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PREFACE

Each year the Mathematics Department of the University of Connecticut

sponsors a special year which is an intense concentration in a specific area

of Mathanatics. The year 1979-60 was devoted to Mathematical Logic, with

special emphasis on recur sion theory and model theory. Visit ing scholars

from other instit;utions, either for the whole year or for one of the two

semesters, forned the core of this successful year. Stephen Simpson (fennsylvania

State University) and David Kueker (University of were visitors for

the entire year; Richard Shore (Cornell University) and Robert Soar e (University

of ChLcago ) visited just for the fall semester; and Michael tforley (Cornell

University) and Joram Hirschfeld (Tel--Aviv Uni.ver s Lty ) visited just for the

spring semester. Visiting graduate students included: Ambos, Stephen

Steven Buechler, David Cholst, Peter Fejer, David Charles

Steinhorn, and Galen Heitkamp.

The highlight of the year was the Conf erence on Mathanatical Logic, which

took place Novernb er 11-13, 1979, at Storrs. There were 80 logicians in

a t t endanc e , Included on the program ,;ere ten invited hour addresses, twenty

contributed fifteen minute talks, and two papers presented oy title.

This volune represents the proceedinr,s both of the Logic Year and also

of the Corif e r enc e , Almo st all of the papers I nc l.ud ed herein have been based

either on talks presented at the Conf er enc e or on presentations made to one

of the various seminars, includinp, the joint rniversity of Connecticut-

Yale _. Pesleyan logic seminars, that were r er-ul.ar Ly hel d during the course

of the year.

The togic Year and the Conference could not have been so successful Fithout

the greatly appreciated assistance and cooperation of nany organizations and

individuals. We thank the futional Science Foundation for financial support

under prant Mes 79-03308; we thank the Research Foundation for additional

financial ass t st.ance: vee t hanl; the University of Connecticut Office of

Conferences, Institutes and Administrative Services for their able handLing

of the organization of the Conference; we thank our consul t tnr- editors

Steve Simpson, Richard Shore and David for their expertise; and finally

,!e thank all of those individuals who by attending the Conf er enc e contributed

to making it an outstanding event.

Lerman

J. Schn>erl

R. Soare
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DEFINABILITY AND THE HIERARCHY OF STABLE THEORIES

John T. BaLdwin

It is weLL known that a theory T is stabLe if and onLy if for every A contained in a

modeL of T and every type p in SeA), p is definabLe over A in the foLLowing sense:

The type p in SeA) is definabLe over B by the map d if for each formuLa

there is a formuLa with parameters from B such that for each sequence a in

A: is in p if and onLy if hoLds.

In fact, in [2J we proposed that a sLight variant of this property be taken as the

definition of a stabLe theory. There is a natural objection to this proposal; the

usual definition of stable, superstabLe, and totally transcendental theories in terms

of the cardinality of the space of types yieLds immediately the hierarchy: totalLy

transcendentaL impLies superstable implies stabLe. Is there a similar hierarchy of

definability which defines totally transcendental and superstable in terms of

"definability of types"? In this paper we provide such a hierarchy. NameLy, we will

show the following results.

let Sn(T) denote the collection of n-types over the empty set. We say T is a smaLL

theory if for each n, Is (T)I<ITI.n -

THEOREM 1. The countabLe smalL theory T is totalLy transcendental if and onLy if for

every A contained in a modeL of T and every p in SeA), there is a finite subset B of

A such that p is definable over B.

We wiLL define below the concept "p is definabLe aLmost over B".

THEOREM 2. The countabLe theory T is superstable if and only if for every A

contained in a model of T and every p in SeA), there is a finite B contained in A

such that p is definable almost over B.
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Most of the resuLts in this paper are easy coroLLaries to theorems in [7]. The main

cLaim to noveLty Lies in the recognition that a nice hierarchy can be defined in

terms of definabiLity. However, our viewpoint is much different from SheLah's.

SeveraL notions of rank are centraL to his development. His results and even some of

his definitions depend upon properties of these ranks. In contrast, our development

depends only upon the basic properties of forking as developed either along Shelah's

line or along that of Lascar-Poizat. With one exception which we wiLL discuss Later,

the results in this paper hoLd for uncountable languages with essentially the same

proofs. For simplicity of notation, we concentrate on the countable case. The paper

is designed to be read by anyone who has read 111.1 and 111.2 of [7] or [5] or[3].

We follow various notational conventions common in this subject which are explained

in these sources. For exampLe, aLL our constructions take place within a very

saturated "monster modeL". Since it is not usually important to know the Length of a

finite sequence of variabLes or eLements we write x or a omitting the usuaL

overscore. the Length is important, it is given explicitLy.

Section 1. The notion of forking (or more preciseLy non-forking) provides an

explication in a generaL modeL theoretic context of the idea of algebraic

independence. In particular, if A f Band t(Ci8) does not fork (d.n.f.) over A

(t(CiB) denotes the type of cover 8) then, intuitiveLy, "c obeys no more reLations

over 8 than it does over A". More detaiLed expLanations occur in the three

references cited above. More formaLly, we adopt the foLLowing definition.

DEFINITION 1.1. Let Af B and let c be an arbitrary eLement. Then, t(CiB) forks

over A if there is a formula +(XiY) a sequence b from B and sequences bi for i < w

such that:

;) t(b;iA) t(biA) for all i.

ii) +(Xib) t(CiB).
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iii) The set {t(x;bi): i < w} is n-inconsistent for some n. (That is, no

more than n of these formulas can be simultaneously satisfied.)

This definition is slightly simpler than the one given in [7J but is equivalent to

that definition for stable theories. In fact, the precise definition of forking used

is of little importance for this paper. After the next technical lemma where we rely

on the definition, we will list the principal properties of forking. In the

remainder of the paper (except for 3.4) we will rely not on the definition of forking

but only on the properties listed here.

1.2 LEMMA. Let ai for i in I be a sequence of n element sequences such that

Pi=t(ai,B) d.n.f. over A, where P=Pi!A. If D ;s a ultrafilter on I and a denotes the

ultraproduct of the ai with respect to D, then a=t(a,B) d.n.f. over A.

PROOF. If t(x;b) e t(a;B) then for almost all (with respect to D) i, t(x;b) e Pi'

But then, since Pi d.n.f. over A, the formula t(x;b) does not cause t(a;B) to fork

over A. Since this holds for each formula t(x;b), t(a;B) d.n.f. over A.

1.3 THEOREM. If T is a stable theory then:

i) If P e SeA) then p does not fork over A.

ii) If A C B C C and p e S(C) then

a) If p does not fork over A then p d.n.f. over Band plB d.n.f.

over A.

b) If P d.n.f. over B and pia d.n.f. over A then p d.n.f. over A.

iii) If A B C and p S(B) d.n.f. over A then there exists an

extension p' of P in S(C) which d.n.f. over A.

iv) If b is in Band t(B;C) d.n.f. over A then t(b;C) d.n.f. over A.

v) If A B, P SeA) and q is an extension of p in S(8) which does

not fork over A and if p is not algebraic over A, then q is not algebraic

over B.
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1.4 THEOREM (THE SYMMETRY LEMMA). Let T be stable. Then, for any bO,b1 and A, t(bO,A

U b1) forks over A iff t(b1,A U bO) forks over A.

The following result has the same character as those in 1.3 but its proof relies on

the symmetry lemma so we list it separately.

1.5 THEOREM. Let A be contained in B. For any c and d

t(c"d,B) d.n.f. over A

if and only if

t(c,S) d.n.f. over A, and

t(d,S U c) d.n.f. over A U {c}.

1.6 DEFINITION. Let Mbe a model of T and M A, then p SeA) is a coheir of plM

if every finite subset of p is satisfiable in M.

This definition is truth functionally equivalent to the definition in [5] and is

provably equivalent to the assertion that p does not fork over M.

1.7 THEOREM. Suppose A B, P is in SeA) and p' is an extension of p to a member of

S(B). Then TFAE

i) p' d.n.f. over A

ii) For every pair of models MC M' with A Mand B M':

(*) there is an extension P1 of p in SCM) whose coheir on M' extends p'.

iii) There exist a pair of models MC M' which satisfy (*) and such that A

eM, B C M' and t(B,M) d.n.f. over A.

The following result is immediate in Shelah's development of forking and an early

result in the Lascar-Poizat development.
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1.8 LEMMA. If p is a type over Band p forks over A there is a finite set BO

contai.ned in B such that pi (A U BO) forks over A.

1.9 DEFINITION. Let A be a subset of B, then N(B,A) is the subset of S(B) consisting

of those members of S(B) which do not fork over A.

Section 2. The notion of forking is designed to provide a canonicaL extension of a

type over a set A to a type over a Larger set B. In this section we discuss to what

extent the notion "non-forking" can be repLaced by the somewhat more intuitive notion

"definabLe". We first review the notion of the definabiLity of a type. If T is

stabLe, every type is definabLe in the sense mentioned in the introduction.

The type p in SeA) is definabLe over B by the map d if for each formuLa +(x;y)

there is a formuLa d+Cy) with parameters from B such that for each sequence a in

A: +(x;a) is in p if and onLy if d+(a) hoLds.

This resuLt is most directLy proved by using a rank function to code the Length of

trees as in [7J. EssentiaLLy the same proof, but of a speciaL case and more

cumbersome because the rank machinery is not invoked occurs in [1J.

FrequentLy this notion is empLoyed for types over modeLs where it is easy to show [4J

that a type can have Cup to equivaLence) onLy one definition. Here, however, it is

important to consider various definitions of a type since onLy some of them may have

consistent extensions of the foLLowing sort.

2.1 DEFINITION. Let p be in SCA) and A C B. If P is defined by d, the d-extension

of p on B, denoted dCp,B) is the coLLection of formuLas with parameters from B which

satisfy:

+(x;b) e dCp,B) iff d+Cb).

Note that if d defines p e SCA) over C l A, there is a d-extension of p to any set B

containing C Cnot just those containing A). In generaL, the d-extension of p to B

may not even be consistent. However, if A is a modeL Mwe have the foLLowing resuLt.
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2.2 LEMMA. Let Mbe a model of a stable theory and p S(M). Suppose that d defines

p over M. Then for any A with Ml A, d(p,A) is a consistent complete type. In fact,

d(p,A) is the unique coheir of p on A.

PROOF. This result is implicit in section 4 of [5] and explicit in [3].

We want to extend this result by requiring not that Ml A but only that the subset of

Mover which p is defined by d is contained in A.

2.3 LEMMA. If B C and p S(N) is definable over B by d then p d.n.f. over B.

PROOF. Let 8 l N l N' and suppose eN'. Let q, q', be the d-extension of p to M,

N' respectively. Now q' extends p and by 2.3 is the coheir of q which extends pie so

by lemma 1.7 p d.n.f. over B.

2.4 LEMMA Let B l Mand suppose p is definable over B by d. Then for any A

containing B, the d-extension of p on A is a consistent type which does not fork over

B.

PROOF. Let M' be a common extension of Mand A.

over B whence by Theorem 1.3 d(p,A) = d(p,M')IA

By Lemma 2.3 d(p,M') does not fork

d.n.f. over 8.

We have established that, roughly speaking, definable extensions do not fork. The

converse is false. For example, if T is the theory of an equivalence relation with

exactly two infinite equivalence classes and Mis a model of T, the type of a new

element in one class does not fork over 0 but is not definable over 0. In order to

obtain a converse, we introduce the following notion.

2.5 DEFINITION. Let A be contained in B and let p be in S(8). Then, p is

stationary over A if:

i) p d.n.f. over A and
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ii) for every C containing B, p has a unique extension in N(C,B).

We want to show that if p S(A) is stationary over A then there is a definition d of

p over A such that for any B with Ai B, d(p,B) is a consistent complete type which

does not fork over A. For this we require some further definitions.

2.6 DEFINITIOM. The type p splits over A if there exist a,b in dom(p) such that

t(a;A)=t(b;A) but for some +(x;y), +(x;a) is in p while +(x;b) is not.

2.7 LEMMA. If Ai B, P does not fork over A, and pie is stationary over A then p

does not split over B.

PROOF. Suppose p splits over B, then for some a,b realizing the same type over B, pie

U {+(x;a)} and plB U {-+(x;b)} are both consistent. Let F be an automorphism fixing

B and taking a to b. Then plB U {+(x;b)} is a non-forking extension of pie (since it

is the image under F of plB U {+(x;a)}). But this contradicts the assumption that

pie is stationary.

The proof given here of the following result derives from arguments in [6J.

2.8 THEOREM. Suppose p S(A) is stationary over A. Then there is a definition, d',

of p over A such that for any B containing A and any q in S(B) which extends 0 and

does not fork over A, q is d'(p,B).

Proof. Extend B to a (ITI+IAI)+ saturated model, M. By lemma 2.7 if r denotes the

extension of q to Mwhich does not fork over A, r does not split over A. r is

definable over M, say by d. Let P contain all the parameters which occur in formulas

in the range of d. Let X1={p': p' in S(M) and d+(y) in p'} and let X2={p': p' in

S(M) and -d+(y) in p'}. Now X1 and X2 are closed sets which partition S(M). Let X'1

and X'2 be the projections of X1, X2 on S(A). Then X'1 and X'2 form a closed

partition of S(A). The only difficulty in this assertion is to show that the two
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sets are disjoint. So suppose some type P1 in SeA) is in both X'1 and X'2. Then

there are extensions P2' P3 of P1 in SCM) containing respectively.

Moreover, PilP is realized in Mfor i=2,3, say by c and d. But then +(x,c) is in r

and is in r contradicting the fact that p does not split over A. Thus, by

compactness, X1 is definable by some closed formula ,(y) with parameters from A.

Now let be ,. To see d'is the required definition, apply lemma 2.4 and the

definition of stationary.

We have characterized stationary types in terms of definablity. Our next step is to

extend this characterization to non-forking types. For this we we require a few more

definitions.

2.9 DEFINITION. The formula +(x;b) is almost over A if

G={+(x,F(b»: F an automorphism fixing A}

contains only finitely many inequivalent formulas. The type p is almost over A just

if each formula in P is almost over A.

2.10 DEFINITION. The set of finite equivalence relations over A, denoted FEm(A), is

the collection of 2m-ary relations on the monster model which:

i) are definable with parameters from A,

ii) are equivaLence reLations on the collection of m-tupLes from the

monster model, and

iii) have onLy finitely many equivalence classes.

2.11 THEOREM. The formula +(x;b), where x is an m-tuple, is almost over A iff there

is a finite equivalence relation E in such that:

(x)(y)[E(x;y) -> [+(x;b) <-> •

If the conclusion of this theorem holds we say +(x;b) depends on the finite

equivaLence relation E.
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Shelah makes the following definition in [7].

2.12 DEFINITION. The type pis definable almost over A if for each formula +(x;y)

there is a formula +*(y) which is almost over A such that for each sequence b in

dom(p):

+(x;b) e p if and only if +*(b).

2.13 THEOREM. Let A C B and suppose that p S(B) d.n.f. over A, then p is definable

almost over A.

For this result we must apply an important theorem [5,7J.

2.14 THEOREM. (THE FINITE EQUIVALENCE RELATION THEOREM) Let p S(A) and A M.

Suppose PO and P1 are distinct extensions of p in S(M) which d.n.f. over A. Then

there exists an RCx;y) in FEmCA) such that:

POCx) U P1 Cy) r -RCx;y).
PROOF OF THEOREM 2.13. It suffices to show that for each formula +Cx;y) there is a

finite equivalence relation over A, E(u;v), and a sequence c such that for all b in

B:

+Cx;b) P if and only if E(b;c).

Choose any b in B such that +Cx;b) is in p and choose c such that E(c;b) for each E

in FEmCA) Cwhere m is the length of b). If the theorem is false, for each Ei in

FEmCA) there is a b. in B such that -'Ca,b.) but E.(b.,c). Fix a realizing p. Let
1 1 1 1

Pi=tCbi,A U {a}) and let D be a non-principal ultrafilter on I Can index set for

FEmCA». If b* denotes the ultraproduct of the b. mod D, we have by lemma 1.1 that
1

tCb*,A U {a}) d.n.f. over A. Since the finite equivalence relations are closed under

finite conjunction we also have EiCb*,c) for all i. But t(b;A U {a}) and t(b*,A u

{a}) are distinct nonforking extensions of piA. This contradicts 2.14 and proves the

theorem.
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3. In this section we want to use the technical results connecting forking with

definability to show the relation between definability and the spectrum of stability.

We begin with Shelah's proof of Lachlan's theorem that an categorical superstable

theory is totally transcendental since this suggested our results. The crucial tool

here is the finite equivalence reLation theorem.

RecalL the foLLowing definitions.

3.1 DEFINITION. The theory T is stabLe in if for every A Ma modeL of T if IAI <

IBI then IS(A)I < IS(B)I.

3.2 DEFINITION. The theory T is

i) stabLe if T is stabLe in some

ii) superstabLe if T is stabLe in for aLL exp(2,ITI).

iii) w-stabLe (or totaLLy transcendentaL) if T is countabLe and stabLe in

MorLey originaLly defined a notion, totalLy transcendentaL, by means of rank which is

equivaLent for countabLe theories to w-stabiLity. We wiLL describe the reLation of

that notion to this paper beLow.

3.3 THEOREM. If T is a countable superstabLe theory and T is w-categoricaL then T

is w-stable.

If not, there is a modeL Mof T with IS(M)I>IMI. Without Loss of generality

we may fix an integer m such that the number of m-types over Mis greater than IMI.

Since T is superstabLe, for each p in SCM) there is a finite subset of Mover which p

does not fork. Since there are onLy IMI finite subsets of M, the theorem foLLows if

we can show that for any finite A contained in MN(M,A) is also finite. By

RyLL-Nardjewski's Theorem, SeA) is finite so it suffices to show that any fixed

member r of SeA) has onLy finiteLy many extensions in N(M,A). Thus, suppose p(x) and

q(x) are distinct members of N(M,A) extending r SeA). Then by a14, there is an
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E(x;y) in FEm(A) such that p(x) U q(y) impLies -E(x;y). Thus N(M,A) is bounded by

the product over the members E of FEm(A) of Exp(2,n(E» where n(E) denotes the number

of equivaLence cLasses of E. But the UJ-categoricity of T implies by

RyLL-Nardjewski's theorem that the number of formuLas with IAI+2m free variabLes is

finite and this number certainLy bounds IFEm(A)I. Thus N(M,A) is finite and the

theorem foLLows.

We require three more Lemmas before our main resuLts. The key to these resuLts is

the observation that in the preceeding proof it wouLd have sufficed to estabLish that

IN(M,A)I was countabLe. SimiLarLy, to show T is superstabLe, it suffices to show

that for any Mand any finite A contained in M, IN(M,A)I Exp(2,ITI).

Matt Kaufmann pointed out that the proof of 3.5 (beLow) depended on the foLLowing

Lemma which is easy to derive in the Lascar Poizat deveLopment of forking but for

which I have not found a simpLe proof in the context set forth here. It is 11.3.6 in

C3J and foLLows from section 2 in C5J.

3.4 LEMMA. Let A be a subset of the card(A)+ saturated modeL Mand suppose that PO'

P1 in S(M) extend p in S(A) and neither PO nor P1 fork over A. If +Cx;b) is in Po

then for some b' in Mwith t(b;A)=t(b',A), +(x;b') is in P1'

3.5 LEMMA If T is a countabLe totaLLy transcendentaL theory then for any Mand any

m-type p in SCM), there is a finite subset AD of Msuch that p d.n.f. over AD and

plAO is stationary.

PROOF. Supposing the Lemma is faLse we wiLL construct for each i e UJ, a finite set

Ai contained in Msuch that p d.n.f. over Ai' two sequences ai' a'i (with ai from M)

and an E. in FEmCA.) such that -E.Ca.,a'.) and tCa.;A.)=t(a' .;A.). Suppose by
" 11' l' "

induction that we have made the first n steps of this construction. Let An+1=An U

{an}' Then p does not fork over An+1 but PIAn+1 is not stationary over An+1• Let p'
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extending p and p" be distinct extensions of PIAn+1 which do not fork over An+1•

Then there exists En+1 in FEm(An+1) such that p'(x) U p"(y) r -En+1(XiY). Since M

is a modeL we can choose an+1 in Msuch that En+1(Xian+1) is in p'. AppLying 3.4 to

some IAI+ -saturated modeL, N, containing M (without Loss of generaLity dom(p") is

N) there exists an a'n+1 eN with t(a'n+1iAn+1)=t(an+1iAn+1) and E(x,a'n+1) e p".

But this impLies -En+1(an+1,a'n+1)'

We now show that the Ai' ai' a'i constructed above contradict the w-stabiLity of T.

We wilL define for each s e Exp(2,<w), an automorphism f s such that there are

EXP(2,,\'O) types over the countabLe set A={fs(a i): i e w, s e Exp(2,<w)}. Let

f{O}(aO)=aO and f{1}(aO)=a'O' Suppose that for each s Exp(2,n) we have defined f s'

Since t(aniAn)=t(a'niAn)' there is an automorphism gn which fixes An and maps an to

a'n' Let fsA{O}(an)=fs(a s) and let f s"{1}(an)=f s(gn(an» . Now for each Y

Exp(2,w), Let Py be the type {Ei(x,fYli(ai»:Y(i)=O}. If c realizes PY' and d

reaLizes PY where y(k) Y'(k) then -Ek(c,d), whence the result.

3.6 LEMMA If p,q SCM) are definable over A Mand p q, then piA qlA.

PROOF. By 2.4, p and q do not fork over Ai whence by 2.11 there is a finite

equivalence relation E over A such that: p(x) U q(y) r -E(x,y). Now suppose that p

is defined by d. Write dE(x,y)(y) as dE(y). Then -dE(x) is in qlA. Moreover, dE(x)

is in piA. For, if not, choosing a sequence bi for i w such that bi realizes

d(Pi{A U b.:j<i}), we have -E(b.,b.) if contradicting the assumption that E has
J , J

only a finite number of classes.

THEOREM 1. The countable small theory T is totally transcendental if and only if for

every A contained in a model of T and every p in SeA), there is a finite subset B of

A such that p is definable over B.
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PROOF. Suppose first that T is totally transcendental. Let Mbe a model of T and p

be in S(M). Then by Lemma 3.5 there is a finite subset B of Msuch that p is

stationary over A. By Theorem 2.8 p is definable over B. Suppose for any Mand any

p in S(M), there is a finite subset B of Msuch that p is definable over B. There

are only IMI finite subsets of Mand since T is small, there are only NO types over a

finite set. Mapping each element of S(M) to its restriction to a finite set over

which it is definable shows (by Lemma 3.6) that there are only IMI types in S(M).

This theorem requires the assumption that T is small. Consider the theory T of

infinitely many equivalence relations Ei, each with two classes whose prototypic

model has universe Exp(2,NO) with Ei(6, Y) holding iff 6(i)= y(i). This is the

theory of independent or crosscutting equivalence relations. Now T is superstable

but not totally transcendental yet every type over the prototypic model is definable

over a singleton.

The following lemma is proved by constructing a tree as in the last theorem but the

construction is somewhat more complex.

3.7 LEMMA If T is superstable and p e S(A) then there is a finite subset AO of A

such that p d.n.f. over AO•

This is theorem 111.3.11 of (7). A somewhat simpler proof will appear in (3) using

the simpler definition of forking given here which applies for stable theories.

THEOREM 2. The countable theory T is superstable if and only if for every A

contained in a model of T and every p in S(A), there is a finite B contained in A

such that p is definable almost over B.

PROOF. Suppose first that T is superstable. Let Mbe a model of T and p be in S(M).

Then, by the definition of superstability there is a finite B contained in Msuch
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that p d.n.f. over B. By theorem 2.13 p is definable almost over B. Now let Mbe a

model of T and suppose that for each p there is a finite B such that p is definable

almost over B. Since there are only IMI finite subsets of M, we will see that T is

stable in every cardinal greater than Exp(2,NO) if we show that there are at most

Exp(2,NO) types which are definable almost over a finite set. But, such a type

depends on the choice for each formula, of one of a finite number of equivalence

classes (of the finite equivalence relation on which, depends) so the theorem

follows.

As remarked earlier, the theorems on definability of types hold mutatis mutandis for

theories in uncountable languages. The same remark applies to Theorem 2 but not to

Theorem 1. That is, if we attempted to define an uncountable totally transcendental

theory to be one which is stable in ITI, this could hold for "accidental" reasons.

(For example, the theory could be the disjoint union of a theory T with ITI =
and categorical in all powers and a countable superstable but

not uu-stable theory.) To obtain a result equivalent to the definability condition in

Theorem 1, one must define totally transcendental in terms of rank. Thus, Shelah

adopted this approach in [7J thereby illustrating Morley's prescience in originally

defining totally transcendental in terms of rank rather than the cardinality of Stone

spaces.
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QE RINGS IN CHARACTERISTIC P

C. BERLINE, C.N.R.S., Universite Paris VII

G. CHERLIN, Rutgers University(l)

.A. structure t1 is said to be QE (for "quantifier eliminable") relative to a
1anguage L if the L-theory of r1 admits e1iminati on of quantifi ers. The present paper

is a contribution to the classification of QE rings of prime characteristic; a
sequel in preparation will deal with characteristic pn for n > 1, and will contain a
fuller account of the classification problem, its history, and the current status of
the problem. Suffice it to say here that our understanding of the structure of the
Jacobson radical remains unsatisfactory, but the classification is in all other res-
pects complete, due to the combined work of Boffa, t1acintyre, Point, Rose, and the
present authors.

§l. INTRODUCTION,

R will be a QE ring of prime characteristic p throughout, and J will be its
Jacobson radical. When J = (0) it is known that R can be of five possible types [2J:

- A finite field, a product of two isomorphic finite fields, a 2 x 2
matrix ring over a prime field, an algebraically closed field, or an atomless pn_ r i ng

(equivalently, a Boolean power of a finite field over an atomless Boolean algebra).

(1) Research supported in part by NSF Grant r1CS 76-06484 A01 and by the Alexander -

von - Humboldt - Stiftung.
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We will show that when J i' (0) then R is usually just Fp[JJ. that is the exten
sion of J by an identity element 1 of order p. (There are two exceptional cases. both
finite and of characteristic 2.) This result is obtained in §2.

The remaining two sections deal with the structure of J. §3 deals with the
case in which J is finite. Here the complete classification is known. In §4 we prove
that there are inequivalent infinite QE nil rings J in each prime characteristic.

For reasons of space our further results in the case of infinite J will be published
elsewhere. In any case the precise classification eludes us.

§2. R = Fp[JJ USUALLY.

We assume from now on that J i' (0). It is immediate that the ring J admits
elimination of quantifiers in the language of rings with O. but omitting the

constant 1. (J is definable in R without parameters. and inherits QE relative to the
original language in an obvious sense. The nonzero constants are easily seen to be
irrelevant to J in prime characteristic.)

In the next two lemmas we adapt work of Boffa and Point to our present purpose.

LEMMA 1  For x in J. x3 = (0).

Proof:

We cite two facts from [2J
1. There is a ring R' elementarily equivalent to Rwhich is algebraic over Fp'
2. Any nilpotent element of R has order at most 3.

Therefore JI J(R') satisfies the identity: x3 = 0 (cf. [2J). and hence J
satisfies the same identity.

BP LEMMA  Let xl •...• xk and y1•... 'Yk be two sets of Fplinearl y independent elements

of R such that xixj = YiYj = 0 for all pairs i.j. Then (R.x) (R.Y).

Proof :

Notice that 1.x1•...•xk and 1.y1 •...•yk are linearly independent sets and that
there is a ring isomorphism: <l.x> <l.Y>. The claim then follows by QE.

Notation. Set X {x E R x2 = O. x i' OJ.

LEMMA 2  If x2 0 then x E J.

Proof :
By Lemma 1 X n J i' ¢. By the BP Lemma with k 1. X J. and the claim follows.

LEMr1A 3 

1.1 XRX
1.2 XJ

(0) .

JX = (0)
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2. J3 (0).

Proof:

1.1. Notice that for x in X, if xrx f ° then x, xrx are linearly independent:
if xrx = nx then (n-xr)x = °and n-xr is invertible (since xr E J it is nilpotent),
and hence x = 0, a contradiction. Applying the BP Lemma with k = 2 to x, xrx and
xrx, x we conclude

x = xrxsxrx

for some s. Then (l-xrxsxr)x = 0, and we argue as before that x = 0, a contradiction.

1.2. If x is in X, a is in J, and ax f 0 then we argue as above that x and ax are
linearly independent. Then by 1.1 the BP Lemma applies with k = 2 to x, ax and ax,
x, yielding

x bax

for some b in J. Then as above (l-ba)x = °and we argue that x = 0, which is a
contradiction. Thus JX = 0, and similarly XJ = 0.

2. For x in J we have iJ = Jx2 = (0) by 1.2 and Lemma 1. Hence for x,y in J we
compute :

°= (x+y)2x = (x2+xy+yx+y2)x = xyx.

Therefore (xy)2 = 0, so by 1.2 xyJ = (0), as claimed.

LEMMA 4 - Either:

1. For all x in X xR
2. For all x in X xR

Fp'X ; or
X u {O}.

Proof
By the BP Lemma for k = 2, we find that either

1. For x,y in X linearly independent, y i xR ; or

2. For x,y in X linearly independent, y E xR.

The cl aim follows easily.

LEMMA 5 - R/J contains no nontrivial idempotent elements.

Proof :
Notice that for any two nontrivial idempotents e,e' we have

(R,e) " (R,e').

Now suppose that e f 0,1 is an idempotent in R. We consider two cases.

Case 1. xR = X u {O} for all x in X.
Fix x in X. Replacing e by l-e if necessary, suppose that ex f O. Then replacing

x by ex, we suppose that ex = x. Then ey = y for all y in xR = X u {O}. Hence by
our opening remark, (l-e)y = y for all y in X. But then x = ex + (l-e)x = 2x, so
x = 0, a contradiction.
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Case 2. xR = Fp'X for all x in X.
Fix x in X and suppose that xe I 0, replacing e by (I-e) if necessary. Then

xe = nx for some 0 < n < p. It follows easily that nx = n2x and hence that n = 1,
xe = x. This holds for all x in X, leading to a contradiction as in the first case.

LEMMA 6 - R/J is a field.

Proof:

Replacing R by an elementarily equivalent ring as in the proof of Lemma 1, we may
suppose that R is algebraic over Fp' Then every element of R has a power which is
idempotent (for each x of R find integers m,n such that 0 < m < nand xm = xn and
check that xm(n-m) is an idempotent), hence by Lemma 5 all elements of R are either

invertible or nilpotent. Thus R is local and R/J is a division ring algebraic over
IFp' hence a field.

LEMMA 7 - If a,b E R Fp[JJand a a/J,5 b/J then (R/J,a) _ (R/J,5).

Proof :
Suppose R/J F Fix x in X and let y = ax. Then R satisfies: "31 holds

in R/J and u.x = y". By the BP Lemma for k 2 applied to the pairs x,ax and x,bx,
we have also an element v of R such that : holds in R/J and v.x = bx. Since
(v-b)x = 0 and R/J is a field, therefore v 5, so R/J satisfies as claimed.

LEMMA 8 - R/J Fp for p > 2. R/J

Proof:

As usual we may suppose that R is algebraic over Fp' It follows easily from
Lemma 7 that R/J is finite. Let the order of R/J be pn, and suppose that n > 1. By

Lemma 7, all elements of R/J - Fp have the same minimal polynomial, which is a
separable polynomial of degree n. Hence pn_p = n, and then p = 2, n = 2.

In the remainder of the present section we will suppose that p = 2 and that

R/J F4. We will see that there are only two such exceptional QE rings.

LEMMA 9 - R contains a subfield isomorphic with F4.

Proof :
By assumption there is an element a in R such that u = a2 + a + 1 is in J.

Setting i = a + u + u2 we find that i 2 + i + 1 = 0, so F2[iJ F4.
Notation. We fix i in R so that i 2 + i + 1 O.

We will prove shortly that J2 O.

Notation.
1. V = Xu {O}.

2. For x in X, S(x) J/V is defined to be the set
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{a/V : i = x}.

Notice that V and J/V are F2-vector spaces.

LEMMA 10 - Dim V = 2.

Proof :

For x in X, the map r r rx induces an F2-monomorphism from R/J into V. The surjec-
tivity of this maps follows from Lemma 4.

LEMMA 11 - If r2 + r + 1 = 0 then r = i + x or i + 1 + x with x2 o.

Proof :
r = t + a with t = i or i + 1 and a in J. Since r2 + r + 1 = 0 we find

(1) ta + at = i + a.

this on the right by a

(2) ta 2 + ata = a2.

Multiplying this on the left by t

(3) (ta)2 = t 2a2 + ta 2 = a2.

Expand (ta+a)2 and use (2,3) to get

(4) «(t+l)a)2 = a2.

From (3,4) it follows that (sa)2 = a2 for s in R-J, and by QE that the same

applies to any b in J-V, so that if b is in J-V and y = b2, then b, tb , (i+l)b

represent distinct elements of sty). It follows that the cardinality of sty) is
divisible by 3.

Now we need results from §3. Let k = dim JjV. Then we will see (Lemma 7 cf §3)
1. k s 4. Also, by QE we deduce easily
2. For x in X, card(S(x)) = (2k-l)/3.

We may therefore conclude that 2k-l is divisible by 9, and hence that k = 0, in
which case certainly a2 = 0 after all.

LEMMA 12 - J2 (0).

Proof :
Suppose on the contrary that a E J and a2 i O. It is easy to see that there is

then a ring isomorphism:
. . 2<a,la> <a,la+a >.

It follows then from QE that there is an equation

ra = i a + a2
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a or 0,+ 1, and thus a2orwhere r2 + r + 1 = O. By Lemma 11 we can take r
a contradiction in either case.
Notation.

21. Al = F4[xJ/(x ).
2. A2 algebra freely generated over F2 by elements i,x satisfying

i 2 + i + 1 = x2 = 0, xi = (i+l)x.

LEMMA 13 - R is isomorphic with Al or A2.
Proof :

In view of Lemmas 8-10 and the proof of the latter, R has as an F2-basis the set:

1,i ,x,ix. To determine the structure of R it remains to determine the value of xi.
Clearly xi F x, so xi is either ix or (i+l)x, leading to the two possibilities stated.

LEMMA 14 Al and A2 are QE rings.

Proof:

It suffices to indicate the treatment of A2. We use the following criterion for
the finite ring A2 to be QE : every isomorphism between proper subrings A,B of A2
(containing 1) extends to an automorphism of the ring.

Suppose first that A is generated over F2 by a single element a, which may be

taken to be of form ci + c'x + c"ix. If c = 0 then a2 = 0 and the image b of a in B
has the same form. It is easy to construct an automorphism of Azwhich fixes i and
carries a to b, by defining it first as a linear map and verifying that the
defining relations of A2 are preserved.

If c F 0 we can use an automorphism interchanging i and i 1 and fixing x if
necessary to ensure that the image b of a in B is again of the 'form di + d'x + d"ix.

Then there is an automorphism of AZ carrying a to b which fixes J pointwise.
The only other proper subring A of A2 is the ring F2[JJ, as is easily checked.

This has automorphisms of order 3, which extend to A2 by fixing i, as well as

automorphisms of order 2, which extend by interchanging i and i + 1.
This concludes our discussion of the exceptional cases.

§3. FINITE QE NILRINGS.

The QE rings of prime characteristic which remain to be classified are those of

the form Fp[JJ where J is a QE ring (without identity) satisfying J3 = O. In the
present section we assume that J is finite. It will turn out that there are only
four nontrivial possibilities in this case. The case in which J2 (0) is excluded
at the outset as trivial.

Example 1. A2 <x: 2x = x3 0>.

Example 2. B2 <x,y: 2x = 2y = x3 =y3 0, xy =yx = x2 + y2>.
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Example 3. Cp <x,y: px = py = x3 y3 = 0, xy = yx = 0, y2 + tx2 0>.

(Here t is a nonsquare in Fp' and the isomorphism type of Cp does not depend on the

choice of t.)

Example 4. Dp(t) = <x,y : px py x3 = y3 = 0, xy 0, yx x2, y2 tx2>.

(Here 1-4t is a non-square).

LEMMA 5 - The rings A2, B2, Cp' and Dp(t) all are QE nilrings.

Proof :
We use the criterion given in the proof of Lemma 14 of 2. As this is quite

straightforward, we confine ourselves to some remarks used in connection with the

rings Cp and Dp(t).
The elements of order two are those of the form ax2 with a in Fp ' It is

2 __ 2necessary to check that these elements have square roots. Since (mx-ny) Q(m,n).x
with Q a nondegenerate form on Fp' this follows since Q represents all elements

of Fp:

The only other point which is not entirely obvious is that the automorphism group

acts trans i ti velyon elements of the form mx + ny (m or n nonzero). The map
x r mx + ny extends to an automorphism carrying y to :

ntx + my in the case of Cp ;

ntx + (m+n)y in the case of Dp(t).

We now consider an arbitrary finite QE nilring J, and we let Vbe the set of
elements of order two in J. Then V is the left and right annihilator of J, and is a
vector space over Fp' (We remark that the following lemma does not require the

hypothesis that J is finite).

LEMMA 6 - Suppose that for all x,y in J, if x2 y2 then x =±y modulo V. Then J

is isomorphic with A2 or B2.

Proof :
Clearly we may suppose that dim V 2, and fix a,b linearly independent in V. The

set: {uv : u2 = a, v2 = b} contains only one or two elements, and it follows
easily from QE that this set is contained in «a.b». Thus if we fix x,y so that
x2 a and y2 = b then we may conclude :

(*) xy ma + nb

where the pair (m,n) is determined up to sign by a,b. Since <a,b> <b,a> we may

conclude also that one of the following holds

(+) yx mb + na
(-) yx - (mb + na).

Now if m = n = 0 then we get a contradiction xy = yx 0, so (x+y)2 a+b, and
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since <a,b> <a,a+b> therefore also x(x+y) = 0, yielding x2 = 0.

if p I 2,3 we get a contradiction as follows. Fix k E Fp' k2 I 0,1

and deduce from (*), QE, and <k2a,b> <a,b>

kma + knb = kxy ±(mk2a + nb).

Then from km = ±k2m deduce m = 0, and from kn ±n deduce n 0.

Next we eliminate the possibility p 3. Here we consider cases, according as
(+) or (-) ho1ds .

If (+) holds:

(x+y)2 = (m+n+l)a + (m+n+l)b.

Since x,y are linearly independent modulo V, therefore m+n+l I 0. Now by (*,+) and

QE, we can compute x(x+y) and (x+y)x in two ways each to find:

(m+l)a + nb
(n+l)a + mb

±(m+n(m+n+l))a + n(m+n+l)b
±(n+m(m+n+l))a + m(m+n+l)b

cases. The solutions are
m = n ; then (x+y)2 0, a contradiction.
m+n 1 then (x_y)2 = 0, a contradiction.

with the same sign in both
if the sign is positive
if the sign is negative

If (-) holds:

(x+y)2 = (m-n+l)a + (n-m+l)b I 0.

We may suppose without loss of generality that n-m+l I 0, in which case a calcula-

tion like the preceding gives m = 1, n = -1. This then yields:

(x_y)2 = -a, x(x-y) = b.

In other words, ;a . ±b, which contradicts QE since e.g. <a,b> <a,a+b>.

Now we know that p = 2, and hence there is no ambiguity of sign in the choice of
m,n. Computing x.(x+y) and comparing coefficients as above we find m = n 1, as in

the ring B2.
If dim V 2 then our analysis is complete. Otherwise select z2 c with a,b,c

linearly independent and conclude as above: xz = zx a+c, yz = zy = b+c. Taking

u = x+y we will have u2 = a+b and we compute easily

a+b+c = u2 + z2 = uz = xz + yz = a+b,

a contradiction. This completes the analysis.
The essential point in the analysis of the remaining cases is contained in the

following result.

Notation. k dim V.

LEMMA 7 - Dim J/V $ 2k.

Proof :
Let a1, ... ,a k be a basis for V and fix x1, ... ,xd linearly independent modulo V.
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For c1•...• cd in Fp we have:

(L CiXi)2 = Q1(c)a1 +... + Qk(c)ak

where Q1 •...•Qk are quadratic forms. If d > 2k then the Chevalley theorem [4J

yields a nontrivial simultaneous zero c of the Qi in Fp' and then LCixi E V. a
contradiction.

LEMMA 8 - If k 1 then J is isomorphic to A2• Cp or Dp(t).

Proof :

If dim J/V = 1 it is easy to see that J is isomorphic with A2 (since every

element of V has a square root. other characteristics are ruled out). Thus by
Lemma 7 we may now suppose that dim J/V 2. Fix a in V - (0). By QE. the number of
square roots of a in J modulo V is independent of the choice of a. and is therefore
p+1. Hence we can choose x.u linearly independent modulo V. such that x2 = u2 a.

Set xu = ca. ux = c'a.
Notice that cc' f 1. (Let Q(m.n) =m2 + (c+c')mn+n2. Then (mx+nu)2 =Q(m.n)a I 0

for (m.n) I (0.0). hence (c+c,)2 - 4 is not a square. and thus cc' I 1.) Choose

t I 0 so that

n = (t/(1-cc,))1/2

exists. set y = -ncx + nu, and compute: y2 = ta, xy = O. If yx = jx2 with j f 0
replace y by j-1y• and t by t/j2. This concludes our analysis.

Finally let us assume: J is not isomorphic with any of the rings A2.B2.Cp' or

Dp(t). We will arrive below at a contradiction. after a detailed analysis of the
situation.

LEMMA 9 - dim J/V 2k.

Proof :
Let d dim J/V. Then d 2k. Consider the squaring map from nonzero elements of

J/V to nonzero elements of V. Then QE implies easily that pk - 1 divides pd - 1.
Thus k divides d. If k = d then Lemma 6 applies. contradicting our assumption. Thus

d = 2k.

LEMMA 10 - Fix a in V - (0) and let X = {x E J : x2 = a}. Fix r in X. and let
y = {x EX: rx i <a>}. Let Y/V = {x/V: x E Y} and define h : Y/V + V - <a> by
h(y/V) = ry. Then h is a bijection.

Proof :

h is surjective :
By QE it suffices to show that rX <a>. If on the contrary rX <a>. then by QE

we have x2 <a>. Then setting S = <X>. we have S2 c <a>. and hence dim SIS n V 2
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this case also leads to a
x,y in Xdistinct modulo V,
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(by the proof of Lemma 7). However the cardinality of XIV {xiV: x E X} is easily
seen (using OE) to be (p2k_ 1)/(pk_1) = pk + 1 > pk, so dim SIS n V > k. Thus we

conclude that k = 1, and Lemma 8 applies, contradicting our assumption on J.
h is 1-1 :
By OE the cardinality of h-1(b) is independent of b for b in V - <a>. Thus if h

is not 1-1 then it is at least 2-to-l, and noting that h(r) = a we obtain the
inequality:

1 + 2(pk_p) pk + 1 .

This implies that pk-l 2, and as the possibility k

conclude: p = 2, k = 2, n = 4, card(X/V) = 5. However

contradiction; letting V = O,a,b,c we notice that for
we have :

xy b or c, yx = b or c, xy + yx = 0 or a,

and it follows easily that X u V is an additive group, of order 24 and exponent 2,
with is impossible.

LEMMA 11 - With the notation of Lemma 10, if xy i <a> then yx xy.

Proof :
Define H(r,b,c) = "3X E X rx = b & xr = c". By Lemma 10 if b i <a> then r,b

determine a unique c satisfying H. Hence by OE we have c E V n <r,b> = <a,b>. In

other words, for x in Ywe have:

xr = rna + nrx,

with m,n E Fp' Furthermore, applying OE to subrings of the form <r,b>, we conclude
that m,n do not depend on x and r, subject to rx i <a>. Our claim is that m= 0 and

n = 1.

Suppose firstly that n F O. Then also xr i <a>, and we can interchange the roles

of x and r to conclude:

xr = rna + nrx 2m(n+l)a + n xr,

so that n2 = 1, m(n+l) = O. It suffices in this case to prove: n F-1.
If n = -1 then xy + yx E <a> for all x,y E X and hence (c1x+c2y+c3z)2

O(c1,c2,c3)a with 0 a quadratic form, for x,y,z in X. Choosing x,y,z linearly inde-
pendent we conclude that 0 has no nontrivial zero, contradicting [4].

It remains to show that n F o. If n = 0 then consider the pk_ p elements ry with
y E Y. For each such element, yr E <a>. Furthermore r2 E <a>. Hence:

card {xiV E XIV: xr i <a>} p.
kBut Xr contains V - <a>, so p -p p. Since the case k = 1 has been excluded, we

conclude that k 2, P = 2, d = 4. By a calculation it can be shown that the
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multiplication table for X can be cast into the following form (where V O,a,b,c;

c = a+b)

Xl x2 x3 x4 x5

xl a b c ma ma

x2 ma a b ma c

x3 ma ma a c b

x4 b c ma a ma

x5 c ma ma b a

Y2Y1 = (m+1)a
2mY1' but by inspection this

this table, shows that x1,x2,x 3,x 4 are linearly

xl + x2' Y2 = x2 + x3' and compute

Another calculation, using

independent modulo V. Now set Y1
2 2

Y1 = Y2 = ma + b, Y1Y2 = b,
2Since n = 0, we should have Y1Y2 = my1 or Y2Y1

fails this is the desired contradiction.

LEt1MA 12 - With the notation of Lemma 10, J <X>.

Proof :

Set S = <X>. If x2 E <a> for all XES then also xy + yx E <a> for x,Y E Sand

hence the argument of Lemma 7 applies to prove that dim SIS nV 2. But as noted
previously, dim SIS n V > k, so k = 1, contradicting our assumption on J.

Thus S contains some element Y such that y2 i <a>, and since S is a-definable,

it follows from QE that S contains all such elements. A simple computation establishes
that card(S/S n V) > p2k-1, and hence S cannot be a proper subring of J.

PROPOSITION - The finite QE ring J must be isomorphic to one of the rings A2,B2,Cp'
or Dp(t).

Proof :

Using the notation of Lemma 10, fix x,y in X linearly independent modulo V so

that xy E <a>. (If x in X is fixed arbitrarily, it follows easily from Lemma 10 that

a suitable element y can be found in X.) By Lemma 11 yx E <a>.
Define H(x,y,b,c) = "sr E X xr = b & yr = c". By Lemma 10 the triple x,y,b

determines a unique c satisfying H if b E V - <a>, so that QE yields:

xr E V - <a> implies that yr = ma + nxr

for some m,n E Fp depending only on x,y.
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kSet u =y - nx t V. Then uy = rna for the p -p elements y/V in X/V such that

xy t <a>. Also ux juy E <a>, so

kcard(uX-<a» $ (p+1) - 2 < p -p

so that uX so <a>. Thus uJ = u<X> <; <a>. In parti cul ar if u2 = a I and X' = Ir : r2 =a'}
Then uX' s <a>, contradicting V - <a'> c uX'. This contradiction completes the proof.

§4. INFINITE QE NILRINGS IN CHARACTERISTIC P'
)(

We will construct 2 a elementarily inequivalent QE nilrings in any prime charac-

teristic p : Other results will appear in [IJ.

It is helpful to review some general considerations in connection with the cons-

truction of QE structures. We make the simplifying assumption that we are dealing
with a finite language.

DEFINITION 1 - Let A be a structure.
1. A is uniformly locally finite iff there is a function f f'l -.. 'N such that for

a11 al' ... ,an inA :

card<a1,··· ,an> $ f(n).

2. Sub(A) is the class of finite structures isomorphic with a substructure of A.

Our construction will be based directly on the following general result due to
[5J (the usefulness of this result has been emphasized recently by Schmerl,

cf.e.g. [6J).

THEOREM 2 - Let K be a collection of finite structures. Then the following are
equivalent:

1. K = Sub(A) for some uniformly locally finite QE structure A.
2. K satisfies.
(i) K is closed with respect to isomorphism and substructure.

(ii) K is uniformly locally finite in the obvious sense.
(iii) K has the joint embedding property.
(iv) K has the amalgamation property.

Remarks on the proof :
I. If K SUb(A) and A is uniformly locally finite then knowledge of K is equiva-

lent to the universal part of the theory of A.
II. If K satisfies (i-iv) then a suitable structure A may be manufactured as the

union of a sequence of elements of K, by iterated application of properties (iii) and

(iv). Property (iii) is used to ensure that K so SUb(A). Property (iv) is used to
obtain QE.

We turn to the construction of QE nilrings. We fix a prime number p throughout.
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DEFINITION 3 A ring of characteristic p is restricted iff it satisfies the two
conditions:

1. vx,y,z xyz = 0
2. vx,y x2 = 0 =9xy = yx O.

We know that all QE nilrings are restricted. It is not hard to see that the class K
of all finite restricted rings of characteristic p satisfies the conditions of the
foregoing theorem, and corresponds to a theory of QE nilrings, namely the model

companion of the theory of restricted rings of characteristic p. A similar example is

obtained by taking K to be the class of commutative rings in K.
Our objective is of course to identify 2No classes K of restricted rings satis

fying conditions (iiv) of theorem 2. Condition (ii) is vacuous in this context and
condition (iv) implies condition (iii) since the ring (0) is common to all rings.

We require a preliminary discussion of the structure of restricted rings.

NOTATION 4  Let A be a restricted ring. Set :

V ViA) = {a E A : a2 = O}.

Then V is an Fpvector space satisfying VA = AV
tion induces a bilinear map

A x A + V

(0). Set A= A/V. Then multiplica

NOTATION 5  Let A B1,B2 be restricted rings. Then the free product of B1 with B2
over A is denoted B1 *A B2. It is easily described via generators and relations, but
we require the more explicit description

Set V =ViA), Vi = V(B i), and choose vector space decompositions:

A + Vi = A e Vi V Vi1

Bi (A e Vp e Bi

Let V e Bi. Set :
1 1

C A e Bi e e (Bi 0 B2) e (B20 Bi)

There is an obvious way to define mol t i pl i catton on C so that C = B1 *A B2. This
description of the free product will be applied below.
The main ingredient in the construction below is the analysis of the following
rather special restricted rings.

DEFINITION 6  The ring An is defined to be the restricted ring of characteristic p

which has the following presentation

generators: xl" .. ,xn
relations : XiXj 0 for < j

L x? = 0
1
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The following two facts are essential.

LEMMA 7 - There is no embedding of into An for m t n.

LEMMA 8 - Fix n. If A £ B,C are restricted rings such that both Band C contain no

subring isomorphic to An' then B *A C also contains no subring isomorphic to An'
We will now verify these facts by direct calculation, after which it will be a

trivial matter to complete the construction.

Proof of Lemma 7 :

Suppose that xl,.",xn are the generators of An. It is then easy to see that
V = V(A ) has a linear basis of the form: x.x . (i > j) ; (i < n).n , J ,
Also xl/V, ... ,xn/V is a basis for An = An/V. Suppose now that Yl'··· 'Ym E An
satisfy

YiYj 0 for i < j ; f. 0 for all i ; I O.

We can wri te

Yi =zci k Xk + Vi with vi E V .

Define supp Yi = {k : ci k to}.
We claim:

(*) If i < j, k E supp Yi' E supp Yj then k <

Indeed for i < j we have

(1) 0 = YiYj = cik xk + cik Cjk

Hence ci k = 0 for k > z, so that :

max (supp Yi) min (supp Yj)

However from (1) we also have

2
ci k cj k xk = 0

and it follows easily that (*) holds.
Now we exploit the relation:

(2)

If sUPPYi has more than one element this yields an immediate contradiction, since

upon expanding we find a nonzero term of the form ci k xk and by (*) there
is only one such term. Thus we may write

Yi = ci xk(i) + vi

By (2) we see easily that k(i) i, hence m n as asserted.
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Proof of Lemma 8 :

Suppose xl"" ,xn E B *A C and <xI'···,xn> An'
We may write

Xi ai + bi + ci + vi' vi E V '" V(B *A C),
ai E A, bi E B' , ci E C' .

Set Yi '" ai + b. + ci· Observe that also :
1

<YI"" ,Yn> '" An

Now use the relation YiYj '" 0 for i < j to concl ude

bi ® cj '" ci ® bj 0 ; that is ,

bi 0 or cj 0

bj 0 or ci 0 (for i < j).

Fix i minimal that bi or ci is nonzero. We may suppose that bi is nonzero. Then

cj '" 0 for j F i, so that Yj E B for j F i. The relation L '" 0 then implies that
2Yi E B, hence bi ® ci + ci ® bi 0, and since bi is nonzero therefore ci '" O. Hence

YI" "'Yn E B, as claimed.

Application. For X0: {2,3,4, ... } let K(X) be the class of finite restricted rings
which do not contain any subring isomorphic to An for n E X. Then

I. K(X) satisfies properties i-iv of theorem 2.
II. If X F Y then K(X) F K(Y) (Indeed if n E X-V then An E K(Y) - K(X)).

By Theorem 2 each of the classes K(X) gives rise to a uniformly locally finite QE
nilring A(X) satisfying:

K(X) '" Sub A(X)

Thus we have proved :

'to
THEOREM 9 - For a fixed prime p, there are 2 elementarily inequivalent QE nil rings
of characteristic p.

Note also:

PROPOSITION 10 - For a QE structure A in a finite language, the following are

equivalent :
1. A is uniformly locally finite
2. A is No-categorical.

COROLLARY 11 -

1. There are l'o !'lo-categorical commutative rings of any prime characteristic p.

2. There are 2t\0 lto-categorical nilpotent groups of class 2.
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(These results are obtained by introducing structures bi-interpretable with the

Wo-categorical QE nilrings constructed above. For result 2, this involves the t1al 'cev
correspondence. The correspondence appropriate to case 1 was introduced in [3J.

PROBLEM ')/0
Construct 2 commutative QE nil rings.
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HIERARCHIES OF SETS AND DEGREES BELOW 0'

by

Richard L. Epstein, Richard Haas, and Richard L. Kramer*

We examine two hierarchies of sets below 0' based on the number

of changes a recursive approximation to a set needs to make. Both are

generalizations of the notion of being r.e. The first classifies sets

by asking what functions dominate the number of changes, as previously

set out in Epstein [4]. This extends the ideas of Putnam on trial and

error predicates [8]. The second views the changes as dominated by a

constructive ordinal, as first suggested by Addison [1), and developed

by Ershov [6). We provide a translation between them and relate these

hierarchies to the degrees of unsolvability :::. 0 '.

* * *

We first review some facts about sets 0'. All notation comes

from Epstein [4).

The reader should be aware that there is another hierarchy of

degrees Q' which is based on the jump operator and is due primarily

to Cooper. See Epstein [4], Chapter XI for that.

We indicate the end of a proof by B, and the end of a subproof

by O.

*We are grateful to H. Hodes for correcting a number of errors in

an earlier version of this paper. Roger Maddux also aided us with

suggestions concerning diagrams.
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{(x,y): (y)+}. Recall that

0' =-r K = {x : cpx(x)+}.

First we note the Quantifier Characterization of Sets Below 0' :

A 0' iff there are two recursive predicates R,S such

that w E A iff R(x,y,w)

iff S(x,y,w)

Proof: Vy S(x,y,w) is recursive in 0' since its the comple-

ment of an r.e. predicate. Therefore S(x,y,w) is r.e. in 0'.

Similarly, 1R(x,y,w) is r.e. in 0'. Thus A and A are r.e.

in 0' so A is recursive in 0'.

Let f enumerate 0' and let = {x : f(y) x s,

some y s} be 0' enumerated to level s. For some e, A =

the e t h function partial recursive in 0'. Define

As(x)

by s ) . Then

(where is with calculations truncated

x E A iff Vs > t

iff 'Vt'ils > t

t(O')(x)e,

t(O')(x)e,

1

1 lllI

As a corollary to the proof we have

The Limit Lemma (Shoenfield [11]): f 0' iff there is some recur-

sive function g such that

f(x) = lims g(s,x).

Here lims g(s,x) = f(x) means for all sufficiently large s,

g(s,x) = a = f(x). That is, > t g(s,x) a.

When we have g(s,x) as in the Limit Lemma we call g(s,x) = fs(x)

and call that a recursive approximation to f. If f is 0-1 valued

we'll view it as a set and say g(s,x) = As(x).

If A is r.e. then A has an approximation As such that

As(x) "changes its mind at most once." That is, there is at most one

s (if x E A there is one) such that As(x) = 0 and As+1(x) = 1

(if x i A, As (x) 0 always).

The r.e. sets have always been considered a distinguished class of
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sets below 0'. This is partly because the special property just

described is easy to utilize, and partly because it reflects the rela-

tion in logic between axioms (a recursive set) and theorems (an r.e.

set), as "proving" is just a recursive enumeration.

We wish to generalize the notion of r.e. 'ness so that r.e. sets

are seen as part of a continuum.

Let us classify A by measuring how often an approximation to A

changes before it settles down.

Definition: A is n-r.e. iff there is a recursive approximation As

to A such that for all x,

AO(x) = 0 and

I{s : As(x) f As+l(x)}1 n.

Note that this definition can be extended in an obvious way to

apply to functions, too. (This is what Putnam [8] calls an n-trial

predicate. Similar ideas are presented in Gold [7], but note well that

his definition of 2-r.e. is quite different from ours.)

The only O-r.e. set is 0 and the l-r.e. sets are the usual r.e.

sets. The n-r.e. sets are those that arise after n steps in genera-

ting the Boolean algebra of r.e. sets. Rogers [9], p. 317 shows that

A is in the Boolean algebra generated by the r.e. sets iff

A 0' means bounded-truth-table reducible). See also
btt

Putnam [8].

If c C 2w denote by CiT the set (A) : A E ci. By degree

we always mean Turing degree unless otherwise specified. If Ci is a

class of partial functions from:JN to :IN define CiT

Theorem 1: {A A is n+l-r.e.}T.

To prove this we construct, for e.g., n = 1, a 2-r.e. set A

which is t T any r.e. set. We use the fact that A may change once

more than any r.e. set to execute the diagonalization. That's all the

freedom we need. This proof is given in Epstein [4], Appendix 2, and
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is due to R. W. Robinson. To the best of our knowledge, Cooper was

the first to prove this, in [2].

Recalling that X, X r.e. implies that X is recursive we ask

whether X, X n+1-r.e. implies that X is n-r.e. To answer this

we'll modify the question a little. Say that

A is weakly n-r.e. if A lims As(x) and

I{s : As (x) f AsH (x) } I < n .

That is AO(x) o is no longer required. A picture will help:

o
111

o

rn changes
allowed

s
1 2 3 4

',' '\
RO' a recursive set

weakly 0

n-r.e. 0 0
1 1

x 2 1
3 0
4 1

s
0 1 2 3 4n-r.e.

0 0 0 1
1 0

x 2 0 0

Diagram 1 3 0
4 0 0 1 0

:\ changes
allowedall zero

Note that the weakly n-r.e. sets are closed under complementation: just

reverse the 0' and l's.

The weakly O-r.e. sets are the recursive sets.

Theorem 2: A, A are n+l-r.e. iff they are weakly n-r.e.

Proof: Easy.

Suppose A = lims As' A = lims Bs are n+l-r.e.

approximations. To obtain a weakly n-r.e. approximation C
s

to A,

we will go to the first stage at which As(x) f Bs(x) and set

CO(x) = As(x). Then we'll only allow Cs(x) f Cs+l(x) if we see

At(x) f At+1(x) f Bt+l(x) since we know that in the end A(x) f B(x)

all x. Then there will be at most n changes.

Formally: let So = II s (As (x) f Bs(x», and, for m < n+1,

sm+1 = liS (s > s and A (x) f As (x) and As(x) f Bs(x».m sm

Then define Csex) A (x) all s .::. sO'
So
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{
As(x) if sm < s < sm+l

Cs(x)
A (x) if sm+l .:::. s
sm+l

We leave to you that lims Cs(x) = A(x). Clearly its n-r.e. 9

An especially important fact about the r.e. degrees is that they

are dense (see Sacks [10]). What can we say about the n-r.e. degrees?

Theorem 3: Given A n+l-r.e. and not recursive, there is some non-

recursive r.e. C A.

Proof: We show this for n = 1; the rest follows by an inductive

procedure. If A is r.e. we're done. So there are r.e. sets E,F

f be a 1-1 enumeration of F, and

such that

out.) Let

F-E = A. (F is the numbers put into

C

A, E the ones taken

f-l(E). Convince

yourself that C is the required set. Ia

Corollary: No n-r.e. degree is minimal.

Cooper (unpublished) was the first to prove the Corollary, but by

quite different means.

By relativizing the proof of Theorem 3 we can get that if

o < d < and both are n+l-r.e. then there is some £' d < c < a

and £ is r.e. in d. This does not solve for us the question of

whether the n-r.e. degrees are dense: that's still open. But it makes

us ask where in our classification schema such a £ willlie. l

We can extend our hierarchy by raising the bound on the number of

changes allowed.

Definition: Given any f which is total

A is f-r.e. iff there is some recursive approximation

AS to A such that

I{s : As(x) t As+l (x)}1 .:::. f(x).

Similarly we may define what it means for

f-r.e.

h < 0'-T to be

. .. continued
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We say a degree is f-r.e. if some A E is f-r.e.

Note that this extends the weakly n-r.e. definition.

What do we know? Certainly every A 0' is f-r.e for some f.

Indeed A is f-r.e. for some f 0': we can spot recursively in 0'

the last place As changes its mind.

Let's look at a simple f-r.e. class. Abbreviate identity-

function-r.e. as id-r.e.

Theorem 4. {A: A is id-r.e.}T is not dense.

If {A: A is id-r. e i l T c: A c::. then

Th((lA; <» is undecidable.

Proof: A permitting argument is the construction of a set B

which is <T C, a given r.e. set, by allowing Bs(x) f Bs+1 (x) only if

Cs(y) f Cs +l (y) for some y < x. Any permitting argument produces an

identity-r.e. degree. Hence the construction of a minimal degree below

a given r.e. degree produces an id-r.e. minimal degree (see e.g.,

Epstein [3]).

All the degrees used in the proof in Epstein [4J and [5J that

<» is undecidable are constructed by permitting argu-

ments. Hence they are id-r. e. , and the translation of fragments of

arithmetic goes through as for Th( . J!l

It is whether Th« {A T
) is undecidableopen : A is r , e . l ,

(see Soare [12] for a discussion). We can also ask whether

Th( ({A

Th( ({A

A

A

Tis n-r.e.} is the same as

Tis n+ 1- r . e .} ,

Let us look at classes of f-r.e. sets. We say A is J-r.e. if

some f E;;, A is f-r. e.

Theorem 5: Let J be a class of total recursive functions such that

we can recursively enumerate an index for every function

in J. Let g be a function which dominates every func-
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tion in J. Then there is an A which is g-r.e. but is

not lJ-r. e.

The idea of the proof is just a modification of the proof that

there is a 2-r.e. degree which is not l-r.e. Here we know that given

an f-r.e. set B, the set A which we are constructing is allowed,

for sufficiently large x, to make one more change than B does.

The proof is in Epstein [4], Appendix 2.

Corollary: Any of the usual hierarchies of recursive functions induces

a hierarchy on the recursive-r.e. degrees.

But the recursive-r.e. degrees aren't the whole story.

Theorem 6: There is an A < 0'-T which is not

for any recursive f.

The essential step in the proof is to show that we can "enumerate"

all the recursive-r.e.

[4], Appendix 2 and is

*
How can we extend

approximations. The proof appears in Epstein

due to Posner (private communication 1973).2

* *
this hierarchy? We take another tack as in

Ershov [6]. Instead of bounding the number of changes by functions

when we pass from the n-r.e. case, we'll bound them by ordinals.

Consider that A being weakly n-r.e. can be viewed as A being

given by a collection of n partial recursive functions, \jiO'" ., \jin'

Here

where k is the largest t such that \jit(x)t.

Of course A need not be 0-1 valued. For any total G we could

say that G is weakly n-approximable if there are partial recursive

functions \jiO' ... , \jin such that G(x) = \jik(x) where

k = max t(\jit(x)t). How could we extend this to w? In that case

there needn't be a largest t for which \jit(x)t. But there is a

smallest one! And surely
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{G : G is weakly n-approximable} = {G : ... , Wn partial recur-

sive such that G(x) = Wk(x) , k = wt(wt(x))+}. Let's clean this up.

After all we may collect these W. 's as w«i,x»).
1.

Definition: W--+ G, W partial recursive if for all x,
(n)

G(x) = w«k,x») where k = ut; < n(w«t,x»)+).

Now it's easy to define an w-r.e. set. Let W be partial recur-

W«k,x») such that k = wt(w«t,x»)+).sive; then W G if G(x)
(w)

From this definition it follows that A is w-r.e. iff A < 0'-tt

means truth-table reducible).

Let us define

'iln {A some partial recursive W, W ---->- A}
(n)

'il = {A some partial recursive W, W ---->- ALw
( to )

Theorem 7 : l. A E 'iln+1 iff A is weakly n-r.e.

2. A E 'il iff A is f-r.e. for some recursive f.w

Proof: We outlined 1. above. Note that A E 'iln iff for every

x we guess at A(x) at most n times, which is the same as changing

our guess n-l times.

2. Suppose A is f-r.e. for some recursive f. That is

A lims As(x) where the changes for each x are bounded by f(x).

The idea is simple: we reverse the order of the labels on the changes

since we know that we can label our first guess by f(x). Formally,

define

to be Az(x) and

(At(x) f Az(x)).

if

if

Y = ]Jt > z o

w« r+1 ,x»)andf(x)

r > f(x)

r = f(x)

r <

AO(x)

A (x)
y

was chosen

undefined if

J
lw«r,x»)

Now let us suppose that we are given W---->- A. Let Ws be
(w)

with all computations truncated at stage s. Define
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o if s 0

o otherwiseIlji«r,x» where r = yt s ljis«t,x»f

if s > 0 and there is such an r

Then lim A (x) = A(x). And the number of changes that A (x) makess s s

can't be more than r, where for the first time ljisCq,x)f for any q.

r = yt s (ws«t,x»f). Calling that r = f(x) we note that f must

be total as for all x , 8t lji«t,x)H. CilI

Corollary: {A: A 0'

Proof: Theorem 5 and 7, plus the observation that the former

class of sets is the Boolean

the latter class of sets is

generated by the r.e. sets, and

yield the corollary.

There is no reason to stop this hierarchy with w. Let a be any

constructive ordinal (see

a-D, ... the list of

[9], Chapter 11). Denote by a-S, a-T,

related univalent systems of notation

for a. Thus given a-S we have a recursive ordering on a recursive

set of numbers, where we can recursively distinguish 0, successors

and limit ordinals, and the predecessor and successor functions are

recursive. By z = (y)S we will mean that z denotes y in the

system S.

Definition: Given a-S, define

iff = w( «y)S'x» where y is the

least ordinal < a such that

We read W---+ cp as "ep is the a-limit of W in notation S"
(a-S)

or "w a-approximates cp in notation S." When working with a fixed

notation we will often delete reference to "notation S."

We need not suppose that cp is total in this definition.
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Lastly define

some partial recursive
(a-S)

As the next theorem will demonstrate, some of these classes will

be notation-dependent. We leave to the reader, however, that V'n'

n > 0 and V' are not. That is, for any system S, V'n_S = V'n' and- w
V'w-S = V' as previously defined. Irmnediately we can concludew

Corollary (to Theorem 7):

Proof: See Theorem 4.

is undecidable if a > w.

More importantly, we really do have all the functions below 0' now.

Theorem 8: If f E V'a-S then f 2.T 0' .

If f 0' then for some notation S, f E V' 2w -So

Moreover, given any a-S, we may find S-U, 13 > a such-

that we Lan pass from a-S to S-U recursively and f E V'13-U'

Proof: 3 Suppose that for some a-S, f E V'a_S' We will give an

informal proof that f 2.T 0'. As S is fixed we will suppress refer-

ence to it throughout.

Diagram 2
Ol .... w,w+l .... S

x

o
1 ,c--.... «< .
2 ••.........•••........
3
4 guess at f(x) with

priority 13;

priority of guesses

is well-ordered.

To calculate f (x) look for some 13 with « 13, x ) -} . Then ask

if there is a I"; < 13 such that a question recursive in 0'.

If not, then S,x» = f(x). If there is such a I"; go to it and ask

the same question.

Since a is well-ordered we can be sent to a smaller with
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ljJ«i;,X»+ only a finite number of times. The least one we reach is

then f(x). This procedure for finding f(x) is clearly recursive

in 0' .

Note that if f is partial the same proof works. Then for each

x, f(x)1 iff we simply never make a guess at f (x). Thus if

f E Va and is partial or total then f 0'. 0

Now assume f 0'. We will obtain a system of notation S such

that f E V 2
w -S

Since f 0 ' I

X = { (x , s ) : S 0

well-ordering R on

(x = y and s > t ) .-

f(x) lims f(s,x). Let

or f(s,x) f f(s+l,x)}. Consider the recursive

X given by (x,s)R(y,t) iff x y or

This has order type w.

Diagram 3

e.g.

o

1

2

3

As in the proof of Theorem XX, Chapter 11, Rogers [9] we obtain a sys-

tem of notation S for 2 by padding out Rl x follows:co as

xSy iff x (v .n ) and y = (u,m) and (v,u) != X

and if v f u, vRu; otherwise if v u, n < m.

Now define

f(s,x) if s = 0 or f(s,x) f f(s-l,x)
ljJ ( «x, s ) , x )

I otherwise
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Clearly 1jJ -z-" f. [J
w -S

Lastly, given any a-S, we can obtain a notation U for a+w2 in

the same manner as described above, for which f E \I 2 . II
a+w -u

Note that if we were to define classes where we require

only that a-R is a recursive well-ordering on a recursive field,

then given any f -S.T 0', there is some R such that f E \Iw-R'

Theorem 9: Given a notation a-S.

The classes for S < a, form a hierarchy. That is,

For a = 13+1 this is a modification of the proof of Theorem 1 that

there is a 2-r.e. set which any l-r.e. set. After all, we're

allowed for each variable x one more change than before. The changes

in the proof are really only to accomodate the ordinal notation. Now

consider a a limit ordinal. Essentially in this proof we're allowed

to construct an A with an approximation whose numbers of changes,

for each x, dominates the number of changes to any given Y E \I E;,' for

E;, < a. Thus the proof is, up to modification to accommodate ordinal

notation (which is not simple), the proof of Theorem 5.

Note that for many-one degrees the hierarchy is better behaved:

won.

A E \I S' This fails for Turing degrees: by thea-

0' which has minimal degree provides a

thenif

Corollary to Theorem 3 any A

counterexample for \11. 4

Theorem 10: Let S be a notation for

If A E \lwon - S we have A is \In-r.e.

Conversely, if A is \In-r.e. then A E vwon -W where

W is the notation for won given by the canonical

ordering on wxn (namely (x,r)( (y,t) iff x < y or

if x = y then r < t).
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We will denote by VW'n the class of Vn-r.e.

functions.

Proof: Let A E VW'n-S' We will approximate A via the information

given by ljJ where 1jJ--A. And we'll construct a total function
(w'n-S)

f E Vn which dominates the number of changes that approximate makes.

We'll show that f E Vn by showing that we need to guess recursively

at most n times at f(x) until we are correct. We present an

informal proof and leave the details to the reader.

First note that given any q,z which notate ordinals < w'n we

can recursively determine sand t such that (q)S = w·k+t and

(Z)S = w'm+s, and whether k < m or m < k or m

with the proof, deleting subscripts for legibility.

k. We proceed

Diagram 4
W W n copies W

I

(

a t most s changes in

o = w'm+t in this block

ljJ«y,xi)+

at most t changes y W'm+s

in this block

o
1

x

012 .... 012 .... o 1 2 ....

Look at the first ljJ(y,x» which is + (in a computation search) .

We have y = w·m+s for some m < n. As long as we stay in the mt h

w-block we know that ljJ can change its guess at most s times. So

f(O,x) s. If we later have ljJ«o.x)H and 0 w·k+t and k < m

we are in another block, but now ljJ can change its mind at most t

times and stay in this block. So f(l,x) = s+t.

We will have to change our guess at f(x) at most n times,

once for each time ljJ goes to another w-block. The final time ljJ
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f(r,x) f(r-l,x) + u f(x).
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E = w·r+u, we have

o

Now suppose that A lims As(x) where the number of changes to

our guess at A(x) is dominated by f E Vn.

A schematic presentation will suffice to show that A E V •
W'n

Let f(a,x), ... , f(m,x) be the m guesses we make at f(x),

m < n-l.

I
wa (x)

} the first k1-changes of As (x) where f (a, x ) k r
wI (x)
k1
Z

}
wI(x)

the next kz-changes of As(x) where f (1, x ) kZ'

Z
wk (x)

Z
A(x) = ---

} ththe m km-changes where f(m-l,x)

That is, we have for t < kr, w( «r,t),x»

Similarly we may prove

m-rlJi
k

(x) .
r-t

Theorem 11: If A E Vw•a- S then A is Va_S-r.e.

And if A is Va_S-r.e. then A E Vw. a-W where W

notates w'a via the canonical ordering by S on

wxa (namely (x,r) < <y,t> iff x < y or, if x = y,
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Corollary: For each a-S the va_S-r.e. sets do not exhaust the sets

0'. That is, given V
a-S

we can find some A O'

such that A is not f-r.e. for any f E Va_S'

Proof: Given a-S consider a notation S· for a+l obtained

recursively from S (see Rogers (9], p. 206). By Theorem 9 we have

an A E VUP (a+l)-S"-Vw' a- S'" S" obtained from S· as above. Then

A is Va+l-S" r.e. but not Va-S" r.e., hence not Va_ S r.e. iii

The classes Va for a < ware given canonically. Using

Theorem 10 we can give canonical classes Va for a = W'n any n.

Using Theorem 11 we may now pick out canonical classes for any

a = w'S where a < wW. A picture will clarify this.

f-r.e. VI-roe. V -r.e.n

V 'i1 'i1a w w'n

f-r.e. 'i1 .e. V -r.e.ww

V 'i1
w3

Va ww

*

'i1 2
w

,,<

V -r.e.
w'n

'i1 2
w 'n

M. Lerman has recently communicated to us that he and L. Hay have

proved:

for all n > 1 there are two n+l-r.e. degrees < d such

that the interval {Q: C < b has no n-r.e. degrees.

He suggests that the proof is a not difficult modification of the

proof of Theorem 1.

Also R. Shore and L. Hay have communicated to us that they have

shown that there is a 2 r.e. degree a < O' such that there is no

r.e. degree Q, a < b < 0'.
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1. Hay and Lerman have observed that by a permitting argument one can

prove that if a > 0 is r.e. then for Vm+l there is some b

which is m+l-r.e. and not m-r.e., a > b > O. A corollary to

Theorem 3 is that the same is true if is n-Y, e. for any n > l.

2. L. Hay has pointed out that Theorem 6 follows from the fact that

there is an A 0' but A itt 0'. And that A O' iff A

is f-r.e. for some recursive f appears as Theorem 2,3 in

by H. G. Carstens, Arch. Math Logik 18(1976), 55-65.

3. This proof is essentially the same as Theorem 5 and 6(2) of

Ershov [6] (part II).

4. Actually it fails for every ?n by Theorem 3 and the fact that

for every r.e. there is some m < a of minimal degree (see

Epstein [5]).
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91. Introduction.

Let R = denote the upper semi-lattice of recursive-
ly enumerable (r.e.) degrees where is the ordering induced by Tur-

ing reducibility U denotes the least upper bound, and 0 and Q'
denote the least and greatest elements respectively of R. Warning:

All sets and degrees considered here will be r.e. The former will be

denoted by A,B,C,D, ••• and the latter by a,b,c,d, •••• The infimum
"" .....................

of degrees E does not always exist but when it does it is writ-

ten n E' We use E,S to abbreviate E and S. A de-

gree Q< <Q', cups (caps) if there is a degree £., Q<E<Q"
such that U E Q I n E Q).

One of the most elegant and pleasing results on the r.e. degrees

is the Sacks density theorem [11] which asserts that if <E then

there exists S, <S <E' This led Shoenfield to formulate a conjec-
ture [12] that R is a dense structure as an upper semi-lattice anal-

ogously as the rationals are a dense structure as a linearly ordered
set. (The conjecture asserts that if E E satisfies the diagram...
and D,(x, y) is any consistent diagram in L(S, U, Q, extending Q,
then there exists e E E such that 0, (;, el.) Shoenfield listed two

consequences of his conjecture:

1 This paper is based on a talk given by the second author in the logic
seminar at the University of Connecticut during the fall of 1979. The
simplified proof of the main theorem was discovered by the authors
through a series of refinements beginning with a study of Harrington!s
original notes [31 during the recursion theory seminar at the University
of Chicago in 1978. Further improvements were made at the University
of Connecticut. This work was partially supported by NSF Grant MCS
7905782. Both authors were also supported by the University of Con-
necticut where they were visitors for the Logic Year during the fall
of 1979.
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(1.1) If E R are incomparable then they have no greatest lower

bound in lY
(1.2) Given degrees Q< < there eXists::, < such that a

improved

by any
[2] then

replaced

[8].

Shoenfield's conjecture was ftrst disproved when Yates [16] and

Lachlan [5] refuted (1.1) by constructing a minimal pair, namely E R,

both> Q, such that a n b O. Lachlan [4] also refuted (1.2) and........ ,....,. ........ ,
Cooper [1] and Yates proved that (1.2) is even false for = Q • The
latter is called the "anti-cupping theorem" because it asserts that,
there exists £ <Q which does not cup. Harrington,
the anti-cupping theorem by showing that 0 could be

,""'" fI

high degree E such that a Q), see

Of course it is easy to see that some degrees do cup since the

Sacks splitting theorem [lOJ asserts that for any > Q there are

incomparable degrees £'::' < such that = u £. The purpose of
this paper is to give a fairly easy proof of the plus-cupping theorem

which asserts that there exists > Q such that b cups for every

b in the entire interval (Q,z] = <£ Immediate corollaries
are the cup and cap theorem (which asserts that there is a degree which

both cups and caps), and the cup or cap theorem (which asserts that

every degree Q,Q' either cups or caps). These three results were

originally proved separately by Harrington using Lachlan's rather com-
plicated "monstrous injury" priority method [6]. Then M. Stob and

others observed that the first result implies the next two. Later we

discovered that the first result can be proved using a variation of the

nested strategies method used to prove the existence of a minimal pair
[15, §4]. This method is much simpler than the monstrous injury meth-

od and lies somewhere between finite and infinite injury.

Harrington [3] indeed proved a stronger version of the plus-cup-
ping theorem, namely

(1. 3)

We do not give a proof of (1.3) which seems to require the more compli-
cated monstrous injury style proof. The latter method was invented by

Lachlan [6J to prove that the Sacks density theorem and splitting theo-

rem could not be combined. Namely, Lachlan proved

(1. 4)

The method derived its name from the extreme degree of technical compli-

cation in Lachlan's proof. Harrington recently improved this by shOWing
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I
that a could be chosen to be O.

Harrington and Shelah have announced that the monstrous injury

method can be combined with the plus-cupping and anti-cupping ideas to

prove undecidability of the first order theory of R as follows. They

first construct degrees !, £, and m satisfying the formula

Next given a countable partial ordering (p,{p) where

presented, they construct degrees £, c such that

morphic to the followi.ng set of degrees under :;:.,

I

,Q

is iso-

Therefore, since the of partial orderings is undecidable, so

is the theory of

In a sense this paper may be viewed as a first step towards under-

standing the monstrous injury method and the results of Lachlan and

Harrington-Shelah mentioned above, as well as the recent result of

Lachlan [7] that there is a degree ! >Q which does not bound a

minimal pair. In the proof of each of these results the requirements

R are of an unusual nature and may be satisfied in one of two ways

according to whether a sufficiently small number is ever enumerated in

a given set B during one of infinitely many periods in the construc-

tion called "gaps". If so then we can preserve a certain corresponding

C-computation ®(C;x) y forever, and satisfy requirement R in the

first way. If not then at the end of each gap we enumerate a number

into C (thereby possibly "capriciously destroying" the C-computation

we are trying to preserve), and we wait for the next gap to begin. If

no sufficiently small element is enumerated in B during any of the

gaps, then we will show that B is recursive, and will satisfy re-

quirement R in the second way.

Each of the monstrous injury proofs of the theorems mentioned above

has requirements of this kind. The argument presented here is simpler

than the others for two reasons. First each requirement R will con-

tribute at worst an infinite set which is recursive (rather than r.e.
and nonrecursive). Secondly, combining the reqUirements here requires

only a linear nesting of strategies (as in the simplified proof [15,

§4] of the minimal pair) while the usual monstrous injury method re-

quires a much more complicated tree of strategies.

Background information, definitions and unexplained notation can

be found in Rogers [9]. In addition we let w(x) J, =y denote that
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the partial recursive function is defined on x and equal to

y, and t denote that w(x) diverges. We identify a set A

with its characteristic function and let f z denote the restriction

of f to arguments < z ,

§2. The corollaries and the strategy for meeting a single reqUirement.

After deriving the corollaries, we list the requirements which we

must meet to prove the theorem and we describe the strategy for meet

ing a single requirement.

Theorem 2.1. (PlusCupping TheoremHarrington)

Lemma 2.2. If is as in Theorem 2.1, then a caps.

Proof. Suppose that does not cap. Let £ >Q. Since a

does not cap with b there is a £ >Q, £ Since Q< (
cups, so since £ (£, £ cups. Thus every £ >Q cups, contra

dicting the anticupping theorem [ []

Corollary 2.3. (Cup and Cap TheoremHarrington)

Proof. Take a as in Theorem 2.1. Then every nonzero degree

cups and by Lemma 2.2 caps, so every nonzero degree

[]

Harrington originally proved that there is a degree which both

cups and caps. Lemma 2.2, which gives the strengthened version of the

Cup and Cap Theorem given in Corollary 2.3, was pointed out by K.Ambos.

(Jockusch has shown (unpublished) that the cup and cap theorem

is false for wttdegrees [9, p. in place of Turing degrees.) The

next result asserts not only that any £ Q,Q' either cups or caps

but indeed that d either cups or else caps with the fixed degree a

of Theorem 2. L

Corollary 2.4. (Cup or Cap TheoremHarrington)

Q(2<Q' [2 1'1 QY d cups].



Proof. Suppose d n = 0

Now by Theorem 2.1, there exists
J I

then U.s Q, because E. (
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is fa17e. Choose E. ( Q.
.s <Q such that ,2 U.s = Q. But

o
(K.Ambos has shown that the cup or cap theorem is false for wtt

degrees. )

Definition 2.5. A degree has the strong anticupping property

via witness E. < if b > 0 and

(V.s) [.s 1. >.s UE. 1.
For every high degree such a witness E. < is constructed

I
in [8J. The proof of Theorem 2.1 nowhere uses the completeness of Q

I
but merely the fact that 0 is nonrecursive. Namely, we will act

ually prove the following stronger version of Theorem 2.1.

Corollary 2.7.

erty via Q< <
caps with the degree

(K.Ambos) If has the strong anticupping prop

then e is half of a minimal pair and indeed

a of Theorem 2.6.

Proof. Let a be as in Theorem 2.6.

a then choose E. >Q, such that E. <
b U.s L 2 for some s. 1 2, so U.s L
on e.

If fails to cap with

But then by Theorem 2.6,

contrary to the hypothesis

o
We now list the requirements necessary to prove Theorem 2.6 and

explain the basic strategy for a single requirement, using the termin

ologyof s" introduced by Lachlan [7J. Let [@e}eEw be a standard

listing of all partial recursive (p.r.) functionals and [Pe,Be}, a

standard of all pairs such that is a p.r. functional and

Be is an (r.e.) set. Let D be any nonrecursive (r.e.) set. For a

set X or p.r. functional 0/, let Xs and o/s denote the result

after s steps in the enumeration. Let ei and be the (p.r.)

use functions for 8. and P. (namely e.(x ;x,s) is the greatest
l l l S

element used in the computation 8. (X ;x) if defined and is 0r., S s
otherWise). We assume ei(x;x,s) < s and likewise for

To prove Theorem 2.6 it suffices to construct A coinfinite to

meet for all e the requirements

Pe: We infinite >We n A 0 and

Re: Pe(A) =Be => [Be is recursive v( jCe)[D(TBeI$'Ce&D {T CeJJ·
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Fix e. Thus we are given D and and we are enumerating A and

Ceo We may assume that the enumeration of Be satisfies

(2.1) X E Be, s+l - s 1,

because we are only interested in

we may withhold an element from

gives us considerable power over

entering A. )

To measure whether Pe(A)

those e such that Pe(A) = Be' so

until 9 (A; x) = 1. (Thise , s s
by restraining elements from

we define the recursive functions,

.{.A(e, s) = maxj x: (¥y < x) [9 (A ;y) = Be s(y)]}, ande, s s ,

mA(e,s) = max{.{.A(e,t):t < s ] •

Call s an e-expansion stage if tA(e,s) >mA(e,s).

= B there are infinitely many e-expansion stages.)

To attempt to arrange D ® Ce we have a

markers" {rm}mEw' Let denote the position of

stage s. We will arrange that if ge ( A) = B then

list of "coding

rm at the end of

for all m and s

[XEC -C]e, s+l e, s

(2.2)

(2.3)

(2.4)

if m enters D at stage v+l

position of rm;

r s+ l -, r S
; andm L. m

r S+1 > r S > (.3 x /m m ::....

then r V is not the finalm

v [ s v r where v is the last

Thus, if Pe(A)

lims then

by (2.2). (The

some marker rm
To arrange

ment

e-expansion stage < s ] ,

= Be and all the markers come to rest, say f(m) =

f {T Be ® by (2.3) and (2.4), and hence D {T Be ®Ce
trick in meeting requirement Re is to insure that if

moves often then Be is recursive.)

D iT Ce to satisfy for all i the require-

function,

Fix i. We first try to meet N<

B. (C iX,S) and D (x) as in
.i , s e, s s
[13, §2]. Define the recursive

by preserving agreements between

usual Sacks preservation method

.{.(e,i,s) =max{x:(¥y< x)[
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However, unlike [13, §2], here we have no formal restraint on Ce
(except that a number z enters Ce at stage t+l only if t is

e-expansionary and z is a marker position). Instead, if e = (Ce s; x, s),
for some then N<e,i) attempts to clear cets of all

markers r m, m L i, (since these marker positions might later enter

Ce destroying the Ce-computation.) For N<e,i) we define an A-

restraint function r:N N such that:

(2.5) either r has infinitely many zeros or else r is eventually

constant; and

(2.6) if A eventually obeys r (i.e., there are only finitely many

s such that ("3 x) [x r (s+l) & x E As+l - As]) and r is not

eventually constant then B is recursive.

We define r and attempt to construct a series of "gaps" as fol-

lows. To begin a new gap we wait for a stage s+l such that

(2.7) z < tA(e,s); and

(2.8) (C ; x, s) ],e, s

swhere z = rio The gap is closed at stage t+l where t is the next

e-expansion stage L s+l, and we set r(v) 0 for all v, s+l v t.

If there is no such t then the gap is never closed and r(v) 0 for

all v L s+l. Initially we set r(v) = 0 for all v s where s+l

is the beginning of the first gap. (If the enumeration of A ever

violates the restraint function r then we begin constructing the

series of gaps allover again forgetting what was previously done.)

During the gap the positive requirements are free to contribute

elements to A, and so various A-computations s(As;X) = Be s(x), ,
may be destroyed, thereby allowing Be(X) to change in value. However,

at the next e-expansion stage t, tA(e,t) ) mA(e,t) L tA(e,s) L z so

= Be,t(X) for all x z. In closing the gap at stage t+l

we perform the following four steps.

step 1

step 2.

Case 1. B z f B z, wheree, t e, s z sr i, go to

Case 2. If B t r z = B z, enumerate z into Ceoe, e, s

step 2. Move markers rm, m L i, (maintaining their order) to

elements greater than both t and their present positions.

(Thus, if Case 1 holds, no element is enumerated in Ce at step 1

and the computations e. (C ;x) = D (x) for x < t (e,i,s) areJ.,s e,s s
cleared at step 2 of any marker r, m i, since e.(c iX,S) < s. m L J. e, s
Note that no elements enter Ce during a gap so the Ce-computations
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at stage s are still valid at stage t.)

If m = E Dt-Dv] where v is the last e-expan-

sinn stage < s, put rm into Ce and move all rm" m' Lm.

Set r( t-i-L) t ,

This will protect the A-computations Pe,t(AjX) = Be,t(X) for

x < tA(e,t) until the start of the next gap, say at stage sl) t+l,

thereby insuring that

(2.9)

by our convention (2.1).

If there are infinitely many gaps then r has infinitely many

zeros so (2.5) is met. To see that (2.6) holds, assume that Pe(A) B,

A obeys r, and r is not eventually constant. Then we must open

infinitely many gaps. Hence, lim r? = 00 because r
1
. moves whenever

s 1
a gap is closed. We will show that Case 2 of step 1 holds at the clos-

ing of all gaps begun after some stage sO. Thus Be is recursive

because does not change during the gaps, but by (2.9) Be r
does not change during the intervals between gaps. Hence, for any x,

find s) So such that x < and a gap is opened at stage s+l.

Then x E Be iff x E Be, s

To see that So exists first note that is recursive. For

each x choose s such that x < Now (ignoring the position of

r m, m < i, which we assume come to rest) x E iff x E C Thuse, s
19i(Ce) ;" D, since D is nonrecursive. Let Xo (lJx)[19i(Ce;x) ;"D(x)J.

Now 19i(Ce;xo) must diverge because otherwise we would not open in-

finitely many gaps. Thus there exists So such that at each gap be-

gun at a stage s> So we attempt to clear a computation 19i,s(Ce,s;XO)
of markers. If Case 1 of 1 holds at the closing of this gap then

the computation 19. (C ;XO) would be preserved forever, contrary
1, s e, s

to the divergence on x
O•

§3. The proof of Theorem 2.6.

The strategy just given for meeting a single requirement N<e,i)'

say NO' produces an A-restraint function reo,s) such that

lim infs reO,s) < 00. As in the minimal pair construction [15, §4] we

must modify the strategy 01 for Nl so that the two restraint func-

tions drop back simultaneously. To do this Nl must guess the value

k = lim reo,s), and must simultaneously play infinitely many strat-

egies k E w, one for each possible value of k. Each strategy
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is played like 00 but with {s:r(O,s) = k} in place of w
as the set of stages on which it is active. strategy still suc

ceeds if any restraint it imposes is maintained during intermediate

stages s I. Sk while is dormant. Thus, at stage s if k=r(O,s),

play ai, maintain the restraints imposed by the dormant

i ( k, and discard restraints i.mposed by ar, j k , Therefore,

if k lim inf reO, s), then: (1) the strategy succeeds ins ,
meeting Nl; (2) the strategies i ( k, impose finitely m1.:lch re

straint over the whole construction; and (3) the strategies or' j ) k,

drop all restraint at each stage s E Sk. Thus, the entire restraint

r(l,s) imposed by NO and Nl together has lim r(l,s) ( 00.

In addition we need a new trick here not found in the proof of

the minimal pair. Namely, is allowed to open an (and drop

its Arestraint) only at a stage s E Sk. However is allowed to

close that gap (thereby reimposing Arestraint) at a stage t I. Sk

(providing t is an eexpansion for the corresponding e). This

allows us to impose a sufficiently small amount of restraint so that

lim r(n,s) (00 for all n, and yet close the gap often enough

to allow enumeration in Ce and meet Lemma 3 below.

In the full construction we have for each e coding markers

{r } • We sometimes write N(k ,) for a(k ,) and refer to gaps
e,m mEW k k e,l e,l

opened by a( ') as N/ ,)gaps. These gaps will not be opened toe, l "e, l ,
clear marker r , as in our sketch but rather to clear r wheree,l e,m
m = (i., k, p) and

p p(n,k,s) = s:r(nl,t) (k} for n = (e,i),

so that no marker will be moved infinitely often by Nk if k >
n

lim r(nl,s).

Construction of A and Ceo

m, in order,to
I

m Lfor all

In increasing order examine all

I ,

e,m

Be f' z,v

rMove

If

is an eexpansion stage. See whether there exists

such that some N(k ,)gap was opened at some stagee, l

and that gap has not been closed or cancelled.

or to step 2. If so fix the least such m

Let z = r V
•e, m

Be s IZ enumerate z in,
(b) •Substep

stage s = o. Do nothing.

stage s+1

step 1. (Closing gaps.)

e (s such that s

m(s, m=(i,k,p)

v (s via marker m
If not go to the e

and let v correspond to m.
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integers greater than both s

Substep (c). For all

gap open, declare the gap to be

A-restraint.

and their present positions.

i and k if there is an Nk<e, i)
closed and let N(e,i) assign s as

step 2. (Coding D into B <'B Examine each e 'S:. s such
e I

that s is an e-expansion stage. Let s be the greatest e-oxpansion

stage < s if one exists and 0 Cltherwise. Let m IJx [x E D -D I ] •S
S

r
Enumerate the current position of r into C and move markers

I e,m e
m Lm, in order to new larger positions. (If m fails" for

e, m
to exist go to step 3.)

z < -tA(e, s); and

( 1)

(2)

(3)

r(n,j,

ed and

(3x)[x( t(e,i,s)&z(8i ( Ce s;x,s) & computations still exf.s t ] ,,
If so we cancel all restraint of priority For each j 'S:. k, let

be the maximum restraint of priority previously assign-

not yet cancelled (including any restraint assi.gned at step 1).

Define r(n, s--L) = max] [k } U [r(n, j, : j 'S:. k)).

step 4. (Making A simple.) For each j 'S:. s, if Wo n As
J, s

step 3. (Opening gaps.) PerfClrm for each n = <e,i) 'S:. s in in-

creasing order the following procedure. Let k = r(n-l,s+l), where

r(-l,t) = 0 for all t. For every j) k, cancel any gap or restraint

previously imposed for Nn
j
. Let z be the current position of r e,m

where m = <i,k,p(n,k,s), and p(n,k,s) < k ] ,

N Nk 0 T"' Lfow we open an <e,i)-gap Vla "e,m
k

there is not now an open N< e, i) gap;

and
(3 y)[ yEW 0 & Y ) 2 j & y) r ( j, s+1) ] ,

J, s

choose the least such y and enumerate y in A.

This completes the construction.

Lemma 1. ('In) [lim inf s r(n, s) < 00].

Proof. Recall that r(-l,s) = 0 for all s. Fix n and assume

the lemma for n-l. Let k = lim inf r(n-l, s), and SO' (s:r(n-l, s) k ],s
Choose So such that r(n-l,s) k for all s sO. Now for j < k

no new Can be opened after stage sO' and each existing gap

will be closed at most once during which time Nj may increase itsn
restraint. Let r O be the maximum restraint ever imposed by for

j < k. Now for each sufficiently large s E S, r(n,s)

since any restraint for j ) k, is cancelled at such a stage s.
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Now either r(n,k,s) is eventually constant

many say at stages sl < s2 < s3 <

r(n,k,si) = a for each i. In either case

lim infs r(n,s) < 00.

or else we open infinitely

, where E Sand

lim infs ES r(n,s) < so

o
Lemma 2. (Vj) [W

J
. infinite >W. n A 0'].

J

Proof. Let r = lim r(j,s). If W. is infinite choose
J

y ) r, 2j, and choose s such that y E W. and r( j, a--L) = r. Now
J, s I

if W. n A = 0' then y (or some smaller y E Wj, s) enters AS+lJ, s s
insuring W. n AS+l 0'. 0J, s

-gap at the

e-expansion

e, i)-gap
position

o

then

,)-gap is eventually closed or cancelled].e, l

then r S is not the final position ofe, m

Lemma 3. If Pe(A)

(a) (Vi) (¥k) [any

(b) (Vm) [if m E

r ].e, m

Proof. Suppose that either there is an open

end of stage s+l or m E Ds+l-Ds' Let t be the

stage) s , Then during 1 of stage t-i-L we close the

(if it has not already been cancelled), and during Step 2

of r changes.e, m

is recur-

minimal.i

then (Vi) [8i (Ce) D].

Be and 8.(C) = D with
l e

for some m. If so then00

If

Proof.

Lemma 4.

We claim that lim r Ss e, m
sive and hence D is recursive, contrary to hypothesis. (To see that

Ce is recursive choose the minimal m satisfying the claim, and So

such that no marker j < m, contributes an element to Ce after

stage sO' To test x E Ce, find s) So such that x < r" .e,m
Now x E C iff x E Ce .)

e , s

x

o
t, a

m' for
exist

Hence,

r S < 00e, m
p =

-gap via r .e, m
3 this gap

all s
k

N< e,
But by

for

contradiction.

To prove the claim assume to the contrary that

for all e,m. Let n <e,i), k = lim infs r(n-l,s), and

card[t:r(n-l,t) < k}. Let z be the final position of

m=<i,k,p). Let 8(x) 8.(C ;x,s). Nowthere
l e, s

such that z < 8( x) else D (T Ce 2+1, and 80 D i8 recursive. Choose
So

So such that T = z, and r(n-l, s)2 ke, m
there exists a stage s) when we open an

(This gap is never cancelled since s sO.)

must be closed at some t ) s, and r moves ate,m



60

Lemma 5. If

(Vm) [lim r S < 00].s e, m

Be and Be is not recursive, then

Proof. Assume = Be' Choose m minimal such that lim r
S

s e,m
= 00, say m = <i,k,p). Let n = <e,i). We prove that Be is recur-,
sive. Once the r I with m < m have settled, r can move onlye,m e,m
if its present position is put into Ceo Thi.s can happen at most once

at 2 of a stage and, afterwards, each time r moves, it is
k e,m

because an N gap, opened through r , is closed. If
n e, m 1

j < lim inf r(n-l,s), then there are only finitely many NU gapss n .
opened during the construction. If j) lim infs r(n-l,s), then

can only open finitely many gaps through any given marker r (sincee, m
p(n, j, s ) = (0). Thus k = lim infs r(n-l, s ) ,

such

during step

Choose

is not enumerated intor e, mthe position of

2 of stage s;

By Lemma 4, choose Xo = (C ,x) D(x)].
l e

that for all s L sO'

(3.1) (Vj < m)[re,j does not move at stage s];

(3.2) (Vj < n)[Pj does not act at stage ;

(3.3) r(n-l,s) L k;

(3.4)

(3.5)

(3.

(Vy < xO)[Gi s(Ce s;y) Gi(Ce;y) and 8i ( Ce , s ; y, s )
1 im s 8. (C ; y, s) ] and

l e, s

(Vy ( xO) [y E: <) y E: D].

(3.2)

t. r z , where z =
J

would be cleared of all markers

Now after stage So there must be infini.tely many stages <

(s2 < t 2+l ( ••. such that Nk opens a gap via r at stagen e, m
Sj with x = Xo in (3) of step 3 and this gap closes at stage tj+l.

Now Gi(Ce;xo) must diverge or else we would not open infinitely many

gaps. But when the gap is closed at t.+l we cannot have B rz
J e,

m' or else the computation G. (C ; xO)l,t
j

e,

r , for q L m, and would be pre-e, q
served forever contrary to the divergence on xo. Hence, for every j,

s. A
Be z = B t r z where z = r J. But z < .t (e, t .) since t., e, j e,m J J

is an e-expansion stage, so Nk assigns A-restraint to protect the
. n A

computatlons y < .t (e,t j) until stage Sj+l'
J J

and (3.3) this restraint is not injured or cancelled before stage Sj+l')

Thus, by (2.1) Be' t rz B rz. Hence, Be is recursive since
s .i e, Sj+l
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to compute whether x E Be' find the least stage
s.

x <r J. Now x E Be iff x Ee, m

such that

o
Lemma 6. If and is not recursive then D (T

is not recursive.

Furthermore,

s such that no

Be Ceo

Proof. Fix e such that Pe(A) = Be and

Now by Lemma 5, f(m) =df lim r S <00 for all m.n s e, m
f (T Be Ceo To see this find an e-expansion stage

Z / r S+l t B C ft t The,m en ers e or e a er sage s. en
after stage s+l, and furthermore m E D iff m E

r e, m cannot move

o
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NATURAL a-RE DEGREES

Sy O. Fri edman
M.1. 1.

In this paper we provide an explicit positive solution to Post's Problem in a
recursion theory, for many admissible ordinals a. The Sacks-Simpson Theorem (Sacks

Simpson [72]) yields a positive solution for all admissible a via an a-finite

injury argument. By way of contrast, our approach makes no use of the priority

method. Instead we find new ways to combine Skolem hulls with the transitive collapse

lemma. Thus our proof is really very close to Godel's proof of the G CHin L

(Godel [39J).

If A is a limit ordinal, A < a, then a-cof(A} = a-cofinality of A is

just the cofinality of A when evaluated inside La; thus, a-cof(A) = least y s.t.

there is an unbounded f: y - A, f E La' A set XC a is low if

where X' is the a-jump of X. And, X is hyperregular if <La,X> is an admissible

structure. We suggest consulting Simpson [74J for further clarification of the basic

notions of a-recursion theory.

Theorem 1.

Then Sew}

is strictly

Suppose a> w is admissible and La 1= There is no largest cardinal.

{A < ala -cof(A) = w} is a low, hyperregu1ar a-RE set whose a-degree

between 0 and 0'.

Proof: An a-cardinal is an ordinal K such that La f= K is a cardinal. If K
is an a-cardinal then we let K+ denote the least a-cardinal greater than K.

show that if w < K is a a-cardinal (that is, La K is regular) then

<LK+, Sew) n LK+> is a L1-elementary substructure of <La' Thus any

L1<La,S(w» function f with domain CK (and defining parameter p E LK+) has range

contained in LK+. This establishes the admissibility of <La,S(w}>. Also note that

X = {K+I w < K is a regular a-cardinal} is n, over La and thus ::a 0'. More

over if ¢(x) is a L1 formula defining the complete L1 set C for <La,S(w»

then for y E X:

{x E L I<L ,Sew} n L > 1= ¢(x)}
y y y

and therefore C X V S(w}, where V denotes a-recursive join. qut C has a

degree S(w}' and X v S.(w) < 0', so Sew) is low.
-a

Suppose then that w < K is a regular a-cardinal and <La,s(w»I= jy¢(x,y,S(w»

where ¢ is 6
0

and x E LK+. He wish to show that

<LK+,S(w) n LK+;I= jy ¢(x,y,S(w) n LK+). Choose y E La so that

<La,S(w» ¢(x,y,S(w» and let A be a regular a-cardinal so that y E LA' Also
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y =
Thus any

into K.

then

then H contains an w
is cofinal in I[(S) so

is an w-sequence I[(So) ,
he cofi na1

a-recursive. Suppose that

¢ is and show that this
Choose a successor a-cardinal
holds (note that K+ $ $(w)).

X E Lo-<L
K

+ anrl «-co f'{c ) > w.

Lo: If f:w + Lo is a-finite

is a o-finite injection of y

and inductively define:, Y E Lo

between K and K+ so thatochoose

a - fi ni te w-sequence from Lo belongs to

sup(Range( f)) < 0 and gof E L where g
Thus f = g-lo(gof) E Lo' K

Now we let H = Ll Skolem hull of Lo U {y} inside <LA,S(w) n LA>' We claim
that any a-finite w-sequence from H ryelongs to H. eor, let h be a Ll Skolem

function for LA; thus H hEw x (L.§. u {y})<UJ]. If yO'yl' ...E H is a-finite then
we can choose a-finite sequences xO,xl, ... (from(Lo)<W) and nO,nl , ... (from e) so

( + ) +) ( +)that Yi = h ni ,xi,Y for each i. [Jut then «nO'x O ' nl ,Xl , ... > E Lo and as

the Ll sentence jz Vi(z(i) = is true in LA' it is true in H. So

<YO'Yl , ... > E H.
Transitively collapse H to L, 0 < y < K+. Then S(w) n H collapses to

y
5(w) n L: r.all the collapsing map 1[. If S E S(w) n H
----y
sequence SO' Sl'''' cofinal in S. Then I[(SO' Sl , ... )
I[(S) E S(w). Conversely if I[(S) E S(w) n L then there

y
1i (Sl)"" cofinal in I[(S); then <SO,Sl''''> E Hand SO,Sl"" must
in S, else Si < 6 < S for some 6 E H and sup I[(Si) < 1[(6) < I[(S) shows that

1 i
I[(So), I[(Sl) ,... is not cofinal in I[(S).

We now have <LA,S(w) n LA> ¢(x,y,S(w) n LA)+ <H,S(w)nH> ¢(x,y,S(w)nH) +

<Ly'S(w) n Ly> 1= ¢(x,I[(Y),S(w) n Ly ) ' Thus since y < K+ we have <LK+,S(w) n LK+>
1= 3y ¢(x,y,S(w) n L +).

K

It only remains to show that S(w) is not

jy¢(x,y,p) is a Ll formula (with parameter p,
formula does not define the complement of 5(w).

so that p LK and y E La so that ¢( ,y,p)

Choose 0 < a so that

Ll Skolem hull(LK U {K+,y}) inside Lo
K
O

H
O

n K+

+Ll Skolem hull(LK U {Kn,K ,y}) inside Lo

H n +
n+1 K

+Then H = U H is the Ll Skolem hull of L- U {K ,y} inside L, where i(= SUPK .
nn + K 0 nn

If n:H LA then I[(K) = iZ. LA 1= ¢(iZ'I[(Y),p), But then jy¢(iZ,y,P) is
true since ¢ is LlO' This shows that 3Y4> (x,y,p) does not define the complement

of S(w) as i( has a-cofinality w· --t

The preceding proof is easily modified as follows: If K is a regular a

cardinal then let S(K) = {A < ala -COf(A) = d. If there is no largest a-cardinal
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and K < ware regular a-cardinals then <L +,S(K) n L +> is a sub-
W W

structure of <La,S(K». the same proof shows that if Kl,KZ are both

regular a-cardinals less than a regular a-cardinal W then <L +,S(Kl) n L +,
.I w w

S(KZ) n I.
w

+> is a suhstructure of <lj..a,S(K1), S(K?». Thus
S(Kl) VS(KZ) is low, hyperregu1ar and a-RE. The next result shows that S(K1),
S(KZ) represent incomparable a-degrees.

Theorem Z. Suppose there is no largest a-cardinal and <l,K2 are distinct re-

gular a-cardinals. Then S(K l) is not a-recursive in S(K Z)'

Proof: Suppose that ¢ is 60 and jy¢(x,y,p,S(KZ)) defines the complement of

S«l) over <La,S(K2». We derive a contradiction by showing that <La,S(K2»!=jy¢(x,
y,p,S(KZ))' for some x E S(K l). Choos e a regular a-cardinal so that p, K1,
KZ E LK and let y La be so that ¢(K+,y,p,S(K Z))' The choice of y is possible
as K+ $ S(Kl), If A is a regular a-cardinal such that y LA then inductively

define a Kl-sequence of Skolem hulls:

S limit.

Lemma. For 0 < Kl, any a-finite Kz-sequence from HO+ l belongs to Ho+l'

Proof of Lemma: First note that if f: KZ 0- '16+1 is n LA> (with

parameter in H6+1) then f E Ho+l' For, if f(x) = y +-+ <LA,S(KZ) n LA> r jz1jJ(x,
y,z) where 1jJ is 60 then <H o+l ,S(K2) n Ho+l> jbux E K2jy,Z E b1jJ(x,y,z), as

this sentence is true in <LA,S(K2) n LA>' So f E Ho+l' 'low it suffices to show

that any a-finite f: KZ + HO+l is n LA>' o,ut there is a Ll < '10+1'
S(K Z) n HO+l > injection g:Ho+1l

+ LK and gof E LK (since K2 < K and K is a

regular a-cardinal). So f= g o(gof) is n Ho+l> and hence

Ll<LA,S(Kz) n LA>'

Let H Ho and y = H n K+ Then y E S(K1) and if n:H -=-> Ly then
n(K+) = y. cor lour contradiction it suffices to show that nCS(KZ) n H]

S(KZ) n Ly as this implies <Ly,S(KZ) n Ly>rrjl(Y,n(y),p,S(K2) n Ly)' showing that
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3Y¢(X,y,P,S(K2)) does not define the of S(K
1

) .

If S E S(K2) n H then there is a cofinal f:K2 + 6, f E H since H is a

Zl-elementary substructure of LA' Hen nsf is cofinal in TI(S} so TI(S) E <;(K2) ron

versely, suppose TI(S) E S(K2)' Choose an a-finite, increasing function

f:K2 + H so that TIof is cofinal in TI(S). Then for some 0 < K
1

and unbounded

a-finite X K2, 9 f t X has range contained in Ho+l' By the lemma 9 E HO+1
!Jut 9 is cofinal in S as otherwise for some 13 E !-1, URange(g) < 13 < Band

URange(1T of) < TI(S) < TI(S). contradicting the fact that is cofinal in TI(6).-1

Some Remari,s and Questions

1) The proof of Theorem 2 is easily extender to show: If there is no largest

a-cardinal and K'<l , ... ,K n are distinct a-cardinals then S(K) is not a-recursive
in S(Kl)v ... VS(K n). Moreover S(K1)v ... v S(Kn) is low and hyperregular.

2) Suppose there is no largest a-cardinal and K, ,K2 are distinct a-cardinals.

Then is S(K,), S(K2) a minimal pair (i .e., does A S(Kl), A S(K2) imply A
is a-recursive)?

3) Are there any incomplete regrees greater than allof the a-degrees

of S(K) for regular a-cardinals K(assuming there is no largest a-cardinal)?

4) Problem: Find natural, intermediate a-RE degrees when there is a larg
est a-cardinal. If a* a then there is no largest a-stable; is there a way of

making use of the a-stahles similar to the ahove use of a-cardinals?
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classified by the

of their symmetric

ELEMENTARY THEORY OF AUTOMORPHISM

GROUPS OF DOUBLY HOMOGENEOUS CHAINS

A. M. W. Glass', Yuri Gurevich 2 , W. Charles Holland

and Michele Jambu-Giraudet 2

1. INTRODUCTION.

At the Logic Meeting in Storrs, Connecticut (November 1979), the

first author presented a survey of the research being done classifying

linearly ordered sets by the elementary theory of their

groups. In this paper we wish to present some aspects of our more

recent research which may be of interest to logicians. A more up-to-

date survey will appear in the Proceedings of the Conference,

Carbondale (1980)--to be published by Springer-Verlag in their lecture

note series.

In the early 970's, (unordered) sets were

elementary (first order) group-theoretic

groups--i.e., automorphism groups (see [lOJ, [llJ and [13J). A natural

extension of this work is to try to classify structures of a given

signature by the first order properties of their groups.

One such problem is to take the models as linearly ordered

sets (or chains, for short). Besides its obvious naturalness, there

are two further reasons to study the of chains. The

The second reason is by the

every lattice-ordered froup can be

group of a chain. Vie will write A(n)

first is that if r is any set of sentences (of first order language)

having an infinite model and is a chain, there is a model O(Si

of r containing Si as a subset such that each automorphism of <, >
extends to an automorphism of the model ()(n; i. e ., Aut ») is a

subgroup of Aut(d-( n) (See [l2J for this and further motivating

reasons for model theorists).

theorem [3; Appendix IJ that

embedded in the automorphism

for i.e., A([l) is the group of all order-preserving

permutations of the chain n. The classification in this case was

begun in [7J, [8J and [5J. This paper provides further results.

lAo M. W. Glass wishes to thank N.S.F. for providing his expenses
at Storrs, and the University of Connecticut for its hospitality--
especially Manny Lerman and Jim Schmerl.

2Yuri Gurevich and Michele Jambu-Giraudet wish to thank Bowling
Green State University for its in the Spring and Fa1
Quarters (respectively) of 1980.
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The presence of linear orderins complicates matters in two ways.

Whereas the symmetric group on a set is always transitive, the same is

not necessarily true of .,+Cfl)--e.g., if Q = w, then A(Q) {e }

(e is the identity element of the group -4(Q)). So ..4(T) =A (to V T)

for any chain T, where w T is w U T ordered by: n < T for all

T 'T, new. In order to obtain any nice classification of chains Q

by the elementary properties of the group fi(Q), we will assume that

Q is homogeneous (i.e., for each a,S E Q, there exists f f A(Q)

such that f(a) = S; so homogeneous in our sense means I-homogeneous

in the usual model-theoretic sense). If Q is homogeneous, we will

say that -4(Q) is transitive. The second complication is that the

symmetric group On a set is always primitive (i.e., there is no non-

trivial equivalence relation on the set which is respected by the

symmetric group). However, even when Q is homogeneous, there may

exist non-trivial equivalence relations on Q (having convex classes)

which are rcspected by A(Q). for example, let Q = i Z, the

lexicographic product of the real line, I, and the integers, Z

(Le., i (2) Z ordered by: (r,m) > (s,n) if I' > S or (I' s &

m > n»). Then (r,m) - (s,n) if I' is an equivalence relation of

the desired kind. (Two points of Q are equivalent only if there are

only finitely many points of Q between them.) Such chains are said

to be non-primitive. Fortunately, there is a group-theoretic sentence

which is satisfied 1n a transitive fi(Q) if and only if Q is

primitive (see [3; Theorem4DJ or [7; Lemma 4J); so we will confine

ourselves to primitive chains in this article. The non-primitive case

will be investigated in a later paper.

If Q is primitive, then [3; Theorem 4.BJ either

(i) is abelian, or

(ii) Q is homogeneous (for each ,Si E Q (i 1,2)

with a l a 2 and 61 < 62, there exists f E 4(Q) such that

f( = Si (i = 1,2)).

Moreover, (i) and (ii) are disjoint ([3, Lemma 1.6.8J) and so can be

distinguished by a group-theoretic sentence about A(Q). Hence we may

deal with them separately in attempting to classify homogeneous chains

by the elementary properties of their automorphism groups. Case (i),

the rigidly homogeneous case, was completely studied in [5J. SO we

will confine ourselves to doubly homogeneous chains in this article.

Our maln thrust will be to establish that

groups doubly
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Although we are interested in the an

auxiliary relation on it will simplify matters. This auxiliary

relation is the pointwise ordering on ACQ), with respect to which

ACQ) becomes a lattice-ordered group: f 2 g if fCa) 2 gCa) for all

a E Q; so g > e if g moves no points down. In [8J Cor [9J) it was

shown that there is a formula of the group language such that

ACQ) if and only if e < f,g or e > f,g. Hence if

AU» "ACA) as groups, <ACQ)'2> - <ACI\) <> or

<AU),) < - <ACI\) '21'> as lattice-ordered groups where lS the

reverse of the pointwise ordering. Since in most of our results,

<.kCI\) '2> satisfies the desired properties if and only if <ACI\) '21'>
does, we will assume that the pointwise ordering and the inherited

lattice operations v and A are explicitly in the language. CWe use

fiG" and. "or" for the conjunction and disjunction of the language.)

For g let suppCg) = {a (; Q: £Ca) f. a}, the of

g. If f,g E .A-CQ) arid suppCf) < suppCg) Ci.e., a < S for all

a E suppCf) and S E suppCg», we say that f is to the of g.

Since suppChgh- l) hCsuppCg», it follows that if f,g> e, then f

is to the left of g if and only if

.4CQ) F CIi h) Ch > e ->- f " 1 = e). We abbreviate this formula to

LCf,g). Hence g > e has bounded support can be expressed in our

language by the formula C3 > e)C] f 2 > e)CLCfl,g) G LCg,f2».
Let IT be the Dedekind completion of Q. Each g e.ACQ) has a

unique extension g to an element of AcIT) given by:

gCa) = sup{gCa): a E Q G a < a} Ca IT). We will identify g with

g. If Q is doubly homogeneous and a E IT, there is e < g ACQ)

of bounded support such that a = supCsuppCg». Moreover, if

e<g'EACQ) and at sup t s upp Cg t j ) ,

a = a' if and only if

1= Ciih > e)(LCg,h) LCg' ,h»;

and a < a' precisely when

.ACQ) F CVh> e)(LCg',h) ->- LCg,h».

We can therefore interpret IT in A un
in this uniform way Cthe formulae are

independent of the particular doubly

homogeneous chain Q). That is, we

can interpret Cuniformly)

<AUn ,IT", -1 ,e'2AUn '2?l> in
-1

<A-CQ),', ,e,2A.(Q»' Moreover,

fCa) a if and only if
-1.ACQ) F Cli h > e)CLCfgf -, ) +->- LCg' ,h»).
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Consequently, we will assume that our language is explicitly

with variable for the points of 0 together with relations for the

order on iT and the action of AU)) on rI. If AUn := ACh) as

groups only <.4 ([n > <.4 Ch) ), we would obtain

This means that any results

of the form: .4CrI) := ACh) ies 0:= II, really should have the

weaker conclusion that the homogeneous chains r;J and h ordermorphic

or anti-ordermorphic. This makes a difference in Theorem 12 CCases Ca)

and Cb) become one since ACi) := Act) as groups; an isomorphism is

furnished by conjugat

Points a,S E IT
by an anti-ordermorphism between i and

lie in the same orbit of A-Cr;J) if fCa) = for

some f f ACr;J). As we saw above, this is in our language.

Hence the orbits of .ACr;J) 1n iT are interpretable 1n our language.

Now r;J is an orbit of ACr;J). We may not always be able to distinguish

it in our language from another orbit of .4CrI) in IT since it is

possible that .A-Cr;J) := ACT) as lattice-ordered groups, wi t h the

isomorphism furnished by extending an element of A-CrI) to its

unique extension in ACiT) and then restricting the domain to T.

However, we will assume that variables for of r;J are included

in our language; thus we can dist

ACr;J). This means that any resc t

rI from any other orbit of

the form: AC[I) := ACh) implies

r;J := h, really should have the weaker conclu ion that the homogeneous

chain A is ordermorphic Cor anti-crdcrmorphic) to an orbit of ,-+Cr;J)

in IT; i.e., A:= C/1- Cr;J)) Ca) for s orne a E. iT. For example, in

Theorem 5, the conclusion should be: h is ordermorphic to the rationals

or irrationals.

Throughout this paper, then, our language will be the first order

language of lattice-ordered groups, together with variables for points

of [I and for points of and a symbol fCa) for the action of

f E ACr;J) on a c iT. CSo if a E c, fCa) E Q.) However, we will use

.4CQ) as a shorthand for the structures of this language. Our most

powerful result 1S:

THEOREM A: Let r;J be homogeneous chain. Then countable sub-

seTS of

AC[I) .

1n them are interpretable 1n

From this we will be able to characterize many chains whose

defining properties involve countability; e.g., Suslin, Luzin, Specker.

We will also simpler proofs than those in [ ] to show that the

1 ...LlneS,the real long

language can express that r;J is Ci s cmor-oh Lc to) the real line R, the

and certain long rational lines.rational line
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Also, we will be able to tell (in the language) if can be embedded

in E, and whether it can bear the arithmetic structure of an additive

subgroup or a subfield of E.

If this background is inadequate, see [3], [4], [7], [8] or [9].

2. RESULTS.

The language .t is the first order language with the usual logical

symbols, variables f ,g,h, ... for members of , a,l3, y, ...

for members of and a,-S-,:Y, ... for members of IT(2 ; a constant

e for the ident element of symbols for multiplication,

inverse, least upper bound (v) and greatest lower bound (A) for

as well as the pointwise order < on (as a shorthand: f g

stands for fAg = g); the total order relation «) on IT and the

inherited order on , and the action of on

b

are

iffis a bump of

Note that if

An element e < g E -4(rl) is said to have one bump if whenever

a < 13 < y with a,y E supp(g), g(S) S. This is equivalent to

fi( F (\I' u)( V v)( u !\ V = e I> u v v = g -T U = e or v = e).

(See [3J, [7J, [8] or [9J.) We will write Bump(g) for this formula

of (in one free variable g).

Let e < f E and e < bE: AUt). b

has just one bump and flsupp(b) = b!supp(b).

distinct bumps of f, then b l A b
2

e.

LEMMA 0: Let

is a bump of

Proof:

f Co) = b(a),

b 1\ b-lf = e.

b (cd = a

a bump of f.

Q be a homogeneous and e < b,f fA-(Q). Then b

f if and if F (b 1\ b- l = e) I> Bump Cb ) .
---

Lp.t b be a bump of f and a Esupp(b). Since

b-If(a) = a. U 13 (j. supp(b), b(l3) = 13. Thus

Conversely, if b 1\ b = e and a E supp(b),

so f(a) = b(a). Hence f[supp(b) blsupp(b) and b is

LEMMA 1: Let = (3f

8r (3f > e)[Bump(f) I>

8F (3f > e)[Bump(f) I>

then Ci ) A(rl) F 8T if

(ii) A(Q) F 8 r if and

(iii) A(Q) 1= 8F if and

Proof: (i) Since

> e)[Bump(f) I> I>

and

If doubly homogeneous,

only if Q has countable coterminality,

if has countable coinitiality,

if Q countable cofinality.

(a): n f Z} is oo t e r-m.i.n aL in s upp Cf ) if

has one bump, it remains to prove that A(Q) 8T if Q is doubly

homogeneous and has countable coterminality. Let {an: n Z} be

coterminal in Q. Since Q is doubly homogeneous, there is an order-

morphism f n: [an,an+lJ =[an+ l,an+ 2J. Let f = U{fn : n £ :1':}. Then



£ump, then g E <f> if and only

g E C(C(£», then g E <r >, the other direction being obvious.

g f CCCCf) )\ <f> , let be the s Ie open interval of support

f in Q. i.e. , is the convexification (in of supp Cf ) •,

LEMMA 3: The
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e < f E and fixes no point of Moreover, supp(f) = Q so

.}}(Q) Fo 8
T.

If X let C(X) = {f EAQ): (V'g EO X)(fg = g£)}, the

centralizer of X ln A(Q). If f EO ACQ), write <f> for the sub

group generated by f: i.e., <f> = {fn: n E 'l}.

The following lemma is very similar to Lemma 16 of [6J where the

condition of having one bump is removed and ACQ) is replaced by an

existentially complete latticeordered group.

LEMMA 2: If f E A(Q) and

if gECCCCf».

Proof: Since

f has one bump, £Ca) > a for all a E s upp t f ) . He must s how that

if

If

of

for each n Z, the sets E < and

E > fn+ are closed Cin and disioint Csince

(6) = implies contradicting 6 E. Since B

is connected, there exists a E such that g(a) {fn(a): n E 2}.
 n+l 

Either g(a) fl or, for some n E '1, Ca) < g(a) < f (a). In

the first case, there exists h E A(Q) such that hg(a) t g(a) and

s upp Ch) n = 0. Then h E. C( f ) but g \£ C(h) (hg(a) t g(a) = ghCa),

a contradiction. In the second case there is h E.A-Un such that

g(a) E supp(h) S (a) ,fn+l(a». Let h* E A(Q) be the identity of

and agree with fmhf m on Cfn+m(a),fn+m+ICa» (for all m E 7).

Since a = f O Ca), h;'(cd a. Then h", E C(f) but g rt C(h;'), the

desired contradiction.

We have shown that g E <f> is expressible in our language if f

has one bump. vie can therefore assume "g E. <f>" is in ;t; if f

has one bump.

"B is a countable bounded subset of n" is

in A(Q), as is the formula "et E Bl'. Hence C between

countable bounded subsets of n interpretable in A(Q).

Proof: Let B be a countable bounded nonempty subset of Q.

Let B Band y < B. Since .A(Q) is transitive, there exists

e < g E A(Q) such that B < gCy) and g has one bump. Let B be

enumerated { : nEw} with So S. By double homogeneity, there

exists e < f E A(n) such that f has one bump and for all nEw,

fn(s) = gn(Sn) and (y) Cy).
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It follows that B = {g-nfn(S): nEw} = {k-Ih(S): e < h ( <f>

e < k <g>} n (y,g(y)). By Lemma 2, this last expression is an

interpretation of B In via the quadruple (S,y,f,g), where

S,y £ with y < S, and e < f,g have one bump with

{h(y): h E <f>} = {k(y): k E « g »l . This last condition can be

expressed in our language by (Vh E <f»(3k E <g>)(h(y) key))

(Yk E <g»(3h f: <f»(h(y) = key)). Thus we can determine in .;c which

quadruples determine the same bounded countable set, etc. Since any

quadruple satisfying the above conditions yields a countable bounded

set, the lemma is proved.

Note that the interpretation is uniform; i.e., the formulae of £
for interpretation are independent of the particular doubly homogeneous

chain Also, we could choose f,g of the proof of the lemma so

that their supports are contained in any open interval (O,T) with

° < inf(B) sup(B) < T.

We now prove Theorem A.

Let be a doubly homogeneous chi.lin i.lnd /I, be countable.

If /I, lS bounded, /I, = {b-Ia(S): e < a E <f> e < b E <z>! n (y,g(y))

for some S,y,f,g where f and g have one bump. If /I, is

unbounded in let {Sm: m E Z}, {Ym: m E Z}, {o : m E Z} andm
h: m E Z} be coterminal in /I, (and hence In with

m
Sm < 0 < Ym < T < Sm+l (m E Z) . Let /l,O,m /I, n [Y2m-I'Y2m] and

m m

r--·
hi ( ( ( / I ( I... ) ) , >9' j / 7 , , --,

l 8,""':1IW>
"",-,

ll/ ::>A
-
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By the remark following the proof of Lemma 3, there are

e < f., E A(g) (i = 0,1) having one bump with
l,ITI ,ill

SUPp(fo,m) U supp(go,m) £ (B2m-l,B2m+l)'
n

f O (02 1) = (02 (n (. Z),,m m- ,m m-
-n n

{go f O CB 2 ) : nEw},m ,m ,m m

e < aO,m E <-fO,m> &, e < bO,m E <go,m>}' and

SUPPCfl,m) U suPPCgl,m) £ CB2m,B2m+2)' gl,mC02m)
n n

f l (° 2 ) = gl Co2 ) (n E Z),,m m ,m m
-n n -1

= {gl,mfl,m CB2m+l): nEW} = (02m"2m+l) n {bl,mal,m(B2m+l):
e < a l E <.f l > &, e < b l f < gl >} (rn E Z). Let f. and g. be,ill,m ,In ,m l l

the supremum of the pairwise disjoint set of elements {f. : m E Z}
l,m

and {g. : m E Z} respectively Ci = 0,1). Thenl,m

U { -n n -n n
f O(B2): n E. w}U U { f

l(B 2m+l): nEw}. As in the
mE£' m mE£'

proof of Lemma 1 (i), there is e < h E AU» having one bump such that

h( Bm) = Bm+l, h(om) 0m+ and helm) 'm+l (rn E Z). So

{ -n n 2m } {-n n 2mgo fOh (13 0): m E. Z,n E w U flh h(B O): mE z ,» E w}. We

have coded by (gO,gl,fO,f l,h,130,00"0) In the following sense:

o E 6 if and only if there are k E <h 2 > , e < E <.c.> and

e < b. E <d.> with 0 = b-:-la.kCB.) for l = 0 or where
l l l l l

13 1 = h(BO)' 01 h(oO)' '1 = h(,O)' and c i and d i are the

bumps of f. and g. respectively with Co.) = ,. dl·kCo.'L) and
-1 l_l l l l

h . k(oi) < b i aikCB i) < kC'i)' By Lemmas 0 and 2, this is expressible

in £. Moreover, any octuple Cgo' ,fO' ,h,l3 o'oo"o) with

130 < 00 < '0 < hCBo)' e < h has one bump, and e < gO,gl,fO,f l with

gih2nCoi) h
2n+1C'i) f

ih
2nCo

i) Ci 0,1) where G l = heo O) and

'1 hC,O) gives a countable subset of Q via

-n n 2m E w} U { r w,n C Hence{go fOh (13 0): m E :l,n gl 0 . m t &

Theorem A is proved.

From now on, we will assume that includes variables for

countable subsets of as well as and between them, and

membership of elements of g In them.

Actually, the following can be proved:

THEOREM B: Let Q be doubly chain. countable

subsets IT with them are interpretable in

..4CQ) •
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0} ,

Let

For

n Abe countable.

(36 E rt)(0,6J n A

choose a = a(ol) E
with the closure of

Let

We sketch the proof of Theorem B:

Let 6 1 = rs E 6: (;) a E rt)[ a, ° )

0} and 6
3
= 6\(6

1
U (

2),
rt with [al,ol) n 61 = 0.

suPP(g6 ) = [al,olJ; so
1

e L(f,gS) or ,f».
( 1 u 1

pairwise disjoint set

Let gl E A(0,) be the

{go: ° 1 E AI}' Now
1

Al = {a = a(ol): ° 1 E 61} is a countable subset of 0,. Thus Al can

be recognized by Theorem A. Hence, using Al and gl we can

recognize 61 and that it is countable. Dually for 6 2, Now each

point of A
3

is the supremum and infimum of a countable subset of 6

(and hence of 0,). But, by double--and hence m for all m E w--

transitivity, there is at most one ./t(rt) orbit of such points of

rt\rt. Therefore, 6
3

comprises at most two countable orbits of ./t(0,).

Hence A3 can be captured in L by Theorem A. Consequently, so can

6 and Theorem B is proved.

6
2

= {o E 6'\6
1
:

each ° 1 E 61 ,

e < go E A- (r2)
1

(\If> e)(f 1\ go
1

pointwise supremum of the

We can now express that 0, is separable (i.e., has a countable

subset whose topological closure is 0,) by:

U countable 6)(l!a)(VS)(a < 6 (3,\,° 2,° 3
E. 6)(° 1 < a < ° 2 < 6 < ° 3» ,

But rt can be embedded In JR if and only if it is separable. Hence

COROLLARY 4. There is a sentence a such that, for homogeneous 0"
-----

A( rt) 1= a if and only if 0, can be embedded in JR.

We next give easy proofs of the main theorems of [7].

THEOREM 5. There lS a sentence ljJ of et such that, for any homo-

geneous chain 0" A (0,) F ljJ if and only if rt - 0).

Proof: Apply Theorem A. (The only doubly homogeneous countable

chain is 0) . )

THEOREM 6. There is a sentence p of .;: such that, for any homo-

geneous chain rt, A(0,) F p if and only if rt = JR.

Proof: It was shown In [7J that a homogeneous chain rt is

Dedekind complete if and only if A(0,) F (\If> e)(supp(f)bounded

(3h)[L(f,h- lfh) & (Vg > e),(L(f,g) & L(g,h-lfh»J). The theorem now

follows from Corollary 4.

A chain rt is said to enjoy the property if every pair-

wise disjoint collection of open intervals of 0, is countable. A

homogeneous Dedekind complete chain other than JR that satisfies the

Suslin property is called a Suslin line. If they exist at all, they

exist in profusion (see [lJ).
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f E are pairwise disjoint and

f (Lemma 0).

THEOREM 7. A doubly homogeneous has the ?uslin property if and

only if for e < f E. A-Ull, a countable 11 supp(f)

that each pump f moves one point 11. Consequently,

there are sentences °1 , of;t such (1) F 01 and

only if enj oys the Sus property, (2) A( J::. O2 and only if

is a lin line.

Proof: Since the bumps of have disjoint open intervals of

support, the condition is clearly necessary. For sufficiency, by

double , each open interval A contains the support of some

one bump e < Let f have {fA: AE f} as its set

of bumps. Hence IJ'[ and enjoys the Suslin property.

As noted in the introduction, we may assume that f E .A-(i:J) is

identified with its unique extension to A(IT). The set of fixed

points of f in Q is always a closed set; the complementary set is

a disjoint union of open intervals each being the convexification (in

IT) of the support of a bump of f. Hence each connected component of

this complementary set has countable coterminality. Conversely, if

is doubly homogeneous and K is a closed subset of IT with each

connected component of its complement having countable coterminality,

then 11 is the fixed point set (in IT) of some f E For, as

in the proof of Lemma 1, we may construct a one bump fA E. k(Q) on

each component A of the complement with supp(fA) = A. The desired

function is f E whose set of bumps is just the set of's. If

i:J is separable, every interval has countable coterminality. Hence we

have proved:

LEMMA 8 : If Q lS separable doubly homogeneous chain, the closed

subsets IT are precisely the fixed point sets functions-- ._-- ------
f E A-( Q) • Hence the closed subsets of IT are interpretable in

for such chains i:J.

A subset of a chain Q is said to be a Cantor set if is

closed, nowhere dense, and has no isolated points.

LEMMA 9: If Q is separable doubly homogeneous chain, the Cantor

sets of IT are in AU)).

Proof: If is doubly homogeneous and is the fixed point

set of e < f A(Q), then C is nowhere dense if and only if

contains no non-empty open interval, which is equivalent to

(Vg)(f A g = e + g = e) since every open interval contains the support
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of some e < h E C has no isolated points when the

following formula of holds in

(Vbl,b2 bumps of f)(LCb l,b2
) + C3b

3
bump of f)CL(b

l,b 3
) G LCb 3,b 2» .

Lemma 9 now follows from Lemma 8.

the interpretation is uniform Cfor such in X.
A chain is said to have the Luzin property if every Cantor

set of meets in a countable set.

By Theorem A and Lemma 9 we have:

THEOREM 10: There is a sentence

separable doubly homogeneous

has the property.

8 of .;( such

then r- 8

if lS

and only if

is

of h). Multi-

so A Ch) is not

arbitrary qxo
f E. A-Ch) such that

is primitive and

is obviously

Since Cy <;;. My'

is uncountable--itAMoreover,h n C
Y

contains : jJ < WI}' Since h is a rational vector space, it is

homogeneous CACh) contains translations by members

plication by 2 is also an automorphism of CA,':::'),

abelian. Because of the small translations Csay by

Cq Em», for every interval I of A, there is

o 1 I n fCI) 1 I. This is enough to ensure that h

hence doubly homogeneous Csee the introduction). A

separable as required.

A doubly homogeneous chain Q is short if it has countable

coterminality and for each a there exist countable bounded

r ,11 Q such that sup r = a inf ts . By Lemma 1 Ci) and Lemma 3,

shortness is definable in and we will assume that it is explicitly

in An uncountable short chain Q that contains no uncountable

m clearly is separable, doubly homogeneous and has the Luzin

property. We now show that there are uncountable chains enjoyinf

these properties, by modifying the standard Luzin construction.

We assume the Coniinuum Hypothesis. Enumerate the Cantor subsets

of a, : IJ < wI}' For each IJ < wI' let MIJ U { : A .:::. IJ}·

Then each lS meager; that is, M is a countable union of nowhere
IJ

dense sets. Let «3)) denote the rational subspace generated by

3 JR. Now choose, inductively, xIJ E JR CIJ < so that Xo mMO'

the rational multiples of members of MO' and for each IJ < WI'

x C/ mM + «{x,: A < u l > This is possible since each N
IJ IJ A u

meager. We now claim that h «{x
IJ:

IJ < WI}» has the Luzin

property. Note that for each y < WI' if 0 1 x f h n My' then

x = qlx
Yl

+ ... + qnxYn for 0 1 qi E m and Yl < < Yn < WI' This

implies that x c mM + «t A < Yn }» and hence Yn < v . There-
Y
n

Y

fore My n h £;. «{xA: A < Y};», a countable set.

is countable, as
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separable subset is said to enjoy the "Separable"

here means in the interval topology of the subset (not

necessarily the interval topolof,y of Thus has the Specker

property if and only if it is uncountable, short and doubly homo

geneous, and for all countable subsets r of there exists a

countable subset A of such for al.l a E there is

6 E A with no member of between a and 6. Thus

THEOREM 11: There is a

geneous, .A( n) 1= X if
X

smly if

if is homo

The long (to

the smallest

I where Ix WI'
define and IfJR

the ) real line t is constructed by removing

from the antilexicographically ordered chain

is the half open real interval [0,1). We can

similarly.

THEOREM 12:

(i = 1,2,3)

be homogeneous set.

that

There are sentences cp.
l

if
->

only n JR.

ifonly n JR.

if
+-->

only JR.

(a) .A( n) F CPl if

(b) A-Un i= CP2 if

(c) A- 1= CP3 if

Proof: (a) t is

it lS Dedekind complete

completely characterized by the statement that

and not separable, yet every subset

{a: a < S} is separable. All of these clauses, together with double

homogeneity, are describable in X. CPI is their unction.

(b) and (c) are similar.

The long (to the right) rational lines n are constructed as

follows. Let 1 0 be the set of all rational numbers in the real open

interval (0, ) . Choose M s;. WI with 0 1 M. Let

n = {(q,v): q E. IO'v E } U { ( 0 ,)J) : )J E M} £;;, i, with the induced

order. All the constructions In which M contains a closed unbounded

subset of (or club for short) with

clubgive rise to ordermorphic chains. Likewise, all constructions

in which the complement of M contains a club (the rationals with

club). The two cases are not ordermorphic and are distinct

from all other cases (in which neither M nor its complement contains

a club).

that if isTHEOREM 13: There are sentences of

homogeneous,

(a) A(n) F if and only if n is ordermorphic to the

line internal

(b) A(Q) F if is ordermorphic to the

rational line
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(c) AUt) 1= t: 3 if and only if

rational line with neither

to long

club.

Proof: Consider a long rational line with internal club. We

may assume that M = wl \ {O}. Then is uncountable but every subset

{a E a < S} is countable. Moreover, r M} is a

closed unbounded above subset of that is well-ordered; and if

Y r
let

and y = sUPr{o E f: 0 < y}, then y

e < f C. have one bump on each interval

oEr:o<y}. Now

{a: (0,11) < a < (0,11 + l)} (11 E wI)' Then the set of bumps of f is

well-ordered and (Vh)(f A h = e -7- h = e). Furthermore, for each bump

b of f (except the left-most), there exist a,S E such that

b(6) ¥ 6 if and only if a < 6 < B. All of these facts are

expressible in

Conversely, suppose that is a doubly homogeneous uncountable

chain with {a E a < B} countable for each S Assume there

exists e < f such that (Vh)(f A h e -7- h e), the set of

bumps of f is well-ordered, and for each bump b of f (except the

left-most), there exist a,S E such that b(6) ¥ 6 if and only if

a < 0 < B. Let r be the set of left s of supports of bumps

of f (other than the left-most). Then r is a well-ordered

uncountable subset of and hence r Also if y E rand

y = sUPf{o E r . 0 < v l , then y = E r: 0 < y}. For a bump b

of f, we may call the end points of the support of b, 11 and

+ 1 (11 E wI)' Then is the disjoint union of the intervals

+ 1) together with (-00,0), each of which is countable and so

ordermorphic to the rational interval [0,1) or (0,1). Hence is

ordermorphic to [0,1) wI with least (0,0) removed.

(b) is proved similarly, except that we need an f such that all

bumps of f have supporting intervals with no endpoints in 0.

(c) now follows from (a) and (b).

We may also obtain long rational lines inside K and

Analogous results then hold in these cases.

The characterization of Rand m in [7] was achieved with

heavy reliance on the arithmetic structure. We have avoided that here

by using Theorem A. Still, it is of interest to know whether, for a

given chain 0, it is possible to define an arithmetic on so that

o becomes an ordered group or an ordered field. We call a chain

Archimedean groupable if it is possible to define an operation + on

o so that becomes an Archimedean ordered group. Such groups

are abelian and are isomorphic to subgroups of R (see [2, p. 45J).

If, in addition, it is possible to define an x on 0 so
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that (Q,+,x) becomes an Archimedean ordered field, we say that Q

is Archimedean The "field" part of the next theorem is

due to Greg Cherlin.

THEOREM 14: are sentences T,T'

homogeneous chain, A (Q) 1= T (A( Q) 1=

such that if Q is a-----
I) if and only if Q is

Archimedean (Archimedean

e < f E C,

Proof: Let Q be Archimedean groupable; so Q is a subgroup

of JR without loss of generality. If fiCQ) is abelian, the result

follows from [5J, and if Q is countable the result follows from

Theorem 4 (or [5] if Q lS discrete). Since Q is primitive, we are

reduced to the doubly homogeneous uncountable case. We may assume

E Q for some irrational > O. Let E ACQ) be trans-

lations by 1 and z , respectively; i. e., t l: a t+ a + 1,

a t+ a As in [7, proof of Theorem], the centralizer

C = in A(Q) consists exact of the translations

f: a t+ a + S CS Q). In particular, C lS transitive on Q, is

an abelian totally ordered subgroup of ACQ), and no element of C

except e fixes any point of Q C= JR). Now let A be any uncount-

able doubly homogeneous chain such that there exist e < r,s E fiCA)

with CCr,s), the centralizer of rand s in fiCA), transitive

on A, abelian and totally ordered, and no element of CCr,s) other

than e fixes any point of X. Choose any a E A. For each SEA,

there is a unique f
S
E err,s) such that fSCa) S. The

correspondence S ++ f
S

provides an ordermorphism between A and

C(r,s), so it is enough to show that CCr,s) is Archimedean group-

able. But C(r,s) is an Archimedean ordered group, for if e < f < g

with f,g E CCr,s), then for any SEA, {fnCB): nEw} can have no

upper bound (otherwise f would fix the least upper bound in X). SO

for some nEw, CB) > gCB). Since CCr,s) is totally ordered,

fn > g.

Now assume that Q lS an Archimedean ordered field. Then Q lS

doubly homogeneous and we may assume that it is a subfield of JR. If

Q is countable, the result follows from Theorem 4, so assume Q is

uncountable. For any 0 < B E Q, the function hS: a as belongs

to A(Q). Indeed, h
B

E the normalizer of

since if g E C Csay g: a t+ a + y), then
-1ChBgh
B
Ha) = (a/S + y)B = a + yB. So for any h N = NCC), the map
-1g t+ hgh is an order-preservinv, automorphism of the Archimedean

ordered group C, and so must correspond to multiplication by a

positive real number by Hion's Lemma [2, p. 46]. In particular, if
. f h- l Ci.fthere lS hEN such that = ht l
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f: a a + y, f = h t ); and if h l,h 2 E Nand
1 -1 Y 1

hltlhi = h 2t lh2, then h 2gh21 for all g C. Now

suppose that in h(A), for every e < f f: C(r,s) there exists

h N', the normalizer of C(r,s), such that hrh- l f, and that
.i f h h r N' " -1 -1l' 2 wlth = h 2rh2, then hlghl for all

g E C(r,s)" We can define a product on C(r,s) as follows: Let

f,g E C(r,s) with e < f. There exists hEN' such that hrh- l f.

Define g f hgh- l This is well-defined and the extension of

to all products

straightforward

ordered field.

the proof.

(when f < e) is done in the obvious way. It is

to check that this makes C(r,s) an Archimedean

Since A is ordermorphic to C(r,s), this completes

So far we have been able to capture every property we want.

However, since there are only complete theories, there exist

non-ordermorphic doubly homogeneous chains and A with =fiCA);
indeed, such and A exist with t IAi. As yet, we have been

unable to explicitly obtain such and A. The problem is that the

Ehrenfeucht game to be played between A(Q) and fiCA) (to prove

=A(A)) lS rather complicated. This is a big gap in our work

to date.
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THREE EASY CONSTRUCTIONS OF

RECURSIVELY ENmmRABLE SETS

Carl G. Jockusch, Jr. l

University of Illinois
Urbana, Illinois 61801

The study of recursively enumerable (r.e.) degrees is regarded

(with some justification) as one of the most difficult areas of mathe

matical logic. On the other hand, our purpose here is to present three

results in this area which are quite easy. The first is due to

Lawrence Delch [11] and asserts the existence of low r.e. degrees

such that every r.e. degree is of the form with < a

and b. This, as Delch has observed, gives an easy proof of the

existence of a low r.e. degree which can be nontrivially cupped up to

every r.e. degree above itself. The second is a simple direct proof

of the result of A. n. Lachlan p.559] and C. E. 11. Yates [13] that

the r.e. degrees do not forn a lattice. The final result is that not

every r.e. nonrecursive truthtable degree contains a simple set

Our notation is quite standard.

such as e, x for natural numbers, A, B

In particular we use symbols

for sets of natural numbers,

a, b for degrees, and ¢, for operators (i.e. functions from subsets

l'Ie write ¢ (A;x) for ¢ (A) (x) . If ¢ is a partial

recursive operator (i.e. Turing reduction procedure) and ¢(A;x) is

defined, then use(¢(A;x)) denotes the snallest number exceeding all

nuraber s whose membership or nonmenbership in A is used to compute

¢(A;x). Let <.,.> be a recursive pairing function. De identify sets

and their characteristic functions so that A(x) = 1 iff x E A. A

degree a is called low if = 9!' where a! denotes the jump of

'l'he following result shows that the recursively enumerable

degrees are generated under the l.u.b. operation u by the union of

two proper principal ideals.

Theorem 1. (L. vJelch [11]). There are low r.e. degrees a, b

such that every r.e. degree c is of the form for some

< a,

lThis research was supported by a grant fran the iJational Science Founda
tion.
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is

Let

A, Bsets

(Heree.

oint r.e.
n B[eJ

{n: <e,n> E C}.

theorem ([9, §5] or

for all

Proof. For any set C, let C[e]

{<e,n> : n E We}' so that = We
the r.e. set.) Apply Sacks' splitting

Theorem 1.2 and 4.5J) to obtain

KO
the

[10,

of low degree with A u B hO (and hence A and

A[e] u B[e] = W for all e). Let a, b be the degrees of A, B
e

respectively, and let c be any given r.e. degree. Choose e so that

has degree g, and let be the degrees of A[e], B[e]

respectively. Then = c since A[e] @ B[eJ =T A[e] u B[e: We.

It is not known whether there are r.e. degrees a, b < O-

such that every nonzero r.e. degree c is of the form with

< a, and incomparable.
L. Harrington [3] proved that there is a nonzero r.e. degree

a such that every nonzero r.e. degree c < a can be non-trivially

cupped up to each r.e. degree d > a. The following Corollary gives

a very simple proof of the case c a of this result. A proof of the,
special case d = 0- of Harrington's unpublished result may be found

in the paper of Fejer and Soare in this volume.

degree e < c with a u e - c.

degree a

Corollary 1. (L. Harrington).

such that for every r.e. degree

The:o::e is

c > a- .". -
a r.e.

there exists an r.e.

Proof. (L. Welch). Let a be as in Theorem 1. Given an

r.e. degree c > a, choose < b with = c. Then

clearly also c since a < c. Suppose for a contradiction

that = c. Then b > = : yet the theorem (applied with

c = 0-) implies that a u b = This contradiction shows that

and thus that the Corollary holds with e =

Lachlan [4] proved that the r.e. degrees are not a lattice by

combining his "non-diamond" t.heo r em [4, Theorem 5] with Sacks' splitting

theorem and a lemma on the absoluteness of the partial inf operation

on r.e. degrees. Yates [13] also outlined a proof that the r.e.

degrees are not a lattice. Yates' argument involved relativizing the

r.e. minimal pair construction to a certain uniformly ascending sequence

of r.e. degrees. The proof below will employ some of the basic ideas

of the non-diamond and minimal pair constructions, but will be easier

and more direct than either.

Theorem 2. (Lachlan, Yates). The r.e. degrees do not form

a lattice.
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Proof. De must construct r.e. sets A, B whose degrees have

no infimum in the r.e. degrees. Let

enillJeration of all triples
{

wi t h H an r .

be an effective
w

. set and

Turing reduction procedures. For each e we shall define an r.e. set

Ve which satisfies for all i the following requirement:

We will arrange in addition under the hypotheses of

that is recursive in each of A, B.
, i

and the satisfaction of

is not the infimum of

is the basic Friedberg

awaiting a computation

,V
e

into V
e,

and "restraining" We so as to

Of course we actually have no control over

B.

imply that the degree ofi

andA
H

The method for insuring V 1 {i} e
e

technique of choosing a witness x,

for allR ,
e,J.
those of

!'1uchnik

{i} e(x) = 0, putting x

preserve the computation.

x

in

into

A, B

to be

x

controls the computa

at which sufficientt

A

we can either prevent the relevantBor

or else satisfy R . vacuously by insure,J.
1 He respectively. To arrange that

x be enumerated in both A and B if

A

This creates the obstacle that putting

and B) ruins the computations by which

HS

{i} e(x) = 0

He
(B)

e
that

Then at stage t, x is enumerated in Ve and

A are used to insure (modulo requirements of

and thus allows the computation

then wait for a later stage
t t t
e (A) and i'Je occurs so that

and restraints on

(and thus into

B,

agreement of

i'1
t

tion {i} e(x) = o.

We' but by restraining

numbers from entering

ing (A) 1 i']e or

Ve A,B we require

is e nume r at.ed in

each control i1e
destroyed (while the agreement = = is preserved).

This obstacle is avoided by first enumerating x in A (but not

B or Vel at some stage s when B controls the computation

HS

{i} e(x) = o.

v-J
higher priority) that {i} e(x) = 0 if (A) = W. Thus the alter

e e W

nating control of A and B over the computation {i} e(x) = 0 is

reminiscent of the minimal pair construction, and the "delayed permit

A is one ingredient of theting" method for arranging that Ve
proof of the nondiamond theorem.

The construction and proof are straightforward. Although we

supply some of the details of these here, we that the reader

work these out for himself.
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Suppose the various requirements are assigned a priority

ranking in standard fashion. We say that a requirement R . ise,l
satisfied at stage s if there is a stage s· < s such that Re,i

receives attention at s' and such that no requirement of higher

priority than R . receives attention at any stage s·, s' < s· < s.
e,l

Pe write AS for the finite subset of A enumerated before stage s

and use analogous notation for other sets and for operators. For any

set X, let x(e) = {<e,n> : <e,n> EX}.

A number x

stage s if

is called an eligible witness for R .e,l at

(i) X E N«e,i»

(ii) x is not restrained from A or B at s by any

At

but hassat

R . so as to pre
e,l
(iv), and say that

for all

u < use

is not satisfied

R .
e,l

R .
e,l

x be the least such witness.

for each

A, restrain B for

s(Es;u) mentioned in

let

in

s,

x

higher priority than

WS

{i} e(x) 0,
s

IjIs (B s ; u) = vJ s (u)
e e

s E N«e,i» andIf

= Wt(u) =
e' e

t enumerate x

(iv)

(iii)

may receive attention again through

If t E N«e,i» and R . is
e,l

satisfied at t via attention at stage s < t and a witness x i
I'J
s

WS(u) for all u < use({i} e(x)), then
e

in V and in B and restrain A for R .e e,l
so as to preserve the computations (At;u)

vJ
s

u < use ({ .i } e (x ) ) .

requirement of

and

serve all the computations

R . receives attention.
e,l

at stage

(The requirement R . then receives no furthere,l
attention unless some requirement of higher priority receives attention

after s, in which case R . starts over with a new witness.)
e,l

Each requirement receives attention at most twice after re

an eligible witness at

stage s, enumerate

such that

The requirement R .
e,l

the same witness x as follows.

quirements of higher priority stop receiving attention. Thus each

requirement receives attention only finitely often. Hence each require
. . . «e .i > «e i»ment restralns only flnltely many numbers and A ' , V' are

finite for each e,i. Suppose now for a contradiction that R . is
- 1'7 e, l

not satisfied, so that (A) = IjI (E) = Wand V {i} e Then
e e. e e

each sufficiently large x in N«e,l» is an eligible witness for

R . at all sufficiently large stages. Let So be the last stage ate,l
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We at some stage

insure that

(A) = = We'

To show how to compute V
If x i U A«e/i»e

i /
X is enumerated

imposed a-t s

is satisfied.

is enumerated in

Band then the restraints ont I > e ,

1- We' the requirement R .
e/l.

It remains to check that Ve 2.T A/B if
Clearly < B since V U.B«e/i»

-T e l.

recursively from A, let a number x be given.

then x i V Suppose now that x E A«e/i» and
e

in A at sx' Let t x be the first stage t > sx such that either

some requirement of higher priority than R . receives attention at
t 1 e,l

t or x V +. Such a stage t exists because (A) We' By
e tx+.L

construction x E V
e

iff x E V
e

. Since t x is found recursively

in A, it follows that Ve A. (The argument in effect shows the

existence of an r.e. set Ce such that UiA«e/i» is the disjoint

union of Ve and Ceo We may not claim that Ce is finite, though,

because as i varies there may be infinitely many requirements R .

which cause some x E N«e/i» to enter A but do not later

which some requirement of higher priority receives attention. Then

R . receives attention at some stage s > So through some witness
e/l.

x/ where we take s as small as possible. If there is a stage t > s

such that Re / i receives attention at t/ thewrestraints on A

imposed at t insure that <l> e (A) 1- vIe or {L} e (x) 1- Ve (x). Other-
\V.S

wise some number u < use({i} e(x»)

to enter Ve because of interference from some requirement of higher

priority. )

The following question was included in the lecture on which

this paper was based: is every r.e. degree except 0 and part of

a pair of r.e. degrees which has no infimum in the r.e. degrees? The

question has recently been answered in the affirmative by K. Ambos and

L. Harrington independently (private communication). They in fact

showed the existence of an r.e. degree a 1- 0/ such that a n b

fails to exist for every r.e. degree b incomparable with a. Further-

more they proved that for each r.e. degree except 0 and / there

exists such a degree a which is incomparable with c.

We now consider the question raised by P. G. Odifreddi of

whether every r.e. nonrecursive truth-table (tt) degree contains a

simple set. Several known results go in the direction of a positive

answer. For instance J. C. E. Dekker ([1]/ [3/ p. 140]) showed that

for every r.e. nonrecursive set A there is a hypersimple set W such

that W A and A W. Also a direct combination of E. L. Post's

construction of a tt-complete simple set ([7] / [8/ p. 112]) and

C. E. fl. Yates' construction [12] of a simple, non hypersimple set of

given nonzero r.e. Turing degree shows that for every r.e. nonrecursive
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set A there is a simple set W such that W A and A W.

Finally J. Myhill and S. Tennenbaum [2, p.365] showed in effect that

every nonrecursive tt-degree contains an ihUTIune set (although the

result is stated only for T-degrees). Nonetheless we now obtain a

negative answer to the question raised above. A proof of this theorem

is also sketched in Odifreddi's expository paper [6].

Theorem 3. There is an r.e. nonrecursive set A whose tt-

degree contains no simple set.

ethe corresponding property. For each

Ve which satisfies the requirement

Proof. Let }eEw be a recursive enumeration of

all triples with tt-reduction procedures and Wand

reset We use notation such as AS A(e) as in Theorem 2... . , e'
Since is a tt-reduction procedure, if is defined for

any set X, then is defined with the same use function for
e sall sets Y. The have
e

we will define an r.e. set

Ve infinite & Ve n We finite.

Clearly it suffices to make A r.e. and to satisfy all these

requirements Re. (In particular A is nonrecursive because otherwise

we could choose We to be cofinite.) Assign priorities to the Re'S

as usual. Each Re will receive attention only finitely often and

will cause only e Lemen t s of H(.:o:.e) to enter A. (Here, for any set

X, we write X(.:o:.e) for Ui>ex(i) and define x(>e), x«e),

analogously.) Thus will be finite for each e. In giving

attention to R at stage s we assume that = (As+l)
e

since this will be true if s is sufficiently large. c'le also pretend

that A N(>e) since any element of N(>e) can be put into A for

R
e

if necessary. This pretense pre-enpts any requirements of lower

priority than R
e

from injuring R
e

by enumerating elements of N(>e)

in A, so it is not necessary for Re to restrain any numbers from

entering A. In line with this pretense, let AS AS U N(>e).
e

In attempting to satisfy Re we pursue two strategies in

parallel. The first strategy is aimed at insuring ¢e(A) We and

the second at insuring me) A. The first strategy is very simple.

Let VS = {u a}. If u E VS 01 WS, enumerate in As+ I
e e e e e

all nuniliers Z E H(>e) with z < use(¢:(A:;U)). Give no further atten-

tion to Re (under either strategy) unless some higher priority require-

ment subsequently receives attention. If the latter does not occur,
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then A and coincide below use( (As;u)
e

o t- W:(u) = He(U).

We suppose now that R
e

never receives attention under the

first strategy (after the last stage at which any requirement of

higher priority receives attention) and consider the second strategy.

Re will receive attention at most twice after So under this strategy

so there is a stage sl such tha t ) (.s-e) = A (,,-e) For s sl'

V
S

n W
S = ¢ and VS

c v S+l since AS+l. It follows thate e e e e
Ve n \'Je is finite, where Ve usV:. 'rhus Re is satisfied by this

Ve unless Ve is finite. If Ve is finite and = We' the

second strategy will insure that A t- in Friedberg-r1uchnik

fashion, using A to "control" lIe via <P
e ,

as in 7heorem 2. Again

there is an obstacle, namely that the enumeration of a witness x for

A t- in A can cause A to lose its control of He' The

obstacle may be overcome by using a witness x E lJ(e) such that

x > use(<Pe(A;U)) for all u in the finite set Ve' (Any u r!: Ve
with u < use( (We1x)) will be "forced" to be enumerated in so

that it will not be necessary to keep x from entering A to control

We(u).) To carry this out, let pS = {u : = l}. We say thate e e'
x is an eligible witness for R

e
at stage s if

(i) x N(e) _ AS

and

(ii) is defined, say with use
s

u
e,·x

defined with use less than

(iii) for each u <
s

ue,x'
x.

either U E or is

we

do nothing further for Re
pS and wt agree on all
e e

At the first such stage t

We then

an eligible witness for Re ,

N(>e) which are less than

isxifs,At stage

enumerate in A all elements of
s s s

for any u < ue,x
until we come to a stage t > s such that

arguments below uS and O.
e,x e e'

(assuming no higher priority requirement intervenes) enumerate x in

A. Give no further attention to R
e

unless a higher priority

ment requires attention. It is clear, as previously claimed, that each

reouireffient receives attention only finitely often and therefore that

is finite for each e.

Suppose now for a contradiction that is not satisfied, so

thenu t

are total and

If

is an eligible

Therefore Re will

<P e ,
in H(e)

Re
is finite.

becauses

A, and

sufficiently large

Thus each sufficiently large x

Re at all sufficiently large stages.witness for

that (A) =
u E pS e f o r all

e
0-1 valued.
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(say under the second strategy)

after all higher priority requirements have stopped receiving attention.

We will then come to a stage t > s as described since ¢e(A) = We.

To conclude that (W ) A at x, it suffices to show that Nand
s se e e

P agree below u Let u < be given. If u E pS then
e e/x,x e'

u E wt so u E W. If u i then use (¢s(As;u)) < x by (iii)e e e' e e

and so A and AS agree below use(¢s(As;u)). It follows that
e e e

¢ (A;u) ¢s(As;u) = 0 (since u i pS and ¢s(As;u) is defined).
e e e e e e
Since ¢e(A) = We we conclude that u i We as required. Further

details of the construction and proof are completely straightforward

and are omitted.

For the reader familiar with weak truth-table reducibility,

denoted 2
W

' (see [5]) we remark that in the preceding proof we may

assume that the are merely w reduction procedures. (In clause

(ii) of the definition of "eligible witness· we no longer require that

be defined but only that a bound uS for its use shall
e e' e,x

have been computed by stage s.) Thus there is an r.e. nonrecursive

set A such that no simple set I'I satisfies VJ 2-tt A and A W.

On the other hand, the constructions of Post and Yates mentioned before

the statement of the theorem show that for every r.e. nonrecursive set

A there is a simple set W such that 11 2-
1
" A and A 2-tt \'7.
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ON EXISTENCE OF I: END EXTENSIONS
n

Matt Kaufmann
1

Purdue University
West Lafayette, IN 47907

Recall the Keisler-Morley Theorem from [2], which implies that

every countable model of ZF has an elementary end extension. !n

Theorem 1 a refinement of that result is presented. For countable

structures possessing an end extension which'is elementary for I:
n

formulas is equivalent to Ln-collection holding in (all n 2).

A similar result has been obtained independently by Paris/Kirby [5] for

models of arithmetic. Theorem 1 also relates the above criteria to

the existence of a certain filter on the uefinable sets. This idea

goes back to Skolem [7], and related work appears in Keisler/Silver

[3].

Theorem 2 uses the idea of a normal filter to give a criterion

end extension (This construc

theory of measurable cardinals.) A

a remark which ties these ultrapowers

compactness, which has been studied in

for the existence of "blunt" L
n

tion is well known from e.g. the

related construction follows in

together with 1:
1

well-founded

Cut land/Kaufmann [0].

We also present some observations on "largeness" s of

those a for which La has a 1: 2 end extension. The concluding

considers the exceptional case of 1:
1

end extensions.

Most of the work for this paper was done while a graduate student

at the University of Wisconsin (Madison). I would especially like to

thank my advisor, Professor Jon Barwise, for his encouragement. Some

of these results have since been extended by E. Kranakis [4].

We review some standard definitions. Ne consider structures

is a proper end extension of 'U

sentences with parameters in

for the language {El.

by a

L end
n
and 91

is a

is said to be

formula which may contain parameters

Aon

(A,E) and = (B,F)

__ of if

and satisfy the same L
n

A function or relation

if it is defined in

in A. (ltJe adopt a similar convention for lin and lin')

is resolvable if V x 3a ("a is an ordinal" 1\ "x E f(a)"),

where f is some

has Ii
n

lil-definable function over we say f resolves

Skolem functions if the following criterion is met,

1
Partially supported by NSF grant 043-50-13955.
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for every Xc Ak +l (k E w). Suppose that X is with

parameters over such that for all ! E Ak there exists b E A

such that E X. Then for some function f: Ak which is

L
n
-definable over s . f E X for all ;;; E Ak. A well-known

result of Jensen and Karp (sec e s q , Devlin [1], p.39, Lerrma 24) says that

fa: a w, La has Skolcm functions, all n 1. (Simply let

f(a) be the lCQst b, in the canonic<1l wGll-ordcring of L, such

t.hat; (;';:,b) EX, if a is Ln-admissible.)

Let i/, be a filter on the IT -definable subsets of that is,
n

a collection closed under finite intersections. (Recall our convention

that par amo t.o r s are allowed in the dc f i.n i.t.Lon s , ) '71, is an '2I-complete

ultrQfilter on the subsets of '21 iff the following four conditions

are met.

(a) For all X which are 6 over '21 , X E 'IL or
n

A\X E V,.

(b) For <111 a E A, {a} 1:. V,.

(c) For all X c Y c A, X E '!L
implies y E 'IL,

(d) For every X c A2
which is over '21, and for

n
all a E A, set X { b: (a,b) E xl. Then for

a
all d E A, if X E 71, for all a E d then

a
n X E 71,.

aEd a

If in addition the following condition is met, we say that 'IL is closed

under diagonal intersections:

(e) Choose X'X
a

as in (d), and suppose X E i/, for all a E A.

Then {b E A: ("I a E b) (b EX)} E '!L.
a

L -collection is the axiom schema
n

... ...
abbreviated "Ix E 11 3Y¢ --;> 3W "Ix E u 3Y E w ,for all E

n¢
(with

parameters); similarly for IT -collection.
n We use implicitly the well-

known observation that for each n 1, En-collection is equivalent to

JIn_l-collection.

Theorem 1. Suppose = (A,E) is a structure for {E}, such that all

axioms of KP (admissible set theory) hold in excepting possibly

Foundation and Consider the following properties,

(i) has a L end extension.
n
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(Li ) satisfies every instance of Ln-collection.

(iii) There is an ultrafilter on the 6 n _l subsets

Then for every n 2:

If is resolvable, (i) implies (ii).

If is countable, (ii) implies (i).

If has 6 n - l Skolem functions, (iii) implies (i).

Without additional hypotheses, (i) implies (iii).

(And if is resolvable, we could require that the set of ordinals of

belongs to the filters.)

In particular, if = (La,E) and a w is countable, then

(i), (ii), and (iii) are equivalent.

To start with (i) (ii) we prove three lemmas.

Lemma 1. For every TIm formula ¢ there is a

tha t: TIm_l -collection 1- 3x E u o •• \jJ,

formula \jJ such

equivalent if

-, 'Ix E u 3y -,8

TI
m_2-collection

!1m' 0

Proof. By induction on m. For m = 0 we take !1m_I-collection

to be empty and let 0/ equal 3x E u¢. Now suppose the result holds

for all m' < m. Then assuming !1m_I-collection, the following are
+ +

¢ is Vy8 and 8 is Lm- l: 3x E u¢ 3x E u Vy 8

-, 3wVx E u3Y E w-,8 •• 3wVx E u n (for some !1m-I n, by

and the inductive hypothesis) - Vw 3x E u -,n, which is

Lemma 2, If 18 and

18 i= "b is an ordinal".

is resolvable, then for some bE 118I\A,

Proof. Let f be a Ll function witnessing the resolvability of

, and let ¢(x,y) be a ; definition of "x E f(y)". By defini

tion of 18, there exists c E 118 [\A. Now the following !l 2
sentence holds in 21 and therefore holds in 18: "Ix 3y[¢(x,y) /\ "y

is an ordinal" 1. So for some b E II8-j, 'B F ¢ (c ,b) /\ "b is an

ordinal". It remains to show b A. Suppose otherwise, and let

a = f(b). Now the following !II sentence holds in and hence in 18:

Vx(¢(x,b) + x E a), Therefore 18 F c E a, so since 18 is an end

extension of , c E A. This contradicts the choice of c. 0

Lemma 3. If -<2 18 and is resolvable, then for some c E 118 I,
18 F a E c for all a E A.

Proof. Choose b as in Lemma 2, and let f resolve

Let ¢(x,y) be a ; definition of "x E f(y)" , and let

L
l definition of "u = f (z ) /\ 'z is an ordinal' . " Then

TI2 sentence holds in and therefore holds in 53: "Ix 3y

as before.

\jJ( z ,u) be a

the following

("x is an
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ordinal" + So we may choose

a E Ai we must show that F a E c.

c so that 58 F Fix

Choose SEA such that

F <p (a, S) . Now the following sentence holds in and hence in 18:
VxVyVzVu [<p (x,y) 1\ Y E z 1\ (z,u) + x E u }, Plugging in x = a, y = S,

z = b, and u = c, we obtain f= a E C.o

lIn_lover

is resolv-

Proof of (i) (ii): by induction on n 2. Let <p be

and suppose F "Ix E a 3Y <P(x,y) and < 18, wheren
able. By Lemma 3, pick c E IIBI such that 18 F a E c for all

+
a E A. Since <n 18 , for all xOEa there exists Yo from A

t.ha t; 18 f" <P(xo,YO) i so since is an end extension of

such

(*)

3Y E z<P(x,y) <>

(or verify directly

the following

Since e is II
n

prenex form), IB F
Thus the following

3z "Ix E a

F 3z "Ix E a 3Y

Let be IIn- l such that (II
n_ 2-collection)

by Lemma 1. By the inductive hypothesis

if n = 2), F II 2-collection. So by choice ofn-
sentence e holds in

e := VZ[::fY E Z <P(x,y) +

(or more precisely, provably equivalent to its lIn

e. By (*) and choice of W, IB F "Ix E a

In sentence holds in and hence in

By choice of and because F II 2-collection,n-
e z <p.

To prove (ii) (i), we assume is countable and

collection, where n 2. For convenience, set p = n -

i=
2. This is

the direction which is similar to the Keisler/Morley Theorem in [2),

referred to before. Hence, we need an appropriate lemma for omitting

types, which is an easy modification of the standard Omitting Types

Theorem.

Lemma 4. Let T be a consistent theory consisting of IT p+2 sentences

in a countable language L. Also let {Ii: i E I) be a countable

family of I
p

+
l

L-formulas with only x free. Suppose that

for every I p+l L-formula <P(x) and i E I, if <p is consistent with

T then so is 3x(<P(x)l\,o(x», for some 0 E Ii' Then T has a model

be a countable set of new constantProof. = {c : mEw}m
symbols. Enumerate the I sentences of L U C as {<p: m E W}i thep m
I p+l sentences of L U C as mEw}, and I x w as {(im,jm):

mEw}, Set TO = and do the following at stages m 1 to get

Tm Tm- l ' where each Tm is a finite set of I p+l sentences of L U

The reader can check that each stage of the construction preserves

omitting each
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consistency with T.

1) If ¢m-l is consistent. with T U Tm_l , set

otherwise set = Tm_l U {'¢m-l}.

2) If

occuring in
¢m-l is 3xl/! (x)
Tl and set T 2

m m

and ¢m-l E T;, choose c E C not

Tl U {l/!(c) Otherwise, set T 2
= Tl.

m m m

Let3) i = i m_l and j jm-l. We now ensure that c. doesn't
2 1realize E.• Choose 8(x,y) EEl such that FAT # 8(c.,c). Since

2 1 p+ m J
T is consistent with T, we may use the hypothesis of the lemma tom
choose a E L such that 3X(3y8(x,y) A,a(x)) is consistent with T. Set

3 2 1
T T U {,a(c.)}.

m m J
4 3

4) If T l/!m_l and l/!m-l = 3y8 (y), 8 E Lm_2, set T = T U {8 (c)} for
m m 4 3

any c E C<w disjoint from the constants in Ti. Otherwise, Tm = Tm.

This, together

As usual, we can form a Henkin model 18Let T = U T .
W m m

forallE ¢ ofLUC,¢ET iff18p¢,byl) and 2).p W
with 4), shows that 18p T. By 3), 18 omits each 0

such that

To apply Lemma 4, let {¢ : W
¢ is IT andwe T = a E , n'

'n p ¢} U {"c is an ordinal"} U { 6 E c: p "6 is an ordinal"} . vie

want a model of T which omits, for each a E A, = {x E a A x t- b:

bEa} .

Lemma 5. If ¢ (x) is En over then ¢ (c) is consistent with T

iff F (3 arbitrarily large ordinals 6) ¢ (6) .

o

Proof. (<=) is clear by compactness. For (=0), suppose IRp T and

For each "ordinal" 6 of \8 F 3 0 (6 E 0 A "0 is an ordinal"

so this sentence is true in since \8 p T and ¢ is En

\8p ¢(c).

A ¢ (0)) ,

over

Proof of ( i i ) =0 (i): Form T as above and assume f
It suffices to show that T and {Z: a E A} satisfy

a
omitting" hypothesis of Lemma 4. Suppose ¢(x,c) is

each bEa, T Yx(cp(x,c) (x E a A x t- b)); we show

By Lemma 5 (or, its contrapositive),

L -collection.
n

the "local

En_ l and for

T

'tty E a 36 Yo;., 6Yx(¢(x,0) -+ (x E a A x t- y)),

where here and henceforth Greek letters a,6,y,0 refer to ordinals of

the model. By ITn_l-collection in (and the basic closure properties

of 'n), there exists an "ordinal" a of such that

Yy E a 36 E aYo ;., 6Yx(¢(x,0) -+ (x E a A x t- y)).

So for all 0, if po;., a then p ,3x¢ (x, 0) • By Lemma 5, since

3x¢ is En_ l, ¢(x,c) is not consistent with T. 0
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then by Lemma 2 we may assume

the set of ordinals of belongs to

Proof of (i) (iii). Suppose -< 18; pick c E !181\A. If ¢ (x)
n

is IT n_ l over and X = {a: ¢(a)} r set XE'lL iff 18 1= ¢(c).

We check that this (admittedly standard) definition of 'lL is well

defined, and satisfies properties (a) through (d) of the definition of

ultrafilter on the !::. 1 subsets of 'lL is well-
n-

defined and satisfies properties (a) and (c), because if ¢(x) and

JjJ (x) are L
n

_ l U IT
n_ l over and both define X, then: F Vx(¢-JjJ),

so F ¢ (c) '" 18 F './!{c). Property (b) is clear since IlJ F a -I c for

all a E A. For (d), suppose ¢(x,y) is a IT
n_ l

definition of X c A2

over and that for all aEd, X = {b r (a,b) E X} E7/,. Then for alla
aEd,18 F ¢(a,c). So 18 F Vy Ed ¢(y,c). Since Vy Ed ¢(y,x) is a

IT 1 definition of n X ,that set belongs to as desired.
n- aEd a

(If in fact is resolvable,

"c is an ordinal", and then18 F
7/,.) 0

Proof of (iii) (i). Suppose has !::.n-l Skolem functions and assume

that is an ultrafilter on the!::' 1 subsets of Wen-
will take a definable ultrapower of mod 7/,. That is, for !::.n-l f

andg on iff {a: f(a) =g(a)}ElL. Define 18 as follows:

1181 {[f]: f is!::. 1 on !}, where [f] is the equivalence class of
n- 18

f under ; and [f] E [gJ iff {a: f(a) E g(a)} E lL.

f
l

, .•• , f
k

,

u: (Recall

Lemma 6. For any Ln _ 2 or IT n_ 2 ¢(xl, .•. ,xk), and !::.n-l

18 F ¢ ( [f1], ... , [fk J ) if f {a: F ¢ ( f 1 (a) , ... , f k (a) )} E

that has !::.n-l Skolem functions.)

Proof. By induction on complexity of ¢. It's clear for atomic

¢, by definition of 18. The negation step is clear by property (a)

for 'iL, and the conjunction step is all right because 'iL is a filter.

Now suppose ¢ is 3x JjJ(x, , where JjJ is Ln _ 2 .

Assume 18 F ¢ ( [9"]), say 18 F JjJ ( l t l , [9"]). Then for some X E 7L,

F JjJ(f(a), g(a» for all a E X, by the inductive hypothesis. So

by closure of 'lL under supersets (property (c», {a: F 3 x JjJ (x , g (a) )} E 7L •
Conversely, suppose that {a: F 3x E 7/,. Let f be a

->- ->-
!::.n-l Skolem function for {(x,a): Yl F (x,g(a» V [-ax JjJ (x,g(a» A x = O]}

Then {a: Yl F JjJ(f(a) ,g(a»} E so by the inductive hypothesis,

18 1= \jJ ([fJ r [gJ) and hence 18 F ¢ ( [g]). This concludes the proof of

Lemma 6.

Returning to the proof of (iii) (i), suppose 1= 'v :: YGJ (;LY), where

¢ is IT
n_ 2.

We may assume and yare single variables, by pairing

and that ! c:= 18 by treating a E A as a constant function (so now we

can ignore the parameters in ¢). Let f E 1181 ; we
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{(x,y) : 1= ¢ (f (x) ,y) l . Then

since A E (and by Lemma 6),
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be a 6n_ l Skolem function for

¢(f(a) ,g(a)) for all a E A, so

IB 1= ¢ ( rr r , [gJ) .0

2. For (i),

\8
'tI. We

More precisely,

(A,E). U is large

We wish to present next a version of the equivalence (i) (iii)

of Theorem I, but where we require the end extension of La to have a

least new ordinal. The following definition generalizes this notion,

as we check in Proposition A below.

Defini t i on , For IB=:end 'A,IBis a weakly blunt end extension of 'tI if for

some b E B\A, {a E B: IB 1= a E bI C A. is a blunt end extension of

'tI if we may also require: IB c for all c E A. Notice that if

'tI = (La,E), then a Z2 end extension \B of 'tI is blunt iff there is a

least new ordinal in this isn't hard and follows from:

Proposition A. Let 'tI be resolvable and suppose IB is a blunt Z2 end

extension of 'tI. Also assume that 'tI 1= KP (though in light of Theorem

I, we need not actually make Zl-collection a hypothesis). Then for

some "ordinal" c of \B and some dEB, the following conditions hold.

(i) For all x E B, \B 1= x E c iff x E A and 1= "x is an

ordinal", and

(ii) for all x E B, IB 1= xEd iff x E A.

Proof. (ii) follows from (i) as Lemma 3 follows from Lemma

first choose b E B such that {a E B: \B 1= a E b I '= A, but

for all c E A. Also let f be a function which resolves

choose the least ordinal a of \B such that b C f\l\(a) .

let ¢(x,y) be the following Z formula:

"y is an ordinal" A x C flY) A (¥z E y)x f(z).

We may set ¢o(x,y) := (3 transitive u)¢u(x,y). Notice 'tiP, yx¥y(¢ ->- ¢o)

since 'tI 1= Zl--collection, and \B 1= Vx¥y(¢O ->- ¢) .

Now 'tI 1= Vx3y¢ (x,y), so 'tI 1= Vx3y¢o i hence IB 1= ¥x3y¢ 0 ' hence

\B 1= ¥x3y¢. Choose c E B such that 1= ¢(b,c). Clearly c ¢ A,

since otherwise, as 1= b '= f(c) where fIB(c) f'tl(c) E A, this would

contradict our choice of b. Finally, suppose x E B and\81= x E c.

Clearly then \8 1= "x is an ordinal"; so we're done if we can show

x E A. But this follows from the minimality of C.o

Definition. (i) For'tl = (A,E), we call X C A unbounded if (Ya E A) (3b E X)

hbEa) .

(ii) Let be a TIn ultrafilter on 'tI

if {a E A: {b E A: aEb} E U} is unbounded.

Theorem 2. Suppose 'tI is a resolvable model of KP which has nn-l
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Skolem functions, where n 2.

L end extension iff there is an 'fi
n

subsets of 'fi, which is closed under

(i) 'fi has a weakly blunt

complete ultrafilter on the IT
n

_
1

diagonal intersections.

(ii) 'fi has a blunt Ln end extension iff for some as above

in (i), 'IL is large.

Proof of (i). (=»: Choose c E B\A such that {a E B: 18 F a E c } 5. A.

Then define 'IL as in the proof of Theorem 1, (i) (iii). We check

that '!L is closed under diagonal intersections. Suppose X 5. A2

is 6n_ 1 over 'fi, and let Xa {b: (a,b) E X}. Let ¢(x,y) be a

ITn - 1 definition of X over Then we must show that {b E A:

Va Eb(b E Xa ) } E 'IL, i.e. that 18 F Vx E c¢(x,c), if Xa E IL (i.e.

18 l= ¢ (a,c» for all a E A. But this is clear.

it suffices to show

Given such 'fi and

(iii) (i). Let i: A A

18 as in the proof of Theorem I,

identity function. Suppose

that f is equivalent to a con

F fly) ;ix}; then X E7/,a
{y: (VaEy) (f(y) I- a) } E Ii; that is

([f),til) contradicting

X =

'IL, form

be the

hypothesis,

Therefore

Otherwise set

a E A. So by

f(y)§C'y}E7/,.

E [il.o

F
1= [fl

for all

18 F [fl E [il;

stant function.

Proof of (ii) . : Suppose has a blunt L end extension Definen
Ii as in the proof of (i) , where now we also assume that for all a E A,

18 F c 'l a. We check that '!L is large. Suppose not; say {a E 1\:

{b E A: aEb} E '!L} 5. dE , where d hE A: F x E dL That is,
E

{a E A: F a E c l 5. dE; this contradicts 1= c '1.. d.

Given such IL, form as before; we check that is a

extension of by showing that for all d E A, 18 F [il d. But if

d E A and F til 5. d, then by the "¥::os Lemma" (Lemma 6), {x E A:

F xed} E 'IL. Now if a E A and {b E A: aEb} E 'IL, then {x E A:

F xed} n {x E A: a Ex } E 'IL, so since iJ j{ 'IL, F (aE for some

x, and therefore 'fi F a E d. Hence {a E A: {b E A: a E b} E 7/,} is

contained in dE' contradicting the hypothesis that IL islarge.o

Remark 1. Of course, to get a well-founded end extension from a filter

'!L (as above) I it suffices that no countable intersection from 7/, be

empty. For countable such 7/, exists, since n {A\{a}: a E A}

= iJ. However, we can still get a well-founded L 2 end extension via a

definable ultrapower, in certain special cases.

Let X:f be infinitary logic over La' except that for some fixed

binary relation symbol E we only consider models in which E is
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well-founded. a is Ll-well-founded compact (Llwfc) if is

compact over La' This notion has been studied in Cutland/Kaufmann

[0], where the following results were proved (along with a number of

others) :

(1) a is Ll wfc iff for every IT formula ¢(x) over La'1
V F' ¢(a) implies V F 313 < a¢ (13) •

( 2) If a is Llwfc, then L <1 L and L has a well-founded,::;, a
L

2 end extension.

We can now check the second part of (2) in a somewhat more "con

structive" manner, and in the process show how to "construct" well

founded models using our definable ultrapowers. If ¢(x) is a formula
L

with parameters in La ' let ¢ a = {a: La F ¢(a)}. Let '!L OLa
{¢ : ¢(x) is TIl over La and V F ¢(a)}, and let {X C La:

X Y for some Y E Construct the definable ultrapower of La

mod'!L using functions, exactly as in the proof of Theorem 1,

(iii) (i). The proof of Lemma 6 is easily adapted to show that for
+ +

any formula o , F ¢([f]) iff {a: La F ¢(f(a»} ElL. Then

as before, it's not hard to show that La and satisfy the same

L 2 and IT 2 sentences over La'

can show that is a blunt

be the identity function:

So, it suffices to show that

end extension of (La ,E) • Let

note that 1= " [ i.] is an

if [fl E [i 1, then [fl = 13

8(x,y) be a Ll definition

8 ' defined below, we may

Now we

i: L + La a
ordinal".

for some 6 < a. Given [fl E til, let

of f over La' By replacing 8 with

assume that

(*) V F ¥x¥y¥z(8(x,y) II 8(x,z) + Y = z).

"z
8' is a Ll formula equivalent to ::I 6 (L

13
F 8 (x,y) II Vz E L

13
(L

13
i==

y" where liZ <L y't is a canonical well-ordering

of L. Now since [fl E [il, there is a IT I formula ¢(x) over La
L I'asuch that V I ¢(a) and ¢ {x E L : f{x) E x}. Then

F Vx(¢(x) + 3y (8 (x,y) /\ Y E x i ) .

So V F ¢ (a) + 3y(8(a,y)lIy E a) (by the contrapositive

of ITI-indescribability (1» .
Hence V i== 8(a,l3) II 6 E a for some 13, since V F ¢ (a) .

By (*), V FVy(8(a,y) + y = 13J (some 6 E a).

Then {x: La i== Vy{8{x,y) + Y = 13)} E lL.

Therefore {x: f(x) 13} E l£.

That is, [fl = 13.
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E w.

E w);

is well-founded. For suppose

Let 8i(x,y)
in other words,

defines a function

A similar argument shows that

(to the contrary) that [fi+ll E [fil for all i

be a good definition of f i over (all i

assume (*) holds for each 8 .. Then each 8.
1 1

f i in V. Now given i E w, choose a formula ¢(x) over La
Lsuch that V F ¢(a) and ¢ a c {x E La: (x) E fi(x)}. Then

La F ¥x(¢(x) A 8i(x,z) AyE z». So (by ITI-indescrib.),

V F ¢(a) A 8i(a,z) AyE z). That is, fi+l(a) E (a).

Since this holds for all i E w, we have a contradiction; so is

well-founded.

What

of t WF?a
which is

example,

mentioned

does the above construction have to do with

Let a be Llwfc, and suppose T is a Ll theory of

a-finitely satisfiable in constructible models. (For
LT is a-finitely satisfiable, and a < WI or V = L.) As

before, La L; so T is a-finitely satisfiable inside

¢(x) be a Ll definition (over La) of T.

We show how to "construct" a model of T using a definable ultra

power. Choose (La,E) as constructed above; since is a well

founded model of extensionality, we identify with a transitive set.

Define a Ll function f over La as follows. If x is an ordinal,

then fix) is the <L-least (well-founded) model of ¢Lx; otherwise,

set fix) = O. We'll show [fl F T. Fix B < a. Define a function

g as follows. If x is an ordinal, g(x) is the <L-least transitive

set y such that La F [a F ¢LBlY, where a = f(x). (If x is not

an ordinal, set g(x) 0.) Since a E U, and since

L F (f(y) F ¢LB)g(y) for all y < a, then (If] F ¢LI3) [g] by our
a

;Zos theorem. Also, F" [gJ is transitive". Since is transitive,

l r l F ¢Le. Since 13 < a is arbitrary, [fl F T. 0

Here are some results which show that if La has sufficiently

nice blunt end extensions, then a must be fairly large. For related

results see §4 of 10].

Lemma 7 (essentially 10,4.13]). If is a blunt L 2
La which satisfies KP, then F "La for some

end extension of

o E B. 0

(La' E) which

such that

Theorem 3. Suppose is a blunt LZ end extension of

satisfies KP. Then there exist arbitrarily large 13 < a

for some y < a, (L 13,E) (Ly,E).

Proof. By Lemma 7, "La -<2 Lo" for some 0 E B. So if n < a,

3x3y("Lx -<2 Ly" An < x ) and hence F "L
13

Ly"forsome l3,y >n.O
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end extension of (La' E), thenProposition B.

a is a limit of

If is any blunt

=2 admissibles.

Proof. By Theorem 1, a is L
2-admissible.

So for all y < a

3B(y < B A is L2-admissible"). Hence this holds in La.o

Further details of this proof are left to the reader. A similar

argument shows that if La is the minimal model of ZF, then La has

no blunt 4
2

end extension.

Remark 2. The case n = I, which is left out of Theorem 1, is of some

interest. For arithmetic, Paris and Kirby showed in [5] that if

is countable and satisfies very minimal hypotheses and -<1 then

1= L2-collection and hence has a L
2

enj extension. This result

does not carryover completely for models of set theory, since if a

is the least stable ordinal then L -< L , but L j L2-collectio
n

o 1 wI a.
since C( is projectible. However, Simpson [6] has shown that for

countable limit a , La L
2-collection

iff La has a Ll end extension

F V = L with a new ordinal, which is not blunt, and satisfies KP.

So putting Theorem 1 and (a slight improvement of) Simpson's result

together, we get the following somewhat surprising result, analogous

to the one above of Paris and Kirby: if a is countable and La has

an aumissible L
I

end extension with a new ordinal but no least new

end extension.

end extension, does it necessarily have

Or would that imply that C( is a limit

ordinal, then has a L
2

Question. If has a L
2

one satisfying Ll-collection?

of L2-admissibles?
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MODEL THEORETIC CHARACTERIZATIONS
IN GENERALIZED RECURSION THEORY

Phokion G. Kolaitis(l)
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Chicago, Illinois 60637

Our main purpose in this paper is to establish model theoretic and invariant

definability characterizations of recursion in E and positive elementary induction

(recursion in E#) on abstract structures. These theories are two different

natural generalizations of the hyperarithmetic theory on the integers, while

recursion in E is in addition an extension of the theory of recursion in normal

higher type objects.

Moschovakis [1969cJ, [EIAS] characterized the "boldface" hyperelementary

(recursive in E#) relations using the Schema of Here we study

finer "lightface" analogs of this schema in terms of which we characterize both

recursion in E and positive elementary induction. Moreover we obtain hierarchies

for these theories, which provide constructions of the recursive in E and the

recursive in E# relations with the respective relations of lower levels as basis.

Due to the limitations of space, in this paper we restrict ourselves to the

statements of the results and to a few comments about the tools used in the proofs.

However in the first two sections we have included some of the basic definitions, as

well as a survey of the results in the theory and the theory of

positive elementary induction. The characterizations of recursion in E are

presented in §3, while the last section contains the results about recursion in E#

and a comparison between the two theories. The proofs of the main theorems and

extensions of this work to recursion in generalized quantifiers will appear else

where.

§l. in E and Recursion in E# on a Structure

1.1. Let 2l= <A, Rl, ... , Rn' f l,
... , , cl,

... , ce > be a structure

such that w c A and for k E w let 'P5k be the set of all kary partial

functions from A into w. A functional (on A with values in w) is a partial

mapping
f5-<1>: x fJ x x wk

l
k
t

which is monotone, i.e. , if gl 5.C. hI' g2 5.C. h2, ... , gt c ht and <I>(X, gl' ... , gt)

w, then <I> (X, hI' . . , ht) = w .

(l)During the preparation of this paper, the author was partially supported by
NSF Grant #MCSS002763.
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If = •.. , is a sequence of functionals on A, then we can de

fine the notion of a recursive in kary partial function from A into w.
Inductive definability provides a conceptually simple way to do this. We associate

first with the sequence the class which is the smallest collection of

functionals on A containing ... , and satisfying certain minimal closure

properties (closed under composition, definition by cases, functional substitution,

etc.). Then the partial functions are obtained by iterating to

the transfinite the operative functionals in if (i. e., the functionals in J'

of the form AS x + w). The first few sections of KechrisMoschovakis [1977]

and KoLa i t i s [1978], [1979] contain a detaIled account of these definitions.

A relation is semirecursive in if it is the domain of a recursive in

partial function; a relation is recursive in if its characteristic function is

recursive in ¢. The class (the Envelope of ¢ ) is the collection of all

semirecursive in relations, while the class (the Section of ¢) is the

collection of all recursive in relations. These notions relativize directly to

a finite sequence x = (Xl' Xk ) from A, so that we put

x]

x]

all semirecursive relations in ¢ from x,

all recursive relations in from x ,

If we take the union of the above classes as x varies over all finite sequences

from A, then we obtain respectively the collections of the "boldface" semirecur

sive in ¢ and "boldface" recursive in relations, namely

r-

x]: x E A<W}

x]: x E A<W}

where A<W is the set of all finite sequences from A.

and

1.2. In this paper we are mainly concerned with the functionals
#E : + W defined as follows:

E(f)

(0 if f is total and (3x)(f(x) 0),

tl
,
if f is total and (lIx)(f(x) f 0) ,

undefined, if f is not total;

(0 if (3x)(f(x) = 0),

11

,

if (lIx)(f(x)+ f 0),

undefined, otherwise.

Both these functionals embody existential quantification over A. It is very

easy to show that E is recursive in E#. and therefore it is always true that
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ENV[E] C ENV[E#] .

The functional E appeared first in the theory of recursion in higher types.

In fact, if we take A = w = Tp(O), then E

2 object 2E• Moreover, if A = wW = Tp(l),

is nothing else but the Kleene type

then E becomes the type 3 object 3E

which expresses equality of sets of reals or equivalently existential quantification

over the reals.

1.3. It is well known that recursion in E# on an arbitrary structure'll

coincides with positive elementary induction on 2L. In order to make this state-

ment more precise we review briefly the main definitions involved.

Let 2l= <A, Rl, ... , Rn' f
l, ... , fm, c l-4 ... , c9,> be a structure such that

w C A. The "lightface" first order language of the structure a.. has an

infinite list x, y, z, of individual variables, an infinite list S, T, V,

(jl to the trans-

in which S is anlanguage ,taIf (jl(x l, ... , x
n'

S) is a formula of

n-ary relation symbol occurring positively, then we can iterate

of k-ary relation variables for each k > 1, constant symbols c
l'

... , c9,' a

constant symbol k for each k E w, relation symbol s R
l,

.•. , R
n,

function

symbols f
l
, ... , f

m
, the equality symbol , and the logical symbols ',&,

V, -+, \:}, :3. The "boldface" first order language of the structure '2z; has in
...,&

addition a constant symbol a for each a E A. The formulas of both and

are defined in the standard way with the quantifiers \:} and :3 ranging over the

individual variables only.

finite and define the fixed point (jl U of (jl, where
i;

(jli; = LX: (jl ex, u (jln))

n<i;

A relation ReAm is inductive on a if there is a positive formula (jl as above

and a sequence k from w such that (R(Y) , y) E (jloo). A relation ReAm

is hyperelementary on 'Q; if both R and Am R are inductive on 7r. .
It is easy to show that the inductive relations on 'lz: coincide with the

semirecursive in E# relations, so that

ENV[E#]

SEC[E#]

IND

HYP

all inductive relations on 'lr.
all hyperelementary relations on 1z::.

1.4. Kleene [1959a] and Spector [1961] established that on the structure of

arithmetic J5l = <to , +, .>

ENV[E]
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We see therefore that over the integers recursion in E coincides with positive

elementary induction. The picture changes completely on the structure of analysis

<w U wW, +, " Ap> (here Ap(a, n) = a(n)), where as Moschovakis [1961]

showed

The preceding results led to the study of recursion in E and positive

elementary induction (i.e., recursion in E#) on abstract structures, as natural

extensions of the hyperarHhmetic theory on the integers. At the same time they

also gave rise to the program whose goal is to understand the similarities and the

differences between recursion in E and positive elementary induction.

1. 5. We conclude thi s section by mentioning that both recursion in E and

recursion in E# on a structure 1l can be characterized in terms of the theory of

if and only if it isEis rccursive in-+ CD

set recursion or E-recursion, which is a recursion theory on the universe of sets

introduced by Normann [1918]. The exact connection between these theories is

exhibited by the following results:

i) a partial function A
k

E-recursive using the structure 2z. as a constant;

t t ) a partial function A
k

-+ CD is recursive in if and only if it is

E-recursive relative to E# using the structure 2t as a constant.

These characterizations can also serve as alternative definitions of recursion

in E and recursion in on a structure .

§2. Model Theoretic and Invariant Definability Characterizations of Recursion in E#

A. The Classical Theory

2.1. Grzegorczyk, Mostowski and Ryll-Nardzewski [1958] proved that the hy-per-

arithmetic relations on the integers are exactly the invariantly definable ones

over all W-models of analysis by arbitrary formulas of second order number theory.

This means that a relation R c [Uk is hyperarithmetic if and only if there is a

formula of the second order language of the structure

R on every w-model of analysis.

<w, +, .> which defines

of the first order language(jl(Y, y)and any formula

of the structure of arithmetic

that for any relation

tJN

Kleene [l959b] characterized the collection HYP of the hyperarithmetic rela-
,,1 _.

tions on = <w, +, .> as the smallest model of the Schema of

with basis, i.e., HYP is the smallest class D of relations on the integers such
k

R C CD

if

then

(R(y) -=- elY E y) -=- (3Y)(jl(Y, y)) ,

R E ;;, .
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However, in that paper Kleene established much more. He related the hyper

arithmetic sets to the ramified analytic ones by showing that the ramified analytic

hierarchy up to level consists precisely of the hyperarithmetic sets. More

over, all hyperarithmetic sets can be obtained by using a single existential or a

single universal second order quantifier applied to the hyperarithmetic sets of

lower levels as basis. From these results it follows also that the class HYP of
1

the hyperarithmetic relations is the smallest model of the Schema of LllComprehen

sion, Le., HYP is the smallest class LI of relations on the integers such that for

any relation R c wk and any formulas y), wry, y) of the first order

language Jllli of the structure of arithmetic

if

then

(R(y) '*'* (3Y E y) '*'* (\fY E LI)W(Y, y)) ,

ELI.

It should be pointed out that the preceding characterization of HYP in terms

of the LliComprehension Schema is only implicit in Kleene [1959bJ. It is however

explicitly stated and proved in Kreisel [1961J, where in addition he characterized

the hyperarithmetic relations as the ones which are invariantly definable over

all models of the Schema.

B. The Theory of Recursion in E# on Abstract Structures

2.2. Moschovakis [1969a], [1969b], [1969c] studied the theory of recursion in

E# on almost arbitrary structures and showed that it is a successful generalization

of the hyperarithmetic theory on the integers. A comprehensive account of this work

is contained in the monograph Moschovakis [EIASJ, where the theory is developed in

the context of inductive definability.

The problem of finding model theoretic and invariant definability character

izations of recursion in E# is attacked in Moschovakis [1969c]. It turns out that

both the invariant definability characterization of Grzegorczyk, Mostowski, Ryll

Nardzewski and Kleene's characterization in terms of the IiComprehension Schema

fail to generalize to abstract structures. In particular, these results do not hold

on the structure of analysis, as well as on any structure on which the notion of

wellfoundedness is firstorder. On the other hand, Moschovakis [1969c], [EIASJ

established that the "boldface" recursive in E# relations on an acceptable structure

can be characterized in terms of the Llicomprehension Schema.

A structure 7r. is acceptable if, roughly speaking, it possesses a firstorder

coding machinery, so tbat the notions of finite sequence, length of finite sequence

etc. can be coded in a firstorder way. Most structures of recursion or set

theoretic interest are acceptable, for example the structure of arithmetic, the

structure of analysis, and for each ordInal A the structure "VA <VA' E >. For

such structures we have then the following model theoretic characterization of the
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class = U{SEC[E#, x]: x E A<w} of the "boldface" recursive in E#

relations (i.e., the "boldface" hyperelementary relations on 2t: ).
2.3. Theorem (Moschovakis). If Zr is an acceptable structure, then the

class of the "boldface" recursive in E# relations is the smallest

model of the Schema with parameters, i.e., it is the smallest

collection of relations on A such that for any relation R on A, any form

ulas qJ(Y, Z, y), 1jJ(Y, Z, y) of the first order language ttl. of the structure 2t
and any relations S in

if

then

(RG) -= (3y E tI)<jJ(Y, S, y) -= (liY E tI)\jJ(Y, S, y)) ,

R E •

In addition to the above Theorem 2.3 Moschovakis [1969c], [EIAS] obtained the

following 5.nvariant definability result about recursion in

an acceptable structure, then a relation R is

and only if it is invariantly definable over all

Schema with parameters, i.e., if and only if there

of the first order language st:1Z of the structure

of the Schema with parameters

2.4. Theorem. If 2c is

"boldface" recursive in E# if

models of the Comprehension

are formulas qJ(Y, y), \jJ(Y, y)

2C such that for every model

2.5. 'I'he preceding Theorems 2.3 and 2.4 are proved with sUbstantially di f

ferent methods from the ones used for the classical results in the hyperarithmetic

theory. This is due to the fact that the classical proofs used heavily the hier
ck

archy <Ha , a < w
l

> of the hyperarithmetic sets on the integers, while there is

no such analog for the recursive in E# relations on an acceptable structure in

general. In order to overcome this difficulty Moschovakis [1969c], [EIAS] had to

bring out and analyze the second order properties of positive elementary induction.

He developed in particular certain technical tools, such as the second stage compari

son theorem, which link recursion in E# with second order definability. As an

outcome of this investigation he discovered also a second order hierarchy for

recursion in E# on an acceptable structure 2r, which he related to the ramified

oversecond order hierarchy

Let 2c = <A, R
l'

CD A, let l:'U: be the

'lA:.
R
n
, f l , ... , f

m
, c l ' ... , cQ,>

"boldface" first order language of

be a structure with

'2r (i.e., there is a

constant symbol a for each

We say that a relation R c AS

A.a E A) and let be a collection of relations on

with basis and parameters from
) ",lc... , Zk' Y of the language and relationsif there is a formula <jJ(Y, Zl'

in such thatSl' ... ,
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,y) -= , y) .

We say that R c AS with basis 6 and parameters from 6 if both

R and AS - Rare Zi-definable with basis 6 and parameter from 6. In terms

of these notions Moschovakis [1969c], [EIAS] established the following hierarchy

result about the recursive in E# rel ons on an acceptable structure.

2.6. Theorem. Let a= <A, R
l
, ... , R

n,
f
l,

... , f
m,

c
l'

... , be an

acceptable structure. For each ordinal define the class of relations by

the induction

the class of first order definable relations on ?r,
1

the class of the 61- definable relations with basis

and parameters from U Id n
U

Then a relation R is "lJoldface" recursive in E# if and only if there is an

ordinal such that R E,8[" 'i . e. ,

SEC

The above Theorem 2.6 is the key result for proving the preceding model

theoretic and invariant definability characterizations of recursion in E#. In

addition it gives a level by level construction "from below" of the "boldface"

recursive in E# relations on an acceptable structure, which is of particular

significance especially in the absence of a hierarchy analogous to the

<H
a,

a < one for the hyperarithmetic sets.

§3. Model Theoretic and Invariant Definability Characterizations of Recursion in E

3.1. The study of recursion in E on abstract structures was pursued mainly

for two reasons. First it provides a natural extension of the hyperarithmetic

theory, which in general is different from the one given by recursion in E#.

Second it is intimately connected with the theory of recursion in higher types,

since recursion in E on the Tp(n) structure coincides with Kleene recursion in

the type (n + 2) object n+2E.

In view of the model theoretic and invariant definability results about

recursion in E#, the question was raised if there are similar characterizations of

recursion in E on abstract structures. Moreover, are there results this

direction which contribute to comparison of these two theories and explain their

differences?
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As the study of recursion in E progressed it was realized that in many cases

the correct analogs for this theory are "lightface" versions of results about recur

sion in E#. This is due to the fact that in general the semirecursive in E rela

tions are not closed under existential quantification, so that one has to keep track

of the firstorder parameters involved and introduce "lightface" notions. In connec

tion to our problem this observation suggests that one should try to characterize the

collection

of the classes of the recursive in E relations from x (as x varies over all

finite sequences from A), rather than the class

= U{SEC[E, x]: x E A<w}

of the "boldface" recursive in E relations.

3.2. The collection {SEC[E, x]: x E A<w} possesses certain combinatorial

properties which now we turn into a definition. This definition should be thought of

as capturing the combinatorial properties of relativization to a finite sequence.

Let 2L = <A, , ... , Rn , f l, ... , f
m,

cl' ... , cl!,> be a structure such that

we A. An indexed family onC4 is a collection 1. = {A(x): x A<w} of nonempty

, ... , y l!,) are finite sequences from A

... , xl , then f\(y) f\( x).

, ... , yl!,) are finite sequences from A

the relation R {z: R(y, z)} is an ele
y

and

and

A(x, k) = A(x).then

A with the following three properties:
<w

and k E W

ii) If x xk),y=

{Yj: j = 1, 2, l!,} {Xi: i = 1, 2,

iii) If x = ( , ... , x
k
) , y =

R C Al!,+s is an element of A(x), then

classes of relations on

t ) If x E A<w

ment of A(x, Y).
The typical examples of indexed families we have in mind are of course the collections

= {SEC[E, x]: x E A<w} and = {SEC[E#, x]: x E A<w} .

Let J. = {A(X): x E A<W} be an indexed family on Zt. We say that J.. is a

model of the Comprehension Schema without parameters if for any relation R on

A, any x E A<w and any formulas (jl(Y, ii, v), 1jJ(Y, ii, v) of the "lightface" first

order language 1..0: of the structure 2c

if

then

(R(y) (3y E A(x, y))(jl(Y, x, y) (I/Y E A(x, .1))1jJ(Y, x, .1)) ,

R E A(x) .

We say that the indexed family JL {A(x): x E A<w} is a model of the

with if for any relation R on A, any x E A<W,

any formulas (jl(Y, Z, ii, v), 1jJ(Y, Z, u, v) of the language ;;{/(. and any relations S

in A(x)

if

then

(ReY) (]Y E A(x, .1) )(jl(Y, S, x, y) (I/Y E A(x, y))1jJ(Y, S, x,

R E A(x) .

) ,



3.3. Theorem. Let Zt '" <A, , ... , Rn' f l, ... ,
structure such that c: c A.

i) The indexed family f.. {SEC[E, x] : -
E A<W} ofx
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If 2t is an acceptable structure, then one can show that both the indexed

families

satisfy the Schema with parameters and hence a fortiori the

Schema l-liLhout parameters. This result should be contrasted with

the fact that the class SEC[E] of the "boldface" recursive in E relations is not

in general a model of the Schema. We see therefore that the above

schemata for indexed families are finer "lightface" versions of the

Schema for a class of relations. The main theorem in this section is a character-

ization of the indexed family 1e {SEC[E, x]: x E A<W} on an acceptable structure

2t in terms of these schemata. Moreover, the assumption that the structure is ac-

ceptable is used only in one direction, so that we actually establish a result for

arbitrary structures.

the recursive in E
1

relations is contained in any indexed family which is a model of the I'll-Comprehen-

sion Schema without parameters, i.e., if {A(x): x E is any other such

family, then SEC[E, x] A(x) for every x E A<w.

ii) If in addition the structure 2t is acceptable, then the indexed family

= {SEC[E, x]: x E A<w} is the smallest model of the Schema

without (or with) parameters.

The above Theorem 3.3 provides a model theoretic characterization of recursion

in E which is the analog of the characteri zation for recursion in E# given by

Theorem 2.3. However, one difference between these two results is that here we deal

with indexed families, while Theorem 2.3 refers to classes of relations. We will

return to this point in the next section, where we will restore the analogy by

proving a model theoretic characterization of the indexed family

Jr= {SEC[E#, x]: x E A<w}.

In the rest of this section we will complete the picture for recursion in E

and make a few comments about the proofs of the results. The next theorem is an

invariant definability characterization of recursion in E on acceptable structures

and it should be compared with the characterization of recursion in E# provided by

Theorem 2.4.

3.4. 'I'heo r-ern , Let & = <A, ... , Rn, f l, ... , ,cl' c",> be a

structure such that W c A and let z be a finite sequence from A.



113

i) If R is a relation recursive in E from z,

antly definable from z over all indexed families which

h
. A l . .t en R lS _wl lnvarl-

1are models of the 11
1-

Comprehension Schema without (or with) parameters, i.e., there are formulas

qJ(Y, u, v), 1jJ(Y, ii,"V) cf the language rl/l; such that for every indexed

vl = {A(x): X E A<W} which is a model of the -Comprehension Schema without (or

with) parameters

RCy) (:3Y E AC:;, z»qJ(Y, s , z) (\IY E A(y, z»1jJ(Y, y, z) .

If in addition the structure

over all indexed families

(or with) parameters.

i.I )

recursive in E from z

is acceptable, then a relation R is

if and only if it is 111 invariantly definable from z
1 1

which are models of the l1i-Comprehension Schema without

-i
3.5. In the special case of recursion in the type (n + 2) object n+2E the

preceding characterizations in terms of the Schema are due to

MacQueen [1972]. However, in his proofs MacQueen [1972] used in a crucial way the

fact that the notion of wellfoundedness is first-order on the higher types struc-

ture. This of course is not true for arbitrary structures and therefore a different

technical argument is needed in the abstract setting.

In establishing the preceding Theorems 3.3 and 3.4 we approach recursion in E

as a branch of the general theory of inductive definability, according to the program

introduced by Moschovakis [1977] and developed in Kechris-Moschovakis [1977]. One

of the main technical tools we use in our proofs is the second stage comparison

theorem for recursion in normal functionals of Kolaitis [1979]. This result extends

the corresponding one of Moschovakis [1969c[, [EIAS] for positive elementary induc-

tion and provides the necessary link between recursion in E and second order

definability. Another technical tool we use in the proofs is a new normal form

theorem for functional induction the details of which will appear elsewhere. We

should mention here that this theorem gives analogs for functional induction of the

Kleene master recursion even when no coding machinery is available.

Both Moschovakis [1969cJ, [EIAS] and MacQueen [1972] considered only l1i-

Comprehension Schemata with parameters. Here we have made a distinction between the

l1i-Comprehension Schema without parameters and the one with parameters. The reason

for this distinction is that in general the first is weaker than the second, although

they have the same smallest model. In fact, even over the integers it is not very

hard to construct by a diagonal argument a non-hyperarithmetic real a such that

the class 11 = HYP U {a} is a model of the l1i-Comprehension Schema without para-

meters, but it is not a model of the l1i-Comprehension Schema with parameters.

Finally, we should point out that recursion in E on an abstract structure

does not possess a hierarchy similar to the <Ha, a < one for the hyper-

arithmetic sets. The preceding Theorems 3.3 and 3.4 are proved by establishing



114

first a second order hierarchy result for recursion in E which is the "lightface"

analog without parameters of Moschovakis' Theorem 2.6 in the previous section.

Let 2t = <A, , ... , R , f
l,

... , f , be a structure such that
I {( -) - m '1 -W c A, let = A x : X E A be an indexed family on C4 and let z be a

R C A
k . ,,1 .

finite sequence from A. We say that a relation from z

with basis the indexed familyJl if there is a formula u, v) of the language

t.,a such that

We say that R c A
k

Doth Rand A
k

- R

• A l . from z
,,1 .

are "l-deflnable from

with basis the indexed family ul
z with basis ul.

if

by the induction

structure such that w c A.

class of relations z)

3.6. Theorem. Let Zt = <A,

For each

, *, Rn ')
- <w
z E A

f
l
, ... , f

m
, c l ' ... , c9,> be a

and for each ordinal S define the

,a°(E, z) the class of first order definable from Z relations on 'b:,
.e S(E, z) the class of the 6i-definable relations from z with basis

the indexed family I/S (E ) = { U x): x E A<w}
n<s

Then the indexed family = {SEC[E, x]: x E A<w} is contained in the indexed

c. {' I "S( -) <to-. -x,family dJ(E) = U tIV E, x : x E A J. If in addition the structure u. is accept-
S - <w

able, then for every z E A

SEC[E, Z']

§4. On the Difference between Recursion in E and Recursion in E#

4.1. The results of Moschovakis in §2 characterized the class SEC[E#] of, .......
the "boldface" recursive in E# relations, while in §3 we characterized the indexed

family 1e {SEC[E, x]: x E A<W}. Here we restore the analogy by obtaining results

about the indexed family {SEC[E#, x]: x E A<w}. These results imply the

"boldface" characterizations of Moschovakis and shed more light on the difference

between recursion in E and recursion in E# on an abstract structure.

4.2. Let J. {A(x): x E A<W} be an indexed family on the structure'2t. We

say that vl is a model of the Schema without parameters if for

any relation R on A, any x E A<w and any formulas u, y, v), W(Y, u, y, v)

of the language of the structure lc
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if (3Y E A(x,y,w))cp(Y,x,y,w) ('vy)(\JY E A(x,y,w))ljJ(Y,x,y,w)) ,

then R E A(x)

In a similar way we can define also the -Comprehension Schema with parameters.

If 1.L is an acceptable structure, then the indexed family::Ji..is a model of the

-Comprehension Schema with parameters and hence it is also a model of the one

without parmueters. On the other hand, the indexed family 7C is not always a

model of the )-Comprehension Schema without parameters.

4.3. Theorem. Let a = <A,

recursive in E#
1

any other such

of the

model of the

x E A<w, is

structure such that w c A.

i) The indexed f:milY = {SEC[E#, x]: x E A<W}

relations is contained in any indexed family which is a

hension Schema without parameters, i.e., if vl = {A(x):

family, then SEC[E#, x] A(x) for every x E A<W.

.i i ) If in addition the structure 2L is acceptable, then the indexed family

JI. = {SEC[E#, x]: x E A<W} is the smallest model of the 3) -Comprehension Schema

without (or with) parameters.

We obtain next an invariant definability characterization of the indexed

family jJ = , x]: x E A<w}

4.4. Theorem. Leta=<A, , ... ,Rn,fl, ... ,fm,cl, ... ,cJl> bea

structure such that W c A and let z be a finite sequence from A.

i) If R is a relation recursive in E# from z, then R is

variantly definable from z over all indexed families which are

Comprehension Schema without (or with) parameters, i.e., there are formulas

cp(Y, U, y, v), ljJ(Y, u, y, v) of the language such that for every indexed

family JL = {A(x): x E A<w} which is a model of the )-Comprehension Schema

without (or with) parameters

)-

R(w) (]y E A(z, s , w))cp(Y, z , s , w) =- (\Jy)(\JY E A(z, s , w))ljJ(Y, z, s , w).

ii) If in addition the structure Zt is acceptable, then a relation R is

recursive in E from z if and only if it is "'i(3) invarianLly delinable from z
over all indexed families which are models of the Schema

without (or with) parameters.

4.5. It is quite easy to see that the above Theorems 4.3 and 4.4 about the

indexed family jf = {SEC[E#, x]: x E A<w} imply immediately the Moschovakis charac-

terizations 2.3 and 2.4 of the class SEC[E#]. In addition to these results we can,....,.
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obtain also a hierarchy theorem for the indexed family J?
corollary Moschovakis' hierarchy 2.6 for the class

Let 2t: = <A, Rl, ... , R , f l' ... ,

let.A {A(x): X E AIJ.w be an 1r and let z be a

is from

U, y, v) of the

W A,

finite sequence from A. We say

with basis the indexed family..-l

language;/"'4 such that

fm, cl , · · · , c9?
indexed family on

that a relation R c Ak

if there is a formula

which gives

SEC[E#] .,.....
be a structure

as a

such that

R(w) (]y)(3Y E A(z, y, z, y, w) z , y, w) .

We say that

if both R

from

- Rare Li(3)-definable

z with basis the indexed family JL
from z with basis A .

11.6. Theorem. Let 1:t = <A, , ... , Rn,
structure such that w c A. For each Z E A<w

class of relations J:JE,(;#, z) by the induction

f l , ... , f m, "r> ... , cQ.> be a

and for each ordinal E, define the

fjO(E# , z) the class of first order definable from z relations on (.{ .

Ii; (E#, z) the class of the 6i(3)-definable relations from z with basis

the indexed family J)<E,(E#) {U IJn(E#, x): x E A<w}
n<E,

Then the indexed family 1(.

family ,Jj (E#) = {U ,&E, (E# ,

ceptable, then every

{SEC[E#, xl: x E A<w} is contained in the indexed

x): x E A<W}. If in addition the structure 'lr. is ac-

z E A<w

h.7. The preceding 'I'heor-erns 3.3, 3.h, 3.6 and h.3, h.h, h.6 contribute to the

comparison of recursion in E with recursion in E# and provide a way to "measure"

the different strength of existential first-order quantification embodied by each

of these theories.

These results show also that the Schemata of 6i-Comprehension and 6i(3)-Com-

prehension for indexed families succeed in distinguishing recursion in E from

recursion in E#. One might consider in addition the "boldface" version of the

6i(3)-Comprehension Schema for classes of relations and hope to characterize the

class SEC[E] of the "boldface" recursive in E relations. It turns out however
1 1

that the Schemata of 6
1

and 6
1(3)-Comprehension

for classes of relations coincide.
1

In fact, if a class of relations 6 is a model of the Schema, then

it is also a model of the (3)-Comprehension Schema, because it satisfies the

equivalence
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(3y) (3y Ell) <p (Y, s , z) (3Y' E ll)( 3Y Ell) ( {y} & <p(Y, y, Z")) •

The above remarks make clear why it is necessary to consider "lightface"

Comprehension Schemata for indexed families in order to characterize recursion in

E. Moreover, they suggest the following

Problem. Is there a model theoretic Or invariant definability characteriza

tion of the class = U{SEC[E, xJ: x E A<W} of the "boldface" recursive in

E relations on an acceptable structure?

4.8. We conclude this paper by mentioning some further model theoretic

characterizations of the indexed families

Kreisel [1965J characterized the collection HYP of the hyperarithmetic relations on

the integers as the smallest class of relations which is closed under recursive

operations and satisfies the Schema of This result does not generalize

to recursion in E# on abstract structures. However, Moschovakis [1969cJ, [EIAS]

showed that the class SEC[E#J of the "boldface" recursive in E# relations is the,....,
smallest model of the Schemata of and In Kolaitis

[1979J we introduced "lightface" versions of these schemata and characterized the

indexed family = {SEC[E, xJ: x E A<w}. This characterization can be obtained

now as a direct consequence of the preceding Theorem 3.3.

We say that an indexed family J... {A(x): x E A<W} on a structure 'lr is a

, 0 l' f A<W f 1 (   Y)model of the _DooComprehension Schema fOr any x E , any ormu a <p u, y,

of the language and any relation S in A(x) there is a relation R in A(x)

such that

RCy) <p(x, s , S) .

We say that the indexed family vt satisfies the__ Schema without

parameters if for any x E A<wand any formula (j)( u, y, y) of the language;l..7J;

have that

we

(Vy)(3Y E A(x, y) )(j)(x, Y) <:=;> (3w E A(x)) (3n E w)<p(x, y, )
y,n

In a similar way we define also the

structure such that w c A.

Theorem. Let a- be a
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r ) The indexed family 1C = {SEC[E, xl: x E A<w} is contained in any

indexed family which is a model of the Schemata of and Zi

Collection without parameters.

is acceptable, then the

° .6oo Compr ehens l on and

U) If in addition the structure 2L
1( is the smallest model of the Schemata of

without (or with) parameters.

indexed family
",1 .
OlCOllcctW0

1
The above Theorem 4.9 is proved in Kolaitis [1919], but as we pointed out

before it follows also from the preceding Theorem 3.3. Moreover, we can obtain a

.if { [ # -] - <W}new characterization of the indexed family = SEC E , x : x E A by intro

ducing the following schema.

We say that the indexed family J... = {I\( x): x E A<W} on 7L is a model of the

Schema without parameters if for any x E A<w and any formula

(j) (ii, r , Y) of the language .1;«: we have that

(3y)(3Y E I\(x, y))(j)(x, y, Y)

In a similar way we can define the lci(]) Collec_tion Schema with parameters.

4.10. Theorem. Let a <A,

is acceptable, then the indexed family JV
,0 . ",1 I .0ooComprchcnslon, ectlon and

structure such that W c A

i) The indexed j1 , xl: x E A<w} is contained in any
AO . ",1 .indexed family which is a model of the Schemata of 0ooComprehenslon,

and 3)Collection.

If in addition the structure 2t
is the smallest model of the Schemata of

Zi(])Collection.

where , Q
3

are generalized quantifiers.

the proofs of these results will appear elsewhere.

The precise

4.11. As a final remark we mention that the theorems of this paper about

recursion in E and recursion in E# can be extended to characterizations of

recursion in generalized quantifiers. In particular, we can obtain model theoretic

characterizations of recursion in the functionalsand invariant definability

" #FQ ' F. , FQ '
1 1.<2 3

statements and
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1

David V1. Kueker*
Department of l1athematics
University of Maryland

College Park, MD 20742

O. INTRODUCTION.

A well-known result of D. Scott says that any two countable models

which are Lcow-elementarily equivalent are isomorphic. M. Morley showed

that the natural gel1eralization of this result to uncountable cardinali-

ties fails by constructing two models of power which are L -ele-
cowl

mentarily equivalent but not isomorphic (in fact, neither is embeddable

in the other). Nevertheless, L equivalence is a natural
COWl

equivalence between models, as the standard back-and-forth criterion

indicates. In this paper we investigate how much alike two L ·-ele-
COWl

mentarily equivalent models of power wl must be. Our main

give a characterization of Lcow -elementary equivalence of models of
1

power wl in terms of how the models are built up from below by count-

able models. This characterization seems intuitively more meaningful,

and seems to yield more information, than the back-and-forth criterion

alone. lie derive, as a consequence, sufficient conditions for a model

of power wl to be embeddable in every model Loow -elementarily equi-
1

valent to it. The specific examples of wl-like linear orders and free

algebras are also dealt with in our framework.

Our results generalize to arbitrary uncountable regular K in

place of wl. Tnese, and related material, will be considered in a

future paper of the author.

We assume throughout that the underlying language L has just

countably many non-logical symbols. The logic allows conjunctions

A¢ and disjunctions V¢ of arbitrary sets ¢ of formulas, and allows

the simUltaneous universal \IX;;; and existential 3x;f; quantification
->-

of a countable sequence x = <xi>iEW of variables. For its basic prop-

erties see [1, 8].

*Research partially supported by the NSF under Grant MCS 77-03993.
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1. CHARACTERIZIllG INFINITARILY EQUIVALENT MODELS.

for every limit

vIe view models of power wl as built up from beLow by countable

models. That is, if M is the union of a chain of countable

submodels we think of the chain as constructing M. The sorts of char

acterizations we are after say that M and N are equivalent iff they

are built up from similar chains of countable submodels.

from [9]. FirstAs an example, we rephrase a result about

recall that a chain {'I} is smooth if II

n·

N iffcow
UL} t:

1:, ,,<wl
for all

M 

of countable submodels such that

PROPOSITION: If M and N have power then

and N can be written as the unions of smooth chainsM

and
E, < wl ·

It may not be immediately obvious why two models satisfying the

criterion in the Proposition need not also be elementarily equiva

lent. The following example is instructive.

in

Then

be a unary predi

P is interpreted

How is this reflected

Let the only nonlogical symbol of L

M be the model of power in whichLetP.

EXAHPLE:

Wl
by a countably infinite set, and let N be the model of power wl
which the interpretation of P is uncountable and councountable.

M " cow ,1, since they can be written as the unions of smooth chains

and of countable models in each of which P is

interpreted as an infinite and coinfinite set, hence

M and N are not L elementarily equivalent since Up is
COWl

countable" is expressible by a sentence of

cate

ing P: on the other hand

will contain no new points satisfy

so for arbitrarily

For all sufficiently large

p lJ for all

so

andby the chains

we will have

large E,

arbitrarily

will add new points satisfying P. Uence there are

E, such that

that is, although and no isomorphism of

with IJ can be extended to an isomorphism of with IJE,+l'

This example suggests that if M and N both have power WI and
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then

and

M and N can be written as the unions of chains

of countable submodels such that

whenever

This is true, but the condition is not sufficient. We need to know that

with

for anyNI;
2

this is as follows.

"most" .i s omozph.i srns of Mv with Nv extend to isomorphisms of MI;

with NI; whenever v < 1;. This is so we can take an isomorphism of

MI; with NI;' extend it to an isomorphism of MI; with NI; for
o 0 1 1

any 1;1 > 1;0' extend this extension to an isomorphism of ME;
2

> 1;1 ' etc. The precise statement corresponding to

Assume

M '=

THEOREM 1.1:

N iff M

and

and

M and N both have power WI' Then

can be written as the unions of chains

of countable submodels such that

,M ) (NF,N) whenever v < I; < WI '
v "v

and in fact there are non-empty sets Gi; of isomorphisms of ME; with

Ni;' for all E; < such that any isomorphism in Gv extends to one

in Gi; for any v < E; < WI'

Note that the chains {ME;}i;<W
l

and {NE;}E;<W
l

are not assumed to

to be smooth. If they were both smooth then we could conclude that

M N provided GE; consisted of all isomorphisms of ME; and NI;'
contradicting some known examples (cf. section 3) .

The sufficiency of the condition is immediate from the standard

back-and-forth criterion (see below). The hard direction is necessity,

that any two -elementarily equivalent models of power must be

built up this way.

At the end of this section we will compare the condition in this

theorem with the back-and-forth criterion and see what additional informa-

tion this

The statement of Theorem 1.1 would be neater if we could avoid

reference to the sets GE;' This can be done in the case where GE; can

be taken to be all isomorphisms of ME; and Such cases are fairly

common and include some of the most important examples.
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DEFINITION: (i) A chain Uit;}t;<w
1

of raode Ls is good if for all

t; < v < every automorphism of I.it; extends to an automorphism of

fA •
\!

(ii) A model M of power wl is decomposable if it can be written

as the union of a smooth good chain of countable models.

TliEOREM 1.2: Assume M and N both have power

decomposable. Then the following are equivalent:

and M is

(i)

and

(ii) M and N can be written as the unions of chains

of countable models such that
? e, wl

for all

and

ana

}
t;<wl

(iii) M

{Nt;}t;<w
l

is a good chain;

and N can be written as the unions of chains

of countable models such that

for all v < t; < W

1

where the models Mt; can be required to come from any smooth chain of

countable models whose union is M.
In this paper we will only prove Theorem 1.2 and will leave the

more involved case of Theorem 1.1 to a subsequent paper. The following

two important examples show the applicability of Theorem 1.2.

EXAMPLE 1: Let M (M,:::) be an wl-like linear order. Then M
is decomposable since it can be written as the union of a smooth chain

of countable initial segments, and any chain of initial segments is

clearly good. Using (iii) of Theorem 1.2 we see easily that M N

iff N is wl-like and there are increasing sequences <mt;>t;

<n > such that
t; t;<

and

<m
(M t; ,m )

v

<n
(N t; ,n )

v
for all v < t; < wl '

andif NO 50. Nl
a set of free

K ::: wl
we write NO Nl
can be extended to

and Nl are both R-free

free generators for NO
If NO
a set 0

<mt;
where M is the submodel of M whose universe is {x EM: x < m j ,

t;
EXAMPLE 2: Let K be some class of algebras having K-free alge-

bras on K-generators for all non-zero (see [3] for definitions).
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generators for Nl. Let M be K-free on wI-generators. Then M is

decomposable since it can be written as the union of a smooth chain

of countable free subalgebras such that Mv I whenever

v < < w1 ' and clearly any chain under is good (if

freely generate M, let be the subalgebra generated by

It follows from Theorem 1.2 that, if N has power wI' then M = Noow
liff N can be written as the union of a chain under I of countable

K-free algebras. This characterization was first obtained directly and

announced by the author in [7]. Note that if K is the class of abe-

lian groups, then

summand of N
l
;

NO I Nl holds iff Nl is free and NO is a direct

a characterization of abelian groups which are Loow
l

elementarily equivalent to free abelian groups was also given in [2],

see also the discussion below.

REMARKS: (1) Results similar to Theorems 1.1 and 1.2 hold even

without the assumption that N has power wI' They will be discussed

in a future paper.
I

(2) As mentioned in the introduction, versions of Theorems 1.1

(let

in place ofK

M =

and 1.2 hold for arbitrary uncountable regular

and they also will be given in a future paper.

(3) The back-and-forth criterion for Loow -elementary equivalence
1
N iff there is a non-oow

l
empty set G of isomorphisms between countable submodels of M and

N such that for any g E G and any countable M
O

M, NO £ N there

is some g' E G such that g g', M
O

£ dom(g'), and NO ran(g').

Thus the condition in Theorem 1.1 clearly implies M = Noow
l

G = What Theorem 1.1 adds to the back-and-forth characteriza-

tion is the additional information that the domains and ranges of the

partial isomorphisms in G form chains of corresponding submodels.

To appreciate what this means, let us look at Example 2, the K-free

algebras. It easily follows from the back-and-forth criterion that

can be expressed as follows (see [8]):

w -
1

is theNwI-generators) iffK-free onisM(whereN = Moow
1

union of a set S of countable free subalgebras which is w-directed

under (i.e., every countable NO N is contained in some Nl in S,

and given finitely many Nl, ,N
k

in S there is some N' in S

with N. I N' for all i = 1, ,k). Theorem 1.2 implies that, for
1

N of power wI' the collection S can be taken as a chain under

(more generally, that S is wI-directed under I). I see no way of

getting this stronger form in general without considerable additional
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argument along the lines of the proof of Theorem 1.2. The stronger

conclusion that S can be taken as a chain under is used in section

3 to show that the K-free algebra on wl-generators can be embedded in

every algebra L -elementarily equivalent to it. The characterization
cowl

for abelian groups found in [2] is the weaker version.

2. THE PROOF OF THEOREM 1.2.

M of power wl we
cowl

whose union

be any smooth chain of

and a chain

For any N-

cofinal inIneed to find some

Clearly (iii) implies (ii) since M is decomposable and hence can

be written as the union of a smooth good chain of countable models.

If (ii) holds then every isomorphism of with extends to

an isomorphism of M
v

with N
v

for any v since is a

good chain. Thus the back-and-forth criterion yields (i).

The remainder of this section is devoted to showing that (i) implies

(iii) .

Let M have power w
l

and let

countable models whose union is M.

is N and such that

v <

If N - M we want to define what it means for a countable

NO
cowl

NOf- N to be in N; the intention being that is

in N if NO inside N looks like inside M. Since almost all

countable extensions of inside M are M ' s for u > we want
NO

u
to be in N almost all countable extensions N' of

NO inside N are such that

jl >for

°We therefore define a game G(N,N as follows: players (I) and (II)

play alternately, each picking an element of N and a countable ordinal

at every move; after W moves we form the submodel N' of N generated

by the elements of N chosen and the supremum of all the ordinals

chosen; (II) wins if

We define NO

for the game

is in

°G(N,N ,0.
N to mean that (II) has a winning strategy

More concisely we could write that NO is in N iff
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Certainly ME; is E;-like in M. There will normally be other

E;-like submodels of M, but the following holds:

(1) If M
n

is in M, for all nEw, then there are

arbitrarily large countable such that

for every nEw.

The second player has a winning strategy in each game

We will play all these games simultaneously with (II) using

strategies. Furthermore, we will have (I) play in the fol-

PROOF:

G (M ,Mn
, u i .

n
his winning

lowing way:

(i) in each game (I) plays every x E M and every ordinal E;

played in any of the other games;

(ii) in each game (I) plays every element of ME; for every E;

played;

(iii) in each game (I) plays large enough ordinals E; so that

every x M played belongs to ME; for some E; played.

Now (i) guarantees that we end up with the same submodel M' and

the same ordinal in each game (ii) and (iii) guarantee
n

that M' M, Since (II) plays his winning strategies we are guaranteed

that

for all n E (D.

nO list the

is E;-like

and

Then

L=w -elementary equivalence.
1

that (M ,iliO) '= (N 0) where
=00

10 °M and M .

Assume(2)

\lhat makes being E;-like suitable for our purposes is that it is

preserved under

universes of countable submodels

in M iff NO iSE;-likein N.

PROOF: Say, for example, that MO is E;-like in M, Then (II)

win ° of both players in °can G (N,N ,E;) by taking the roles G(M,M ,E;),

° and a countable Then inIn G (N,N ,E;) let (I) choose yo E N E;o'
G(M,MO,E;) we have (I) choose the same E;O and some xOE M such that

(II) then uses the winning strategy in G(M,MO,E;) to choose Xl E M

°and E;l' (II) 's strategy in G(N,N ,E;) is to pick the same E;l and

some Yl E N so that
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->-0
- cow (N , n , Yo' Y1 ) •

1

(II) always moves so that the plays in the two games areThus, L
cowl

o
elementarily equivalent. Since (II) wins G(M,M he will also win

(This argument is essentially in [6] where Keisler shows

that certain sorts of game sentences are preserved by L -elementary
cowl

N M.
cowl

(3) Assume that M - N, and let N
n be lJn

-like in N for
cowl

each n E w. Then for any y E N and any countable lJ there are

countable lJ ;> lJ' and N' c N such that N' is lJ- l i k e in N and

for all nEw.

PROOF: If M = N then (3) is true by (1). For M == we

use (2) to reduce the question back to M again. So,

ate the universe of N
n , for each nEw. We can find

M such that

let
4n
x and

enumer-

x in

4i
(M,x,x ).

l<W
). .
l<W

If M
n

is the submodel of M whose universe is listed by
4n thenx ,

Mn is )In-like in M by (2) • So by (1) there is some u ;> lJ such

that x E M and
u

(M ,M
n ) - (M,M ) for all n E w.

u lJ lJn

4* 4*
suchIf x lists all elements of M then we can find y in N

lJ
that

4* +i ->* +i
(M,x,x ,x ). - (N,y,y ,y ) i<wl<W coWl

+*
lJ- l i ke N' which is clearlyThen y lists the universe of some c. N

as desired. -j

Finally, let N M have power By using (3 ) wl
times

we can find a cofinal I h wl
such that is in

the chain, and

and a chain

N for each

of submodels of

is the union of

N
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v < E,.

ables.

This completes the proof of Theorem 1.2.

3. EMBEDDING AND CATEGORICITY.

In this section we first use the characterization from section 1

to obtain a simple sufficient condition for M to be embeddable in

every. model L -elementarily equivalent to it; in fact the embedding
cowl

will be L -elementary for formulas with just finitely many free vari-
cowl

DEFHUTION: (i) A function f with domain M and range N

is weak (co,wl)-elementary on Minto N if

- (N,f(aO),···,f(a»cowl n

for any finite number of points aO,···,an from the domain of f.

(ii) M of power wl
is (oo,wl) if M can be written

as the union of a smooth chain {ME,}E, of countable models such that

any function f mapping ME, into M which is weak

on M can be extended to a function mapping all of

is weak (oo,wl)-elementary on M.

We leave to the reader verification that any

linear order is (co,wl)-homogeneous and also that any

on wl generators is (co,wl)-homogeneous.

(oo,wl)-elementary

Minto M which

wl-like dense

K-free algebra

THEOREM 3.1: Let

let M = N. Then Moowl
weak (co,wl)-elementary

of such images of M.

M of power be

can be embedded in

on Minto N; in

(co,wl)-homogeneous, and

N by a function which is

fact N is the wl-union

whose union is M; since M

M 's all corne from a smooth
E,

given in the definition of

A let M(A) = Me Then

PROOF: He assume that N also has power wl'
for simplicity.

Let {M E,} E,<w
l

, {NE,}E,<W
l

and GE, , E, < be as given by Theorem

1.1. In fac.t the proof of Theorem 1.1 shows (just as in 1. 2) that the

ME,'s can be taken from any smooth chain

is (co,wl)-homogeneous we may assume the

chain whose models all have the property

(co,wl)-homogeneity. For limit ordinals

M(A) MA, but every M(A) still comes from the chain showing that

M is (oo,wl)-homogeneous. Thus {M(A) iimitA<w
l

is a smooth chain

whose union is M and having the property given in the definition of
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(oo,wl)-homogeneity.

Let G(A) be the set of all isomorphisms of M(A) into NA which

are weak (oo,wl)-elementaryon Minto N. If hn E G(An) for all

nEw and hn £ hn+l for all n, then hn E G(A) for A =
Similarly, we see that G(W) O. We will show that any hO E G(A) can

be extended to some E G(n) for some n > A. This will establish

the theorem since we will then be able to embed Minto N by a func-

tion which is the union of functions from G(A) 's, hence is weak (oo,wl)-

elementary on Minto N.
-1

So, let hO E G(A) be given. Pick any go E GA· Then go 0 hO
maps M(A) into MA and is weak (oo,wl)-elementary on M, hence it

can be extended to some I defined on all of M which is weak (oo,wl)-
elementary on M. Since the M(A)'S form a smooth chain there is some

n > A such that the restriction f of I to M(n) maps M(n) into

itself. Let gl E G
n

be such that go h gl and let gl 0 f.

Then is as desired.

COROLLARY: If

embedded in any N -
on M into N: in

in such an image of

M is K-free on wl-generators then M can be

M by a function which is weak (oo,wl)-elementary
oowl
fact every countable subalgebra of N is contained

M.
Finally, we mention a theorem which (for special sorts of M) ex-

actly characterizes when there is some IJ of power such that

M = Nand M N. The proof of this, and several related results,

will be given in a subsequent paper.

DEFINITION: (i) M of power

can be written as the union of a smooth

models such that

is freely decomposable if M

good chain {M} of countable
E; E;<w

l

if*cas in (i) we write{ME;}E;<w
l

1 0
(N ,N ) (Ml,MO)·

is good if NO £* ME; holds for all sufficiently

Given a chain(ii)

(iii) NO h M

large E; < WI.

THEOREM 3.2: Let M of power WI be freely decomposable. Then

the following are equivalent:

(i)

M N;

there is some N of power such that M

*(ii) there is some chain of length wunder h of countable



NO * NlK-free on generators. Then <;;. means just
NO is not finitely generated, and Nl is not finitely
NO. And NO s, M is good iff NO I M and NO is K-free
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good submodels of M whose union is not a good submodel of M.

EXAMPLE 1: Any wl-like dense linear order is freely decomposable,

and (ii) holds. VIe leave the verification of this to the reader. The

conclusion that there are Loow -elementarily equivalent non-isomorphic
1

wl-like dense linear orders was previously known; see [11].

EXN4PLE 2: Any K-free algebra on wI generators is freely de-

composable. If K is the class of groups or of abelian groups then

(ii) holds.

Let M be

that NO I Nl ,

generated over

The corresponding conclusion for

are

was

+1
The consequence that there are abelian groups of power

Loow -elementarily equivalent to free abelian groups but
1

first obtained by Eklof [2].

W
l

which

not free

groups has also been obtained by Mekler [10].

Some of the deepest results about algebras infinitarily equivalent

to free abelian groups are due to S. Shelah. Many of these results are

proved using games similar to the ones we use, and are known to hold

for more general classes K than just abelian groups. As an example,

see the recent paper [5].
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ON RECURSIVE LINEAR ORDERINGS

Manuel Lerman(l)
The University of Connecticut

Storrs, Ct. 06268 U.S.A.

We consider questions about recursive suborderings of recursive linear orderings,

and about representations of sets by recursive linear orderings. These questions

were raised by Rosenstein [R] in a draft of his book (all references to Rosenstein's

book are to Chapter 16 of that book). Our motivation to try to answer these questions

came from a seminar presentation of R. Watnick in which these questions were raised.

Let w be the order-type of N, the set of positive integers; let w* be the

order-type of the set of negative integers; and let n be the order-type of the set

Q of rational numbers. Order-types are added by concatenation, e.g., w* + w is the

order-type of the set Z of integers. Order-types are multiplied on the right, e.g.,

w . n is the order-type obtained by replacing each point in Q with a copy of N.

It is easily shown [R] that any infinite recursive linear ordering must have a

recursive subset with one of the following order-types; w, ["1" w + w*, w +(w*+w) ·n+w*.

Rosenstein asks if all these order-types are necessary. Clearly wand w* are

necessary, and Tennenbaum has constructed a recursive linearly ordered set of order-

type w + w* which has no recursive subset of order-type w or w*. In Section 1,

we construct a recursive linearly ordered set which has no recursive subset of order-

type w, w*, or w + w*, thus showing that all the above order-types are necessary.

Let a be an order-type of an infinite linear ordering, and let A be a set of

natural numbers. An a-representation of A is a linear ordering of order-type

a + a
o

+ a + a
l+...

where {a
i}

is a listing of the elements of A (repetitions

are allowed in this listing). If {a
i}

is a one-one enumeration of the elements of

A in order of magnitude, then a + a
o

+ a + a
l

+ ... is an a-representation of

A in order of magnitude. Rosenstein [R] asks for characterizations of those sets

which have recursive w* + w-representations in order of magnitude, and of those

sets which have recursive n-representations in order of magnitude. We show in

We

of magnitude if

Let M(JC*)
a
[R]

w* + w-representation in order

n-representation in order of magnitude}. Rosenstein
o 0 *.f ; and Fellner [F) has shown that 11

2
£ M(<>C

o)
.

n-representations are studied in Section 3.

a recursive

a recursive

M(Jf:)
1, 0

F We also classify the degrees of those sets which have

n-representations.

has{A : A

recursive

Section 2 that A has
. 0

and only if A f 1:
3

.

show that

notes that

(1) Research eartiallv supported bv the National Science Foundation under
Grant #MCS 78-01849.
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1. RECURSIVE SUBORDERINGS OF RECURSIVE ORDERINGS

Rosenstein [R] shows that any recursive linear ordering must have a recursive

subordering of order-type w, w*, w + w*, or w + (wk+w) ·n + w* and asks if all

these order-types are necessary. The positive and negative integers respectively

show that wand w* are necessary. Tennenbaum has shown that w + w* is nec-

essary (a proof appears in [R]). We now show that all the order-types in the list

are necessary.

DEFINITION 1.1: A string is a finite sequence of integers. Given strings 0 and

T , 0 * T is the string obtained by concatenation, and lh(o) is the length of 0 ,

or the cardinality of the domain of o , xl' will denote the set of all strings, and

will denote all strings of integers <no

THEOREM 1.2: There is a recursive linear ordering having no recursively enumerable

suborderings of order-types w, w*, or w + w*.

Proof: We will construct a recursive linear ordering L whose universe is N.

e f N} be a recursive enumeration of all the recursively enumerable sets,

whose induced ordering is not or w + w*.

form aW
e

w, w*,

e , N, we guaranteeFor each

which has infinitely many pre-

s}

W
e
Thus the elements ofL.

L

{x : x has appeared in We by stage

is infinite, then there is an x e
e

recursively enumerable subset of

that if W
e

decessors and infinitely many successors in

with

e,for someW
e

Since every recursively enumerable subordering of L has universe

this will suffice to prove the theorem.

We begin by describing the process through which the requirements Ro and R
l

corresponding to the sets W
o

and WI respectively are satisfied. The construction

begins by designating 0 as the smallest element of Land 1 as the largest ele-

If

N-{O,l}

L be

does not

and (x ,1). R dic-
o 0

(except those elements

(0, x
o)

(0, x )
o

appears in this interval.W
o

changes the constraint it imposes to the interval

are to be enumerated in

establishes two intervals,

N

Then R
o

elements of

already enumerated) until, and if, an element of

ment of L. R
o

establishes the constraint that all remaining elements of

enumerated in (0,1). If no element of N-{O,l} appears in W
o'

then R
o

act again; W
o

is then finite. Suppose that a first element, say xo' of

appears in WS
o

tates that all

such an element appears, then R
o

(xo,l) etc., alternating between the intervals and changing intervals each time a new

element of W
o

appears in the currently designated interval. Thus if Wo is not

finite, then X
o

will have infinitely many predecessors and infinitely many successors

in L.

At each stage beyond the first stage, R
l

reacts to the interval designated by

designates an interval within the interval designated by Ro' and plays a

strategy similar to that played by R
o

within each of the possible intervals

designated by R
o.

Thus if WI is infinite, R
l

will succeed in forcing an
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in L.
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to have infinitely many predecessors and infinitely many successors

We now describe the construction .

.Stage 0: Place 0 < I in L.

Stage s+l: We define a finite sequence 0s+l <:: of length s+l which selects

the designated intervals. The definition proceeds by induction on j 2 s and by

cases. Let t(s,j) be the greatest stage t < s such that t > j and 0t[j] =

a
s
+1 [j] (at [j] is the sequence of length j which is extended by a) if such a

t exists, and t(s,j) = 0 otherwise.

Case 1: t(s,j) =0. Let 0s+1(j)=0 and I(os+1[j])=

(1(0s+1 [j]) is the interval designated by the requirement R
j

at stage s+l, assuming that [j-l] selects the designated

i < j.)

I(0s+1 [j-l]).

corresponding to

intervals for R
i
,

s+l
Case 2: t(s,j) F 0 and 0t(s,j)(j) = O. If I(0s+1[j-l]) n(Wj

fix the least x in this intersection. Let I (os+l [j-l])= (a,b). Set

I (os+1 [j-l] ;(1) = (a,x) and I (os+1 [j-l] ;(2) = (x,b) and let 0s+l(j)

Otherwise, let 0s+l (j) = O.

1.

Case 3: t(s,j) F 0

I [j-l] * k ) n (W.
s
+
l

J
os+1 (j) = k .

and

_ Wt

j

Le t o ( . ) (j) = k f {l, 2} • If
t s ,.1

0s+l (j) = 3 - k. Otherwise, let

In all cases, place s+2 into L as the least element of I(os+l[s]).

This completes the construction. Note that for all n, there are only finitely

many o such that Lh I o ) n , Thus it is easily verified by induction that

N - U{I : lh(o) n} is finite for all n. Hence if W. is infinite, then there

is a Oo{ such that Lh I o) j, {s : 0s[j] =o} is and W
j
n 1(0) is

infinite. By Case 2, 0s(j) = 0 for only finitely many s, and so by Case 3,

{s : 0s[j] = a * I} and {s: 0s[j] = 0* 2} are both infinite. Hence there is

an x W
j

wh Ic h has infinitely many predecessors and infinitely many successors in L.

2. w* + w -REPRESENTATIONS

DEFINITION 2.1: Let L be a linear ordering. The spectrul1!c of L is M(L) =

{n s N : L has a maximal finite interval of cardinality n }. If L is a set of

linear orderings, t hen M(at') = {M(L) : L G <if}.

Rosenstein [R] investigates M(oC) for various classes oz:: of recursive linear

orderi.ngs.

w* + w-representations.In this section, we investigate

M(L) is a

It is easily checked that if
o

1:
3

set.

L is a recursive linear ordering, then

Let be the class

of all recursive w* + w-representations, and let be the class of all
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a
L)"

expressed
aL
3.

We

such that

aL
3

sets.

Then there is a recursive functionset.be aALet

Fellner shows that A C M(o(o)
aas a conjunction of L
2

and

begin with a discussion of

w* + w-representations in order of magnitude. Rosenstein shows that M(;CJ

for every A C N such that x G A can be

formulas. We will show that

<n,m> x N;

for each n e N,

(1) if n e A then there is exactly one m such that rng(f) n <n,m> x N

and

(2) if n f A then for all m, rng(f) n <n,m> x N is finite.

Thus each n N is assigned a copy N x N of the plane, f fills in on each

copy of the plane, filling in an initial part of each column and at most one full

column on any copy of the plane, and n e A if and only if the nth copy of the

plane has a complete column filled in by f.

Fix a one-one recursive correspondence, k "N} of N with N
2
. We

say that <n.,m.> if i < j.
J J

Each a <: --/2 will be used to guess at which of a certain sequence of columns

is finite, and which is full. o(k) will make this guess for <n
k,

correspond-

ing to column On copy n
k

of the plane. o Ik) = 0 will be the guess that f

enumerates the whole column, and o(k) 1 will be guess that f enumerates

only finitely much of column on CO?y n
k

of the plane. The inclusion ordering

is placed on .4., producing a tree. A priority ordering is also placed c

having higher priority than T if o C T or if oCx) < T(X) for the least x such

that o(x) F T(X).

The enumeration f:N 7 N3 induced by the set A will determine which

string (i.e., the branch on the is to be selected at stage a of the

construction. A strir.g a is dormant:. at stage s+l unless all T C o are discharg-

ed at the end of stage s, which case a is active at stage s+l. While a is

active, say beginning at stage s+l, each k < Ih(o) such that o(k) o receives

a check for a at stage t > s if f enumerates an element Ln column at

stage t. (} requires attention at stage s+l if each k < lh(o) such that

o(k) 0, has received a check for a which has not been cancelled. Existing checks

for 0, as well as the discharged state of a may be cancelled at stage t because

some T of higher priority than (} requires attention at stage t, in which case

a must wait again until it becomes active and then begin accumulating checks anew.

The o of highest priority which requires attention at stage t , say at' is the

one which determines the action of the construction at stage t . For each n N,

let Y
n

be the string of highest priority such that Ih(y
n)

nand

infinitely many t. It is easily shown that Y
n

is defined for each

for

and

that if i < j then Y
i

C Y
j.

h
n
} codes A in the following sense:

<x,m».



136

Let r u{Y
n

: n <= N}. The priority ordering of can be extended to "-nclude

r by letting a have higher priority than r if and only if 0 has higher priority

than Y
n

for all but finitely many n. It then follows that

(4) 0 has higher priority than r if and only if 0 has higher priority than

Os for all but finitely many s.

The above procedure to select at from A yielding (3) and (4) is a standard

procedure of recursion theory. This procedure is now used to prove:

THEOREM 2.2: If then A has a recursive w* + w-representation in order

of magnit ude.

Proof: Let {a
i:

i (0 N} be an enumeration of A in order of magn i t ude .

Since A can be modified finitely without effecting its representability, we may

assume that 0 +A. Fur t he r rmr e , we may assume that A is infinite, else the theorem

follows easily. T:le ordering L wh ich we build will have order-type

w + L{a
i

+ (w* + w) : i N}. w* can be recursively placed at the beginning of L

to get the desired representation.

During the construction, n-tuples will be assigned to strings for k" N, and

such assignments may be cancelled. Assignments of n-tuples will have the property

that if Teo "- 4, k < Lh I r ) and an n-tuple is assigned to a for k at stage s,

then that same n-tuple is assigned to T for k at stage s.

The construction proceeds as follows:

Stage 0: ¢ is discharged. Assign the ao-tuple <O,l, ... ,ao-l> to ¢, and

place 0.0(1 -<... -.<a
o

1 into L, where -< is the ordering of L.

Stage Choose 0s+l as described above, ana let k + 1 Ih(os+l) .

There are three steps.

Cancellation: Cancel all assignments of n-tuples to those strings T having

lower priority than 0s+l'

Interval Maximization: For each 6 cO
s
+
l

and each n-tuple <bo, .. ·,b
n_l

>

assigned to for lh(6), place a new integer into L immediately preceding

and another new integer into L immediately following b
n_ l.

b
o

if any,

for some

r < k ,Fix the least

All n-tuples assigned to

If 0s+l (k) I or if nk < a o' proceed

1 and n
k

> a. Let c, ... ,c be
o 0 '1<:1

L, wi t h Co < c
l
< ••• <c

n
-1; assign the

k
These integers are inserted into L as

Let 0s+l 0s+l[k-l].

°s+l for the same j.

Suppose that 0s+l (k)

n
k

. integers not yet placed in

Realization:

the least

are assigned to

to the next stage.

nk-tuple <co,···,cn -1> to 0s+l for k.
k

an interval of :.. in order of magnitude as follows.

such that
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(i) G
s
+
l
(r) = O.

(ii) n
r

> n
k
•

(iii) Y v < k (G
s
+1 (v) o -+ n > n orv r

is readily seen to be recursive. We

Insert

exists,r

r.for

If no suchd .
a

1.

nr-tuple assigned to

immediately preceding

be the

L

<do,···,dn -1>
r

intoCo'··· ,en -1
k

co,···,cn -1 are inserted at the end of
k

This completes the construction. L

Let

conclude the proof of the theorem with some lemmas.

LEMMA 2.3: 0' # $ is assigned an n-tuple for r at all sufficiently large stages if

and only if has higher priority than r, G(r) 0, and n > a •
r 0

Proof: If a does not have higher priority than I', then by (4), all

assignments of n-tuples to a are cancelled at infinitely many stages. Conversely,

if 0 has higher priority than rand 0" o, then by (4) there mus t be a las t

stage t at which at = 0; and for all

0' is assigned an nr-tuple at stage t

never cancelled at any stage s > t.

s > t, Os

exactly if

has higher priority than G.

n
r

> a
o

and this assignment is

We also note that the ao-tuple assigned to $ at stage 0 is never cancelled.

of L.

and that the n-tuple

r

Suppose that y c r

for r and never cancelled. Then {do"" ,d
n
_l}

<do' ... , d
n_ l

> is assigned to

is a maximal finite interval

Proof: Let <do"'" be assigned to y c r at stage t. Since this

assignment is never cancelled and y c r, y has higher priority than G
s

for all

s > t and yeas for I nf i n i t e Ly many s. The lemma now follows from the interval

maximizat ion process.

(i) The order-type of {x (; L : x -< O) is w. (ii) Given any x L

there are d e Land y c r such that x d and d is an element of an m-tuple

which is assigned to y for some r and never cancelled.

Proof: (i) is immediate from the interval maximization process and the require-

ment that new intervals are added only for n
k

> a
o'

We now verify (ii). By (3)

and since A is inf:'nite, it follows that there are :'nfinitely many y C r such that

if k lh(y) then G(k-l) - 0 and n
k_l

> n
r

for all r < k - I such that

G(r) O. Hence there are infinitely many stages s at which the realization process

attaches an interval to the end of the part of L constructed before stage s , and

this interval is assigned to some y c r and never cancelled. d can be chosen for

x as an element of such an interval.

LEMMA 2.6: Suppose that u,v [A, u < v, and A n {x : u < x < v} $. Then there

are unique maximal intervals {bo, ... ,b
u_l}

and {co' .•. ,c
v_l}

of L of lengths u
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and v respectively. Furthermore, {x L : b
n_ l.4x

"""Co} has order-type w* + ra .

Proof: By Lemma 2.3 and since for each n A there is exactly one m such

that the column corresponding to <n,m> is full, {b
i:

as above exist and are unique. Fix do' d
l

(. {x '" L :

i < u} and {c
i:

i < v}

.-J. x -< co} with do -<. d l,

and let Fix a stage s
a

such that d
a

and

{x c [do,dl]
: for

by the end of stage s,

s} . By Lemma 2.3,

a has lower priority

have been placed in L by the end of stage so' Let R(s)

some a and r, x is in an interval assigned to a for r

but this assignment is not cancelled before the end of stage

if x E R(s) is in an interval assigned to a for r, then

than r so interval is eventually cancelled; hence there is at> s such that

R(s) n R(t) <p.

and is assigned to

If a new interval is inserted into [do,d
l]

at some stage t > So

1:, then 1: has lower priority than a for all a for which

there is an x E R(so)

such that R(sl) <p.

in an interval assigned to a. Thus there is an sl > So

Thus neither the interval maximization nor the realization

processes insert new elements of L into [d
o,d1]

after stage sl' so [d
o,d1]

is finite. The lemma now follows from Lemma 2.4 and the interval maximization

process.

The now follows easily from the initial comments in the proof and

Lemmas 2.4-2.6.

The following corollary is immediate from Theorem 2.2 and the facts that

0 s. of and M(,?\') 1:;

COROLLARY 2. 7: M o
M(X') = 1:

0

3

3. n- REPRESENTATIONS

We now turn to n-representations. Since each interval of order-type n can

be cut to represent 0 and I infinitely often, questions about n-representations

are only interesting for sets A eN - {O,l}. Thus we study M*(L) = M(L) - {O,l}

and M*(,() = V {M*(L) : L e K}.
Again we concentrate on two classes of representations. Let be the class

of recursive n--representations and let -: be the class of recursive n-representa-
a

tions in order of magnitude. The classification of n-s pect r a for these classes of

Tj-representations is still incomplete. The following facts are known (see [RJ):

(1) M{,,('*) c. M(/) 0

o - s 1:
3

(2) M(q-:> f;
;:,0

3

(3)
0

C M(.<") •1:2 - 0

Fellner [F] has also shown that:
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Our first result shows that the arithmetical hierarchy cannot be used to classify

the spectra of,;;(* or «:
a

THEOREM 3.1:

any L .r:
There is an

o
A £ 1\3 such that AcN-{O,l} and A " M*(L) for

I'll is will be our

We will also need toA.

has a maximal finite interval of

: i e. N} of all partial recursive

set. We will use a D oracle to

and keep the cardinalities of some ofL.
1

which is constructed.Aset

L
i

does not represent

cannot tell us whetherD L.
1

It can locate finite intervals, however, and expand them until they

infinite.

n.

A

Proof: Fix a recursive enumeration

length

o
these intervals out of the 1\3

basic strategy to guarantee that

make

linear orderings. Let D be a complete

locate maximal finite intervals of the

become maximal (the expansion continues forever if the interval

maximal finite interval). In the latter case, L
i
f/'. Each

by <i' and we define [a,bJ i {x E Li a ':':.i x b }.

The D oracle can answer the following ques t i.ons :

is not part of a

L. will be ordered
1

(5) Is L. total?
1

(6) Does L
i

have an interval of cardinality n?

maximal finite interval of L.?
1

(7)

(8)

Is

Is

an interval of L.
1

of cardinality n?

(9) Is [a',b'J
i

an interval of L
i

of cardinality n+l which extends the interval

[a,bJ
i

of L
i

of cardinality n?

We will construct a set A recursively in D which is not n-represented by
o

any Since A is recursive in D, A E: 1\3. At each stage of the construction,

intervals will be to finitely many L
i.

Such assignments may be

at later stages. may be at a stage; this will mean that L
i

does

not n-represent A. The construction proceeds by induction on {s: s > I}

There are four basic steps In the co ns t r uc t Lori ,

For each 1.. < s to whtch an tnterval

the end of stage s-l, we ask whether the Lnt e r vaL

s s
[ai,btJ t ts assigned at

It ts a maxtmal ftnite

tntervalof L
t

of cardinality s (use (7) ana (0). If tne answer is no for all i,

place sEA and go to the ReaHzation step. If the answer I s yes for some L, let

l(s) be the least such i.

Cancellation step.

Place s I!- N - A , discharge Li(s)' and go to the

Go to the Expansion step.

Cancellat 1..0:1: Cancel the asstgnment of L. for all
1

1.. > i (s) .
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is not discharged and no intervalRealization: Fix the least i such that L.

is currently assigned to L
i
. If is not total (use (5», discharge L

i
and go

to the Expansion step. Suppose that is total. Use (6) to ask if L
i

has a

finite interval of cardinality s+l. If the answer is no, discharge L
i

and go to

the Expansion step. If the answer :s yes, use (7) and (8) to fix a finite interval

of L. recursively in D which is not maximal and has cardinality s, and
l 1 l 1

assign this interval to L
i
. Go to the Expansion step.

Expansion: For each i < s such that an interval is currently assigned to L
i
,

the assigned interval will have cardinality s but will not be maximal. Use (9) to
s s

find, recursively in D, an interval li e [ai,bili of L
i
of cardinality

s s
s+1. This interval is now assigned to in place of [ai,bili. Go to the next

stage.

This completes the construction. The construction is recursive in D, so
a

A "11
3
' Suppose that i(s) is defined. Then Realization is not followed at stage

s. Hence by Cancellation, if i(s+l) is defined, then i(s+l)< i(s). Thcre must

then be infinitely many stages s such that i(s) is not defined; for each such

s , s c A so A is infinite.

L.
J.

will be

v > u > t

such that for

such that an

v+l

is an interval of

Note that Realization will

> t }

and Expansion if

of cardinality

s be the first stage at which L
i

is

L
i
n-represents a finite set or L

i
L, has a maximal interval of cardinality

is not discharg-

at stage

does not n-represent A. Fix i E N.

Let

t > s
- 0

li of L i
v v

V{[ai,bili : vThusv-t-L,

is assigned to

t . Then by choice of
v v u

[a i ,b i li ::> [ai'

at stage

cases, L
i

cannot n-represent A. Suppose that Li
i : L

j
is discharged}. Then there is a stage So

is discharged at the end of stage so' Fix t > So

L.

J = {j

We now show that for all i • N,

is discharged.

Let

In all theses .

First suppose that L
i

discharged. Then either

ed.

L. is not total or

does not n-represent any set or s A and

then a finite interval

assigned to

all jeJ, L
j

interval

produce such a stage

having order-type w, w*, or w* + w, so is not an n-representation of any set.

This completes the proof of the theorem.

Although the arithmetical hierarchy cannot be used to classify the

Turing degrees of sets in can be neatly classified.

DEFINITION 3.2: For any set A C N, let A denote the Turing degree of A. If e
is a class of subsets of N, then e :

Proof: Fix A* {2n:n e A} V {2n+l:n EN}. Clearly A = A*.
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We will construct an n-representation L of A*. As in Section 2, the fact that
o

A provides a recursive one-one correspondence between ordered pairs

<n,m>EN
2

and columns {ilxN5N2 (let {i(n,m)}xN correspond to <n,m» anda

recursive enumeration of elements in the columns such that for each i either all

or .finitely much of {i} x N is enumerated, and:

(10) nEA ->- 3m(all of column {i(n,m)} x N is enumerated).

(11) nEA ->- Vm(finitely much of co Lunn {i(n,n)} x N is enunerated).

For each i E N we will uniformly recursively construct an interval 1.. L
1

will be a recursive linear ordering n-representing A* defined by L = {\ i

ordered by 1
0

< 1
1<
.... li(n,m) will have order-type D+n+n if either n is odd

or if n is even and all of column {i(n,m)} x N is enumerated; and li(n,m) will

have order-type n+(n+l)+n otherwise. By (10) and (11), L will then n-represent A*.

li(n,m) is easily constructed. If n is odd, directly recursively construct

an interval of the desired order-type. If n is even, begin by specifying an inter-

val of Ii(n,m) of cardinality n , At each stage, this interval is placed inside

a designated interval of Ii(n,m) of cardinality n+l, with care taken to guarantee

density outside this interval. Whenever a new element is enumerated in column

{i(n,m)} x N, the n+l s t element of the designated interval is separated off into the

dense part, and a new candidate for an n+l
s t

element of the interval is specified.

The original interval together with this new element now becomes the designated inter-

val. If all elements of column x N are enumerated, then all candidates

for the n+l
s t

element of the interval will eventually be separated off into a dense

part of Li(n,m)' so Li(n,m) will have order-type n+n+n. And if only finitely

many elements of column {i(n,m)} x N are enumerated, there will be a last candidate

for the n+l s t element of the interval, so L. ( ) will have order-type n+(n+l)+n.
r. n,m

This completes the proof of the theorem.

We note that the proof of Theorem 3.3 can easily be modified to show that if

this point is unsatisfactory. It seems to

and C M*(..e:) can be combined and

is not immune, then there is anA 1: L
O

and A
3

The characterization of at
o

us that the proofs showing

n-representation of A.

extended to construct a recursive n-representation of any set L for which there

are column representations for both A and N A and a function f such

that if n to A (or n '" N - A) then there is a column corresponding to <n,m> all

of which is enumerated, and m fen). We have not attempted to prove this fact here

since, by itself, it still does not yield a satisfactory classification of o

We conjecture, however, that the above procedure can be carried out.

Other questions which we have considered briefly but not pursued are questions

about the classification of where is some class of n-representations
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other than ;;e* or df;' We briefly looked at one such class, class of linear

orderings such that for all n, there is at most one maximal interval of cardinality

n. In that case, it seemed likely that one could show that

but we have not carried out such a proof.
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The Complexity of Types in Field Theory

*Angus Macintyre

§o. Introduction. While studying primes in nonstandard models of arithmetic [Ml), I

proved that the residue class field of a nonstandard prime is never recursive. (Some

cases of this were anticipated by Tennenbaum, but never published). From this setting I

extracted the following conjecture:

Conjecture. Let K be an infinite recursive field, with K recursively saturated.

Then K is algebraically closed of infinite transcendence degree.

This conjecture has resisted proof, but the main result of the present paper

is a close approximation. Namely:

Theorem 1. Let K be an infinite recursive field, with K recursively saturated.

Then GK, the absolute Galois group of K, is procyclic, and K is got from K by

adjoining roots of unity. K is not formally real. If K is not algebraically

closed, then K is neither henselian nor pseudoalgebraically closed. If K has

positive characteristic, and is not algebraicaLly closed, then the algebraic closure

of the prime field in K is finite, and K is perfect.

It will emerge that the proof is a cousin of my proof that w-stable fields

are finite or algebraically closed [M2). I use an effective version of Duret's proof

[Dl) that p.a.c. fields, if not algebraically closed, have the independence property.

I also show that there is no stable counterexample to my conjecture.

The title of the paper calls attention to the complexity of arbitrary type

spaces of fields, save the finite or algebraically closed ones. From the proof of the

main theorem, I obtain:

Theorem 2. Let K be an infinite field, not algebraically closed. Let T = Th(K),

and suppose that for each n Sn(T) has cardinal < 2 • Then GK is procyclic,

and all the other conclusions in the main theorem hold.

For applications to arithmetic, a relativized version of the main theorem is

proved, where recursive and recursively saturated are replaced by analogues at arbi-

trary Turing degrees.

I am grateful to Denef, van den Dries, Duret, Poizat and Wilkie for various

suggestions.

1. The Tennenbaum phenomenon. Tennenbaum [T) first implicitly called attention to

the conflict between recursive and recursively saturated. A nonstandard model M of

arithmetic is weakly recursively saturated (definition below). From this it follows,

*Supported by NSF
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by an argument involving representation of recursively inseparable r.e. sets. that

neither the Ell nor the 0 of M is recursive.

It will be convenient to put Tennenbaum's argument in a general setting.

Let L be a first-order language. recursively arithmetized. Let C be a

subset of pew). and let V be a set of L-formulas. Let M be an L-structure.

I say M is (C.V)-saturated if the following holds:

If Z(vl •.•.• vn• wl •••.•wm) V. and the set of codes of Z

and Z(vl ••••• vn.;) is finitely satisfiable in M. then

able in M.

is in C. and al ••••• amE M.

-+
Z(vl ••..• vn• a) is satisfi-

The most familiar instance is when C is the class of recursive sets. and V

is the set of all L-formulas. Then (C.V)-saturation is called recursive saturation.

Let V be the set of all Z L-formulas. Let C be the class of recursive
n n

sets. Then (C.Vn)-saturation is called recursive -saturation. If M is recur-

Theis called weakly recursively saturated.sively Zn-saturated for all n , M

most notable weakly recursively saturated structures are the nonstandard models of

Peano arithmetic.

A useful observation. depending on a trick of Craig [C) is that recursively

enumerable saturation is no stronger than recursive saturation. For my purposes it

is useful to record the general version. Lemma 1 below.

For the purposes of this paper. I say C is closed under Turing reducibility

if whenever Al •...• An E C and A is Turing reducible to {<al •...• an> : a i E Ai}

then A E C.

Lemma 1. Suppose V is closed under A. Suppose is closed under Turing reduc-

ibility. Suppose that for each E2 in C
2

there is an El in Cl so that

E2 = {x E IN : (3y) «x.y>

(where <.> is a fixed recursive pairing function). Suppose

rated. Then M is (C2.V)-saturated.

Proof: Let Z(vl•·•· .vn'
codes of Z. Choose E

l
consist of all formulas

wI.··· .wm) V,
in C

I
so that

and suppose E2 in C2 is the set of

E2 [x E IN : (3y) «x.y> EEl)}' Let Z'

where l' E Z. l' has Godel number t and <t.k> EEl'

Then for any a1 ) · · .,an
in M. z' (;. wI.··· .wm) is satisfiable iff Z(;, wl •••••wm)

is. But the set of codes of Z' is in Cl • The result follows. 0

Now let E be a set of relations and operations on N. I say M is E-codable
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if M is countable and there is a bijection f: M which maps the basic rela

tions and operations of M to elements of E. (For the purposes of this paper I

disregard finite M).

When E is the set of recursive relations and operations, and M is Ecodable,

I simply say M is recursive.

Definition. E has the Rosser property if there are disjoint sets Al and A
Z

in

E which cannot be separated by a set in E whose complement is also in E.

For example, the set of recursively enumerable sets has the Rosser property,

bf:cause of the existence of recursively inseparable r ve , sets.

The following lemma gives the abstract version of Tennenbaum's original argu

ment.

Lemma 2. Suppose E has the Rosser property, and is closed under Turing reducibility.

Suppose V is closed under /I and contains all formulas. Let

be distinct variables. Let

k 1--> W
k(;;,

;) ,

k 1-> e
k
(;;, ;)

be recursive maps from IN to the set of 2:
1

formulas. Suppose M is such that

1)
-+

M (D, V) of disjoint finitethere is a tuple a from so that for each pair
-+

Msubsets of IN there is a b in such that

M t= wk(r, b) (k D)

M L etC;'
-+,... b) (t E V) ;

ii) M i= ('v;) [W
k
( ; , ;) ++ ., eke;, ;)] ;

iii) M is (Es,V)saturated, where E
s

consists of the sets in E.

(k E AI)

U E A
Z)

over M.
M, -+

above type is realized in say by b. Let

Then M is not Ecoded.

-+
Proof: Select a as in (ii). Fix AI' AZ E E witnessing the Rosser property.

Consider the type

t/J
k
(;, ;)

etC;, ;)

By (i) this is consistent

By (iii) and Lemma 1, the

B
l

{k M t/Jk(;' b)}
BZ

{t M etC;' b)}.
Bl n B2 0, BI U BZ = N by (ii).

If M is Ecoded, then both Bl and B2 are r.e. in a member of E. So
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But then

since they are complementary and E is closed under TuringB
I

and B
2

reducibili ty •

are in E,
B
I

separates Al and A
2
, contradiction. o

and

In Tennenbaum's original argument

Wk(w) is Pk1v

8k (w) is 7(Pk1v}

both of which are (equivalent to) LI formulas relative to P.

2. Application to fields 2.1. I now give the first application of Lemma 2.

For the rest of the paper, I assume E is fixed, closed under Turing reducibility,

and with the Rosser property. E is the restriction of E to sets.
s

*Let K be a field. with multiplicative group K. Let p be a prime. One

considers (as in [M2]) the filtration of definable subgroups

* *p *p
2

*p
n

K K K K ••••

and the corresponding projective system

K*/l ++ K*IK*P

Suppose now K* KP ,

cosets

*and let :L E K •
*p

a K . One pulls back the distinct

K"'P ·1 and
*p

through the projective the "trees!!K 'a system to get
I •• t .......... t1< 2.: aP ..... f. a ........

aP

a
P< 2

..............

aP+P ................

.>
.. , ............. f.

a _____ 1+ 2
a P .............

a <01<:"l+p ..............
l+p+ 2a . P ...................

k *pj k * j+1 k+pj * j+l
Given a K , it has natural "pullbacks" Ct K P and c • K P

The former will be called the left pullback, and the latter the right pullback.

Now let A and B be disjoint sets of integers. I want to concoct a partial

and for n E A the branch goes left at the

goes right at the mt h stage

type ZA B(v,a},
The path of v

which "says":

in the projective system is one of the branches in the above tree,

nth stage and for m E B the branch

This is easily expressed. Let f(n) (v,w) say: (for n? 2)
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th )
is a pj power

("0'.:-:'" j-2
c
r
E { O, I }

Let g(n) (v,w) say

. th
is a pJ power) .

1::::jSn
v l

j - Z
_ l: c.prj

r'<O r
v'w

cr'p r) 't p

.th
power)is a Jp

. th
power) .is a pJ

one(As will be seen,level is on a right node.

f(n)(v,a) says that up to the nth level in the projective system the

v agrees with one of those in the tree above, and at the nth level the

says that up to the nth level the branch of

So

branch of

branch is on a left node. g(n)(v,a)

v is in the tree, and at the nth

has to worry about "fusion" of left and right).

Suppose now that for each n, the elements

(
n; 1 cr.pr)

ex (crE-{O,I})

* n
have distinct cosets modulo K p (i.e. there is no fusion in the tree).

Then evidently for each pair U, V of disjoint finite sets of integers

there is in K so that

K fen)

K gCn)

n E U

n E V.

Then since f and g are recursive one may conclude by Lemma Z that either K is

not E-coded, or K is not (Es' Ll)-saturated.

So if K is E-coded, and Ll)-saturated, there is fusion. It follows

easily that for some n > 1, is a power, i.e.

n-l
l

pn
y some y, so

n-l
(l fa)P 1, so yP fa 13, 13

n_l t h
a p root of 1.
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So the coset of a mod K*P is that of
n_l t h

a p root of 1.

We now have our first step towards Theorem 1.

Lemma 3. Suppose

the cosets of K*P

K is

*in K

E-coded and (E
s
' Zl)-saturated. Then for each prime p,

th
are represented by pn roots of 1 for various n.

Corollary. If K is E-coded and (E
s
' Zl)-saturated, K is perfect.

Note: Lemma 3 easily gives the result (not a trivial consequence of Tennenbaum's

Theorem) that if M is a nonstandard model of P then its field of fractions K is

not a recursive field. The key idea to be added to Lemma 3 is that K is necessarily

weakly recursively saturated. This is a consequence of [R] and overspill.

2.2. A reader familiar with [M2] will have guessed that I must

about Artin-Schreier extensions. So I suppose K is E-coded,

ated. Let K be of characteristic p> O. Let = x
p-

x.

filtration (of spaces).
p

now get information

and (E s ' Zl)- satur-

We consider the

An argument analogous to that for Lemma 3 gives us:

Lemma 4. If K is E-coded "and (E
s
' Zl)-saturated then every coset of in K

is occupied by a root of some equation = 0 (so every coset is occupied by a

root of unity).

2.3. Lemmas 3 and 4 are very powerful, in combination with some Galois theory.

First we need

Lemma 5. Suppose K is E-coded and (E
s
' Zl)-saturated. Let L be a finite exten-

sion of K. Then L is E-coded and (E s '

Proof: K is perfect, so L = K(y) , some y. Let f be the minimum polynomial of

y over K. Let C be the set of coefficients of f. The L is Zo interpretable

in K using C ([M2]). So L can be presented recursively in a presentation of

K. So L is E-coded. Then (E, Zl)-saturation follows similarly.

Corollary: Suppose K is E-coded and (E s ' Zl)-saturated. Then for every finite

extension L of K

L are represented by pn roots of 1;

in L are represented by roots

inp, the cosets of

If K has characteristic p, the cosets of

of = 0 (for various y).

Now we apply a Galois-theoretic argument reminiscent of [M2].

L is perfect;

for every prime

(a)

(b)

(c)

Lemma 6. Suppose K is E-coded and (Es' Zl)-saturated. Then K is obtained from

K by adjoining roots of 1.

Proofl K is perfect. Let L be the field got from K by adjoining all roots of 1.
*By [M2) it suffices to show that every finite extension of L has divisible L and is
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closed under Artin-Schreier extensions.

*Let Ll be a finite extension of L. Let p a prime. Let a ELl' In

K{a). there is a pj th root S of unity so that a IS E (K{a)) *p. But Slip ELl'

* *So a E Ll• So Ll is divisible. A similar argument works for Artin-Schreier

extensions, and proves the lemma. 0

and so

has positive character-KIf

is a closed subgroup of

But, under the hypotheses of Lemma 6,

0, GAbs(K)
This proves:

is an isomorphism.

by [G], is procyclic, if abelian.

tion GK GAbs(K) is surjective.

So the restriction GK GAbs(K)

istic. GAbs(K) is procyclic [A].

If K has characteristic

Corollary. Under the hypotheses of the lemma, G
K

is abelian.

Proof: Cyclotomic extension are abelian. 0

I now sharpen the corollary. Let Abs(K) be the relative algebraic closure

of the prime field in K. The inclusion Abs(K) K is regular, and so the restric-
r--.J

K = K.Abs{K) •

Lemma 7. Suppose K is E-coded and {E
s'

Zl)-saturated. Then GK is procyclic,

and K is obtained from K by adjoining roots of 1.

This is significant progress, but many K survive the elimination process.

That is, there are many elementarily inequivalent K with GK procyclic and ]{

obtained from K by adjoining roots of 1. Unfortunately, I do not know the general

structure of such examples. For now I record what I do know, and later eliminate

these known possibilities:

Example 1. K real closed.

Example Z. Let K be an algebraic extension of Qp' henselian with respect to the

unique extension of the p-adic valuation, and having divisible value group. K is

an example, and its residue class field may be any algebraic extension of IF
P

Example 3. K any algebraic extension of IFp •

Example 4. If K is infinite in Example 3, K is p.a.c. [J-K] by Weil's Riemann

Hypothesis. Now I exhibit p.a.c. examples in characteristic O. I prefer to do so

in terms of nonstandard number theory, but it can routinely be done in terms of ultra-

products of finite fields [A]. (Van den Dries gave me essential help on this example).

Let Qab be the maximal abelian extension of Q. By Kronecker's Theorem [Ri]

Qab is the union of all cyclotomic extensions of Q. Let r Gal(Qab IQ). Then

r n U [Ri], where U is the g'roup of p-adic units. and the product is over all
- p P
primes. But [Ri] Up Z/{p-l) x 2p (p F Z) •. and Uz 2/Z x 2

Z'
So there is a

continuous epi r -» n Z Z. Let 6 be the kernel. Let F be the fixed field
p A

of /:, in Qab. Then G{!.IQ) Z. Using Cebotarev's Theorem in the style of [A] or

F/Q is procyclic, one easily obtains an ultra-

*and a nonstandard prime q in Z such that the unique extensionZ,of

[MI], and exploiting the fact that

*power 2
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is included in a

F

F
n

is pseudofinite [A] and

where Fn is the unique subfield of

[MI], and since each

*Z /qit follows that

*(Z /q) ; Z /q 0
Q

F,

*is F 0
Q

Z /q,
* n

Z /q is p va ;c ,

cyclotomic extension of Q,

*of Z /q of dimension n

of dimension n over Q.

obtained from z*/q by adjoining elements of Qab, and so by adjoining roots of 1.

This concludes my list of examples, and I now show that none of these can

provide a counterexample to my conjecture.

First, I consider formally real K.

Lemma 8. Suppose K is E-coded and (E
s
' Zl)-saturated. Then K is not formally

real.

Proof; The idea is related to that used in (D2] to show that formally real fields

are unstable. Firstly, on Q the order > is definable by

( *) 0# Ou,v,w, t) (uvwt f- o /I X ; u2 + v2
2 t 2 ) •x > + w +

Note that for x in Q, this equivalence holds no matter in which formally real K

one interprets the right hand side.

To get the Tennenbaum phenomenon, the idea is this. One cuts the rational

interval (0,1] into the left box [0, 1/2) and the right box (1/2, 1) and forgets

about l/Z. Then one cuts these boxes unto left and right again, and so on. There

is complete independence between the left-right decisions at each stage. (Smorynski

told me he also had used this idea to show that there are no recursive recursively

saturated real closed fields).

Formally, one defines

W (v)
o

as (the natural formula, using * above, expressing)

o < v < 1/2

8 (v)
o

as: l/Z < v < 1;

Wk+l(v) as:

0< v < l/Zk+Z

V Z/Zk+Z < v < 3/2k+Z

V 4/2k+Z < v < S/2k+Z

Zk+Z -Z Zk+Z_ l

Z 2

ann 8k+l ( v ) as

l/Zk+Z < v < 2/Zk+2
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v ..
2k+2_1v--- <v<l

2k+2

Each Ee and ee is LI, and one easily verifies that Lemma 2 applies. D.

Next I outline the treatment of the henselian case.

Lemma 9. Suppose K is henselian with respect to a nontrivial valuation, E-coded and

and (Es' LI)-saturated. Then K is algebraically closed.

Proof: Suppose K is henselian with respect to v. with residue class field F

and value group r.

My objective is to define the relation vex) > 0 by a Ll-formula of field

theory. (I allow parameters in the definition). If this can be done. one proceeds

rather as in the proof of Lemma 8. The details are routine, and I give only the main

idea which is used to apply Lemma 2.

A.
J

Suppose we have t with vet) > 0, and with v(a)

O. Our sequence of left-right choices for x are:

Stage 0: Left: vex-a) > 0

Right: > 0

Stage n+l: Restrict x to satisfy the condition:

There are Ao, ....A
n
_
1

E such that

n-l
vex - L

j=O

Then the left condition is:

0, and

for some Ao" .. ·,An_1 E }

n-l
vex - L A.

j=O J

The right condition is:

n-l
vex - L A.• t j - S • t n) > v(tn)

j=O J

It is a routine exercise in valuation theory to verify that the obvious formal-

izations of the stage n left and right conditions enable one to apply Lemma 2. In-
n-I

deed the various sums L A. t j used above witness the finite satisfiability condi-
j=O J

tions needed in Lemma 2.

It is important for what follows to observe that the preceding argument does

not require quite as much as a L
I

definition of vex) > O. It is clearly enough to
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have a Zl V(x) (perhaps with parameters) so that

K!= vt x) > 0 -+ V(x)

and

K F vf x) < 0 -+ 7V(X) (*)

(The point is that we assume nothing about V(x) when v(x) 0.)

Now I suppose that there is no Zl V satisfying the above conditions, and I

will deduce that K is algebraically closed, thereby proving the lemma.

First note that r is divisible, since the cosets of K*n

by roots of 1. (v is trivial on roots of 1.)

*in K are occupied

Now I analyze the residue class field F. There are unfortunately three cases.

Case 1. Characteristic F

Case 2. Characteristic F

Case 3. Characteristic F

*Case 1. I claim F

characteristic K = P > 0

o.

p > 0, but characteristic K = O.

Then there is a E K,

in K with v(yn_a ) > O.y

Suppose not.

so that there is no

is divisible.

nand an integerv(a) = 0,

Now define W(x) as

Clearly v(x) > 0 = I W(x) •

Conversely, by Hensel's Lemma

v(x) < 0 = W(x)

Then

For let g(y) n n
y - a - x •

v(g'(y» = v(nyn-l)

(n-l)v(y),

and v(g(y» O.

Now define V(x) as

x = 0 v (x '" 0 f\

Then V satisfies (*), contradiction.

* *So F is divisible. The same argument applies to FI
for any finite exten-

sion Fl
of F. For F

l
will be the residue class field of a finite extension K

l
of K, and K

l will be E-coded, etc.

But this is easy, by Hensel's Lemma, using the

is divisible,

I conclude by Galois theory that

to show that K is algebraically closed.

*for all finite extensions L of K.

F is algebraically closed.

It suffices to show that

Now I use this

*L

fact that r is divisible.
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Case 2. F is perfect, since K is.

is n-divisible, for n prime to p.

visible, for n prime to p, and L

The same argument as in Case I

Then Hensel's Lemma shows that

*any finite extension of K. L

*shows that F

*L is n-di-

is of course

perfect. To get K algebraically closed, I could show that each L is closed under

Artin-Schreier extensions. However, there is another method, related to Duret's [Dll.

I will show in Lemma 10 below that Abs(L), the algebraic closure of Fp in L,

must be finite if K is E-coded and (Es' Zl)-saturated, and not algebraically

closed. But the above divisibility conditions on L imply that some Abs(L) is

infinite. So K is algebraically closed.

is not

n-divisible,

*L
*Case 3. The same argument as in the preceding cases shows that L is

for n prime to p and L a finite extension of K. Now suppose some
* thp-divisible. It follows from Lemma 3 that L contains all p roots of 1. By

the n-divisibility, GL is a pro-p-group, and unless GL is I GL is Each

extension of L is Kummer, and the unique extension of dimension pj is obtained by

et hadjoining a suitable p root of 1.

I now show that L is algebraically closed, whence K is, since K is not

formally real. It suffices to show that Abs(L) is algebraically closed. Now, v

on Abs(L) is an extension of the p-adic valuation on Q, and Abs(L) is henselian.

So Abs(L) naturally contains the algebraic p-adic field Q n Q, which is elemen-
p

tarily equivalent to Qp' and algebraically maximal [K]. All finite extensions of

Q nQ are algebraically maximal too. It follows that Abs(L) is algebraically
p
maximal.

So, since the value group of Abs(L) is divisible, any extension of v to a

[Ri] if M is a finite extension of Qp
M(a) is a totally ramified extension of so that the residue class field of

eili
of course. So the p cyclotomic

M

1,

But

oL = L.

M,

Q nQ
p
L. So

must extend the residue class field of L.

eiliand a is a primitive p root of

Lof

The same holds for

is immediate, so isLextension of

is not extended.

proper finite extension

I now turn to the last supplement to Lemma 3. It is important to recall that

the relevant hypothesis, that K be p.a.c. [J-K], was the one I originally encount-

ered in [MIl. The treatment I give is based on work of Duret [DIl, and replaces my

original ad hoc analysis of pseudofinite fields.

Duret proved that if K is perfect and p.a.c. but not algebraically closed

then Th(K) has the independence property (so Th(K) is not stable). Since any in-

finite algebraic extension of Fp is p.a.c. [A], it follows from the details of [DI]

that if K has positive characteristic and Abs(K) is infinite but not algebraically

closed then Th(K) has the independence property.

For my purposes, it suffices to observe that Duret actually proved something

stronger, namely the independence property using existential formulas. A careful
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inspection of his proof shows the following for each perfect p.a.c. field K which is

not algebraically closed:

q,(i::.
-+ -+ -e- -+ -+

There is an existential formula u, v, t ) • tuples uo' u l' v from K and an
0

infinite subset A of K such that

i) Kf= (\Ix, t) h <t(i::, -+ -+
t) 7H;;:, -+ -+

t ) ;u
0' vo'

v ul'
v
0'

ii) for X,Y of disjoint
-+

sucheach pair finite subsets of A, there is y in K

that

t E X

t E Y

-+ -+
u
0'

v
0'

-+ -+

u l '
v
0'

t)

t) •

Further, if K has characteristic 0, A can be chosen as N, and if K has

positive characteristic p then A can be taken as any infinite set linearly inde-

pendent over IF .
P

The final useful observation is that one can replace the hypothesis K is

p.a.c. by K has a not algebraically closed p.a.c. subfield K
o

which is relatively

algebraically closed in K. The only change to be made above is that in characteristic

p A must be a subset of K
o

Now I easily prove:

Lemma 10. Suppose K has a p.a.c. subfield

but is relatively algebraically closed in K.

(Es' Zl)-saturated.

K
o
If

which is not algebraically closed

K is E-coded then K is not

InN.is

transcendence

n E IN}. Now it

(Es' Zl)-satu-E-coded andisKis obvious how to separate the inseparable, if

rated. 0

-+ -+
Proof: I use <t, uo' u

l'
V
o

A as above. In characteristic 0, A

characteristic p, a counterexample to the lemma must be of positive

degree (by saturation). Let w be transcendental and let A = {w
n

Corollary. If K

both E-coded and

has positive characteristic, is not algebraically closed and is

(Es' Zl)-saturated, then Abs(K) is finite.

Proof: If Abs(K) is infinite, Abs(K) is p.a.c. [A]. Then use Lemma 10. 0

This concludes the proof of Theorem 1. I regret as much as the reader the above

ad hoc discussion.

I make one final remark about any counterexample K to my conjecture. K can-

not be stable.

K, L*/L*q is

For by the above, for some prime q and some finite extension L of

finite and the cosets are occupied by roots of 1, so by [M2] one gets

a symmetric irreflexive relation definable on an infinite subset of L. So L, whence

K, is unstable. It is important to note that the preceding corollary lets me bypass

Artin-Schreier extensions.
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3. Towards Vaught's Conjecture for Fields.

The original motivation for this work was from recursive model theory. But there are

interesting implications for pure model theory.

Theorem 2. Let K be an infinite field which is not algebraically closed. Let T =

Th(K). Suppose that for each n Sn(T) has cardinal < zro (equivalently, Sn(T) is

countable). Then G
K

is procyclic, and ]{ is obtained from K by adjoining roots

of 1. K is not formally real, henselian nor p.a.c. If K has positive character

istic, K is perfect and Abs(K) is finite.

Corollary. Same result, but with the third sentence replaced by T has < Z non

The corollary is of course immediate from the theorem.

isomorphic countable models.

one observes that each time we applied Lemma 3

To prove the theorem
i-loabove we actually constructed Z n-

types for some n. This is essentially obvious, but note that e.g. in the case of

p v a.c , fields it Was important to get A as N or {wn: n E IN} (i.e. "finitely

generated").

4. Concluding Remarks. How is one prove the conjecture, and the obvious related

one that some Sn(T) has cardinal Somehow one has to the known insta

bility of a counterexample into a kind of independence property. Note however that

does not have the independence property (this was communicated to me by Poizat).

In the case of we got by with a "Cantor decomposition" of Q. I believe it worth

while to look for an analogue for the order one gets via the symmetric irreflexive

relation mentioned at the end of 2. Prima facie, this seems to involve additive

Ramsey combinatorics in the style of [Mil.



156

References

(A) J. Ax, The elementary theory of finite fields, Ann. of Math. (2) 88 (1968),
239-2'H.

(C). W. Craig, On axiomatizabi1ity within a system, J. S. L. 18 (1953), 30-32.

(Dl) J. L. Duret, Les corps pseudo finis ont 1a propriete d' independance. C. R.
Acad. Sc. Paris 290 (1980), 981-3.

(D2)
(3), 1977.

Instabilite' des corps forme11ement reels, Canad. Math. Bull 20

(G) W-D Geyer, Unend1iche a1gebraische Zahlkorper, uber denen jede Gleichung
auflosbar von beschrankter stufe ist, Journal of Number Theory 1 (1970), 346-
374.

(J-K) M. Jarden and U. Kiehne, The elementary theory of algebraic fields of finite
corank, Inventiones Math. 30 (1975), 275-294.

(K) I. Kaplansky, Maximal fields with valuation, Duke Math. Journal, 9 (1942),
303-321.

(MI) A. Macintyre, Residue fields of models of W, to appear in Proceedings of 1979
Hannover I. C. L. H. P. S. meeting.

(M2) A. Macintyre, On wI-categorical theories of fields, Fund. Math. LXXI (1971),
1-25.

(Mi) K. Milliken, Hindman's theorem and groups, Journal of Combinatorial Theory A
25 (1978), 175-180.

(R) J. Robinson, Definability and decision problems in arithmetic, J. S. L. 14
(1949), 98-114.

(Ri) P. Ribenboim, L' Arithmetique des Corps, Hermann, Paris, 1972.

(T) S. Tennenbaum, unpublished, c. 1958.



The topos of types

*by 11. 11akkai

Introduction

In this paper we introduce and study a construction associating a certain new

topos, the prime completion, with any coherent topos. Bearing in mind the close

connection of coherent toposes with (finitary first order) theories (see MR), we can

also say that we associate a new topos, called the topos of types in this context,

with any theory.

In the main part of the paper, the terminology will be categorical; in this

introduction, we make some remarks clarifying connections with ordinary model theo

retical concepts.

For us, a theory T (T,F) consists of a fragment F of Lww over a possi

bly many sorted language (allowing possibly empty sorts), closed under and 3
(but not necessart Iy o-r ) , and a set T of axioms of the form Y;:(cp(;:) + ljJ(;:» with

(There also is a straightforward 'syntactical'

of elements

cpr;]}; a

is t1 F T

cp and ljJ in F. Given a model 11

(of various sorts), the ; in

(complete) of T is any set

in M such that p(i)

of
+

T, and a finite tuple a
11+ +

is t (a) df {cp(x) E F: 11F
of formulas such that there

of 11

and

definition of a type; this will be translated into the notion of prime filter

in Section 1.) This notion naturally feneralizes the one usually considered in

relation with complete theories (by definition, with F as the full logic L
ww

) .

An Felementary map between models of T is one that preserves the truth of formu

las in F; the category of models of T, Mod T, is the one whose objects are the

models of T, and whose morphisms are the Felementary maps.

One of the basic constructions of categorical logic is that of the classifying

topos E(T) of the theory T; see tffi)and concerning arbitrary fragments, Section 5

in [10]. Just as E(T), the topos of types P(T) of T is a syntactical construc

tion in the sense that it is directly made up of formulas in L
oow

'coming from T'

(although not just from its underlying fragment F). Although our definition of

peT) below does not present it explicitly as a syntactical construction, the elabo

rations in Chapter 8, tfR, if applied to peT), would show the syntactical nature of

P(T) •

This research was supported by a grant of the Natural Sciences and Engineering
Research Council of Canada.
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The tapas of types is not primarily a tool for solving problems already stated

in model theory; rather, just as other constructions of categorical logic, it is a

conceptual tool meant to enable us to formulate precisely certain natural intuitive

questions, as well as to putin a conceptually satisfactory form results that would

without it sound rather technical. To indicate the need for structures like the

tapas of types, we point out that if we want to state precisely assertions such as

the category of models of a theory determines the theory, or at least certain syn

tactical aspects of the theory, then it is reasonable to define an abstract struc

ture embodying these syntactical aspects that will be invariant under renaming of

symbols and other trivial notational changes, since notational features cannot

possibly be recaptured from the category of models.

The definition of peT) is most simply put by using the terminology of sheaf

theory. First of all, we construct the category P of types of T. The objects of

P are the types of T. To describe the morphisms, let X and Y (for simplicity)

be two sorts of T, p: p(x), q: q(y) be two types (x,y variables of sort X,

Y, respectively), Ai(x), Bi(x,y) (i 1,2) formulas (always in F) such that T

proves that Bi defines a function Si from the extension of Ai(x), to the

extension of q(y) B(y) E q}). We say that B
l

and B
2

define the same

germ of functions p --+ q if Ai (x) E p and for some A(x) c p with T

(x) A A
2(x»,

we have that

the same. A morphism p --+ q

T proves that 8
1

and 8
2

restricted to A are

of P is defined to be a germ of definable functions

P 7 q, also with tuples of variables in place of x and y. Given a germ f: p 7 q

(the equivalence class of f) we say that f is a cover if g is (set theoretically)

the smallest type g': g'(y) over Y such that f defines a germ p 7 q'. We make

P into a site by endowing it with the Grothendieck topology generated by all the

(single) covers. Finally, peT) is defined as the category of sheaves over the site P.

Besides the definition, there are two other descriptions of the tapas of types.

One is a universal property defining it; it is one similar to the universal prop

erty of the classifying topos ('the most general topos valued model') but it is

more involved; see Theorem 1.1. The final description is through a representation

theorem, Theorem 2.3, which says the following. Let K be a subcategory of Mod T.

A functor F from K to SET, the category of sets, is said to have the fi.ni te

support property (f.s.p.) if the following holds: whenever M is a model in K and

a E F(M), then there is a finite set {xl' ... ,x
n}

of elements of M (a support of a)

such that: for any N in K and any two Felementary maps in K, M N, if for

all i l, ...• n we have g(x
i)

h(x
i),

then (F(g»(a) = (F(h»(a). Let be a

fixed cardinal in which sufficiently many special models (see CK) of T exist, and

let K be the full subcategory of Mod T consisting of the special models of power

A. Then Theorem 2.3 says that peT) is equivalent to the category f.s.p.(K, SET),

the full SUbcategory of the category (K, SET) of all functors K 7 SET (with natural

transformations as morphisms) consisting of the functors with the f.s.p.
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We remark that this gives a purely semantical description of the topos of types.

(For E(T), the classifying topos, we do not know of any 'semantical' description.)

In fact, this description may serve as an introduction of the notion of topos to the

model theorist. One starts by observing that the formulas, and also the types, of

the theory naturally give rise to certain functors Mod T ---+- SET, and by restric-

tion, functors K ---+- SET; call these functors coming from types standard; next

one observes that the standard functors have the f.s.p.; one wonders if the f.s.p.

is to any extent characteristic of standard functors; the answer is 'yes but not

quite'; the functors K ---+- SET with the f.s.p. form the subtopos of (K,SET)

generated by the standard functors.

We arrived at the notion of the topos of types through our studies on M. Barr's

full embedding theorem [2] on exact categories, itself a generalization of B.

Mitchell's full embedding theorem on Abelian categories. We found that the topos

of types can be used to show the existence of full and in fact continuous embeddings

of certain coherent toposes into functor categories, considerably generalizing Barr's

theorem. We then found the simply defined class of prime generated coherent toposes

all of which have such embeddings; we wrote out a direct proof of this fact avoid-

ing the prime completion in [10]. Here we restate the true state of affairs by

proving a rather technical but general theorem (2.6) concerning the canonical em-

bedding of E(T) into P(T); this, together with 2.3, gives us in Section 3 a

proper generalization of the theorem on coherent prime generated toposes

(Theorem 3.2).

Observe that f.s.p.(K,SET) is not defined for an abstract categorv K: in part-

icular, from the equivalence bf two categories K, K' of models one cannot conclude

that P(T) -- Ls ..p.(K,SET) is equivalent to peT') '" Ls.p.(K',SET). On the other

hand, as Andre Joyal observed, there is another property of 'standard'

functors ModT---+ SET (see above), namely that they are upcontinuous, I.e., they

preserve directed colimits (ascending unions) in ModT; one has the category of

all upcontinuous functors, Upcon(K,SET), defined for any abstract category K.

After some special results obtained by the present author in the same direction,

Daniel Lascar, using 'generalized' stability theory [6], succeeded in proving an

interesting theorem saying that for a certain large class of theories T, it is true

that every upcontinuous functor Mod T SET has the Ls.p. (see also Section 3

below); this class includes those theories that calls G-trivial. We deduce from

Lascar's theorem that the topos of types of a G-trivial theory T can be recovered

from the category of models of T (Theorem 3.3 and its proof).

Perhaps the most interesting conclusion emerging from Lascar's is Theorem

3.4: for a G-trivial theory T, the classifying topos E(T) (hence,

'for all practical purposes " the theory T itself) is determined by Mod T, in the
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sense that for any other (not necessarily G-trivial) theory T', if Mod T' Mod T,

then f(T') f(T). G-trivial theories include the theories of

equality on an infinite set, of dense linear orders without end points, of infinite

dimensional vector spaces over a finite field, and many others: the theorem is non-

trivial already for these special cases. We deduce the above result from Lascar's

by a simple application of a theorem in MR.

Throughout this paper, we freely use the terminology of (Grothendieck) topos

theory. Except occasional explicit references to the original source, SGA4, what

is contained in MR suffices. We also use the connections between logic and topos

theory established in MR.

A piece of new terminology is the notion of a regular site. A regular site is

one whose underlying category is finitely complete, whose topology is subcanonical

and is generated by finite coveri.ng families and in which every morphism f can be

factored as f = hog where g is a cover (i.e. it forms by itself a covering of

its codomain), and h is a monomorphism.

In MR, p.166, we define a theory associated with an arbitrary site c·, in

particular, a model of TC becomes the same as a continuous functor C into SET.

We emphasize that by a continuous functor we mean one that is left exact and pre-

serves coverings (this terminology is at variance with that of SGA4); also, any

(Grothendieck) topos is understood to be the site with the canonical topology. We

also talk about a model of C, meaning a continuous functor with domain C.

The presentation in Section 1 was inspired by the paper [5]. In Section 3 of

[5], the authors introduce the category of existential types; that is the same as

the category of types P as described above. However, the topology on P intro-

duced in [5] is different from the one we use. Originally (in the Fall of 1977, and

independently of [5]), we constructed the topos of types in the way sketched at the

end of Section 1 (although at that time we did not have 1.1 and 2.3 in their

forms). The presentation given here verhaps has the advantage of consisting of

steps that are natural from the point of view of topos theory, more so than with

the original presentation.

§l. The prime comnletion.

is called a prime object (or a prime)

X: i E I} is a covering in 0, there

ofxAn objectbe a site.vLet

if the following holds: whenever {X.

is i E I such that the singleton {Xi X} is a covering as well (we also say:

the morphism Xi X is a cover). V is prime-generated if every object X of

V has a covering {Xi --+ X: i E I} with each Xi being a prime. A (Grothendieck)

topos is prime-generated if it is as a site with the canonical tovology, i.e. if

it has a family of generators consisting of prime objects. In a topos, an object is
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prime just in case it (its maximal subobject) is not the supremum of its proper sub

objects.

seeV',inI'for somebeing

is a primegenerated topos.

If D is the category of sheaves over V, E: V D is the canonical functor,
A

i.e. the composite of the Yoneda embedding V D followed by the associated sheaf

functor V D, and X is a prime object in V, then is a prime object

in D(this is because every covering {E. £X: iEr} can be refined to a covering
1

with EX
 ij

follows that for a primegenerated site D, the cat

{EX.. EE. EX: jEJ., iEI}
 1J  1  1

1.3.8 (i), p. 35 in MR). It

egory of sheaves over D, D,

A site P in which every object is a prime is called a prime site; in this

case the topology on P is generated by coverings that are singletons, and the class

C of covers in P has the following properties: (i) all isomorphisms are in C,

(ii) C is closed under composition, (iii) if P + q belongs to C, r + q is

any morphism, then there is (s + r) E C and s + p such that

P -------+ q

I 1
s -r-r-r-r-r-r-r-r-r-r r

commutes, and (iv) if the composite p + q + r belongs to C, then so does

q + r.

Conversely, if P is a category, C is a class of morphisms with the above

properties (i)  (iv), then C generates a Grothendieck topology in which

{Pi --+ p: iEI} is a covering just in case (Pi p) E C for some iEI, hence P
with this topology is a prime site.

If V is a primegenerated site, P is the full subcategory of D consisting

of the prime objects, and P is regarded a site with the induced topology, then P

is a prime site and the categories of sheaves over V and P are canonically

equivalent ('Lemme de comparaison', [SGA4, I, p. 288J). In particular, if

primegenerated topos, and P
E

is the full subcategory of the primes of

the induced topology, then E I'E'

E is a

E with

From now on, we fix a site C, and assume that it is a regular site (see the

Introduction). All entities we introduce below will depend on C, although the

dependence might not be mentioned explicitly.

Let X be an object in C. A prime filter on X is a set p of subobjects of

X with the following properties: (L) IX (the maximal subob i ec t or X) E p;

(ii) AEp and BEP imply AABEp, (iii) AEp and imply BEp, and (iv) AEp

and {Ai A: iEI} is a covering in C (with Ai E SubC(X» imply that AiEP for
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some iEI. [An equivalent definition would be: p is a prime filter on X iff for

some h: SubC(X) Z, with 2 the two-element Boolean algebra, such that h is

(left exact and) continuous with respect to the topology on SubC(X) induced by that

on C and the obvious topology on 2, we have r = {A E SubC(X): h(A) = l}]. The

set of prime filters on X is denoted by P(X). To stress the object X, we also

write (p,X) for p . Given a morphism f: A ----r Y with A E SubC(X) [we ambig-

uously use the same notation for a subobject and the domain object of a represent-

ative monomorphism of it] and a prime filter p E P(X) with AEp, f(p) denotes the

set {B E SubC(Y): f-l(B) E p} (f-l(B) is a subobject of A, hence, in the natural

way, a subobject of X as well; it is in the latter sense that we use the notation

here) • It is immediately seen that f(p) is a prime filter on Y.

Intuitively, we will deal with a (prime) filter as if it were a (formal) inter-

section of the subobjects contained in it. This is important to keep in mind to

understand our definitions; also, in the prime completion (see below), this 'becomes'

li terally true.

Let M: C E be a model of C in a topos E (i.e., M is continuous with

respect to the topology on C and the canonical topology on E, also, M is left

denotes the subobject

denotes intersection (g.l.b.) in

pEP (X) ,whenever

M(p,X)(p,X) of C,

in E (I\(E)

exact). For a prime filter

/\
(E)

{M(A): AEp} of M(X)

SubE(M(X»)). Y}e call Map-model if the following holds:

AEp, f: A ----r Y, then Im(M(OIM(p,X» M(f(p),Y).

The main result of this section is the construction of a "generic p-model of C

in a prime-generated topos". The morphisms between prime-generated toposes are taken

to be the continuous functors that preserve intersections arbitrary families of

subobjects of any fixed object in the domain topos; let!\(E
l,

E
2)

denote the cat-

egory of all such functors E
l
--+ E2, a full subcategory of the category (E

l,
E2)

of all functors E
l
--+ E2• With this in mind, a "generic p-model of C in a prime-

generated topos" is a p-model M
O
: C --+ P in a prime-generated topos P such that

for any p-model M: C --+ E in a prime-generated topos E there is M E IA(p,E) I ,

unique up to a unique isomorphism, such that

commutes. Formulated more sharply, this means that with the category p(C,E) of all

p-models C E (a full subcategory of (C,E», the functor

"(P,E) -+ (C,E)
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defined by composition with M
O

factors through p(C,E) incl. , (C,E) and gives

an equivalence

f\ (P, E) ------+ p (C, E) •

The topos

sheaves over P,

P, also called the prime completion of

the prime site £f prime filters £f C,

C, will be the category of

described as follows.

Fix a prime filter (p,X) and an object YElcl. Two morphisms f, f'

(f: A -'>- Y, f': A' -'>- Y; A,A' E p) are equivalent if for some A"EP, we

have flA" c f'IA". A germ (of morphisms) (p,X) -'>- Y is an equivalence class of

the above equivalence relation; the germ represented by f: X -'>- Y is denoted by f.

If in addition qEP(Y), then the germ f: (p ,X) -'>- Y is a morphism f: (c ,X) -'>- (q ,Y)

if for all BEq we have Cl(B) E 1'; it is easy to see that this definition does

not depend but on f. The category £f filters of C, P, is the category whose

objects are the prime filters of C, and whose morphisms are as indicated. Composi

tion of morphisms is defined in the obvious way: for f: (p,X) (q,Y) with,.......,
f: A Y, and g: (q,Y) --+ (r,Z), with g: B Z, we define gof = gof',

where f' comes from the following factorization:

Again, it is easy to see that this definition is legitimate. For later reference,

note that the definition of composition makes sense if, instead, g: (q,Y) Z

(without r), and then it gives a germ gof: (p,X) --+ Z; also f: (p,X) Y and

g: Y Z naturally combine to give gof: (p,X) Z.

It would be simpler to define P by only considering germs f: (p,X) --+ Y

derived from morphisms f: X ------+ Y with 'total' domain X. However, this is not

sufficient (the proof of () preserving equalizers breaks down, see (1.6) below).

On the other hand, it is often possible to 'pretend' that we have the simpler defini

tion. In fact, let pEP(X) and AEP, and let A also denote the domain object of

a monomorphism representing A. Then the set p' {BEl': with each B A

understood, in the natural way, as a subobject of the A, is easily seen to

be a prime filter over A; moreover the morphism (p' ,A) (p,X) with

i: A '> X the structure morphism of the subobject A E SubC(X) is an isomorphism

our extended definition of morphisms!). So, if one is given a morphism

(p,X) Y with AEp, f: A Y, then by passing to the object (p' ,A) P

isomorphic to (p,X), we are in the situation of haVing a morphism (p',A) Y

wi th dom (f) = A. This procedure allows simplifying the notation sometimes.
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to be the one generatedWe make P into a site_by defining the topology on P
by the singletons {(p,X) __f r (f(p),Y)}, for all pEP(X) and f: A Y (AEp),

with f(p) defined above; such a morphism will be called a cover. We will prove

below that P is a prime site. As usual, P denotes the category of sheaves over P.

the set of all germs (p,Y)";' X.

to be the map g f-----+ gOf (g: (p,Y)

natural transformation X X'

the category of presheaves over

X such that X(p,Y) =

For f: (p',Y')";' (p,Y), we

..;. X). To in C,

such that [(p,Y) is the map

be the associated sheaf-functor; let

(-): e -+ P, with P
X E lei the presheafHe assign to

We define the functor

P, as follows.

= Hom«p,Y) ,X)

define Xef)

we assign the

g f-----+ fog (g: (p , Y) -r X).

MO = e -+ P be the composite

is a generic p-model of

defines an equivalence

Theorem 1.1. Suppose e
c

is a regular site. Then MO: e -+ P constructed above

in the prime-generated topos P; composing with MO

I\(P,E) -+ p(e,E)

for any prime-generated topos E.

Almost all of the rest of this section is devoted to the proof of the theorem;

we also obtain additional information on P used later.
h a

As usual, we denote by £ the composite P --=--..,. P --=--..,. P, where Q is

the Yoneda embedding; also, Q will be considered an inclusion, i.e. Q(p,X) will

be written (p,X), e.t.c.

Given any model e --+ E in a topos E, we can deduce a functor M: P -r E
as follows. We put M(p,X) to be equal to what we called M(p,X) above. For a

f
morphism (p,X) -----+ (q,Y), we define M(f) as follows. f is the germ repre-

sented by some f: AO ..;. Y (AOEp); we have that BEq implies f-l(B) E q; and we

have M(p,X) !\{Il(A): Acp l , M(q,y) !\{M(B): BEq}. It follows that M(OIM(p,X):

M(p,X) ..;. M(Y) factors through M(q,Y)C--..;. M(Y) and we have a unique morphism,

denoted by Mef): M(p,X) ..;. M(q,Y) such that Met) IM(P,x) equals the composite

M(p,X) M(f» M(q,Y)e........-...,. Note in particular that M(n is well-defined,

i.e. its definition does not depend but on f. We have M(gef) = M(g)oM(f) whenever

gof makes sense, so M is indeed a functor.

To say that M is a p-model is equivalent to saying that M carries every

cover in P into a (canonical) cover in E.

Let M: e ..;. SET be a model in SET, X E lei and x E M(X) . The set

{A E SubC(X): xEM(A) } is called the type of x, and it is denoted by tX(X,M) (or

just tX(x». It is immediately seen that Sfx) is a prime filter on X. If
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x Y is a morphism in e, then we have the equality ty(M(f)(x» = f(tx(x»

(for f(p), see above); this is easily seen. A generalization of the fact of tlx)

being a prime filter is the following useful lemma.

(1.2) Let E be a topos, M: e + E a model, X E lei, n a prime in E and

8: n + M(X) a morphism in E. Then the set t(8) {A E Sube(X): 8 factors

through M(A) ---+ M(X)} is a prime filter on X. Moreover, 8 factors through

M(t(8),X) ---+ M(X), and in fact, t(8) is the (set-theoretically) largest prime

filter on X with this property.

Proof. Suppose A E t(8) and {Ai $ A: iEI} is a covering in e by subobjects

Ai E Sube(X). Then we have a morphism n + M(A) such that 8 equals the composite

n --+ M(A) ---+ M(X). Consider the family {(M(A
i)

x n) ---, n: iEI}: it is a
M(A)

covering since {M(A
i)

$ M(A): iEI} is one. Since Ti is a prime, there is iEI

such that (M(A.) x n) ---+ n is an isomorphism, hence 8: (r, + riCA) ---+ M(X»
1 M(A)

factors through M(A
i)

---+ M(X), i.e. Ai E t(8), as required. The other prop-

erties of a prime filter are similarly easy to check. The "moreover" part is easily

seen.

(1. 3)

o

Let p E P(X). Then there is a model M: e + SET with some x E M(X)

such that tX(x,M) p. In fact, M can be chosen to be

This is a good opportunity to point out a more general notion of prime

filter that seems suitable for sites that are not regular. In the new sense, a

prime filter on X E lei is a set p of morphisms in e with the fixed codomain X

such that the following are satisfied: (i) every isomorphism X' + X belongs to

p, (ii) if Y + X, Z + X both belong to p,then so does yxZ + X, (iii) if the
X

composite Z + Y + X belongs to p, then so does Y + X, (iv) if (Y+X) E p,

and {Zi + Y: iE I} is a covering of Y, then there Is iE I such that the comp-

osite (Zi + Y + X) belongs to p. If every morphism in e factors into a cover

followed by a monomorphism (in particular, if e is regular), then the new notion

is 'equivalent' to the old one: with p a prime in the new sense, the set p'

consisting of the subobjects represented by the monomorphisms in p is a prime in

the old sense, and in fact p' determines p. In the context of the present lemma,

it is more convenient to work with the 'new' notion: given a prime filter p in

the new sense, we want to find a model M: e ., SET such that p equals the set of

all morphisms Y X such that x E Im(f).

To do so, let us first assume that X is the terminal object in e. Then p

is simply a set of objects of e, with certain properties. We define a new topology
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on the category e, resulting in a finitary (algebraic) site e(p), as follows.

The topology of e(p) is the one generated by the covering families of the original

site e together with the empty family as a covering of each object Y p. We

claim that the coverings of e(p) are exactly the following: (i) coverings of e,

(ii) any family of morphisms with codomain Y, with Y p. It is clear that the

ones listed under (i) and (ii) are coverings in e(p). Conversely, it suffices to

show that the class of families (i) and (ii) is closed under the closure conditions

defining a Grothendieck topology. The condition of stability under pullback, for

coverings in (ii), is a consequence of condition (iii) in the definition of prime

filter; the condition on composition of coverings, in the case of composing a

covering of type (i) with coverings of type (ii), is a conse0uence of condition (iv);

the rest is clear.

Y p.forM(Y) = 0of course,

any finitely many YI""'Y
n

E p

M(Ylx ... xY
n)

is non-empty, i.e. each M(Y
i)

is non-empty. By the compactness

theorem, there is a model M: e(p) SET such that M(Y) is non-empty for YEp;

We have H(X) = M(l) = {x} for some x, and

As a consequence, it is clear that for any YEp, ¢ cove(p)(Y) (by condition

(iv) applied to the empty family). Furthermore, by conditions (i) and (ii) in the

definition of p being a prime, for any finitely many YI, .•• ,Y E P (including
n (n )

n = 0) we have Ylx ... xY
n

E p, hence ¢ Cov ( ) (Y x ... Y ). Clearly, e - is
e pIn

a finitary site; by the Joyal-Deligne completeness theorem [MR, 3.5.5, p. 129], for

we have a model M: e(p) SET such that

clearly YEp X E as promised.

This settles the case X = 1; for a general X, we pass to the site e/x
defined as follows: the underlying category is the usual 'comma' category e/x; a

family

is a covering iff {Y
i

Y: iEI} is a covering in e. The above special case X = I

applied to e/x gives the result for a general X; the straightforward details are

omitted.

Since every consistent theory has models [CK,5.1.4], it is

easy to see that in the above argument M can be made [we'll recall

this notion in (1.4) below] . 0

lt is interesting to note that the last lemma remains true for separable
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(instead of finitary) sites (but with the additional conditions in "regular sites"

retained). This fact is related to M. f1orley's lemma [11, Lemma 2.2]; the proof is

different from the above.

The notion of a p-model is a generalization of the notion of

He have

(1.4) Every model M: C + SET (i.e., model of TC' see the

Introduction) is a p-model.

Proof. Let p E P(X), f: X + Y (for simplicity), q = f(p), b E M(q,Y) c M(Y);

we want a M(p,X) such that b M(f)(a). Consider the following set of formulas

with the free variable of sort X:

(b is a new individual constant denoting b; is a formula whose canonical

interpretation (in C) is the subobject X). We claim that every finite sub-

set of is satisfiable in M, by a suitable element in M(X) in place of

Since p is closed under finite intersection, it suffices to show that

b A is satisfiable in M, for any AEp. Let AED, and let us factorize

flA in the form A Y, with g a cover in C (C is regular).

Clearly, A f-l(B), hence BE f Ip ) = q . It follows that MF ][b] (i.e.,

b E M(B». g being a cover, so is M(g); hence there is a E fl(A) c M(X) such

that M(g)(a) = M(f) (a) = b; we have M 1= = 1\ [a for 1;S].

M being means that any condition set like r(,lS), using altogether

finitely many fixed elements of M (b in our case), if finitely satisfiable, is

satisfiable in M. If is satisfied by a E M(X), then clearly, a is as

required. 0

(1. 5)

Proof.

P is a prime site.

It suffices to show that the family C of all covers (p ,X) (f(p),Y)

satisfies the four conditions listed at the discussion of prime sites. The first

two and the fourth are easy to To verify the third one, let (p,X) (q,Y)

be a cover, q = f(p), (r,Z) (q,Y) any morphism. For simplicity of notation,

assume f: X + Y, g: Z + Y. Let, by 1.3 and 1.4, M be a p-mode l M: C + SET with

c E M(Z) such that tz(c) = r, and let b = M(g)(c) E M(q,Y). Since M is a p-

model, there is a E M(p,X) c M(X) such that M(f)(a) = b. Consider the pullback
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x f

g' g

u XxZ
Y

suchb, there is d E M(V)

We have (r,Z) t(c)

(r,Z). Also, since

M(f)(a) = "(g)(c) =

c. Let s = tu(d).

is a cover (s,V)

that M(g')(d) = a and M(f')(d) =
f' (t(d» = f'(s,V), hence the germ

Since M preserves pullbacks, and

a E M(p,X) and t Ca ) = g'(s,V), it follows that the germ g': (s,V) defines a

morphism (s,U) (p,X); and finally, the diagram

(p,X) (q , Y)

g' g

(s ,U) ----------H- (r ,2)
f'

clearly commutes. 0

(1. 6) MO: C P is continuous.

The fact that the functor (-): C p is left exact can easily be seen;
(.:) R.

we omit the verification. It follows that MO: C P P is left exact

Proof.

as well. To show that preserves coverings, let f.
l

be a

covering in C; have to show that {, l.X
i

,(!f
iwe

covering in P. By [SCM, vol. 1, II.S, pp.2Sl- ]

whenever q -e- X is a morphism in P with q E Ipi

, l.X: iEl} is a (canonical)

this means the following:

(we identify hp(q) with q,

for the Yoneda functor hp: P), then the set of morphisms p q in P such

that the composite p q X factors through at least one of the morphisms f
i

is

a covering of q. Note that P being a prime site (1.5), we should find a single

such p q which is a cover. A morphism (q,Y) X is a germ f: (q,Y) X;

without loss of generality, assume f: Y X. Consider the pullback:



169

g
Y. X xY -------+, Y •

i X

M(Y) such that (b) = q. Since

a E H(Y.) such that M(g)(a) b.
.i.

g(p,Y
i)

and i: (p,Y
i)

-+ (q,Y)

b

and

(q ,Y)p = t y . (a) we have
1

Also, clearly the diagram

By 1.3, let H: C -+ SET be a model with some

{Y
i

-+ Y: iEI} is a covering, there is iEI

It follows that for

is a cover.

f.
X. > X

],h

(p , Yi) >(q , Y)
g

commutes. According to what we said above, and the definitions of Xi and X, this

completes the proof. 0

(1. 7) (i) For Z E ICI, the presheaf Z E IpI is a sheaf.

(ii) Every representable presheaf over P is a sheaf.

Proof: (ad(i)). First we show that Z is a separated presheaf. Suppose we have
f

the cover (p,X) ------+ (q,Y), and the germs g,h: (q,Y) ===t Z such that

gof hof; assume (without loss) that g,h: Y Z. Let M be an arbitrary p-

model C-+SET. Then M(i) =M(h)oMcf), and since M(f) is surjective,

M(i) = M(h); in other words, M(g)IM(q,Y) = M(h)!M(q,Y). In logical language,

we can write this as follows: in any model (see 1.4) of

T
C

u {A(Z): AEq}, the sentence g(r) her) is true (r a new individual constant

of sort Y). It follows that

(if there were a model witnessing the failure of this, there would also be an

saturated one). By the compactness theorem, and the fact that q is closed under

finite intersection, there is AEq such that
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Through the canonical interpretation of the language in C, this means precisely

that g IA = h IA, hence g = h ; and this is nrecisely t.,hat is needed for show

ing that X is a separated presheaf.

To show the existence part of the sheafproperty for Z, assume we have a
r

cover (p,X) (q,Y), and a germ g: (p,X) Z such that whenever

hI

(r,U)

2 (p,X)

Z

we have foh
l

fOh
Z'

then goh
l

goh
Z.

We can assume f: X Y, g: X Z. Using

the canonical language associated with the category C, let's write for the

set AEp}. We claim that

(1)

Let (H,a,a')

hl,hZ:
germs hI' h2
have that the

be a model of the lefthandside in (1). Let U = XxX, r = tu«a,a'»,

the two projections. Since a,a' E M(p,X), it follows that the

define morphisms (r,U) (p,X). Since M (fx fx')[a,a'], we

subobject [fx fx'] of XxX belongs to the set r. Hence, we have

foh
l
= f oh

2.
By the starting assumption, this implies goh

l
= gOhZ; it follows that

M (gx gx')[a,a']. This shows (1).

By compactness applied to (1), there is a single AEp such that

i. e.

TC A A fx  fx, • gx  gx']

Let B E S(Y) be the subobject B = Im(f!A); by the assumption that f is a

cover, we must have BEq. Define the relation R E SubC(YXZ) by

R A A f(x) Y A g Ix) z)].

(2)

By elementary logic, we infer from (Z) that R is functional with domain Y.

Therefore [see MR, Z.4.4, p.89], there is a morphism B Z in C whose graph
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is R. Clearly, (h vf ) IA = g lA, hence with the germ h: (q,y) -> 2, we have

hof = g, as required for the sheaf property.

(ad(ii». This is an easy consequence of part (i). Let s E P(2). Then (s,2)

is a sub-presheaf of the sheaf 2, hence it is separated. To show the existence

part of the sheaf-property for (s,2), we return to the notation introduced above

when talking about the existence part of the sheaf-property for 2; we only have to

add that now g is a germ

(p,X) -----g----. (s,2).

Since in particular we have (p,X) 2, by 2 being a sheaf, we have a germ

h: (q ,Y) ->- 2 such that g = It follows that g(p) (a prime filter in 2)

equals h(f(q) = h(q) P(2) • But clearly, scg(p): hence s c: h (q ) and hence

h is actually a germ (q, Y) ->- (s,2), as required. 0

In the next remarks and lemma, we discuss what the subobject lattice in P of

Next, the

P E P(X), the morphismFirst of all, if

with the first morphism being a cover.

looks like.e
P is a monomorphism; with this canonical monomorphism, every

f '
is a subobject of X in p. Secondly, let (q,Yl -----+ X be

f '
let p = f(q) E P(X). We then have that (q,Y) -----+ X factors

X

(p ,X)

prime filter on

a morphism in P,
I

as (q,Y) ------>- (p,X) ---->- x,

an object coming from
Idx----+, X in

associated sheaf-functor P P carries any p E P(X) into a subobject

of and any A E Se(X) into a subobject MO(A) of MO(X)

We will say of a complete lattice L that it is prime-generated if every

element of L is the sup of a family of primes, i.e. elements unequal to the sup of

all properly smaller elements.

(1.8) Let X E lei.
(i) The subobject lattice is prime-generated; its primes are exact-

P
ly the subobjects of the form with p E P(X).

(ii) if and only if AEp;

is the usual ordering on ) .
, P

(iii) (p ,X) = i\ AEp}.

(iv) M
O

is a p-model.

here p E P(X), A E Se(X), and

Proof. (ad(i). The family of all objects (q E P (Y), Y E Ie I) forms a
,

set of generators for the tapas P. SO, every subobject of is the sup of

obj ects of the form Im(a) , with a: Y) ->- q (X). Since (q, Y) and X are

sheaves (1.7),

of the form

is full and faithful on the hom-set hom,«q,Y),X»: hence

for some f: (q,Y) ->- X. Consider the Pfactorization of f

a is

as
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above: (q,Y) -+ (f(q),X) X; since the first morphism is a cover, Im(a)

This shows that every subobject of is the sup of subobjects of

the form the latter is clearly a prime of the lattice Finally,
P

we also conclude that every prime of must be of the form
P

(ad(ii». Note the trivial fact that in P, in the subobject lattice of X,

(p,X) A iff AEp. The assertion now follows by 1.7.

(ad (iii) . By part en, I = /\ (e(A): AEp} is the sup of a family of subobjects
df

of of the form ,X). But by part (Lf ) , if ,; I, then p c p'

(set-theoretically), Le. ,X) < ; this shows I ,e (p ,X) . The opposite

inequality is obvious.

(ad(iv». By definition, HO(p,X) = /\(P){MO(A): AE!'} AEp} = by

part For f: X -+ Y in C, HO(f) IMO(p) is therefore the morphism

,e(Y) , and its image is ,e(f(p),Y) = MO(f(p», as required for NO

to be a p-mode1. 0

(1. 9) For any M E /\(P,E), the composition M E is a p-model.

Direct consequence of 1.8 and the definitions. 0

Next, we state some generalities we could not find in the literature in the

exact form we need them; nevertheless, they are essentially contained in [SGA4,

Expose III, and 4.9, Expose IV], and we did not feel we should supply proofs.

For the moment, P and P' denote arbitrary small sites with not necessarily

finitely complete underlying categories. Let M: P -+ P' be a functor, let M be
M - I ' 'the composite P P' ------+ P' (i': inclusion). We deduce the functors

P +-----=-'-'------,--
M

as follows. M. is the composite P'

(h': Yoneda embedding); in particular,

P'

P' composition with M
P

(M.(G»(p) Hom, (M(p) ,G)
pI

(p E Ipi) •

M is a left adjoint H·... , the descrintion is as follows. As usual,

n + M denotes the comma-category [11.6 in CWM]; in particular, its objects are

pairs <n Mp,p>, with P E Ipi; the functor rr: n + M-+ P takes the said
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pair to p. Now, for F E Ipl and n E IP' I, (M(F))(n) is the colimit of the

functor n+M SET; in a somewhat imprecise notation

(M(F))(n) ; F(p)

Il M(p)

(p : variable)

With this notation, we have

(1.10) Suppose (a) M. transforms P'-sheaves into P-sheaves, and (b) M is left

exact. Then there is continuous P P' such that M Mos. In fact, M can

be taken to be M; 2'oMoi in the diagram

M

M.

M

In addition, we have M 2'oMoh. 0

(l.ll) The functor

Con(P,P') -+ (P,P')

defined by composition with P -+ P is full and faithful [Prop. 4.9.4, txp. IV,

p. 356, SGA4]. 0

Now, we return to our previous notation, with fixed C, and P e.t.c. deduced

from it.

(1.12) For any topos E, the functor

/\ (P ,E)
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of Theorem 1.1 is full and faithful.

Proof. By 1.9,

M,N E II\(P,E)j,
transformation.

--+ (C,E) does indeed factor through p(C,E). Let

let M = MoM
O'

N = NoMa, and let h: N ------+ N be a natural

Let M: P --+ E be defined as the composite M = Mos: P + P + E,

and similarly N. Previously, we denoted by M a certain functor P --+ E dcrived

from a given M: C ---> E; M as defined here is the same as that one: for M as

defined here, and (p,X) as a subobject of X in P (pEP(X)), we have

= AEp}) (see 1.8 (iii)) = I\E{M(A): AEp} (since t1

M(p,X)

preserves

intersections), which shows the assertion. Since h: M ------+ N is a natural trans-

formation, kxlA: M(A) --+ N(X) factors through N(A) --+ hence _ hxIM(p,X)

factors through N(X); this defines a morphism M(p,X) ------+ N(p,X) that

we denote by h(p,X)' It is clear, in fact, that we have a natural transformation

h: M --+ N. By 1.11, there is h: M --+ N such that h = hOk,

MO(X) = is covered by its subobjects of the form

M(X) = M(MO(X)) is covered by {M(p,X): pEP(X)} in

show that

I.e. h
(p ,X) We claim that h hX = hMO(X)' The object

(pEP(X)), hence

E. Therefore, it suffices to

holds for all pEP(X). The triangle

M(p,X) (3)

M(p,X)
h
(p,X) ,X)

N(p,X)

commutes because h is natural; the triangle

commutes because of the definition of h from h; it follows that (3) is true.

This proves our claim, and thus the fullness of the functor of 1.12.
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Let h,h': H ._-->- N be natural transformations such that h If hoMO

h'oti
0;

we want to see that h h'. Since both squares in the diagram

M(X) ) N(X)

J

h A h' A

1
R,X .i!X

h

M(p,X)
.i!(p,X)

N(p ,X)

h'
.i!(p .x)

commute, for any pEP(X), we conclude that hOE

h h'. 0

h'OE; by 1.11, it follows that

In the final stage of the proof of 1.1, we show that the functor of 1.1 is

essentially surjective in case E is a prime-generated topos. Let P' be a prime

site (see the beginning of this section), let E P' be the category of sheaves

over P', and let M: C --+ E be a p-model. For the rest of this section, we fix

these items as well. Note that our final aim is to show the existence of

ME [I\(P,E)I such that M MoM
O'

Without loss of generality, we may assume that the canonical functor

Ep ' : P' --+ P' E is a full inclusion (see the beginning of this section); we make

use of this fact to simplify the notation and consider n E [p' [ as an object in E
as well: n £p' (n).

Recall the functor M: P --+ E defined from M after the statement of 1.1.

(1.13) M satisfies conditions (a) and (b) in 1.10.

gz
F(gZ)( :)' We can assume f: Y --+ X.

Hom(M(q,Y),G), i.e. : is an arrow

is a cover in E (M is a p-model).

By the definition of H.(G),

:: M(q,Y) --+ G in P'. M(q,Y)

F«q,Y»

M(r) ) M(p,X)

we have that

1.10.

F M.(G). To show that F is a

: E F«q,Y», and assume thatP'

as for

and let

be a cover in

such that

be derived from

E IP' [,
M, M., M

Let G be a sheaf
I

(q,Y)_-----+ (p,X)

gl
===t: (q,Y)

Let

(r,Z)

Proof.

sheaf, let

for all

(ad(a».

Claim. The family consisting of the single morphism M(q,Y) G in E P'
- M(f)-

is a compatible family with respect to the covering M(q,Y) M(p,X), i.e.

for any E ===t M(q,Y) in E, if
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commutes, then

M(q,Y)

<; /
M(q,Y)

commutes as well.

E

To prove the Claim, first of all notice that it suffices

n E Ip' 1 since these latter generate E. Let n E Ip' I,
to show it forCi

l
_

n M(q,Y)
CiZ

two

morphisms in E such that the diagram

(4)

Apply 1.Z to get that the set r t(S)

M(A) --+ M(YxY)} is a prime filter over

Yxy Y represent morphisms ,;Z: (r,YxY) (q,Y). Also,

M(YxY), i.e. there is a morphism n M(r,YxY)

commutes.

YxY,

S factors

such that

<Cll,CiZ>n ----, M(q,Y) x M(q,Y) M(YxY).

{A E SubC(Yxy): S factors through

YxY. Clearly, the subobjects B x ly'

r. This means that the projectionsbelong to

be the composite

for

SLet

ofly x B

1T
l,1TZ

:

through

(5)

commutes. Now, consider the kernel pair
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C
hI

Y x
h
2

h <h
l,h2

>
f in C, inducing the subobject C: (C C , YxY)

(q, Y)

(r , YxY) f (p ,X)

TI 2 (q,Y)

commutes. By our assumptions, this implies that

F Hom(M(-),G), we obtain that the diagram

commutes. It follows, also in view of (5), that

M(q,Y)

G

commutes; this proves the Claim.

Since G is a sheaf, hence HomE(-,G) is a sheaf with respect to the canonic-

al topology on E, it follows that there is a unique arrow M(p,X) G such

that
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commutes. But remembering that F = Hom(M(-),G), we see that this is precisely

what we need for F to be a sheaf.

(ad(b». Recalling the definition of we see that it suffices to prove that

the category (n+M)oP is filtered (see Theorem 1, p.2ll).

To show the first condition for filteredness (condition (a) on p. 207 in
0.
1

_ Cl
2

_
we have to prove that for any pair of arrows n ------+ M(p,X), n ) M(q,Y) in

E there are arrows

n --+ M(r,Z) in E
(r,Z)

making

(p,X), (r,Z) (q ,Y) in p and an arrow

M(p,X)

n M(r,Z)

/' ":'2)
M(q,Y)

(6)

be the composite

M(p,X)XM(q,Y) <-...-.,. M(XxY), r = t(S) E P(XxY) (see 1.2). We easily

(r ,xxY) ---+ XxY proj. ) X factors through (p ,X) ---+ X, giving rise tothat

n

commute. Now, similarly to the previous proof, we let
<0. 1'0.2>

see

f l; similarly for f 2; also (by 1.2), S factors through M(XXY).

Now the commutativity of (6) is clear (Z XxY).

Next we verify condition (b) loco cit. This amounts to being able to complete

the diagram of the solid arrows with the dotted ones as shown:

M(p,X)
M(1;') -+---------- M(r,Z)

y

n

ds) E P(Y).

with the additional condition f vh gvh ,

be the equalizer of f,g in C, let r

l.]e may as sume f ,g: Y-> X. Let B

Then Me;) M(h) ) M(Y)
Y

is

the equalizer of M(f) and M(g); it follows by the definition of t(S), and

M(f)oS = M(g)oS (= a) that the subobject B: = B<-"'-'" Y belongs to the set r, and

in turn, that foh goh; finally, we also get y as required, by 1.2. o
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There is MEA (P,E) such that M MoHO'

We use M as defined before 1.13. By 1.10, let M E ICon(F,F')I be

such that M MOE.

that M

isomorphism

We claim that M MoM
O'

By 1.10, this is equivalent to saying

Since it suffices to show that there exists an
p'

Mo(-) i'oM.

Given X E lei, we are to define h
X:

H(X) ----+ M(X), a natural transformation be-

tween functors (p.)op ----+ SET. Thus, let n E Ip'I, and define

as follows. We have

(7)

M(X) (n) lim X«p,Y)).
n ->- M(p;Y)

For a specific given 13: n -> M(p, Y), we can define

as follows:

«p,Y) X) f----+ (n ->- M(p,Y)

'-----v------J
a typical element

of X«p,Y))

M(f)

It is clear that these maps are compatible with the morphisms of n+M, i.e. whenever

we have

(p,Y)

g

(q ,Z)

then
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By the universal property of these {(hX)n)B define an arrow as in (7). It

is clear that h
X

so given is natural, and in fact that h itself is natural.

To show that h is an isomorphism, it suffices to show that each (hX)n is a

bijection.

1.2,

First we show that (hX)n is surjective. Let

there is pEM(X) such that B factors through

B: n + M(X) be arbitrary. By

M(p,X) ---+ M(X); now the

claimed surjectivity is immediate.

Since (n+M)oP is filtered (see the proof of 1.13), for proving the injectivity

of (hX)n' it suffices to consider two elements of X«p,Y» of the form

(p,Y) X, (p, Y) X such that in

S M(O

M(g)

X be the equalizer of f and
g

H{X) is an equalizer diagram; let us denote by

Let B'----+ Y

Y too. Let, as usual, r = t(S); note that

BEr. By its definition, the set r contains the set p; it follows that

(r ,Y) <---..;- Y factors through (p, Y) C--+ Y, and since BEr, we have that in

we have ex d-f M(f)oS M(g)oS.

g; then M{B) "----+ M(Y) M(O

M(g)
B the subobject (B '-----+ Y) of

-r./h ,,=, f v j
(r,Y) df

Y X

goj

foj goj holds. This means that in the limit X(p), the two elements

n + M(p,X)
(p,Y) X represent the same element, namely the one represented by

g
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(r,Y) X. This proves the injectivity of the map (hX)n'

We have thus checked that M It remains to verify that M preserves

intersections. To simplify notation, assume M = MoM
O

and M= Mo£ (and not just

isomorphism).

Let X E lei, n M(X) be any morphism from a (prime) object

n E [p'l c lEI. Let p = t(8) E P(X). We claim that is the small

est subobject E of such that 8 factors through M(X)(=

Since M(p,X) I\M(A), 8 does factor through M(X).
AEp

Suppose 8 factors through M(E) M(X). By 1.8 (i), E = iEI} with

some Pi E P(X); since M preserves sups, M(E) = \I iEI}; since n

is a prime object, there is iEI such that 8 factors through M(P
i)

=

M(X); it follows that Pi c P (see 1.2), hence $

$ I, as claimed.

M(X) (n E [P' [) that

MU'idi)' Let p = d8);

iEI, hence a(p,X)'; I\I.
L L

of we show that M(/'\I..) = /\ M(I.).
1 1 J, 1

,; M( 1\ I.) requires proof; also, since E

that every n

Now, let I. (iEI) be subobjects

Of course, only the inequality !\M(I.)

is primegenerated, it suffices to show

factors through 1\M(I
i)

L.--..--.;- M(X) also factors through

by the previous paragraph, we have ,; Ii for all

and thus M(a(p,X» s M(I'\I.), as desired.
1 L

We have shown the required preservation of intersection of subobjects of objects

of the form (X E lei) of P. For objects of the form pEP(X), the

same conclusion is an immediate consequence since these are domains of subobjects of

objects of the previous kind. This latter kind of objects form a family of gener

ators for P. Now, the final conclusion follows by an elementary argument showing

that a continuous functor between toposes preserves intersections of subobjects of

arbitrary objects once we know this of objects that form a family of generators of

the domain topos; we omit the easy details. n

By the above, in particular 1.5, 1.6, 1.7(iv), 1.9, 1.12 and 1.14, we have

completed the proof of Theorem 1.1.

Concluding this section, we briefly describe an alternative definition of the

prime completion. Let X E lei. A filter on X is a set Z c Sube(X) satisfying

the first three conditions of the definition of a prime filter. F(X) denotes the

set of all filters on X. The category of filters of e, denoted F, is defined

similarly to p., a morphism between two filters (Z,X), (<p,Y) is an equivalence

class (or germ) of morphisms defined exactly as it was done for prime filters.

Clearly, P is a full subcategory of F.

For I E F(X), P(Z,X) is the set of prime filters pEP(X) such that I c p.
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Given a germ f: (E,X) + (¢,Y), f: A + Y, for every pEP(E,X) we have that
-1

f Cp) (= {B E SubC(Y): f (B) E p})belongs to p(¢,Y); define the map

P(f): P(E,X) + p(¢,Y)

by (P(f»(p) = f(p). In this way, we have actually defined a functor P: F + SET.

We define the Grothendieck topology on F as the one generated by all those

families

{(E.,X.)
l l

(¢,Y): iE:l}

that are carried by the functor P into a surjective family:

P(¢,Y) V Im(P
iE:l

The functor i: C + F is defined by mapping X E lei into the (set theoreti-

cally) minimal filter ({lx},X), and X f__ Y into the obvious germ f. With

these definitions, the prime completion

turns out to be isomorphic to the composite

where of course F is the category of shcavcs over F as a site. The starting

point of proving this fact is to show that F (via i) is the solution of the univer-

sal problem of extending C to a category having intersections of arbitrary

families of subobjects of any given object.

§ 2. and representation

We continue to use all the notation of Section I in an unchanged sense. In

particular, e is a regular site. X will always denote an object of e.

Definition 2.1. Let K be any subcategory of (C,SET). A functor F: K + SET is

said to have the fini te property_ (f. s. p.) if the following holds: for any

M E: IKI and a E F(M), there are X E lei and x E M(X) such that for all N IKI,
and all M-JL..N in K, gX(x) = hX(x) implies (Fg) (a) (Fh) (a)'. He call such

an x a support of a.
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For a discussion of the f.s.p. in a (significant) special case, see [10].

We will fix K to be the full subcategory of Mod(C,SET) of

'special' models. Let K
O

where card(C)

card(Jl{Hom(X,Y): X,Y E Icl}); K
n
+
l

[n for n < w, A = SUp{K
n:

n < w}. In

[CK], the notion of special structure is introduced; in our context a structure is

a functor C --+ SET. We let K bc thc full subcategory of Mod(C,SET) consisting

of the A-special models; for the exact meaning of the prefix A - (which is almost

the same as having cardinality A), see [10]. One doesn't need to know the defini-

tion however; everything we use is contained in

Proposition 2.2. (i) Every MEK

(ii) Whenever X E Icl, p E P(X),

is a p-model, ME Ip(C,SET)I.

there are MEK and x E M(X) such that

p = tX(x,M).

(iii) Whenever M,N E K, x E M(X), Y E N(X), P tX(x,M) and

then there is a homomorphism (natural transformation) h: M --->-

Y E N(p,X)(c N(X»,

N such that

RemaIks. (i) follows from the fact that every special structure in Ko-saturated,

an immediate consequence of the definition. (I t ) follows from 5.1. 8 in CK; (iii)

is the same as 1.l(v) in [10]. 0

Recall that P denotes the prime-completion of the regular site C. By 1.1

(since SET is prime-generatedl), there is a full and faithful functor

(-): p(C,SET) ->-!\ (15, SET)

such that Mo (-) = Idp(C,SET)' where

of 1.1, defined by composition with MO'

/\ (15, SET) ->- p(C,SET) is the functor

In particular, we have that the diagram

commutes for every ME Ip(C,SET)I. Let K be the image of K under (-); K is

a full subcategory of 1\(15, SET); let us denote the functor (an isomorphism of

categories) K K induced by (-) by the same symbol (-) induces an

isomorphism (K, SET) :::::.- (K, SET); with ev: P -> (K,SET) the evaluation functor,

let denote the composite 15 (K,SET) (K,SET). With eva: C --+ (K,SET)

the appropriate evaluation functor, we clearly have that
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(K,SET)

commutes.

Theorem 2.3. (Representation theorem for the prime completion).

is continuous, full and faithful; a functor F E (K,SET) is isomorphic to

one of the form E IFl) if and only if F has the f.s.p. As a consequence,

F is equivalent to the full subcategoryf.s.p.(K,SET) of (K,SET) consisting of

the functors with the f ;s , p. Here K can be any full subcategory of Mod (C, SET)

satisfying the three conditions in 2.2.

Proof. (i) The continuity of £ is clear.

(I t ) We prove that £ is conservative; this will imply that it is faith

ful. Since the obj ects of the form (p ,X) (pEP (X» (call these obj e c t s )

generate P, it suffices to show the following: whenever

{G.
1

0..
1 (1)

is a family of morphisms between special objects, which is not a covering in F, the

family

£(G): iEI} (2)

fi(Pi)' i.e. f i would be a cover in P, contra

What we have shown is that, for a suitable MEK,

Ma.)
1

f. 's
1

for all leI.

clearly

x Im(M(f.»
l

is a pmodel;

P t (x ) means p is the (set

x E M(p,X); so if we had

M

that

Gi = by 2.2 (ii), let

(ii), a
i

= for some germ

covering in P, none of the

P

(K,SET). Let G =

that p tX(x,M). By 1.7

in P; since (1) is not a

have x E M(p,X); we claim

is not a covering in

MEK and xEM(X) such

f i : (Pi'\) > (p,X)

is a cover in P. We

In fact, we have Im(M(f.» M(f.(p.),X), since
l 1 1

P c fi(Pi) (settheoretically); on the other hand

theoretically) largest element of P(X) such that

X E Im(M(f.», we would have
l

diction; this shows our claim.

--------+ M(p,X): leI}

is not a covering in SET; it follows that (2) is not a covering in (K,SET).

(iii) Next we show that £ is strongly full: induces a surjection
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(hence, an isomorphism) between the subobject-Iattices

for any <l> E IPI.

and

Let first X E lei and <l> = MO(X): hence (<l» = evO(X): let Z be an arbi-

trary subobject of (X) . We define a subobject I of ¢ as follows. Consider

an arbitrary model NEK, and any element y of ZeN) (a subset of N(X»: define

I as the sup of the subobjects for all such N and y:

We claim that Z =

Note first that for any MEK, (M) = (ev(I)) (M) M(I) = V ,X): ...}

\f {M(t(y),X): ... }. Let x E Z(M): of course, x E M(t(x),X); it follows that

x E hence Z(M) c and thus Z $ (as subobjects of evO(X».

Now, let MEK and x E c M(X). By definition of I, there is NEK

and y E ZeN) such that x E M(tx(y,N),X). By 2.2 (iii), there is a homomorphism

h: N -+ M such that hx(Y) = x , It follows that x = Z(h) {y ) E Z(M) (Z is a sub-

functor of evO(X», proving $ Z, and thus the claim.

The claim is the strong fullness condition for <l> of the form MO(X). The

same now follows for any object <l> = since is the domain of a sub-

object of M
O
(X). Hence, we have the strong fullness condition for objects G that

form a family of generators for P. Strong fullness in general nov, follows by the

following easy argument: for an arbitrary <l> E IPI, Z E let
CJ..

{Gi 1) ¢: iE I} be a covering in P with Gi "special"; form the pullbacks

)

T
1

)

J
z. ..,. Z
1

we have that

(3)

there is Ii E Sub(G
i)

such that Zi =
since is continuous, we obtain by (3) that

define Z VOm(CJ.iII
i):

iEl};

= Z as required.

(iv) The following two facts are easy consequences of the strong fullness

of together with its being continuous and conservative. One is that is full

in the ordinary sense; the other is that the essential image of is closed under
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is an epimorphism in (K,SET), then F is isomorphic

to for some '!' E P. Both facts are essentially proved in the proof of 3.2

in [lOJ.

(v) We show that for any E [pI, has the f.s.p. There is a family

covering in P. Let a E

M

is covered by the family of

morphisms

that

M(P.,X.) hence there are iEI and X E M(P.,X.) such

M(a. )(x)
t,

a. (4)

We claim that x is a support of

M N are such that gX(x)

ing homomorphisms in K, we have

a. Let a ai' (p,X) (Pi'X
i),

Clearly, with M N
------+

h

Suppose

the correspond-

(5)

Also, (g)

squares in

similarly for h. g and h being natural, the two appropriate

M(p,X)

M(a)

===========t N(p , X)

h

hq,

commute. By (4) and (5), it follows that hence

as required.

(vi) We show that every F E I (K,SET) I with the f.s.p. is a quotient of an

object of the form E hence, by (iv), F is in the essential image of

Let MEK, a E F(M); let x E M(X) be a support of a', let p We

claim that there is a morphism

f: F
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in (K, SET) , f depending on a, such that f
M
(x ) = a. To define f = (fN)NEK '

fN: N(p,X) F(N), let NEK and y E N(p,X). By 2.2 (iii), there is g: M --+ N

such that gX(x) = y. Define fN(y) to be (F(g»(a) E F(N). To see that fN(y)

is well-defined, just note that by x being a support of a, i.f h: M N is

another homomorphism such that hX(x) = y, we will have F(h)(a) = F(g)(a). This

defines the functions for every NEK. To check the naturality of f = (fN)NEK'

one wants to see that the diagram

N(p,X)
I

h
.i!(p ,X)

w
N' (p ,X)

------''-------;. F (N)

F(h)

y' = E N'(p,X),

F(g)(a): then for g' = hog

(F(h)oF(g» (a) = F(h) (fN(y»,

fM(x) = a; this proves the

commutes for any h : N N'. Let y E N(p,X), let

let g: M --+ N be such that gX(x) y and fN(y)

we have = y' and hence ,(y') F(g')(a) =

proving the required commutativity. It is clear that

claim.

Let n
a

denote .i!(p,X) for p = tX(x,M), with x = x
a

a selected support of

a E F(M); let fa: F be the morphism f constructed in the claim. The

family <fa a E F(M), MEK> induces a map F, with

L =Jl.{na: a F(M), MEK}. Since (fa)M(x) = a for every a F(M), MEK, clearly

B is an epimorphism. By part (iv) above, it follows that F is isomorphic to

for some object ¢ of P.
This proves the theorem. 0

Next we study the canonical embedding of C, the category of sheaves over the

site C, in P, the prime completion of C. Our results will be general, but also

somewhat technical. In the next section we draw less technical consequences, but for

certain particular sites Conly.

Let £C: C --+ C be the canonical functor (Yoneda followed by associated sheaf);

by our assumptions on C, £C is full and faithful. By the universal property of

£C' there is an essentially unique continuous functor M
O:

C P such that

C
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connnutes.

Proposition 2.4. M
O:
C--+ P is continuous and conservative.

Proof. M
O

is continuous by definition. To see the conservativeness of MO'
it

suffices to do the following. Let {X. ---..- X: iEI} be a family of monomorphisms in
1 . .

e which is not in Cove(X); we want to show that {.i!X
i
---..- . !X: iEI} Cov., (.i!X) •

p
Let us also write Xi for the subobject of X determined by the monomorphism

X. ---..- X. Since e has enough points, there is M E IMod(e,SET) I and x E M(X)
1

such that x M(X
i)

for all iET. Let p tX(x,M); then p and hence

(by 1.8 (ii», . !(p,X) since . !(p,X) is a prime, . !(p,X) $ \!{. !X
i:

iET},

hence a fortiori V iET} + l. !x, as required. 0

the set of

Sub(P)eX)

Sub (p ) (X)

To simplify notation, below we consider

subobjects of X of the form

the set of subobjects of X

C Sub (f) eX) .

X for ke(X), e.t.c); moreover, we write

Let Sub(f)(X) (f for 'filter') denote

J\ {Ai: iET}, with Ai E Sube(X) (iEI),

the form .i!(p,X) with pEP(X). Clearly,

X for

an inclusion (i.e. we write

MO(X), E for Mo(E), e.t.c.

of

Lennna 2.5. (i) Let G E Sub (f) (X) , E E , and suppose that\ G ,; E. Then
C

there is A E Sube(X) such that G ,; A and A ,; E.

(ii) Let G Sub (f) eX) , lei, and X
f
l

E two morphisms in e.E E E

Suppose that

fIlA = f21A.

Proof. (ad (L) •

f
2

IG = f21G. Then there is A E Sube(X) such that G,; A and

Suppose the conclusion fails. By 6.1.3 in MR, we have subobjects

Bj E Sube(X) (jEJ) such that E = \/{B
j:

jEJ}. Consider the following set of sen-

tences, in full first-order logic over the language the graph of e, augmented with

an individual constant x of sort X:

u jEJ}.
J -

We claim that T' is consistent. By compactness, it suffices to show that TA
Te u u {, jEJ} is satisfiable, for any A E Sube(X) such that G'; A.

By our indirect hypothesis, A $ VB' by C having enough points, there are
jEJ j'

ME IMod(e,SET)1 and x E M(X) such that x E M(A) -- this means

precisely the satisfiability of TA. By the existence theorem on models,
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T' has an Xo-saturated model (M,x); in particular, M is a p-model of C. M

gives rise to ME !\(P,SET), by 1.1. Since G = J\{A: A E SubC(X), G 5 A}, we

have M(G) = "{M(A): A E SubC(X), G 5 A}. Since (M,x) F T', it follows that

x E M(G) - M(E), contradicting G 5 E.

(ad (t i.) , This is an easy consequence of part (i). Let E' --+ X be the equal-

izer of f
l

and f 2 in C, let us also write E' for the subobject of X deter-

mined by the monomorphism E' --+ X. Since M = (:) is continuous, E' --+ X iso
the equalizer of f

l
and f 2 , Since fllG = f21G, we have G 5 E' (in

By part (i), there is A E SubC(X) such that G 5 A and A 5 E'; in

fIlA = f21A. 0

there

with objects

P,
fiG.
in

in C

and g: G --+ E
G 5 A and g

Given G
i

E Sub(P)(X),

Ci,.i E I), then

E E

such that

be a finite index-set.

{yo

1= {L, ... ,n}

Let

For any G E Sub(P)(X),

and A E in C

P (hI) such that I (G.i\G.) = s.] (G.i\G.)
J J

SubC(X) and f
i:

Ai + E in C (iEr) such that

f . I (A. AA .) = f. I (A. AA • ) •
J J J

h.
'E: iEr} be a covering of E

A E SubC(X)

(Lt ) Let

g. : + E in
r,

there are A. E

gi = IGi and

Proof. (ad (L) .

Y. of C (c C).

are

Theorem 2.6. (i)

Let G = We consider the following diagram in P, for any iEr:

-------""--------, E

GxY -----------------+, Y
E i i

In this, the outer square is a pullback; X is the structure morphism of

is the canonical monomorphism, TI
i

and are pro-

XXY- determined by the composite monomorphism
i
Denote the graph of g as a subobject of XxE

GXY-. --+ GXY-.
• .L L

TheEsubobject of

G E Sub(X),

jections.

GxY ----+ XXY is called F ..E i i

(via X) by R. Then F
i

is the same as the canonical interpretation in P

of the formula E(x,hi(y»; Fi = [E(X,hi(y»] E Sub(XxYi). Let us record, in logic-

al language, the facts expressing that nR is functional with domain G and co-

domain En: with x,z variables of sorts X and E, respectively, we have (1=
meaning truth in P)



The fact that the

190

1= E(x,z) => f(x),

E(X,Z) A E(X,Z') => Z Z',

1= f(X) =>.3zE(X,Z).

form a covering of E is expressed as

(6)

(7)

(8)

1= 3 y Yl (z h.(y».
l

(9)

By 6.1.3 in MR, we have F
i

objects of the form

= y Hi k
generate

(p) • •
for some H

i k
E Sub (XxY

i)
(since the

P, and since the image of under any

morphism

as

in P is of the form This equality can be written

1= R(x,h. (y»
l

(10)

Now, by elementary logic, we conclude from (8), (9) and (10) that

Since G is a prime, there are indices i and k such that

Fix these i and k, and redenote F.
l

F, H, h, Y.
l

Y. So, we have

1= f(x) => 3 Yji(x,y) ,

and from (10), of course

1= g(x,y) => E(x ,h(y».

As a consequence of (7) and (12), we have

g(x,y) A l!(x,y') => hey) hey').

With E' = [x,y,y': hey) hey')] (Sub_(XxYxY) and G'
C

E Sub_cXxyxy), the last fact is equivalent to saying that
P

G' S; E'

[ji(x,y) A B(x,y')] E

(11)

(12)

(13)
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(since is continuous). Notice too that G' E Sub(f)(XXYXY), since

HE Sub(P)(xxy), hence HE Sub(f)(XXY), thus [x,y,y': n(x,y)] E Sub(f)(XXYXY)

(obtained by pullback), similarly [x,y,y': !!(x,y')] E Sub(f)(XXYXY), and (;' is the

intersection of these latter two subobjects. We apply 2.5 (i) to (13); taking into

account the definition of G', we obtain C E SubC(XXY) such that H $ C, i.e.

F g(x,y) £(x,y)

and [£(x,y) A f(x,y')] $ E', i.e.

F £(x,y) A £(x,y') hey) hey').

We claim that we have

F R(x,z) => f(x) A 3 y (f (x , y ) A z hey));

(14)

(15)

(15')

in fact this statement is a logical consequence of the ones we have established

before. In particular, to establish the left-to-right implication, we argue as

follows. Suppose R(x,z). By (6), we have Q(x). By (11), let y be such that

g(x,y). By (14), we have £(x,y), and by (12), we have E(x,h(y)). By the last fact,

R(x,z) and (7), we have z h(y). We have established: f(x) A.3y(£(X,y) /\ z h(y)).

For the converse direction: Suppose f(x), £(x,y), and z hey). By (11), let

y' be such that H(x,y'); hence by (12), also E(x,h(y'), and by (14), £(x,y').

By (15), it follows that hey) hey'), hence z hey') and so by E(x,h(y'» we

conclude R(x,z) as required.

Of course, this proof uses the fact that for finitary coherent logic, any

ordinary logical inference 'using elements' results in valid conclusions in any topos;

compare MR.

Let E" be the subobject

E" /\ z ee hey))] E
C

(15) and (8), and the fact that (:) continuous, imply that

Applying 2.5 (I) again, there is A E SUb
C
(X) such that G 0; A and A $ E", i. e.

(16)

(17)
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Consider

D [A (X) 113y(£(x,y) II z '" hey»)] E Sub(XXE).

We claim that D is functional with domain A and codomain E, i.e.

CFQ(x,z) A(x), (18)

CFQ(x,z) II Q(x,z') z'" z', (19)

CF A(x) Q(x,z). (20)

First of all, since (:) is continuous and conservative, it suffices to verify

the same things in P, with dots put over A and D. (19) is clear by definition;

(20) follows from (17), and (19) is a consequence of (15). Let f: A --+ E be a

morphism in C whose graph (as a subobjeet of xxE) is D. Comparing the definition

of D with (IS'), and remembering that R was the graph of g, we conclude by (16)

that g = fiG as required.

i:: IA:
l l

fixed

(ad(ii». This is an easy consequence of part (i) and 2.5. By part (i), there are

Ai SubC(X) and f i: Ai --+ E in C (i I) such that Gi $ Ai and gi £il

(i I). We now restrict the f
i

to the other requirements. Let i,j be two

fixed indices I. Since i:. [ (G, IIC,) = f
j
I (G. IIG,), by 2.5 (fL) (applied to

l l J l J
AillAj instead of X, and G = IIG

j),
we get A SubC(X) such that G

i
II G

j
<; A,

A $ Ai II A
j,

and filA = fjlA. By an application of 2.5 (i), we find

E SubC(X) such that G. s G. s <; A., A' <; A and II A: <; A.
l l J J l l j j l J

He let fj fjlAj; we have achieved that '" gi' i:jlGj = gj'

II A' II Replacing f.,f. by f' f ' t i 1 f thj l J l J i' j' respec l ve y, or e

indices i,j, and keeping the other f
k,

we now repeat the same procedure to

the new system <f
k:

kEI> successively for all pairs of indices. 0

We conclude this section by showing that we can talk about the prime completion

of a coherent topos; i.e., if C
l'

C
2

are two regular sites such that C
I

C
2
'

then also Pc Pc (PC meaning the prime completion of C P above).
1 2

Let C be a regular site, R the full subcategory of coherent objects of C

(see e.g. MR). Then R, with the precanonical topology, is a regular site, and the

inclusion R --+ C is isomorphic to R ----+ R; i.e. we can consider R= C, with

th ' l' R -C he i h . f Al C -C fe lnc USlon --+ elng t e canonlca E- unctor. so, ---+ actors
£C

through R ----+ C; if we consider £c an inclusion (as we did above) then simply

C is a (full) subcategory of R; we adopt this point of view below.

The inclusion C"- R induces a 'reduct' functor Mod(R,SET) Mod(C,SET)
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which is an equivalence of categories. This equivalence induces an equivalence of

the special models of R. and those of C; more precisely, A
C
= AR = A (see the

beginning of this section) and if KC' denote the categories of the A-special

models of C and R, respectively, then 0 restricted to maps onto KC.
Although this claim is very easy to establish, its verification requires looking at

the details of the definition of special structures, so we omit it.

The functor 0: KR K
C

induces an equivalence (KC,SET) (K/?,SET).

Denoting the full subcategory of (K,SET) consisting of the functors with the f.s.p.

by f.s.p.(K,SET), we obtain an equivalence f.s.p.(KC,SET)

this is again easy to check.

Now, consider the following diagram

p

Here we used our earlier notation, once in relation to C, once to R The functor

is obtained by applying the universal property ofPc-------+ PR
By Theorem 2.3, and (as used here) are equivalences.

Pc (Theorem 1.1).

It follows that

Pc -------+ PR is an equivalence as well.

Now, our initial statement concerning C
I

and C
2

is clear.

§ 3. Uses of completion.

Our first use of the prime completion is to produce full continuous embeddings

of certain coherent toposes into functor categories. Theorem 3.2 below is a general-

ization of the main result, Corollary 2.7, in[lO], and it is an immediate consequence

of the results of Section 2. A simple but artificial example will show that the

generalization is real. However, since we do not have interesting such examples, the

added generality in 3.2 seems to have only a limited interest. On the other hand, it

is not inconceivable that the general results of Section 2 can lead to other results

of the type of 3.2.
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Definition 3.1. We call a regular site e a special site if every X E lei is

covered by finitely many prime filters, i.e. there are n < wand El, ..• ,Pn E P(X)

V
n

such that whenever Ai E Pi (i = l, ..• ,n), then i=lAi lx·

The condition is equivalent to saying that in P, is covered by the

If A E SubC(X), and (the domain object of) A is prime, then the principal

filter on SubC(X) generated by A is a prime filter. Therefore, if the regular

site C is prime-generated, then it is special. If E is a prime-generated coherent

topos, then, by Lemma 2.3 in [10], C = Coh(E) = the full subcategory of E consist-

ing of the coherent objects with the precanonical topology is a prime generated site,

and of course, C is regular and C E. Hence, the following result generalizes

Corollary 2.7 in [10].

Theorem 3.2. For a special site C, e can be fully and continuously embedded into

(K,SET) for a small category K.

Proof. Using the notation of Section 2, we show that, under the present hypotheses,

is

by Lemmac,

e
f , (L = 1, ... ,n). We
l

in r, it follows

is a family of generators for

such tha t f IA. =
l

since the G
i

cover X

Sinceis full.

Ai E Pi' gi
X: i

l

it suffices to show that M
O

is full on hom-sets of the form

with X E lei, E E lei. Fix such X and E and let Pl, ... ,Pn E p(X)

(see 3.1). Let g: X E be a morphism in P, let g. giG. with
l l

E Sub(P) eX). By 2.6 (ii) (since gil (Gii\G
j)

= gj I<Gii\Gj»

Ai E SubC(X) and f i: Ai E in C (i = 1, ... ,n) such that

L!G. and f.I(A.M.) = f.!(A,Mj). Since the Pl' cover X,
II l lJ J l
l, ... ,n} E Since the representable presheaf

C
a sheaf, there is a unique f: X E

have fiG. = L IG, = g, = giG.;
1 1 1 1 1

that i = g as required.

Gi
we have some

M
O

(.:): C
2.4 in [10],

llom_(X,E) ,
C. Xcoverlng

This proves that M
O

is full; it is faithful and continuous by 2.4. Composing

M
O

with the functor of Theorem 2.3, we obtain the required embedding. 0

Example. We describe a coherent theory T in the one-sorted language having the

unary predicate symbols and (i E w). The axioms of the theory are:

(x ) -+ (L E w, a 0,1),

\/x(A?(X) v (i,j E w),
l J

a\/xA
O
(x ) (a 0,1) ,
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3X(A?(X) A (i,j E W).
l J

of T as certain subobjec.ts of Un, for some n, where

[xex ] . SUb
C
(U) . With

-+
object = Let E i

n 0 l n l

let C [I\A. (x
k)

A I\A. (x
k)]

E Sub (Un); call a
-+ -+
i,j k=l lk k=l J k

-t-
<i1,···,i

n
> , J

subobject of

<jl,···,jn>

of the

ism S n, a morphismWitha subobject.form C
-+
i

one of the form <x. , ... ,x. >], with i
l,
•.. ,in certain in-

II ln

dices such that {il, ... ,i
n}

= {l, ... ,m}; a diagonal morphism is a monomorphism

An easy computation ("elimination of quantifiers") shows that every subobject of Un

in C is the image of a special subobject of some Urn (m n) under some diagonal

morphism. Let pa be the filter on SubC(U) generated by iEw} (a = 0,1). We
o 1

have that p ,p are prime filters on U, as easily checked. More generally, let
nnE(k )

£: u, ... .n} -+ {O,1J; let p be the filter on U generated by {[/\A
i

il, .•• ,i
n

t w}. Then for every special subobject C of Un, and anyk=t,

C(A)pE df {eAA: A"pE}, which is a filter on SubC(C) under the obvious identifi-

cation of subobjects of C with those of Un, is a prime filter on C. To verify
01001 1

this, one uses the easily seen facts that Ai A A
j

$ A
i
+
l,

Ai A Ai $ A
i
+
l.

Putting

all these facts together, one easily concludes that C is a special site. However,

C is not prime-generated, and hence C is not prime-generated either; in fact,

e.g. U does not have any subobject in C which is a prime. 0

It would be interesting to know if the following is true: if a coherent topos

C can be fully and continuously embedded into some category of the forln .(K,SET),

then the canonical embedding M
O
: C--..,. P is full.

Our second use of the prime completion is a result relating the category of

models of a theory to the prime completion of the classifying topos of the theory,

also called the topos of £f the theory. The main role in this result is play-

ed by a technical theorem of Daniel Lascar; our result does nothing more than bring

out in a certain sense the 'content' of Lascar's theorem.

In model theory, from early on it has been an important aim to recover detailed

syntactical information from 'global' semantical behaviour, in many different

situations; it is enough to remind the reader of the classic example of Beth's

definability theorem to indicate what we have in mind. Since the category of models

of a theory can be reasonably viewed as a codification of an essential body of

semantical properties of the theory, it is reasonable to ask to what extent can
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syntactical aspects of a theory be recovered from the category of models. Now, as

we are prepared to argue, the topos of types is a reasonable codification of the

'discrete' (non topological) syntactical structure of types of the theory just as

the classifying topos is a reasonable codification of the full syntactic content of

the theory. Our recasting of Lascar's theorem below therefore can be paraphrased

into saying that for at least certain countable complete theories (including ones

with Skolem functions, and many others, see below), the category of models contains

the essential information on the discrete structure of types.

Let T be a finitary first order theory. As we explained in § 5 in [10], it

makes a difference what fragment of full finitary first order logic we consider

with T; see also the Introduction. Once a theory T is conceived in this way,

one has attached to it its classifying topos f(T). This notion is dealt with for

theories in the 'coherent fragment' (coherent theories) in MR in detail, and in § 5

in [10] the simple way of generalizing this concept to arbitrary theories is explain-

is a regular site

f(T), and in fact,ed.

with

and

The 'logical category' derived from T, R
T,

sits inside

K
T

considered a site with the precanonical topology, RT

T

The tapas of of T, denoted P(T), is defined as the prime completion of

the coherent tapas f(T);

the last section).

this is the same as PCoh(f(T) or PR (see the end of
T

From now on, assume that T is a complete theory in full firlltary logic;

allowing many sorted theories, this is equivalent to saying that in e = Coh(f(T»,

every subobject A E Sube(X) has a Boolean complement B such that A v B = IX

and A A B Ox' and the terminal object of e is an i.e. it has exactly

two distinct subobjecls. We claim that in this case P(T) is an atomic topos, i.e.

it has a family of generators consisting of atoms (compare [3J and [10]); namely,

it is easy to check that in this case p,q E P(X), X E lei, p c q imply p = q;

therefore (by 1.8), is an atom in P(T).

There is a single A-special model N of T up to isomorphism (A = A
e;

see

CK,5.1.17); hence now in 2.3 K can be taken to be the monoid End(N) of all

elementary embeddings of N into itself.

For an arbitrary category V, a functor V SET is called upcontinuous if it

preserves small filtered (directed) colimits eXisting in V; Upcon(V,SET) is the

full subcategory of (V,SET) with objects the up continuous functors. It was Andre

Joyal's basic observation that upcontinuous functors might be important, since

ev: f(T) (Mod T,SET)

factors through Upcon(Mod T,SET). Whereas Upcon(V,SET) is defined for an abstract

category V, and hence, if Mod T c Mod T', then
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the same cannot be said a priori of f.s.p.(Mod T,SET).

Daniel Lascar introduces the following notions. For a model M of T, and a

finite subset X of M, let Autx(M)

M; y(x) = x for XEX. y,6 E Autx(M)

elementary extension N T of M and

denote the group of X-automorphisms y of

are called weakly conjugate if there is an

extensions y', 6' of y, 6, respectively,

such that y', 6' are conjugate in the group AutX(N). A subgroup of Autx(M) is

called very normal if y E H, 6 E Aut
x
(M) and y, 6 being weakly conjugate imply

that 6 E H. The theory T is called G-trivial if for some (any) special model

N of T, and for any finite X e N, the only very normal subgroup of AutX(N) is

AutX(N) itself. Note that this is certainly true if every y E AutX(N) is weakly

conjugate to Id
N,

which is the case in all known G-trivial cases, and which is

something quite accessible to verification.

One large class of G-trivial theories is that of all complete theories with

Skolem functions (see CK, p.143). Another is those stable theories in which all

types over arbitrary sets are stationary [12]. The theory of dense linear orders

without endpoints is another G-trivial theory. On the other hand, the theory of

algebraically closed fields with given characteristic is not G-trivial.

Lascar's Theorem [7]. Suppose T is a countable complete G-trivial theory. Then

every upcontinuous functor Mod T --+ SET has the f.s.p. (see 2.1).

Theorem 3.3.

peT') -- pm.
If T and T' are G-trivial theories, and Mod T Mod T', then

Some general terminology first. Given a (Grothendieck) topos E, and a

family G of objects of E, there is a smallest subcategory E' of t such that

(i) GeIE'I, (Li ) E' isatopos, (iii) the inclusion E'--+E is continuous

and strongly full, (iv) E' is closed under isomorphisms in E: if E' E IE'I,
E' -- E in E, then E E IE'I. Indeed, note that conditions (ii) and (iii) can be

replaced by the following equivalent closure conditions: E' is closed under finite

products (in E), subobjects, disjoint sums, and quotients. Let us call such E'

the subtopos of E generated by G, and denote it by <G>. If G happens to be

a family of generators for E in the usual sense, then <G> = E, as it is easily

seen.

Let now T be a G-trivial countable complete theory. Let us write for

the essential image of peT) (K,SET), with K End(N) as explained above,

and the functor of 2.3; in particular, is closed under isomorphisms in

(End(N),SET). Let G be the family of those functors F: End(N) SET such that

(*) there is an upcontinuous G: Mod T SET with F = GIEnd(N).
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We claim that fO(P] = <G>; in other words, for a G-trivial theory T, the

topos of types is recovered, up to equivalence, from the category of models, as the

subtopos of (End(N),SET) by those functors that are restrictions of

functors Mod T SET.

We have to show that IfO[PJI = I<G>I. If p E P(X) (X E lei ICoh(E(T)) I),

then (p,X) gives rise to a functor [p,X]: Mod T SET with the f.s.p. such that

[p,X] 1 End(N). 0)

Indeed, define for any model M

[p,X] (N)

and for M N,

Mod T,

M(p,X) {\ {M(A): AEp}

[p , X] (h) = IM(p,X): M(p,X) N(p,X) .

[p,X] has the f.s.p. simply because x c [p,X] (M) has itself as a support; it is

also clear that (1) holds.

m1at this says is that E G. Since the generate peT), it

follows that I c I<G>I.

Conversely, assume that F G, i.e. vIe have C") •

the f.s.p. A fortiori, F has the Ls .p. By 2.3, F

G c I; hence I<G>I c I, proving our claim.

By Lascar's theorem, G has

We have shown

Now, the assertion of the theorem easily follows, essentially because the \-

special model (now \ =? ) can be singled out purely categorically from Mod T· in
w

,
particular, if T, T' are countable complete theories, Mod T t"od T' is an

equivalence functor, N is a (the) A-special model of T then F(N) is a (the),
A-special model of T' . To see this, first note that a model t" of T has card-

inality d> iff there is an elementary chain of models M (a < k ) , Ma+l a
a

proper extension of M for all a < <, whose union (direct limit) is M' i.e. we
a ,

have a category definition of cardinality. Next, M is <-saturated just in case

the following holds: whenever N< N', both models of T of cardinality < <, and

f: N M is an elementary embedding, then f can be extended to an elementary

embedding f': N' 7 M; finally, a A-special model is nothing but the union of an

elementary chain <M : n < w> of such that M is < -saturated and
n n n

card M < here = = 2
n

and A = lim These remarks clearlyn' <0 , <
n n

establish what we want. Thus, our claim above proves the theorem. li
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There is some awkwardness in the above proof; in particular, it would

in a special case, namely when T is ,,; A count-

is ,,; iff E(T) is atomic (Ryll-Nardzewski's

in this case 'peT) c: E(T) as it is easily seen. We have

be nicer if we could say that peT) is equivalent to f.s.p. (End(N),SET). Whereas

we know this to be true in some special cases, we do not know it for an arbitrary

G-trivial theory. We note that the idea of considering restrictions of upcontinuous

functors Mod T + SET in the manner of the above proof is due to Lascar [7].

It would be interesting if we could strengthen 3.3 to saying that for any G-

trivial theory T, Mod(T') Mod(T) implies peT') peT) for theory T'.

We can prove this

able complete T

theorem, see CK);

Theorem 3.4. If T is an ,,; G-trivial theory, then T is

distinguished by its category of models in the sense that for any countable theory

T', Mod T' Mod T implies that E(T') E(T).

Proof: We are going to apply the 'comparison theorem', Theorem 9.2.9 in MR. This

theorem says the following. Let E
l,E2

be coherent toposes, I: E
l
---, E2 a

continuous functor mapping coherent objects of E
l

into coherent objects in

Consider the induced functor I: (Con(E
2,SET)

+ Con(El,SET) (defined by composition).

Then, if I is an equivalence of categories, so is I. If E
i

E(T
i),

then of

course Con(E"SET) Mod T..
1 1

To prepare the stage for the application of this theorem, let N,N' be A-

special models of T,T', respectively; let F: Mod T Mod T' be an equivalence

functor; by what we said above, we may assume that N' = F(N); let C End(N)

::: Mod T, C' End(N') C Mod T'; so we have Flc: C ---+ C'; we also

identify T,T' with the appropriate regular sites RT, R
T
" respectively.

We consider the following commutative diagram

E(T' )

ev Upcon(Mod T',SET)

1
(Mod T', SET)

Here the equivalence functor F is induced in the. obvious way by p., since up-
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continuity is a 'categorical notion', one has induced. By 2.3 (or, already

by 3.2 in [10]), we have that eV
2

factors through f.s.p.(C,SET) so that the

resulting eV
3

is an equivalence; its quasi-inverse is denoted by G. P and p'

are restriction functors. By the proof of 3.3, p factors through f.s.p.(C,SET),

resulting in the functor Pl'

We define I: E(T') E(T) as the composite

I Gop of oev'
1 1 1

As a composite of continuous functors between toposes, I is continuous.

We claim that I maps coherent objects of E(T') into coherent object in E(T).

Since in a coherent atomic topos, the coherent objects are precisely the finite

sums of atoms (3.1(i) in [10]), it suffices to show that I maps an atom into an

atom. * evi maps an atom in E(T) into an atom in (C' ,SET), by the strong fullness

of evZ(2.3). Now, the assertion follows by the commutativity up to isomorphism

of the diagram

E(T')

V
E(T)

(C' ,SET)

i-re
----------+ (C,SET)

Also, by the construction, the diagram

E(T' ) ev'
) (Mod T',SET)

'1 1
F

E(T)
ev

) (Mod T,SET)

commutes up to isomorphism, i.e. there is a natural isomorphism

v: Foev' eveI.

As it is easily verified, one deduces a natural isomorphism

*Mod T' 'C Mod T

1J: F ---+ I
clearly implies that T' is k' -categorical.

o
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(where I: (Mod T' ,SET) -+ (Mod T,SET) is defined by composition) defined by

Since F is an equivalence, so is I. By the comparison theorem, I is an

equivalence. 0
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SOME DECISION PROBLEMS FOR SUBTHEORIES

OF TWO-DIMENSIONAL PARTIAL ORDERINGS
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In this paper we present a natural subclass of dense two-dimen-

sional partial orderings with a decidable theory and provide a complete

axiomatization of that theory. We then see that several ways to

restrict the theory by removing axioms lead to undecidable theories.

We close the paper with an open question about the decidability of a

similar restriction of the theory.

Two-dimensional partial orderings (denoted 2dPOs) were defined by

Dushnik and Miller [2 ]. The theory of 2dPOs was shown undecidable in

Manaster and Rosenstein [8]. The notion of dense 2dPOs arose in our

study of the model companion of the theory of 2dPOs [4]. The specific

2dPOs denoted discussed below provide examples of

2dPOs which are not recursively categorical and which have recursive

presentations with no non-trivial recursive automorphisms (see [4] and

[ 5 ]) . In the next few paragraphs we present terse definitions of the

notions needed in this paper. More discursive discussions are in [4],

[ 5 ], and [ 6 ] .

denotes the rational numbers. denotes the linear

ordering of ZQ = {ex,y): x E &y is the rational plane.

<2 is the product order on Since we only consider countable

structures, a 2dpO is a partial ordering isomorphic to a subset of

with the induced ordering. A dense 2dpO is one which is isomorphic to

a·topologically dense subset of ZQ. A line segment of a (topologically)

dense subset S of is a non trivial interval of S which is

linearly ordered by <Z. It is easy to see that any such line segment
«i

is either horizontal or vertical. A line of S is a maximal line

segment of S. Let P be a dense ZdPO. An embedding of P into
Z

is appropriate if it maps P onto a dense subset of Since the
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image of a subset of P is a line or line segment of under one

appropriate embedding if and only if the image is a line or,

respectively line segment, under all appropriate embeddings, we may

define the notions of line and line segment for 2dPOs via appropriate

embeddings.

<1 denotes the first coordinate pre-ordering on and subsets

of Thus (a,b) <1 (c,d) iff a c iff (a,b) is to the left

of (c ,d) . x =1 Y is defined by ,(x <1 y v y < 1 x ) . Similarly <2

denotes the second coordinate pre-ordering on 2Q, and x =2 y is

defined by ,(x <2 y v y <2 x). We see that a horizontal line of a

dense subset S of 2Q is {x E S: x =2 y} for some y E 2Q• Since

reflections of appropriate embeddings are again appropriate embeddings,

we see that the notions of <1' =1' <2' 2' horizontal, and vertical,

cannot simply be described via appropriate embeddings. However once

a pair of incomparable elements is fixed, say ilj, in a dense 2dPO,

and we restrict attention to embeddings e such that e(i) <1 e(j) <2

e(i), then all of these notions are fixed. In fact we saw in [4]

that all of these notions are definable in the theory of dense 2dPOs

given i <1 j <2 i. Throughout the remainder of this paper, when we

refer to these notions for a dense 2dPO we assume that an incomparable

pair i <1 j <2 i has been fixed.

Let L be a horizontal line segment of a dense 2dPO P. L is

called unbounded (in P) if for every point p of P there are points

t and r on L to the left and to the right of p. L is called

full (in P) if it is as dense as possible in Pj that is if whenever

t l E L, t 2 E L, and El <1 sl <1 s2 <1 E2 there must exist t 3 E L

such that sl <1 E3 <1 s2' Analogous definitions apply to vertical

line segments of dense 2dPOs.

D2 = 0 is any dense 2dPO which has no line segments. In [4 ]

we saw that any two presentations of D2 are isomorphic so that the

notation is reasonable. In general we define v for h > 0 and

v > 0 to be any dense 2dPO satisfying all of the following conditions.

has exactly h+v distinct lines. Each line of is full

and unbounded. No two lines of intersect. has exactly

h horizontal lines and v vertical lines.

It is not difficult to see that any two presentations of

are isomorphic. Let F be 0 shand 0 v}. F is a critical

class in the study of recursively categorical dense 2dPOs (see [5 ]).

Let K be the theory of F. In Section 1 we will see that K is

decidable, find a finite axiomatization of K, and show that for
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each h:" 0 and v:" 0 the theory of Dh,v is decidable. In Section2
2 we will see that all of our axioms for K beyond the basic axioms

for dense 2dPOs are essential for the decidabili ty of K.

Section 1: DECIDABILITY RESULTS.

A finite axiomatization of the theory of dense 2dPOs is in [4].

The main observations about dense 2dPOs required to formulate the

axioms are the definability of <1 and <2 from an incomparable pair

and the partitioning of a dense 2dPO into 25 regions, nine of which

must be non-empty, by any non-colinear pair of points. The 25 regions

are indicated in Figure 1; regions 1 9 must be non-empty.

I
1 10 2 11 3

I I
12 13 14 15 16

I I
4 17 5 18 6

I I
19 20 21 22 23

I I
7 24 8 25 9

I I

FIGURE 1

The importance of the notion of discrete in the theory of finite

linear orderings led us to find an analogue for K. The assertion

that the set of horizontal lines is discretely ordered in P by <2

is stronger than the assertion that this set of lines is discretely

ordered by <2. Being discretely ordered in P means that for any

x E P if x lies below any horizontal lines, then there is a horizon-

tal line L above x with no horizontal line below L and above x,

and if x lies above any horizontal lines, then there is a horizontal

line L below x with no horizontal lines between x and L. A

similar definition gives the meaning of the vertical lines being

discretely ordered in P by <1'

One such 2dPO, called

used in Section 2. The

U is w+w*; similarly,

will be describedU,or

order type of the horizontal

<1 order type of the vertical

in which the set of horizontal

by <2' the set of vertical lines

and yet both sets of lines are

<2
the

P

P

There do exist dense 2dPOs

lines is discretely ordered in

is discretely ordered in P by

infinite.

here and

lines of



P is a dense ZdPO.

No two lines of P intersect.

Each line of P is full.

Each line of P is unbounded.

H(x ) : (3y) [x Z Y
H defines the set of

V(x) : (3y) [x 1 Y
V defines the set of
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lines of U is w+w*. The hypotheses of discreteness in U implies

that there are no points between the wand w* sequences of horizon

tal lines and that there are no points between the w* and w sequen

ces of vertical lines. To construct U, start with a topologically

dense subset of ZII.( which does not intersect any of the lines x = lin

for n E {j:l,±Z,±3, ... }, does not intersect the xaxis or the yaxis,

does not intersect a <1 dense set of vertical lines, and does not

intersect a <Z dense set of horizontal lines. To finish a construe

tion of U, add to this set full and unbounded sets of points on each

of the lines x=l/n and y=l/n for nE{±1,±Z,±3, ... } in such a

way that no other lines are formed and no two lines intersect.

Theorem 1. The following axioms, when formalized, are a complete set

of axioms for K.

(1)

(Z)
(3)

(4)

(5) If P has any horizontal lines, the set of horizontal lines

is discretely ordered in P by <Z with both a first and last element.

(6) If P has any vertical lines, the set of vertical lines is

discretely ordered in P by <1 with both a first and last element.

Proof. Let K' be the theory generated by axioms (1) (6). It is clear

that each satisfies axioms (1) - (6) so that K' s;;; K. To prove

that K s;;; K' we shall first introduce a list of basic predicates for

K' and show that an elimination of quantifiers is possible in K' over

these predicates. We will then be able to observe that the sentences

true in every model of axioms (1)(6) are precisely those sentences true

in all the Moreover, as a result of our analysis, the decidabil

ityof K, as well as other interesting properties of the

will easily follow.

Our list of basic predicates is as follows:

& x y]

points lying on horizontal lines.

& x y]

points lying on vertical lines.
n

dl(x,y):::n: (3zl)···(3zn)[x<lzl<1···<lzn<IY& & V(zi)]
i=l

For any nonnegative integer n, d
l
(x,y) ::: n defines the pairs for which

x lies left of y and at least n vertical lines lie between x and y .

dl(x,y) = n: dl(x,y) ::: n & ,dl(x,y) ::: n+l
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d l (x,y) = n defines the pairs (x,y) for which x lies to the left of

y and there are exactly n vertical lines between x and y.

dl (x,+oo) :> n defines the set of points which lie to the left of at

least n vertical lines.

Obvious modifications of the preceding give definitions of

dl(x,+oo) =n, dl(-oo,y) :>n, dl(-oo,y) =n, and analogues with dZ in

place of dl.

Lemma. Every formula is equivalent in K' to a propositional combina-

tion of the predicates just listed and l' =Z, <1' <Z·

Proof. The usual manipulations in elimination of quantifier proofs

together with consideration of the pre-ordering properties of <1 and

<Z and the relations between d l and <1 and between dZ and <Z

show that the general form reduces to the cases suggested by the next

formula. In that formula (-.) indicates that , may occur or may not

occur in that position, (=,:» indicates that one of or:> occurs,

(& ... ) indicates that the parenthetical clause may occur or not, and

any or all of t, r, b, a mayor may not occur where first displayed.

If the first t or b does not occur, later occurrences are understood

to be occurrences of Similarly if the first r or a does not

occur, later occurrences represent +00

(*) (3x) [(-.)V(x) & h)H(x)

& t <1 x <1 r & dl(t,x)(=,:»n l & dl(x,r)(=,:»ml(&x=l v & x;fv)

& b <Z x <Z a & dZ(b,x)(=,:»n Z & dZ(x,a)(=,:»mz(&x=Zh & x;fh)].

There are certain obvious cases where (*) is equivalent in K'

to the contradictory sentence dl(-oo,oo) = 0 & dl(-oo,oo) :> 1 because (*)

can never be satisfied by a model of K'. For example, (*) may contain

Vex) & H(x) or may contain ,Vex) & x =1 v & x;f v : Moreover, K'

clearly implies that for all x one of the following 3 possibilities

holds: (a) ,Vex) &,H(x), (b) ,Vex) & H(x), or (c) Vex) &,H(x),

so that we may assume (*) starts with one of these three combinations.

We shall indicate the general pattern of the various possibilities by

analyzing only those cases in which the first two conjuncts are

,Vex) & H(x). This given, first we consider those cases in which

(& x =z h & x ;f h) does not occur. In such cases (*) is equivalent

over K' to
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Here represents if both formulas involving dk in (*)

have and represents if at least one of these formulas has

The equivalence of (*) and (**) in this case will be considered in

detail in the next paragraph. If (& x =Z h & x f h) occurs, (*) is

equivalent to

(* **) t <1 r & nl+m l & b <Z h <Z a & H(h)

& dZ(b,h)(=,:O:)3 "z & mZ'

(= ,:0:) 1 has the same denotation it did in (* *) . (= 3 denotes

if dZ(b,x)=n z is a conjunct of (*) and denotes :0: if dz(b,x) :,. n
Z

is a conjunct of (*) . The denotation of ':")4 is defined similarly.

In considering the equivalence of (*) to (**) for ZdPOs which are

models of K' we shall further restrict our attention to the special

case (*s) of (*) displayed below. This special case was chosen to have

enough variety to indicate the general pattern.

(*s) (3x) [.V(x) & H(x)

& x <1 r & dl (-oo,x) = "i & dl (x,r) ml

& b <Z x <Z a & dZ(b, x) :,. nZ & dZ(x, a) :0: mZ] .

According to the previous paragraph we want to see that this formula

is equivalent over K' to

(**s)

Since (*s) is easily seen to imply (**s) in any dense ZdPO, we consider

the converse implication for any model U of K'. Since the collection

of horizontal lines is discretely ordered in U and there are at least

nZ+mZ+l horizontal lines between b and a, let L be the horizontal

line which has exactly nZ lines below it which are above b. Any

point x on L will satisfy the last three conjuncts of the matrix

of (*s) since there must be at least mZ lines above L which are

below a. Since dl(-oo,r):,. nl+m l and the set of vertical lines is

discretely ordered with a leftmost element, there is a line M which

has exactly n l lines to its left. Let x be any point on L to

the left of M but to the right of all lines to the left of M.
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n =1

exists since L

O. d
l
(-=,x) = n l
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is full if n l:: 0

and dl (x,r) :: ml

and since L is unbounded if

since dl(-=,r) ::nl+ml.

It now follows by our elimination of quantifiers that if is

any sentence in the language of ZdPOs then is equivalent over K'

to a sentence of the form

n m
1\ (V .)
j =1 k= 0 ' J

where each is either di(-=,=)::p or di(-=,=) = p for some

i E {l,Z} and some p > O. It is now easy to see that the only sentences

true in all models of K' are sentences which assert d l (-=,=) :: 0

and/or dZ(-='=):: O. Since these are the same sentences which are

true in all the we have K K'. Thus (1)-(6) axiomatize K.

We proved in [4] that the theory of dense ZdPOs is finitely

axiomatizable so that it follows from our elimination of quantifiers

and our remarks above that we can effectively decide whether K F

for any sentence Thus we have the following.

Corollary 1. K is a decidable finitely axiomatizable theory.

Corollary 2. For each h and v, the theory of is decidable.

A complete set of axioms for this theory consists of axioms (1)-(4)

together with the assertion that there exist exactly h horizontal

and v vertical lines.

We finish this section by fulfilling a commitment we made in [5].

We shall use the above elimination of quantifiers to show that

has decidable atoms; that is, we can effectively decide

whether a given formula ... ,xn) is an atom in the Lindenbaum

algebra of Given that the algebraic closure of a subset A

of a model M is the union of all finite sets in M defined by

formulas with parameters from A, it will be clear that the algebraic

closure of any A is just A itself. Metakides and Remmel

[9] and Remmel [11] were able to generalize many of the classical

theorems on the lattice of r.c. scts to apply to the lattice of r.e.

substructures of any atomic decidable model M of a decidable theory

T with decidable atoms. Thus the provide an interesting

class of structures to which their techniques apply.

We shall use notational conventions suggested by those we used

in (*). It follows from the elimination of quantifiers procedure
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that any

over K

a and 1:

formula whose only free variables are xl"" ,xk is equivalent

to a disjunction of formulas of the following types (t). Let

be any permutations of {I, ... ,k}.

(t)
k

)x
a k

& &(.)V(x .)
i=l O' L

k-l
& dl(-oo,x 1) (=,:o:)nO & & dl(x .,x (·+1)) (=,:o:)n.

a i=l o i all

& dl(xak,+oo) (=,:o:)n k+l

k
& (o)H(x .)
i=l ,1& X1:1«Z'=Z)X,Z«Z' Z)X,3«Z'=Z)"'«Z'=Z)X,k &

k-l
& dZ(_00 (= ,:o:)mO & & dZ(X .,X (. 1)) (= ,:o:)m., i=l ,1 1: 1+ 1

Given any formula we can effectively find an equivalent disjunction of

(t) formulas in the theory of any Since the formula is an atom

just in case that disjunction has only one disjunct and every occur-
h vrenee of (=,:0:) represents an occurrence of the theory of DZ'

does have decidable atoms. It also easily follows by the form of the

atoms that the algebraic closure of every subset of is itself.

Section Z. UNDECIDABILITY RESULTS.

We saw in [4 ] that the theory of dense ZdPOs is finitely

axiomatizable but undecidable. In this section we shall see that the

theories which result when anyone of the axioms (Z)-(6) is removed

from K are undecidable. We shall assume that the reader is familiar

with the Rabin-Scott method [10] for establishing undecidability. Thus

in each case we shall omit all of the details except to verify the

crucial step of the Rabin Scott method, which is to interpret, by

fixed formulas, any countable model of a theory known to be undecidable

in a model of the given theory. Finally, we end this section with

several open questions concerning the decidability of closely related

theories.

Theorem 2. The theory obtained from K by omitting (Z) is undecidable.

Proof. We use the undecidability of graph theory, by which we mean the

theory of an irreflexive symmetric binary relation [1,9]. Let
w*+w w*+w

U = D' be the extens ion of DZ formed by adding to it
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an w*+w sequence of horizontal lines and an w*+w sequence of

vertical lines, as described in Section 1. It is easy to see that

al though U f F, U is a model of K. Let the sequence of horizontal

lines be denoted HI,HZ,H3, ... ,H_3,H Z,H_ I in order. Similarly, let

Vl,VZ,V3, .. , ,V_ 3,V_ 2,V_ l denote the sequence of vertical lines,

Let G be any graph on IN+ {1,Z,3, ... j . Extend U to I G by

adding the following points to U. For each n ElN+ add the inter

section of Hn and Vn. For each pair (m,n) EG with me n add the

intersection of Hm and Vn, Notice that I G is a model of the

theory obtained from K by omitting (Z). In the interpretation, the

domain of G in I G is the set of intersections of lines with no

intersection above on the same line. G is interpreted in I G by the

relation of pairs of points in the domain such that the horizontal

line through one intersects the vertical line through the other.

Formally, 6(x) and y(x,y) below give the required interpretations.

Z y

6 (x): H(x) & Vex) & (\iy) [x <z y 1 x -> ,H(y)]

y(x,y): 6(x) & 6(y) & x f y & (3z) [x =1 z v x

We now use
DW*+w,w*+w

Theorem 3. The theory obtained from K by omitting (3) is undecidable.

Proof. We again use the undecidability of graph theory.

suitably chosen substructures of U where U is again

For each nElN+ we remove a gap on Hn between Vn and Vn+ l. +Next

for each (m,n) EG with me n , where G is a given graph on IN,

we remove a gap from Vn between Hm and Hm+ l. Call the resulting

ZdPO FG. Notice that FG is a model of the theory obtained from K

by omitting (3). Since we are allowing the remaining lines to be dense

in themselves, even through they may not be full in the 2dPO, equality

in G will also be interpreted by a formula in FG. The domain of

the interpretation of G in FG is the set of those points in FG
which are on a horizontal line segment of FG between two adjacent

vertical lines of FG such that that horizontal line segment has a

gap in FG. Equality on this domain is the intrepretation of Z on

the domain. Finally two points in the interpretation of G are

adjacent if there is one vertical gap in FG which is on the vertical

line just to the right of one of the points and is horizontally just

above the other. Formally,
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s (x): H(x) & (3y) (3z) [V(y) & V(z) &-, (3w) [y <1 w <1 z & V(w)] & Y<1 x < Z

& (3u) (3v) [y <1 u <1 v <1 z &-, (3w) [u <1 w<1 v & w =z x]J]

c;(x,y): 0 ( x ) s o(y) s x z y

y(x,y): o(x) & o(y) &-'G(x,y)

& ((3h) (3w) [H(h) &V(v) & x v <z h &-,(3w) [x <z w <z h &H(w)]

&Y<1 v &-,(3w) [y <1 w <1 v &V(w)]

& (3b) (3a) [x <z b a <Z h &-,(3w)[b <Z w <Z a &w =1 v]]

v (3h) (3v) [H(h) &V(v) &y v <Z h &-,(3w) [y <Z w <Z h &H(v)]

&x <1 v & -,(3w) [x <1 w <1 v &V(w)]

& (3b) (3a) [y b <Z a <Z h &-, (3w)[b <Z w <Z a & w =1 v]])

Theorem 4. The theory obtained from K by omitting (4) is undecidable.

Vm'

right

model

Proof. We do not see how to use the undecidability of graph theory to

prove this theorem. Instead, we use the undecidability of the theory

of two equivalence relations [IZ J. Let Cl and C2 be two equivalence
. + IIIrelatIons on W. Let {Cl'C2'C 3 ' ... } be the set of equivalence

1 2 2 ,2classes of C, and let {Cl'C2'C3' ... } be the set of equivalence
2classes of C. Restrict U to U 1 2 by bounding the horizontal

C ,C
lines Hl,H 2 , H3 , ... as follows. If n E Cm' arrange that Hn has

some points to the left of Vm+ l but no points to the left of

Similarly, if n E c; arrange that Hn has some points to the

of (m+l) but no points to the right of V_ m UC,C is a
of the theory obtained from K by omitting (4). 1 2

we use the following definitions.U
Cl C2

on horizontal lines which are not

inTo interpret

The domain is the set of points

unbounded. As in the proof of Theorem 2, equality is =2 on this

domain. Two points of the domain are in the same Cl(C 2) equivalence

class if their lines have left (right) boundaries between the same

adjacent vertical lines. Formally, we can use the following formulas:
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6(X): H(x) & (3y).(3z)[Y<1 z Z x]

t;(x,y): H(x) & H(y) & x =Z y

y1 (x, y) : 6(x) &6(y) & (3a)(3v)[V(u) &V(v) &. (3w)[u <1 w < v &V(w)]

& (3w) [x =Z w < v] &.(3w) [x =Z w < u]

&(3w) [y w < v] &.(:3W) [y =Z w < ull

Yz (x , y) : 6(x) &6(y) & (3u) (3v) [V(u) &V(v) &. (3w) [u <1 w <1 v &V(w)]

& (3w) [u <1 w =Z x] &. (3w) [v <1 w =Z x]

& (3w)[u w =Z y] &.(3w)[v <1 w =2 xlJ·

Theorem 5. The theory obtained from K by omitting either (5) or (6)
is undecidable.

Proof. In the presence of both (5) and (6), the basic denseness
property of dense ZdPOs ensures that in every model M p K, any

interval [x,y] {z E MI x < Z < y) which contains a pair of incomparable

points contains a point u EM off every line, i.e., M P.V(u) &

.H(u) & x e u x y . It thus is easy to see that {x EHIM p,V(x) &,H(x)}
is a substructure of M isomorphic to DZ' However, if we drop, say

(5), from K then it is easy to construct models M of axioms (1)-(4)

and (6) where the points on the horizontal lines are enough to satisfy

the denseness properties required by axiom (1) and the points off every

line determine a substructure of M isomorphic to any given ZdPO.
Since, as stated at the start of this section, the theory of ZdPOs is

undecidable, it follows that dropping (5), or similarly (6), from K
results in an undecidable theory. Formally we let

o Ix) =,V(x) &'H(x) and

In view of the proof of Theorem 5 to have any chance of having a

decidable theory given axioms (1)-(4) but not both (5) and (6), we must

add some axiom like the following which ensures that the points off
every line always determine a substructure isomorphic to DZ'
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(7) The points off every line are "dense", i.e., every interval

[x,y] which contains a pair of incomparable points contains

points off every line.

3u(x<u<y &-.V(u) &--,H(u)]

We do not know whether the theories axiomatized by (1)-(4) ,(7);

(1)-(4),(5),(7); (1)-(4),(6),(7); or even (1)-(4),(7) plus an axiom
which says there are no vertical lines, are decidable. All of these

theories are rich enough to interpret the theory of linear orderings

within them. However, in view of Leonard and Lauch1i's decision

procedure for the theory of linear orderings [ 3], it is still possible

that they may be decidable.
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COUNTER-EXAMPLES VIA MODEL COMPLETIONS
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Most of the decidable theories produced in the literature to have certain model

and recursion theoretic properties allow elimination of quantifiers. In fact, typically

the desired recursion and associated model theoretic requirements can be coded via

universal sentences, with the desired theory being the model completion of the set of

those universal sentences. It is therefore useful to know when a universal theory

has a complete, decidable, model completion. The first section of this paper provides

a necessary and sufficient condition for this to be true, while the second section is an

application of the first section to an example concerning recursively saturated models.

r.
In order to motivate the theorem which will follow, fix a complete, decidable

theory T that allows elimination of quantifiers. As sume without los s of generality

that the language of T has the distinct variables {xi' Yi! i < w} , and let {P)il i < w}

be an effective enumeration of all quantifier free formulas of L(T). Because T

allows elimination of quantifiers, it follows that there exists an f: w - w such

that for all i < w

(1)

Because T is decidable, such an f exists that is recursive. Notice that a trivial

consequence of (1) is that for all i , j < i»

T!-VZ[3Y(p)/X,y) II P)j(x,Z» (P)j(X,z) II P)f(i) (x»]

as long as range Y n range z = p).

Now fix a language with variables {x, , y. j i < w} and with an effective
1 1

enumeration {¢i Ii < w} of all quantifier free formulas.

Theorem 1. A universal consistent theory T' has a complete, decidable, model

completion iff there exists a recursive f: w - i» such that for all i , j < w

,
j-- [Vx Vy 1 ¢i (x,y)] f (i)(0) T iff = 0;

(1) T' j-- [¢i(X,y) - ¢f(i)(X)]

(2) If ¢i = ¢i<Y) and f (i) f. 0, then ¢f(i) = (xo == xo) ; and

(3) T' U{¢i (x,Yi, ¢j(X'Z)} is consistent iff T' U {¢f (i) (x), ¢j(X, z)}

is consistent, provided range y n range z - ¢ •

Proof. Assume first that T' has a complete decidable, model completion T. Then
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by a theorem of Robinson [4], T allows elimination of quantifiers. So fix a

recursive f such that for all i < w satisfying T t-- 3x 3Y Pi

T t-- [3Y Pi(x, y) Pf (i) (x)] ,

where if in addition Pi Pi (y) then we require that Pf(i) = (xo =xo)' and

f (i) = 0 if Pi is not ccns.Ls t.en t with T. We will assume without loss that Po
is not consistent with T. We now claim that in fact this f satisfies the theorem.

(0) and (2) are satisfied by our choice of f. Suppose that (1) failed. Then

T' U {3X[3YPi(X,y) 1\ lPf(i)(x)]}

would be consistent. Since T is the model completion of T' and is complete,

it would then follow that

T t-- 3X[3YPi(X,y) A lPf(i)(x)),

But this contradicts the choice of f. Finally, to prove (3), assume first that

T' U {Pi(X, y), Pi (x, z)} is consistent. Then by (1), T' U{Pf(l)(X), Pi(x, z)}

is also consistent. On the other hand, if T' U{Pf (i)(X), Pi(X, z)} is consistent,

then as before

T j- 3x 3Z [Pf (i)(X) 1\ Pi (x, z)] •

But then by the choice of f,

T 1- 3x3Y3Z[p.(X,Y) I\p.(X,Z)].
1 J

In particular, T U {p. (x, y), p.(x, z)} is consistent. Therefore, since T is
1 J

the model completion of T', T' U{Pi (x, y), Pi (x, z)} is also consistent. This

demonstrates that (0) - (3) hold.

Next assume that there is such a recursive f satisfying (0) - (3), we must

show that T' has a complete, decidable, model completion T. The axioms for

Tare:

I.

II.

VXVY[lp.(x,y)] for I < w such that f(i) = 0; and
1

VX :fir Pf (i) (x) ---7 Pi (X', y)] , for i < w such that f (i) f 0 •

First we will show that T is consistent. Let

C df {VXi 3 Yi [tlJf (i) (xi ) tlJpri, Yi ) ] I 1 :0; i :0; n}

be a finite subset of the axioms in II. It is enough, for arbitrary such C, to find

a model for T' U C. We will construct the diagram of a model of T' for which the

sentences in C hold. Since T' is universal it is sufficient to insure that the

diagram is consistent with T' in order to have the structure a model of T'. Let

{a. j i < w} be dis tinct new constants, and {e. I i < w} an indexing of all sentence s
11 m.
in the language of T' U {a. I i < w} • Let g.: w - w 1 be an onto function

1 1
such that each element of Jlli has infinitely many pre-images, where m, is the

1
length of x in ei (x, y) , 1:0; i :0; n • In the usual Henkin style, the universe

of the model will be equivalent classes of the ai's - we will assume that the
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reader is familiar with this procedure (we will also omit the steps for providing

"witnesses" for existential sentences in the diagram). We specify the diagram A

by induction, where A U At'=df t< w

Step 0: p.

Step r = (n+ l)t : Assume inductively that U I:l, U T' is consistent and
j <r )

that only a finite number of ai" s occur in formulas of U A.. By this assumption,
j < r )

either Ar =df {et} or Ar =df {let} preserves the induction assumptions,

choose it to do so.

Pi = Ih(y),

By (1)

must be consistent.

where

)}.

A.
r J

T' U

Step r = (n+l)t +i (where 1:5 i:5 n): If tJ;f(.)(a (r) I!J A., then let
_ 1 gi r ) < r )

Ar =df (ao = ao)' where ag.(r) = (a
k l,

.. ., ak ) , and gi(r)
_ 1 mr -<

(kl' ... ,km ) . If tJ;f(.)(a (r) E.U A., then let a be a Pi-tuple of
r 1 gi r )< r )

none of which occur in the sentences of /<! r I:l j ,

as in tJ;i (x, y) • Define Ar =df {wi (ag.(r) ,
1

{tJ;f(i/ag.(r»' tJ;/ag.(r)' a')} U T' is consistent; therefore by the induction
1 1

hypotheses and (3) it is easy to see that

This ends the induction. By the construction T' is consistent, and for any

i, 1:5 i :5 n , and for every tuple a from {a
k
j k < w} satisfying

jYw c,j r- tJ;f (i) (a) , there is an a' such that jYw Aj tJ;i (a, a'). So

the consistency of CUT' is established. Notice that the proof of consistency

can easily be modified to show that every model a of T' is isomorphically embed-

dable in a model of T. For it is enough to show for every C, as before, that

T' U C U Aa has a model. The proof of this is essentially the same as that given

above, with "T' U Aa" substituted for "T'". The point of this observation is

that the theorem will now follow from the axioms in if we can in addition show

that T is submodel complete and complete.

An equivalent condition to submodel completenes s is that for all models of T,

submodels C cr, a, and existential sentences tJ; with parameters from C,

a 1= tJ; if cr 1= tJ; •

So arbitrarily fix such c, a, C and tJ; = 3Y e (c, y) (e(x, y) quantifier free),

c c j c]", satisfying (cr, c) j= tJ;. Also fix an i < w such that e(x, y)

is Pi(x,y). Clearly Pi(x,y) is consistent with T, soby (1) (a,c) j=
Pf(i)(£) also. But then because a isamodelof T al=
P/x, y)] (an axiom from II). Thus (a, c) 1= Pi(£, y), as desired.

Finally we must demonstrate that T is complete. Let tj; be any sentence

in L (T) consistent with T. Since we have shown that T admits elimination

of quantifiers (submodel completeness), (tJ; A Yl = Yl) is equivalent under T
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to a quantifier free formula 9S(Yl)' Then by the axioms in II, this implies that

T t- \;'xo 3Yl (( "o = xo) --,) ¢n\)}
and so T 1= tjJ. This finishes the proof of the theorem.

Theorem 1 furnishes a "uniform" approach for producing particular theories,

and it also eliminates the need of directly providing the tedious "existential closure"

axioms for those theories.

II.

Conventions: 2< w will denote the set of all sequences l: n --2, n < w •

For elements f , g E 2<w U 2w, we write if f is an initial

segment of g (where elements of 2w are also treated as sequences, of length

w). Also f < g if there is an h E 2<w such that h
A
(0) .; f and

A --A-

h 0> <1 g. 0::. 5l. is the sequence f such that lei) =h(i), I < f'h(h),

and !Ji + 5l.(j) for j < f
t m

denotes the 5l. <: f

of length m, m< If Fe 2<w and g E ZW satisfies f E F

for all 1 !.; g then g is a branch of F. If e is a formula, then -eO '= e
and G '= le

In [L] Barwise and Schlipf introduced the notion of recursively saturated

models. Let L be a countable language which is effectively presented, and let

G range over structures for the language L.

Definition. a is recursively saturated if, for every recursive set ¢(x, yl' ••• , Yk)

of formulas from L and c1' ••• , ck E I ai, if Th( (a, c l' .. ., ck »
is consistent

with ¢ (x, £"1' ... , '£k), then ¢(x,.£l' ... , '£k) is realized in (G,cl""'ck>·
Countable, recursively saturated models provide a new expository tool in model theory

[I}. Because of certain similarities between recursively saturated models and

saturated models, Barwise asked whether a complete theory which is not w-categor-

Ical must have a model which is not recursively saturated 1 This section will deal

with a related partial result.

It is well known that every recursively saturated model is w-homogeneous.

Another interesting property of recursively saturated models is that if r, k are

complete types of the theory of such an ln , r::S
T
L, and k is realized in II"

then r is also realized in lh. The third fact motivating the construction in the

main result of this section is:

Theorem 2. If T has a complete extension T' in a language

{ci j 1 ::s i .s n} such that T' does not have an atomic model,

model which is not recursively saturated.

L'= L(T) U

then T has a

lIn [2} a negative answer was announced to the question thus stated. However, there
were several errors in the construction, and the result here represents that portion
which has been "repaired" to date.
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Proof. Fix such a T' extending T. Then for some m < wand consistent

(w, r, t, T') formula a (cl' ••• , cn' Xl' ... , xm) of L( T') , there is no principal

type of T' containing a( cl' ••• , cn' Xl' ••• , xm) . Fix an effective enumeration

{l);i(Yl""'Yn,xl, ••• ,Xm)!i<w} of all formulas of L(T) inthedisplayed

variables. Let <P "'df {Pi I i < co}, where the Pi are defined by:

Po "'df 8(Y1' ... , Yn' Xl' •• ., xm )

Pn+l "'df {l);n+l( Yl' ••• , yn' Xl' ••• , xm) 3z l••• 3Zm[l);n+l<Y'z) /I ()n Pi (Y, z)] }.

Obviously <P is a recursive set of formulas, and it is easy to check that

<P ( ,xl'" ., xm) generates an m-type of T'. However, since no principal type

of T contains a (cl' "" cn' xl' ••• , xm) , <P (cl' ••• , cn' xl' ••• , Xm) must be

a non-principal m-type of T'. So there is a model (G, al' ••• , an> of T'

omitting <P (cl' "" cn' xl' ••• , xm) , G 1= T. Therefore G cannot be

recursively saturated, since <P(Yl' ••• , Yn' xl' ••• , xm) is recursive. Thus the

theorem follows.

We now wish to refine the notion of 'recursively saturated' :

Definition. G is n-recursively saturated if

(1) The theory of G has a non-principal I-type; and

(2) For every recursive set <p(Xl' ••• , xm' Yl' ••• , Yn) of formulas from Land

every c l" •• , cn E ! GI, if <P (xl' "" xm' .£1' ••• , .£n) is consistent with

Th«( G, c l' ••• , c n » , then <!J( Xl' ••• , xm' .£1' ••• , .£n) is realized in

(G, cl' ... , cn>.
If every model of a complete theory T is n-recursively saturated, then we will say

that T is n-recursively saturated. Note that if G is n-recursively saturated

for every n < w, then G is recursively saturated. The restriction to theories

with non-principal l-types is made to avoid trtvtalf.ties, since otherwise a decidable

theory with no non-principal n-types and no recursive non-principal types would

automatically be n-recursively saturated. Also, by expanding the language one can

always transform a theory with some non-principal type into a 'similar' theory with

a non-principal l-fype ,

O-recursively saturated theories are easy to find. Simply take any complete

decidable theory with a non-principal I-type, no recursive non-principal types, and

only a countable number of types altogether. For consider any recursive set of formulas

<P (xl' ••• , xm) consistent with such aT. Then since T has only countably

many m-types, <P( xl' ••• , x m) must be contained in a recursive m-type

L;(Xl, ••• ,xm) of T. But such a recursive type must be principal, by choice of

T, and therefore realized in every model of T. Since <P C L" T is O-recursive-

ly saturated. The main result of this section is:

Theorem :;. There exists a I-recursively saturated theory •
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Proof, In [3] we produced, given an r, e, set vI' a recursive tree Fe z<w,
a recursive Ter C F, and a recursive H: w - w such that

Lemma 1, (i) The F, Ter, and H are recursive;

(ii) If .! E F,

.!A(O)E F;

then r' E F for all £ <1 !.;!.E (F -Ter) iff

(iii) There is exactly one branch h of F such that for all f <i h-r
there is an £!.E F satisfying call this h the limit branch of F;

(iv) If h is the limit branch of F, then h '=T vI;
(v) For every branch g E ZW of F other than h , h < g and

g (p) 0 for all but finitely many p < W;

(vi) If g<!.ETer and .5I..E F, then lh(g) < Ih Cf) ;
(vii) There is exactly one f E Ter of length H(r) for all r < W;

(viii) If {f./i<w} is an enumeration of Ter by length, then
-1

H(r) lh(!.r), r < w ,

We will also assume in what follows that (1) /. F; this is easy to arrange,

h

Fe z<w
So fix r,e, sets VI' Vz which are Turing incomparable, and also fix the corre-

sponding Fi, Hi' Teri i 1, Z respectively, given by Lemma 1. Thus Fi
has exactly one limit branch, hi '=T vi' All terminating paths g through Fi
will belong to Teri and also satisfy g < hi' We will need one more

Definition. RO '=df {( )};

Rn+l'=df{('(O)!!.A(k)EF1, k=O,l; Ih(.!)=H(r)

for some r < lh(D; and there exists g <i il gERm]} ; the elements of Ri
can be viewed as "best" approximations to hi at a given level,
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Lemma i' • (i)

(ii)

{R.I i < w} is unifonnly recursive;
1

'fm < w 3h E RmOl hI] •

and

is a(ii) is true because

conj LL x ) = A P, (x ) i,C i )
-df i< lh(!) 1

conj(.f., x, y) =df A S. ( x, y ).f.(i )
i < lhC!.) 1

Proof. (i) is obvious, since FI is recursive.

limit branch of F1 by Lemma l ,

The language for the desired theory will contain the unary predicate symbols

{p I n < w} and the binary predicate symbols {S In < w}. We adopt the follow-
n n

ing abbreviations:

for all !..E 2< w •

We now specify the axioms of a universal consistent theory T' which

satisfies (0) - (3) in theorem 1:

I. Si(y,X»A lSO(x,x) i < w;

II. conjl(!..' Pj(X) !..I (FI-Terl), j? lhC!);

III. Sj(X,y) !../(F2-Ter2), ?lh(j);

IV. lconj (£, x) 11 FI such that there is no h o4!.., hE Terl;

V. conj(!..,x,y)+-i> (x=y) f/F2 suchthatthereisno hE Ter2;

VI. conj(f.,x,y)---+ (conj(h,x) conj(.b.,Y» foraH !..E (F 2-Ter2)
and h E F1 satisfying:

sr lh( !..)(lh (!) = EZ( r) and no h'::1.b. satisfies h' E R Jr+2 ;

VII. conj(!.., x, y) ----'JI> l con] (.b., x ) v l conj( .b., y )

!. E Ter2, h E Rs+l' where

VIII. conj (!., x, y) A conj (£" v . z ) A x I y

!. < .2..

x, z ) .t .2. E 2<w ,

Lemma 2. T' satisfies (0) - (3) in theorem 1.

The proof of this lemma will be deferred until the end. By theorem 1, let T

be the decidable, complete, model completion of T'. We will show that T is

I-recursively saturated by a series of lemmas.

then therei < j n ,Lemma 3. If Li.(X" x.) is a 2-type of T for each
J 1 J

is at most one n-type r (xl' ••• , xn) of T containing all of the

Proof. This follows because T allows elimination of quantifiers (eloq.).
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Lemma 4. Each Z-type I;( x, y) of T is uniquely determined by the f
l,

fZ' g E -r
such that

for all

conj(..!.l' x ) ,

£1 <: £1' ..!.Z <: fZ'

conj (.!.Z' y), con] (,2., x, y) E 2:,(x, y)

and ,2. <: g respectively.

Proof. Again, T allows eloq ,

Lemma 5. If conj(.!., x) E rex) for all ..!.<: f E ZW , where rex) is a

I-type of T, then either

(i) V..!. <: fU E Fl] or

(ii) 3..!. <: f[.!. E Ter l and Vn Ih (..!.)l f (n) o)] •

Proof. By the axioms in II, 'N and lemma 1.

Lemma 6. If (xl y), conj (.!.' x , y) E 2:,( x, y) for all .!. <: f E ZW then either

(i) 't..!. <: f [..f E Fz]; or

(ii) 3.!. <: f [.!. E Terz and Vn Ih (ll (f (n) 0)].

Proof.

Lemma 7.

By the axioms in III, V and Lemma 1.

T has only countably many types.

Proof. This follows from Lemmas 3 - 6 and the fact that each Fi i = 1, Z ha s

only one limit branch (by Lemma 1).

Lemma 8. T has a non-principal I-type.

Proof. By the axioms for T' and the fact that T

T U {conj (.!, x)} is consistent for every f E Fl'

the result follows.

is the model completion of T',

Since FI has a limit branch,

Lemma 9. If r (x) is a I-type of T, then it is either recursive or it is of the

same Turing degree as vI'

Proof. This follows from the fact that T is decidable, the axioms in IV, V and

lemma (iii), (v).

Now suppose we have arbitrary G 1= T, bEl GI, and ¢ (y, xl' ••• , x n),
a recursive set of formulas, such that Th«a,b» is consistent with

¢(E"xl""'xn), Then we must show that "P(E"xI, ••• ,xn) is realized in (a,b),

in order to show that G is I-recursively saturated. By Lemma 7 T has only

countably many types, and so the same Is true of the theory r (E,) , where r is

the I-type of T realized by b in a. Therefore there is an n-type
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It is sufficient then to prove that there exists erv. Xl' ••• , xn) E:
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Xl' ••• , Xn)
Fix such a L.

L(T) such that

f(l? H- 3Xl••• 8(.!2., xl' ... , xn) and

f(.!2.H- [8(.!2.,Xl" .. ,xn) 0(.!2.,X l, ... ,xn)], forevery 0E:L.

Thus it will be enough to define (by Lemma 3):/\

8 (y, xl''''' X ) "'df [A e.tv. x,) A / \ 4J .. (y, x. x,)] ,
n 1 05 i 05 n 1 1 1 05 i < j 05 n 1J 1 J

provided

(1) foreach i,l05i n and

0(y,Xi)] forevery and

(2) for each i, j 105 i< j n , 4Jij(y,xi, Xj) E: and

fib) !-[ 4Ji j ( b , x i , Xj) 0(Xi, Xj)] for every 0(Xi,Xj) E: 2:(y,xl, ••• ,xn).

There are now two cases, depending on whether or not (,:') conHh. y) E: r( y)

for all ,£ hI • The cases are similar and so we will do just one -- assume

(':') holds. First fix an i, 1 05 i 05 n and we will find the corresponding 8i•
If (y=Xi)E:L(y,xl" .. ,Xn) thenwetake 8i tobe (y=xi). Soassume

otherwise. Fix f , g E: ZW satisfying

con] U:, xi)' con] (,2" v , xi) E: I, ( v, Xl' ••• , x n)

for all f f and ,2, <: g respectively. Because (a) I, 05
T

r , (b) hI and

h z are Turing incomparable, and (c) r is Turing equivalent to hI (lemma 9), it

follows that g f. h z • Thus by lemma 1 and 6 there is a ,2, <: g such that

,2, E: Ter
z

or g is the only branch of FZ satisfying ,2, g. Fix such a ,2,.

Then by either the axioms in II or VI

T conj(,2,',y, Xi)] for all ,2,' < g.

If we are in the latter case, I, e. g is a branch of F2' then by the axioms in VI

f(.!2.) /- [conj(ib'£' Xi) conj(,£,xi)] for all .!!..<: hI'
In that case, by lemma 4 it suffices to define

8i(y,Xi) "'df conj (ib v, xi)'

So assume that g is not a branch of FZ' and fix r < W such that

Ih(,2,) = Hz(r+ 1) (we are in the case ,2, E: Terz). By Lemma I' there is an

,£<:hl, '£E: Rr + Z' Therefore by the axioms in VII, conj(,£,xi)/2:(y,xl, ... ,xn)
and so f f hI • By lemmas 1 and 5 fix an .1 <: f such that either .1 E: Terl
or f is the only branch of F1 such that !. < f. Then by the axioms in either

II or IV

We now define

T !- [conj ,X. ) conj (f I, x. )]
1 -- 1

for all f I <: f •
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8i =df [conj (,2., v, xi) 1\ conj (i., xi)] •

Finally we must define the t); .. ' s • Fix I, j 1 os i < j -s n , Again we
1J

assume (xi 1= Xj) E L (y, xl"'" xn), since otherwise we simply define t);ij to

be (xi = Xj) • In fact it is enough to find t);' (xi' x j) E L(y, xl' ••• , xn)
satisfying T 1- [t);' (x., x.) _ conj (:1., x. , x.)] for all g E Z<w satisfying

1 J 1 J -
coni (.21 Xi ' x j) E (y, xl' ••• , x n) , since then by Lemma 4 we can define

t);ij(y, Xi' Xj) =df [t);'(Xi, Xj) 1\ 8i(y,xi) 1\ 8j(y, x j)]. So fix g E ZW such that

conjZ(g, x., x.) E Xl' ••• , x) for all a < g. Just as in the case of the
- 1 J n -"'-

g for the 8i' s , it follows from the fact that osT r that g is recursive.

Then we proceed in the same way we did for the 8i case -- the details are left

to the reader. This completes the proof that T is I-recursively saturated.

Proof of Lemma 3.

is recursive followsfThat

Let B be a set of quantifier-free sentences in a language obtained from

L (T) by the addition of constant symbols. We define: B is locally consistent

with T' if B is consistent and if the closure of B under finite conjunctions

and disjunctions does not contain a sentence that is equivalent to an instance of a

negation of an axiom of T' (remember that T' is universal) • Similarly a set of

quantifier-free formulas C is locally consistent with T' if the set of sentences

obtained by replacing variables by new constants (uniformly) is locally consistent

with T'. A set of formulas B is terraced if it is a maximum consistent subset,

for fixed variables and/or constants ul"'" un and r < w, of

{(Ui=Uj)k, pp(Ui)k, Sq(Ui,Uj)klk=O,l;lOSi,jOSn;p<Hl(r);q<Hz(r)};

locally consistent with T' • u are the parameters of Band r is the index.

Define f(i) = 0 if ¢Jx;y) is not consistent with T'. If ¢/x,y) is

consistent with T' but has no occurrences of any xi's, then define f (i) = i ,
where is the smallest index such that t);j is (xo = x

O).
If neither of the

above two circumstances hold for i, then let r be equal to the largest subscript

of any predicate symbol occurring in ¢.(x;y) or equal to 1, whichever is
1

greater. Finally let C¢ be the set of terraced sets C with index rand

parameters xU y such that C U {¢.(x;y)} is locally consistent with T'.
1

f (i) is then defined to be the least index of a formula . V 1\ E. , where for
J < m J

every C E C¢ there is a j < m such that Ej C C and Ej is a terraced

set with index r and parameters x ,

We must now verify (0) - (3) of Theorem 1.

easily from the

Claim: If D is a terraced set, then it is consistent with

directly from the proof that (3) of the theorem is satisfied.

and the claim, we are therefore reduced to showing that (3)

T' • This will follow

By the definition of f

is satisfied.
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So assume it is not the case that T' t-l( ¢f (i)(X) 1\ ¢k (x,z)). We will

also assume without loss of generality that T' t- [¢k(X; z) 1\ ¢ f(i)(X) -_ (a 'I (3)]

for a, {3 equal to any xi x with different subscripts, any zi Z with

different subscripts, or a an x. x and {3 a z , z , We make a
1 1

similar assumption concerning ¢ i (x; y) and ¢f (i) (x) • So, since T' is

universal and the ¢' s are quantifier-free, we can assume e is a model of
r

T' U{ Pk(a;c) 1\ ¢f(i/a)} and [c I =a UC. G: be the submodel with

universe a.

Lemma 3'. is consistent with
I

T •

Proof. We will specify a set of sentences B that will uniquely determine the

diagram of a model for AG: U {¢i(a;b)} UT'. By an obvious induction we can

assume that b = (b). It follows from the definition of the function f that there

is a terraced set e with index r (as in the definition of f) and parameters

a Ub such that AG: U e is locally consistent with T' and

e 1- ¢i(a ;b) •

As a first step, put c U A B.

various Si (aj' b)k in the set B.

is in B we automatically insist that

on v that

Next we will determine the membership of the

Because of the axioms in I, if Si (aj, b)k
kSi (b, a j ) is also. Assume inductively

k
Si(aj' b) B

has been determined for j < v, k = 0, land i < w, such that B is locally

consistent with T' (where a (aI' ... , an)'
Hz(r) f(')

Fix f Z such that S,( a b)- 1 e for i < Hz(r). There
1 v '

are now several cases:

I. .!:.. ,/ FZ-TerZ ;

satisfyingII. < d h Z<wv an 51., _

(i) lh (V = lh (.!!) ;

(ii) h 'I 51.; and

(iii) If t- conj(g. b, av') 1\ conj (h, av' av') (B';' is B up to this step); and

III. Otherwise.

We determine the desired membership with respect to I - III according to:

k
Si(av' b) B

ksirav' b) B

III. Define

I.

II. Fix such a
,

v ,

for all i 2: HZ( r) ;

g and h. Then specify

iff Si(av"b)k B" if 51. < z.
k ':'iff Si(av,av') c B otherwise, for

and

k =0, 1, i < w,
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h max<{g E: 2w j3v' < v[£ < g and Si(a
V
" b)g(i) E: B , i < w]}

or, if no such h exists, then let h be the < -least element of 2w such

that £ <: h (if h is not a branch of FZ' then there is an b. <: h such

that _h E: Ter). Then require S.( b, a )h(i) E: B for i < w •
1 V

We now check that the induction hypothesis has been preserved. If the defin-

ing condition is I or Ill, the argument is easy and it is left to the reader. like-

wise for the preservation of the axioms in I - VII under defining condition II. If a

problem occurs with respect to condition II and the axioms in VIII, then there

must be v', u and £i' £4 i = 1, 2 of equal length such that

8" l- conH£l' b, avd A conH£2' av' av') A conj(£[l' b, au) A con] (£[2' av' au)

and 4 f 1 2 or £[1 f .[2 with

min< (£1' 12 ) f min< ( <Ll' £[2 ) •

Since all of the cases are argued similarly, we will do just one, by assuming that

£1 < , .[1 < .[2' and f 1 < £[1'
- b

a I
V

Therefore, since £1 < £[1'

in VIII that

av
we have by the induction hypothesis and the axioms

.-

B

But since £1 < £[1 <

the axioms in VIII and

induction.

l- conj (f l' a I ,a ).- v u

we have a contradiction with the induction hypothesis via

au' av (since < £2)' This completes the

we now

such that
HZ(t)

f E: ZandtII. Not I and there is an i,

','

Let B be the set B as- determined after the above induction;

determine the membership of the P. (b)k , again by cases:
1

I. 3g a branch of F2 and an i such that for all 1. <: g

B" 1- conj (.!. ai' b) ;

B':' l- coni (f, a., b) and f E: Ter
Z- 1

Ill. Otherwise.

Again the desired determination is made according to these alternatives:
k k *I. Fix such an i and require that P.(b) E B iff P.( a.) E B, k = 0,1 and

J J 1
j < w ;

II. Fix such an so that the corresponding f is of maximum length and let



227

h E ZW satisfy

then P. ( b )l:!.(j) ,
J

i=lh(h)<k<w

coni (h, a,) E B'"
- 1

lPi(b), Pk(b)E

otherwise

forall h c h , If 3l:!.<h[l:!.ERt t l],
B"', for i < Ih (l:!.) and

P.(b)h(j) E B':' for all i < w •
J

III. P, (b) E B for r < i < w •
J

We now check that B so determined is consistent with T'. Only the axioms in

VI and VII with respect to cases I and I! present any non-trivial difficulties, the

rest of the details again are left to the reader. If an axiom in VI fails, then there

must be .'.1'.'." F,-Te"

.', a iB'" L- coni( f l' b, a.) A coni( f 2' b, a.) A l[ coni (-n a,) coni ( g, a. )]
I - 1 - J -"'-' 1 - J

and fh (1.1) = fh(.!Z) = H2(n) , and no 9..'.:::. SL satisfies g' E Rnt 2• We

will show then that Ci is not a model of T', which will give us the desired
HZ(n} ':'

contradiction. Let l:!. E Z satisfy" B r- coni (l:!., ai' a
i
i , Then by the

axioms in VII! and the consistency of B'" it follows that min< Ul'''!z) S. l:!..

By Lemma 1 (vi) it is thus ea sy to see that l:!. E FZ-Ter
z

With this and the

axioms in VI we have

T' r- coni (l:!., x, y) [ coni(.2: x ) coni( g, y )],

since SL. E TerZ. This

A Ci U {cp Ja,oj} U T'

and so Ci would fail to be a model for T'.

Finally, if an axiom in VII were to fail, then there would be and J •

f E Fz-Terz, SL E Terz' l:!. E Rnt l, such that fh(i.) = fh(SL) = Hz(n) and

B'" L- coni ( f . b, a,) A coni ( g ,b, a.) A coni ( h, a,) A coni (h. a. ) •
I 1 - J -1 -J

In this case it is enough to show that Ci fails to satisfy an axiom in VII or VII!.

By the assumptions and Lemma 1 (vi) [. < 1.. Thus by the axioms in VIII

B':' 1- coni ( g , a" a, ) ,
- 1 J

which gives the desired contradiction to the axioms in VII,

completes the proof of Lemma 3'. Let a be the model of

with diagram determined by B.

It is now enough to establish;

Lemma 3". is consistent.

Proof. By the obvious induction we may assume that 0 = (b) and c = (c) •

If a = () then the proof is trivial--so assume that a = (aI' ••• , an) , n 2 1-
It is enough to specify a set of sentences D that uniquely determines a model for

A U ACUT'. Immediately require that

AaUb.cCD.
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8i (b, c)k membership for k = 0,1 and

following alternatives:

< co is determined according to the

I. 3i

II. 3n

and !., 9.. E Z<w such that !. < 9.. (or 9.. <!.) and

A",U AeL conj(f,b,a.) Aconj(g,c,a.);.. r- - 1 - J

such that AaUAel-/\ (P.(b) P.(c» A l(P Pn(c».
i<n 1 1 n

III. Otherwise.

As before, our choice is determined by which of the alternatives holds:

I. Fix such an i and £, 9.. and require that

8j(b, c)k E D iff 8 j(b, ai)k E tJ a( 8j(C, ai)k E Ar} k =0, 1 and j < W ;

II. For that n fix h E Zn satisfying P. (b)l!(i) E A", for i < n; obviously
- 1 ••h'< 0) E Rs+l for some s < n , so fix such an s and also 9.. E Terz'

f h( s , then specify that

8
i(b,c),[(i),

Sj(b,C)ED i<lh(,[)Sj<w;

i < W •

The only check for consistency with T' that is not completely straightforward is

with respect to defining condition I. We will check this and once again leave the

remainder to the reader. The axioms in I-V present no difficulties. If an axiom in

VI is violated then there would have to be an nand l! E Fz-Terz' fh(l!) H(n),

9..1 E Fl • Vi. 5. 9..1(,[' i Rnt Z) such that

D j- conj (l!, b , c) A l[ con] (9..1' b ) <-'lO conj (,2.1' c )]

Let i , and g be as in I. Now by the instructions, min< (1, ,[) h or

l! min< C!., ,[) • Thus by Lemma 1 (vi) and the axioms

llat- b) conj(9..1,a i») and Aet-(conH9..1' conj(9..1'ai) •

But this is a contradiction, since lie U 6e t- l(conj (,[1' b) conj(9..1' c)) •

Thus the axioms in VI are preserved.

A violation of an axiom in VII would imply that there was an n and an

h E TerZ' fh (h) = H(n), ,[1 E Rnt l such that

D t- conj(l!, b , c) A conj CE.J! b) A conj (,[1' c) •

But then for the i , 9.. as in I it must be that

by the axioms in VIII.

Therefore by Lemma 1 (vi) and the axioms,

lie u conj(l!', ai' b) V c)

for some h'E F-Ter, fh(li) = fh(l!). Therefore by the axioms in VI

lla U lie t- (conj(9..l' conj(9..l' b) v (conj(9..l' ai' conj(9..1' c)
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which is to say Aa U ACI- a i) •

it must be that

But by the instructions for ca se II,

AaU AC I- conj(!!, ai' b) Y conj(!!, ai' c),

and so an axiom from VII must fail in either a or C, a contradiction. Thus

the axioms in VII are pre served, The axioms in VIII are checked in a way similar

to the verification in Lemma 3' •
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HIGH RECURSIVELY ENUMERABLE DEGREES AND THE ANTI-CUPPING PROPERTYI

by

David P. Miller

§l. Introduction

After seeing the Sacks Density 1heorem [Sa2], Shoenfield conjectured [Sh2] that

the recursively enumerable (r.e.) degrees R form a dense structure as an upper

semi-lattice analogously as the rationals are a dense structure as a linearly

ordered set, Le., given a quantifier-free formula <P (Xl' "" xn' y) in the

language L(;i;, u, Q, Q) and aI' "" E R, there exists b E R such that

<P(al , "" b) holds, unless the existence of b would lead to an

"inconsistency. II (rrhe conjecture asserts that if E: R satisfies the diagram
-s-

and D
1
(x, y) is any consistent diagram in L(;i;, u, Q, Q) extending then there

+
exists b (: R such that D1 £).)

Among the consequences of this conjecture Shoenfield listed:

(1.1) If a, b E R are incomparable, then they have no greatest lower bound
in R.

(1.2) Given r s e , degrees 0 < b < a there exists an r s e , degree c < a such
that b u c = a.

(Consequence (1.2) was also conjectured by Sacks at the end of lSa2].) Unfor-

tunately, both consequences are false, but as Shoenfield anticipated [Sh2, p. 363],

they led to the development of important new areas and techniques of proof.

We say that nonrecursive r.e. degrees a and b form a minimal pair if

a n b = O. Shoenfield's conjecture was first refuted by Lachlan [Lal] and indepen-

dently by Yates [y], who disproved (1.1) by constructing a minimal pair. This led

to the area of branching and nonbranching degrees, which has been summarized in

and [S02]. (An r.e. degree a is branching if there are r.e. degrees b, c both

> a such that a b n c , and a is nonbranching otherwise. The minimal pair

theorem of Lachlan and Yates asserts that 0 is branching.)

Consequence (1.2) led to results about cupping and anti-cupping. Given r.e.

degrees 0 < b < a, we say that b cups a if there exists an r s e , degree c <

a such that b u c a; if no such degree c exists, we say that b is an anti-

cupping witness for a. The r.e. degree a has the anti-cupping (a.c.) property if

it has an anti-cupping witness. An r ve , degree a has the strong a.c. property via

witness b if 0 < b < a and for no c a is b u c ;;. a. Consequence (1.2)

IThis paper is derived from a talk based on some notes of Harrington given by
the author in the logic seminar at the University of Connecticut in the fall of
1979, during which time the author was supported by the University of Connecticut.
We would like to thank R. Soare for a number of helpful comments.
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states that no nonrecursive a E R has the a.c. property. Lachlan [La2l

constructed a counterexample to Consequence (1.2). Ladner and Sasso proved that

r ve , degrees with a s c , property are abundant among the r ve , degrees b "close to"

o (in the sense that b" = 0"). 'Ihe Lr result !1dSsl states that every

nonrecursive a E R has a nonrecursive r.e. predecessor b satisfying b" 0"

with the a.c. property.

In this paper, we prove a result of Harrington (Theorem 3 below) which is

analogous to, though stronger than, the Ladner-Sasso result, for the degrees close

to 0'. An r s e , degree a is said to be high if a' = 0". The first in a series

of theorems leading to Theorem 3 was announced by Yates:

Theorem 1 (Cooper-Yates). 0' has the a.c. property.

Cooper circulated a proof of 'Iheorem 1, and Harrington followed with a proof based

on Cooper's. A trivial modification of Harrington's proof makes the witness b con-

structed there satisfy b' = 0'; i.e., the witness is "far" from 0'. Hence, the

following theorem, also proved by Harrington, is a significant improvement.

Theorem 2 (Harrington). 0' has a high a.c. witness.

The proofs of 'Iheorems 1 and 2 rely heavily on the fact that 0' contains a

creative set. Fbllowing a suggestion of Scare, Harrington incorporated into his

proof of 'Iheorem 2 the method of permitting below a high r.e. degree introduced by

Cooper !C], thereby removing this reliance and generalizing Theorem 2 from 0' to

all high r.e. degrees.

Theorem 1. (Harrington). Every high r s e , degree a has the strong avc ,

property via a high r.e. witness b.

Our purpose is twofold. First we give a straightforward proof of Theorem 3 by

modifying and rearranging some unpublished notes of Harrington on the proof of

Theorem 3 (no proofs of 'Iheorems 1, 2 and 3 have so far appeared in the literature).

Second, we use the Cooper high-permitting method to prove a new result which will

appear in {Mil, namely, for every high r.e. degree a there is a minimal pair of

high r.e. degrees bo, < a. Moreover, it is clear that the proof of Theorem 3

may be incorporated into this proof so that the degrees bO and b1 are both

strong a.c. witnesses for a.

A new method of proof is required for the Yates-Cooper-Harrington results. In

the priority method, the desired r.e. set B is constructed by stages to meet a set

of conditions. These conditions usually are split into positive requirements }esN

and negative requirements {Ne}esN' and given a priority ordering NO < Po < Nl < PI

< ••• ; a requirement is said to have higher priority than the requirements appear-
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ing later in the ordering. The positive requirement Pe attempts to force certain

numbers called followers into B. The negative requirement attempts to prevent

certain numbers from being enumerated into B. This is accomplished by associating

with Ne the restraint function r(e, s) and allowing a follower x of a positive

requirement of lower priority than Ne to enter B at stage s + 1 only if x >

r(e, s). Of course, a higher priority positive requirement may cause a follower

x <; r(e, s) to be enumerated in B at stage s + 1, thereby injuring Ne at stage

s + 1. The priority method was introduced by Friedberg [Fr] and independently by

Muchnik [Mu]. Their proofs have the property that the positive requirements are

fini tary, so that each negative requirement is inj ured at most finitely often, and

that the restraint associated with each negative requirement is finitary (in fact,

lims r(e, s) < for all e), so that each positive requirement is satisfied.

Shoen field IShl] and, independently, Sacks [Sal], [Sa2], [Sa3] discovered a

technique for handling a negative requirement which may be injured infinitely

often. Sacks developed this technique into what he called the "infinite injury

priority method." This method has been used to prove many important results on r ve ,

degrees, including the density theorem and the minimal pair construction. These

constructions have the property that a single positive requirement may

contribute infinitely many elements to the set B, though in the simplest cases the

set Te of followers of Pe is recursive. The negative requirement Ne now can

be injured infinitely often by the higher priority positive requirements, but the

recursiveness of Te enables the strategy for Ne to succeed. The main difficulty

is that some Pi remains unsatisfied because the restraint function for Ne now

may be unbounded in s (i.e., lim sUPs r(e, s) = This difficulty is

surmounted by arranging that

(1.3) lim inf
s

R(e, s) < cc ,

where R(e, s ) = max Ir-lL, s }: i <; e }, because then Pe has a "window" through the

restraints at least infinitely often. More details and applications of the infinite

injury method may be found in [Sol].

One way of presenting priority method constructions is the pinball machine

model, as introduced by Lerman in [Le]. In this model, the negative requirement

Ne is associated with the gate Ge in the machine. Fbllowers of Pe enter the

machine by dropping from hole He to gate Ge• The follower x at gate Ge is

allowed to pass to gate at stage s + 1 just if x > r(e, s ) ; x is

enumerated in B after it has passed all the gates. Thus, a follower of Pe is

allowed to pass the higher priority negative requirements one at a time, instead of

all at once as above. Fbr Pe to be satisfied, one must arrange the construction

so that each gate Gi, i <; e, has only finitely many permanent residents, that is,

followers which enter the gate and never leave. In most pinball machine

constructions this follows from a property slightly easier to arrange than (1.3):
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lim infs r(i, s ) < "", for i <:;e.

A pinball machine model is used to prove the Yates-Cooper-Harrington results.

However, now it is possible that (1.4) will not be true--we may have

lim infs r(i, 5) "" for some i. A new technique is required to guarantee that

each gate has only finitely many permanent residents. 'Ine solution is to "spread

out" the restraint associated with Ne over all the gates Gi, i" e. If we

decide at stage s + 1 to increase the restraint for Ne (r(e, s + 1) > r(e, s))

the new restraint r(e, s + 1) is applied at both Ge and at some gate Ge" e' >

e. 'llius, no follower which might become a permanent resident of Ge due to this

new restraint is allowed to pass Get. 'llierefore, any follower which does become a

permanent resident of Ge due to the new restraint must have been in the "critical

zone"--at a gate or hole e c i < e' --at stage s + 1. New restraint is

applied in such a way that if a follower from the critical zone reaches Ge, then

only finitely much restraint will be needed to satisfy Ne: the construction has

the property that either lim
s
r(e, s) < "" or gate Ge has no residents Which are

permanently restrained by Ne•
Any a.c. witness b for an r.e. degree a identifies infinitely many a.c.

witnesses for a, namely, the "cone" {c : c E Rand c <:; b} of r ve , degrees

below b. Harrington has constructed an r.e. degree a with exactly the opposite

property of the degree b of 'llieorem 2.

'llieoreml (Plus-cupping 'llieorem - Harrington). 'lliere is an r.e. degree a> 0

such that every nonrecursive r.e. b < a can be cupped to every r.e. d" a.

Taking d = 0', the theorem yields an entire cone of r ve , degrees, [b : b E Rand

b <:; a}, which are not a.c. witnesses for 0'. (The proof of the special case d =
0' is presented in a paper by Fej er and Soare in this volume [PeSoI.)

Harrington and Shelah claim that the cupping/anti-cupping methods may be

extended to show that any partially-ordered set with a O'-recursive partial ordering

is first-order definable from parameters in the language L( <:;, for the r ve ,

degrees R,

<I>(a, b, m)

thus proving that the first-order theory of R is undecidable.

be the formula "b Um < a and (';rIc ER)[a <:; b Uc or c" m] ,"

Let

Harrington and Shelah claim

Theorem L' 'lliere exist a, b , mER such that <I>(a, b , m).

The crucial point is that, for given parameters a and b, the r.e. degree m

such that <I>(a, b, m) holds is uniquely determined; moreover, m is not obtainable

from the parameters in a trivial algebraic way (i.e., from a combination of a

and busing nand u), 'Ihey proceed to show:
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Theorem 6. Fix a partial ordering (p, where is Of-presented. Then
p p

there are degrees a, b, C E R such that the set of degrees

{d : d E Rand (:lM) [m Rand 4>(a, b, m) and 4>(m, c , d)]}

is isomorphic to (p, under the ordering
p

<;.

Thus, the theory of partial orderings is interpretable in the theory of (R, o , so

the latter is undecidable.

The remainder of this paper is devoted to Harrington's proof of Theorem 3. We

present the requirements for the r.e. set B whose degree b is an a.c. witness

for the fixed degree a and describe the pinball machine model in §2. The

strategies for the different types of requirements are presented in §§3, 4, and 5.
These sections also include proofs of the sufficiency of the strategies, using the

crucial assumption that each gate in the machine has only finitely many permanent

residents. In the final section, the new technique which guarantees that this

hypothesis holds is presented and proved to work.

We follow the notation of [Rg], with a few minor changes and additions. We

A[n] denote the

(A - B) tJ (B - A)

is a fixed one-one,>:NxN+Nwhere <

with their characteristic functions and let

*Let A = B denote thatA to arguments n ,
}

t.;j: <n,y> A ,

A eN

is finite. Let

identify sets

restriction of

onto, recursive pairing function. Let {e}s(X; y) be the result, if any, after

performing s steps in the et h Turing reduction with oracle X and input y.

Let {e} = u{{e}s: s N}. We write n{e}s(X; y)+n if the computation converges,

and "{e}s(x; y)+" otherwise. Let We,s (We) be the domain of {e}s ({e}). The

use function u is defined by: u(e, X, y, s) = the maximum element used in the

computation {e}s(X; y) if {e}s(X; y)+; otherwise, u(e, X, y, s) is undefined.

We adopt the convention that

(e}s(X; y)+ =;> e, y, ul e , X, y, s) .. s •

We say that the function f dominates the function g if f(x) > g(x) for all but

finitely many x.

§2. The Requirements and the Pinball Machine

Fix an r s e , degree a such that a' = 0". By a theorem of Robinson [RoI , we

may choose an r.e. set A of degree a and an effective enumeration (As}s N of

A so that the computation function

(lls) [A [x ]
s

A]x] ]

dominates all recursive functions.
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Define the increasing recursive sequence of finite sets {TS}SEN by

(2.1)

where u ut e , e , t)),

and let T U Ts' Clearly, T A and
s

Moreover, there is a recursive functional {;} satisfying

Let B be the r s e , set of degree b which has to be constructed. We make

b' 0" by satisfying the requirements

Thus, by (2.1), e E A' if and only if B(e) is finite, so b'

satisfying the requirements

a' 0". By

we guarantee that for no r.e. degree c < a is b u c a. Additionally, we must

make B A; we refer to this as requirement R.

We use a pinball machine to describe the construction of B. The pinball

machine M comprises segments De' e -1, which form the surface of the machine,

and holes He' e 0, which we picture as leading down to the surface of the

machine. The segment is composed of gates GO and Gl• At each stage of the
e e

construction certain numbers, called followers, reside on the surface of r,1; a

follower must be resident at some gate. A nlMber x = <e, y> which is not on the

surface of the machine is said to be above hole

by the end of stage s of

x is emitted from He' After x

0
1 GO 1

is, from to to G
e_ l,

01
e-l

reaches stays there forever.

x is said to be above gate GO if
e

0, 1, or above hole Hj , j > e, and

a resident of GO or above H.e e
x = <e, y> first enters the machine

j > e and i

is above 00e'
The nwnber

if it

He

etc.--

He to

has been

is a resident of

is above gate Gl
e

x

x

by dropping from hole

-1

when this happens we say

The nwnber

emitted it moves down the machine--that
1until it reaches 0_
1,

A follower which

let Bs denote the followers which have reached

the gate

the construction, and we define B = LJ B •
s s
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The decision to emit a number is connected with the strategy for the positive

requirements Pe' This strategy is discussed in §3. The movement of a follower

down the machine is controlled by the strategy for the requirement R and the

negative requirements Ne •

which is e-restrained

(r-e sp , , GO) during
e

at stage s + 1 unless

A follower

not pass gate

pass gate GO
e

is associated with the requirement R

(respectively, e-frozen) at stage s + 1 may

that stage. Additionally. a follower may not

it is permitted.EL A to do so. Permitting

and will be described in §4. The requirement

Ne imposes e-restraint using the restraint function r(e, s); e-restraint

corresponds to the conventional restriction of follower movement as described in

§l. In contrast, e-freezing, imposed by all the requirements Ni , i (e, is the

special restriction on follower movement which is the attempt to spread the

restraint for Ni , i (e, to section Ge • Technical considerations force us to

apply these restrictions separately at Ge ; hence, Ge has been split into two

gates. The definitions of e-restraint and e-freezing are given in §§5 and 6,

respectively.

The following sequence of events takes place during stage s + 1 of the

construction.

StePle. A finite (possibly empty) set of holes will emit a finite number of

followers at stage s + 1. For each e, place the followers emitted from

He at one at a time in order of increasing size.

Step Fbr each e, place at gate Gl all followers which are at gate GO
e e'

are permitted by A at this stage, and are not e-frozen. As in Step 1, these

followers should be placed at Gl in order of increasing size.
e

Step 2' For each e, move to gate GO any follower which is currently
e-l

resting at Gl and which is not e-restrained at stage s + 1.
e

This completes the description of stage s + 1 of the construction.

§3. Emitting

The number x is emitted from hole He (becomes a follower of P
j
) during

(e) - (e
step 1 of stage s + 1 if and only if x = <e, y> and y T

S
+l - Ts • Thus, Pe

will be satisfied if all but finitely many of the elements emitted from hole He

are eventually enumerated in

2.! gate if x enters

A follower x is said to be a permanent resident

at some stage and never leaves.
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1and each gate Gi,
Pe is satisfied.

Lemma.!.. Fix e. Suppose each gate -1 "i < e,

° " i c e, has only finitely many permanent residents. Then

Proof. The gates mentioned in the hypothesis of the theorem are the only gates

other than G
l

which followers of Pe enter. Hence, all but finitely many of the
-1

followers of Pe reach Gl and are enumerated in B. 0
-1

§4. Permitting

We use the enumeration of A to control the movement of followers past the

gates GO e) -1, so that we may A-recursively determine whether or not ae'
follower which has been emitted ever enters B. The method employed here,

introduced by Cooper in [Co], uses the highness of A to ensure that almost all

followers which enter are eventually permitted to leave (Lemma 6).

Let ge+l

is at gatexIf

enumerate by order of entry the followers which enter gate Gle+l
GO or Gl by the end of Step 1 of Stage s + 1, the permittinge e+l -

number p(x, s) associated with x at stage s + 1 is the unique m such that

ge+l(m) = x , The follower x is permitted..£L A stage s + 1 if As[P(X, s l ]

* As+l[p(x, s)J.

never

Gl
-1

at stage

that is, whether or not the follower

x

B,

then

entersx

x f- T,

Then x reaches

x enters Gle+l
associated with

Proof. Fix x = <n, y>. We show how to A-recursively determine whether or not
1x reaches gate G_l• If

1enters the machine and so cannot reach G_
l•

Suppose x T.
1 1 1just if x enters each gate G
n_l,

G
n_2,

"" G_
l•

Suppose

sO' The permitting number p = p(x, sO) remains

x until x enters Let sl be the least stage s > So such

that As[p] =A[p]. Then x enters if and only if it enters by the end

of stage sl' Since T "T A and sl may be found using an A-oracle, B "T A. 0

§5. Restraint

The strategy for Ne consists of attempting to protect certain computations of

the form

from being destroyed by followers entering B. We define e-restraint so as to

prevent such injuries by followers which must pass gate to enter B. Of
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course, followers which need not pass to enter B or followers which passed

before restraint could be imposed on them may still injure computations which we

have decided to protect, but these injuries to the strategy will be sufficiently

well-behaved so that,

recursively determine

under the assumption that {e
1}(W

(f) B) = A, we may We -
e 0

when a computation (5.1) is We $ £-correct, proving that
o

A " W •T eO
To describe which computations (5.1) are to be protected during stage s + 1,

we define a sequence

b = <b (e), b (e + 1), ••• ,
e,s e,s e 5s

(n» ,,s

where n = n(e, s) can be determined effectively, and where

-1

(n) •,s

s + 1 just if X" b (n ) •
e,s

which computations are beingThe number

Intuitively, we protect the computation (5.1) at stage

c(i), e" i "n, similarly describes

protected by i-freezing for Ne • The sequence b will be defined in §6. We
e,s +

conclude this section with a description of the properties of be,s' and we prove

that these properties suffice to guarantee that Ne is met.

We write "b (il t" if i" n( e, s }, and "b (il t" otherwise. Define the
e,s e,s

recursive functions q and r by

. {lax{u(e,
q(e, 1, s ) =

-1

x"b (il}
e,s

ifb (i)t,
e,s

otherwise

and

r( e, s ) q(e, n(e,s), s ) •

Note that (5.3) guarantees that

e-restrained at stage s + 1 if

end of Step 2 at stage s + 1.

b that
e,s

q(e, i, s) is well-defined. The follower x is

x " r(e, s) and x is a resident of at the

It will follow immediately from the definition of

if b (i)t, then
e,s

We will prove later (Lemma 7) that
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{el}(W 61 B)
eO

Lemma.1. Fix e and suppose that the gates -1" i < e, and

o " i "e, have only finitely many permanent residents. Then Ne is satisfied.

is finite}. Let So be the least stage

By the hypothesis of the lemma, we may

o .;;; i " e.

show how to W -recursively
eO

s > So such that

Let C = {i: i < e and T(i)

s such that T( t ) = T( i) for all i EO C.
s

assume we are supplied with a recursive oracle
o 1

residents of gates G
i
, -1" i "e, and G

i
,

Assume {el}(W
e

E>B)=A and fix x , We

calculate A(x). sl be the least stage

for F, the set of permanent

(5.6)

(5.8 ) if z = <i, y> < r(e, s) and z t Bs' then either

A(x) •

(a) z EO F,

(b) i EO C and y ¢ T( i)
So

(c) z is at a gate GO or or above hole Hk , for somek

k , e;

sl exists by (5.5 ) and the fact that T(i) = N(i) for all i < e which are not in c.

{e} (H x ) = {e}(H Ell B; x )
1 sl eO,sl 1 "o
Claim: Suppose the claim is false. Then there is a stage s' sl

such that (Heo's Ell Bs) [r(e, sl)] * (Heo,S+l $ Bs+l) [r(e,sl)]; let s2 be the

least such stage and let z <i, y> be the least number which enters We * B at
o

stage s2 + 1. Now z" r(e, sl)' so (5.7) implies that z does not enter HeO;
hence, z EO Bs +1 - Bs• By (5.4) and the choice of s2' we know that

2 2
r(e, t) , r(e, sl) for all t, sl" t "s2. Therefore, z was e-restrained and

could not have passed during any stage t, sl';;; t .;;; s2. So z was either

above a hole Hi' 0';;; i < e, or in some section -1 .;;; i < e, at the end of

stage sl. But then (5.8) and the choice of sl > So imply that either z is

never emitted or z is the permanent resident of some gate, and so cannot enter

B. This proves the claim.

Since sl

as required by

can be computed recursively from x

Ne

using a We -oracle,
o
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§6. and the Finiteness

The chief difficulty in the construction lies in the conflict between the

hypothesis of Lemmas 1 and 3, namely, that each gate has only finitely many

permanent residents, and property (5.5), which requires that lim infs r(e, s)

if {el}(W B) = A. The mechanism for the resolution of this conflict is
eO

freezing.

Suppose at the end of stage s + 1 we wish to protect additional computations

for Ne , say the computations (5.1) for x b. This increased protection will be
+

indicated by adjoining b to be,s' that is, we define ,s+l

<b (e), ••• ,b (n), b>, where n n(e, s). Then the restraint at for the
e,s e,s

next stage is r(e, s + 1). A follower x which could become a permanent resident

of due to this restraint falls into one of three categories according to its

position at the end of stage s + 1:

(6.1) x is above GO
n+l

(6.2) is at a gate G9 1
" i n + 1,x

1-
or Gi , e or

(6.3) x is above a hole Hi' e " i " n + 1

Categories (6.2) and (6.3) correspond to the "critical zone" mentioned in §l.
A follower in the first category can be prevented from reaching by

(n + l)-freezing it, thereby stopping it at GO if it should reach that gate. A
n+l

follower in the second (third) category will reach only if it is A-permitted

(emitted) at a later stage. We can use As+l and the permitter p(x, s + 1) to

predict if a follower in the second category will be permitted at a later stage.

Similarly, AS+l and the functional can be used to predict if a hole in the

critical zone is finite and, thus, whether or not a follower in the third category

will be emitted. More precisely, we may be able to determine a number u such that

a follower x " r(e, s + 1) in the critical zone will move only if A l[u] * A[u].s+
We will decide to protect the additional computations only if u can be found,

Then either no followers becomeb >u, and {e} (W if> )[b] =A lIb].
1 s+l eo,s+l s+

permanent residents of due to the new restraint, or at some stage t+l > s+l we will

have At+l[b] * As+l[b] ,in which case the finite amount of restraint r(e, s+l) will

suffice to preserve a disagreement between {e} 1 (W 1 ffj. B ) [b] and
1 s+ eO's+ s+l

At+l[b], thus satisfying Ne•
We must be careful to ensure that i-freezing does not combine with A-permitting

at in such a way that ends up with infinitely many permanent residents.

We say that Ne is injured during stage s + 1 if a number X" r( e, s) enters

We $ B during stage s + 1. When Ne is injured we will drop the protection on

°
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certain computations. This will be indicated by defining

be,s(io»' where the computations (5.1) for x b (iO)e,s
by i-thawing (that is, "un-d-srr-eez tng") all followers i-frozen by Ne, for i > iO'

Since Ne may be injured infinitely often, it is possible that a follower may be

successively i-frozen and i-thawed by Ne infinitely many times. If we were to

allow a follower which has reached to be i-frozen, that follower may be

permanently held at even though it is not permanently i-frozen: the follower

x may be i-frozen at precisely the stages when it is permitted, thus preventing its

passage. Therefore, a condition on i-freezing necessary to prevent having

infinitely many permanent residents is

(6.4 )
Ne is allowed to i-freeze the follower

the end of stage s + 1 only if x
at that time •

x at
is above G?

l

(It is this condition which prevents a simple implementation of i-freezing using a

restraint function similar to that used to implement the conventional restraint at

The formal definitions of and i-freezing follow.

Defini t t on ,

are residents of

n = n( e, s l , Let

at the end of stage

Gji,s+l
s + 1.

denote the set of followers which

Note that the permitting number

(We s e Bs ) [r( e, s ) I t
0'

i such that

p(x, s + 1) assigned to a follower x during stage s + 2 may be determined at

this time for a follower x in Gj
i,s+l

Case 1. Ne is injured during stage s + 1. Then

(We s+l $ Bs+l)[r(e, s)]. Let i O be the largest
0'

(We s+l ffi Bs)[q(e, i, s)] = (We s+l e Bs+l)[q(e, i, s)l. Define
0' 0'

b 1 = b [iOI <be s(e), ••• , be,s(iO»' and i-thaw all followers whiche,s+ e,s ,
are i-frozen by lJe for all i > iO'

Case 2. Ne is not injured during stage s + 1. Search for a number b >

be,s(n) such that

(6.5 ) (\Ix'; b)[{elJ (W 1 eBs+l; x )
s eO's+

A l(x) Is+

(6.6)

(a)

(\lx';r)(\li)[(xEG? U and
l,s+l l,s+l

p(x, s + 1) b ] , and

for all i, e'; i n + 1, either

(3t < s)[ l(A 1; <i, t»+ ands+ s+
u(;, A l' <i, t>, s + 1) .; bl, ors+

(b) (\ly)[<i, y> .; r = <i, y> has been emtt.ted] ,
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and (n + I)-freeze for

GO 0
n+l

where r = max{u(e
1,

W 1 $ B , y, s + 1): y (b}. Elf the convention on
eO ,s+ s+l

use mentioned in §1, thls search may be bounded above by s + 1. If no such
+ +

exists, define b = b • Otherwise, let bO be the least such b.
+ e,s

Define b 1 = b * b = <b (e), ••• , b (n }, b> ,
e,s+ e,s e,s e,s

Ne all followers x ( r = r(e, s + 1) which are above

b

Note that conditions (5.4) and (6.4) are automatically satisfied by the

definition. It remains to verify the hypotheses of Lemmas 1 and 3 and to show that

condition (5.5) is satisfied.

Lemma 4. For all e ;> 0, gate has only finitely many permanent

residents.

Proof. Fix

the limits exist.

e. Let be(i) = lims be,s(i)

First, suppose there is an i

and q(e, i) = lims q(e, i, s), if

such that be(i) does not exist.

Let i O be the greatest i such that be(i) does exist. Since b (i)t implies
e,s

b (j)t for all j ;> i, there are infinitely many stages s such that
e,s
q(e, i, s) = -1 for all i > i

O•
Hence, lim infs de, s ) = max {q(e, i): i ( ioL

The lemma follows immediately.

Now suppose that be(i) exists for all i. Then {el}(W ® B) = A. We will
eO

show that has no permanent residents. Assume x is a permanent resident of

Let i O be the least i such that x ( q(e, i
O)'

and let So be the least

s such that q(e, i O' t ) = qf e , i O) for all t;> s + 1. (Intuitively x is

permanently held at by the permanent restraint associated with be(iO)
established at stage So + 1.) Note that q(e, iO' sO) = -1, be(iO) = be s +l(iO)', 0
and As +l[be(i)] = {ell l(W 1 $ B l)[b (i)] = {el}(W w B)[b (i)! =

Q So+ e ,sO + So+ e "o e
A[be(i)l. Now x must have after stage So + 1, since q(e, i O' sO)

-1 and x would have moved to during step 3 of stage So + 1. Therefore,

x must have been in one of the categories (6.1), (6.2) or (6.3) at the end of stage

But then the computation l(A 1; <i, t»+ must be incorrect,
s + sO+

a Hence, no follower is a permanentthat A lib! * Alb] ,s +
resident of 0

So + 1. If x were in category (6.1), x would have been permanently iO-frozen

and so could not be a permanent resident of If x were in category (6.2), x

must have been permitted after stage So + 1. But then As +l[P(x, So + 1)] *
o

A[p(x, So + 1)] and p(x, So + 1) (be(i), a contradiction. Therefore, x must

have been in category (6.3). Now x ( q(e, i
O)

implies that (6.7b) does not apply.

Therefore, there is a t < So such that +1 (A +1; <i, t»+ and u
So So

= u(;, As +1' <i, t>, So + 1) (be(i
O).

But x is emitted after stage So + 1, so
o

T(i)*T(i).

. So .
Imp'IyLng
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Lemma For all i ;. -1, only finitely many permanent residents of GQ
1 are

i-frozen for infinitely many stages.

Proof. Fix i and e, ° e i. By the definition of freezing either Ne
permanently i-freezes only finitely many followers or it i-thaws the followers it

If the former case holds, only finitely many

permanently i-frozen by Ne • If the latter case

of is permanently i-frozen, since x must be

and it cannot be i-frozen thereafter. Since only the

has i-frozen infinitely often.

permanent residents of GQ are
1

holds, E2- permanent resident x

i-thawed after it reaches GQ
1

requirements Ne , 0 e i, may i-freeze followers, the lemma is true. o

Lemma Po r all i " -1, gate
1

has only finitely many permanent

residents.

and is eventually

We may assume that infinitely many followers enter

otherwise, there is nothing to prove.
1

reside at Gi +l , so gi+l is total.

for all m;' M the follower gi+l (rn)

such that

Go.i'
must first

M

Every follower that enters

By Lemmas 4 and 5, there is an
1

eventually leaves Gi +l

i.FixProof.

permanently i-thawed. Define the recursive function

E GQ
1,S and is not i-frozen at stage sl

if m < M,

if m;' M.

Note that m is the permitting number associated with the follower gi+l(m) while

it resides at Since CA dominates f, there is an MO such that CA(m) >

f(m) for all m" MO' Then, for all m" MO' Afbm)+l [m] * A[m] and follower

gi+l(m) must be permitted after it has reached Ge• 0

Lemma l. For all e;' 0, if

for all i" e.

then lims exists

Proof. Fix e " 0. The proof is by induction on i. The special case i = e

is trivial since be,s(e) = -1 for all s , Assume lims be,s(i) exists. Let F

be the set of permanent residents of the gates k for j " i + 1 and k 0,Gj, e

1. Let C {j : T(j) is finite and e j " i + n. Fbr each j E C let t j be

such that }(A, <j, t.»+. Let So be the least stage s such that
J

(6.8)

(\J x E F) Ix has arrived at its permanent residents by stage s ] , and



As [ul A[ul,

t .>, s)] •
J A

max(u(e, A , <i, t.>,
So l

sl be the least stage

(6.10)

Let p

let b
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(\lj (A, <j, t.»+ and
s s .J.

where u u(e, As' <j,

max Ipl x , sO): X E F}, let "o
max (p, u

O
' b (i) + 1}. Let,

e,sO

so): i E C}, and

s .. So such that

(6.n) A [bl = A[b] •
s

Let ul=max{u(e l , W \liB ,y, ):y"b} and let r=max(b,u}. Let s2
eO ,sl sl

be the least stage s" sl such that

(6.12)

(6.13)

(\I j ) (\I y) [ (e "j "i and j E C and <j, y> " r) =
<j, y> has been emitted by stage sl and

The existence of

is a stage s >

(6.7) at stage

so, by (6.13),

So' sl' and s2 may be proved straightforwardly. Suppose there

s2 such that b (i + l)t. Then bO satisfies (6.5), (6.6) and
e,s

s + 1, so b l(i + 1)+ "b
O'

But then q(e, i + 1, s + 1) " r
e,s+

,t+l(i + 1) = be,s+l(i + 1) for all t" s + 1. 0

Lemma 8. (i) Fbr all e .. 0, Pe is satisfied,----
(ii) R is satisfied, and

(iii) Fbr all e .. 0, Ne is satisfied.

Proof. (i) follows from Lemmas 1, 4 and 6. (ii) is just a restatement of

(iii) follows from !.emmas 3, 4 and 7. 0

This concludes the proof of Theorem 3.

University of Chicago
Chicago, Illinois 60637
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ON THE GRILLIOT-HA.RRINGTON-MacQUEEN THEOREM

Yiannis N. Moschovakis(l)

Department of Mathematics
University of California

Los Angeles, California 90024

One of the finest results in recursion in higher types is the Grilliot-

Harrington-MacQueen Theorem, first discovered by Grilliot [1969] (who gave a wrong

argument for it) and subsequently proved by Harrington and MacQueen [1976]. If,

as usual

(T )
n w

and is the type-(j + 2) object which embodies quantification over Tj,
then

the result says the following.

Theorem. If k> j + 3 and R(x,aj) is semirecursive in kE with arguments

of type < j, then the relation

p(x) '" (3; )R(x,a j )

is also semirecursive in kE•

The bound k j + 3 is best possible qy Moschovakis [1967].

Our main purpose here is to give a proof of this result which appears to be

new (at least in its details) and which is conceptually more direct than the

Harrington-MacQueen argument.

The proof is best presented in an axiomatic setup and we will use the frame-

work of functional induction developed in the first part of Kechris-Moschovakis

[1977) which we will cite as KM; we will describe this briefly in §l and we will

assume no more knowledge of abstract recursion theory on the part of the reader.

After putting down the main argument in we will refine it in several ways

in §3 to derive some additional interesting selection theorems, including the

somewhat surprising fact that on the structure (VW+W,E) (and others like it),

recursion in E coincides with positive elementary induction.

(l)During the preparation of this paper the author was partially supported by
NSF Grant #Mcs 78-02989.

I want to thank Dag Normann with whom I discussed the contents of this
paper during his visit to UClA in March 1980. His at.i.mu.l.at.Lng comments made
me realize that my old proof of Theorem A could be easily refined to yield the
much more general Theorem 3 in section 3.
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Fix an infinite set A SQch that wC A and for each

n, let pn(A) be the collection of all partial fQnctions on A to A. A (partial,

monotone) (on A with valQes in A) is any partial mapping

k k
¢ An x P I(A) x ... x P m(A) _ A

s uch that if •.. ,f
m
,= gm and ¢(X,fl, ••• ,f

m)
w, then ¢(x,gl, •.• ,gm) v ,

The signatQYe of a fQnctional is the seqQence of integers (n,k , ••• ,k) which
I m

describes the kinds of argQffients on which ¢ acts. If the signatQre of ¢ is

of the form (n,n,kl, ••• ,k
m),

we call ¢ operative and we define its iterates

by the recQYsion

where

--«;---¢(x,A.x' ¢ (xl,g),g),

-)<!> x,g

The Qnion

w.

of all the iterates is the fixed point of ¢ or the defined indQctively

by ¢.

If J is a class of fQnctionals on A, then a fQnctional Y(x,g) is J-

recursive if

for some operative ¢ in J and sQitable integers n nl, ••• ,n
k•

This is precisely the approach to abstract recursion theory developed in KM,

except that there we dealt exclQsively with partial functions and functionals on

A to w, while here it is convenient to allow valQes into A. The results in

§1-§9 of KM go through word-far-word for these more general fQnctionals with only

one trivial change: in defining "¢ (x,:f) concentrates on B C N' in 4.1 of KM,

we must add the condition

[x E B
n

& <p(x,f) = w] => wEB.

From now on we aSSQffie the terminology and results of §1-§9 of KM with only

this slight generalization of context.

A second-order structQre (With a specified copy of w) is a system

where wC A and each R
i

is a relation on A, each is a fQnction on A

and each is a f'unc tdona.L on A. Given s uch a struct.uze, PQt
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the explicitly definable functionals on

the smallest suitable class of functionals on A which

contains the characteristic functions Xl, ••• ,Xk of

••• ,Rk, the functions fl, ••• ,f£, the constant functions

cl, ••• ,c
m

of any number of arguments and the functionals

\!ll'·· . ,\!In·

We call a functional Y recursive in m

a relation P C An semirecursive in m

recursive in such that

if it is Exp(m)-recursive and we call

if there is a partial function f : An - A,

We collect these relations into the envelope of

fpC An : Pis semirecursive in

A quantifier-like, object on A is a functional F(g) (with just

one unary function argument, for simplicity), such that:

(i) F(g)l <>g is a total function on A.

(ii ) If

* { 1 if g(t) = 1
g (t)

g(t) 11,0 if g(t)l and

Then

Of course the type-2 object E

these properties, where

EA that represents quantification on A has

if g

if g

is total & (3t)g(t) = 0,

is total & (\It)g(t) I O.

To simplify matters, we will concentrate on good, type-2 structures which

satisfy the follOWing conditions.

(1) The equality relation = on A and the quantifier E
A

are both recursive

in m.
(2) All the functionals ¢l' ••• '¢n in m are quantifier-like, type-2

objects on A.

(3) There is a one-to-one function

T:AXA-A

(a palrlng function) whose graph is m-recursive.

By 6.4 and 6.5 of KM, every good, type-2 structure m is normal - i.e. all

the functionals in Exp(m) are normal and the Stage Comparison Theorem holds.
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(This result essentially goes back to MPschovakis (1967].)

Kirousis (1978] proves a simple but very useful lemma which in particular

implies the following: 11l satisfies (1) and (2) above and if g: An - A

U-recursive graph,

Env(U) = Env(l1l,g).

Thus we can add to a good, type-2 structure the pairing function T, its pro-

jection functions rt and 0 and the identity function id without enlarging

the envelope; in the expanded structure 11l* then, we have ::':. full

coding scheme in the sense of 8.2 of KM, since the relevant relations and functions

Seq(x), £h(x), (x)., etc. are easily defined by recursion from w, the successor

and predecessor functions, T, n, 0 and id.

From these remarks, it follows that in proving results about the envelope

of a good, type-2 structure 11l, we may assume without loss of generality that

we have an 'll-recursive coding scheme - we will do this without explicit mention.

There are two kinds of structures in which we are particularly interested

here, although the selection theorems which we will prove have wider applicability.

Example 1. For each infinite ordinal 1\., let VI\. be the set of sets of

rank < I\. and put

When I\. = w+ n (n 0,1,2, ••• ), this is essentially normal Kleene-recursion

in higher types; L.e , ::':. p(x) with arguments of type:: n is

exactly when it is in n+2E• This is tedious to verify, but it

is easy and well-known.

It is also not hard to check that these structures UI\. are good, type-2

structures, as are their expansions by any relations, functions, constants and

quantifier-like type-2 objects.

Example 2. For each infinite ordinal 1\., let

These too are easily good, type-2 structures, as are their expansions by

relations, functions, etc.

It is obvious that these examples are the extreme cases of structures of the

form

where A is a transitive set with a (recursive) pair on it.

We will end this preliminary section with a brief description of the

schemata associated with recursion in a good, type-2 structure. We will need

these for the proofs.
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As usual, the idea is to define by recursion a relation

fe}(x) =14,

where e varies over wand

partial function f : An - A

x xl, ... ,xn and 14 vary over A,

is m-recursive exactly when for some

such that a

e E W,

f(X) {e}(x).

Since the definition is by recursion, it also supplies us with an ordinal

\e,xl the" length of the computation [e }(x)"

whenever [e}(x)l.

If fe}(x) is to be defined, then the argument e (the code or index) must

satisfy one of a finite number of conditions (schemata); when e satisfies one

of these conditions, we can extract from it recursively instructions for computing

(e}(x), either immediately or in terms of shorter computations.

This method of describing a given recursion theory by schemata is well-known

and it is explained qu i t.e extensively in §14 and §15 of KM, so we will not elaborate

on it further here. In fact, for once, we will not put down the schemata explicitly;

it will suffice for our purposes to describe their nature and to group them accor-

ding to their role.

Group A. In these schemata we assign codes

to several functions that we want to call recursive, directly.

For example, we may set

e (2, n, i)

if f i is one of the functions in m. Here e (2,n,i) codes the information

that we are in schema 2, that we are defining a functiOn of n arguments and

that f. is the i'th function in m.
l

In this group we code the characteristic functions of the relations in m and

the functions and constants in m; we include the characteristic function of w,

the successor function and the characteristic function of =.

Group B. Compositions with functions. There are three schemata in

this group, addition of variables, permutation of and definition

cases, where (for example) the last of these is as follows, if this happens to

be the b'th schema.

{

[m}(x)
fe}(t,x) = _

[z}(t,x)

if

if

t 0,

t J 0
e (b,n + l,m,z)

It is well-known and easy to check that if we include this schema, we do not
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need to include definition by primitive recursion.

C. Functional substitution. These are schemata of the form

[e}(x) = f(iI.s(m}(x,s» e = (c, n, i),

one for each quantifier-like functional in (The code

we are in schema c involving n variables and the i'th

compute [e) (x) we must first compute all the values of

[m}(x,s ),

and if this g_ is total, then set
x

[e} (x)

D. Composition. This is the schema

(c,n,i) means that

functional.) To

[e}(x) = [m}( [z}(x),x) e = (d, n, m,z) ,

assuming it is the d'th schema; to compute fe}(x), we must first compute

(z}(x), and if this converges and has the value w, then we must compute

(m}(w,x).

Group E. Enumeration. This is the schema

fe}(m,x,y) = (m}(x) e (f,n+k+l,n),

assuming it is the f'th schema and x

n-tuples and k-tuples respectively.

The fact that one can put down schemata for that conform to

these general conditions is not trivial, but can be established by a standard

II index-transfer theorem, II as in §15 of KM. We will omit putting down any details.

§2. We are now ready to state and prove the Grillioi;.

Harrington-MacQueen theorem. As usual, we let

BA all unary (total) functions on B to A

and if X A X B - C and a A, we define the fiber Xa B - C by

X (t.) = X(a,t).
a

structure and B is an subset of the domain

the following two conditions hold:

Theorem A (Harrington-MacQueen ). Suppose is a good, type-2

A of such that
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(m.) There is a total function

X AXB-A

with graph, such that

(H2) There is an %l-recursive prewellordering of A which is longer than

every prewellordering of B.

Then is closed under existential quantification on

We will prove this (as in the Harrington-MacQueen argument) by showing first

a selection lemma about computations, from which Theorem A follows very easily.

Lemma A.l. Assume the same hypotheses as in Theorem A; then there exists an

ve partial function u( c, x, t), such that

(3t E B)fe}(t,x)j" "" (Yt E B)u(e,x,th

& (3t E B)u(e,x,t) = 0

& (Yt E (u(e,x,t) = 0 "" te}(t,xh].

Proof of Theorem A Lemma A.l. Given an relation

p(t,x) ." (e}(t,x)J.,

verify that with the U of the lemma,

(3t E B)P(t,x) ." (Yt E B)u(e,x,th

& (3t E B)u(e,x,t) = 0

& (Yt E B)[u(e,x,t) = 0 => (e}(t,xh];

but this equivalence and the fact that

the relation

is imply immediately that

R(x) ." (3t E B)P(t,x)

is

We would naturally like to define u(e,x,t) by (effective) transfinite

recursion on the ordinal infimumtle,t,x\: te}(t,x)l &t E B}. To do this,

however, we must reformulate the lemma SO that we have a stronger and easier

to use induction hypothesis. To put it briefly, Lemma A.l deals with existential

assertions of the form

(3t E B)[e}(t,xh;

we will have to deal with more complicated assertions of the form
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where D is a (suitably coded) subset of A, recursive in given parameters and

are given recursive functions.

To help simplify the notation, for each m wand Z = zl, •.. ,Zg' put

B(m,z) = ft B : fm}(t,z) = OJ;

we will use these sets only in the case [m}(t,z)t for each t B.
'" '" kGiven numbers and y = Yl""'Yk A, put

(i = L, ... ,n)

and collect these functions together into an n-tuple-valued function

again, we will only be interested in the case each

Cji(t,y) =

(t,y)
l

t E B(m,z).
Now, we say that the tuple of parameters

is defined for all

is good (for B) if for each t E B, [m}(t,z)t and if for each t

each is defined.

With these notation conventions we can now state the detailed generalization

of Lemma A.l which is easily amenable to proof. From the statement below we

can get Lemma A.l by choosing

B(m,z) = B; (t,x') x
n

Lemma. As in Theorem A, assume that is a good, type-2 structure,

B is a recursive subset of A and (HI), (H2) hold. Then, there is an

partial function

u z,;,r, t)

'"such that in the notation established above, if the tuple m, z, y is good and

then

(L) (Vt B(m,z) )u( (2:), (y), t h
and the set

C [t E B(m,z) (z), (y),t) o}
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has the following additional properties:

) C 01 1;,

(iii) tEe => fe}(qi(t,Y"Ht.

By Kirousis' Lemma, we may assume that the function X witnessing

the truth of (HI) is

As usual, we will define u by the recursion theorem, i.e. we will define

a recursive partial function

y, t)

where u ranges over w, we will choose some fixed u SO that

=

and we will then set

u( e,m, t ) e, m, z, y, t )

(e, z, y, t)

After u is defined, the verification of (i)-(iii) will be by induction on

t E B(m,;;:) & [e}(qi(t,YHlJ.

The definition of U is by cases on e, according to which recursive

condition e satisfies as a code for a computation. It is important in this

kind of definition to make sure that no induction hypotheses on the ordinals

involved are essential in the definition of U before the recursion theorem

is applied; nevertheless, we will follow well-established tradition and explain

the proof if we were defining by a direct, transfinite

recursion, with an available induction hypothesis in each case. After this first

informal definition of u in each case, we will make some remarks (When needed)

to explain why no induction hypothesis was actually used in the definition.

In point of fact, we will avoid direct references to the partial function u

in the informal explanations below in favor of the sets in the

statement of the lemma which are what we really need. Of course U is nothing

but the characteristic function of C on B(m,z).

We now define C by cases on e, assuming that m, z, y is a good

sequence.

Group A. Now e defines a total function, so we can certainly take

C B(m,;;:).

Group B. Here the definition of [eJ(qi(t,y» depends only on the convergence

of certain fixed subcomputations and the definition of C is immediate. For

example, if
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otherwise,

0,

we put

= (t E B(m,z) : [CPl(t,y) '" 0 & t

V [CP1(t,y) I 0 & t

(

_ A A

E C el,m,z, CP2, .•• ,CPn

E C( e
2
, m,Z,

.s»

C, functional substitution. In this first interesting case, we have

[e}(cp(t,y» = F'(r-.sfe }(cp(t,y),s»
1

for some type-2 object F and some el E w. Computing from the hypothesis,

(*) (3t B(m,z»[fe}(cp(t,y»)tJ

.. E B(m,z»)(Vs A)[(el}(cp(t,y),shJ

.. (Vre : B(m,z) - A)(3t E B(m,z»[(elHcp(t,y),re(t»J.J,

where we have used the dual of the axiom of choice. Using the hypothesis (Hl),

we can further simplify this to

It is now clear from the general properties of the schemata that if one (and

hence these conditions hold, then for each a E A,

infimum{lel,cp(t,y),X(a,t)! : t E B(m,z) & (el}(cp(t,y),X(a,t»l}

< infimum£le,cp(t,y) I : t E B(m,z) & (e}(cp(t,yHJJ,

so that if we have the induction hypothesis available, then for each a A we

have already defined a non-empty subset of B(m,z)

such that

here ($l, ... 1)' where
n n+

llIi ( t , y, a ) = CPi(t,y for i = L, ... ,n,

Ijr l(t,y,a) '" X(a,t).
n+

We put

C = (t E B(m,z) (Vs A)(3a E A)[s = X(a,t) & t C(a)]}.
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To verify that C has the properties we want, assume first that tEe and

s is any member of A; now choose a E A so that

s = X(a,t) & t E C(a),

so that by the property of C(a),

At the same time C I ¢, because if C were empty, then

(**) ('<it E B(m,z»t /. C

=> ('oft E B(m,z» E A)(Va E A)[s I X(a,t) V t /. C(a)J

=> (3'0 E A)(Vt E B(m,z»(Va E A)[X(b,t) I X(a,t) V t I- C(a)J

(by the axiom of choice and (Hl»

=> (3'0 E A)('<it E B(m,z»)[t I- C(b)J

which contradicts the assumed properties of each C(b).

In this case it is very easy to verify that the formal definition of

which will yield this when the hypotheses hold

is (The key fact of course is that E
A

is m-recursive. )

Group D, composition. Now we have

so that if

infimumf le,cp(t,y) I : t E B(m,z & [e}(cp(t,y)h} = A.,

then for some t E B(m,z) both [e
2}(cp(t,y»

= wand {e2}(w,cp(t,y» are

defined with ordinal below A. and we may assume (at least heuristically) that

we have defined C for these compucations.

Let K be the rank of the given m-recursive prewellordering of A which

witnesses the truth of (H2). Keeping the parameters e, m, Z, y constant

for a while (and suppressing them in the notation) we will define a sequence of

sets

: < K}

such that for each

¢ t B(m,z),

The definition will assume the induction hypothesis and a few other things and

will need to be made precise later on.
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Step O. Find Co' Qsing the indQction hypothesis, so that

This is clearly possible, granting that

(3t E: B(m,z) )[e}(cp(t,Y))'l.

(This step can be omitted, and we will omit it in the precise definition below. )

Step O. First set

= C1)

and then Qsing the induction hypothesis and the stage comparison theorem do

simultaneously two computations:

(3t E: Ds)(e1l«(e2}(cp(t,Y»,CP(t,Y»)t.
(3t E: B(m,z) - DsHe

2
}( 'iji( t , Y»)t .

Now by hypothesis, for some t E: B(m,z) we have both

such that

if t E: D
S
' then (a) holds while if t E: B(m,z) - D

S
' then (b) holds. In either

case one of (a) or (b) holds (perhaps both), so one compQtation converges first.

If (a) first, put Cs =

If (b) terminates first, QSe the hypothesis to find

¢ j B(m,z) -
and

In a minute we will check that this is a legitimate definiton by recQrsion

on < K. Granting that it is, we have the sequence

and it cannot be the case that for each < K case (b) of the applies,

since then all the WOQld be pairwise disjoint and the relation on B(m,z)

x < Y .. < K)[x E

would be a prewellordering of this set of length K, contradicting ).

Now set

*C =

and notice that by the construction, we know that
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and

Thus we can apply the induction hypothesis, replacing B(m,z)

to the sequence of functions at the front, the function

to find some set

C C(e,m,z,9,Y)

*by C and adding

with the required properties.

Since this is the most complicated case in the proof, we will take the space

to outline the formal construction, as we need it before we apply the recursion

theorem. (Those experienced in these arguments will surely want to skip to "Group

E." )

Recall that what we are really doing, is defining an partial

function

u(u,e, m,1p, z,y, t)

by cases on e, and in this case e codes a composition, so we can get numbers

e
l

and e
2

from it recursively.

We will first define an auxiliary partial function

=

where varies over A and denotes (heuristically) the ordinal which is its

rank in the given prewellordering < of A that witnesses (H2). When the

hypotheses hold, then in the notation above (and identifying With its rank),

we wili have

= ft E B(m,z) : = OJ.

The partial function g will also be defined by the recursion theorem, i.e.

we will put

for some $ and some g E w which satisfies this equation. The

partial function $ is defined by a standard index-construction which we now

outline; the main complication comes fromthe fact that we must switch parameters

in applying the induction hypothesis.

In the formulas below, < is the given prewellordering of A
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which witnesses (H2).

Step 1. Put

o if [m}(t,z) 0

& <

& < 0],

1 if fm}(t,z) 0

& < &.; 0],

where we have omitted trivial conditions like

tt z must code a tuple 2".

,..
It is clear that if' hd is a code of hd and the induction hypotheses hold, then

we will have

will need
,.. ,.. - instead of justwe to use the parameters g, u, e, m, y, z, z.

Step 2. Put

{: if (m}(t,z) 0 & 1,

if (m}(t,z) 0 & 0,

and let

parameters.

,..
be a code of f d; now f d codes B(m,z)- in terms of the

Step 3. Let

n)

be some fixed recursive function such that whenever

is a sequence code, we have

Now in the two cases (a) and (b) we want to use the induction hypothesis on

the following two computations:

(a)

(b)

As in the proof of Theorem A from Lemma A.l, we want to execute these

for all t E or B(m,z) - and ask if we get some correct values - and

then we want to pick by stage-comparison one of these, where the verification

that it works is shorter.
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Step 4. Using fresh variables to avoid confusion, put

&

,e' ,m' ,(p' ,z' ,y')j, .. [Yt B(m,z' }(e' ,m' ,(p' ,z' ,y' ,t)j,]

B(m,z' }(e' ,m' ,rp. ,z' ,y' ,t) 0]

and let '"w be a code of w.

To determine whether we are in Case (a) or in Case (b), we must compare the

ordinals

I'" '" '" Iw, ll, e l ,rot, Ct' , z I , s' ,

for the parameters indicated in (a) and (b) above. Thus the final step in defining

the function W is as follows:

Step 5. Case (a). If

I'" '"-::: w, u,

put

Case (b). If the ordinals in Case (a) are ordered inversely, put

Of course we are comparing ordinals using the Stage Comparison Theorem and

if one of the two computations in question converges, then we will get an answer.
'"Having defined W, we get a partial recursive function g with code g

by the recursion theorem and then the remaining construction to define

in this case is simple and we will omit it.

After has been fixed by the recursion theorem again, we will be proving

that it works by induction on the ordinal

simultaneously for all values of parameters. When e is a code for composition,

in this case, we will need to check first that the aUXiliary function

is defined for each and each t B(m,z) (by induction on so that each

is well-defined and the informal argument we gave in the beginning of this

case works.

Group E, enumeration. In this case we have
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for some k < n recursively computable from e. (This function is only defined

when E w.) Computing as usual,

(3t E •.•

'" (3t E

'" (3j)(j = & (3t E •••

Now for each jEw, we can use the induction hypothesis and ask if

we know that for at least one

than

this can be verified using computations shorter

for which (*) holds recursively

to define in

infimum! le,Cji(t,y)I : t E B(m,z)}.

Using on w, we can find one j

in the parameters and then plug it in __ )

this case.

We will omit the formal details in this case which are somewhat simpler

but similar to those of the composition case. (The complication comes from the

fact that we must apply the induction hypothesis to a different B(m,z) which

is defined in terms of the longer list of parameters m, z, q,l' y, j, so that an

index-construction is required.)

Treatment of this case completes the proof of the Main Lemma and hence the

proof of Theorem A via Lemma A.l.

and refinements. Many of the selection theorems in which

we are interested do not follow directly from Theorem A, but require going into -

and sometimes refining - the proof of the Main Lemma.

First we look at the structures

of Example 1.

Theorem 1. If is an infinite successor ordinal or an inaccessible

cardinal, and if m is any expansion of by relations, functions, constants

and quantifier-like, type-2 objects, then Env(m) is closed under restricted

quantification.

Proof. The structure m = __) is a good, type-2 structure and so
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is the further expansion

(\It E w)

B -follows from the observation that the proof of the main lemma is uniform

where we have added the characteristic function X
B

of any B E VI-.' Moreover,

B is a recursive subset of and hypotheses (Hl) and (H2) of Theorem A

hold (easily), so that is closed under (3t E B) - and it is also

(trivially) closed under (\It E B).

The further assertion, that is closed under (3t E w) and

1. e, the choice function which 'de constructed in the proof depends recursively

on the characteristic function of B and the obvious data that witness the truth

of (Hl) and (H2). We will omit the routine details.

This is the most elegant version of the Grilliot-Harrington-MacQueen Theorem

and of course it includes the classical case when I-. = w + n.

The next result implies that in many cases, Env(UI-.) is closed under 3,

so that by 9A.J of Moschovakis [1974] we have

IND(UI-.)

all relations on VI-. which are positive,

elementary, absolutely inductive in (VI-.' E).

Theorem 2. Let = (VI-.,E,E, __) be an expansion of UI-. by relations,

functions, constants and quantifier-like, type-2 objects, and suppose that I-.

is a limit ordinal and fl < I-. is such that the constant f'unc t t on t >-+ fl is

and there exists a function

which is cofinal in I-. and has graph. If is closed under

< fl), then is closed under 3.

Proof. The function

clearly has graph, so under the hypothesis, it is enough to prove that

is closed under restricted existential quantification; because

(3x)p(y,x) (3S < fl)(3x E Vn(s»P(y,x)

(3S < fl)(\lZ)[z = Vn(s) (3x z)p(y,x»).

We will show that the Main Lemma holds for this with any B VI-.

and it will be obvious that the proof will be uniform, so that our argument will
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actually establish closure under (3t E B) with B a variable.

From the hypotheses of the Main Lemma, (H2) holds easily taking (for example)

the prewellordering of all sets in VA which are prewellorderings. Of course

(Hl) need not hold, so we must modify the proof of the Main Lemma in the case

of Group C, functional substitution - the only case where (Hl) was used.

We may assume by Kirousis' Lemma that the functions n and are

m-recursive, since adjoining them to m does not alter the envelope. We will

also use the following simple

Lemma. Suppose is m-semirecursive; then there exists a partial

function whose graph is m-semirecursive and such that

< J..l )p(x, => & ql(x) < 11

& p(x,

Proof'. For some e E ,w, we have

Put

ql(x) = .. fe}(x,nJ,

& le,x,TJIJ

& (YTJ< < le,x,TJIJ,

where the ordinals are compared by the Stage Comparison Theorem.

New treatment of the case Group C. We have

and we compute as usual:

(3t E B(m,z»[fe}Ciii(t,y»lJ

.. (3t E B(m,z»(Ys E vA)[[el}(cp(t,y),s).J,J

.. E < J..l)(Ys E vn(O)[fel}(cp(t,y),s)lJ

.. (Yi' B(m,z) - J..l)(3t E B(m,z» (Ys E Vn(f( t»)[ fel}(cp( t, y), s),j,J

.. (Yf B(m,z) - J..l)(3t E B(m,z» < u )

i'(t) & (Ys E

.. (Yi' B(m,z) - < J..l)(3t E B(m,z»(Ys E

= f(t) & [el}(cp(t,y),s)lJ
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(\If B(m,z) - < B(m,z) -

(3t E '" f(t) & [el}((j)(t,y),g(t)}J,J.

Now fix any : B(m,z) _ and for every ask if

using the induction hypothesis, this can be translated into a question that is

semirecursive in as in the treatment of questions (a) and (b) in the case

of composition. Moreover, for at least one < we will get a positive answer -

and we can find one such by the lemma, using a function, with

graph.

For each f then, find this then for each g find by the induction

hypothesis some non-empty

such that

c(f,g) S it t E B(m,z) & S '" f(t»)

We can put these sets C(f,g) together as in the treatment of this case in the

main lemma to get the choice set C that we need. The whole computation is easily

seen to be recursive, since the ordinal '" cp(f,_) is actually quantified out,

i.e. symbolically

t E C(f,g) < & & (... ) 0],

t i C(f,g) < & & (... ) 1].

We omit the details. -1

Corollary 2.1. If '" (Vwrw,E,E,_) is an expansion of by relations,

functions and constants, then

Proof. Take '" w in the theorem for the first equality and apply Chang-

Moschovakis [1970] for the second.

This result is somewhat surprising and it makes the universe of Zermelo

Vwrw seem that much more like w. Notice that by Chang-Moschovakis [1970],

for every ordinal of cofinality w we have

It is easy to see that this identification does not extend automatically to
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as follows.

Choose first any K of cofinality > wand check easily that

Env(ls ) Ci IND(ls ).
K '1' K

This is well-known and follows easily from the abstract version of the representation

theorem for recursion in type-2 objects, see Moschovakis [1967] or 18.2 of Kechris-

Recall now the infinitary language[1977].Moschovakis S- introduced in 8D
wl,G

of Moschovakis [1974], where it is shown that it satisfies the Skolem-LOwenheim

Env(ls ) Ci IND(ls) is
K l' It

of the form lsA withexpressible in £ G' and get a substructure of ls
K

cofinalitY(A) = W where the same sentence is still true.

Theorem for countable sets of formulas; now check that

is not closed under restricted quantification.

Theorem 2 also implies immediately that for ordinals like

Env(ls )
K

We now procead to put down a strong refinement of Theorem A which follows

easily from the proof we gave. To simplify the of this result, let

us call any set-valued function with non-empty values

f : S - Fower(T) - r¢}

a total, multiple-valued function on S to T - we will obviously think of such

fls as assigning possibly many values in T (but at least one) to each of their

arguments in S. If T, then by definition,

R(r(t» "" ('vis E f(t»R(s).

The representing relation of a total multiple-valued function f is defined by

Finally, if

X:AXB-A

is a total, multiple-valued function, then the

usual by

X (a E A) is defined as
a

A relation R(x) is m-recursive (m-recursive from parameters) if for some

m-recursive partial function g(a,x) and some fixed a E A, AXg(a,x) is total

and

R(x) "" g(a,x) O.
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Theorem 3(2). Suppose is a good, type-2 structure and B is an

recursive subset of the domain A of such that the following two conditions

hold:

*(Hl) There is a total, multiple-valued function

X:AXB-A

with representing relation such that for each relation

R(t,s ),

(\It E B)(3s E A)R(t,s) (3a)(\ls E X(a,t))R(t,s).

(ur,)* There is an prewellordering of A which is longer than

every prewellordering of B.

Then is closed under existential quantification or

Proof. First we reformulate the Main Lemma to allow the functions

to be total, multiple-valued with representing
A A

relations which have codes The hypothesis of the lemma then is

(\Is E (t,y))(e}(sl"··'s hn n . n

and conclusion (iii) is interpreted similarly.

The definition of U is exactly as in the proof of the Main Lemma, except

for the obvious (trivial) modifications which we must make to handle the many-

valuedness. We only need make a few remarks on the proof in the cases of groups

C and D where the hypotheses (HI) and (H2) were used.

For group D (composition), again, there is little to say: the only place

where (H2) was used was in checking that for some we must have case (a) apply,

*and this must be so under (H2) also, else we would get a long prewellordering <

which is clearly

For group C (functional sUbstitution), the definition of the choice set C

is exactly as before, noting that in the crucial equivalences (*) we only need

the direction which is true even without (m.). To verify that C f. ¢,
as in (**) in the proof of the Main Lemma, notice that C is surely

*so that (H2) suffices; here is how (**) looks with a multiple-valued X:

(2)During the final stage of the preparation of this manuscript, Peter Hinman
announced a result in the Abstracts of the American Mathematical Society, volume
1, Number 6, October 1980, p. 549, #701E24 which is stated in the terminology of
set recursion but is equivalent to a (slight) weakening of this theorem.
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(Yt E B(m,z»t J C

(Yt E B(m,z»(3s E A)(Ya E A)[s I- X(a,t) v t J C(a)}

(3b E A)(Yt E B(m,z»(Ys E X(b,t»(Ya E A)[s I. X(a,t) V t I-C(a)]

=> (3b E A)(Yt E B(m,z»(Ys E X(b,t»)[s J X(b,t) V t I. C(b)J

=> (3b E A)(Yt E B(m,z}[t J C(b)J. -l

*In the case where we have an wellordering of A, (H2) may be

easily reformulated to avoid reference to multiple-valued functions - in effect

it asserts that the collection of all on B to A can be

parametrized on A by a single function. In this form, Theorem 3 is

relevant to recursion on ordinal structures of the form

and in fact implies fairly easily the basic selection theorem of Kirousis [1978J

about such structures. We will not pursue this here, since these examples are best

discussed in the context of set recursion with which we have not concerned ourselves

here.
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RECURSIVELY SATURATED, RATllER CLASSLESS

HODELS OF PEANO ARITmlETIC

*James C. Schmerl
Department of Hathematics
University of Connecticut
Storrs, Connecticut 06268

This paper is concerned with the construction of recursively saturated, rather

classless nodels of Peano arithnetic. The term "rather classless", defined below,

is taken from the title of Kaufmann's paper [5], where it was first shown that recur

sively saturated, rather classless models exist.

Hith regard to a nodel11 of PA we make the following basic definitions. A sub

set X H is definable if it is definable from parameters by a firstorder formula.

He let Def(1}) denote the set of definable subsets of N. If X is definable and

bounded, then it is ?ifinite. For K an infinite ca rd i.r.a L, 1t is Klike iff INI K

yet for every ll.finite X, [x] < K. A subset X So N is a class if X"Y is 1'lfinite

for every Tlfinite Y. \Ie say that n is rather classless if each of its classes

is definable.

The following theorem was proved by Kaufmann [5] under the assumption of the

combinatorial principle 0 ; subsequently, Shelah [11] eliminated this assumption by

an absoluteness argument.

Theorem 1. (KaufmannShelah). Every consistent extension of PA has an

HIlike, recursively saturated, rather classless model.

This theoren will serve as the nodel for all the theorens proved in this paper.

The na Ln problem we investigate is that of de t e rrnfn Lng wht ch ca r d i na Ls K can replace

in Theorem 1. On the negative side, there is the obvious restriction that cf(K)

> Ro ' In the case of s Lngu l a r K, ue have the f ol l.ov i.n; nositive result.

Theorer.,.l. If K > Cf(K) > '«0' then every concts t enr ex t en s ion of rA has a

Klike, recursively saturated, rather classless nodel.

For regular K there is the following negative result.

I..,"1eorem 3. If K is r c ruLar and l'A has a Klil,e, recursively saturated, rather

classless model, then there is an Aronszajn Ktrep.

*
Research partially supported by :]SF Grant tiCS :;0512C.
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In particular, it follows from the hypothesis that K is not weakly compact, a

result -obtained independently by Kaufmann. It follows from a general result of Shelah

(Theorem 10 of [11]) that, assuming V L, if K is the successor of a regular cardi-

nal, then there are K-like, recursively saturated, rather classless models of PA.

This is improved in the next theorem.

Theorem 4. Assume V = L. If K is regular, uncountable and not weakly compact,

then every consistent extension of PA has a K-like, recursively saturated, rather

classless model.

Thus, in the constructible universe, there is a completely satisfactory solution

to the problem we set out to solve.

Corollary 5. Assume V L. Let K be an infinite cardinal and let T be a cons is-

tent extension of PA. Then the follow are equivalent:

(1) there is a K-like, recursively saturated, rather classless model of T;

(2) cf(K) > and K is not weakly compact.

Kaufmann constructed the models of Theorem 1 in order to answer a question raised

by Barwise. The significant features of the models were their recursive saturation

and their rather classlessness; that the models were also was more of an

accident of the construction. We now ask what the possibilities are if we drop re-

quirements on the order type of the model but not on the cardinality. It follows

from a general result of Shelah (Theorem 12 of [llJ) that, if K is the successor of

a regular cardinal, then PA has a recursively saturated, rather classless model of

cardinality K. We improve that result with the last theorem of this introduction.

Theorem 6. If K > then every consistent extension of PA has a recursively

saturated, rather classless model of cardinality K.

This entire paper evolved out of an attempt to find a new proof of Kaufmann's

Theorem (that is, Theorem 1 assuming Kaufmann's proof of his theorem uses ad-

missible model theory, and requires familiarity with the deeper results of that theory.

Our proof uses techniques (principally the MacDowell-Specker Theorem and satisfaction

classes) which more readily lend themselves to generalization. It is in this manner

that we were eventually led to the proofs of the above theorems.

The notion of recursive saturation has been of some recent interest. After

several people used some very closely related ideas, Schlipf isolated the concept and

characterized it in terms of the ordinal of the least admissible set above a structure
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([9). This characterization is the one used by Kaufmann [5]. The significance of

recursive saturation of models of PA became clear when Barwise and Schlipf [1) showed

that an arbitrary model of PA is recursively saturated just in case it is expandable

to some rather weak fragments of second-order arithmetic.

The outline of this paper is as follows. In §l we give some basic definitions

and results, including the t1acDowell-Specker Theorem and a generalization of Gaifman's

Cofinality Theorem. Satisfaction classes are discussed in §2, and our alternate proof

of Kaufmann's theorem is presented there. In §3 we prove Theorems 2 and 6. Theorem

3 is proved in §4, and finally in §S we prove Theorem 4.

He would like to thank Hatt Kaufmann and especially Steve Simpson for their con-

tinued interest in the results of this paper. We are grateful to Saharon Shelah who

made a suggestion which eventually led us to the proofs of the current Corollaries

3.4 and 3.5.

§1. Basics.

Let PA be some usual first-order axiomatization of Peano arithmetic in the

language L. It will at times be convenient to assume that PA is formalized so as to

include Skolem terms. This is efficaciously dene by introducing the into

the formalism. We shall assume that this has been done. Among the terms there is

one which is the standard pairing function

(x,y) 1[(x+y+l)(x+y)] + x.

(z) be the first and second coordinates of z; that is z

We will let D(x,y) be the formula which canonically indexes finite sets. That

is, D(x,y) asserts: the y-th digit of the binary expansion of x is I. Thus, when-

ever nl=PA and a c N, then {b N: 1l.l=D(a,b)} is l1.-finite. Conversely, whenever X

is 11.-finite, then there is a un i que a c N, called the canonical index of X, such that

x = {b s N : '?tFD(a,b) }. We let D be the set whose canonical index is x.x

We will often consider the language which is L augmented by a unary predicate

symbol. The theory PA* is the extension of PA to the language L* obtained by adjoin-

ing to PA all new instances of the induction scheme.

It will be useful to have available second-order variables which range over arbi-

trary subsets. These will be denoted by capital letters such as X. It will also be

useful to have second-order terms. For example, we will make use of the terms

(X)x {y : (x,y) s xl
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and

x Ix {<y, z) c x . y < x},

There are several types of elementary extensions which will play key roles in

this paper. Suppose m and 'h are modeLs of PA (or PA*) and 171-< 'h. Then is an

end-extension of 1n. if whenever a E Hand b E N-H, then 111=a<b. The extension is

servative if whenever X s Def (n ), then X1'\ 11 E Def ('))t). The extension is finitely

generated if there exists b s N such that h has no proper eleClentary substructure con-

taining !lv{b}. The extension is cofinal if whenever a s N then there is b s M such

that llFa<b. It is easy to see that a conservative extension must be an end-extension.

We now state the very basic HacDowell-Specker Theorem [7].

*Theorem 1.1 (lfucDowell-Specker). Every model of PA has a proper, conservative

elementary end-extension.

Of course this extension can be chosen to be finitely generated in which case

it has the same cardinality as the original Clodel. Or, by iterating the extensions

sufficiently often, an eytension can be constructed which has any desired cardinal-

ity greater than the cardinality of the original model.

Then clearlyand ('Wt,X) .( ('no,Y), this extension being cofinal.

In our formalism, this theorem reduces to a triviality because we have

*We need an extension of this theorem to models of PAincluded all Skolem functions.

*Suppose (In,X) FPA

Another basic theorem about extensions of models of PA is Gaifman's Cofinality

Theorem [3], which asserts: If m and 1'l are models of PA and 'WI is cofinal in 11. ,

then 17t <. It .

He let X'1I. be the set Y defined above.

Suppose that (lIt,X) FPA*, 11.I=PA, andllt is a co final sub-

structure of n . Then there is a unique Y N such that (ltl,X) -< (1'l,Y).

Proof. From the remark preceding the Theorem, the uniqueness is clear, and, in

fact, if such a Y exists, then it must be that Y = Xli.. An inspection of Gaifman's

proof (of Theorem 3 in [3]) reveals that it suffices to prove: whenever a c M and

*is a quantifier-free L -formula, then (In,X) F 3x2a implies

F3x2a (In order to get this reduction, we relied heavily on the

presence of Skolem functions.) Now let a s 11 and let be such a formula. Then

is a Boolean combination of L-formulas and of formulas of the form t(x,y)sX,

1
This theorem also appears in a handwritten abstract by Henryk Kotlarski entitled

"On Cofinal Extensions of llcdels of Arithmetic".
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where t(x,y) is an L-term. Let b 11 be such that whenever t(x,y) is a term occurring

in <I>(x,y), then'nt l= Yx::..a (t(x,a)<b). There is c 11 such that

D"'"- = {x EN: x < b} on X.
c

Obtain an L-formula ¢'(x,y,z) from <I>(x,y) by replacing all occurrences of subfor-

mulas of the form dx,y)sX by D(z,dx,y». Clearly 1nl=\'x::..a ¢'(x,a,c), so that also

1'l.l=\fx::..a ¢'(x,a,c). From the definition of X1t it is clear that (n,XlI) l=\'x::..a <1>' (x,a,c)

\'x<a ¢(x,a). Thus, we get that CY'l.,Xll ) l=\,x::..a ¢(x,a).Q

§2. Satisfaction Classes.

One of the standard effective numberings of L*-formulas will be used; if

<I> is an L*-formula, then let #(<1» be its number. There is a L
l

formula

H(X,x,y,z) with the following property: whenever ¢(X,x,y) is a L
l

formula, 'Y1.!=PA

and X: N, then

(n,X) l=\fxY(<I>(X,x,y) <t--? W(x,x,y,it(<I»».

Let j(X) be the second-order term denoting {x : For n < w de-

fine jn(X) by jO(X) = X and (X) = j(jn(X). Thus, for 1::.. n < w, the term

formally denotes the complete L
n

set. We will occasional:y refer to

{x : W(jn(0),x,O,b)} as the b-th set.

For a model 11l=PA we will call a set S S. a satisfaction ° class if each of the

following holds:

(1) Crt,S) l= (S)n

(2) (n,S) l= PA*.

In case "Yl is nonstandard and 5 Si N satisfies (2), then (1) is equivalent to

(3) (n,S) l=Vx<b «5\+1 = j«5)x))' for some nonstandard bEN.

It should be observed that our definition of satisfaction class is stronger than other

definitions which do not require the full strength of condition (2).

In Lemmas 2.1 - 2.4 we state the basic properties of satisfaction classes needed

for the proof of Kaufoann's lemma (Lemma 2.5 below). The first two leLITlaS indicate

the relationship that exists between recursive saturation and the existence of satis-

faction classes. Indeed, a necessary and sufficient condition for a countable nodel

of PA to be recursively saturated is that it be nonstandard and have a satisfaction

class.

Leooa 2.1. If 11 is recursively saturated and countable, then has a satis-

faction class.
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Lemma 2.2. If 11 is nonstandard and has a satisfaction class, then 11 is recur

sively saturated.

The proofs of Lemmas 2.1 and 2.2 are essentially given in Kotlarski [6]. The

proof of Lemma 2.1 uses the fact that countable recursively saturated models are

resplendent, and the proof of Lemma 2.2 uses that there is a nonstandard b E such

that for any Lformula ¢(x),

together with the representability of recursive sets.

The next lemma is obvious.

Lemma 2.3. If S is a satisfaction class for 1t and bEN is nonstandard, then

sib is also a satisfaction class.

Finally we get to Lemma 2.4 which is the weapon that will be used to kill unde

finable classes.

Lemma 2.4. If S is a satisfaction class for nonstandard 1t, and if

X E Def«1t,sla» for each nonstandard a E N, then X E Def(1t).

(1t,S) F (j ((S») = (S)x+1)'

in (1'\,slb) by a L
n+l

formula, then

Assume that X E Def ( 11, Sib» for

Let a E N be nonstandard such thatProof.

Notice that if n < w, b < a, and X is definable

X is definable in (11,SI (b+l» by a L formula.
n

each nonstandard b < a, and let b' < b be such that both b ' and bb ' are nonstandard.

Then, since X is definable in en.,slb'), it follows that X is definable in en,Slb)

by a Ll formula. So for each nonstandard bEN, X is definable in elt,slb) by a L
l

formula. Hence, by underspill, there is some standard bEN such that X is defin

able in Ot.,slb). But sib E DefCr..), so that X E Def('/t). 0

The proof of Theorem 1 is divided into three parts. The first part consists of

Lemma 2.5 below, which was proved by Kaufmann [5] using admissible model theory. De

shall show how it follows easily from Lemmas 2.1  2.4 and the MacDowellSpecker

Theorem. The second part of the proof of Theorem 1, which is also in [5], consists

of a standard inplementation of the combinatorial principle () to build the desired

model . The third part, Shelah I s contribution, is to show that Theorem 1 is absolute;

this is a consequence of the absoluteness theorem of [11]. Shelah's proof uses a

modification of the Baumgartnert1alitzReinhardt [2] forcing construction which

transforms an Aronszajn tree into a special one.
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Lemma 2.5 (Kaufmann). Let rn be a countable, recursively saturated model of PA,

and let X S. 11 be an undefinable class. Then m has a countable, recursively saturated

end-extension n such that if Y E Def crt) is a class, then Y1"111 +X.

Proof. Let S be a satisfaction class for the existence of which is guaran-

teed by Lemma 2.1. By Lemmas 2.3 and 2.4 we can choose S so that X Def((ln,S».

Use Theorem 1.1 to obtain a proper, conservative elementary end-extension (?l,S')

which, moreover, is countable. By Lemma 2.2, }L is recursively saturated, so that

clearly 11 is as desired. 0

In §5 we will use a generalization of Lemma 2.1 from the countable case to the

countable cofinality case.

Lemma 2.6. If It is recursively saturated and cf(lt)

faction class.

k , then 1'\. has a satis-
a

Proof. Let 11L.(h be a countable, cofinal, recursively saturated elementary

substructure. By Lemma 2.1 there is a satisfaction class for In. Theorem 1.2 asserts

the existence of Y N such that (;n,S) (tl,Y). Clearly Y is a satisfaction class

for 11. .

Lemma 2.6 implies a corresponding strengthening of Lemma 2.5. Note also that the

same method can be used to prove the theorem of Smorynski and Stavi [12] that a co-

final extension of a recursively saturated model of PA is itself recursively saturated.

The next lemma is another extension of Lemma 2.1. It is the key model-theoretic

fact which will be used in proving Theorem 4 in §5.

Lemma 2.7. Suppose '»t , 171
1
, I'l are recursively saturated such that cf (h) = 8

a a
and ;nl,)t are proper elementary end-extensions of fn

l
respectively. Furthermore,

suppose that So and Sl are satisfaction classes for Ina and such that (nno'So)

('ntl , Sl)' Then there is a satisfaction class S for}i.. such that (b1
o
' So ) en.,S).

Proof. He can assume that cf(lII
l)

= No' (If that is not the case then replace

(lnl,Sl) by an appropriate elementary substructure of itself.) Let

(1'Il1'Sl) be a countable cofinal substructure. Let a E Hi - H
O'

We will obtain a cofinal, elementary embedding f: 1ni --> )( , which is the iden-

tity on {x E l1i : x < a}, in the following manner. Let {a
n

n < w} = Mi, and let

(bn : n < w) be an increasing sequence cofinal in N. Define f inductively. Suppose
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that f(a
o)
•...• f(a

n_ l)
have already been defined, and then let f(an)

that:

b be such

(2) if possible, b > b
n.

There always exists b satisfying (1) by the recursive saturation of It. Thus, f is

e leraentary • Also, there are arbitrarily large n for which b exists with b > bn,
since, by the recursive saturation of lni, there are arbitrarily large n for which

an is not in the substructure generated by {x 2 IIi x < a i and i < nl. Thus f is

cofinal.

Now let be the substructure of 11 generated by Hi v {x EN: x < a},

ln1 is a cofinal extension of so by Theorem 1.2 there is such that

(1II.L ,Si) -< s o that is a satisfaction class for It is clear that

Sr 1"\ Sl' Thus from Theorem 1. 2 it easily follows that -< (171:1 ,S1)'

Then, since (lno'So) (1nl , Sl ) ' we get that (ino'So)
\

There is a unique elementary enbedding, call it g: ->71, which extends

f and which is the identity on {x E : x a}. Let ('h'.S') be the image of

) under this embedding. Since g is the identity on Mo' it follows that

mo'So) -< (1t' ,S'). But using Theorem 1.2 again, there is S =N such that en.'

(11 ,S), so that (1)10' So) (l1,S), as required. 0

§3. The Proofs of Theorem 2 and 6.

Before giving the proofs of these theorems, we extend an observation we had pre-

viously made in [10]. There we observed that by iterating conservative extensions

through an uncountable regular cardinal K so as to obtain a K-like model, then this

model is rather classless. We extend this observation here so as to obtain K-like.

rather classless models where K need only have uncountable cofinality. A similar

argument will occur in the proofs of Theorems 2 and 6.

Lemma 3.1. Suppose that cf(a) > for limit ordinal
o

is a continuous chain of conservative extensions. Then It
a

a, and that (1tV: \I a)

is rather classless.
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Proof. Suppose X is a class of 7l.
a
' Our object is to prove that X E Def (?la)'

Each X" Nv is a class of 'n
v
for v < a. In fact, since ?zV+l is a conservative

extension of It , we get that X N E Def (rt). Let f : a --> a be such that
v v v

f(v) = is definable in 'n
v

f r on a parameter in N
S)'

Then for limit ordinal v < a, f(v) < v, so that by Fodor's Theorem there is some S < a

such that f-l(S) is unbounded. In addition, since cf(a» ('to' there is some n < w such

that for some unbounded IS f-l(S), X"N is definable by a I formula using only para-
v n

meters from N
a,

for each VE I. Let

"» = ua [X" Nv is the a-th In subset of 'Yl).

We now claim that for some a ENS' a
v

= a for each v E I.

the proof for it will show that X is the a-th In subset of

Clearly, this will finish

'n.
a

a).1-th In subsets are the same, so this is also true in

To prove the claim, suppose v < ).1 are both in I.

set of 11.. Since 11 -{ 11u V).1

Then, in 11 , the a -th and
v v

and a
).1

Then X" N).1
is the a -th I

).1 n

subset of 11
v

sub-

11..).1' IIence, X1'1Np is the av-th In subset of 'n).1' Thus av = min(av' a).1) = a).1' proving

the claim. C

The following two corollaries are immediate consequences of Lepma 3.1 using, of

course, Theorem 1.1.

Corollary 3.2. If cf(K) > , then every model of PA of cardinality < K has a
o

K-like, rather classless elementary end-extension.

Proof. Let ?r!l=PA such that 1111 < K. Let <}'tv:

of finitely generated, conservative extensions, where

quired. 0

v < K > be a continuous chain

1'l.0 1n. Then 'nK is as re-

Corollary 3.3. If K > , then every model of PA of cardinality < K has a
o

rather classless elementary end-extension of cardinality K.

Proof. Proceed as in the proof of Corollary 3.2 with a chain indexed by K.w
l.

C

"Ie now turn to the proofs of Theorems 2 and 6. We will first prove Theorem 2,

and then just indicate the necessary modifications to make to get a proof of Theorem

6.
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Proof of Theorem 2. Let cf(K) A > and let (K
a

: a < A) be a continuous,

increasing sequence of cardinals converging to K such that K
o

= A. Let T be a con

sistent extension of PA. We easily obtain (?t ,S ), where 11 FT is such that
o 0 0

IN I = K , S is a satisfaction class for 11 , and there is a decreasing sequence
o 0 0 0

*(ba : a < A) of elements of No with no nonstandard lower bound. Let 11
0

= (lto'So)'

Vie use Theorem 1.1 to build a chain : v < K), where = C1t v ' S) ' as follows.

* *Having 'tl v = (1'1 v ' S) , let'tl v+l e'ilv+l'sv+l) be a finitely generated, conservative

extension of If v is a limit ordinal and K
a
.2 v < K

a+l,
then let 'YI

CnS,SS!ba)· He claim that l'l. "n v is as required.

Clearly, is Klike, and also is recursively saturated since each of the

?tv is by Lemmas 2.2 and 2.3. It remains to verify that 11 is rather classless, so

let X: N be a class, and suppose X c Def(11). As in the proof of Lemma 3.1, there is

some v < K such that XI'\N DefCn.). By Lemma 2.4, there is a < A such that K
N

> v
V v

and XI'\N Def(eYl. ,S Ib ». But en ,S Ib ).( n " , so that Xf\N DefCll* ), andv vva vva KKK
a a a

therefore XI'\NK +1 is not a class of n This contradicts X being a class of 11.,
a

and completes the proof. 0

Proof of Theorem 6. Start off with a model n 1< = en ,S ) as in the proof of
o 0 0

Theorem 2, only with A = The model 11
0
has a decreasing sequence (b

a
: a < wI)

with no nonstandard lower bound. Let be the ordinal K'a Now form the sequence

as in the proof of Theorem 2. The model = LJ{ll
v

: v < K'wl}

will have the desired properties. 0

If the model 11 which occurs in the proofs of Theorem 2 and 6 is saturated,
a 0

then so will be the resulting model. Such an 11 can always be found provided that
o

No
INol 2 . Thus, we get the following corollaries.

Corollary 3.4. If K > cf(K)

of PA has a Klike, saturated,
o

N
> and K > 2 0, then every consistent extension

o
rather classless model.

IN oCorollary 3.5. If K > 2 , then every consistent extension of PA has an

({ saturated, rather classless model of cardinality K.o
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§4. The Proof of Theorem 3.

There are nany properties of cardinals which are known to be equivalent to weak

compactness. Let us say that a regular cardinal K has the tree property if there do

not exist any Aronszajn K-trees. Then, assuming GCI!, a cardinal is weakly compact if

it is and has the tree property. (Some assumption such as GeH is needed as

has been shown by Nitchell and Silver [GJ). To prove Theorem 3, we will show that

for regular K, a K-like recursively saturated, rather classless model of PA generates

in a natural wayan Aronszajn K-tree.

Since nonstandard models of PA are not well-ordered, it will be convenient, but

not essential, to weaken the notion of K-tree to allow non-well-founded trees whose

elements have ranks occurring in some K-like linearly ordered set.

Proof of Theorem 3. Let K be a regular cardinal, and let 1't be a K-like, re-

cursively saturated, rather classless model of PA. Let c E N be some nonstandard

element, and then define A to be the set of those elements a E N such that:

(1)

(2)

UX

(X)
x

D
a,

then (X)n is an initial segment of jn(0) for each n < w;

o whenever x c.

Define a b for elements of A iff for some dEN,

for each x < c. Clearly is a tree. There is a natural way to assign ranks; we

describe it in the following anthropomorphic way: the rank of a is just what 11 thinks

the cardinality of the set {x EN: x < al is. To see that there are elements of arbi-

trary rank, just note that recursive saturation of ">1. implies that for any dEN there

is some a E tl such that for all n < w, (D) = jn(0) r"I {x EN: x < d). Therefore, it
a n

is clear that is a K-tree.

It remains to show that is an Aronszajn tree. So suppose to the contrary

Let X = U{Da : a E B).

thus X is not definable,

that it is not and that B is a branch through the tree.

Clearly, X is a class, and (X) = jn(0) for each n < w;
n

contradicting the rather classlessness of f1. This completes the proof of Theorem 3. ti

What we actually showed in the preceding proof is that if is K-like and re-

cursively saturated, where K is a regular cardinal which has the tree property, then

there is a class X such that (X) = jn(0) for each n < w. Of course, X need not be
n

a satisfaction class. However, we can show that It does have a satisfaction class.

This is a consequence of the following lemma.
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Lemma 4.1- Suppose that n is K-like for some regular, uncountable K. If yC N

is a class such that (X)n = jn(0) for each n < w, then there is b c N such that Xlb

is a satisfaction class.

Proof. First we will show that there is bEN such that
o

en ,X) 1=Vx<b (j «X) ) = (X) +1)'o x x

For each a E N there is c E N such that

en,X) 1= 'Vx<a (XE (x) n+l<----"" XEj ({y c fX)n :

for each nEW. By overspill, there is some nonstandard i E tl such that

(*) (rt,X) I=Vz<i Vx<a(xdX) <----;> XEj({ydX)z : y_<c}».z+l

Thus, for each a E N, If we let l
a

be the set of all i E N such that (*) holds for some

c E N, then l
a
is an initial segment of N whIch contains some nonstandard element.

Clearly, if a < a', I
a

l
a
, . SInce It is K-like, there is a nonstandard

b E (\ I. This b is as r equLred ,
o aEN a 0

In a very similar manner we can show that there Is a nonstandard b
l

E II such that

xix E Def«1t,(X)x» for each x < b1

now let b < b
l

be nonstandard such that bl-b Is also nonstandard. We claim that

Xlb is a satisfaction class. If it is not, then there is Y E Def «1t,Xlb» which

is bounded but not 1t-finite. By the propertIes of b, Y Is defInable In (!t,(X)b )

by a Ll formula. But again usIng that 11 Is K-Ilke for regular K, it follows

Y E Def(]t), and this is a contradiction. [j

Corollary 4.2. Suppose that n. Is K-li..ke and recursIvely saturated for some

regular cardinal K whIch has the tree property. Then 'n has a satisfactIon class.

§5. The Proof of Theorem 4.

Jensen [4] proved that V = L settles Souslin's hypothesis at all regular car-

dInals. Specifically, he showed that, assumIng V L, whenever K is an uncountable

regular cardinal, then the existence of a Souslin K-tree is equIvalent to K not be-

ing weakly compact. Our proof of ThEorem 4 Is sImIlar in outline to his proof.

We will assume V = L throughout this sectIon, and we will assume that K is some

fixed uncountable regular cardinal.

Jensen showed (Theorem 6.1 of [4]) that there is a statIonary E S K and a sequence

( c : C( < K a 11.'mf t or dLnal) such th t h C" 1 d b d d bset f' , a eac a 1.S a c ose , un oun e su 0
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a, and such that whenever 13 E is a limit point of , then 13 E

Let <C
a

a < K) be the sequence such that if a is a limit ordinal,

the set of limit points of , and Co = 0 otherwise.

The following properties are all obvious for each a < K:

and C' = 131'\ C'
13 a

then C is
a

(i) C
a
is d closed subset of a;

(Li ) if c f Co) > go' then C
a
is an unbounded subset of 0;

(iii)

(Lv ) if 13 E C
a'

then 13 is a limit ordinal and I3I'\C
o

= CS'

We will also need the combinatorial principle ¢K(E): there is a sequence

(D
a

: a < K) such that whenever X!i K then {o C E : XAO = Do} is a stationary sub

set of K

Let Ch 0,5
0)

be such that 1"l0 is a model of the given extension of PA, 50 a

satisfaction class, and, without loss of generality, let No be some ordinal < K.

We will construct an e l.emen t ary endextension of 11. 0 with the required properti.es.

To do so we will construct a sequence «11
0
, 5

0
) : 0 < K) which has the following

properties:

(1) (Yt : a < K) is a continuous chain of proper elemeno
tary endextension;

(2) each S is a satisfaction class for h ;
o a

(3) Na is some ordinal < K

(4) if 0 E E, Dc< =N
a,

and Def(n
a
) then D

a
f Y",N

a
for

any Y E DeE ( na+l ) .

Having constructed such a sequence, we then let 11 = U{ "Yl : a < K}. Properties
a

(1) and (3) imply that n is a Klike elementary endextension of 11 ; property (2)
o

and 2.2 imply that 11 is recursively saturated. To see that It is rather

classless, let X So N be a class. Since n is Klike and K is regular and uncountable,

Then, from (4),

if XANa Def(71a,)' then Xt'\Na f YANa for any Y C Def("n"tl)' so that X cannot be a

class. Thus, Xt'\N" E Def('h
a
) , so that also X E Def(l1).

In order to construct the sequence ( (11
a
, 5,, ) : a < K >we will require of

it two more properties:
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There is no problem in constructing this sequence by induction on the ordinals

a < K if a is not a limit ordinal or if C
a
is unbounded in a: just use Theorem 1.1

and when necessary also Lemmas 2.3 and 2.4. Now let's consider the problematic case:

a is a limit ordinal and C
a

is not unbounded in a. Condition (1) forces l1
a

l}ll1
S

: S < a}. To get Sa' let y be the maximum ordinal in C
a;

y exists since C
a
is

closed and bounded. Notice that n is recursively saturated and that d(n ) = If...l
a a 0

since c f Cc) = No by condition (Lf.) above. From (5), (ny,Sy) -< (ny+l , Sy+l)' so

all the hypotheses of Lemma 2.7 are met. Consequently, there is a satisfaction class

Sa for l1.a such that -< (?1.
a
, Sa ) '

It is an easy verification that < (lla,Sa)

(6). This completes the proof of Theorem 4.

a < K) satisfies properties (1) -

both models are recursively

types, so that 1'1.= 1'l.,CQ,w 0

The

The proof that we have just presented actually yields additional information.

model 1t that was constructed is an elementary end-extension of 11. Since
o

saturated, they are and realize the same

If we start with any recursively saturated ?n, then there

is a recursively saturated such that IN I < tN
l

and cf(n )
0-0

ing Lecma 2.6, this model has a satisfaction class So' Thus we get the following

corollary to the proof.

Corollary 5.1. Assume V L. Suppose K .':. is a regular cardi.nal which is

not weakly compact, and 1n is recursively saturated. Then there is a K-like,

recursively saturated, rather classless 11.. = 'h1
co,Cll

By starting out with an -saturated model, and combining the previous corollary
o

with Corollary 3.4, we get the following.

Cocollary 5.2. Assume V

compact, then every consistent

classless model.

L. If K.':. H
2
, c f I x ) > No, and K is not weakly

extension of PA has a K-like, N -saturated, rather
o
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THE DEGREES OF UNSOLVABILITY: GLOBAL RESULTS

Richard A. Shore
Cornell University
Ithaca, NY 14853/USA

O. INTRODUCTION

Our goal in this paper is, with the benefit of hindsight, to give

a coherent straight line development of our work on the global struc

ture of j), the degrees of unsolvability ordered by Turing reducibility.

The results that we will present fall into three or four basic

categories: the characterization of the first order theories of and

of various SUbstructures of 1) , the definability of certain degrees

and relations on degrees in these structures, restrictions on auto

morphisms of and isomorphisms between them and in particular nonhomo

geneity results. Problems of these types were first raised in the

context of degrees of unsolvability by Hartley Rogers Jr. in 1965 (see

Rogers [1967aJ). They have since then been repeated with many varia

tions by various other workers such as Sacks [1966], Yates [1970] and

Simp son [1977 J •

For some time it seemed that no progress was being made toward

the solutions of these problems for f). On the other hand there were

some successes for the structure 1)', the degrees with ordering and

the jump operator. Feiner [1970] disproved Rogers' strong homogeneity

conjecture by showing that 1)' (L £(6)). (£) means the

structure of degrees greater than or equal to a under (T' l)'(L
1) and are all defined analogously.) Yates [1972]

gave another proof of this result which was improved upon by Jockusch

and Solovay [1977J. They used to show that every automorphism of

.()' is the identity on £)' (L ). Richter [1979J improves this re-

sult by one more jump to show that the base of the fixed cone can be

taken to be 0(3) in place of 0(4).

As for definability questions, one can view a number of early

theorems of hierarchy theory as giving results of this kind. This

view becomes explicit in Jockusch and Simpson [1976] where some very

nice results on definability by natural methods in are given. A

Preliminary versions of this paper were given in a series of seminars
at both the University of Conn. and UCLA. We would like to thank the
participants in those seminars and the institutions for their support,
help and hospitality. The preparation of this paper was partially
supported by NSF Grant MCS 8003016.
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much more approach to these questions is presented in Simpson

[1977]. In this paper Simpson first shows that the first order theory

of 1)' is recursively isomorphic to that of true second order arith

metic. Then using the methods developed for this result he shows, for

example, that all relations on degrees L O(w) definable in second

order arithmetic are in fact definable in He also makes the first

successful attack on any of these problems for £) by showing that its

theory is also recursively isomorphic to true second order arithmetic.

In this paper we will present our approach to this last result and

apply it to get results in all the other areas both for j) and many of

its sUbstructures.

As far as SUbstructures are concerned we will deal mainly with

jump ideals, i.e., subsets closed downward and under jump and join,

and cones, i.e., ones the form f)(L Thus we will only mention

(
,.t, ,.t, --!-..l-

in passing results on segments such as J) £) and 1)[£,£ ] which

can be found in Epstein [1979] and Shore [ or ones on the r.e.

degrees as in Lerman, Shore and Soare [1981] and Shore [1980]. The

theorems we wi.ll prove are drawn from the following papers: Nerode and

Shore [1979] and [1980J, Shore [1979] and [1980], and Harrington and

Shore [1981]. As a short preview we list some typical results:

Theorem 2.7. If C is a jump ideal, then the first order theory

of C is recursively isomorphic to that of the two sorted structure,
of true arithmetic with quantification over sets whose degrees are in C.

Theorem 3.5. Every degree above those of all the hyperarithmetic sets

which is definable in second order arithmetic is definable in 1).

are contained inthen a andTheorem 4.1. If .0 ';:::; J)(L b)

the same hyperdegree.

Theorem 4.5. Every automorphism of 1) is the identity on a cone with

a hyperarithmetic base. Thus every degree above those of all the hyper

arithmetic sets is fixed by every automorphism of .£>.

Modulo citing a few basic facts from the literature we hope to

give a selfcontained presentation of the proofs of these and other

related theorems. Our plan is to explain the coding apparatus in sec

tion one and the results on theories in section two. The theorems on

definability will be proved in section three while those on automorphisms

and homogeneity problems will appear in section four. Note, however,

that the main results of this last section are essentially independent

of the rest of the paper and except for the results on elementary equi

valences it can be read on its own.
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1. THE CODING APPARATUS

The starting point of our coding procedure is the observation

that any countable sequence Pi of mi-ary relations can be coded by

a single graph, i.e., a symmetric irreflexive binary (s.i.b.) relation.

In the setting of arithmetic this idea first appears in Church and

Quine [1952J. Its general formulation for first order logic is given

in Rabin and Scott [n.d.J and Lavrov [ J (or see Rabin [1965J or

Ershov et. al. [1965J). A fairly detailed version of this coding

covering the second order case as well is also given in Nerode and

Shore [1979, §lJ where it is used to show that the theories of many

reducibility orderings including are recursively isomorphic to

that of true second order arithmetic.

The point of these codings in the first order case is that given

any countable first order language L there is an effective trans-

formation taking formulas of L to ones in the language of a

single s.i.b. relation such that is valid iff is. This is

accomplished by actually giving an effective transformation 07. 1-
from structures for L to graphs such that m F eo iff 07.'"f F r.tJF. We

will never have to consider any of the particularities of the various

possible coding schemes but details can be found in any of the above

references. (The best pictures are unfortunately in Rabin and Scott

[n.d.J but most are reproduced in Nerode and Shore [1979, §l].)

Our next step is to code graphs as ideals in a distributive lat-

tice L with 0 and 1. The atoms of our lattice will be the domain

of the s.i.b. relation to be coded. As an s.i.b. relation is simply a

set of unordered pairs we first want a way of coding unordered pairs

of distinct atoms. We specify such a coding procedure by requiring

our lattice to satisfy the following condition:

(1.1) For every pair of distinct atoms tal' a) there is a uni-

que element which is strictly above a l
v but not above any elements

other than 0, a l, a 2 and a l v a 2. (We call this element the code

for [al,a2) and designate it by C( a l, .)
Now any s.i.b. relation R on AL, the atoms of L, determines

an ideal the ideal generated by [C(al,a2)!R(al,a2)}. Conversely

any ideal J determines an s.i.b. relation SJ on AL by SJ(al,a2)
C(al,a2) E J. To see that we can really code every s.i.b. relation

on AL this way one must show that S( R for every such relation

R. The point to be verified is that no code C(al,a2) with (al,a2)
not in R is in the ideal generated by the codes of pairs that are in
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R. In other words c(a
l,a2) is not below any finite join of other

codes. In our original presentation we went to some trouble to guar

antee this form of independence in a first order way. J. Schmerl

pointed out to us, however, that their independence follows automati

cally from the fact that they are join irreducibles in a distributive

lattice (see Balbes and Dwinger [1974, 111.2]). Thus quantification

over ideals of L can code quantification over relations on With

a bit of care to fix a particular domain this shows that the theory

of distributive lattice with quantification over ideals is equivalent

to full second order logic. The details of the transformation are in

Nerode and Shore [1979] along with some other similar examples.

For our purposes here we only need a single relation on to

code the relations of (, + and x of arithmetic. In terms of struc

tures, we can effectively go from a graph = <B,R) to a lattice L

with an ideal I such that <B,R). Indeed for a single

relation we Can just as well make the ideal principal. That is, we

can construct L with an element r such that <AL,Sr) <B,R) where

Sr = (r) and I r = [xix {r} is the principal ideal generated by r.

As the set of atoms of a lattice and the property of being a code

for a pair of atoms are clearly first order definable in the language

of lattices we can by the usual procedure of relativization effectively

say in this language that the structure satisfies any given

sentence of the language of graphs. The only point to make is that

Sr(al,a2) is translated by C(al,a2) (r. We can now combine this

translation with our effective transformation F of the language of

arithmetic to that of graphs to say that a lattice codes a model of

ari thmetic.

Definition 1.2. A structure L with distinguished element r

codes a model of arithmetic if

1) L is a distributive lattice with 0 and 1 satisfying (1.1)

and

2) The structure <AL,Sr) satisfies the translation of the fol

lowing axioms for arithmetic:

(i) < is an wlike ordering (discrete with first but no last element)

and (ii) + and x satisty the usual inductive definitions over this

ordering.

If the wlike ordering of <AL,Sr) is in fact an wordering we

say that L codes a standard model of arithmetic.

Now a model for second order arithmetic is a two sorted model

<B,f ,(,+, x; 8) with elements in B and sets in 6>. For our lattices
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this corresponds to adding on a class of ideals The interpreta

tion of course is that an atom a of L is in the set coded by an

ideal I E iff a E I. As the atoms are also join irreducible, dis

tinct sets of atoms generate distinct ideals and so quantification

over all ideals of L corresponds to quantification over all subsets

of the model.

2. THEORIES OF DEGREE STRUCTURES

We will now consider our coding in the context of the

degrees of unsolvability. Our lattice will be given by initial seg

ments £J K,::J;) of k). This suffices by Lachlan [1968]: Every

countable distributive lattice with 0 and 1 is isomorphic to an

ini tial segment of.f>. Quantification over ideals of £) ({,::J;) will

be given by first order quantification over pai.rs of degrees. That

this entails no loss is assured by [1956]: Every countable

ideal I of l) has an exact pair, i.e., a pair l such that I

f,::J; I,::J; { & ,::J; { il}'

Definition 2.1. The pair of degrees <,::J;,!> codes a (standard)

model of arithmetic if the structure i)({,::J;) with r <,::J; as a dis

tinguished element codes a (standard) model of arithmetic.

We can now, of course, say in the first order language of S that

<,::J;,!> codes a model of arithmetic. The crucial point however is that

we can also say it is a standard model. 's theorem says that

quantification over pairs of degrees gives quantification over all

countable ideals and so over all subsets of the model. With quanti

fication over all subsets it is of course trivial to guarantee that

the wlike ordering is well founded. Section one now supplies us with

a translation of arithmetic into the language of £). As we can pick

out the standard model in £) and then quantify over all subsets in a

first order way, we have reduced the theory of true second order arith

metic, Th
2(N)

= Th«N,2N, { , +, x; e» ) , to the first order theory of.£).

The reduction in the other direction is trivial and so Th(1J) is

recursively isomorphic to Th2(N). As the analogs for the theorems of

Lachlan and Spector hold for most reducibilities one also sees that

the first order theories of 11, ml, tt, wtt, and arithmetic

degrees are all recursively isomorphic to Th2(N). The sources for

the initial segments results are Lachlan [1969] and [1970], Nerode and

Shore [1979] and Harding [1974]. The versi.ons of Spector's theorem

needed are presented in Nerode and Shore [1979, §3].

Now on its face the above analysis required quantification over
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all subsets of a model of arithmetic (and so over all ideals) to guar

antee that it was a standard model. In fact we only really need one

subset (or ideal)  the one containing (generated by) the standard

integers. To be precise if = <B, 6',( +, x; e) is a model of second

order arithmetic and the set of standard integers is an element of 60
then we can guarantee that is a standard model by saying that

(2.2) Every proper initial segment of ( has a maximum element.

For our translation of arithmetic into the language of we thus need

only exact pairs for the ideamgenerated by the degrees representing

standard integers in the models of arithmetic coded by any

Definition 2.3. If codes a model of arithmetic we let

for n E N, be the degree representing the integer n in this

model. If D E we let f D be a function such that (fD(n)}D E

Lemma 2.4. f D is arithmetic in D, i.e., f D (T D(n) for some

n. (We write this as f D D.)

Proof: First note that the ordering of Turing reducibility on

representatives [i}D of is arithmetic in D. (In fact,

recursive in D(3) by a quantifier counting argument.) Next consider

the formula of arithmetic which asserts that x is the imme

diate successor of y. The translation of into the language of

j) has some fixed number of quantifiers and so to see if it is

satisfied by some pair is recursive in the corresponding number of

jumps of the ordering relation. As this is itself arithmetic in D

the relation R(i,j) which says that deg((i}D) is the immediate

successor of deg([j}D) is arithmetic in D. Thus beginning with an

index i O with [iO}D E We can recursively in a fixed number of

jumps successively calculate in such that [in}D E •

The point of this result is that once we have D and f D Spector

[1956] says that the exact pair for the ideal generated by

(deg(fD(n) }Drn E N} is recursive in just one more jump and so also

arithmetic in D. Thus if C £ is a jump ideal (and so closed

under "arithmetic in") and some <£,.0 in C codes a model of arith

metic, quantification over pairs in C suffices to guarantee that

codes a standard model of arithmetic. Now Lachlan [1968] shows

that all recursively presented distributive lattices can be embedded

as initial segments below Q( • As there is clearly one such which

codes a standard model of arithmetic, every jump ideal C contains a

coding such a model. Since we can by the above computation

always pick out the standard models in a jump ideal C, we can, via our
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effective translation of arithmetic, reduce Th(N), the first order theory

of true arithmetic, to Th( C) for any jump ideal C. The question then

is to see if there is a second order standard model of arithmetic whose

theory is actually recursively isomorphic to Th(C) the way the full

model was seen to be to that of £). To answer this question we must

see what sets are coded in models <2,E> in C by ideals determined

by exact pairs which are also in C.

Definition 2.5. Suppose <2,E> codes a standard model of arith

metic. We say that the pair codes the set WeN for d if

vn (n E W< ( & ( if) .

Lemma 2.6. Let <2,E> code a standard model of arithmetic.

a) If codes W for d then W is arithmetic in

b) There is an arithmetic in d such that for any set W E w

there is a pair <z- recursive in w v e coding W for d.

Indeed the proof will show that there is an n independent of d such

that in part (a), W((2:vXv2)(n) and in part (b) 5.:.

Proof:

a) n E

relation is

Let D E d, X E x, Y E v.
- D - }I.,

W< > [fD(n)} (T X, Y. As f D

clearly arithmetic in D v X v Y.

D by Lemma 2. 11 thi s

b)

Let e

quence

sive in

We need an exact pair for the ideal generated by [(fD(n) }Dj nEW}.

deg(fD " D) , • It is arithmetic in d by Lemma 2.4. The se

Si V[([fD(n) }D) 'In (i & nEW} is then uniformly recur

wve and it is all that Spector [1956] needs to build the

required pair.

With this lemma we can now characterize the theories of jump ideals

in .El.

Theorem 2.7. If

sively isomorphic to

class of all subsets

C c £J is a jump ideal then
- * *Th(N,C) = Th«N,C ,<,+,;E:»)

of N whose degrees are in C.

Th( e)
where

is recur
*C is the

Proof: That Th(e) (11 Th(N,C*) is obvious. Consider then any

sentence of second order arithmetic. The transformation of section

one give us an equivalent formula in the language of lattices

with a distinguished element and quantification over ideals. We trans

late the language of lattices into that of partial orderings by defin

ing v and 1\ in the usual way. If E C codes a standard model

of arithmetic we say it satisfies the formula if D (( 2) with r as

distinguished element does. To finish the conversion into a formula

in the language of partial orderings we now replace the quantification



over ideals I of by quantification

the associated formula E I by & a

formula (It depends on d and r

is that it gives a
* 1= (0<N, C > iff

and C2 are not

<N,

sets for n L o.
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over pairs X and

y. This gives us a new

because they are used

as parameter to say that with £ satisfies We now
*claim that for any formula w of second order arithmetic (N,C)

iff C 1=3 d, r«d,r'> codes a standard model of arithmetic & ).H
(We write this as C

Suppose (N,C*) F w. We surely have a pair in C that

codes a standard model of ari thmeti.c and so one that satisfies the

appropriate requirements in C. Now cpG translates faithfully from

the language of arithmetic to that of lattices. Thus the only worry

is to determine the range of the second order quantifiers over this

model when they are given by exact pairs in C. As C is closed under
*"arithmetic in", Lemma 2.6 says that this range is precisely C. Thus

C F

For the converse let £ be some appropriate witnesses. By

the remarks to Lemma 2.4, does in fact code a standard model of

arithmetic. Again the question is what is the class of the sets coded

for d by pairs in C. Once again Lemma 2.6 says that it is precisely

C*. Thus C F ClJH implies that (N, C*) F CIJ.

This theorem characterizes the theories of most of the familiar

substructures of By relativizing the initial segment results

and Spector's theorem it also covers the corresponding substructures
*of £) as well. (Note that C must here be closed under

The major structures left unanalyzed are and RED, the r.e.

degrees, was first proved undecdda b'le in Epstein [1979] using met-,
hods like those of Simpson [1977] but below 0-. Lerman [1978] gives

an initial segment result also giving its undecidability. Q ))
was then shown to be recursively isomorphic to true first order arith-

metic by a procedure similar to, but technically more difficult than,

the one above in Shore [1981a] by using Lerman [1978] and new strength-

ened versions of theorem. The theory of RED remains fairly

obscure although Lerman, Shore and Soare [1981] shows that it is not

'K o-categorical.

An important point to notice about Theorem 2.7

uniformly effective translation (0 t+ ClJH such that

C F (OH. Thus we can prove that two jump ideals Cl,
elementary equivalent by showing that

Corollary 2.8. Let be the degrees of the

1) .£J JJ n for any n E N.
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2) £)0 "Dl

3) If V = L or AD holds and n <m then

Proof: The only sets explicitly definable in

one can define as over ""i is equi-

Spector-Gandy theorem (see Rogers [1967], §16.7).

.en " Dm •

(N, are ob-

viously recursive in E(w) where En is the complete il set.
n n

1) In (N,f)*) = (N,2N) one can of course explicitly define
*every En+l by some Ci'n+l (x). Thus it and (N, f)n) must differ on

some instance of this formula As each integer is definable,

the structures cannot be elementary equivalent.

2) In

valent to by the

Now argue as in (

3) If V = L then ",,1 is a basis for by Addison [1959] and
m

so Em is explicitly definable in (N, .£l;) . If AD holds then

is a basis for by Moschovakis [1971]. 'l'hus the only new worry

is when n = 2k and m 2k+l. Here is explicitly definable in

both structures but only in (N,.8;k+l) does the sentence which asserts

that there is a set satisfying this definition hold.

Note: A very different proof of (1) for n = 0 appears in Jockusch

[1973]. We give one last application:

n

Corollary 2.9.

0,1.

Let i) (A)
n

be the degrees of the set ( A) for

iff

The if direction is trivial so supposeProof:
---*

(N,JD (A)) satisfies the sentence saying there
1 n *

""n but (N,JD n) does not. (We can say that S

a two sorted model as follows:

A I. 6 1 • Then
n

is a set which is not

is not in such

'In J X(x[O]

We can say that S is not ""i by saying that it is not recursive in

any set which is implicitly definable.) As a final remark we note

that all of the results of this section hold for 1-1, m-l, tt,

and wtt degrees as well as by essentially the same proofs.

3. DEFINABILITY

In this section we will consider questions of definability in j)
and its SUbstructures. Major results on definability in £J' appear
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in Jockusch and Simpson [ and Simpson [1977]. In Nerode and Shore

[1979, 22] we showed how to replace the jump operator by either a para-
-LA,

meter such as Q or a for any jump ideal and still get

the major definability results of Simpson [1977]. The missing ingred-

ient is then supplied by Harrington and Shore [1981] where a particular

jump ideal is proved to be definable in J). Thus we get that almost

all possible definability results actually are true. (Almost all means

roughly on a cone and possible refers to the obvious restriction that

anything definable in 1) is definable in second order arithmetic.)

We first restate the essential lemma which is proved in Harrington and

Shore [1981].

Lemma 3.1. If i U (the degrees of hyperarithmetic sets) and

1, then there is a degree 1 such that t is a minimal

cover of i.e., t > s and there is no degree strictly between t
,- 1

and s. the degree of the complete TIl set.)

Now we produce our definable jump ideal.

Lemma 3.2. C '" 3
is a jump ideal with

arithmetic sets.)

il & Vil
acc u. (c

is not a minimal cover of

is the class of degrees of

The point of Lemma

1 implies that

is a jump ideal and so contains cr.
C c as the requirement there that

the witness that x i C if x i

Proof: C is obviously closed downward. Suppose E C. Let

and il2 be the witnesses and consider any degree z.

As neither v ill nor V il2 is a minimal cover of neither is

v ill vil2' Thus ill v il2' witnesses that E C. Next consider

v ill' It is r , e. in v ill L and so by the relativized version of

the non minimality of r.e. degrees (Friedberg [1957] or see Sacks [1966])

it could not be a minimal cover of unless it equaled "ill' As

v il, is not a minimal cover of by assumption ili witnesses that

E C.
Thus C

3.1 is that

t '" e v x is

We note that the proof Lemma 3.1 is based on that of Harrington

and Kechris [1975] of which it is a strengthening. The proof of Lemma

3.2 follows that of Jockusch and Soare [1970]. These earlier results

were the ones actually used in Shore [1979] and [1981]. The versions

given here leadto sharper and results as well as the new re-

sults of this section on As a sample of what can now be

defined rather simply we prove the following:

Theorem 3.3. u is definable in .£l.
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Proof: Let be the formula of second order arithmetic which

says that S is not hyperari thmetic. We cLa Lm that ¢ J:l iff

f) 1= E a standard

model of arithmetic &

(We use to mean that we substitute the set coded for

by the pair l> for the free set variable in qJ in the trans-

lation given by £) • )

If ¢ J:l we choose any Q,£ E C coding a standard model. We

then let be given by Lemma 2.6(b) and choose l to code a set

Z of degree As (N,.D*) 1= (f)(Z), D 1= as required.

On the other hand if d,!, X and v are witnesses as reqUired
H(d) "-

and.£) 1= r i» then (N,1)*) 1= where W is the set

coded by for d. Thus W is not hyperarithmetic. By Lemma

2.6 (a) however W is arithmetic in v z , As E C J:l we conclude

that ¢ J:l.

Essentially this proof shows that any relation on degrees closed

under both arithmetic in and joining with an arbitrary degree in C

is definable in £) iff it is definable in second order arithmetic.

Other examples include all the other 1) IS for n >1 and the classn
of degrees of constructible sets. To get finer relations and even

particular degrees to be definable we need one more fact and a bit more

work.

Lemma 3.4. (Selman [1972): For each

£ there are £ £ such that

(For another see Jockusch [1974J.)

n 1

avb

and any degree
c = a(n) = b(n).

Theorem

everyone in

second order

is above every degree in C (e.g. above

is definable in £) iff it is definable in

Proof: Let be the formula of second order arithmetic which

says deg(T(n» where n is the integer given .in Lemma 2.6.

(We are of course that is definable in (N,2N).) We claim

that s is the unique solution of =;; E C and <s-z>
codes a standard model of arithmetic -'0 3£ E C(£ .£ & = LUBf,.t £1

y < CIl
H r) «:s, l> )}) ).

Suppose 1= t/J(.:::). Let ,2, r E C code a standard model and let

be the given by Lemma 2.6(b). Let b be a witness as
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required in *. Consider now any 2: L £. If and JS,Z';:'
then the set T coded for d by is recursive in by

2.6(a) and so its is recursive in 2' Thus

holds and so therefore does Thus any such 2: is

recursive in J::!,. As £ E C, b (2n) C and so ,2,( .;:. f!-. Thus by

Lemma 3.4 there are "p with z V z = s = z(2n) = z(2n). As._ L._

.;:. by this argument f!-';:' J::!,. On the other hand, if L,2, but

2: 1. 2 then by Lemma 2.6 (a) there are !5.,X';:' coding a set Z E

ror Q. As 1.f!-, deg(Z(n)) 1.2 and so fails. Thus

s is an upper bound for and so and

indeed = as required. Finally we must show that .01= *U:). Let £. £>
a E C be as assumed in *. Choose b E C to be .E; ve where is

given by Lemma 2.6(b). The above (once all of these degrees

are fixed) now shows that 2 = LUB[2:. L £,1 < Z) wH(Q,£) as

req uired.

We can now elaborate on this proof a bit to cover relations and

at the same time relax the assumption that the degrees be above all

those of C.

TI1eorem 3.6. If is a relation on degrees such that

RCsl, ••• ,J!3.n) and cl""'c E C implies that R(slV c , ••. ,s v c),- .- "" .......n ..........n ........n ........n
then R is definable in iff it is definable in second order arith-

metic. (In particular this holds if R is a relation only on degrees

above all those in C.)

Let ""Sn) be the formula of second order arith-

metic which says that R(deg(81 ) , ... , 8)) holds. Let e(A,B) sayn
that ';:'T B. We claim that <> E L
& <5!: f) codes a standard model of arithmetic -> ],2" Z1' •.. , In

r &- = LUB[2:. L £1 eH(Q, &

w
H Q,£) «.e1' Zl)' •.• , Y..n ) ) ] •

Suppose the indicated formula holds for 21"",2n' Choose any

Q, £ E C coding a standard model of arithmetic. Let a be the degree

e given by Lemma 2.6(b) and £,JS1' .• ',JSn'ln the assumed witnesses.

The proof of the last theorem shows that if S. is the set coded by

) H(d,r) l
<JSi,y"i for Q then Si E 2i' As «JSl,y"l)""'<JSn'Zn») holds
in £), cp( 81' ••• , Sn) is true and so •• , holds as required.

Conversely if R(21"'.,2n) holds and <Q,f) codes a standard

model with Q';:' E C, we let b V where e is again given by
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Lemma 2.6(b). We can now by Lemma 2.6(a) choose so

that <x.,v.) codes a set S. E s. for d. Again the for
"-'l l '" H ( d )

Theorem 3.5 shows that 2. £1 s:. e

As m(Sl"",Sn) is true we have then that
holds and the formula on the right hand side is verified.

We now just list some examples of such definable relations.

Corollary 3.7. The following relations on B are definable in D.

a is constructible from b.

a -T £*.

in b for n 2. 1.1)

2)

3)

4)

a is
'"

Le., ,e is the Turing degree of the hyperjump of

(Of course we may definably set £ = Q to get the definability of the

corresponding classes and degrees.)

It is possible to reach inside C or more widely to its side if

one has some appropriate starting point. Thus for example Nerode and

Shore [1979, Theorem 2.8J, the model for Theorem 3.5, shows that any

degree 2. 0(7) definable in (N,2N) is definable in f) from a para-

meter for "'0(2) Relations on such degrees are similarly definable by

Shore [1981J Theorem 3.4 whose proof is the model for Theorem 3.6.

Further technical improvements are also possible as described therein.

The natural question that remains open is if the jump operator is act-

ually definable in B.

4. AUTOMORPHISMS AND HOMOGENEITY

One of the most pervasive phenomena in recursion theory is re-

lativ.i.zat.Lon , Given a proof of some structural fact about £) one can

almost invariably relativize it, i.e., switch to functions recursive

in a and degrees above ,e, to get the same fact about £J (2.,e) for

any a.

This process led Rogers [1967, p. to the homogeneity problems:

Is .8 ';;:: £l for every a or even is .{)' ';;:: f)' for every

Q. It is however by applications of relativization itself that one

proves these c ectures false. Thus for example the relativization

of Lachlan [1968J says that every a-presentable countable distributive

lattice is isomorphic to an initial'" of Now it is

easy to construct an distributive lattice La with 0

and 1 such that is recursive in the jump of any presentation of
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suggests we can use a "chain of lines

and diamonds" i.e., an increasing string of either successive elements

or copies of 2{0,1) with a copy of 2[0,1} in the nth position

iff n E A E a. A largest element is then put at the top of the chain.)

On the other hand, and so everyone of its initial seg

ments is since Turing reducibility on indices {i}X

is recursive in x(3). Thus if ';;; La is an ini

tial segment of D[b, and '5:. !2(6) • So in particular if

f)' (L a) = £/ ('5:.!2) f!, '5:. !2 These ideas and results on f)'

come from Feiner [1970J and Yates [1972J. The sharpest known version

is that if ,D' (L a) ';;; !)' (L!2-) then a(3) "" b(3) (see Richter [1979J

and Nerode and Shore [1979J, lneorem 5.3). The failure of the homo

geneity conjecture for JD was first established in Shore [1979] by

somewhat more indirect means. We are now, however, in a position to

give just as simple a proof for '0 as for .Dr.

Theorem 4.1, If eeL f)(L!2) then a b i.e., and

b are contained in the same hyperarithmetic degree.

Proof: Let be the substructure of determined by

interpreting the definition of C in D(L a). The relativizations

of Lemmas 3.1 and 3.2 show that is a jump ideal in with
a a a ( a a (" )Here and are the degrees in £) L which

contain sets arithmetic and erarithmetic in respectively.) As

af!, c!!" La is isomorphic to some initial segment of c!!,. As

and c£ are defined by the same formulas in the isomorphic structures

and J)(L La is isomorphic to some initial segment of

c!2.. Suppose the top element of this segment is x E ceo Now f)

is presentable and so by the choice of L a / x(4) As x E c£
 a

x is hyperarithmetic in !2' Thus By symmetry as
required.

The natural weakening of the homogeneity conjectures suggested in

Yates [1970] is the possibility that the structures f!,) andn(L l)
(or even i)' (L f!,) and f)r (L !2)) might be elementarily equivalent.

One must tread carefully here for if Projective Determinary holds then

indeed there is an f!, such that L f!, (f)' (L f!,) == D (L £)). This

degree f!, however is not readily definable. Indeed Simpson [1977]

refuted the conjecture for i::J' by showing that there is an a with

£)' (L f!,) j. £): The sharpest result here is in Shore [1981]: D' (L f!,)

== >f!,(3) = £(3). In the same paper we also gave a fairly compli

cated argument that the elementary equivalence version also fails for
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f): If >-. then £)(>-. 3:;) F $::J. Once again Lemmas 3.1 and 3.2

give much simpler proofs.

Theorem 4.2. If a is definable in second order arithmetic and

£) f)(>-.J2) then a =':h!2.' Thus in particular if .0 £)

then a is hyperarithmetic.

Proof: Let IjJ(S) < >S a and e(S) < >S 3:;' We, of

course, begin with and C£ by the same formulas in the

appropriate structures. We write E C for this formula. Now our

initial segment facts and results on ideals all relativize and so we

can correctly say in 1)(>-' 3:;) that some <£,r> codes a standard model

of arithmetic and our translations remain faithful. (Even

though we are in 3:), quantifunction over all ideals is still

quantification over all sets.) Thus .v(>-. 3:;) 1= (]£, r, il E C) «£, r>

codes a standard model of arithmetic & By elementary

equivalence JD(>-.!2.) also satisfies this sentence. Thus there is a

pair in c£ coding a set S of degree in a model £

By Lemmas 2.6(a) and 3.2 (relativized) 3: is hyperarithmetic in b.

On the other hand we have that F C) «£,r>

codes a standard model of arithmetic Now in b)
b

there is a <£,r> E C coding a standard model and ON coding

a set B E b for d. Again by elementary equivalence and the faith-

fulness of the translation we have that e(B) holds i.e., !2. 3:'

Although we cannot in general remove the definability assumption

on in this result (Without, of course, contradicting we can do

so under suitable set theoretic hypotheses.

Theorem 4.3. If there is a well ordering of 2N definable in

second order arithmetic (e.g. if V = L) and 1)(>-' 3:) = f)(>-.!2.) then

a b.

Proof: By the faithfulness of our usual translations and the ele-

mentary equivalence assumption the least pair of sets forming an exact

pair for all the degrees hyperarithmetic in any set coded in is

the same as the one for Thus the degrees hyperarithmetic in a

are the same as those in b.

Note that if we consider such questions for substructures of £)

we get similar results. Indeed for jump ideals the proof of Corollary

2.9 already gives results such as =a or = implies that a

is arithmetic or hyperarithmetic respectively. Moving inside jump

ideals Shore [1981a] shows that ='f)[Q,Q-l-] ='B((. Q-l-)
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then a(4) = 0(4). In the same vein if the degrees r.e. in and above

a are isomorphic to the r.e. degrees then is arithmetic by Shore

[1980]. This isomorphism result and the isomorphism version of the

other elementary equivalence results mentioned all generalize to pairs

£, but of course the elementary ones cannot so relativize by arith-

metic or analytic determinacy. The sm versions of these re-

sults for S) as well as its sUbstructures can also be derived without

any appeal to initial segment results. If one uses the finitely gener-

ated coding schemes of Shore [1980] then Kleene-Post type extension

methods are all that one needs.

Now in the setting of t)' the methods of Feiner [1970] and Yates

[1972] used to disprove the homogeneity conjecture were turned by

Jockusch and Solovay [1977] into a proof that all automorphisms of

are the identity on the cone J)' C:. Q(4)). (This was improved to .d
by Richter [1979].) For J) however Nerode and Shore [1980, Theorem

4.1] first proved that every au t omorphdsm of S) is the identity in some

cone and then this was used in Shore [1979] to refute the homogeneity

conjecture. We can now bring the analogy with f)' back into line by

reversing the order (of quantifiers) again.

Theorem 4.4. If er: -s- D (L £) is an i somorphi sm then ql

is the identity on a cone with base the join of one element in cZ and

one in c2..
Proof: If X " ,".-l(i.e., L. '" c then is

isomorphic to a segment of £) [b, l1l(x) ( and so by the isomorphism to
one of JS>[a,x]. As presentable Now

by the Friedberg [ if x L c(4j there is

a y L such that zs = :£(4) = x., v £(1+) and so ep(ZS) = ep(x.,)

Thus if L as well as then x. Applying the
-- (4) -1 (4)

same argument to 11l-1 in place of ep shows that if x L d V ep (d )

then 11l-1(ZS) ZS where = ep(a(2)). Combining these shows

that !p(ZS) =ZS if =e. Nowa(2)

and b(2) are in and c2. respectively and so = and

AA- l (p ( 2) ) are lOnc = '+' ._ '"'" and '"'" As these are jump

ideals d(4) E c2. and c(4) E and so E and l"f>(c(4)) E c2..
-

Thus e the base of our cone of fixed points is recursive in the join

of E and (.£(4)) v ep(£(1+))) E

Our basic result on automorphisms now follows by setting a = 0 = b.
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Theorem 4.5. Any automorphism of is the identity on a cone

with base in C C and so every degree above all those in C C is

fixed by every automorphism.

Note that in general Theorems 4.1 and 4.4 combine to show that

if eli: £J i:,) £) (2.. £) then ep(,2S) =,2S for every x above some
degree hyperarithmetic in (and so also in £). The natural ques

tion now, of caurse, asks if there are any nontrivial automorphisms of

£J or indeed any nontrivial isomorphisms of ;()(2.. i:,) onto f)(2...!2)
for any a and £.
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Two Theorems on Autostability in p-Groupsl
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1. Summary. Mal'cev [6] introduced the notion of an autostable structure as a

recursive structure where an isomorphism with another recursive structure can be

replaced by a recursive isomorphism. Aside from the simplicity and naturalness of

this notion, it has fundamental importance since effectiveness questions about

algebraic properties are determined in an autostable structure. We will call the

problem of characterizing the autostable structures the autostability problem. At

present there is no general model theoretic solution to the autostability problem.

There are solutions in specific categories. The most general was provided by

Nurtazin [8] for the category of decidable models. As a sample application of

Nurtazin's Theorem one obtains the following: an algebraically closed field is

autostable iff it has finite transcendence degree over its prime field. LaRoche [4]

has shown that a Boolean algebra is autostable iff it has only finitely many atoms.

Theorem 1 of this paper is classification of the autostable p-groups.

The autostability problem is altered when new relations are added to a structure

and solutions to the problem acquire a different flavor. Suppose F is a recursive

algebraically closed field and KeF is an r.e. subfield with F algegraic over

K. Now form the recursive structure (F,a)a E K i.e. we include constants from K

in the new structure. The autostability problem for this type of structure is the

same as the problem of characterizing those fields K which have a recursively unique

algebraic closure. Metakides and Nerode and Smith [llJ have shown that this is

equivalent to the existence of a splitting algorithm for the separable polynomials

over K. In Theorem 2 we classify those p-groups which have a recursively unique

divisible closure.

Theorem 2 presupposes that every recursive p-group has a recursive divisible

closure. This is proven in Proposition 1. In fact, we show that every recursive

abelian group has a recursive divisible closure. We know of no proof in the litera-

ture which is sufficiently effective to give this result. The proof given here is

drawn from ideas in Rabin [9].

1 Section 3 of this paper is part of the author's doctoral thesis written under
Stephen G. Simpson. Section was motivated by conversations with Anil Nerode.

2
Supported by an AMS Postdoctoral Research Fellowship and NSF Grant MCS-79-23743.
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2. Notation. The set of natural numbers is denoted w. All groups in this paper

are abelian. The order of an element g EGis written 0 (g). G is a p-group

if o(g) is always some power of p. The easiest examples of p-groups are the

cyclic groups of order pn, written ?l (pn). The direct limit of these is the

quasi-cyclic group, ?l (p"') ?l (pn). G EB H indicates the direct sum of G and

H, em G is m-copies of G, and EB
w

G is the weak direct sum of countably many copies
kof G. We use the standard notations, pG = [px: x E G} and G[p] [x E G:

/x = o}, A p-group has order if G[/) = G for some k, For g E G, we say
n+l ..Lg has finite height if there is an n such that p x i g for all x E G, and if

g has finite height, then the height of g is the least such n. A p-group is

divisible if no element has finite height and reduced if (0) is the only divisible

subgroup. <X> is the subgroup generated by X G. Fuchs [2J and Kapl.ansky [3J

are references for this material.

A group is recursive if its domain is a recursive set of natural numbers and the

group operations are recursive functions. The recursive function is

written [e} and its restriction to computations of s steps is written eels'

Rogers [lOJ is a general reference for recursion theory.

3. Autostable p-Groups

Definition 1: Let G be a recursive p-Group. G is autostable if for all recursive

H G there is a recursive ql: H,?", G.

The next theorem classifies the autostable p-groups.

Theorem 1: Let G

G = EB ?l (p"') fB F
w

and m;n E w.

be a recursive p-group. G is autostable iff either

or G = e ?l (p"') EB EB ?l (pn) EB F where F is a finite p-group
m w

Proof: If G has one of these forms, then it is easy to build a recursive isomor-

phism with an effective back and forth procedure. Thus we will assume for the

remainder of the proof that G is autostable.

Lemma 1: If G has bounded order, then G = EB ?l (pn) EB F for some nEw and
w

some finite F.

Proof: Suppose G is infinite, then there is an n

summand of G. Let n be least so that

is a

G EB?l (pn) EB M II'> F
w 0

where Fo is finite and every summand of F
o

has size less than and every

summand of M has size greater than pn. We may assume that M is infinite. Let

A c w be any r ,.e, nonrecursive set. We will build an H,?", G such that

[x E H: o(x) = p & (pny = x)}

has the same Turing degree as A.
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H will be a direct limit of a recursive sequence of finite groups, (H} < •ssw

of finite subgroups of G such that G = U G
s s

is

At the same time we

in stages, 11 = 11s' '!1 s 11S+1'

is cyclic.

and (G} < a recursive sequencessw

and G = EEl C . where C.
s i<s 1,S 1,S

In the constrlli:tion of H, we will haves

B. and B.1,s+1 1,S

has size> pn} -> A

lim C. = C.•S 1,S' 1

be a recursive basis for G[p](c }
n'n<w

cyclic and c. E C. • Thus1 1,S

H.. EEl B. where B.
s i <n(s) 1,S 1,S
definea bijection 11: (i: C.

1

Let

11 : (i: C. has size > pn} -> A. Let ao,a
1
, ... be a recursive enumeration of A.s 1,S

The Construction

Stage 0: Let Ho = (0) and 11
0

be undefined.

Stage s+l: Let HS+l Hs unless there are j,k such that

j ¢ dom (11s) but Cj,S+l has size > pn. Pick the least

define 11S+1 = 11s U r(s+l) max (r(s), For

11
S
+1 (i) = ;,

i ¢ ran ('!1S+l)

define B ;l B and B C
R, , s+1 ;, , s ;, , s+1 = i, s+l'

define B - ?l (pn).i,s+l -

j and the least k and

i E dom (11 s+1) and

For i r(s+l) and

End of Construction

Let H = lim Hs' Clearly dom (11) = (i: Ci has size > pn} and ran (11) = A.

For i E dom(11) Ci ';:; B
11(i)

= Y B11(i),S and for i'l- dom(11) Ci ?l (pn). If

i ¢ ran (11), Bi ?l (pn). Thus H G. Let X = (x E H: ot x) = p & :B:y(pny = x)}.

Claim: X has the same Turing degree as A.

By the construction i E A iff has size > pn. A is reducible to X, for

given any i < (I), pick Xi E Bi such that o(xi) p. Then i E A iff x . ,:: X.
1

x

is reducible to A, for given any x

(i ¢ A -> x . = 0).
1

(x , •.. , x ) E H, x E X iff V i < n
o n

o

Remark: Suppose G EEl ?l (pO» ·3 B where B has bounded order. The proof of
ill

Lemma 1 can be used to show that B is finite.

Lemma 2: G does not have arbitrarily large cyclic summands.

If R is a reduced p-group which does not have arbitrarily large cyclic

summands, then R has bounded order. Before proving Lemma 2 we show how the theorem

follows.
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Let G = D R where D is divisible and R is reduced. By Lemma 2, R has

D = :zz; (pOO).
m

k
F 0 = D n G[p ].

bounded order. Now if D = fB :zz; (p"') , then by the Remark, R
(l)

Let k such that = (0), so that G[pk]

By Lemma 1, it suffices to show that G[

is finite. Suppose

F R where
o

is autos table. Suppose

Fl Rl F0 R where Fl F0 and Rl R. Build a divisible tower over Fl to

get a recursive H,.,. G where H[pk] F R
l•

Since G is autostable,

there is a recursive <:p: G'25 H. The restriction of <:p to G[pk] maps

Proof of Lemma 2: Suppose G has arbitrarily large cyclic summands. We will build

an G which is not recursively isomorphic to G. As in Lemma 1, H is a direct

limit of a recursive sequence

recursive enumeration of H.

(H ) < of finite groups. Let g gl"" be assw 0

At each stage s we will define a subgroup Gs of G

and an isomorphism <:ps: Gs Hs' For each s, gs E

that G we will satisfy the negative requirements

N : lim <:p (g) and lim <:p-l(he) exist.
e sse s s

so that G = U G. To insure
s s

Let G - ht(x) be the height of x in G and let G - hts(x) be the height of x

Similarly for H - ht and H - ht •s To insure that G is not recursively

isomorphic to H we will satisfy the positive requirements

P : G - ht(b) is finite and G - ht(b) < H - ht({e}(b))e

for some b E G[p]

To witness the element b which satisfied Pe we will use a system of markers,

b(e,s), and require that lim b(e,s) exists. To satisfy N and protect higher
s e

priority requirements we will preserve the subgroup K(e,s) which is generated by

gi' where i < e and all x E G[p] such that x b(i,s) for some i e.

Suppose b = b(e,s), it is possible that G - htt(b) < H - htt(b) for all t but

G - ht(b) = H - ht(b) = (0, so that b will not witness Pe, To avoid this problem

we introduce the function

t(e,s) = least t such that for all k

if t k s, then b(e,k) b(e,s),

and commit ourselves to attempting to move b(e,s) When G - hts (b,e,s)) I G - htt

(b(e,s)) for t t(e,s). As an aid in our search for a final resting place for



306

bee,s) we use the function

nee,s) = the number of attempts to satisfy Pe

together with a recursive function r: w + w with the property that for each y

there are infinitely many x such that rex) y.

is satisfied at stage s if for b = bee,s) and t

requires attention at stage s+l if

can be decomposed as

( t )

( ii)

Pe

Gs

is not satisfied at stage

and

s

Gs
MEll <y> where

M';;' N, K(e,s) c;; M and cps[K(e,s)] c N. There is a

bE <x> n G[pl, b f. 0, b such that (e}s is

defined on all elements g E G[p1, where g S b, and

[e}(b) E <y> n G[gl, (e}(b) f. O.

(iii) e is least with respect to (i) and (ii).

The Construction

At even stages of the construction let G2s = <G 2s-1,gs > and define

so that CP2s: G2s';;' H2s' At odd stages we work on the positive

requirements. Suppose s+l is an odd stage. If no eS s requires attention at stage

s+l, let G = G H =s+l s ' s+l and CPS+l = CPs' Suppose e requires attention and

b E G[p1 is the least element which satisfies clause (

large cyclic summands, we can find a Z E G such that

Since G has arbitrarily

n < Z> (0) and

o I z ) > o(x). Let G
S+l = Gs Ell <z >. Build H

S+l = N Ell <v> Ell <W' > where y E <v>,

o(v)=o(z) and o(w)=o(x). Define CPS+l CPs on N,CPS+l(X)=W'CPs+l(Z)=V'

n(e,S+l) = n(e,s)+l, and b(e,S+l) = b. Notice that G -htS+l (b) < H-htS+l((el(b»=

End of Construction

Sublemma 1: For all e, lim bee,s) exists and N is satisfied.
s e

Proof: Suppose e is least such that lim bee,s)
S

does not exist and let t be a

stage where b(i,s) b(i,t) for all s t, i < e. We may also assume that Pi does

not require attention after stage t for i < e. Thus K(e,s) = K(e,t) for all

s > t and Ne is satisfied. Let b E G[p], b f. 0, be any element of finite height
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such that G = A EEl <x> where b E < x > and K(e, t ) A. There are infinitely many

s for which b renee,s)) is the least witness to clause (ii) and e requires

attention at stage s+l. At some stage s t, G - ht(b)

Pe will be satisfied at all stages after s, thus bee,s) never moves again which is

a contradiction.

Sublemma 2: For all e, [e l : G'" H.

Proof: Suppose e is least such that eel: G H. Let t be a stage where

o

b(i,s) = b(i,t) for all s> t and i e. Hence for s t, Pe does not require

attention at stage s. Now if G-ht(b) <w where b = b(e,t) then at some stage

s > t G-ht(b) = G-ht (b) = H-ht ([e}(b)). If the G - ht(b) is infinite, then at- s s

some stage s >t, G-hts(b) >G-htt(b). In either case there is a sage s > t

Where Pe is not satisfied at stage s. Now the argument used in Sublemma 1 can be

applied to show that P
e

requires attention at some stage s > t, so that bee,s) I b

which is a contradiction. 0

A result of Lin [5] states that for all recursive ordinals a there is a

recursive reduced p-group of length a which is not autostable. An

immediate corollary of Theorem 1 is that no reduced p-group of infinite length is

autostable. The reader can consult Feferman [lJ for a general method of

constructing p-groups of specified length.

4. Divisible Closures of p-Groups

Let D be an abelian group. D is divisible if for all m 0 and d E D there

is a d ' E D such that md' d. If G is an abelian group, a pair (D,cp) is a

divisible closure of G if D is divisible, cp: and for all dE Dc¥o, there

is an m > 0 and agE G, glo such that md = g. (D,cp) is a recursive divisible

closure of G if (D,cp) is a divisible closure and both D and cp are recursive.

Proposition 1: Every recursive abelian group has a recursive divisible closure.

Proof: Let G = F/K where F is the free abelian group on the generators xo'xl, ...

and K is a recursive subgroup of F. Let D be the divisible group of all finite

formal sums I: where r i F is a recursive subgroup of D, thus there is a
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recursive ex: D -> ill defined by ex( d) least k such that kd E F.

Suppose N is a subgroup of D maximal with respect to N n F = K, then

(1) If dEN, then «( d) • d E K

(2) If <p: F/K -> D/N is the canonical map, then

(D/N,<p) is a recursive divisible closure of F/K.

(1) If dEN, ex( d) • dEN n F K.

(2) <p is a recursive embedding. Suppose d E D - N, then by the maximality

of N there is an a E F n < N , d > such that a ¢ K, so a ¢ D. It

follows that md == a (mod N) for some m 1. o

In view of Lemma 3 we need only construct a subgroup N of D maximal with

respect to N n F = K.

Definition 2: and suppose ex(a.)' a. E K for 0 i S.
1 1

(a

((ao, ... ,as): ex(ai) • a i E K for 0 < i < sand

over K) is recursive.

(a , ... ,a )o s is consistent

-o:(a.) < m. < a(a.). Thus b = r m.a ,
1-1- 1 11

The converse is trivial. o

iff b =E m.a.(mod K) where
1 1

b = E n.a. + c where n. E
111

It sufficies to show b E F n <K ,ao"" ,as>

Suppose-ex(a.J <m.<a(a.) and r E F.
1. - 1- 1

and c E K. Now n.a. - m.e . (mod K) where
1 1 1 1

(mod K) and if b E F, then r mia i E F.

Let N =
o

We are now ready to construct N. Let ao,al, •.• be a recursive enumeration

of those elements of D such that ex(a.)a. E K.
J. 1

{
(a ) if a is consistent over K

o 0

¢ otherwise
Stage 0:

Stage s+1: Let fN U (a 1) if (N a ) is consistent over KN _ s s+ s s+l
s+l - lN

s
otherwise

By Lemma 4, N is recursive and maximal with respect to every finite

subset being consistent over K. Easily N n F = K and by the maximality of N, N

is a subgroup of D. o
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The divisible closure of an abelian group G is unique up to a G-isomorphism.

That is, if and are two divisible closure of G, then there is a

Dl such that 0/ 0 = for all g E G. We now address the

effective analog of this question for p-groups.

Definition 3: G has a recursively unique divisible closure if for all recursive

divisible closures there is a recursive 0/: Dl D2 such that

'!' 0 tpl (g) tp2(g) for all g E G.

Theorem 2: G has a recursively unique divisible closure iff pG is recursive.

Proof: Suppose that pG is recursive and let be a recursive divisible

closure.

Lemma 5: tp[G] is a recursive subgroup of D.

Proof: is r.e., so it sufficies to show that is r.e. Given a

recursive enumeration of G define the following sets.

for some n?: l} if gs '! pel

otherwise

Let A = As. A is r.e. and we claim A = D\tp[Gl. If dE As, then pnd =

for some n?: 1. Now if d E then gs E pel which is false since As f ¢.

Suppose d E and let n > 1 be the least integer such that pnd E Thus

pnd = for some s. Suppose E pG, then pnd for some g E G. Thus

n-l () has order Since is a divisible closure of G, the elementsp d -tp g p.

of D of order in (p[G]• It follows that n-l d E Which contradictsp are p

the choice of n, thus gs E pG and d E As c A. o

We now indicate how to set up an effective back and forth procedure. Suppose

'1': Where D' is divisible and pdF but d '! q:>[G]. Select

d' E D' such that pd ' = o/(pd). The map 'I"(q:>(g) + k d] 0/ 0 q:>(g) + kd' where

o < k < d is an extens ion of 0/ to < 'P [G], d > , o

Conversely, suppose that G has a recursively unique divisible closure. Let

(D,id) be a recursive divisible closure of G where id is the inclusion map of
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G into D. The strategy is to build a recursive cp: so that (D,cp) is a

recursive divisible closure and at the same time satisfY the requirements.

: {e1: D eo D => (e) I- cp on G

The failure to meet some requirement R
e

will permit us to decide g E pG.

be a recursive enumeration of G with the property that for

and

D.cp :s

Let W
S

= (d E D: d < s
e

in stages, cp = U CPs where
s

We construct cp

and GS+l

is defined}.

Let

requires attention at stage s+l such thatg E G 1\ Gs+ sR
e

pg, g E w: and

g' E W
S n G •
e s

(el (g') = cp (g')
s s

if there is a

for all g' E and (e) (g') = cp (g')
s s

for all

The Construction

Stage 0: cp : Ge-...,> D via cp (g) = g for all g EGo'o 0 0

Stage s+l: If there is no e S s such that R
e

requires attention at stage s+l,

extend CPs to CPs+l in any fashion so that CPs+l: Otherwise let e be

least such that Re requires attention. Pick g E Gs+l\Gs such that pg, g E W:.

Let d E D such that pd (e}(pg) = cps(pg) but d I- (e) (g). Extend CPs to <:Ps+l

by mapping d.

End of Construction.

Lemma 6: pG is recursive.

Proof: Let e be least such that (e): D D and (e}(g) = cp(g) for all g E G. Let

t be a stage where i never requires attention after stage t for i < e. Given

r > t to decide gr E pG. Let d E D such that pd = gr and find a stage s > t

where d,pd E WS
e' Claim

E gG iff gr E P Gs

If gr ¢ p Gs and gr E pG, then d I- Gs but d E G. Thus there will be a stage

s' > s where dE Gs'+l\Gs, and Re requires attention at stage s'+l, which is a

contradiction. o
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CONSTRUCTIVE AND RECURSIVE SCATTERED ORDER TYPES
Richard Watnick

The University of Connecticut, Stamford, Connecticut

1. Introduction and Summary

In this paper we generalize Kleene's work on constructive ordinals

by offering several possible definitions of a constructive scattered
linear ordering, which lead to the classes 0, A, J, ]', and N of

constructive scattered linear orderings. In (7), we began by closely

following the treatment of constructive ordinals found in Rogers [ST.
The development is technical and leads to universal systems of notation.

For the purposes of this paper we will begin with these universal sys

tems and use them as definitions. We will develop some terminology

which has proven useful in studying these order types and show how we

arrive at the result R 2J i 0:;; A:; N, and J J', where R is

the class of recursive scattered linear orderings.

The ori motivation for this project was the formalization of

a priority argument which extends Tennenbaum'S result (see [7]) on the

existence of infinite recursive linear order which contain no infi

nite recursive ascending or descending sequence. (The definition of

what I call A above also appears in Pinus (4).)

2. Terminology and Notation

and a pairwise

B(S) has order type

a,we are given an order type

of sets {B(S) Is a} where

Our universe is the rational numbers, Q, together with the usual

ordering <. All Our sets will be subsets of Q, which inherit the

usual ordering <. It is well known (due to Cantor) that the order
types represented by subsets of Q are precisely all the countable

order types. The effective version of this theorem is that an order

type is recursive iff there is a recursive subordering of Q of that
order type.

N will denote the strictly positive integers. The symbol "n,"
besides denoting the natural number n or 0, will also de no t e the

order type represented by a set of n linearly ordered elements.

Recall that if a and S are order types of sets A and B

respectively, then a+S denotes the order type of a set which is a

copy of A followed by a copy of B, and aS denotes the order type

of a set which is S copies of a. For example, a+a is a2, but
is not 2a.

Again, suppose
disjoint collection
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yes). Let C be the ordered set whose elements are l-)(B(S)), where
Sea

for x,y e C,,
S = S and

I yeS).
Sea

x < y if x e B(8), y e B(S'), and either 8 < S'

x < y in B(8). We will denote the order type of C

or

by

If a is an order type represented by <A,< >, then the opposite
order type, represented by <A,», will be denoted by a*. Z will
denote the order type of the integers as well as the integers themselves.
That is, Z = {----2,-1,0,1,2,---} and also Z = w*+w. The order type

of Q will be denoted by n.
Our universe is countable, and all objects we deal with will be

countable. For example, if we say let a be an order type, we are

assuming that a is a countable order type.
We say that a linear ordering A is scattered if it has no subset

of order type n. An order type a is said to be scattered, if every
(or equivalently, if some) set of order type a is scattered.

Hausdorff [2] first showed that any order type a can be expressed as
a dense sum of scattered order types. That is, a = IHd, where D is

D
dense and Hd is scattered for all d in D.

is a recursive
e t h partial

We

Sa' For a a limit ordinal, if {ui}

U S8' then Iu., I u· and Iu. are
8<a w 1 w* 1 Z 1

type a is scattered iff there is an ordinal 8 such that a e SS'
say that rea) = 8, or that a has rank 8, or a is scattered of

rank 8, if S = min{yja e Sy},

y is a recursive order type if there
(E ,6) set of order type y. ¢ will denote the

n nne
recursive function, as is customary.

There is an alternate inductive characterization of scattered order

types equivalent to the definition above. (Also due to Hausdorff.)

Let a and 1 be in SO' For a a successor ordinal, if {Ui} is a

sequence of order types in Sa_I' then Iu., I u·, and Iu. are in
w 1 w* 1 Z 1

is a sequence of order types in

in Sa' Then, a countable order

3. Definitions of 0 and A, A CO C R

Let S be the collection of countable scattered order types. We
will define 0 and A, where 0 is the collection of Original construc-

tive scattered order types, and A is the collection of Alternate con-
structive scattered order types. For any family F of scattered order
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types, let Fa be the collection of order types in F with rank less

than or equal to a.

then y = LY i , where
Z

Intuitively,

Y will be in 0a iff there is an algorithm iii,

lists a two-way infinite sequence of elements in

{iii(i)}Z'

which effectively

U OS' say {Yi}Z
S<a

such that Y = LY" We will define ° so that if yeO,
Z 1

Y is constructed by building sums of

and 1 as the foundation, but that this
then we can say not only that

smaller order types, using 0

construction is effective.
Scattered order types can similarly be said to be built up from

the single building block, 1. To build S using only 1, and not

using 0, we have to allow w-sums, w*-sums, and finite sums, in

addition to allowing Z-sums. This is precisely what we will do in A,
again requlrlng the construction to be effective.

Now let us show how this can be formalized.

DEFINITION 1 ° The a-system; va: N .... scattered order types

vO ( Z) 0, vO(4) l. If Y L (n)+ I (n), and
new* y new z

< ry and (n)) < ry for n in N, then vo(3Y.5 z) y.

DEFINITION ZOO range of vO

DEFINITION 1 A The A-system vA: N .... scattered order types

vA(l) 1.

If y
n+l
L y(i), and r(y(i)) < ry, for I: i : n+l, and
i=l

< r(y),

vA(y(i))

is the

I vAlli (n) +
new* y

then

y (i) ,

.th
1

then vA(Zn. 3y(1).SY(Z) ... (Pn+l)y(n+l)) = y, where

odd prime. If y = I and for all n in N,
new

y. If Y L (n), and for all
new* y

r(vMy(n)) < r(y), then vA(SY) = y. If yN,inn

I and for all n in N, < r(y) and
new

< r(y), then VA(7Y.ll z) y.
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DEFINITION 2 A A = range of vA V {O}.

LEMMA 3 A CO.

Sketch of proof: Intuitively, A should be contained in 0,

since if yeA is not coded by a Z-sum, we need merely tack on

infinitely many O-summands to transform it into a Z-sum, and any

function eventually constant, eventually always equal to the code for

0, must be recursive. This idea can be carried out using the fixed

point theorem. We first define mappings our first approximations

of mappings from the domain of vA to the domain of vO. For example,
u v w
) = 3 '5, where = code for 0, and = Once

is defined, we let = and find a number m such that =
= using the fixed point theorem. Then we can establish by

induction on rvA(x) , that = vA(x) , for all x in the domain

of vA. For example, = vO(3v.Sw) = 0 + Ivo$w(n)
w w

which by the induction hypothesis would = = vA(3u).

LEMMA 4 A C 0 CR.

Before proving lemma 4, we will develop some further terminology.

Let vO(x) = y = I y(i) + I y(i), where x = 3Y·S z, codes y(-i)
w* w

and

h(i). Let
Z

codes y(i).

vA(x) = y

Then, we will say that

Iy(i), where x = 3Y,
w

x

and

presents y as

$ (i) codes y(i).
Y

x presents

S sum of order

code for (y(i))(j) supplied by xCi), and

supplied by x. We can continue in this way

Then, we will say that x presents y as I y(i). x presents y is
w

defined similarly for the other cases in A. In general,

y as I y(i), if vs(x) = y and x describes y as a
S

types {y(i)}ieS'

Let us return to O. Suppose x = 3Y·S z presents y as L y(i),
Z

then $ (i) is a code for y(-i) supplied by x, which we will refery
to as xC-i). Also, $z(i) is a code for y(i) supplied by x, which

we will refer to as xCi). Suppose further that for some i, xCi)

presents y(i) as I (y(i))(j). We let y(i,j) = (y(i))(j), and let
jeZ

x(i,j) (x(i))(j) be a

also a code for y(i,j)
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forming the following two trees:

TI(O,x)

y

y (- 2)
... /,
... [ .... ][ ..

x

[ ...
x(l,-l)

etc.

... ]
x(l,l)

y(3) ....
#\

... ][... ... ][ ] ...

x (2)

etc .

....
be a finite sequence of numbers x(t) a node ofLet a. in Z. is

T2(O,x) iff y
....

code foris a node of TI(O,x) iff x(a.) is a
supplied by x. Either = 0 and 2, or = I

and
.....

= 4, or y (a.) and are undefined and do not appear as

nodes, or presents as L (i). In the last of
ieZ

these cases and are defined for all i in Z-{oJ.

Note that all paths in TI(O,x) and T2(O,x) are finite because

I Furthermore, can be effectively found.

Therefore, we know when or

tree. is a terminal node of

of T2 iff = 2 or 4.

......
x(a.) is a terminal node of the

.....
TI iff x(a.) is a terminal node
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In A we can establish the same terminology. However, is

a tip iff is a tip iff 1 iff = 1. Tl(A,x) and

TZ(A,x) will have the same properties as above, except some of the

nodes of the trees may be finitely branching. That is, may

present yea) as a finite sum. In general, the two trees together

display how y is built using the code x. Note that we have adopted

the convention that D ¢ N, and for instance, in 0, x = 3Y·S z

supplies codes {x(i)}iew*+w = {¢y(i)}:=l U There is no

xeD). In general, if or exists, then D does not appear

in a.

We are now ready to prove lemma 4.

Sketch of proof. Let vO(x) = y, we must produce a recursive set

A of order type y. This is done by using trees TI(O,x) and TZ(O,x).
..... ..... ...\.

We associate with a, not only x(a) and Yea), but also an interval

in Q, I(a). We do this in such a way that is an initial segment

of S iff I(S) C I(a). Also, if neither a nor B is an initial

segment of the other, then n I(B) = and for all p in

q in IeS), P f q +B in the dictionary ordering iff

is to the left of xeS) on TI(O,x). Then, we define what proves to

be the desired set A by letting q e A iff q is the first element

of from a fixed enumeration of Q, where = 4 and

y = 1.

This concludes section 3. We have defined two notions of construc

tive scattered linear orderings 0 and A. We have that AC 0 CR.

4. Nice Presentations and 0 r A

If y = Z+c(I)+Z+c(Z)+ ... = vA(x), c(i) EO N, then x may code y as

Z+3+Z+w*+S+I+I+w+ .... However, in [7], we show that C {c f i ) } is a

recursively enumerable set and that there must be a "nicer" code for y.

That is, there is an x' which presents y as Z+c(I)+Z+c(Z)+ ....

This suggests the following.

presents

y if

r(y) finite. Suppose that x

x is an almost nice code for

Let vA(x) = y,

We will say that

DEFINITION 5 A

y as h (i) .
S

whenever i and j are consecutive elements of S, r(y(i)+y(j))

r(y).
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In 0, we are allowed to code the 0 ordering. In fact, since
we only have Z sums, to code essentially finite sums we must use the

o ordering and could never meet the requirements of the above defini

tion. Therefore, we propose the following alternative.

DEFINITION 5 ° Suppose r(y) is finite, vO(x) = y, and x = 3Y' 5z .

We will say that x is an almost nice code for y if [ (1' = 2 andy
l' z (i) f 2 for i EO N) or (1'y 2 and hl1' (i) f 2} is an initialz
segment of N) or (1'y (i) f 2 for i e N and 1'z  2) or (for

i e N l' (i) f 2 and l' z (i) f 2) J and [for all consecutive pairs ofy
elements i,j in Z, y(i) = 0, or y(j) = 0, or r(y(i)+y(j)) =

r (y) .]

s, we will say that an almost nice code x

T2(s,x) are almost nice.
A n S. = R n S. for i = 0,1 and that all

1 1
are nice. Recall that for a family of order

Rl are nice. This also implies that every almost

AZ is also nice. On the other hand, there are codes
are almost nice but not nice. There are, of course,

and Z in 0 which are not nice.

Al
y e

which

w, w*,

for y e 02

codes for

DEFINITION 6 In a system

is a nice code if all nodes of

We observe below that

codes for y EO Sl in A
types F, F = F n S .

Ci. Ci.

AO = {O,l} = RO' There is no code for 0 in A, and 1 is the
nlonly code for 1 in A. Al N U {O,w,w*,Z} = Rl. 2 ·3·5 •.. Pn is

the only code for n in A, n > 1. {3u l1' = I} are the only codesu
for w in A. {Sul1' = I} are the only codes for w* in A.u
{7u ' 11u l1' = I} are the only codes for Z in A. All codes in A ofu
order types in

nice code for

then, as for Zrepresentations,

is nice. On the other hand,

have nice codes in 0.

We will now show that if y EO A2,
at least one of the codes for y in A

we will show that not all elements of 02

These two facts will imply that 0 f A.

LEMMA 7 If y e A2, then there is a nice code for y in A.

Sketch of proof. All codes in A for order
nice. Therefore, any almost nice code for y in
for y. We must show that y has an almost nice
suppose y = vA (3 x) = L vMx(i) . The only way

iew

types in Al are
A2 is a nice code

code. For example,

3x could fail to be

almost nice is for there to be one or more pairs (n,m) such that
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m
r(,L vA¢x(i)) = 1 or 0 < 2, where 1 < n < m < 00, For example, if

l=n

*vA¢x(l) = w , vA¢ (2) = 5, and vA¢x(3) = Z. Then vA¢x(1)+vA¢x(2)
* xw AI' We would let f(l) code w* which equals w*+5, and let

f(2) code Z. We attempt to continue in this way supplying an algorithm

for a recursive function f. 3Y will be a nice code for y = vA(3x),

where ¢y f. There is only one obstruction; if m = 00 for one of the

bad pairs (n,m). In this case, we define f(l) through f(j), j n,

but never define f(j+l) because r(.2 vA¢x(i)) 1 or O. However, in
l=n

this case y = vAf(l)+ ... +vAf(j)+vA(w), where w is a code for

2 vA¢ (i). Therefore y has a nice code which presents y as a
i=n x

finite sum. In any case, y does have a nice code.

Notice that in the above proof, we never can tell if f will end

up a total function or if we never define f(K+l) for some K. In the

latter case all we really need is a finite sum. For this reason, the

above proof does not supply a uniform procedure which takes an arbitrary

code to a nice code. It describes a procedure which will succeed if it

has to, but never tells us which case we are in. With a uniform pro

cedure we could proceed by induction to A3,A4, etc. However, we can

not improve upon the above proof, and in fact, there is not necessarily

a nice code for y in A3, [7].

LEMMA 8 There is a y 0z with no nice code in O.

Proof. We define a recursive operator Suppose ¢e(l)""'¢e(K),

and have been evaluated and actual values are found

for each of them. Perform one more stage of the computation of ¢e(K+l).

If at this point a value for ¢ (K+l) is found, then define (n+l)e e
to be 4, (the code for 1 in 0). Otherwise, define to be

2, (the code for 0 in 0). Let f be a recursive function such that

= ¢f(e)' Let ¢u  2, ¢v  4, and define ¢z(K)

if K

if K

Zn, n > 1

Znl, n > 1

Let x = 3u'5 z, then x is in the domain of O.
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vO(x)

(w* + .I +
lew

I (i)) +Z+ ...
iew

(w* + I +
iew

I ...
iew

If is total, then 4, coding 1, for infinitely many
i. Otherwise, = 4 for only finitely many i. Therefore,
vO(x) = (w*+a(l))+Z+(w*+a(Z))+Z+ ... , where a(i) is finite iff
is not recursive, and a(i) is w otherwise.

t
vO(x) e OZ' Suppose it has a nice code x

Then, vO¢n(Ze-1) = Z iff ¢ is total, and w*
e a b

fore, ¢e is recursive iff ¢n(2e-1) = 3 -5 and
¢e is recursive if ¢n(2e 1) is a (nice) code for
This contradiction completes the proof.

3u_Sn for some n.

otherwise. There-

¢b(l) 2, since
Z, and not w*.

COROLLARY 9

Proof. Let y be the element of Oz with no nice code given
above in the proof of Lemma 8. If y were in A2' then y would
have a nice code in A, by lemma 7. If x were such a nice code in
A for y, then x = 3n and 71¢n(2e-1) iff ¢e is total. This is
impossible. Therefore y " A••

s. ° R

LEMMA 10 If yeO such that y = I (Z-a(i)+c(i)), where
w

a(i),c(i) e N, then C = {c(i)} is a [3 set.

Sketch of proof. First we must verify that even for the most
general presentation of y = vO(3Y-S z) , x e C iff there are a group of
finite summands in the presentation adding up to x, and surrounded by
summands they cannot be absorbed into, (i.e., w*+3+2+w = w*+w = Z).
Then we must verify that this holds iff

3i3j i < j &



The i t h summand in the presentation ends up with w
is w or Z) . &
The j th summand in the presentation begins with w*
is w* or Z) . &
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( 1)

(actually

(Z)
(actually

(3) All summands strictly between the i t h and the jth in the

presentation are finite (including possibly 1 or 0). &
(4) The total sum of all summands, strictly between the i t h

and jth, is x.

(1) and (Z) can be expressed as a IT Z relation R(i,j), and (3) and

(4) as a EZ relation T(i,j,x). x E C iff 3i3j
(i < j n R(i,j) n T(i,j,x)). Therefore, C is a E

3
set.

COROLLARY 11
then C is a

If c(i)
1:1 3 set.

from lemma 10 is a strictly increasing function,

Proof. Let S(i,j,x) = R(i,j) &T(i,j,x). Then, S is EZ A rr Z'
and x C iff 3i3j (i < j &S(i,j,x)). Here we know also that
[S(i,j,x) and S(u,v,w)] -+ (i 'S u...,j 'S v-x 'S w). Therefore, to
determine whether x C, we could search through all the triples
(u,v,w) with u < v, until we find S(u,v,w) holds where w > x.

(This assumes that lei is infinite, otherwise, C is trivially E
3.)

Then x E C iff S(i,j,x) holds for some i < j where i < u and

j 'S v. Therefore, there is a procedure, recursive in S which is
EZ A rr Z' determining membership in C. Therefore, C is a 1:1 3 set .•

COROLLARY 1Z o f R.

Proof. It is known [6 and 1] that if C is a E3 set, then

there is ayE R such that y L (Z'a(i)+c(i)), and c(i) < c(j)
iff i < j, C = {c(i)}. This combined with the previous corollary
yields the desired result.

6. J J

We now know that A 0 ; R. Three of the concepts and features

used to reach the above conclusion were as follows: nice codes, the

fact that summands in a presentation must have lower rank than their

sum, and the restriction of using only total recursive functions for
forming codes.
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the role in J that it did in O.

Let JRO = {Z,4}. Suppose JRS
be the collection of codes in J,
Let jr(x) = the J-rank of

< a. Let JRa
a,b e U JRS'13<a

x the least ordinal a such that y e JRa In J, it is easier to

perform a proof by induction on J-rank than by induction on rank.
Clearly, for all x in the domain of va, vO(x) vJ(x). Also

we can prove pvJ(x) R, just as we proved pvO(x) using trees

Tl and TZ' Therefore, 0 C J CR. We will now show that 0 f J, by
showing that the order type from corollary lZ is in J.

In this section, we will use the concepts mentioned above to
indicate new possible directions. We will start by defining J-
constructive scattered order types, where we will not require that
presentations show a jump in rank from the summands to the sum.

The definition of J and vJ is then the same as 0 and va,

except from definition lOwe drop the requirement that < ry,
for e = y, z ,

The notion of rank cannot play

Instead we define J-rank on codes.
is defined for all S
x = 3a'Sb, such that

LEMMA 13 If C is L
3,

then there is aye J such that

y = Zal+cl+ZaZ+cZ+"" where c i < c j iff i < j, and where C

where

o + = nrwVJ(h(n))

L [w* + L (a(K,n)+n+a(K,n)*)],
new Keto

L vJ(gn(K))]
Kew

then

L [w* +
new

Proof. We will adjust the construction of a recursive set A of
order type y, referred to in corollary lZ, to a construction of a
code for y in J. To do this we will apply the method used to prove
lemma 8. Let nee iff 3xVy3z S(x,y,z,n) iff 3!xVy3z S(x,y,z,n).
For each n e N, let gn be defined by gn(3K-Z) = 3m.Su(n,K),

vJ(gn(3K-I)) = n, and gn(3K) = 3u(n,K).sm, where = Z, so
m K

codes 0 for all i in N, and where u(n,K) codes f n,
defined as follows. Look for a Z(l) such that S(K,I,Z(l),n) holds.

Define fK(t) = Z until such a Z(I) is found at time tel). Let
n 4, which codes 1. Starting with t(l)+l, do the same for

S(K,Z,Z(Z),n), etc. Let v be a code for h where h is defined by
vJ(h(Zi-I)) = w*, and h(Zi) 3m'S a ( i ) where gi. Let
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a(K,n) = (0+0+ ... +0+1+0+0+ ... +0+1+0+0+ ... +0+1+0+0+ ... ).
tel) t(2) t(3)

If nEe, then a(K,n) = w for a single K, otherwise, a(K,n) is

finite. Therefore, for each n,

L (a(K,n)+n+a(K,n)*)
KEW

{

( f i n i t e ) +... +(finite)+w+n+W*+(finite)+(finite)+ ...

= w+n+Z if nEe

(finite)+(finite)+ ... = w if n f C

Therefore, for each n, w* + L (a(K,n)+n+a(K,n)*)
KEW

if nEe

iff n f c.

DEFINITION 15

Therefore, vJ(3m'5v) is L [Z(c(i)-c(i-l)+l)+c(i)] .•
iEw

COROLLARY 14 0] J.

Proof. This follows from corollary 11 and lemma 13.

Next, we will generalize J to J' in an attempt to include more

of R. We allow the use of partial functions to form codes. Note that

if we define vJ' (undefined) to be a nonzero order type, then we can-
not hope to have J' C R.

vJ' (2) = 0, ».r ' (4) = 1, vJ' (3 a • 5b) = L vJ' ¢ ( i) +
w* a

where L a(i) is interpreted as L o{L) where
D D'

D' = {i E DI a(i) is defined}.

Note, that by omitting undefined summands

vJ' (undefined) = 0 to the definition of
analogous to J-rank.

we are essentially adding
vJ. We define J'-rank

DEFINITION 16 J' range of vJ'.
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LEMMA 17 J' J.

2

¢a(i)
and

C " )Proof. J _ J , because vJ (x) = vJ(x) whenever vJ(x is

defined. To show that J' C J we will establish the existence of ¢m
such that vJ¢m(x) = vJ'(x) whenever vJ' (x) is defined. As in the

proof of lemma 3 we start by defining a collection of mappings

which try to be ¢m' and let the fixed point theorem tell us which
works. Essentially, stalls by using zeros waiting to see ifz z

anything is being coded. If nothing ever happens we end up with zero.
If a value is produced, we use it.

Let ¢u = 2, let = 2, = 4, = 3x.SY, where

¢x(i) = 3P(i).su, ¢y(i) 3u.Sq(i) where ¢ 0 (j) = 2 for all j, p (1)
if searching for ¢a(i) never yields any value, and ¢p(i)(j) for
j r k(i)+l, and ¢ (0) (k(i)+l) = ¢ ¢ (i), if the search forp 1 Z a
terminates successfully at stage k(i) of the search. ¢q(i)
L(i) are defined using ¢b

defined using ¢a' That is,

if ¢b (i) is defined, and

in the same way as ¢p(i) and k(i) were

{¢q (i) (j) }j eto = {2, ... , 2, ¢z¢b (i) , 2 , 2, 2, ... } ,
L(i) times

¢q (i) = 2, if ¢b (i) is no t defined.

Let = ¢f(z)'¢m ¢f(m) = using the fixed point theorem.
We claim that vJ¢mCx) = vJ' (x), whenever vJ'(x) is defined. Assume

3a·Sb = x is a counterexample of minimal J'- rank. This leads to a

contradiction as follows. vJ¢ C3 a.Sb) = vJ(3x.SY) = L vJ¢ (i) +
m * x

L vJ¢ (i) = L vJC3P(i).su)+L vJ(3u.Sq(i))= I [L CO)(j)+
w Y w* w iew* jew* p 1

L vJ'¢a(i)+L vJ'¢b(i)
w* w
is a counterexample.that

implies vJ¢m¢b(i) = VJ'¢bCi),
a a

vJ' C3a. Sb). This contradicts

.L vJ¢u(j)]+oL [) *VJ¢u(j)+oL vJ¢q(i)(j)]
Jew lew Jew Jew K(i) times
L [···vJ(2)+ ... +vJ(2)+vJC2) or vJ¢ ¢ (i)+vJ(2)+ ... +vJ(2)+ La]

iew* m a jew

+ L [( La) +vJ(2)+ ... +vJ(2)+vJ(2) or vJ¢m¢b(i)+vJ(2)+ .. . +vJ(2)+ ... ].
Leto jew* L(i) times

By the induction hypothesis, height TlCJ' '¢b(i)) < height Tl(J' ,3a.Sb)

a
so the above =

In another direction, we could define N to be the collection of
order types in A with nice codes. This is equivalent to using 0

instead of A since an order type has a nice code in A iff it has a

nice code in O. The nice constructive order types have already played
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an important role in our discussion and provide our strongest notion of
effectively constructed order types. However, we have defined nice

codes only for order types of finite rank. In [7], we discuss why a
satisfactory extension of this concept to infinite ranks seems unlikely.
(The explanation refers to the actual systems of notation.) In any

case, we already know that NZ = AZ' N3 $ A3, N A.

We have been interested only in scattered order types. It would
take only slight modifications to extend our definitions to non

scattered order types. Pinus does not restrict his definition in [4]
to scattered order types.

We will close by stating, as a theorem, a summary of the relation
ships between the alternate definitions of constructive order types.

THEOREM 1. R JJ,:)O:>A- + +
Z. AZ NZ' but A3 ? N3•

3. Rl J l o = Al = Nl, but Jz?OZ?AZ'1

4. J' J.

We wish to use these new concepts to settle questions about recur

sive order types. As explained in the introduction, one such use has
already been made, [7]. One goal is to find a constructive definition
for R. If not all of R, then perhaps we could find a constructive

definition for a family of order types in R sharing a certain proper
ty. For example, if y A, then there is a set A of order type y
such that A has a recursive successor function, [7]. Can A be
characterized by this property? On the other hand, nonconstructive

elements of R may be a source of counterexamples.
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