of the original variables z1, and the second

exponent expressed as a function of the intermediate variables. A bhit of thought

14



(and doing one simple example) shows that the result is the same as
23 = e:fl(zl):ezﬁ(zl):zl . (310)

Briefly, fa(z1) operates on z as if the variable was 22, and then because of
property from Eq. (3.4) above, the operator exp{: fi(z1) :] changes z; everywhere

to 2o (expressed as a function of z;). This is exactly the composition desired.

Of course, Eq. (3.10) is more convenient and allows us to build a powerful op-
erator algebra. A combination of particular importance is completely analogous

to the similarity transformation so familiar in linear matrix algebra

R e e (3.11)

Finally, there is a theorem, known as the Campbell-Baker-Hausdorft Theorem,
by which a product of two operators may be combined into one

e:fgzezfai — eifi , (3.12)

where f is given by

f = fat it gl Al S5l Lo Al = (s lfos fil) = 5l Lo, U i)+
(3.13)

The remaining terms, involving four or more commutators, become quite numer-
ous and no simple pattern is apparent. In practice, this formula is of interest in
those cases where fi and f» are small, and the series converges rapidly. Fortu-
nately, this is the case for accelerators where nonlinearities are kept as small as

possible so that the motion is very close to hinear.



3.3 LIf ProDuCT REPRESENTATION OF ACCELERATOR LATTICES

If we represent our accelerator by a combination of linear elements and non-
linear kicks, then the map for the lattice will be given by an expression of the

form
M= MN+1e:fN:MNe:fN_1:...e:fe:Mze:fl:Ml ; (3.14)

where the My are linear operators and the f, = fn(zn,yn) are multipole kicks at
the longitudinal coordinate s = s,. According to Eq. (3.10)}, we may write this
product in terms of one set of variables by reversing the order of the products.
We then have

M = Myel Mye ey My eV My (3.15)

where all generators are now a function of the same (initial) variable. If we
define M, = M, MyM;...M,, then by inserting identities of the form M, M,
into Eq. (3.15), and using the similarity relation, Eq. {3.15), many times we can

transform Eq. (3.15) into the form

M= ezﬁlﬁ:e:ﬂzh:...EZ—M‘N"lfN_lze:MNfN:—M_N+1 . (316)

The nonlinear kicks have been “rotated” to the front of the lattice. The M,

transform the initial variable to the variable at the location of the kick.

In the case that the map is a one-turn map for a circular machine, it is usual
to introduce two similarity transformations, one which translates the origin to
the fixed point of the map, and the second which transforms the linear part of the
map to a block diagonal rotation. If the origin is not a fixed point {one supposes
it is close to the fixed point), the fixed point may be found by constructing the

mverse to the map, and finding the image of the origin. Then the map
Ty = ™% (3.17)

where : a-z = Zij a;Ji;z; and Ji; is the symplectic form, will map the origin

mto the fixed point a.

16



Let us suppose that the map of Eq. (3.16) has been translated if needed, so
that it already maps the origin into itself. Let the matrix corresponding to the
linear map A_J_N.,_l be M. Because M is a symplectic matrix, 1t is possible to find
eigenvalues which, if M is stable, will lie on the umnit circle and occur in pairs.
Using the eigenvectors corresponding to these eigenvalues, we can construct a

similarity transformation A with the property
M = AyRA;' | (3.18)

where R is a simple block rotation matrix

- ﬁx 0 ~ cosf; sinf,
R = N , R, = ' . (3.19)
0 R,y —sinf, cosf,

We now insert these results into Eq. (3.16), remove the “"”, to denote the corre-
sponding Lie operator rather than the matrix, and additionally introduce iden-
tities in the form Aj 14,, so that we can move the Ay ! through the nonlinear

kicks. We get
M = A7leAMfuighoMafs  gdoMufupyg, (3.20)

The functions
ﬁt = Aoﬂnfn = fn(AOan) (3.21)

are the functions f, written in terms of the eigencoordinates at the longitudinal

location s = sp. If there were no coupling present, then, for example,
Ty = AO_MR.’L'
=V zﬁszz COS(G,; + ¢:cn) + nxn(s

where 3, , én , n are the usual beta function, phase advance and linear dispersion

, (3.22)

function at the point s = s,. and the momentun deviation ¢ is defined by

5EP_m
]

: ' (3.23)
where py is the momentum of a reference particle.
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At this point, we may drop the overall similarity transformation, Ag, and

study the map

——

M= efigh givp (3.24)

The Campbell-Baker-Hausdorff theorem, Eq. (3.17), can be used to write the

result in a particularly simple form
M=el'R . (3.25)

Of course, f is a generator which, in general, is difficult to find, but the first
terms in the perturbation series may be found quite easily, and one may hope

that this will be adequate if the f, are small. We have

N - N o
F=X"fat > Umifal+ oo (3.26)
n=1 n

m<n

3.4 LIE PROD_UCT NorMAL ForM

We now describe a process which is a generalization of the procedure in-
troduced in Eqs. {2.19) through (2.21). The map of Eq. (3.25) will distort the
invariant phase space surfaces around the origin. For small actions these surfaces
will be tori, the products of phase space circles in each phase space degree of free-
dom. As the action increases the invariant surfaces are slightly distorted. As the
action increases further, the surfaces become only approximations to the actual
motion, and eventually the concept of invariant surface bhreaks down entirely. We
are mterested in the regions that have invariant surfaces or approximate nvirl-
ant surfaces and we would like to find such surfaces. If such surfaces exist, they
will form an onion-like structure in phase space, and there will be a map that

deforms the tori into these more complicated shapes. Let such a map he noted

18



by exp(: ¢ :). This map should satisfy an equation of the form

f\;i — e:f:R — e:g:ﬁe—:g: :

(3.27)

where R = Rexp(: h @) is an amplitude dependent rotation in the toroidally

structured space. k will be a function of the action variables only. R contains

the information about phase shift with amplitude, the operator exp(: g :) contains

the information about the_pha.ée space distortion. The operator exp(: ¢ :) will

determine the smear. If Eq. (3.27) is indeed a valid equation, then we can move -

R on the right-hand side to the right by inserting an R R™! on the right, and

then use the Campbell-Baker-Hausdorff equation to find

e:f:R — e:g:Re:h:ez—g: — e:g':e:h:e:—Rg:‘R

= /(1 -Rlg+h—1/20g, Rg]-1/2(h,(1+ R)g}+.-. i

Suppose that f 1s-given in the form

f=€f1+62f2+...

and we wish to find a corresponding expression for ¢ and h; namely,

g = €g1 + 62g2 + ...
h=chi+ehy+...

Equating terms which are first order in ¢, we get

{(1-R)yg1+h1=hH

This may be solved uniquely by decomposing f; into two parts

h=f +f

19

(3.28)

(3.29)

(3.30)

(3.31)




where f,” is the average of fi over phase angle, and f} = f1 —f; is the remainder.

Then we may set

- 1
h] = fl and g1 = mfl . (333)

The operator 1/(1 — R) is well defined on f; since the terms in fi, which are

independent of angle, have been removed.

Equating terms which are second order in €, we get the equation
(1-R)ga+ha=fa+z [gi,Rgl] +3 [hl, (1+R)g1] . (3.34)

We proceed exactly as in Egs. (3.31). There are two simplifications

[h17(1+R)g1] =0
[91, Rg1] = [ f1, — f1} {flv—_"_'f:l : (3:35)

The result is

1
ha=fy +35 [ff,—%'ﬁff]

1 1+ R (3.36)
QQZT:Efz* [fp — fl] +5 [fl? — fl}

This procedure could be continued to higher orders.

3.5 LIE ALGEBRAIC EXPRESSION FOR TUNE SHIFT AND SMEAR

There are two sets of phase space angles one can diseuss: one set is the
original pliase angles, the other set ix the image of the first zet under the wap
‘exp(: ¢ :). {Recall that in “local coordinates” the order of the factors in Eq. (3.27)
is reversed.) The same tune shift would result using either set, because a revo-

lution traversed in one set implies a revolution traversed in the other set. The

20



image of the original space under exp(: g :) we call the Floquet space, and
the phase angles in this space the Floquet angles. The Floquet angles are ro-
tated by the operator R. Combining the operator exp(: h :) with the operator
R = exp(: —po - J), we have

R = e~HoT+h: (3.37)
and the phase advance per turn is given by

Oh
pi(J) = poi — e (3.38)

The smear can be found by using exp(: ¢ :) to calculate the change in the actions.
We have

Jl=e"%T (3.39)
hence,
Ali=e Y —J; . (3.40)

The smear is found by taking the average over the angle of the square of this

expression. If we are content with a first-order expression, then

J9 1 9 (3.41)

AJ@Z#@&  R—1 06

which is the same expression we found in Chapter 2.

3.6 SECOND ORDER TUNE SHIFTS

We now use Lie algebra technmiques to calculate the second-order tune shifts.
These are especially important for sextupoles and decapoles where the first-order

tune shifts are zero.
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The contributions to f from the normal sextupoles can be written

Z a; Az + = Z aiaj A21, AZJ] N (342)

l<]

where a; is the strength of the :*! sextupole (multiplied by the appropriate con-
stants) and Ajy; is the polynomial

1

Az =z} — 2wy
(3.43)
=Mz = \/2BriJi cos(0r + ¢zi) + 7z
We will calculate the tune shift for 6 = 0. Then we may write
1 IiJ 1
2 = ﬂxz [ i(fz+dz) 1+ cc] = ?".‘)_‘ERi(e 9z +ec) (3.44)
and z may be written as
iJz n/2 i
= (é%—) Ri(e'%" + ce)™ . (3.45)
We are using the notation that
Rif(gr?ey) = f(ez +¢Ii19y + ¢yi) (346)
for sextupoles, since hy; = Az; =0,h;s = A5, =0
1 N -
hy = hos = Zaaj Aa;, Aoy]” Zalaj {4% 1_R~1,}] . (3.4T)
z<] ¥
This expression involves evaluation for 7 < ;7 of ters of the form
C-abcd _ .., a b 1 <. d - ¢ b 1 ¢, - (3.48
T4 _[liyz‘ly] 5"5;3Uia1_R~l,‘Uj + UJ 1 — Rl (Y . )
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One can establish the following facts,

bed,
BRI Zg“ " sin(n - ¢ij)

(=291, 1 j Rm§y?]‘ = Xn: g;;!:cd,n sin(n - ¢ij3i; (Sliln.[r; /;pn — u)] (3.49)
and
Gibed = ;g?;cdm COS[:lir‘l((fz:j”—/ :l-)/z)] | 550
where
bij =i~ i (3.51)

The term for : = j would be obtained by taking the limit ; — ¢ and multi-
plying by 1/2. This fact allows us to extend the sum over all ¢ and j where now

all terms have a factor of 1/2. In this sum, we must replace ¢;; by QS;';- where
Gij, 1<
¢F = . (3.52)
®ji, J <t

- Therefore, we need only find the coeflicients of the first simple commutator above
to get the G?;’Cd’n. The combination of commutators is found by a simple replace-

ment of the sine by another trigonometric function.

Note that only phase differences ¢;; arise. This follows from

[R:f, Rig]~ = [f,RT'R;g]™ = [f, Rjig]™ | (3.53)

where Rj; = RjRi_l. To evaluate the commutators and find the G;-I;'Cd, one can

nse the basic commutator

(Jk/2m6 /2 ine) _ melby £ 1) mylky £ 1) Jlk+1)/2

! 27, ZJy Onm s (3.54)

where JK = ]1“ ]k”
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If we define
_cos[n- (¢F — p/2)

= sin{n - u/2) ’ (3:55)
then the function h; is given by
) 1 o .
Che=g e Y dudl, 3o (356)
iy abed n
where we have written
Agi = digafyl . (3.57)
a,b

The appropriate coefficients dib could be inserted for any multipole.

4. Analytical Expressions for Tune Shift and Smear

The formalism outlined in Chapter 2 gives a recursive forri;ulation for the
calculation of tune shift and smear. It proves convenient to implement the recur-
sive formulation in Chapter 2 using a computer algebra system MACSYMA. [15]
This allows us to automate the cumbersome analytical forms corresponding to

the higher order multipole contributions, as well as to generate the necessary

FORTRAN code.

Generally, MACSYMA programs have been written where the input is a
definition of the vector potential and the output is analytical expressions for the
smear and tune shifts, as well as FORTRAN-compatible expressions. Smear has
been calculated to the first order in the multipole strength due to systematic or
rancdom as . b2 . a3, b3 and random a4 and by. For random multipoles, the variance
Lhas also been calenlated. Tune shifts have heen ealenlared to thie second order

due to systematie a» , by, az, and b3.
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4.1 SMEAR TO THE FIRST ORDER IN THE MULTIPOLE STRENGTH

If we define
By — cos(n - ¢;x) . 41
ik sin’(7n - v) (4.1)
and
Amxmy — (zﬂijx)m /2(2ﬁw )my/2 , (42)
we find

1 _
8= 7 ZZ{ L ojan AR 42(BY 4 B
7 k

- 281)2,5%[( 4A2 AL — 4420412 1+ AP AP)BY + A AP
< (B + B + AP AP B
1 -
+ o0kl A AP (Bl + By + 9B, + 9B} ') + 947 A}
(}33}c + BY '+ Bl + Bl ) — 1847 AY (B + B )]

+ 5-1563, bak[4(9AF AT — 643 A% + AP A°)BE + 947 AT

x (BE + B %) + A AP BY }

5= G s ;{T;g@m%[@_ﬁl%l AP 4 AP AP)E)
T
+A21Ai1(32é k 1) + A03 4()3 J(,)}'c}]
SIQbQJkaA PAP(BR+ B
+ ;é(z;;J(e;gk[g_4j3.4 Y(Bji + Bj;:‘ + B + ng‘ )+ AT 4y (4.3)
BN+ B 0B £ 9B = AN B B

+ :ﬁbgjbgk[4 (9AZ AR — 647 AP + AN AL B + 0457 AT

X( H}:{ +B ) _104 -104.3[“}}



For systematic multipoles, the sums run over one cell; v in the denominator
of Eq. (4.1) is the phase advance per cell divided by 2x. For random multipoles,

the rms smear is obtained by averaging over random seeds so that

2 2
< Qnjlnk >seeds™ O'ajnéjka < bpjbak >seeds— abjnajk ) (4.4)

where 0,4, ,0p, are the rms values of the multipole strength. The random multi-
pole errors are assumed to be uncorrelated. Each sum runs over the whole lattice
and the phase advance for the entire lattice divided by 2% should be used in
Eq. (4.1). However, since the beta functions are periodic with the cell, the sums

simplify to a sum over one cell multiplied by the number of cells.

4.2 TUNE SHIFTS TO THE FIRST ORDER IN THE MULTIPOLE STRENGTH

To the first order, only quadrupole and octupole errors contribute to the tune

shifts (if higher order multipoles are neglected). We have

1 3
Avg = o Z [ b1 025 + 531(3 25-@9’53!3’%)}
1 : 3 ’ (4:5)
Apy = 5T Z [ bljxf?w — Zbgj('z‘,-’ﬁ?rjf)’w Jy (3,” g, )]
J

where for systematic errors, the sum runs over one cell and should be multiplied

by the number of cells.
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4.3 SECOND ORDER TUNE SHIFTS

We find for the second order tune shifts

1
Avy = ‘2"7;‘2 zk: (”aljalk‘\/ﬂz;ﬁzkﬁyjﬂyk(TJlk - lkl)
7

1 9
+ §02ja'>k[ ( Ba:]ﬁxl. ﬂy}ﬂyk ]:1: + ﬁz] \/ By]ﬁs/ J kl - Br]ﬂzk\/ ﬁyjﬁyk
x (]z +2J )T + 6Ijﬂxk\/ﬁyjﬂyk(']:c - 2Jy)Tu— ]

+ b');b%[( 35%253/2] + 43/ Bei B By Jy)T ﬁg.{zﬁS/zJ’”:’?’?
+)\/ /szﬁzkﬁwﬁjk']y( '_H - H)]

+32a3,a3k {QMﬁ;‘fﬁB/z TUTYS —T)3) - 383128312 [ BusBuk
< (24 60, T)T3H + 38228300 BB (T2 — 6. J) T + (27
Mﬂ3/253/2+36\/ﬁ7ﬂ3/2ﬁ;]/~ /By J2 72\/ﬁTﬂ3/263/2\/_
- 546" 63’0\/%”& 7”;33” 3/2\/%J21 Ly (27
Bres Byl Bok’ + 367/ By el Bul\J Byt ) T2 + (=72 B B2 el [ Ok
— 54322 8Y2 18y, By )Tu Ty + 273 “‘/"m AT

1 )
+ 2 b3sbsk { =98z Bex By By (25 Ty + T))TGE + 9Bzs Bak Bys Byk(272Jy

- -]S)Tfk 35;Ji3rk ]:Tfi? + 36; 3r1/3wﬁyk ]_[ T}OJ:’ 3632, 801 By Byk JJ 121?

+ T2, 303y L L T = 7230, 33y, 3y 1o 0 T — 2437 35, ) T’“})



1 1 o o 1-
Avy = 27 Z ZL: (—-galjalk 5zjﬁa:kﬁyjﬁyk(lek ! + lekl)

1
+ ga2j0nkl(4825/Br Bk e = 3651 B4 TV TE + 2823 Buk [ Bys By T
2-1 _ 2l 3/2 3/2
(T- T3)— 8,78, TR
+ bZJb”k V 1332 ﬂzk ﬁy} —V ﬁx;ﬁxkﬁy;ﬂyka = 6z]ﬂzk,3yj)8yk
x (2J + TN = /BeiBukByi Byn(27 - y)T;k "‘1
1 9 .3/9 - 9
+ 39(13,@{ 9ﬂ2§ B By B AT + TR + 33/ Bay Bor B2 63
X (8JzJy — JETN> = 33/ Bas Bkt Bok (605 Ty + JHTR 4 —27
\/ﬁxmxmjj”ﬁ”?ﬂ ~54\/ B Bokoy Aol + T2/ Bay Bep B0
\/53, Vo dy + (=278 832 [8y By + 36/ Bey 8202 8212 /By ) 2T
27\ BBt Bl Bot T2 + (54 Bai BakByl B + T2/ Byt Bl
Byk)x Ty + (=208 8202 [ByiByi: — 367/ By Bol 8oL\ Bu) TATA )
32b3363k { gﬁxjﬁ:ckr@wﬁyk(zjz']y + Jg)sz}? - Qﬁfiﬁrk!gwﬁyk(zjf']y - Jg)
x T32 = 332 B2 TETyR ~ 2485 Bon JITYE + 28238y B T Ty TjE
— 7285, BokBys Byr Jo Ty Ton + 36828248y T THk — SGﬁEJmﬁwﬁyk.ﬁT}’E}) ,
(4.6)
where T;;f”” is defined by Eq. (3.55).

For systematic errors, each sum runs over one cell and should be multiplied
by the number of cells. In Eq. (3.55), the phase advance for one cell divided by

25 should he used for v,
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5. Closed Orbit Perturbations

By realizing that a reasonable correction scheme for closed orbit distortions
should lead to local corrections, we conclude that the final corrected orbit can
be calculated locally. This can then be done by using the well-known matrix
formalism. (7]

5.1 CALCULATION OF THE CLOSED ORBIT DISTORTIONS

We will assume that a lattice cell for SSC has bne horizontal dipole corrector
and beam positron monitor (bpm) at each horizontally focusing quadrupole and
vice versa for the vertical plane. The ultimate result of the correction scheme is
to make the corrected orbit pass through the center of the bpm’s. Since there

are also bpm errors, this orbit will normally differ from the design orbit.

The calculations will be split in two parts. First, we assume the bpm errors to
be zero and calculate the orbit due to dipole errb;:s_ and quadrupole displacements.
The contributions from higher multipoles will be neglected. In the second part,
we assume the multipole errors to be zero and calculate the orbit due to the
bpm errors. This split can be done since the bpm errors are assumed to be

uncorrelated with the multipole errors.

The transfer matrix between two arbitrary points sp and sy along a lattice

() =4(3) o

where

2 . .
A/ 3%[*105(-'-\‘3110)4'010 sin{A¢r1n )l VBzo By sin(Ady10)
M =
—_ ‘l
(5.2)

4
L (ii—opgreepisinideppgi+impy —vggjcoiidognil SE[cos Sapip iy ANl AGg
NERTR dxl

and
P10 = Pz1 — P00 . (5.3)
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If there are no bpm errors, the effect of the correctors is to make the orbit
distortions zero at the bpm’s (which were assumed to be at the correctors) so

that

Azy, =Azg =0 . (5.4)

If we use the thin lens approximation for the errors and the correctors, we find
from Eqgs. (5.2) and (5.4)

n—1
Azn = v/ BenBro Sin(ligeu) ) Aw'ﬂ + Z \% ﬁfﬂﬂxlSin(Aqbznl) ’ Ax; =0 (5.5)
=1
ar
Azl nil Bei Sin(Aqbznl)A ! (5.6)
Inp = — N z 9 ‘
0 =7 V B0 sin(pgel)
where

A:C’, = —64(bs + blequad) (5.7)

and Azguag is the quadrupole misalignment, since higher order multipoles are

neglected. By using

<
Ay = /BrjBusin(Agyp) - Azp, - 0<j<n (5.8)
=0

we find

< . ;
. - . ‘ - sinf A(.D.I?TL!
Ar, = — Z NENEREI AN ———) . -'_X.!‘:r
=1

sinf et

<J
+ >/ BriBasin(Dé, ) - )
=1
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By using some trigonometric relations, this can be written

<3
1 . .
A:L.;_UP — W E A /ﬁrjﬁxlA:E; Sln(A¢zn)') Sln(AqbzIO)
z I=1

n—1
+ 3 VBeiPulzisin(Ddzjo)sin(Agem)| ,  0<j<n

I=3
(5.10)
We now assume the multipole errors to be zero and that the correctors have
been adjusted so that the new orbit passes through the centers of the bpm’s.
From Eq. (5.2), we have

Az, = Pan [cos(Adzno) + azo sin{ Adzne )] Azo

Bzo (5.11)
+ V/ BznBrosin(A¢zno) - Az
The S-function is periodic, hence
Bzn = Bzo (5.12)
so that
Azh = e ( Az, — [cos(uS) + ol sin(uS AR} . (5.13)

~ Brosin(ug)

In a similar way, we obtain

Am})pm - sin(;ltn:ezl) \ g:; [sin(Adzns) - Azo +sin(Adzj0) - Aza] . (5.14)

Since we assune the multipole misalignment and hpm displacement errors to

be uncorrelated. we finally obtain

Az = \/(A.@f“’)z + (A2 (5.15)
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5.2 CALCULATION OF THE FEED-DOWN

The feed-down is calculated by generalizing Eq. (2.23) to

[e.0)

1 : : n
V =064Re» 7 (bn tian) [z + Az + iy + Ay)] o (5.16)

n=0

where Az and Ay is the horizontal and vertical orbit. If we restrict ourselves to

terms linear in Az or Ay, we find the following contributions from the feed-down

an-1 = n{a, Az + by Ay) + O(2)

(5.17)
bp—1 = —nlanAy — bpAz) + O(2)

This approximation is expected to be good as long as Az < A; and Ay <« 4,.
When these terms are inserted in the equations for 52, Eqgs. (4.3), and we average

over random seeds, we find

bnjbnk ~ (n+1),j%n+1)k < DYFAYE >seeds (5.18)
+ bns) B0k < ATIATE >seeds +0(2)

for systematic multipoles and

< AY? Soeets 108, < A2F Speeslbii + O(2)
(5.19)

2
< bnjbnk > seeds ™ [Ua(n+1).1

for random multipoles, since Az, Ay and the multipole errors are assumed to
be uncorrelated. The correlations < Az;Azp >geeds and < AY;Ayr >eeeds are
calculated from Eq. (5.16).
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6. Chromatic Perturbations

The chromatic perturbations can be treated as a feed-down where the orbit

is given by the nonlinear dispersion function 7

Az =bn=8no+ém+...) , (6.1)

where ng is the linear dispersion function. Furthermore, the multipole strength

is replaced by an effective multipole strength given by

1
by = —bp=(1—6+6"— . )b . 6.2
o= gt = (=646 = )b, (62)
Since the linear chromaticity is corrected, one would like to calculate the chro-
maticity to at least quadratic terms in §. From above, it is, however, clear that
this requires a knowledge of m. It can be calculated,[16] but a direct numerical

calculation of the tune shift using map techniques would be more efficient. [17]

The previous work has, therefore, been limited to the on-momentum case.

7. Numerical Results

In the expressions for the smear, Eqs. (4.3), we find terms proportional to

1
sin?(7v)

(7.1)
1

sin’(m2v)

from sextupoles and the octupoles. The first case may be interpreted as orbit
terms and the second will only cliange the average amplitude. Since the per-
turbations of these terms is similar to dipole and quadrupole perturbations {but
amplitude dependent) and to simplify the analysis of the tracking data, they have

been excluded in the following calculations.
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We have studied FODOQO-lattices with identical approximately 90 degree cells

for an injection energy of 1 or 2 TeV, 4 or 5 cm ‘magnet aperture and injection

optics.
Table 1: Studied cases.
No. of dipoles Half cell No. of 7R vy Az = Ay (mm) §(1073)
per half cell length cells 1TeV  2TeV  1TeV  2TeV
4 84.20 480 ) 121.285 122.265 4.15 3.73 0 0
2.75 2.33 136  0.68
5 98.62 384 97.285  98.265  4.43 3.97 0 ' 0
2.92 2.46 1.16 0.58
] 114.25 3200 81.285 822685 4.73 4,18 0 0
' 3.10 2.55 1.0 0.50
Table 2. Multipole errors in the dipoles.
Random errors Systematic errors
Multipole  4cm 5cm 1TeV,4em  1TeV, 5em  2Tev, 4cm 2TeV, 5cm
ag 6.0 6.0 0 0 0 0
bo 6.0 6.0 0 0 0 0
a 0.7 0.56 0.2 0.2 0.15 0.15
by 0.7 0.56 0.2 0.2 0.15 0.15
@ 0.6 0.41 0.1 0.1 0.06 0.06
bo 0.4 0.27 -84 -4.0 -5.33 -2.53
az 0.7 0.41 0.2 0.2 0.11 0.11
ba 0.3 0.18 0.1 0.1 0.05 0.05
g 0.2 0.10 0.2 0.2 0.09 0.09
by 0.7 0.35 0.84 0.5 0.9 0.18

The total number of dipoles has been kept to 3840, but the number of dipoles

per cell and the number of cells have been varied. The cases that have been
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studied are shown in Table 1.[11, 18] Closed orbit distortions have been calculated

for

AZgag = 1.00 mm, Az = 1.41 mm (7.2)

with respect to the design orbit. The linear aperture may be defined by 6.4%
smear [4] and a tune shift of § x 1073.{1] The linear lattice functions were calcu-
lated by TEAPOT. [19] After the systematic multipole errors had been added, the
linear chromaticity was tuned to zero using TEAPOT. The strength obtained for
the chromaticity sextupoles were then used in the analytical calculations. Cal-
culations have also been done with the “SNEUFF” correction scheme.[1] In this
case, the chromaticity was tuned after the the correctors had been added. Cor-

rectors were added for a», b2, a3, and b3,

7.1 SMEAR AND TUNE SHIFTS

In Tables 3 to 15, we present the smear and tune shifts for the different cases
specified in Table 1. For random multipoles, we give the average smear and the
spread of the total smear as defined by Eqgs. (2.2) and (2.3). An empty location
indicates that no value has been calculated. Linear coupling perturbations due
to feed-down in the sextupoles are presented (in the column (a;)), but are not
included in the total. The total tune shifts are obtained by summing up the
individual terms, whereas for the total smear one has to sum the square of the
different contributions and then take the square root. Note that if the linear
lattice functions are given, the results in one of the tables displayed below, is

obtained in less than a minute on the VAX.

Table 3 shows a case when the horizontal and vertical tune have not heen
splitted by one unit (v; = 81.285. », = 81.263). As expected, this leads to

very high contributions from the systematic errors.
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Table 3a: 6 dipoles, 1 TeV, 4 cm magnet aperture, no split.

Smear (%) (a1) as bo a3 b3 as by Total
Due to random multipoles 14 08 2.3 05 01 02 29+08
1.0 0.9 2.4 0.6 0.0 0.2 28+06
Due to feed-down in the 6.2 0.6 0.4 1.0 0.5 1.3
random multipoles . 6.2 0.4 06 1.1 - 0.5 1.4
Due to systematic multipoles 6.0 1.0 0.1 8.0 8.1
0.0 0.5 0.1 8.0 8.0
Due to feed-down in the >100 0.0 0.0 17.0 243 29.7
systematic multipoles >100 0.0 0.0 17.0 243 29.7
Due to corrected 0.0 0.5 0.6 0.1 0.8
systematic multipoles 0.0 0.3 0.6 0.1 0.7
Due to feed-down in the >100 00 00 00 48 4.8
corr. systematic multipoles >100 0.0 0.0 0.0 4.8 4.8
Av (1073) al b3 b3 a2 b3 Total
Due to systematic multipoles 0.0 225 -24 -299 06 -8.2
0.0 31t -24 298 -06 57.9
Due to corrected 0.0 6.4 0.2 0.0 0.0 8.5
systematic multipoles 0.0 6.1 0.2 0.0 0.0 6.3
Table 3b: 6 dipoles, I TeV, 4 cm magnet aperture.
Smear (%) (al) as b as b3 aq bq Total
Due to random multipoles 1.4 0.8 25 05 0.1 02 30xl1.4
10 09 25 06 00 02 29413
Due to feed-down in the 6.7 0.6 04 1.1 0.5 1.4
random multipoles 6.6 04 06 1.1 0.5 1.4
Due to systematic multipoles 0.0 1.0 6.1 0.2 1.1
00 05 0.1 0.2 0.5
Due to feed-down in the 276 0.0 0.0 0.4 00 0.7
systematic multipoles 2726 00 0.0 04 06 0.7
Due to corrected 0.0 0.5 0.0 0.0 0.5
systematic multipoles 0.0 03 00 0.0 0.3
Due to feed-down in the 1.6 00 0.0 900 0.1 0.1
corr. systematic multipoles 1.5 0.0 0.0 0.0 0.1 0.1
Av (1074 3 b3 b E b Total
Proe to svstenmate nnbuipoles 0G0 220 2208 0 URY 210
. 5 S T R § P VN Y EA
Due to corrected 0.0 6.3 0.2 0.0 6.5
systematic multipoles 0.0 6.0 0.2 0.0 00 6.1
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Table 4: 6 dipoles, 2 TeV, 4 cm magnet aperture.

Smear (%) (a1) a2 b a3 bz as by Total
Due to random multipoles 1.2 07 19 04 0.0 01 256411
- 09 08 20 04 00 0.1 24%1.0
Due to feed-down in the 67 05 04 08 04 1.1
random multipoles 66 03 05 09 04 1.1
Due to systematic multipoles 0.0 05 061 01 0.5
00 02 00 01 0.3
Due to feed-down in the 138 00 00 02 03 0.3
systematic multipoles 138 00 0.0 02 0.3 0.3
Due to corrected 00 02 00 0.0 0.2
systematic multipoles 00 02 00 0.0 0.2
Due to feed-down in the 59 00 00 00 01 0.1
cort. systematic multipoles 59 00 00 00 01 0.1
Av(1073) a3 b2 by ai b3 Total
Due to systematic multipoles 0.0 39 -18 04 0.0 2.5
0.0 45 -19 -04 0.0 2.2
Due to corrected 0.0 1.1 01 00 0.0 1.2
systematic multipoles 0.0 1.0 0._1 0.0 0.0 1.1

Table 5: 6 dipoles, 1 TeV, 5 cm magnet aperture.

Smear (%) (al) as by as b3 a4 by Total
Due to random multipoles 1.0 06 1. 03 00 0.1 19408
07 06 15 03 00 0.1 18x0.8
Due to feed-down in the 4.5 03 03 05 03 0.7
random multipoles 4.5 02 03 06 03 0.7
Due to systematic multipoles 0.0 07 00 0.1 0.7
00 03 00 01 0.4
Due to feed-down in the 150 00 00 0.2 03 0.3
systematic multipoles 179 00 00 02 0.3 0.3
Due to corrected 00 03 00 0.0 0.3
systematic multipoles 0.0 02 00 0.9 0.2
Due to feed-down in the 7. 00 00 0.0 0.1 0.1
corr. systematic multipoles 7.5 00 0.0 00 01 0.1
Av {1073 s b3 b3 a5 b3 Total
Due 1o svstematic ultipoles 0.0 a0 L2 w2 0.0 8.1
3.0 111 1.2 0.2 0.0 10.0
Due to corrected 0.0 2.5 0.1 0.0 0.0 2.6
systematic multipoles 0.0 2.3 0.1 0.0 0.0 24

37



Table 6: 6 dipoles, 2 TeV, 5 cm magnet aperture.

¢

Smear (%) (a1) ay b2 az b3 a; ba Total
Due to random multipoles 08 05 11 02 0.0 01 15+0.7
' 06 05 1.2 03 0.0 01 14+06
Due to feed-down in the 45 03 02 04 02 0.6
random multipoles 45 02 03 04 0.2 0.6
Due to systematic multipoles 00 03 00 01 0.3
0.0 02 00 0.1 0.2
Due to feed-down in the 9.3 00 00 0.1 0.1 0.1
systematic multipoles 92 00 00 0.1 0.1 0.1
Due to corrected 00 02 0.0 0.0 0.2
systematic multipoles 0.0 01 0.0 00 0.1
Due to feed-down in the 42 00 00 00 0.0 0.0
corr. systematic multipoles 42 00 00 00 00 0.0
Av(1073) ai b2 by o} b3 Total
Due to systematic multipoles 0.0 15 -0.9 0.0 040 0.6
0.0 13 -09 0.0 00 0.3
Due to corrected 0.0 04 01 0.0 0.0 0.5
systematic multipoles 0.0 04 01 0.0 0.0 0.4
Table 7 5 dipoles, 1 TeV, 4 cm magnet aperture.
Smear (%) (a1) a2 b4 as bz aq by Total
Due to random multipoles 1.1 0.7 19 04 00 01 23+1.0
08 07 19 04 00 0.1 2241.0
Due to feed-down in the 5.8 05 04 08 04 1.1
random multipoles 5.7 0.3 05 08 04 1.1
Due to systematic multipoles 0.0 07 0.1 01 0.8
0.0 04 00 0.1 0.4
Due to feed-down in the 258 0.0 0.0 03 04 0.5
systematic multipoles 257 0.0 00 03 04 0.5
Due to corrected 00 04 00 00 0.4
systematic multipoles 0.0 02 00 0.0 0.2
Due to feed-down in the 104 0.0 00 00 0.1 0.1
corr. systematic multipoles 10.4 0.0 00 00 D1 0.1
Av(1073) s bf:: by 3 b3 Total
Die 1o systematie multipoles 0.4 123 L g 0 1.7
0.0 145 -1.9% -0.4 0.0 12.2
Due to corrected 0.0 3.5 0.1 0.0 0.0 3.6
systematic multipoles 0.0 33 01 00 040 3.4

38



Table 8 5 dipoles, 2 TeV, 4 cm magnet aperture.

Smear (%) (ay) as by gz bz as by Total
Due to random multipoles 1.0 06 15 03 00 01 19+£09
0.7 0.7 1.5 03 0.0 01 1.9+£0.8
Due to feed-down in the 58 04 03 07 03 0.9
random multipoles 57 03 04 07 0.3 0.9
Due to systematic multipoles 00 04 0.0 0.1 0.4
00 0.2 00 0.1 0.2
. Due to feed-down in the 133 0.0 00 0.1 0.2 0.3
systematic multipoles 13.3 00 0.0 0.1 0.2 0.3
Due to corrected 00 0.2 0.0 00 0.2
systematic multipoles 00 02 0.0 0.0 0.2
Due to feed-down in the 60 0.0 00 00 0.1 0.1
corr. systematic multipoles 6.0 0.0 0.0 00 0.0 0.0
Ay (1073) aj b3 by ef b3 Total
Due to systematic multipoles 0.0 2.1 -1.5 02 0.0 0.8
‘ 0.0 14 -1.5 -03 0.0 -0.4
Due to corrected 00 05 0.1 00 00 0.7
systematic multipoles 00 05 01 00 00 0.6

Table 9: 5 dipoles, 1 TeV, 5 cm magnet aperture.

.Smear (%) (a1) a= by as bs a4 by Total
Due to-random multipoles 08 04 11 02 00 01 14406
' 0.6 0.5 1.1 03 00 0.1 14406
Due to feed-down in the 39 03 02 04 0.2 0.6
random multipoles 39 02 03 04 02 0.6
Due to systematic multipoles 0.0 05 0.0 041 0.5
0.0 03 00 01 0.3
Due to feed-down in the 70 00 00 01 02 0.2
systematic multipoles 170 00 00 01 0.2 0.2
Due to corrected 00 03 00 0.0 0.3
systematic multipoles 00 02 00 0.0 0.2
Due to feed-down in the 73 00 00 00 0.0 0.0
corr. systernatic multipoles 72 00 00 00 00 0.0
Av(107%) af b3 b a3 b3 Total
Due to systematic maltipoles 00 4.8 09 0.1 4.0 3.0
0.0 45  -1.0 -0.1 4.0 4.4
Due to corrected 00 13 0.1 0.0 0.0 1.4
systernatic multipoles 00 1.2 01 00 0.0 1.3

39



Table 10: 5 dipoles, 2 TeV, 5 cm magnet aperture.

Smear (%) (a1) a2 by a3z bz ay b Total
Due to random multipoles 0.7 04 09 02 0.0 00 12405
; 05 04 09 02 00 0.1 11405
Due to feed-down in the 39 02 02 03 02 0.5
random multipoles 38 02 02 03 02 0.5
Due to systematic multipoles 00 03 00 01 0.3
. 00 02 0.0 01 0.2
Due to feed-down in the 94 00 00 01 01 0.1
systematic multipoles 94 00 00 01 0.1 0.1
BPue to corrected 0.0 02 00 0.0 0.2
systematic multipoles 00 02 00 0.0 0.2
Due to feed-down in the 32 00 00 00 00 0.0
corr. systematic multipoles 3.2 00 00 0.0 00 0.0
Ap(1079%) a? b3 by ai b3 Total
-Due to systematic multipoles 0.0 0.7 -08 00 00 0.0
0.0 00 -08 00 00 -0.8
Due to corrected 00 -03 01 0.0 0.0 -0.3
systematic multipoles 00 02 01 00 0.0 0.3
Table 11. 4 dipoles, 1 TeV, 4 cm magnet aperture.
Smear (%) (a1) a2 ba as bs  aq bg Total
Due to random multipoles 09 05 14 03 00 01 18+038
06 06 14 03 0.0 01 1.7+0.7
Due to feed-down in the 49 04 03 06 03 0.8
random multipoles 49 02 04 06 03 0.8
Due to systematic multipoles 0.0 05 00 0.1 0.5
0.0 03 00 0.1 0.3
Due to feed-down in the 242 00 00 02 03 0.4
systematic multipoles 242 00 060 02 03 0.4
Due to corrected 00 03 00 00 0.3
systematic multipoles 0.0 ©¢3 00 00 0.3
Due to feed-down in the 106 00 00 00 0.1 0.1
corr. systematic multipoles 106 0.0 0.0 00 01 0.1
Av(lo™) i b bey I hz Total
Due tosystematie maltpeles 00 620 Lo 02 000 1.0
0).0 13 -6 -02 0 2.5
Due to corrected 0.0 1.8 0.1 00 0.0 1.9
systematic multipoles 0.0 14 01 0.0 00 1.6
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Table 12. 4 dipoles, 2 TeV, 4 cm magnet aperture.

Smear (%) (a1) a3 b as ba asg ba Total
Due to random multipoles 08 05 11 02 00 01 1508
06 05 11 03 00 01 14406
Due to feed-down in the 49 03 03 05 0.2 0.7
random multipoles 49 " 02 03 05 03 0.7
Due to systematic multipoies 00 03 00 0.1 0.3
060 02 0.0 0.1 0.2
Due to feed-down in the 140 00 00 01 02 0.2
systematic multipoles 140 0.0 00 0.1 0.2 0.2
Due to corrected 0.0 02 0.0 0.0 0.2
systematic multipoles 0.0 02 00 0.0 0.2
Due to feed-down in the 8.2 0.0 00 00 0.0 0.0
corr. systematic multipoles 82 00 0.0 00 0.0 0.0
Av (1073 a3 b3 by ai b3 Total
Due to systematic multipoles 0.0 08 -1.3 0.1 0.0 -0.3
0.0 -06 -13 -0.1 0.0 -2.0
Due to corrected 0.0 0.1 01 00 0.0 0.2
systematic muitipoles 00 00 01 00 0.0 0.2
Table 13: 4 dipoles, 1 TeV, 5 cm magnet aperture.
Smear (%) (0‘.1) as by as bs a4 by Total
Due to random multipoles 06 04 08 02 00 0.0 11405
04 -04 08 02 00 0.1 1.0%04
Due to feed-down in the 34 02 02 03 0.2 0.4
random multipoles 34 01 02 03 02 0.4
Due to systematic multipoles 0.0 04 0.0 0.1 0.4
0.0 03 00 0.1 0.3
Due to feed-down in the 170 0.0 0.0 0.1 0.2 0.2
systematic multipoles 169 00 00 01 02 0.2
Due to corrected 0.0 02 00 00 0.2
systematic multipoles 0.0 02 0.0 0.0 0.2
Due to feed-down in the g8 00 00 00 0.0 0.0
corr. systematic multipoles 8.8 00 0.0 0.0 0.0 0.0
Av(107% it b by a} b3 Total
Due to systematic nwltipoles 00 22 0N 01 0.0 1.5
.4 o -0 0.1 0.0 0.7
Due to corrected 0.0 05 0.1 0.0 0.0 0.6
systematic multipoles 0.0 04 0.1 0.0 0.0 0.4




Table 14: 4 dipoles, 2 TeV, 5 cm magnet aperture. -

Smear (%) (a;) @ by as bz ag by Total
Due to random multipoles 0.6 03 07 0.1 00 0.0 0.9+04
04 04 07 02 00 0.0 0.9+04
Due to feed-down in the 34 02 02 02 01 0.4
random multipoles 3.4 0.1 0.2 0.2 01 0.4
Due to systematic multipoles 0.0 04 00 0.0 0.4
0.0 02 00 00 0.2
Due to feed-down in the 184 0.0 00 0.0 0.1 0.1
systematic multipoles 183 00 00 0.0 0.1 0.1
Due to corrected 00 02 0.0 0.0 0.2
systematic multipoles 00 02 00 0.0 0.2
Due to feed-down in the 78 0.0 00 00 0.0 0.0
corr. systematic multipoles 78 00 00 0.0 00 0.0
Av(10™3) a3 b3 b3 ai b3 Total
Due to systematic multipoles 0.0 04 -0.6 0.0 0.0 -0.2
0.0 29 -66 0.0 00 2.3
Due to corrected 00 -0.1 01 0.0 0.0 -0.1
systematic multipoles 00 -01 01 0.0 0.0 -0.1

7.2 SMEAR VERSUS TUNE

The analytical expressions for the smear may be used to study the dependence
on the working point. Since the main contribution is from the random multipoles,
only these will be considered without feed-down. Figure 1 to 6 shows contour
plots of max(S;,Sy) for the cases of 4 cm magnet aperture from Table 1. The
contour plots were obtained by calculating smear values for a 100 x 100 grid and
using TOPDRAWER. [20] Since the smear goes to infinity on the resonances,
the values above 100% were cut. The wiggling of the contour lines close to the

resonances is due to the interpolation between grid points.

It is clear from the plots that if only smear is considered a more favorable

workiig poinr rhian the normal
v, = 81.285, vy = 82.265 (7.3)

would be. e.g..



vy =81.38, v, =82.44

for the 6 dipoles case.
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8. Comparison with Tracking

In the following sections, we will quote numbers obtained from numerical
simulations followed by numbers within brackets corresponding to analytically
calculated values. The results for the horizontal and vertical plane are presented

on two consecutive lines.

8.1 FOURIER ANALYSIS OF TRACKING RESULTS

The tune shifts can be obtained from tracking by Fourier analysis of the
motion. Since the motion is normally only sampled on a turn-by-turn basis, the
Discrete Fourier Transform (DFT) has to be used. Since tracking is done for
about 512 turns (/V), some kind of interpolation must be applied to get a better
accuracy than 1/(2N).

The DFT is defined by
1 N-1
_ 1 —i2zkAtkn/N _ _
X, = I };—0 z€ A n=0,1,...,N-1 (8.1)

and the inverse transform by

N-1
Ty = Z Xpeitrkatkn/N k=0,1,..,.N—1 |, (8.2)

n=0

where Af is the time between two samples. The distribution for a peak, centered

aronnd the normalized fregueney v, is given by

A(k) = k=0.1,2...N—1 (8.3)

sin[7{k — Nv)]
Tk ’
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shown in Figure 7. Note that the DFT is only defined for n = integer. From
Eq. (8.3) it is possible to derive the following interpolation for the tune.{21]

A(k)
A(k — 1) + A(k)

1
V:N[k—1+

], k—1<Nv<k . (8.4)

We have used a sine window to decrease the sidelobes of a peak in the spectrum.

This is done by multiplying the samples 2 by a weight function, in this case

k
Y = Tk sin (%) \ A?:O,].,?,...,.‘V—l (85)

leading to the f()ll()'\'\'illg disrribution for o pt:;lk

sin[wm(k — 1/2 — Nv)j

A(k) = 2wk —1/2 - Nvj(k + 1/2 - Nv)

. k=0,1,2,..N—1 (88)

shown in Figure 8.
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We now have{21]

1 2A(k) 1
_ S EF—-1< < k. .
I/—N k—1+ -1 ORE , 1< Nv (8.7)

When the tune is known, Eq. {8.6) can be used to obtain the amplitude of a
peak.

Smear 1s obtained by calculating the change of the action variable .J defined
by Eq. (2.9) using the values from the linear lattice caleulations as estimates for

the alpha and the bera funerions, The rios value of J is then estimated from

1 XL
o ==Y (T} T (8.8)



where
- 1
== SoJno (8.9)

Another possibility is to Fourier analyze J. The zeroth harmonic gives the average
value of J. The average value is then subtracted from the samples, and the rms

value of AJ is then given by

N-1
o => ANR) . (8.10)

x*
k=0 2

This method has the advantage that the contributions from different multipoles
can be resolved. It is done by noticing that to first order the multipoles as , b3 ,a3
and b3 in the multipole strength only excite different nonlinear amplitude reso-
nances. These can be identified by fitting a linear combination of the horizontal
and vertical tune to each peak in the spectrum. The contribution to the smear for
a given multipole is then obtained by restricting the sum to the relevant peaks.

A typical example is shown in Figure 9.

8.2 SMEAR DUE TO RANDOM MULTIPOLES

Tracking has been done with random errors only for a lattice with 6 dipoles

per half cell and 1 TeV injection energy.[22] The amplitudes were
A; = 5.00mm, Ay, =5.13mm . - (8.11)

The smear was obtained as averages over 100 seeds. We therefore expect the
agreement to be of the order of
as

dtos = £ — , 8.12
$7 2 A% (8.12)

which clearly s the case. The results are shown in Table 16.
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Table 16: Average smmear due to random multipoles

an b ag b total
1.56(1.50£0.6) 0.87(0.86£0.3) 3.03(2.96+14) 0.71(0.66+£0.3) 3.62+1.2(3.49+1.6)
1.11(1.0510.4) 0.99(0.95+0.4) 2.87(2.87:&1.3) 0.75(0.68+0.3)  3.39:+1.1(3.27x1.4)

A lustogram for the total horizontal and vertieal siear square. due to the

definition of Eq. (2.2), obtained from the tracking is shown i Figures 10 and 11.
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8.3 SMEAR AND TUNE SHIFTS DUE TO SYSTEMATIC MULTIPOLES

From Table 4-1 in Ref. [23] we have the following resuits

Table 17
Ay =A b Av
(mm)’ ? (10-3)
5 4.7 2.5(2.2)
2.1(2.0)

and from page 18 in Ref.[1], we find

Table 15:

Ay v Av
(mm) (mm) (107%)
5 5 5.7(5.7)
5.8(5.3)
5 0 3.5(3.7)
2.0(2.0)
3.7(3.3)
0 5 2.2(2.0)

for
by = —T.4, by =0.1, by = 0.64 (8.13)

and the “SNEUFF” correction scheme. We have checked by tracking with
TEAPOT that uncorrected systematic «y and by give negligible confributions.
For the case with 6 dipoles. T TeV and L e magnet apertures we found the
contribution to be

S:=001%,  Au,=001-10""

| (S.14)
S, =001%, Ay, =001-10""
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In addition, we found that the second order contribution from uncorrected sys-

tematic by to the smear are

by=-84, S;=012%, S,=012% (8.15)

for an amplitude of

Ay =Ay =50mm . (8.16)

This is quite negligible. However, since this contribution is octupole-like, it will
interfere with the contribution from systematic b3. This explains the discrepancy
for the uncorrected systematic b3 contributions in Table 19. Tracking has also

been done for some of the cases in Table 1. The results are shown in Tables 19

and 20.

Table 19: 6 dipoles, 1 TeV, 4 cin magnet aperture

smear (%) a2 by a3 ba total
due to systematic multipoles  0.05(0.02 1.04}1.05 0.09(0.08) 0.12 0.19; 1.05(1.07
0.02(0.02) 0.50(0.51) 0.06(0.06) 0.11{0.18) 0.52(0.55
due to corrected 0 Ol%0.0l% 0.50(0.51% 0 0250.01) 0.0QF0.00; 0.5050.513
svstematic multipoles 0.00{0.00 0.26(0.27 0.01(0.01)  0.02(0.00 0.26¢0.27
Av (10~ total
due 1o svstematic multipoles 20.0(21.0)
27.3(28.4)
due to corrected 65.3(6.5
systematic multipoles 6.4(6.1




Table 20: 4 dipoles, 1 TeV, 4 ¢cm magnet aperture

smear (%) as by a3 b3 total
due to corrected 0.00(0.00) 0.30(0.30) 0.01(0.01) 0.02(0.00) 0.30(0.30
systematic multipoles  0.00{0.00) 0.26(0.26) 0.01(0.01) 0.01(0.00) 0.26(0.26

Av(1073) total
due to corrected 1.9(1.8
systematic multipoles 1.7(1.56

8.4 CLOSED ORBIT DISTORTIONS

The analytically calculated rms orbit has been compared with values obtained
from TEAPOT data.[24] Since the corrected orbit is uncorrelated between differ-
ent cells, the rms orbit was obtained by averaging over the 320 cells of a particular
lattice. We have studied the case with one corrector and one bpm per cell for
each plane with

Azgyzq = 0.50mm, Azpom = 0.71mm . (8.17)
The result is shown in Figure 12 where a dotted line represents th-e analytically
calculated horizontal orbit, a dash represents the corresponding TEAPOT data,
a dotdash represents the analytical vertical orbit, and a solid represents the
corresponding TEAPQOT data. The agreement is quite good, except for a small
systematic error in the vertical plane. It is not clear why this error appears.

One would expect the two planes to be symmetric as the analytical calculation

indicates. In any case, this discrepancy is negligible for the smear calculations.
Since the actual correction scheme for the SSC uses two bpm's per cell, [25]
we Liave compared the analytical calenlations. which wre based on one bpm with

this case. using

A= 1.00mm, Arp™ = 14l . (8.18)

quad — bpm



//

As can be seen from Figure 13, it does not lead to any significant change. This
is explained by the fact that the corrected orbit is dominated by the bpm errors,
and the best that can be achieved is to make the corrected orbit pass through

the center of the bpm’s.
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Figure 12: Closed orbit distortions
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Figure 13 Closed orbit distortions
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9. Summary and Conclusions

We have applied and generalized the Lie algebraic formalism developed by
E. Forest to calculate smear and tune shifts due t6 random and systematic mul-

tipole errors for the SSC.

It is clear that the presented analytical expressions for the average smear, the
spread of the smear, and the tune shifts reproduce in detail the tracking results.
By using analytical techniques, the computation times are reduced from hours
on the CRAY to seconds on the VAX. Contributions of various multipoles and
closed orbit distortions and dependence on amplitude, momentum, and working

point are also clear.

The spread of the smear, typically 40%, should be considered so that a spec-

ified set of parameters will yield the desired linearity.

This study has been limited to the on-momentum case. To be complete, the

off-momentum contributions have to be included.
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