Skip to main content

Identification of Nonhuman Primate Hematopoietic Stem and Progenitor Cells

  • Protocol
  • First Online:
Hematopoietic Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2567))

  • 1394 Accesses

Abstract

The preclinical development of hematopoietic stem cell (HSC) gene therapy/editing and transplantation protocols is frequently performed in large animal models such as nonhuman primates (NHPs). Similarity in physiology, size, and life expectation as well as cross-reactivity of most reagents and medications allows for the development of treatment strategies with rapid translation to clinical applications. Especially after the adverse events of HSC gene therapy observed in the late 1990s, the ability to perform autologous transplants and follow the animals long-term make the NHP a very attractive model to test the efficiency, feasibility, and safety of new HSC-mediated gene-transfer/editing and transplantation approaches.

This protocol describes a method to phenotypically characterize functionally distinct NHP HSPC subsets within specimens or stem cell products from three different NHP species. Procedures are based on the flow-cytometric assessment of cell surface markers that are cross-reactive in between human and NHP to allow for immediate clinical translation. This protocol has been successfully used for the quality control of enriched, cultured, and gene-modified NHP CD34+ hematopoietic stem and progenitor cells (HSPCs) as well as sort-purified CD34 subsets for transplantation in the pig-tailed, cynomolgus, and rhesus macaque. It further allows the longitudinal assessment of primary specimens taken during the long-term follow-up post-transplantation in order to monitor homing, engraftment, and reconstitution of the bone marrow stem cell compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Notta F, Doulatov S, Laurenti E et al (2011) Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333:218–221

    Article  CAS  PubMed  Google Scholar 

  2. Doulatov S, Notta F, Eppert K et al (2010) Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat Immunol 11:585–593

    Article  CAS  PubMed  Google Scholar 

  3. Radtke S, Adair JE, Giese MA et al (2017) A distinct hematopoietic stem cell population for rapid multilineage engraftment in nonhuman primates. Sci Transl Med 9(414):eaan1145

    Article  PubMed  PubMed Central  Google Scholar 

  4. Radtke S, Chan YY, Sippel TR et al (2019) MISTRG mice support engraftment and assessment of nonhuman primate hematopoietic stem and progenitor cells. Exp Hematol 70:31–41

    Article  CAS  PubMed  Google Scholar 

  5. Peterson CW, Haworth KG, Burke BP et al (2016) Multilineage polyclonal engraftment of Cal-1 gene-modified cells and in vivo selection after SHIV infection in a nonhuman primate model of AIDS. Mol Ther Methods Clin Dev 3:16007

    Article  PubMed  PubMed Central  Google Scholar 

  6. Peterson CW, Wang J, Norman KK et al (2016) Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates. Blood 127:2416–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang J, Exline CM, DeClercq JJ et al (2015) Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat Biotechnol 33:1256–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Genovese P, Schiroli G, Escobar G et al (2014) Targeted genome editing in human repopulating haematopoietic stem cells. Nature 510:235–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Naldini L (2015) Gene therapy returns to Centre stage (review). Nature 526:351–360

    Article  CAS  PubMed  Google Scholar 

  10. Morrison C (2015) $1-million price tag set for Glybera gene therapy. Nat Biotechnol 33:217–218

    Article  CAS  PubMed  Google Scholar 

  11. Melchiorri D, Pani L, Gasparini P et al (2013) Regulatory evaluation of Glybera in Europe – two committees, one mission. Nat Rev Drug Discov 12:719

    Article  CAS  PubMed  Google Scholar 

  12. Baldo A, van den Akker E, Bergmans HE et al (2013) General considerations on the biosafety of virus-derived vectors used in gene therapy and vaccination (review). Curr Gene Ther 13:385–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Basner-Tschakarjan E, Mingozzi F (2014) Cell-mediated immunity to AAV vectors, evolving concepts and potential solutions (review). Front Immunol 5:350

    Article  PubMed  PubMed Central  Google Scholar 

  14. Raper SE, Chirmule N, Lee FS et al (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 80:148–158

    Article  CAS  PubMed  Google Scholar 

  15. Hacein-Bey-Abina S, von Kalle C, Schmidt M et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302(5644):415–419; Erratum in Science (2003) 302:568

    Article  CAS  PubMed  Google Scholar 

  16. Stein S, Ott MG, Schultze-Strasser S et al (2010) Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 16:198–204

    Article  CAS  PubMed  Google Scholar 

  17. Braun CJ, Boztug K, Paruzynski A et al (2014) Gene therapy for Wiskott-Aldrich syndrome--long-term efficacy and genotoxicity. Sci Transl Med 6:227ra233

    Article  Google Scholar 

  18. Braun CJ, Witzel M, Paruzynski A et al (2014) Gene therapy for Wiskott-Aldrich Syndrome-Long-term reconstitution and clinical benefits, but increased risk for leukemogenesis. Rare Dis 2:e947749

    Article  PubMed  PubMed Central  Google Scholar 

  19. Six EM, Bonhomme D, Monteiro M et al (2007) A human postnatal lymphoid progenitor capable of circulating and seeding the thymus. J Exp Med 204:3085–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Galy A, Travis M, Cen D et al (1995) Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3:459–473

    Article  CAS  PubMed  Google Scholar 

  21. Civin CI, Strauss LC, Brovall C et al (1984) Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 133:157–165

    CAS  PubMed  Google Scholar 

  22. Katz FE, Tindle R, Sutherland DR et al (1985) Identification of a membrane glycoprotein associated with haemopoietic progenitor cells. Leukemia Res 9:191–198

    Article  CAS  Google Scholar 

  23. Terstappen LW, Huang S, Safford M et al (1991) Sequential generations of hematopoietic colonies derived from single nonlineage-committed CD34+CD38- progenitor cells. Blood 77:1218–1227

    Article  CAS  PubMed  Google Scholar 

  24. Lansdorp PM, Sutherland HJ, Eaves CJ (1990) Selective expression of CD45 isoforms on functional subpopulations of CD34+ hemopoietic cells from human bone marrow. J Exp Med 172:363–366

    Article  CAS  PubMed  Google Scholar 

  25. Notta F, Zandi S, Takayama N et al (2016) Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science 351:aab2116

    Article  PubMed  Google Scholar 

  26. Murray L, DiGiusto D, Chen B et al (1994) Analysis of human hematopoietic stem cell populations. Blood Cells 20:364–369; discussion 369–370

    CAS  PubMed  Google Scholar 

  27. Solar GP, Kerr WG, Zeigler FC et al (1998) Role of c-mpl in early hematopoiesis. Blood 92:4–10

    Article  CAS  PubMed  Google Scholar 

  28. Gunji Y, Nakamura M, Osawa H et al (1993) Human primitive hematopoietic progenitor cells are more enriched in KITlow cells than in KIThigh cells. Blood 82:3283–3289

    Article  CAS  PubMed  Google Scholar 

  29. Manz MG, Miyamoto T, Akashi K et al (2002) Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci U S A 99:11872–11877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yin AH, Miraglia S, Zanjani ED et al (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012

    Article  CAS  PubMed  Google Scholar 

  31. Doulatov S, Notta F, Laurenti E et al (2012) Hematopoiesis: a human perspective. Cell Stem Cell 10:120–136

    Article  CAS  PubMed  Google Scholar 

  32. Majeti R, Park CY, Weissman IL (2007) Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1:635–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gorgens A, Radtke S, Horn PA et al (2013) New relationships of human hematopoietic lineages facilitate detection of multipotent hematopoietic stem and progenitor cells. Cell Cycle 12:3478–3482

    Article  PubMed  PubMed Central  Google Scholar 

  34. Giebel B, Zhang T, Beckmann J et al (2006) Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division. Blood 107:2146–2152

    Article  CAS  PubMed  Google Scholar 

  35. Akashi K, Traver D, Miyamoto T et al (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–197

    Article  CAS  PubMed  Google Scholar 

  36. Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672

    Article  CAS  PubMed  Google Scholar 

  37. Kawamoto H, Ikawa T, Masuda K et al (2010) A map for lineage restriction of progenitors during hematopoiesis: the essence of the myeloid-based model. Immunol Rev 238:23–36

    Article  CAS  PubMed  Google Scholar 

  38. Adolfsson J, Mansson R, Buza-Vidas N et al (2005) Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121:295–306

    Article  CAS  PubMed  Google Scholar 

  39. Goardon N, Marchi E, Atzberger A et al (2011) Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 19:138–152

    Article  CAS  PubMed  Google Scholar 

  40. Carrelha J, Meng Y, Kettyle LM et al (2018) Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 554:106–111

    Article  CAS  PubMed  Google Scholar 

  41. Rodriguez-Fraticelli AE, Wolock SL, Weinreb CS et al (2018) Clonal analysis of lineage fate in native haematopoiesis. Nature 553:212–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pei W, Feyerabend TB, Rossler J et al (2017) Polylox barcoding reveals haematopoietic stem cell fates realized in vivo. Nature 548:456–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Humbert O, Radtke S, Samuelson C et al (2019) Therapeutically relevant engraftment of a CRISPR-Cas9-edited HSC-enriched population with HbF reactivation in nonhuman primates. Sci Transl Med 11(503):eaaw3768

    Article  PubMed  PubMed Central  Google Scholar 

  44. Radtke S, Perez AM, Venkataraman R et al (2019) Preparation and gene modification of nonhuman primate hematopoietic stem and progenitor cells. J Vis Exp 144. https://doi.org/10.3791/58933

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Radtke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Radtke, S., Kiem, HP. (2023). Identification of Nonhuman Primate Hematopoietic Stem and Progenitor Cells. In: Pelus, L.M., Hoggatt, J. (eds) Hematopoietic Stem Cells. Methods in Molecular Biology, vol 2567. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2679-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2679-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2678-8

  • Online ISBN: 978-1-0716-2679-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics