
FERMILAB-SLIDES-23-351-ETD-STUDENT

22FDX Cryogenic Modeling

Olivia Seidel¹, Davide Braga¹, Andy Pender², Hung-Chi Han³, Edoardo Charbon³, Farah Fahim¹ ¹ Fermilab, ² Synopsys, ³ EPFL CPAD 2023

22nm FDSOI cryoChips at Fermilab

- **GF_test chip:** Submission Nov 21; Chips Received April 22: Various designs
- Michigan : Submission July 22; Chips Received Nov 22: 10 GHz PLL, VCO, 4 x 1GSPS ADCs, SRAM
- Cryogenic Ion trap controller: Submited Jan 2023, received May 2023: 16 channel Ion trap control chip;
- Si Photonic driver/ receiver; cryoAl ultrafast NN for anomaly detection; SQUIDDAC: SLUG_biasing; various level shifter test structures

🚰 Fermilab

- Glebe: (with Microsoft) 10 GSPS ADC (Dec23)
- **Sunrock:** 32 channel SNSPD () readout with ~ps time tagging (Dec23)

Overview of Fermilab's 22FDX Cryo-CMOS modeling activities

Fermilab is leading several activities for the cryogenic characterization of 22FDX transistors:

In-house:

 Measurement and modeling of high voltage devices at 4K (BOXFET, LDMOS)

With EPFL:

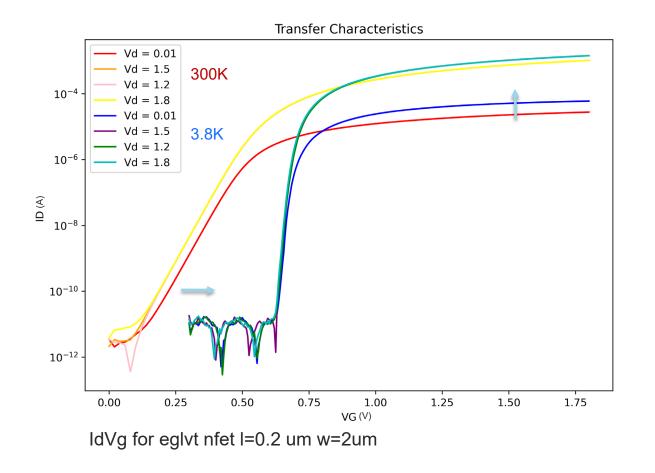
- Measurements of transistors at 4K
- Development of simplified EKV model for analog design
- Low noise test structure measurements

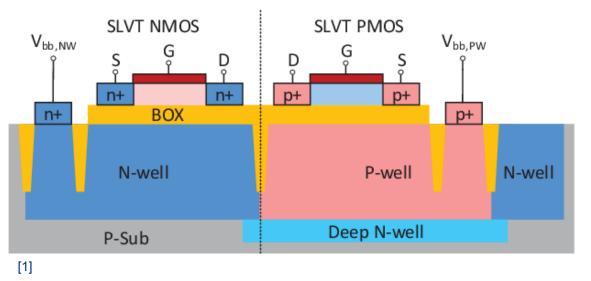
With Synopsys:

3

• PDK-compatible BSIM-IMG for 4K

10/31/2023 CPAD 2023: CryoCMOS modelling and PDK development for GF 22 FDX


EPFL



GLOBALFOUNDRIES

FDSOI for RF/Analog Design

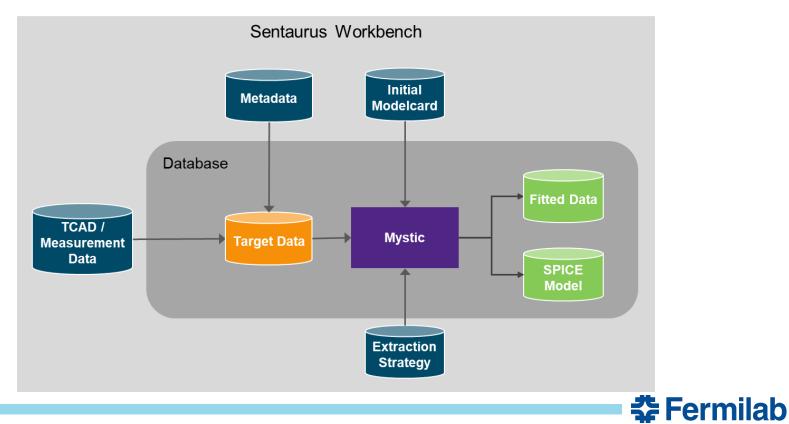
- Threshold Voltage increases (due to substrate freezing)
- Availability of a "back-gate" in FDSOI technologies to lower the threshold and counter cryogenic increase
- Confined electrons in an undoped channel = less leakage, lower power, higher voltage, faster switching

Behavior Changes at Cryogenic Temperatures

5

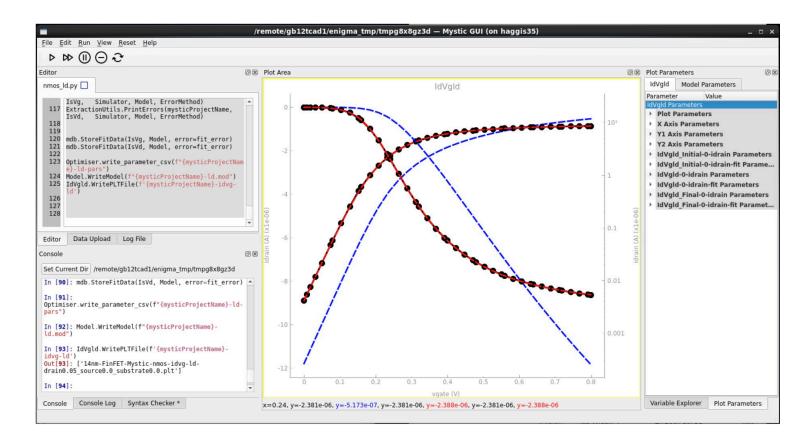
- Electron Mobility [2]
- Phonon scattering, coulomb scattering [3]
- Capacitance effects [4]
- Resistance due to self-heating [5]
- Source drain extension resistance [6]
- Velocity saturation [7][8]
- Work function [7][9]
- Subthreshold slope [10]
- Drain induced barrier lowering [11]
- ...etc

Measurement data


6

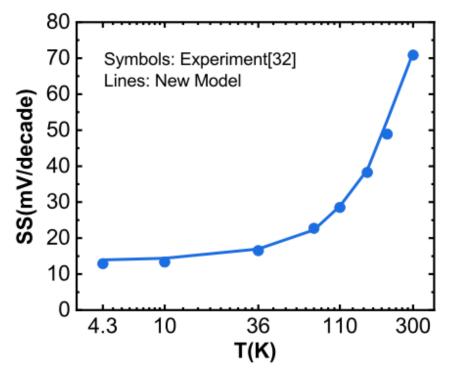
- **300K, 3.8K** for various front gate and source/drain biases
- Gate lengths: 0.07um, 0.2 um, 2um
- Gate **widths** for each length: 0.16um, 0.5um, 2um
- For each IdVg we have Vd=0.01, 1.2, 1.5, 1.8V
- Starting with **eglvt** flavor

Mystic Software


- Synopsys SPICE model extraction tool for creating automated parameter extraction methodologies for semiconductor applications
- Integrated in the Synopsys Sentaurus Workbench TCAD platform
- Use Synopsys Primesim HSPICE as a simulation backend

Mystic Software

8

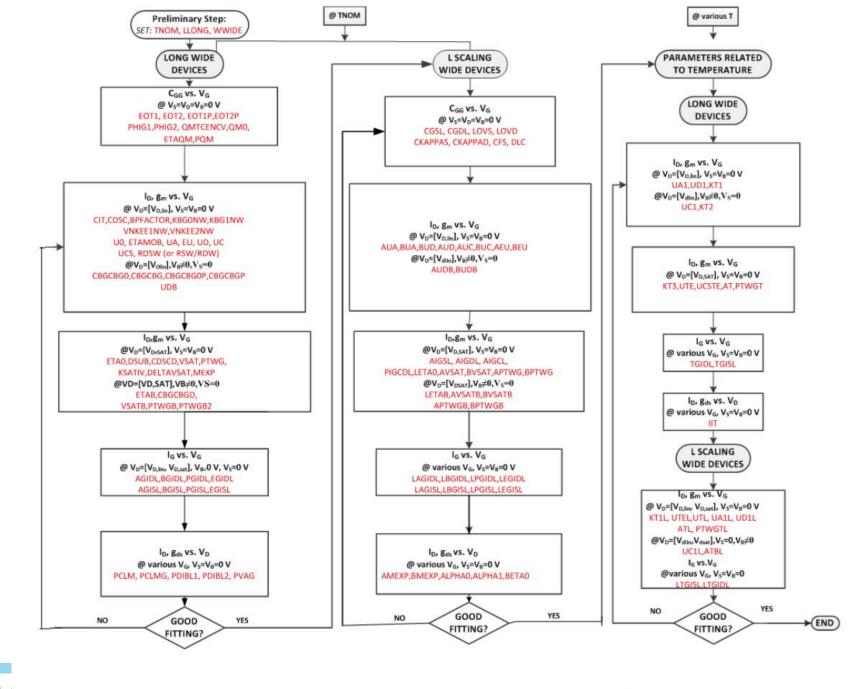

 Features an interactive GUI for real time extraction analysis, a custom Python scripting environment for flexible scripting and an extensive optimization library for finding the best parameter set for the selected SPICE model

Our Model Approach

- Take the 22nm PDK provided by global foundries for these devices and re-extract the parameters we think will change at cryo
- Keep a **basis in physics** by setting reasonable parameter ranges based on literature when applicable
- Change the input pdk:
 - BSIM-IMG 102.8 doesn't include effects like subthreshold slope saturation [14], we need to model that saturation by setting temp=tnom to the value where our subthreshold slope saturates
- Isothermal model
- We will then place these extracted values back into the PDK

Subthreshold Slope Saturation as a function of Temperature [14]

Setting TNOM Value


Adjust temp=tnom and find where the subthreshold slope best fits:

0.001 0.001 1e-05 1e-05 Data 50K 1e-07 1e-07 Data 300K (A) bi (A) bl 1e-09 1e-09 40K 50K 60K 1e-11 1e-11 70K 80K 90K 1e-13 1e-13 100K 200K 0.5 1.5 0.5 1.5 Vg (V) Vg (V)

Fermilab

Transfer Characteristics At Various tnom=temp Values (L:2e-6, W:2e-6, Vd=1.8V)

BSIM-IMG Recommended Strategy as a Basis

Building an Extraction Strategy

- Find groups of isolated parameters that influence each other but not the rest of the model and put in "stages"
- Within each group find subgroups or single parameters that impact various target regions of the curves and make a series of steps
- Loop until you get a good fit. If you never find a good fit, something is wrong with the strategy or parameter set and some changes need to be made

Example:

u0,ua,ud,rdw, rsw -> IDVG Low drain

u0,ua,ud --> elbow/threshold voltage region

Extraction Strategy

<u>Stage 1:</u> Extract **low drain** parameters for long/wide device

Stage 2: Extract high drain parameters for long/wide device

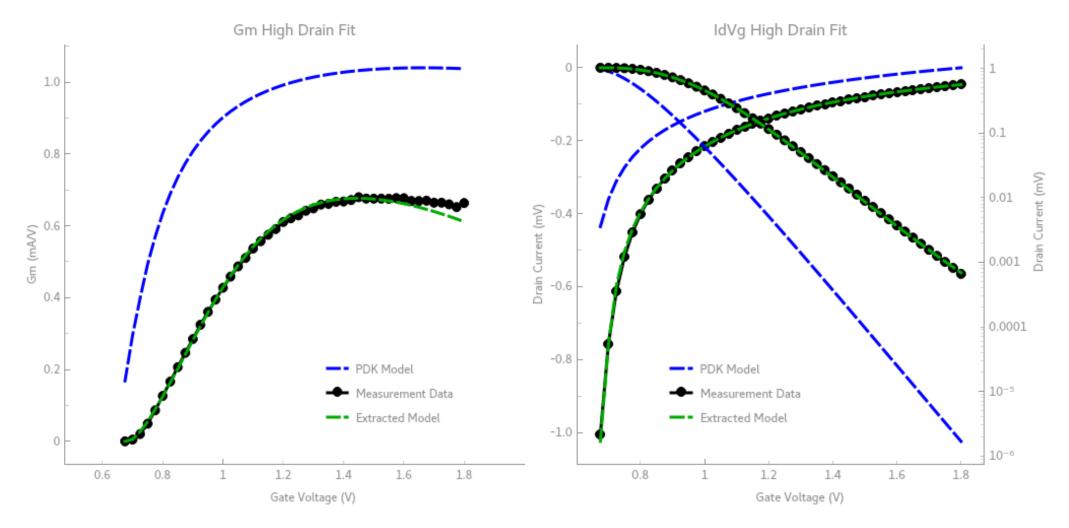
Stage 3: Extract width dependent parameters for long device at various widths

Stage 4: Extract Low Drain length dependent parameters


Stage 5: Extract **High Drain length** dependent parameters

Stage 6: Extract **Back gate** parameters

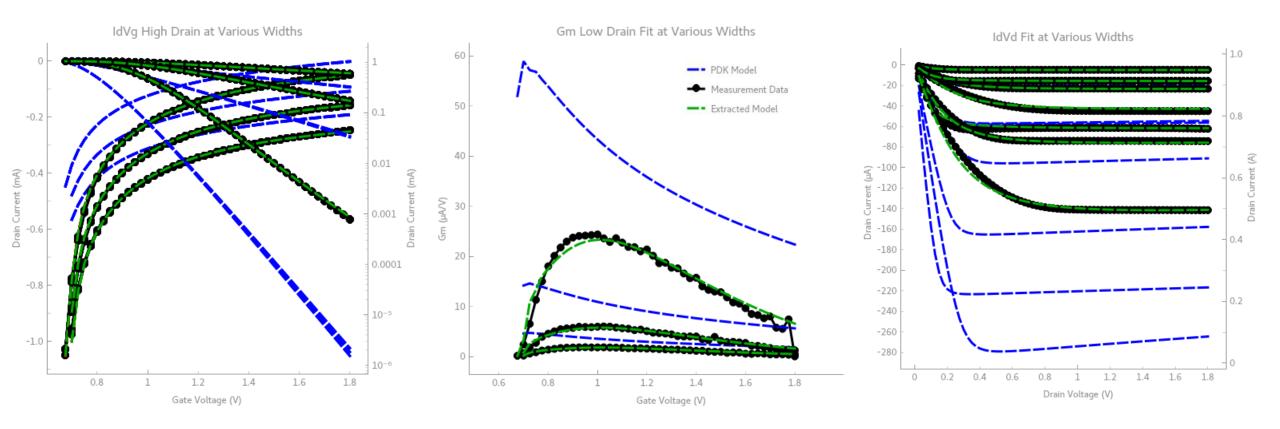
Stage 7: Extract corner cases (short length/short width)



Low Drain extraction **PDK Model (with temp=tnom=50K) vs Extracted Model:**

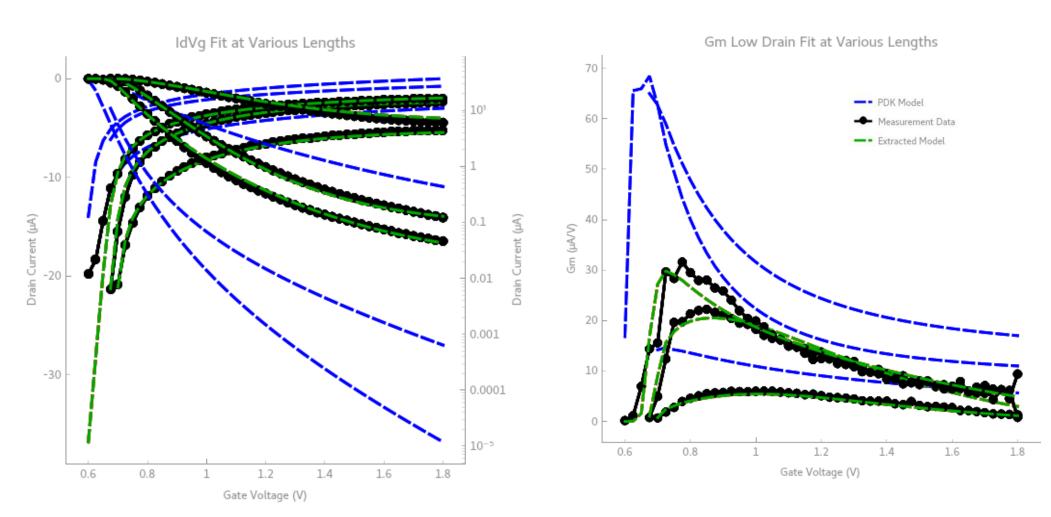
Stage 1

Stage 2High Drain extractionPDK Model (with temp=tnom=50K) vs Extracted Model:

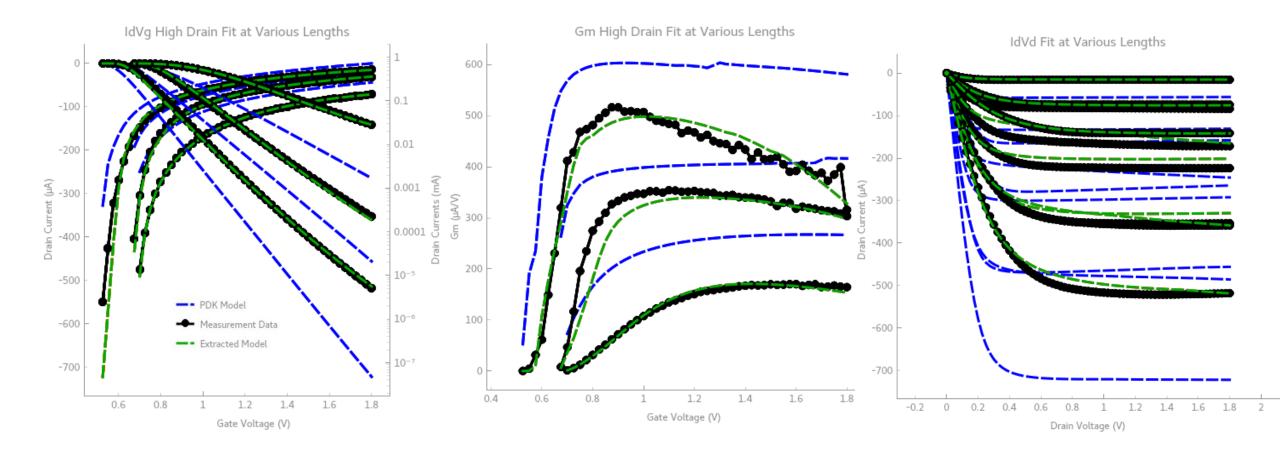


‡ Fermilab

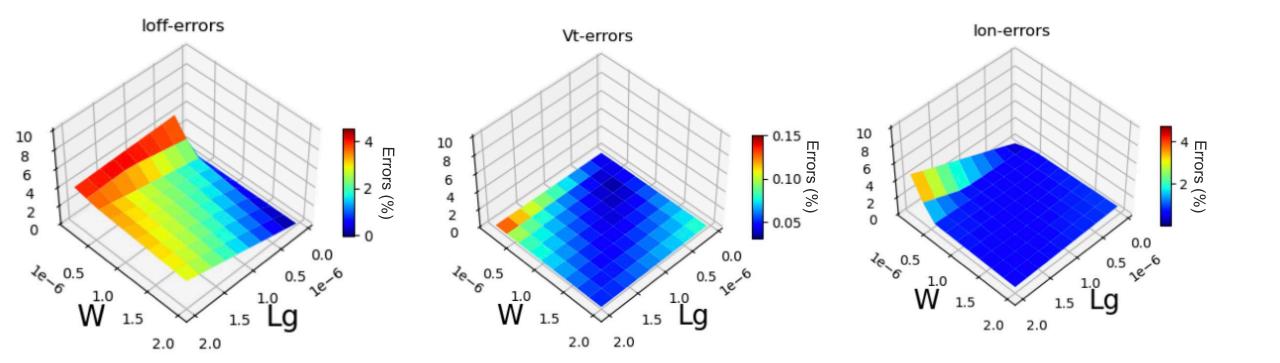
Width extraction

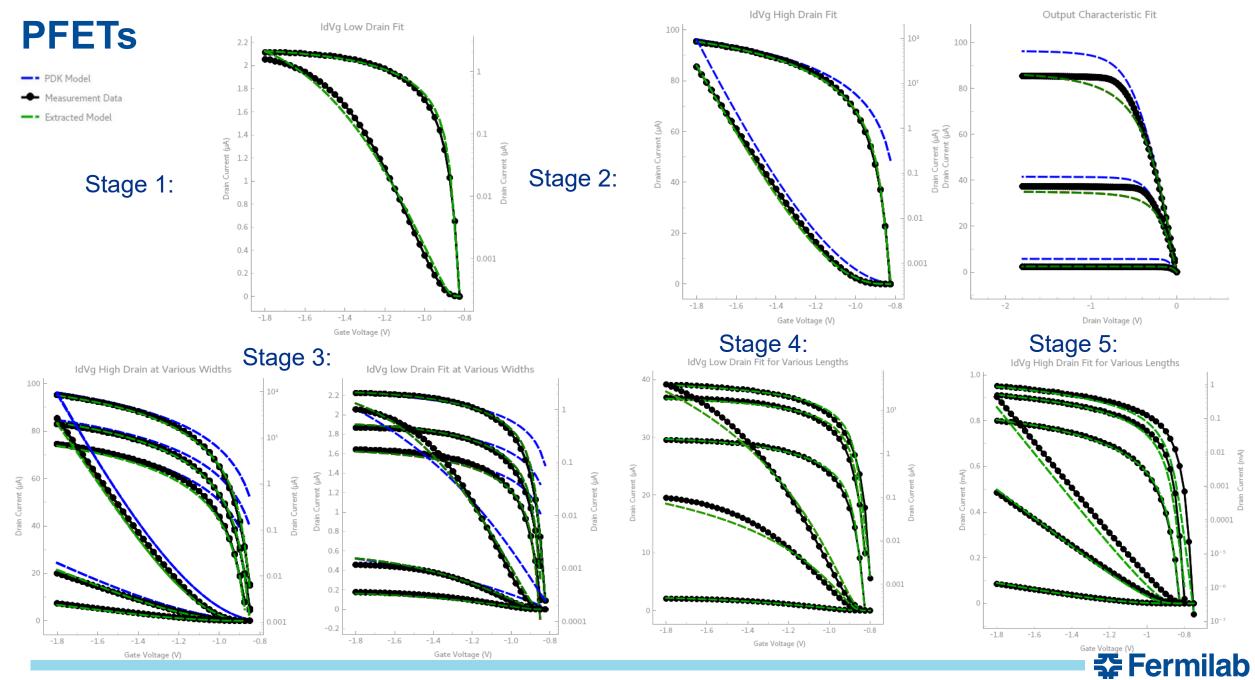

Stage 3

PDK Model (with temp=tnom=50K) vs Extracted Model:



Stage 5 High Drain Length extraction


PDK Model (with temp=tnom=50K) vs Extracted Model:


Fermilab

Errors across Figures of Merit for all Lengths and Widths

Found by taking the percentage error between data simulated using the extracted model and the measurement data:

20 10/31/2023 CPAD 2023: CryoCMOS modelling and PDK development for GF 22 FDX

Future work

Complete 4K PDK-compatible models for thin oxide devices and HV devices

Cryogenic noise measurements

Develop 4K timing libraries for standard cell library

Cryogenic radiation testing at Fermilab

- Evaluate radiation hardness at cryo
- If sufficient, create 4K radiation compact models and timing libraries

Quantify cryogenic measurement error

AI/ML based PDK development

Work supported by the U.S. Department of Energy, Office of Science (Microelectronics Codesign) and Fermilab LDRD.

Works Cited

[1] Lotfi, Nima, et al. "A single-channel 18.5 GS/s 5-bit flash ADC using a body-biased comparator architecture in 22nm FD-soi." 2019 IEEE International Symposium on Circuits and Systems (ISCAS), 2019, https://doi.org/10.1109/iscas.2019.8702505.

"A Single-Channel 18.5 GS/s 5-bit Flash ADC using a Body-Biased Comparator Architecture in 22nm FD-SOI""

[2] Tang, Zhidong, et al. "Cryogenic CMOS RF device modeling for Scalable Quantum Computer Design." *IEEE Journal of the Electron Devices Society*, vol. 10, 2022, pp. 532–539, https://doi.org/10.1109/jeds.2022.3186979.

[3] Beckers, Arnout, Farzan Jazaeri, Heorhii Bohuslavskyi, et al. "Characterization and modeling of 28-NM FDSOI CMOS technology down to cryogenic temperatures." *Solid-State Electronics*, vol. 159, 2019, pp. 106–115, <u>https://doi.org/10.1016/j.sse.2019.03.033</u>.

[4] Inaba, Takumi, et al. "Importance of source and drain extension design in cryogenic MOSFET operation: Causes of unexpected threshold voltage increases." *Applied Physics Express*, vol. 15, no. 8, 2022, p. 084004, <u>https://doi.org/10.35848/1882-0786/ac819b</u>.

[5] Hart, P. A. 't, Babaie, M., Vladimirescu, A., & Sebastiano, F. (2021, June 15). Characterization and modeling of self-heating in nanometer bulk-CMOS at cryogenic temperatures. arXiv.org. https://arxiv.org/abs/2106.07982

[6] Importance of source and drain extension design in ... - iopscience. (n.d.-a). https://iopscience.iop.org/article/10.35848/1882-0786/ac819b

[7] Beckers, Arnout, et al. "Cryogenic characterization of 28 nm bulk CMOS technology for quantum computing." 2017 47th European Solid-State Device Research Conference (ESSDERC), 2017, https://doi.org/10.1109/essderc.2017.8066592.

[8] Author links open overlay panelArnout Beckers a, et al. "Characterization and Modeling of 28-NM FDSOI CMOS Technology down to Cryogenic Temperatures." Solid-State Electronics, Pergamon, 21 Mar. 2019, www.sciencedirect.com/science/article/pii/S0038110119301443.

[9] Beckers, Arnout, Farzan Jazaeri, and Christian Enz. "Cryogenic mos transistor model." *IEEE Transactions on Electron Devices*, vol. 65, no. 9, 2018, pp. 3617–3625, https://doi.org/10.1109/ted.2018.2854701.

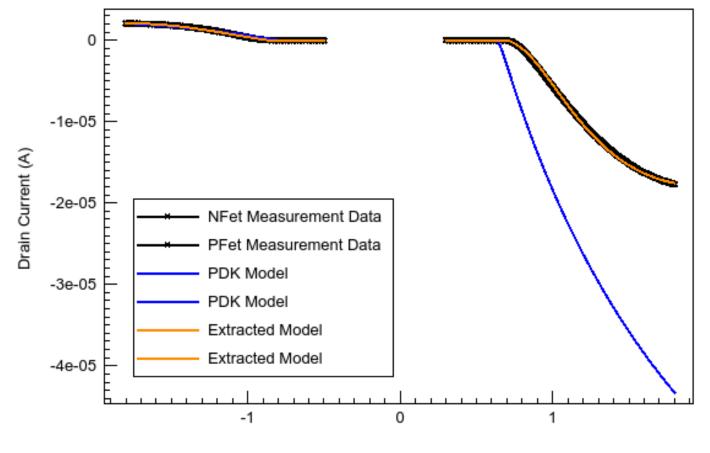
[10] Bohuslavskyi, H., et al. "Cryogenic subthreshold swing saturation in FD-soi mosfets described with band broadening." *IEEE Electron Device Letters*, vol. 40, no. 5, 2019, pp. 784–787, https://doi.org/10.1109/led.2019.2903111.

[11] Chen, Zehua, et al. "Temperature dependences of threshold voltage and drain-induced barrier lowering in 60NM gate length MOS transistors." *Microelectronics Reliability*, vol. 54, no. 6–7, 2014, pp. 1109–1114, <u>https://doi.org/10.1016/j.microrel.2013.12.005</u>.

[12] Bhardwaj, Anuj, et al. "Narrow-width effects in 28-nm FD-SOI transistors operating at cryogenic temperatures." *IEEE Journal of the Electron Devices Society*, vol. 11, 2023, pp. 22–29, https://doi.org/10.1109/jeds.2022.3233302.

[13] Chakraborty, Wriddhi, et al. "Characterization and modeling of 22 nm FDSOI Cryogenic RF CMOS." *IEEE Journal on Exploratory Solid-State Computational Devices and Circuits*, vol. 7, no. 2, 2021, pp. 184–192, https://doi.org/10.1109/jxcdc.2021.3131144.

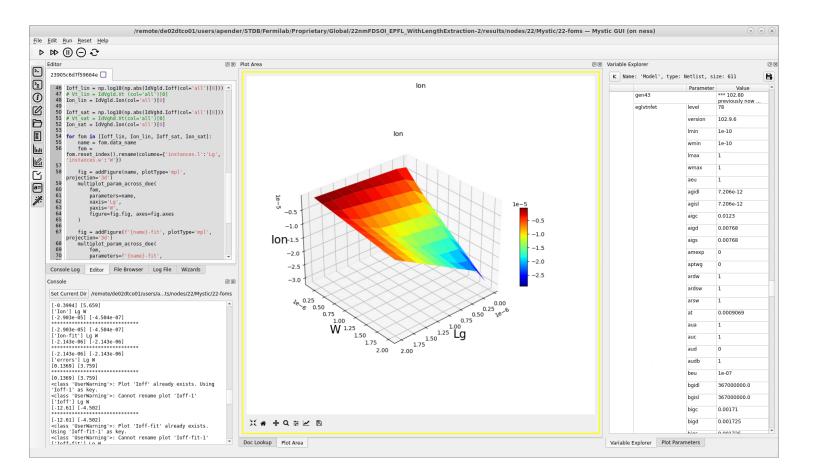
[14] G. Pahwa, P. Kushwaha, A. Dasgupta, S. Salahuddin, and C. Hu, "Compact modeling of temperature effects in fdsoi and finfet devices down to cryogenic temperatures," *IEEE*, 2021. [15] Han, Hung-Chi, et al. "Analytical modeling of source-to-drain tunneling current down to cryogenic temperatures." *IEEE Electron Device Letters*, vol. 44, no. 5, 2023, pp. 717–720, https://doi.org/10.1109/led.2023.3254592.


[16] Tripathi, S. Pati, et al. "Characterization and modeling of quantum dot behavior in FDSOI devices." *IEEE Journal of the Electron Devices Society* 10 (2022): 600-610 https://doi.org/10.1109/JEDS.2022.3176205

[17] Braga, Davide, Shaorui Li, and Farah Fahim. "Cryogenic electronics development for high-energy physics: An overview of design considerations, benefits, and unique challenges." *IEEE Solid-State Circuits Magazine* 13.2 (2021): 36-45. <u>https://doi.org/10.1109/MSSC.2021.3072804</u>

Backups

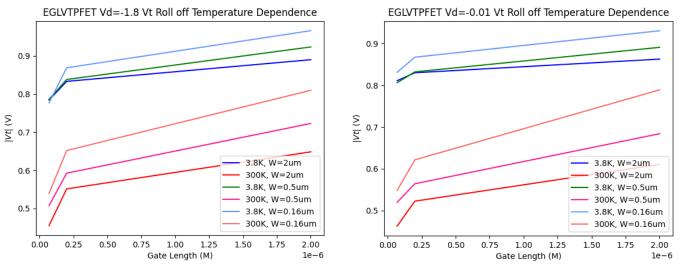
IdVg Low Drain



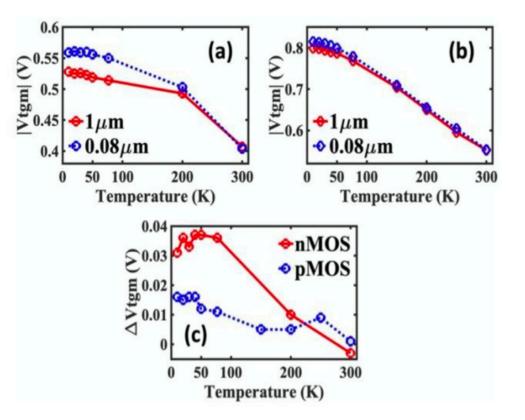
Gate Voltage (V)

Mystic Software

 Interactive plotting environment allows for real-time visualization of model fits against target data on single 1D plots or higher dimensional spaces


BSIM-IMG Version 102.8

- Temperature range not made for deep-Cryo
- Independent Multi-Gate (IMG) models the Back gate
- We have shifted to **102.9.6 t**o use the most up to date version
- Version 102.9.6:
 - Includes cryogenic modeling, we tried running this version down to 4K with our PDK Model but it broke
 - If tnom=temp is kept at 50k and the cryomod function is disabled, the PDK model stays the same
 - Same underlying equations as 102.8 so nothing should change if the new features are disabled


Threshold Voltage Expectation at Cryogenic Temperatures

- Increase in Vt as temperature decreases seen in 28nm FDSOI [12]
- Our 22nm FDSOI data reflects this trend, with an average 250 mV difference in Vt across all lengths/widths:

Used **fixed current criteria** rather than GmMax to get a smoother roll off across geometries (GmMax method in backup slides)

High drain roll-off usually shows a **bigger difference in Vt because of DIBL**, at cryo we want Vt geometry dependence to be **more linear**, which is seen in the rightmost plot

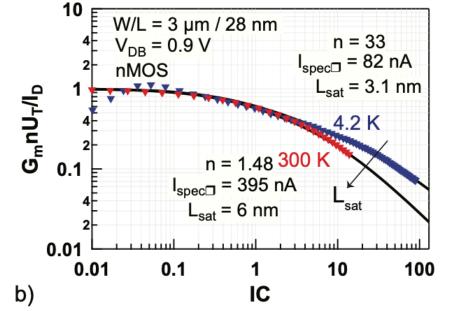


FIGURE 4. |Vt| vs Temperature at |Vds|=50 mV using maximum transconductance method for (a) nMOS and (b) pMOS, (c) ΔVt vs temperature using maximum transconductance method. The back-gate bias (*Vbs*) = 0 V. [12]

Velocity Saturation Expectation at Cryogenic Temperatures

Decrease in impact of velocity saturation seen in 28nm FDSOI [7][8]

b) Normalized transconductance efficiency versus the inversion coefficient for nMOS W/L = $3 \mu m / 28 nm$, showing a decreased velocity saturation effect at 4.2 K. [7]

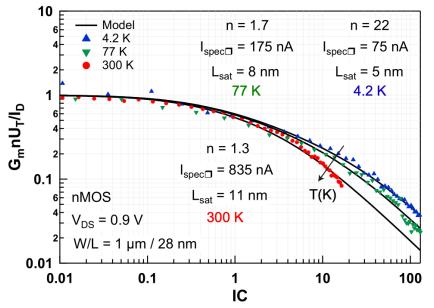
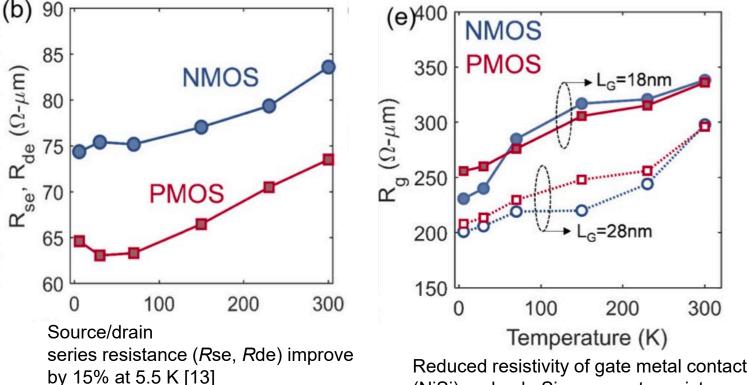


Figure 10: Modeling the normalized transconductance efficiency at 300, 77, and 4.2 K in a short 28-nm FDSOI nMOS in saturation. Model parameters are given in the figure. [8]

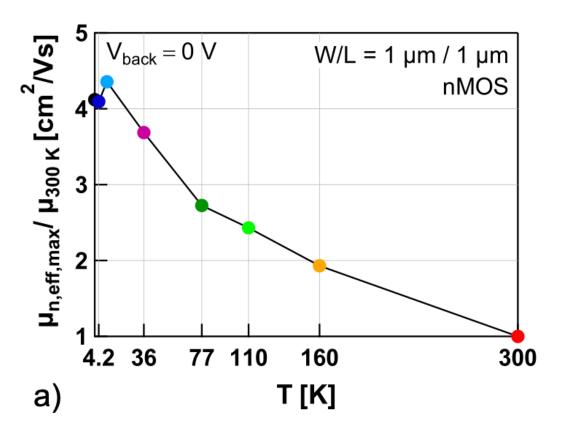

Source/Drain Resistance Expectation at Cryogenic Temperatures

 In 22nm FDSOI a 11-15% decrease seen in S/D resistance [13]

- Improvement in gate resistance:
 - Prwg models gate dependence of S/D resistance in BSIM 102.9.6, and as it increases, overall resistance should decrease (Our models reflect this)

From BSIM-IMG 102.9.6 Manual:

$$\begin{split} R_{source} &= \frac{1}{W_{new}^{WR} \cdot NF} \cdot \left(RSWMIN(T) + \frac{RSW(T)}{1 + PRWG \cdot V_{gs,eff}} \right) + R_{s,geo} \\ R_{drain} &= \frac{1}{W_{new}^{WR} \cdot NF} \cdot \left(RDWMIN(T) + \frac{RDW(T)}{1 + PRWG \cdot V_{gd,eff}} \right) + R_{d,geo} \end{split}$$

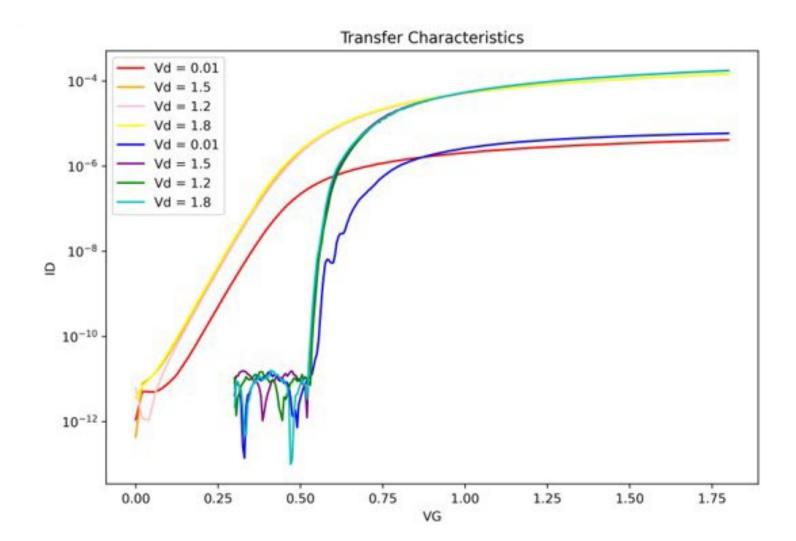


Reduced resistivity of gate metal contact (NiSi) and poly-Si cause gate resistance (*R*ge) reduction at cryogenic temperature. [13]

Mobility Expectation at Cryogenic Temperatures

- Effective mobility is made of three main components:
 - Lattice vibration-induced scattering
 - Scattering on impurities (Coulomb and phonon scattering)
 - Surface Roughness Scattering
- At cryogenic temperatures Coulomb Scattering becomes more dominant increasing mobility [2]

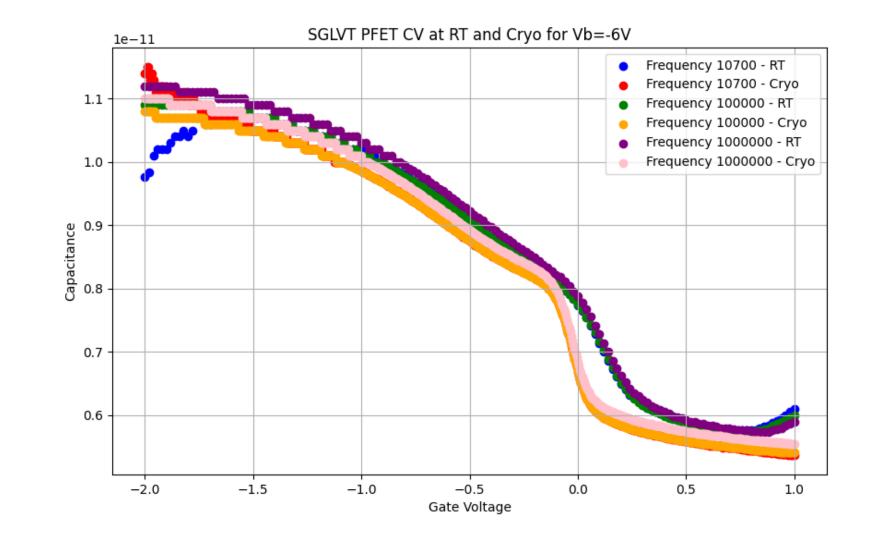
Effective Mobility Temperature dependence in 28nm FDSOI [3]


‡ Fermilab

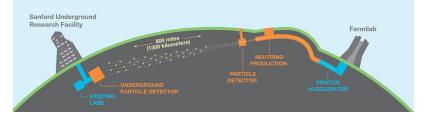
Subthreshold Current Jumps

Most of our data doesn't have this effect, but a few curves do, like the one seen here.

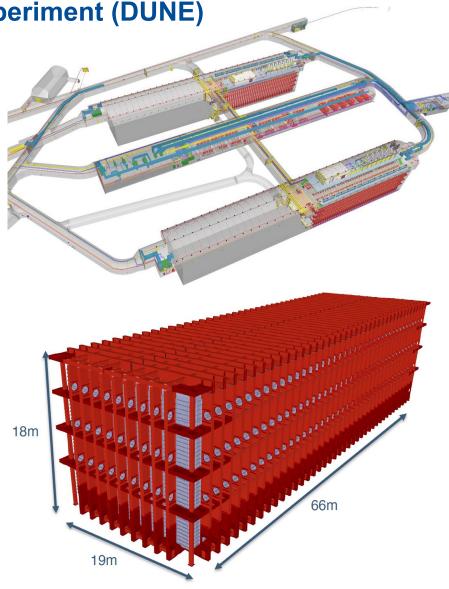
This is caused by **source/drain tunneling** [15] [16]

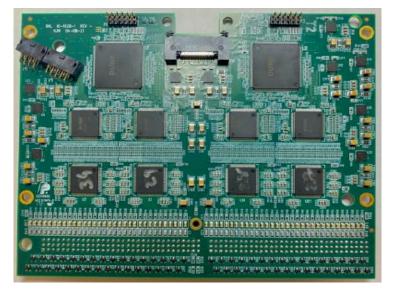

We are not modeling this for now

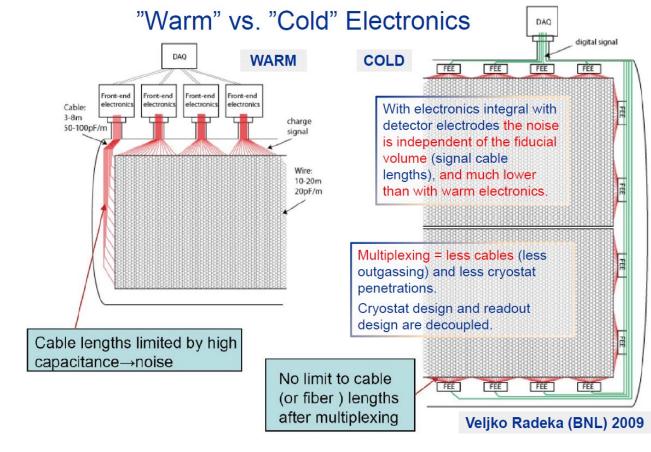
🛠 Fermilab


CV Temperature Dependence

Not a significant change with temperature, so we are not modeling this for now




Deep Underground Neutrino Experiment (DUNE)



Operation in liquid Argon

Requirements

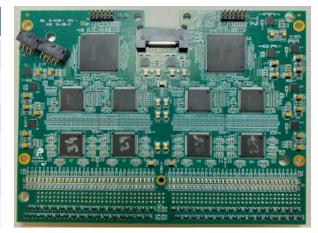
- Less than 0.7% channel failure in **30 years of operation**
- Total power consumption <50 mW/channel.
- Fully functional at 89 Kelvin

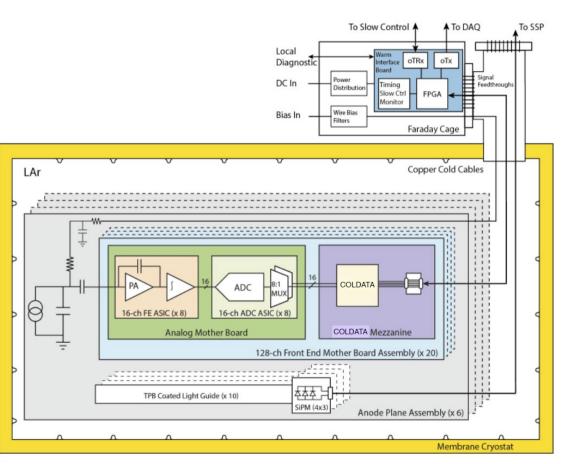
🛠 Fermilab

Benefits of operating in liquid Argon:

- Increased charge carrier mobility --> higher gain and lower noise (by about a factor of two) at 89 Kelvin
- Mounting the front-end electronics on the anode plane array (APA) frames also minimizes the input capacitance.
- Placing the digitizing and multiplexing electronics inside of the cryostat allows for a reduction in the total number of feed-throughs into the cryostat

DUNE cryogenic ASICs

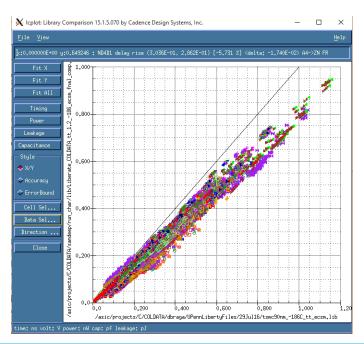

- 16-channel front-end ASICs for amplification and pulse shaping (LArASIC - BNL);
- 16-channel 12-bit ADC ASICs operating at 2 MHz (ColdADC – LBNL+FNAL+BNL);
- 64-channel control and communications ASICs (COLDATA – FNAL+SMU)
- Large number of components requiring testing and qualification at both roomT and LAr
- Future proposed pixelated readout schemes with >100M channels (<100µW/channel), SiPh for readout and power delivery, chipletbased or monolithic chips with integrated sensing, computing and communication

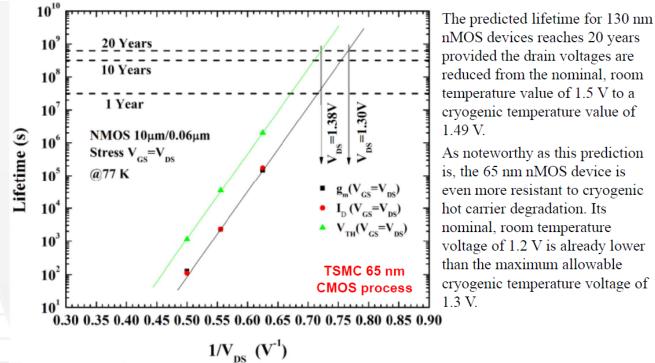

Large scientific experiments challenges and requirements:

- Performance (low noise, low power)
- Thermal and system constraints (e.g feedthroughs)
- Reliability (lifetime, SEE)
- Large # channels
- Radiopurity, etc.

... not too dissimilar to the challenges of scalable quantum computers

Element	Quantity
TPC wires (channels)	384K
Anode plane array (APA)	150
Front End Mother Board (FEMB)	3000
FE ASIC	24000
ADC ASIC	24000
COLDATA ASIC	6000




Lifetime studies, modeling, and custom library development

Hot carrier induced lifetime degradation can be avoided by limiting Vds and/or increasing L

→ We derated the nominal supply by 10% and created a custom digital library with increased L (90nm)

The custom library (~230 cells) was characterized for static timing analysis (timing and power across corners) for digital synthesis and place and route.

FERMILAB/SMU: J. R. Hoff, et al., IEEE TRANS. ON NUCLEAR SCIENCE, VOL.59, NO.4, AUGUST 2012 **BNL:** Shaorui Li, et al., IEEE TRANS. ON NUCLEAR SCIENCE, VOL.60, NO.6, DECEMBER 2013 **FERMILAB/SMU:** Guoying Wu, et al., IEEE TRANS. ON DEV. AND MATERIALS RELIABILITY, VOL.14, NO.1, MARCH 2014 **FERMILAB/SMU:** J.R.Hoff, et al., "Cryogenic Lifetime Studies of 130nm and 65nm CMOS Technologies for High-Energy Physics Experiments, *in publishing in IEEE TRANS. ON NUCLEAR SCIENCE*

22FDX Cryogenic modeling - EKV

Collaboration with EPFL (Han, Enz, Charbon) for simplified EKV (sEKV) modeling for inversion coefficient design methodology (for analog design)

= G_mnU₇/I_D [-]

g_{ms}//C=

10

10

10

= 0.16 um

= 0.5 um

EKV model

 $\dots \lambda_{n} = 0 (L = 2 \mu m)$

 10^{-2}

 $--\cdot \lambda_{a} = 0.27 (L = 70 \text{ nm})$

 $- \cdot \cdot \lambda_{r} = 0.13 (L = 0.2 \, \mu m)$

10

10[°]

 $IC = I_D / I_{spec}$ [-]

10

10²

10[°]

W = 2 µm

Data from GF's Basic FET Test Structures, measured at 3.8K at EPFL

 $g_{ms}/IC = G_m nU_T/I_D$ [-]

10

10

= 0.16 um

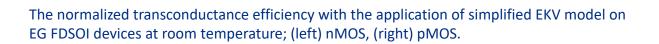
′ = 0.5 um

EKV model

 $\dots \lambda_{n} = 0 \{L = 2 \mu m\}$

--· λ_z = 0.27 (L = 70 nm)

 $- \cdot \cdot \lambda_c = 0.20 (L = 0.2 \,\mu\text{m})$


 10^{-1}

10⁰

 $IC = I_D / I_{spec}$ [-]

10

 $W = 2 \, \mu m$

10

Oxide	Device	Туре	# devices
EG	lvt	Ν	9
		Р	9
	slvt	Ν	9
		Р	9
SG	rvt	Ν	7
		Ρ	5
	slvt	Р	4
		Ν	in progress

22FDX Cryogenic modeling - EKV

Collaboration with EPFL (Han, Enz, Charbon) for **Simplified EKV (S-EKV)** modeling for inversion coefficient design methodology (for analog design)

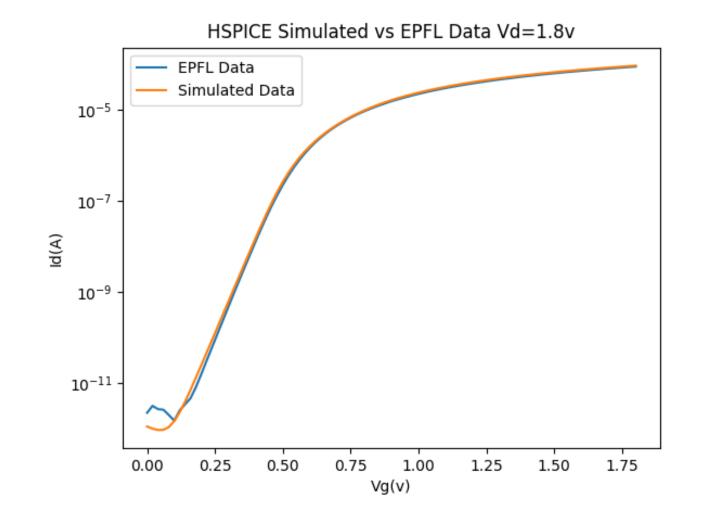
Data from GF's Basic FET Test Structures, measured with cryogenic probe station (3.8K) at EPFL

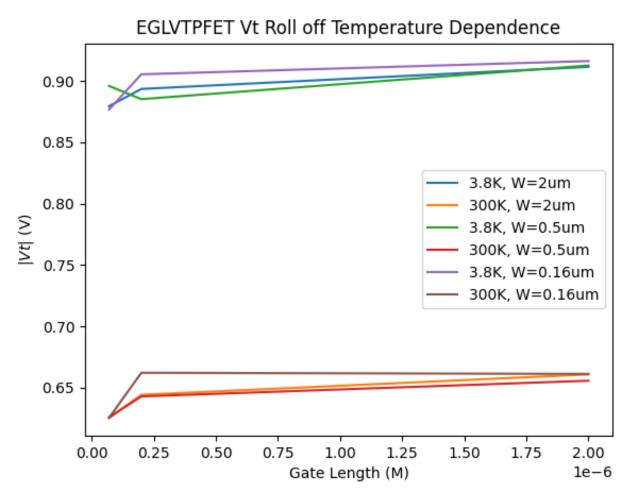
Length Scaling at Cryogenic Temperatures:

- effective mobility in terms of channel length and the temperature
- source-to-drain tunneling in subthreshold region

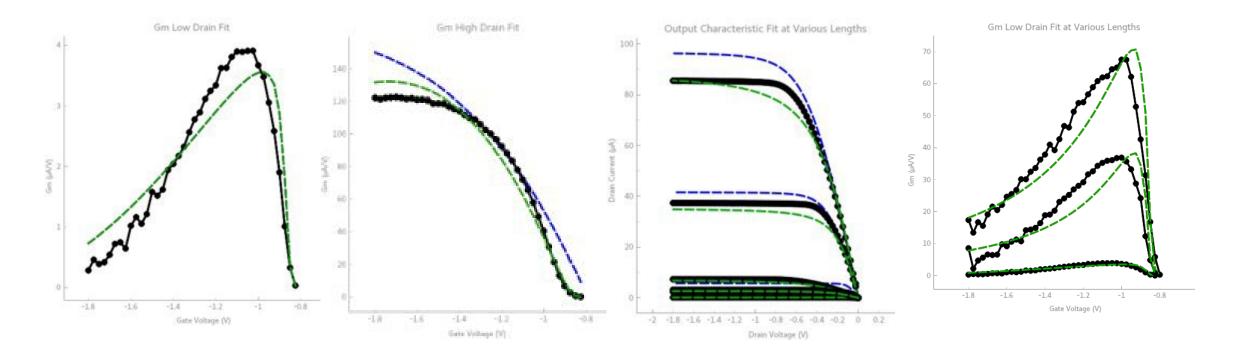
(Cryogenic RF characterization)

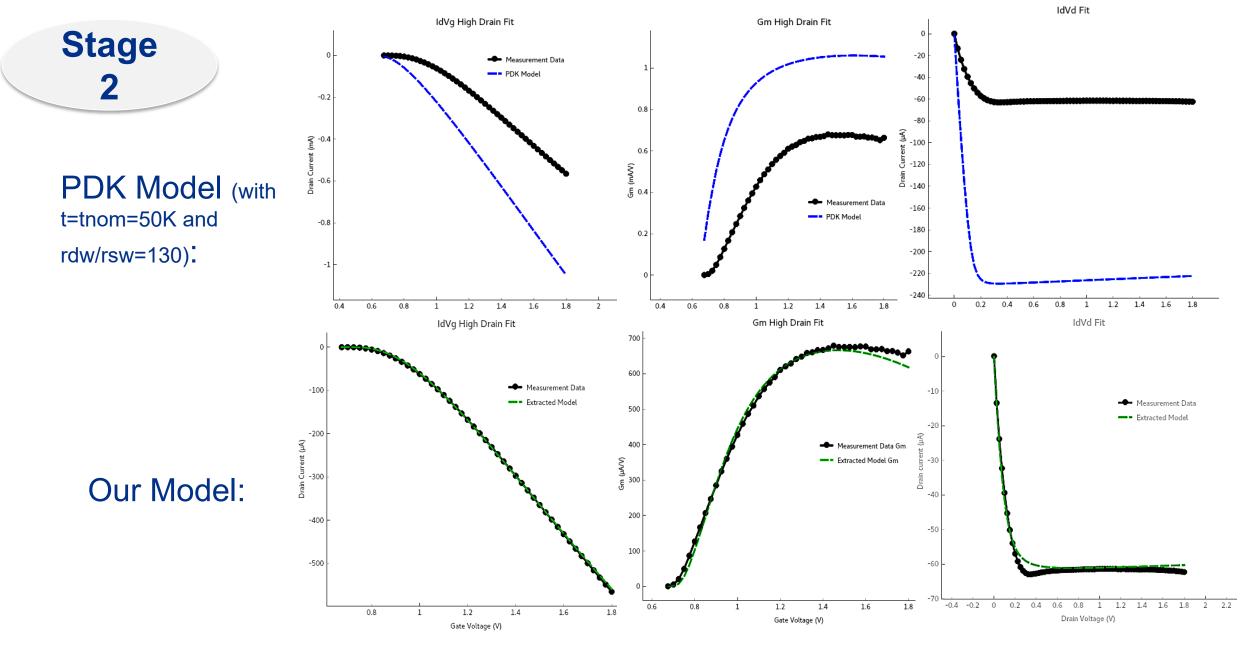
Open-source Python-based parameter extractor (SEKV-E) for the simplified EKV (sEKV) model https://gitlab.com/moscm/sekv-e

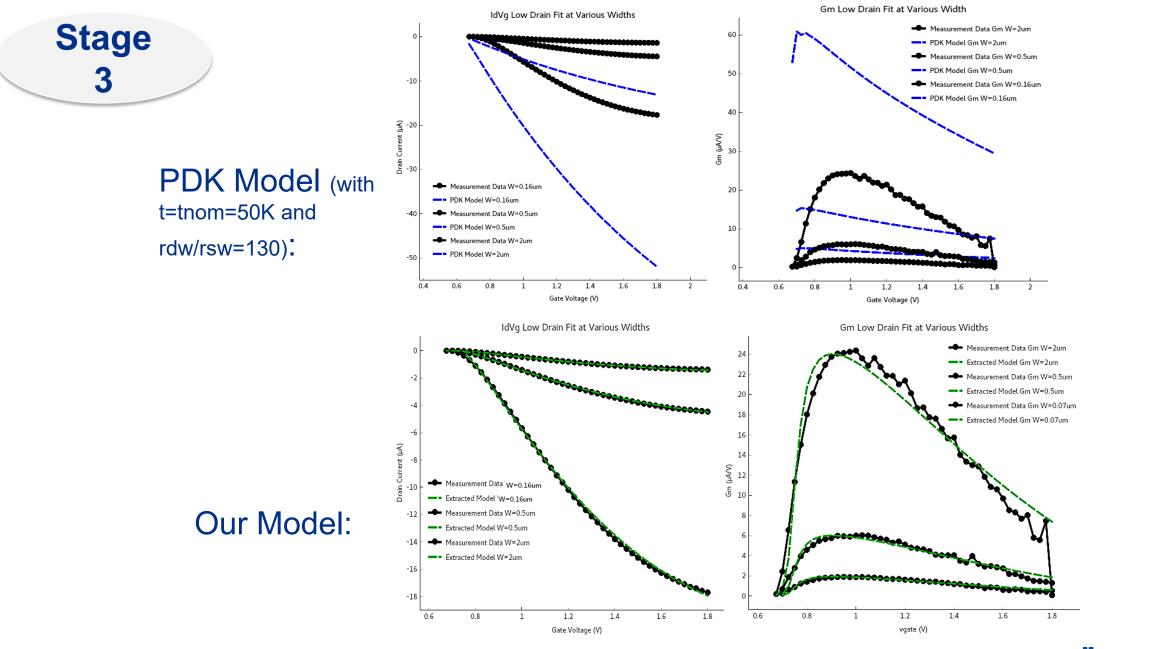

- Han, Hung-Chi, Antonio D'Amico, and Christian Enz. "Comprehensive Design-oriented FDSOI EKV Model." 2022 29th International Conference on Mixed Design of Integrated Circuits and System (MIXDES). IEEE, 2022.
- H.-C. Han, F. Jazaeri, Z. Zhao, S. Lehmann, C. Enz, "An improved subthreshold swing expression accounting for back-gate bias in FDSOI FETs", in Solid-state Electronics, vol. 202, 108608, April 2023. Doi: 10.1016/j.sse.2023.108608
- Han, Hung-Chi, et al. "In-depth cryogenic characterization of 22 nm FDSOI technology for quantum computation." 2021 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EuroSOI-ULIS). IEEE, 2021.
- Han, Hung-Chi, et al. "Cryogenic RF Characterization and Simple Modeling of a 22 nm FDSOI Technology." ESSDERC 2022-IEEE 52nd European Solid-State Device Research Conference (ESSDERC). IEEE, 2022.
- H. -C. Han, A. D'Amico and C. Enz, "SEKV-E: Parameter Extractor of Simplified EKV I-V Model for Low-Power Analog Circuits," in IEEE Open Journal of Circuits and Systems, vol. 3, pp. 162-167, 2022, doi: <u>10.1109/OJCAS.2022.3179046</u>.


PDK Validation at room temp

38 10/31/2023 IEEE Quantum Week 2023: CryoCMOS modelling and PDK development for GF 22 FDX


Vt Rolloff using GmMax method


Temperature impact on Vt Roll Off for Vd=0.01V using maximum transconductance method from EPFL data


Extra pfet plots

Stage 1: Low Drain extraction

		Parameters adjusted	Target Regions	Behavior modelled
	Step 1	Cit, phig1	IdVg Below threshold voltage	Work function and Subthreshold slope
	Step 2	u0, ua	IdVg Mobility region	Mobility
	Step 3	u0,ua,eu,ud,rdw,rsw,u cs,prwg	IdVg Above Vth	Source/drain extension resistance, front gate bias dependence on s/d resistance, coulomb scattering, phonon/surface roughness scattering
	Step 4	phig1,ua,eu,ud,rdw,rs w,ucs,prwg	IdVg Below Vth, resistance region	All of the above

‡ Fermilab

Stage 2: High Drain extraction

	Parameters adjusted	Target Regions	Behavior modelled
Step 1	Eta0, cdscd	IdVg Below Vt	Drain induced barrier lowering, drain bias sensitivity of cdsc (subthreshold slope)
Step 2	Mexp, vsat	IdVg strong inversion	Smoothing for Vd saturation, Velocity saturation
Step 3	vsat, vsat1, ptwg, pvag, ksativ	ldVg AboveVt, ldVd sat	Velocity saturation, Strong inversion Vd saturation, Vg dependence on early voltage
Step 4	Mexp, vsat	IdVg strong inversion	Smoothing for Vd saturation, Velocity saturation

Stage 3: Width extraction

		Parameters adjusted	Target Regions	Behavior modelled
	Step 1	wphig1	Below Vt on all 3 low drain widths for our longest device	Width dependent work function
	Step 2	wu0	Above Vt on all 3 low drain widths for our longest device	Width dependent mobility
	Step 3	wvsat	IdVg strong inversion region for high drain curves	Width dependent velocity saturation

Stage 4: Low Drain Length extraction

		Parameters adjusted	Target Regions	Behavior modelled	
	Step 1	lphig1	Below Vt on all 3 low drain lengths for longest width device	Work function length dependence	
\land	Step 2	Lu0	All 3 low drain lengths for longest width device	Length dependent mobility	
	Step 3	leu, lua, lua1,lucs,lprwg, lrdw, lrsw	Mobility/resistance region on all 3 low drain lengths for medium width device	Length dependent Source/drain extension resistance, front gate bias dependence on s/d resistance, coulomb scattering, phonon/su rface roughness scattering Length dependent source/drain resistance and length dependent series resistance coefficient	
	Step 4	Lu0, leu, lua, lua1,lucs,lp rwg, lrdw, lrsw	All 3 low drain lengths above Vt and transconductance for longest width device		
	Step 5	Lu0, leu, lua, lua1,l ucs,lprwg, lud	All 3 low drain lengths, Above Vt and Strong inversion region for our longest width device	All of the above	

Stage 5: High Drain Length extraction

	Parameters adjusted	Target Regions	Behavior modelled
Step	1 leta0	IdVg for all 3 High drain lengths for longest width device below Vt	Length scaling for drain induced barrier lowering
Step	2 Ivsat,Imexp	IdVg for all 3 High drain lengths for longest width device strong inversion	Length scaling for velocity saturation and Smoothing for Vd saturation
Step	3 Ivsat,Imexp, Ipvag, Iptwg, Iksativ	IdVg for all 3 High drain lengths for longest width device above Vt and IdVd saturation region	Above, and length scaling for Strong inversion Vd saturat ion, Vg dependence on early voltage
Step	4 Ivsat,Imexp, Ipvag, Iptwg, Iksativ, Ieta0	All 3 High drain lengths for longest width device and transconductance	All of the above

47

	Param	Behavior Modeled	% Change	Value change
Extracted	u0	Mobility	3.9	0.002 M^(2)/V -s
Parameter	ua	Mobility	1599	24.8 (cm/MV)^(EU)
change at 3.8K from PDK	phig1	Work function	1.4	0.13 mV
values at T =	cit	Subthreshold slope	32279	0.003228 F /m^(2)
50K (eglvtnfet)	rdw/rsw	S/D resistance	-11.4	-21 Ω−μ^(WR)
	prwg	Gate bias S/D resistance Dependence	128.8	0.58 1/v
	vsat	Saturation velocity	2.9	830 m/s

