Skip to main content

Efficiently Editing Multiple Duplicated Homeologs and Alleles for Recurrent Polyploids

  • Protocol
  • First Online:
Polyploidy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2545))

Abstract

Research on the evolutionary fate of duplicated genes in recurrent polyploids is scarce due to the difficulties in disentangling the different homeologs and alleles of duplicated genes. This chapter describes the detailed procedures to identify different homeologs and alleles of duplicated genes, to analyze their molecular characteristics, and to reveal their functional divergence by gene editing with CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9). Using the gene editing approach, we efficiently constructed multiple knockout mutant lines with single or simultaneously disrupted different homeologs or alleles in a recurrent polyploid fish, demonstrating its usability for targeting and mutating multiple divergent homeologs and alleles in recurrent duplicated genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sessa EB (2019) Polyploidy as a mechanism for surviving global change. New Phytol 221:5–6

    Article  Google Scholar 

  2. Cheng F, Wu J, Cai X et al (2018) Gene retention, fractionation and subgenome differences in polyploid plants. Nat Plants 4:258–268

    Article  CAS  Google Scholar 

  3. Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18:411–424

    Article  Google Scholar 

  4. Meyer A, Van de Peer Y (2005) From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). BioEssays 27:937–945

    Article  CAS  Google Scholar 

  5. Amores A, Force A, Yan YL et al (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711–1714

    Article  CAS  Google Scholar 

  6. Taylor JS, Braasch I, Frickey T et al (2003) Genome duplication, a trait shared by 22000 species of ray-finned fish. Genome Res 13:382–390

    Article  CAS  Google Scholar 

  7. Leggatt RA, Iwama GK (2003) Occurrence of polyploidy in the fishes. Rev Fish Biol Fisher 13:237–246

    Article  Google Scholar 

  8. Van de Peer Y, Taylor JS, Meyer A (2003) Are all fishes ancient polyploids? J Struct Funct Genom 3:65–73

    Article  Google Scholar 

  9. Zhou L, Gui JF (2017) Natural and artificial polyploids in aquaculture. Aquac Fish 2:103–111

    Article  Google Scholar 

  10. Gui JF, Zhou L (2010) Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio. Sci China Life Sci 53:409–415

    Article  Google Scholar 

  11. Lien S, Koop BF, Sandve SR et al (2016) The Atlantic salmon genome provides insights into rediploidization. Nature 533:200–205

    Article  CAS  Google Scholar 

  12. Luo J, Chai J, Wen Y et al (2020) From asymmetrical to balanced genomic diversification during rediploidization: subgenomic evolution in allotetraploid fish. Sci Adv 6:eaaz7677

    Article  CAS  Google Scholar 

  13. Chen D, Zhang Q, Tang W et al (2020) The evolutionary origin and domestication history of goldfish (Carassius auratus). Proc Natl Acad Sci 117:29775–29785

    Article  CAS  Google Scholar 

  14. Li XY, Zhang XJ, Li Z et al (2014) Evolutionary history of two divergent Dmrt1 genes reveals two rounds of polyploidy origins in gibel carp. Mol Phylogenet Evol 78:96–104

    Article  Google Scholar 

  15. Zhu HP, Ma DM, Gui JF (2006) Triploid origin of the gibel carp as revealed by 5S rDNA localization and chromosome painting. Chromosom Res 14:767–776

    Article  CAS  Google Scholar 

  16. Zhou L, Gui JF (2002) Karyotypic diversity in polyploid gibel carp, Carassius auratus gibelio Bloch. Genetica 115:223–232

    Article  CAS  Google Scholar 

  17. Soltis PS, Soltis DE (2016) Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Plant Biol 30:159–165

    Article  Google Scholar 

  18. Liu S, Li Z, Gui JF (2009) Fish-specific duplicated dmrt2b contributes to a divergent function through Hedgehog pathway and maintains left-right asymmetry establishment function. PLoS One 4:e7261

    Article  Google Scholar 

  19. Gan RH, Wang Y, Li Z et al (2021) Functional divergence of multiple duplicated Foxl2 homeologs and alleles in a recurrent polyploid fish. Mol Biol Evol 38:1995–2013

    Article  CAS  Google Scholar 

  20. Ren F, Lin Q, Gong G et al (2020) Igf2bp3 maintains maternal RNA stability and ensures early embryo development in zebrafish. Commun Biol 3:94

    Article  CAS  Google Scholar 

  21. Jiang D, Chen J, Fan Z et al (2017) CRISPR/Cas9-induced disruption of wt1a and wt1b reveals their different roles in kidney and gonad development in Nile tilapia. Dev Biol 428:63–73

    Article  CAS  Google Scholar 

  22. Wang H, Yang H, Shivalila CS et al (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  Google Scholar 

  23. Liu D, Wang Z, Xiao A et al (2014) Efficient gene targeting in zebrafish mediated by a zebrafish-codon-optimized cas9 and evaluation of off-targeting effect. J Genet Genomics 41:43–46

    Article  Google Scholar 

  24. Chang N, Sun C, Gao L et al (2013) Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res 23:465–472

    Article  CAS  Google Scholar 

  25. Zhang J, Sun M, Zhou L et al (2015) Meiosis completion and various sperm responses lead to unisexual and sexual reproduction modes in one clone of polyploid Carassius gibelio. Sci Rep 5:10898

    Article  CAS  Google Scholar 

  26. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034

    Article  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Google Scholar 

  28. Birney E, Clamp M, Durbin R (2004) GeneWise and Genomewise. Genome Res 14:988–995

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2018YFD0900204), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31000000), the Key Program of Frontier Sciences of the Chinese Academy of Sciences (QYZDY-SSW-SMC025), and China Agriculture Research System of MOF and MARA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Zhou or Jian-Fang Gui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gan, RH., Zhou, L., Gui, JF. (2023). Efficiently Editing Multiple Duplicated Homeologs and Alleles for Recurrent Polyploids. In: Van de Peer, Y. (eds) Polyploidy. Methods in Molecular Biology, vol 2545. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2561-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2561-3_26

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2560-6

  • Online ISBN: 978-1-0716-2561-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics