Skip to main content

Knocking in Multifunctional Gene Tags into SMC Complex Subunits Using Gene Editing

  • Protocol
  • First Online:
SMC Complexes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2004))

Abstract

Condensin, a highly conserved pentameric chromosome complex, is required for the correct organization and folding of the genome. Here, we highlight how to knock protein tags into endogenous loci to faithfully study the condensin complex in vertebrates and dissect its multiple functions. These include using the streptavidin binding peptide (SBP) to create the first genome-wide map of condensin and perform varied applications in proteomics and enzymology of the complex. The revolution in gene editing using CRISPR/Cas9 has made it possible to insert tags into endogenous loci with relative ease, allowing physiological and fully functional tagged protein to be analyzed biochemically (affinity tags), microscopically (fluorescent tags) or both purified and localized (multifunctional tags). In this chapter, we detail how to engineer vertebrate cells using CRISPR/Cas9 to provide researchers powerful tools to obtain greater precision than ever to understand how the complex interacts and behaves in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalitsis P, Zhang T, Marshall KM et al (2017) Condensin, master organizer of the genome. Chromosome Res 25:61–76. https://doi.org/10.1007/s10577-017-9553-0

    Article  CAS  PubMed  Google Scholar 

  2. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hudson DF, Vagnarelli P, Gassmann R, Earnshaw WC (2003) Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Dev Cell 5:323–336

    Article  CAS  PubMed  Google Scholar 

  4. Green LC, Kalitsis P, Chang TM et al (2012) Contrasting roles of condensin I and condensin II in mitotic chromosome formation. J Cell Sci 125:1591–1604. https://doi.org/10.1242/jcs.097790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nishimura K, Fukagawa T, Takisawa H et al (2009) An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat Methods 6:917–922. https://doi.org/10.1038/nmeth.1401

    Article  CAS  PubMed  Google Scholar 

  6. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rigaut G, Shevchenko A, Rutz B et al (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032. https://doi.org/10.1038/13732

    Article  CAS  PubMed  Google Scholar 

  8. Canella D, Praz V, Reina JH et al (2010) Defining the RNA polymerase III transcriptome: genome-wide localization of the RNA polymerase III transcription machinery in human cells. Genome Res 20:710–721. https://doi.org/10.1101/gr.101337.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim JH, Zhang T, Wong NC et al (2013) Condensin I associates with structural and gene regulatory regions in vertebrate chromosomes. Nat Commun 4:2537. https://doi.org/10.1038/ncomms3537

    Article  CAS  PubMed  Google Scholar 

  10. Cheeseman IM, Desai A (2005) A combined approach for the localization and tandem affinity purification of protein complexes from metazoans. Sci STKE 2005:pl1. https://doi.org/10.1126/stke.2662005pl1

    Article  PubMed  Google Scholar 

  11. Hudson DF, Ohta S, Freisinger T et al (2008) Molecular and genetic analysis of condensin function in vertebrate cells. Mol Biol Cell 19:3070–3079. https://doi.org/10.1091/mbc.e08-01-0057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma H, McLean JR, Chao LF-I et al (2012) A highly efficient multifunctional tandem affinity purification approach applicable to diverse organisms. Mol Cell Proteomics 11:501–511. https://doi.org/10.1074/mcp.O111.016246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keefe AD, Wilson DS, Seelig B, Szostak JW (2001) One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-Tag. Protein Expr Purif 23:440–446. https://doi.org/10.1006/prep.2001.1515

    Article  CAS  PubMed  Google Scholar 

  14. Kim JH, Chang TM, Graham AN et al (2010) Streptavidin-binding peptide (SBP)-tagged SMC2 allows single-step affinity fluorescence, blotting or purification of the condensin complex. BMC Biochem 11:50. https://doi.org/10.1186/1471-2091-11-50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kimberland ML, Hou W, Alfonso-Pecchio A et al (2018) Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments. J Biotechnol 284:91–101. https://doi.org/10.1016/j.jbiotec.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  16. Budowle B, Baechtel FS (1990) Modifications to improve the effectiveness of restriction fragment length polymorphism typing. Appl Theor Electrophor 1:181–187

    CAS  PubMed  Google Scholar 

  17. Koch B, Nijmeijer B, Kueblbeck M et al (2018) Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing. Nat Protoc 13:1465–1487. https://doi.org/10.1038/nprot.2018.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work presented in this chapter was supported by National Health and Medical Research Council (Australia) project Grants GNT1127209 (PK and DH) and GNT1145188 (PK and DH) and by the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul Kalitsis or Damien F. Hudson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kalitsis, P., Zhang, T., Kim, J.H., Nielsen, C.F., Marshall, K.M., Hudson, D.F. (2019). Knocking in Multifunctional Gene Tags into SMC Complex Subunits Using Gene Editing. In: Badrinarayanan, A. (eds) SMC Complexes. Methods in Molecular Biology, vol 2004. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9520-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9520-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9519-6

  • Online ISBN: 978-1-4939-9520-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics