Skip to main content

Total Synthesis and Chemical Modification of the Aminoglycoside Antibiotics

  • Chapter
Aminoglycoside Antibiotics

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 62))

Abstract

The number of structurally elucidated aminoglycoside antibiotics of microbial origin is now about one hundred. Various aminoglycoside antibiotics have been introduced into, and have become established in, chemotherapy. The study of this group of antibiotics has provided some fascinating and challenging problems in the field of carbohydrate chemistry. After several decades of work on the determination of chemical structures of naturally occurring aminoglycoside antibiotics, it was inevitable that organic chemists would turn their attention toward total synthesis; however, the synthetic chemistry of this important group of antibiotics was rather slow in developing until the end of the 1960s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe Y, Nakagawa S, Fujisawa K, Naito T, Kawaguchi H (1977) Aminoglycoside antibiotics. XI. synthesis and activity of 4-deoxykanamycin B. J Antibiot (Tokyo) 30:1004–1007

    PubMed  CAS  Google Scholar 

  • Akita E, Horiuchi Y, Miyazawa T (1979 a) Synthesis of 3’-epi-4’-deoxykanamycin B through 3’-epi-3’,4’-anhydro intermediate. Heterocycles 13:157–162

    CAS  Google Scholar 

  • Akita E, Horiuchi Y, Miyazawa T, Umezawa H (1979 b) l-N-(ω-Aminoalkanesulfonyl) derivatives of aminoglycosidic antibiotics. German patent 2,825,289. Chem Abstr 90:204434n

    Google Scholar 

  • Albano E, Horton D, Tsuchiya T (1966) Synthesis and reactions of unsaturated sugar. IV. Methyl 4,6-0-benzylidene-a-D-erythro-hex-2-enopyranoside and its hydrolysis by acid. Carbohydr Res 2:349–362

    CAS  Google Scholar 

  • Arcamone F, Cassinelli G, Cuccia PB, Di Colo G (1974) Synthesis of β β -D-ribofuranosyl derivatives of paromamine. Ann Chim 64:485–496

    CAS  Google Scholar 

  • Asako T, Yoshioka K, Mabuchi H, Hiraga K (1978) Chemical transformation of 3’-chloro- 3’-deoxy aminoglycosides into new cyclic pseudotrisaccharides. Heterocycles 11:197–202

    CAS  Google Scholar 

  • Baer H, Bell AJ (1978) Synthesis of 3,3-dinitro and 3,3’-diamino derivatives of a,a-trehalose and its D-gluco, D-manno and D-manno, D-manno isomers. Can J Chem 56:2872–2878

    CAS  Google Scholar 

  • Baer H, Bell AJ (1979) The synthesis of 3-amino-3-deoxy-α-D-glucopyranosyl-α-D-glyco-pyranoside (3-amino-3-deoxy-α,αtrehalose). Carbohydr Res 75:175–184

    CAS  Google Scholar 

  • Barlow CB, Guthrie RD (1967) Configurational studies on amino-sugars using cupram-monium solutions. J Chem Soc (C) 1194–1197

    Google Scholar 

  • Barlow CB, Bukhari ST, Guthrie RD, Prior AM (1979) Study of cuprammonium complex- ing of diols and amino-alcohols using circular dichroism techniques. J Carbohydr Nucleosides Nucleotides 6:81–99

    CAS  Google Scholar 

  • Barrett AGM, Barton DHR, Bielski R (1979) Reactions of relevance to the chemistry of aminoglycoside antibiotics. Part 11. Preparation of olefines from vicinal diols. J Chem Soc [Perkin I] 2378–2381

    Google Scholar 

  • Barton DHR, McCombie SW (1975) A new method for the deoxygenation of secondary alcohols. J Chem Soc [Perkin I] 1574–1585

    Google Scholar 

  • Barton DHR, Subramanian R (1977) Reactions of relevance to the chemistry of aminoglycoside antibiotics. Part 7. Conversion of thiocarbonate into deoxy-sugars. J Chem Soc [Perkin I] 1718–1728

    Google Scholar 

  • Bartz QR, Controulis J, Crooks HM Jr, Rebstock MC (1946) Dihydrostreptomycin. J Am Chem Soc 68:2163–2166

    PubMed  CAS  Google Scholar 

  • Bell RH, Horton D, Williams DM, Winter-Mihaly E (1977) Photochemical conversion of sugar dimethylthiocarbamates into deoxy sugars. Carbohydr Res 58:109–124

    PubMed  CAS  Google Scholar 

  • Billingham NC, Jackson RA, Malek F (1977) Radical-initiated reduction of chloroformâtes to alkanes by tri-n-propylsilane: removal of unwanted hydroxyl groups from organic molecules. J Chem Soc Chem Commun 344–345

    Google Scholar 

  • Bodanszky M (1954) Streptomycin derivatives. Acta Chim Acad Sci Hung 5:97–104; Chem Abstr 50:354

    CAS  Google Scholar 

  • Bristol-Myers Co (1973) γ-Aminoacylation of tobramycin. German patent 2,311,524

    Google Scholar 

  • Bystricky S, Fric I, Stanek J, Capec K, Jary J, Blaha K (1979) Conformation of 3-acetami- do-3,6-dideoxyhexopyranosides: circular dichroism study. Czech Acad Sci 44:174–182

    CAS  Google Scholar 

  • Canas-Rodriguez A (1977) Synthetic aminoglycosides. German patent 2,726,113; Chem Abstr 88:170438 h

    Google Scholar 

  • Canas-Rodriguez A, Martinez-Tobed A (1979) The synthesis of 2,5-dideoxy-4,6-di-O-(2,3- dideoxy-α-D-erythro-hexopyranosyl)streptamine and 4,6-di-O>-(6-amino-2,3,6-trideoxy- α-D-erythro-hexopyranosyl)-2,5-dideoxystreptamine. Carbohydr Res 68:43–53

    CAS  Google Scholar 

  • Canas-Rodriguez A, Ruiz-Poveda SG (1977) Syntheses of 3’,4’,5,6-tetradeoxyneamine and 5,6-dideoxyneamine. Carbohydr Res 58:379–385

    PubMed  CAS  Google Scholar 

  • Carney RE, McAlpine JE (1978) Use of copper (II) ion in selective acylation of seldomycin factor 5. Abstracts of the 175th National Meeting of the Am Chem Soc, Anaheim Calif. March 13–17 Paper CARB 46

    Google Scholar 

  • Carney RE, Rosenbrook W Jr (1977) Spectinomycin modification. III. Chlorodeoxy analogs. J Antibiot (Tokyo) 30:960–964

    PubMed  CAS  Google Scholar 

  • Carney RE, McAlpine JB, Jackson M, Stanaszek RS, Washburn WH, Cirovic M, Mueller SL (1978) Modification of seldomycin factor 5 at C-3’. J Antibiot (Tokyo) 31:441–450

    PubMed  CAS  Google Scholar 

  • Cassinelli G, Franceschi G, Dicols G, Arcamone F (1978 a) Semisynthetic aminoglycoside antibiotics. I. New reactions of paromomycin and synthesis of its 2’-N-ethyl derivative. J Antibiot (Tokyo) 31:379–381

    PubMed  CAS  Google Scholar 

  • Cassinelli G, Julita P, Arcamone F (1978 b) Semisynthetic aminoglycoside antibiotics. II. Synthesis of analogues of paromomycin modified in the glucosamine moiety. J Antibiot (Tokyo) 31:382–384

    PubMed  CAS  Google Scholar 

  • Chazan JB, Gasc JC (1976) Synthese d’antibiotiques aminosidiques â partir de desosamine. Tetrahedron Lett 3145–3148

    Google Scholar 

  • Claes P, Vanderhaeghe H, Verlody L (1971) Preparation of dideguanylstreptomycylamine and bis-N,N’-(dideguanylstreptomycyl)-Р-xylylenediamine. Bull Soc Chim Belg 80:659–667

    CAS  Google Scholar 

  • Cléophax J, Due DK, Dalaumény JM, Géro SD, Rolland A (1978 a) Synthesis of α-linked 3’-deoxy-cyclitol and -aminocyclitol glycosides. J Chem Soc Chem Commun 771–773

    Google Scholar 

  • Cléophax J, Delaumény JM, Gero SD, Rolland A, Rolland N (1978 b) Synthesis of α-linked 3-deoxy-pseudo-di- and -tri-saccharides related to aminocyclitol-glycoside antibiotics. J Chem Soc Chem Commun 773–773

    Google Scholar 

  • Collins PM, Munasinghe VRZ (1977) Photochemical preparations of deoxysugars from carbohydrate esters: a simple synthesis of methyl amicetoside. J Chem Soc Chem Commun 927–928

    Google Scholar 

  • Cox DA, Richardson K, Ross BC (1977) The aminoglycosides. In: Sammes PG (ed) Topics in antibiotic chemistry, vol 1. Wiley & Sons, New York London Sydney Toronto, pp 1- 90

    Google Scholar 

  • Cron MJ, Smith RE, Hooper IR, Keil JG, Ragan EA, Schreiber RH, Schwab G, Godfrey JC (1969) Preparation of semisynthetic kasugamycin derivatives. I. Aliphatic amidino derivatives of kasuganobiosamine. Antimicrob Agents Chemother 219–224

    Google Scholar 

  • Cron MJ, Keil JG, Lin JS, Ruggeri MV, Walker D (1979) Selective N-acylation of kanamycin A. J Chem Soc Chem Commun 266–267

    Google Scholar 

  • Culbertson TP, Watson DR, Haskell TH (1973) 5”-Amino-5”-deoxybutirosin, a new semisynthetic aminoglycoside antibiotic. J Antibiot (Tokyo) 26:790–793

    PubMed  CAS  Google Scholar 

  • Daniels PJL (1975) 2’’-Deoxyaminoglycosides and 2’’-epi-amino-3’’-desamino derivatives and intermediates. US patent 3,920,628; Chem Abstr 84:59967h

    Google Scholar 

  • Daniels PJL (1978) Aminoacyl derivatives of aminoglycoside antibiotics. US patent4,117,221; Chem Abstr 90:87839k

    Google Scholar 

  • Daniels PJL, McCombie SW (1977) 5-Deoxy-4,6-di-O-(aminoglycosyl)-l,3-diamino- cyclitols and their use as antibacterial agents. US patent 4,053,591; Chem Abstr 88:23338x

    Google Scholar 

  • Daniels PJL, Rane DF (1978) 5-Epifluoro-5-deoxy derivatives. S African patent 7806,385;Chem Abstr 90:104301 y

    Google Scholar 

  • Daniels PJL, Weinstein J, Nagabhushan TL (1974) The syntheses of l-N[(S)-3-amino-2-hydroxypropionyl]gentamicin C1. J Antibiot (Tokyo) 27:889–893

    PubMed  CAS  Google Scholar 

  • Daniels PJL, Luce C, Nagabhushan TL, Jaret RS, Schumacher D, Reimann H, Ilavsky J (1975) The gentamicin antibiotics. 6. Gentamicin C2b, an aminoglycoside antibiotic produced by Micromonospora purpurea mutant JI-33. J Antibiot (Tokyo) 28:35–41

    PubMed  CAS  Google Scholar 

  • Daniels PJL, Jaret RS, Nagabhushan TL, Turner WN (1976 a) The structure of antibiotic G-52, a new aminocyclitol-aminoglycoside antibiotic produced by Micromonospora zionesis. J Antibiot (Tokyo) 29:488–491

    PubMed  CAS  Google Scholar 

  • Daniels PJL, Mallams AK, Weinstein J, Wright J J (1976 b) Mass spectral studies on aminoglycoside antibiotics. J Chem Soc [Perkin I] 1087–1088

    Google Scholar 

  • Daniels PJL, Cooper AB, McCombie SW, Nagabhushan TL, Rane DF, Wright JJ (1979) Some recent advances in the chemistry of antibiotics of the gentamicin series. Jpn J Antibiot [Suppl] 32:S195-S204

    PubMed  CAS  Google Scholar 

  • David S, Lubineau A (1977) Cycloaddition as a synthetic method in the field of aminoglycoside antibiotics. Nouv J Chim 1:375–376

    CAS  Google Scholar 

  • Davies DH, Mallams AK (1978) Semisynthetic aminoglycoside antibacterials. 6. Synthesis of sisomicin, antibiotic G-52, and novel 6’-substituted analogues of sisomicin from aminoglycoside 66–40C. J Med Chem 21:189–193

    PubMed  CAS  Google Scholar 

  • Davies DH, Greeves D, Mallams AK, Morton JB, Tkach RW (1975) Structure of the aminoglycoside antibiotics 66–40B and 66–40D produced by Micromonospora inyoensis. J Chem Soc [Perkin I] 814–818

    Google Scholar 

  • Davies DH, Mallams AK, McGlotten J, Morton JB, Tkach RW (1977) Structure of aminoglycoside 66–40C, a novel unsaturated imine produced by Micromonospora inyoensis. J Chem Soc [Perkin I] 1407–1411

    Google Scholar 

  • Deshayes H, Pete J, Portella C, Scholler D (1975) Photolysis of carboxylic esters: Conversion of alcohols into alkanes. J Chem Soc Chem Commun 439–440

    Google Scholar 

  • Doi O, Ogura M, Tanaka N, Umezawa H (1968) Inactivation of kanamycin, neomycin, and streptomycin by enzymes obtained in cells ofPseudomonas aeruginosa. Appl Environ Microbiol 16:1276–1281

    CAS  Google Scholar 

  • Dorman DE, Paschal JW, Merkel KE (1976) 15N Nuclear magnetic resonance spectroscopy. The nebramycin aminoglycosides. J Am Chem Soc 98:6885–6888

    PubMed  CAS  Google Scholar 

  • Dutcher JD, Hosansky N, Donin MN, Wintersteiner O (1951) Neomycin B and C, and some of their degradation products. J Am Chem Soc 73:1384–1385

    CAS  Google Scholar 

  • Dyer JR, McGonigal WE, Rice KC (1965) Streptomycin. II. Streptose. J Am Chem Soc 87:654–655

    CAS  Google Scholar 

  • Egan RS, DeVault RL, Mueller SL, Levenberg MI, Sinclair AC, Stanaszek RU (1975) A new antibiotic XK-62–2. III. The structure of XK-62–2, a new gentamicin C complex antibiotic. J Antibiot (Tokyo) 28:29–34

    PubMed  CAS  Google Scholar 

  • Egan RS, Sinclair AC, De Vault RL, McAlpine JB, Mueller SL, Goodley PC, Stanaszek RS, Cirovic M, Mauritz RJ, Mitscher LA, Shirahara K, Sato S, Iida T (1977) A new aminoglycoside antibiotic complex - the seldomycins. III. The structure of seldomycin factors 1 and 2. J Antibiot (Tokyo) 30:31–38

    PubMed  CAS  Google Scholar 

  • Endo T, Perlman D (1972) Transglycosylation of neamine. J Antibiot (Tokyo) 25:681–682

    PubMed  CAS  Google Scholar 

  • Evans ME, Parrish FW, Long L Jr (1967) Acetal exchange reaction. Carbohydr Res 3:453–462

    CAS  Google Scholar 

  • Foley L, Lin JTS, Weigele M (1978 a) Spectinomycin chemistry. II. 9-Deoxy-4(R)-dihydrospectinomycin and 9-deoxyspectinomycin. J Antibiot (Tokyo) 31:979–984

    PubMed  CAS  Google Scholar 

  • Foley L, Lin JTS, Weigele M (1978 b) Spectinomycin chemistry. III. 9-Epi-4(R)-dihydrospectinomycin and 9-epi-spectinomycin. J Antibiot (Tokyo) 31:985–990.

    PubMed  CAS  Google Scholar 

  • Foley L, Lin JTS, Weigele M (1979) Preparation of 7-deoxyspectinomycin and 7-deoxy-8-epi-4(R)-dihydrospectinomycin. J Antibiot (Tokyo) 32:418–419

    PubMed  CAS  Google Scholar 

  • Fukami H, Sano H, Nakajima M (1975) Synthesis of a positional isomer of neamine: 5-O- (2,6-diacetamido-2,6-dideoxy-α-D-glucopyranosyl)-N, N’-diacetyl-2-deoxystreptamine. Agric Biol Chem 39:1097–1101

    CAS  Google Scholar 

  • Fukami H, Kitahara K, Nakajima M (1976) Total synthesis of ribostamycin. Tetrahedron Lett 545–548

    Google Scholar 

  • Fukami H, Kohno H, Kitahara K, Nakajima M (1977 a) Syntheses of ribofuranosyl-2-deoxystreptamines. Agric Biol Chem 41:1685–1688

    CAS  Google Scholar 

  • Fukami H, Ikeda S, Kitahara K, Nakajima M (1977 b) Total synthesis of ribostamycin. Agric Biol Chem 41:1689–1694

    CAS  Google Scholar 

  • Fukase H, Mizokami N, Horii S (1978) A new method for the 3’-deoxygenation of butirosin A and B. Carbohydr Res 60:289–302

    PubMed  CAS  Google Scholar 

  • Golubev VN, Koroleva VG, Vasil’ev VK, Lazareva EN (1970) Long-acting streptomycin.Antibiotiki (in Russian) 15:491–494;

    PubMed  CAS  Google Scholar 

  • Golubev VN, Koroleva VG, Vasil’ev VK, Lazareva EN (1970) Long-acting streptomycin.Chem Abstr 73:64657j

    Google Scholar 

  • Hanessian S, Haskell TH (1970) Antibiotics containing sugars. In: Pigmann H, Horton D (eds) The carbohydrates chemistry and biochemistry, vol II A. Academic Press, New York London, pp 139–211

    Google Scholar 

  • Hanessian S, Lavallée P (1972) Synthesis of 6-amino-6-deoxy-α,α-trehalose: A positional isomer of trehalosamine. J Antibiot (Tokyo) 25:683–688

    PubMed  CAS  Google Scholar 

  • Hanessian S, Patil G (1978) Aminoglycoside antibiotics - a method for selective N-acylation based on the temporary protection of amino alcohol functions as copper chelates. Tetrahedron Lett 1035–1038

    Google Scholar 

  • Hanessian S, Roy R (1979a) Synthesis of (+)-spectinomycin. J Am Chem Soc 101:5839- 5841

    CAS  Google Scholar 

  • Hanessian S, Roy R (1979 b) Studies directed toward the total synthesis of antibiotics:(+)-spectinomycin. Jpn J Antibiot (Tokyo) [Suppl] 32:S73-S90

    PubMed  CAS  Google Scholar 

  • Hanessian S, Butterworth RF, Nakagawa T (1973) Aminoglycoside antibiotics: chemical transformation of paromamine into 3-epiparomamine. Carbohydr Res 26:261–263

    PubMed  CAS  Google Scholar 

  • Hanessian S, Takamoto T, Massé R (1975) Aminoglycoside antibiotics: oxidative degradation leading to novel biochemical probes and synthetic intermediates. J Antibiot (Tokyo) 28:835–837

    PubMed  CAS  Google Scholar 

  • Hanessian S, Massé R, Capmeau ML (1977) Aminoglycoside antibiotics: synthesis of 5”- amino-5’’-deoxyneomycin and 5’’-amino-5’’-deoxyparomomycin. J Antibiot (Tokyo) 30:893–896

    PubMed  CAS  Google Scholar 

  • Hanessian S, Takamoto T, Massé R, Patil G (1978 a) Aminoglycoside antibiotics: chemical conversion of neomycin B, paromomycin, and lividomycin B into bioactive pseudosac- charides. Can J Chem 56:1482–1491

    CAS  Google Scholar 

  • Hanessian S, Massé R, Ekborg G (1978 b) Aminoglycoside antibiotics: the formation and characterization of dihydroxazine derivatives in the paromomycin series. Can J Chem 56:1492–1499

    CAS  Google Scholar 

  • Hanessian S, Ogawa T, Takamoto T (1978 c) Aminoglycoside antibiotics: synthesis of pseu- dotrisaccharides derived from neamine and paromamine. Can J Chem 56:1500–1508

    CAS  Google Scholar 

  • Hanessian S, Massé R, Nakagawa T (1978 d) Aminoglycoside antibiotics: studies directed toward the selective modification of hydroxyl groups: synthesis of 3’-epiparomamine and 3’-epineamine. Can J Chem 56:1509–1517

    CAS  Google Scholar 

  • Harayama A, Tsuchiya T, Umezawa S (1979) A synthesis of neamine. Bull Chem Soc Jpn 52:3626–3628

    CAS  Google Scholar 

  • Haskell TH, Woo PWK, Watson DR (1977) Synthesis of deoxy sugars. Deoxygenation of an alcohol utilizing a facile nucleophilic displacement step. J Org Chem 42:1302–1305

    PubMed  CAS  Google Scholar 

  • Hayashi T, Takeda N, Saeki H, Ohki E (1977) Deoxysugar synthesis. III. Removal of vicinal mesyloxy groups with naphthalene-sodium. Chem Pharm Bull (Tokyo) 25:2134–2137

    CAS  Google Scholar 

  • Hayashi T, Iwaoka T, Takeda N, Ohki E (1978) Deoxysugar synthesis. IV. Deoxygenation of aminoglycoside antibiotics through reduction of their dithiocarbonates. Chem Pharm Bull (Tokyo) 26:1786–1797

    PubMed  CAS  Google Scholar 

  • Hayashi T, Saeki H, Takeda N, Ohki E (1979) 1-N-Alkyl analogs of butirosin. J Antibiot (Tokyo) 32:1280–1287

    PubMed  CAS  Google Scholar 

  • Heding H (1969) Methylstreptomycin. A new hydrogénation product of streptomycin. Tetrahedron Lett 2831–2832

    Google Scholar 

  • Heding H, Diedrichsen A (1975) Streptomycylamines. Difference in activity and mode of action between short-chain and long-chain derivatives. J Antibiot (Tokyo) 28:312–316

    PubMed  CAS  Google Scholar 

  • Heding H, Fredericks GN, Lutzen O (1972) New active streptomycin derivatives. Acta Chem Scand 26:3251–3256

    PubMed  CAS  Google Scholar 

  • Horii S, Fukase H, Kameda Y, Mizokami N (1978) A new method for selective N-acylation of aminoglycoside antibiotics. Carbohydr Res 60:275–288

    CAS  Google Scholar 

  • Igarashi K (1979) Chemical modification of tobramycin. Jpn J Antibiot (Tokyo) [Suppl] 32:S187-S194

    PubMed  CAS  Google Scholar 

  • Iinuma K, Kondo S, Maeda K, Umezawa H (1977) Total synthesis of minosaminomycin.Bull Chem Soc Jpn 50:1850–1854

    CAS  Google Scholar 

  • Ikeda D, Tsuchiya T, Umezawa S, Umezawa H (1972) Synthesis of butirosin B. J Antibiot (Tokyo) 25:741–742

    PubMed  CAS  Google Scholar 

  • Ikeda D, Tsuchiya T, Umezawa S, Umezawa H, Hamada M (1973 a) Synthesis of 3’,4’-dideoxybutirosin B. J Antibiot (Tokyo) 26:307–309

    PubMed  CAS  Google Scholar 

  • Ikeda D, Tsuchiya T, Umezawa S, Umezawa H (1973 b) Synthesis of 3-deoxyribostamycin.J Antibiot (Tokyo) 26:799–801

    CAS  Google Scholar 

  • Ikeda D, Tsuchiya T, Umezawa S, Umezawa H (1974) Synthesis of butirosin B and its 3’,4’-dideoxy derivative. Bull Chem Soc Jpn 47:3136–3138

    CAS  Google Scholar 

  • Ikeda D, Nagaki F, Umezawa S, Tsuchiya T, Umezawa H (1975) Synthesis of 3’-deoxy-butirosin B. J Antibiot (Tokyo) 28:616–618

    PubMed  CAS  Google Scholar 

  • Ikeda D, Nagaki F, Tsuchiya T, Umezawa S, Umezawa H (1976) Synthesis of l-7V-[(5)-4- amino-2-hydroxybutyryl]-3-deoxyribostamycin (3-deoxybutirosin B). Bull Chem Soc Jpn 49:3666–3668

    CAS  Google Scholar 

  • Ikeda D, Miyasaka T, Yoshida K, Iinuma K, Kondo S, Umezawa H (1979 a) The chemical conversion of gentamine Cla into gentamine C2 and its 6’-epimer. J Antibiot (Tokyo) 32:1357–1359

    PubMed  CAS  Google Scholar 

  • Ikeda D, Miyasaka T, Yoshida M, Horiuchi Y, Kondo S, Umezawa H (1979 b) Synthesis of istamycin A. J Antibiot (Tokyo) 32:1365–1366

    PubMed  CAS  Google Scholar 

  • Ikeda H, Shiroyanagi K, Katayama M, Ikeda H, Fujikami I, Sato T, Sugayama J (1956) Dihydrodeoxystreptomycin, a new reduction product of streptomycin. I. Preparation and characterization. Proc Jpn Acad 32:48–52; Chem Abstr 50:13765

    CAS  Google Scholar 

  • Ireland RE, Muchmore DC, Hengartner U (1972) N,N,N’N’-Tetramethylphosphorodiami- date group. A useful function for the protection or reductive deoxygenation of alcohols and ketones. J Am Chem Soc 94:5098–5100

    CAS  Google Scholar 

  • I to T, Akita E, Tsuruoka T, Niida T (1970) The synthesis of an aminocyclitol antibiotic SF-733. Agric Biol Chem 34:980–981;

    Google Scholar 

  • I to T, Akita E, Tsuruoka T, Niida T (1970) The synthesis of an aminocyclitol antibiotic SF-733.Antimicrob Agents Chemother 1:33–37

    Google Scholar 

  • Jikihara T, Tsuchiya T, Umezawa S, Umezawa H (1973) Studies on aminosugars. XXXV. Syntheses of 3’,4’-dideoxyneamine and 3’- and 4’-O-methylneamines. Bull Chem Soc Jpn 46:3507–3510

    CAS  Google Scholar 

  • Kavadias G, Dextraze P, Massé R, Belleau B (1978) Aminoglycoside antibiotics. The total synthesis of 5-deoxykanamycin A. Can J Chem 56:2086–2092

    CAS  Google Scholar 

  • Kavadias G, Droghini R, Pépin Y, Ménard M, Lapointe P (1979) Synthesis of a thio- analogue of neamine. The reaction of nitrosochloroadducts of glycals with thiols. Can J Chem 57:1056–1063

    CAS  Google Scholar 

  • Kawaguchi H, Naito T, Nakagawa S, Fujisawa K (1972) BB-K8, a new semisynthetic aminoglycoside antibiotic. J Antibiot (Tokyo) 25:695–708, 709–731 (1972); 26:297–350 (1973); 26:351–357 (1973)

    Google Scholar 

  • Kawaguchi H, Tomita K, Hoshiya T, Miyaki T, Fujisawa K, Kimeda M, Numata K, Ko- nishi M, Tsukiura H, Hatori M, Koshiyama H (1974) Aminoglycoside antibiotics. V. The 4-deoxybutirosins (BU-1975 C l and C2), new aminoglycoside antibiotics of bacterial origin. J Antibiot (Tokyo) 27:460–470

    PubMed  CAS  Google Scholar 

  • Kirby JP, Borders DB, Van Lear GE (1977) Structure of LL-BM 408, an aminocyclitol antibiotic. J Antibiot (Tokyo) 30:175–177

    PubMed  CAS  Google Scholar 

  • Kishi T, Tsuchiya T, Umezawa S (1979) Photochemical reaction at 3-O-functional group of methyl 4,6- O -cyclohexylidene-2-deoxy-2-methoxycarbonylamino-α-D-glucopyran- oside derivatives. Bull Chem Soc Jpn 52:3015–3018

    CAS  Google Scholar 

  • Kitahara K, Takahashi S, Shibata H, Kurihara N, Nakajima M (1969) Synthesis of methyl kasugaminide. Agric Biol Chem 33:748–754

    CAS  Google Scholar 

  • Knight JC, Hoeksema H (1975) Reduction products of spectinomycin. J Antibiot (Tokyo) 28:136–142

    PubMed  CAS  Google Scholar 

  • Koch KF, Rhoades J A (1971) Structure of nebramycin factor 6, a new aminoglycosidic antibiotic. Antimicrob Agents Chemother 1970:309–313

    Google Scholar 

  • Kohno H, Fukami H, Nakajima M (1975) Syntheses of neamine and its diastereomer; the condensation of protected 2,6-diamino-2,6-dideoxy-α-D-glucopyranosyl bromide with a 2-deoxystreptamine derivative. Agric Biol Chem 39:1091–1095

    CAS  Google Scholar 

  • Kondo S (1979) Some chemical modifications of aminoglycoside antibiotics. Jpn J Antibiot [Suppl] 32:S228-S236

    PubMed  CAS  Google Scholar 

  • Kondo S, Iinuama K, Yamamoto H, Maeda K, Umezawa H (1973) Syntheses of 1-N-[(S)- 4-amino-2-hydroxybutyryl]-kanamycin B and -3’4’-dideoxykanamycin B active against kanamycin-resistant bacteria. J Anbibiot (Tokyo) 26:412–415

    CAS  Google Scholar 

  • Kondo S, Yamamoto H, Iinima K, Maeda K, Umezawa H (1976) Syntheses of 6’,5”,6”“- triamino-6,5,6”“-tri-deoxylividomycin A and 6’,5-diamino-6’,5-dideoxylividomycin B. J Antibiot (Tokyo) 29:1134–1136

    PubMed  CAS  Google Scholar 

  • Kondo S, Miyasaka K, Yoshida K, Iinuma K, Umezawa H (1977) Syntheses and properties of kanamycin C derivatives active against resistant bacteria. J Antibiot (Tokyo) 30:1150–1152

    PubMed  CAS  Google Scholar 

  • Konishi M, Numata K, Shimoda K, Tsukiura H, Kawaguchi H (1974) Aminoglycoside antibiotics. VI. Structure determination of 4-deoxybutirosins (BU-1975 C1 and C2). J Antibiot (Tokyo) 27:471:483

    Google Scholar 

  • Kuehl FA, Flynn EH, Holly FW, Mozingo R, Folkers K (1947) Streptomyces antibiotics.XV. TV-Methyl-L-glucosamine. J Am Chem Soc 69:3032–3035

    PubMed  CAS  Google Scholar 

  • Kugelman M, Mallams AK, Vernay HF, Crowe DF, Tanabe M (1976 a) Semisynthetic aminoglycoside antibacterials. I. Preparation of selectively protected garamine derivatives. J Chem Soc [Perkin I] 1088–1097

    Google Scholar 

  • Kugelman M, Mallams AK, Vernay HF, Crowe DF, Detre G, Tanabe M, Yasuda DM (1976b) Semisynthetic aminoglycoside antibacterials. II. Synthesis of gentamicin X2 and related compounds. J Chem Soc [Perkin I] 1097–1113

    Google Scholar 

  • Kugelman M, Mallams AK, Vernay HF (1976 c) Semisynthetic aminoglycoside antibacterials. III. Synthesis of analogues of gentamicin X2 modified at the 3-position. J Chem Soc [Perkin I] 1113–1126

    Google Scholar 

  • Kugelman M, Mallams AK, Vernay HF (1976d) Semisynthetic aminoglycoside antibac- terials. IV. Synthesis of Antibiotic JI-20A, gentamicin B and related compounds. J Chem Soc [Perkin I] 1126–1134

    Google Scholar 

  • Kugelman M, Jaret RS, Mittelman S (1978) The structure of aminoglycoside antibiotic 66–40 G produced by Micromonospora inyoensis. J Antibiot (Tokyo) 31:643–645

    PubMed  CAS  Google Scholar 

  • Kumar V, Remers WA (1978) Aminoglycoside antibiotics. I. Regiospecific partial syntheses of ribostamycin and butirosin B. J Org Chem 43:3327–3331

    CAS  Google Scholar 

  • Kumar V, Remers WA (1979) Aminoglycoside antibiotics. 2. N,N-Dialkylkanamycins. J Med Chem 22:432–436

    PubMed  CAS  Google Scholar 

  • Kurath P, Grampovnik D, Tadanier J, Martin JR, Egan RS, Stanaszek RS, Cirvic M, Washburn WH, Hill P, Dunnigan DA, Leonard JE, Johnson P, Goldstein AW (1979) 4- N -Aminoacylfortimicins E. J Antibiot (Tokyo) 32:884–890

    Google Scholar 

  • Kyotani Y, Yamaguchi T, Sato S, Nagakura M, Mori T, Umezawa H, Umezawa S (1979) Tobramycin. Japan Kokai 79 52,060; Chem Abstr 91:193579 f

    Google Scholar 

  • Lazareva EN, Golubev VN, Shneerson AN, Vasienko OS (1968) Biologically active analogs of dihydrostreptomycin containing no guanidino groups, synthesized from dideguanyl- dihydrostreptomycin. Antibiotiki (in Russian) 13:682–686;

    PubMed  CAS  Google Scholar 

  • Lazareva EN, Golubev VN, Shneerson AN, Vasienko OS (1968) Biologically active analogs of dihydrostreptomycin containing no guanidino groups, synthesized from dideguanyl- dihydrostreptomycin Chem Abstr 69:74693

    Google Scholar 

  • Lemieux RU, Nagabhushan TI, Clemetson KJ, Tucker ICN (1973) Synthesis of kanamycin analogs. I. α-D-Glucopyranosyl derivatives of deoxystreptamine. Can J Chem 51:53–66

    CAS  Google Scholar 

  • Maehr H, Schaffner CP (1967) The chemistry of the gentamicins. I. Characterization and gross structure of gentamicin A. J Am Chem Soc 89:6787–6788

    PubMed  CAS  Google Scholar 

  • Maehr H, Schaffner CP (1970) Chemistry of the gentamicins. II. Stereochemistry and synthesis of gentosamine. Total structure of gentamicin A. J Am Chem Soc 92:1697–1700

    PubMed  CAS  Google Scholar 

  • Magerlein BJ (1979) Deoxyneamines. German patent 2,836,913; Chem Abstr 91:5436k

    Google Scholar 

  • Maier R, Woitun E, Reuter W, Wetzel B, Goeth H, Lechner U (1979) German patent 2756- 914

    Google Scholar 

  • Mallams AK, Davies DH (1975) 4,6-Di-O-(aminoglycosyl)-2-deoxystreptamine as an antiprotozoal agent. US patent 3,978,214; Chem Abstr 85:177904d

    Google Scholar 

  • Mallams AK, Davies DH (1978) 1-Desamino-l-hydroxy and l-desamino-l-epihydroxy-4,6- di-O-(aminoglycosyl)-l,3-diaminocyclitols; l-desamino-l-oxo-4,6-di- O -(aminogly- cosyl)-l,3-diaminocyclitols, intermediates and use as antibacterial agents. US patent 4,066,752; Chem Abstr 88:152925k

    Google Scholar 

  • Mallams AK, Saluja SS, Crowe DF, Detre G, Tanabe M, Yasuda DM (1976)Semisynthetic aminoglycoside antibacterials. V. Synthesis of pentosyl and related derivatives of gara- mine. J Chem Soc [Perkin I] 1135–1146

    Google Scholar 

  • Marquez JA, Wagman GH, Testa RT, Waitz JA, Weinstein MJ (1976) A new broad spectrum aminoglycoside antibiotic, G-52, produced by Micromonospora zionensis. J Antibiot (Tokyo) 29:483–487

    PubMed  CAS  Google Scholar 

  • Matsushima H, Mori Y (1978 a) 6’-N-Methyl derivative of seldomycin factor 5. German patent 2,733,964; Chem Abstr 89:6506d

    Google Scholar 

  • Matsushima H, Mori Y (1978 b) Antibiotic l-N-[L-(-)- α -hydroxy- γ -aminobutyryl]-XK-88–5.Japan Kokai 78 90,244; Chem Abstr 89:215720h

    Google Scholar 

  • Matsushima H, Mori Y (1978 c) 2”-N-formyl derivatives of XK-88–5. Japan Kokai 78 79,843; Chem Abstr 90:23603w

    Google Scholar 

  • Matsushima H, Mori Y (1978 d) 2-Desamino-3-epiamino-3-deoxy derivative of antibiotic XK-88–5, Japan Kokai 78 79,842; Chem Abstr 90:23604x

    Google Scholar 

  • Matsushima H, Mori Y (1978 e) Chemical transformation of gentamicin Cla into 2’-N- methylgentamicin Cla, active againstProvidencia 164. J Antibiot (Tokyo) 31:621–622

    PubMed  CAS  Google Scholar 

  • Matsushima H, Mori Y, Kitaura K (1977 a) Synthesis of 3-deoxyseldomycin factor 5. J Antibiot (Tokyo) 30:890–892

    PubMed  CAS  Google Scholar 

  • Matsushima H, Kitaura K, Mori Y (1977 b) Chemical transformation of seldomycin 5 into 3’-episeldomycin 5 and its antibacterial activity. Bull Chem Soc Jpn 50:3039–3042

    CAS  Google Scholar 

  • Matsushima H, Mori Y, Kitaura K (1978) Chemical transformation of seldomycin factor 5 into 3-deoxyseldomycin factor 5 and related compounds. Bull Chem Soc Jpn 51:3553- 3558

    CAS  Google Scholar 

  • McAlpine JB, Sinclair AC, Egan RS, De Vault RL, Stanaszek RS, Cirovic M, Mueller SL, Goodley PC, Mauritz RJ, Wideburg NE, Mitscher LA, Shirahata K, Matsushima H, Sato S, Iida T (1977) A new aminoglycoside antibiotic complex - the seldomycins. IV. The structure of seldomycin factor 5. J Antibiot (Tokyo) 30:39–49

    PubMed  CAS  Google Scholar 

  • Miller GH, Chiu PJS, Waitz JA (1978) Biological activity of Sch 21420, the 1-N-S-α-hy-droxy-β-aminopropionyl derivative of gentamicin B. J Antibiot (Tokyo) 31:688–695

    PubMed  CAS  Google Scholar 

  • Million WA, Plews RM, Richardson K (1977) Compounds for use in manufacturing aminoglycoside antibiotic. German patent 2,716,533; Chem Abstr 88:51128x

    Google Scholar 

  • Miyake T, Tsuchiya T, Umezawa S, Umezawa H (1976) A synthesis of 3’,4’-dideoxykana-mycin B. Carbohydr Res 49:141–151

    PubMed  CAS  Google Scholar 

  • Miyake T, Tsuchiya T, Umezawa S, Umezawa H (1977) Syntheses of 4’-deoxykanamycin and 4’-deoxykanamycin B. Bull Chem Soc Jpn 50:2362–2368

    CAS  Google Scholar 

  • Mori T, Kyotani Y, Watanabe I, Oda T (1972) Chemical conversion of lividomycin A into lividomycin B. J Antibiot (Tokyo) 25:149–150

    PubMed  CAS  Google Scholar 

  • Murase M, Ito T, Fukatsu S, Umezawa H (1970) Studies on kanamycin related compounds produced during fermentation by mutants of Streptomyces kanamyceticus. Isolation and properties. Prog Antimicrob Anticancer Chemother 2:1098–1110

    CAS  Google Scholar 

  • Nagabhushan TL, Daniels PJL (1974) Synthesis and biological properties of 6’-amino-6-deoxygentamicin A. J Med Chem 17:1030–1031

    PubMed  CAS  Google Scholar 

  • Nagabhushan TL, Turner WN, Daniels PJL, Morton JB (1975 a) The gentamicin antibiotics. 7. Structures of the gentamicin antibiotics A 1,A3, and A4. J Org Chem 40:2830- 2834

    PubMed  CAS  Google Scholar 

  • Nagabhushan TL, Daniels PJL, Jaret RS, Morton JB (1975 b) The gentamicin antibiotics.8. Structure of gentamicin A2. J Org Chem 40:2835–2836

    PubMed  CAS  Google Scholar 

  • Nagabhushan TL, Wright JJ, Cooper AB, Turner WN, Miller GH (1978 a) Chemical modification of some gentamicins and sisomicin at the 3”-position. J Antibiot (Tokyo) 31:43- 54

    CAS  Google Scholar 

  • Nagabhushan TL, Cooper AB, Tsai H, Daniels PJL, Miller GH (1978 b) The syntheses and biological properties of l-N-(S-4-amino-2-hydroxybutyryl)-gentamicin B and l-N-(S-3- amino-2-hydroxypropionyl)-gentamicin B. J Antibiot (Tokyo) 31:681–687

    PubMed  CAS  Google Scholar 

  • Nagabhushan TL, Cooper AB, Turner WN, Tsai H, McCombie S, Mallams AK, Rane D, Wright J J, Reichert P, Boxler DL, Weinstain J (1978 c) Interaction of vicinal and non- vicinal amino-hydroxy group pairs in aminoglycoside-aminocyclitol antibiotics with transition metal cations. Selective N protection. J Am Chem Soc 100:5253–5254

    CAS  Google Scholar 

  • Naito T, Nakagawa S, Abe Y, Fujisawa K, Kawaguchi H (1974 a) Aminoglycoside antibiotics. VIII. Synthesis and activity of 4’-deoxykanamycin A. J Antibiot (Tokyo) 27:838- 850

    PubMed  CAS  Google Scholar 

  • Naito T, Nakagawa S, Narita Y, Toda S, Abe Y, Oka M, Yamashita H, Yamasaki T, Fujisawa K, Kawaguchi H (1974 b) Aminoglycoside antibiotics. IX. Structure-activity relationship in 1-N-acyl-derivatives of kanamycin A (amikacin analogs). J Antibiot (Tokyo) 27:851–858

    PubMed  CAS  Google Scholar 

  • Naito T, Nakagawa S, Toda S (1974c) Antibiotic derivatives. Japan Kokai 74 85,048; Chem Abstr 82:73423t

    Google Scholar 

  • Naito T, Nakagawa S, Toda S (1974d) Antibiotic lividomycin B derivatives. Japan Kokai74 92,043; Chem Abstr 82:125570k

    Google Scholar 

  • Naito T, Nakagawa S, Toda S (1974 e) Antibiotic neomycin B and C derivatives. Japan Kokai 74 92,044; Chem Abstr 82:125569s

    Google Scholar 

  • Naito T, Nakagawa S, Toda S (1975) 5”-Amino-4’-5”-dideoxybutirosin A. Japan Kokai 7535,132; Chem Abstr 83:97868p

    Google Scholar 

  • Naito T, Nakagawa S, Harita Y, Kawaguchi H (1976) Chemical modification of sorbistin.I.N-Acyl analogs of sorbistin. J Antibiot (Tokyo) 29:1286–1296

    PubMed  CAS  Google Scholar 

  • Naito T, Nakagawa S, Toda S, Fujisawa K, Kawaguchi H (1979) Aminoglycoside antibiotics. XIII. Synthesis and activity of 4’-deoxy-6’- N -methylamikacin and related compounds. J Antibiot (Tokyo) 32:659–664

    PubMed  CAS  Google Scholar 

  • Nakagawa S, Toda S, Abe Y, Yamashita H, Fujisawa K, Naito T, Kawaguchi H (1978) Aminoglycoside antibiotics. XII. Effect of N-alkylation in kanamycin antibiotics. J Antibiot (Tokyo) 31:675–680

    PubMed  CAS  Google Scholar 

  • Nakajima M, Hasegawa H, Kurihara N, Shibata H, Ueno T, Nishimura D (1968 a) Total synthesis of kanamycin A. Tetrahedron Lett 623–627

    Google Scholar 

  • Nakajima M, Shibata H, Kitahara K, Takahashi S, Hasegawa A (1968 b) Synthesis of kasuganobiosamine. Tetrahedron Lett 2271–2274

    Google Scholar 

  • Nara K, Yoshioka K, Kida M (1979) Chemical modification of aminoglycoside antibiotics. Some N-alkyl derivatives of sorbistin A1 (P-2563P) and butirosin A. Chem Pharm Bull (Tokyo) 27:65–75

    PubMed  CAS  Google Scholar 

  • Nara T, Kawamoto I, Okachi K, Takasawa S, Yamamoto M, Sato S, Sato T, Morikawa A (1975) New antibiotic XK-62–2(sagamicin). II. Taxonomy of the producing organism, fermentative production and characterization of sagamicin. J Antibiot (Tokyo) 28:21- 28

    PubMed  CAS  Google Scholar 

  • Nara T, Yamamoto M, Takasawa S, Sato S, Sato T, Kawamoto I, Okachi R, Takahashi I, Morikawa A (1977) A new aminoglycoside antibiotic complex - the seldomycins. I. Taxonomy, fermentation and antibacterial properties. J Antibiot (Tokyo) 30:17–24; see also

    PubMed  CAS  Google Scholar 

  • Nara T, Yamamoto M, Takasawa S, Sato S, Sato T, Kawamoto I, Okachi R, Takahashi I, Morikawa A (1977) A new aminoglycoside antibiotic complex - the seldomycins. I. Taxonomy, fermentation and antibacterial properties J Antibiot (Tokyo) 30:25–30

    Google Scholar 

  • Neu HC, Fu KP (1978) 1-N-HAPA Gentamicin B, a new aminoglycoside active against gentamicin resistant isolates - activity compared to other aminoglycosides. J Antibiot (Tokyo) 31:385–393

    PubMed  CAS  Google Scholar 

  • Nishimura T, Tsuchiya T, Umezawa S, Umezawa H (1977) A synthesis of 3’,4’-dideoxy-kanamycin B. Bull Chem Soc Jpn 50:1580–1583

    CAS  Google Scholar 

  • Nishiyama S, Ishikawa Y, Yamazaki M, Suami T (1978) Chemical modification of neamine.5. Preparation of aminodeoxyneamines. Bull Chem Soc Jpn 51:555–558

    CAS  Google Scholar 

  • Oda T, Mori T, Kyotani Y (1971) Studies on new antibiotic lividomycins. III. Partial structure of lividomycin A. J Antibiot (Tokyo) 24:503–510

    PubMed  CAS  Google Scholar 

  • Oda T, Mori T, Yamaguchi T, Umezawa H, Umezawa S, Tsuchiya T (1978) 3’-Deoxy- butirosin B and its 6’-N-alkyl derivatives. Japan Kokai 78 90,245; Chem Abstr 90:23606z

    Google Scholar 

  • Ogawa T, Takamoto T, Hanessian S (1974) Aminoglycoside antibiotics: Synthesis of 6-O-(β-D-ribofuranosyl)paromamine. Tetrahedron Lett 4013–4016

    Google Scholar 

  • Ogawa T, Katano K, Matsui M (1978) A synthesis of sorbistin A1and a position isomer thereof. Carbohydr Res 60:C13-C17

    Google Scholar 

  • Oida S, Saeki H, Ohhashi Y, Ohki E (1975) Deoxysugar synthesis. I. Lithium-ethylamine reduction of carbohydrate phosphorodiamidates. Chem Pharm Bull (Tokyo) 23:1547- 1551

    CAS  Google Scholar 

  • Okachi R, Kawamoto I, Takasawa S, Yamamoto M, Sato S, Sato T, Nara T (1974) A new antibiotic XK-62–2. I. Isolation, physicochemical and antibacterial properties. J Antibiot (Tokyo) 27:793–800

    PubMed  CAS  Google Scholar 

  • Okutani T, Asako T, Yoshioka K, Hiraga K, Kida M (1977) Conversion of aminoglycoside antibiotics: novel and efficient approaches to 3-deoxyaminoglycosides via 3’-phos- phoryl esters. J Am Chem Soc 99:1278–1279

    PubMed  CAS  Google Scholar 

  • Paulsen H, Sumfleth B (1979) Synthese von Trehalosamin Mannotrehalosamin und verwen-deten α,α(l→l)-verknupften Disacchariden. Chem Ber 112:3203–3213

    CAS  Google Scholar 

  • Paulsen H, Tödter F, Banaszek A, Stadler P (1977) Synthese des Dihydrostreptosyl-desoxy-streptamins. Chem Ber 110:1916–1924

    CAS  Google Scholar 

  • Paulsen H, Lockhoff O, Schröder B, Stenzel W (1979) Stereoselektive Synthese von α-ver- kniipften Polyaminodeoxy-Zucker-Disacchariden mit der Azid-Methode. Carbohydr Res 68:239–255

    CAS  Google Scholar 

  • Peck RL, Hoffhine CE Jr, Gale P, Folkers K (1949) Streptomyces antibiotics. XXIII. Isolation of neomycin A. J Am Chem Soc 71:2590–2591

    CAS  Google Scholar 

  • Pennington FC, Guercio PA, Solomons IA (1953) Streptohydrazid. J Am Chem Soc 75:2261

    CAS  Google Scholar 

  • Perlman D, Endo T, Hinz RS, Cowan SK, Endo S (1974) Properties of glycosides of neamine, kanamycin A and gentamicin C1. J Antibiot (Tokyo) 27:525–528

    PubMed  CAS  Google Scholar 

  • Pete J, Portella C, Monneret C, Florent J, Khuong-Huu Q (1977) A general and convenient photochemical method for the preparation of deoxysugars. Synthesis 774–776

    Google Scholar 

  • Pfeiffer F, Schmidt SJ, Kinzig CM, Hoover JRE, Weisbach JA (1979) 3’- and 4’-axial and equatorial amino and hydroxy derivatives of neamine. Carbohydr Res 72:119–137

    CAS  Google Scholar 

  • Polglase WJ (1962) Alkaline degradation of dihydrostreptomycin. J Org Chem 27:1923

    Google Scholar 

  • Ponpipom MM, Bugianesi RL, Shen T (1978) Chemical modification of l,4-diamino-l,4- dideoxy-3-O-(4-deoxy-4-propionamido-α-D-glucopyranosyl)-D-glucitol. J Med Chem 2:221–225

    Google Scholar 

  • Reeves RE (1951) Cuprammonium-glycoside complexes. Advan Carbohydr Chem Biochem 61:107–134

    Google Scholar 

  • Reid RJ, Mizsak SA, Reineke LM, Zurenko GE, Magerlein BJ (1978) Chemical modifications of aminoglycosides. I. Synthesis of 2”-deoxykanamycin B and 2”,3’,4’-trideoxy- kanamycin B. 176th ACS National Meeting (Miami), Medicinal Chemistry Division No. 18

    Google Scholar 

  • Reimann H, Cooper DJ, Mallams AK, Jaret RS, Yehaskel A, Kugelman M, Vernay HF, Schumacher D (1974) The structure of sisomicin, a novel unsaturated aminocyclitol antibiotic from Micromonospora inyoensis. J Org Chem 39:1451–1457

    PubMed  CAS  Google Scholar 

  • Richardson K, Jevons S, Moore JW, Ross BC, Wright JR (1977) Synthesis and antibacterial activities of l-N-[(S)-ω-amino-2-hydroxyalkyl]kanamycin A derivatives. J Antibiot (Tokyo) 30:843–846

    PubMed  CAS  Google Scholar 

  • Richardson K, Brammer KW, Jevons S, Plews RM, Wright JR (1979) Synthesis and antibacterial activity of l-N-(l,3-dihydroxy-2-propyl)kanamycin B (UK-31,214). J Antibiot (Tokyo) 32:973–977

    PubMed  CAS  Google Scholar 

  • Rosenbrook W Jr (1979) Chemistry of spectinomycin. Jpn J Antibiot [Suppl] 32:S211-S227

    PubMed  CAS  Google Scholar 

  • Rosenbrook W Jr, Carney RE (1975) Spectinomycin modification. I. 7-Epi-9-deoxy-4 (R)-dihydrospectinomycin. J Antibiot (Tokyo) 28:953–959

    PubMed  CAS  Google Scholar 

  • Rosenbrook W Jr, Carney RE, Egan RS, Stanaszek RS, Cirovic M, Nishinaga T, Mochida K, Mori Y (1975) Spectinomycin modification. II. 7-Epispectinomycin. J Antibiot (Tokyo) 28:960–964

    PubMed  CAS  Google Scholar 

  • Rosenbrook W Jr, Carney RE, Egan RS, Stanaszek RS, Cirovic M, Nishinaga T, Mochida K, Mori Y (1978) Spectinomycin modification. IV. 7-Deoxy-4-(R)-dihydrospectinomy- cin. J Antibiot (Tokyo) 31:451–455

    PubMed  CAS  Google Scholar 

  • Roussel-UCLAF (1977) Streptamine derivative and its salts. French patent 2,351,660;Chem Abstr 89:180302u

    Google Scholar 

  • Saeki H, Shimada Y, Ohashi Y, Tajima M, Sugawara S, Ohki E (1974) Synthesis of 3,4- dideoxybutirosin A, active against resistant bacteria. Chem Pharm Bull (Tokyo) 22:1145–1150

    CAS  Google Scholar 

  • Saeki H, Shimada Y, Ohki E, Sugawara S (1975) Synthesis of aminotrideoxybutirosin A, a chemically modified antibiotic active against butirosin-resistant bacteria. J Antibiot (Tokyo) 28:530–536

    PubMed  CAS  Google Scholar 

  • Saeki H, Hayashi T, Shimada Y, Takeda N, Ohki E (1977) Selective O-benzoylation in aminoglycoside antibiotics. Chem Pharm Bull (Tokyo) 25:2089–2097

    PubMed  CAS  Google Scholar 

  • Sano H, Tsuchiya T, Kobayashi S, Hamada M, Umezawa S, Umezawa H (1976) Synthesis of 3-deoxydihydrostreptomycin active against resistant bacteria. J Antibiot (Tokyo) 29:978–980

    PubMed  CAS  Google Scholar 

  • Sano H, Tsuchiya T, Kobayashi S, Umezawa H, Umezawa S (1977) Synthesis of a masked derivative of 3-deoxydihydrostreptobiosamine, a precursor for the synthesis of 3”- deoxydihydrostreptomycin. Bull Chem Soc Jpn 50:975–978

    CAS  Google Scholar 

  • Sato M, Mori Y (1979) Chemical modification of fortimicins: preparation of 4-N-substi-tuted fortimicin B. J Antibiot (Tokyo) 32:371–378

    PubMed  CAS  Google Scholar 

  • Shirahata K, Tomioka S, Nara T, Matsushima H, Matsubara I (1975) Gentamicin derivatives. German patent 2,458,921; Chem Abstr 83:147704e

    Google Scholar 

  • Sinay P (1978) Recent advances in glycosylation reactions. Pure Appl Chem 50:1437–1452

    CAS  Google Scholar 

  • Sitrin RD, Cooper DJ, Weisback JA (1977) The aminoglycoside antibiotics. I. Synthesis and biological evaluation of an analog of gentamicin. J Antibiot (Tokyo) 30:836–842

    PubMed  CAS  Google Scholar 

  • Sitrin RD, Cooper DJ, Weisbach J A (1978) Aminoglycoside antibiotics. 3. Synthesis of a furanosyl isomer of kanamycin B from a protected 3-amino-3-deoxyglucofuranosyl chloride. J Org Chem 43:3048–3052

    CAS  Google Scholar 

  • Suami T (1979) Modifications of aminocyclitol antibiotics. Jpn J Antibiot [Suppl] 32:S91- S102

    PubMed  CAS  Google Scholar 

  • Suami T, Nakamura K (1979) Modification of aminocyclitol antibiotics. 7. Preparation of 5-epikanamycin B. Bull Chem Soc Jpn 52:955–956

    CAS  Google Scholar 

  • Suami T, Nishiyama S, Ishikawa Y, Katsura S (1976) Chemical modification of aminocyclitol antibiotics. Carbohydr Res 52:187–196

    PubMed  CAS  Google Scholar 

  • Suami T, Nishiyama S, Ishikawa Y, Katsura S (1977 a) Chemical modification of neamine. Carbohydr Res 53:239–246

    PubMed  CAS  Google Scholar 

  • Suami T, Nishiyama S, Ishikawa Y, Katsura S, (1977 b) Chemical modification of neamine Part III. Carbohydr Res 56:415–418

    PubMed  CAS  Google Scholar 

  • Suami T, Nishiyama S, Ishikawa H, Okada H, Kinoshita T (1977 c) Synthesis of tetrahydro-spectinomycin. Bull Chem Soc Jpn 50:2754–2757

    CAS  Google Scholar 

  • Suami T, Nishiyama S, Ishikawa Y, Katsura S (1978 a) Chemical modification of neamine.Carbohydr Res 65:57–64

    PubMed  CAS  Google Scholar 

  • Suami T, Nishiyama S, Ishikawa Y, Umemura E (1978 b) Modification of aminocyclitol antibiotics. 6. Preparation of 5-deoxykanamycin B. Bull Chem Soc Jpn 51:2354–2357

    CAS  Google Scholar 

  • Suhara Y, Maeda K, Umezawa H, Ohno M (1966) Chemical studies of kasugamycin. V.The structure of kasugamycin. Tetrahedron Lett 1239–1244

    Google Scholar 

  • Suhara Y, Sasaki F, Maeda K, Umezawa H, Ohno M (1968) The total synthesis of kasugamycin. J Am Chem Soc 90:6559–6560

    PubMed  CAS  Google Scholar 

  • Suhara Y, Sasaki F, Koyama G, Maeda K, Umezawa H, Ohno M (1972) The total synthesis of kasugamycin. J Am Chem Soc 94:6501–6507

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Ohmori H (1979) Preparation and some microbiological properties of novel kana-mycin-glucoside derivatives. J Antibiot (Tokyo) 32:753–755

    PubMed  CAS  Google Scholar 

  • Takagi Y, Miyake T, Tsuchiya T, Umezawa S, Umezawa H (1973) Synthesis of 3-deoxy-kanamycin B. J Antibiot (Tokyo) 26:403–406

    PubMed  CAS  Google Scholar 

  • Takagi Y, Miyake T, Tsuchiya T, Umezawa S, Umezawa H (1976) Synthesis of 3’-deoxy-kanamycin B (tobramycin). Bull Chem Soc Jpn 49:3649–3651

    CAS  Google Scholar 

  • Takamoto T, Hanessian S (1974) Aminoglycoside antibiotics: chemical transformation of paromomycin into a bioactive pseudotrisaccharide. Tetrahedron Lett 4009–4012

    Google Scholar 

  • Tanabe M, Yasuda DM, Detre G (1977) Aminoglycoside antibiotics: synthesis of nebra-mine, tobramycin and 4”-epi-tobramycin. Tetrahedron Lett 3607–3610

    Google Scholar 

  • Testa RT, Wagman GH, Daniels PJL, Weinstain MJ (1974) Mutamicins; biosynthetically created new sisomicin analogues. J Antiobiot (Tokyo) 27:917–921

    CAS  Google Scholar 

  • Tipson RS, Cohen A (1965) Action of zinc dust and sodium iodide in N,N-dimethylform- amide on contiguous, secondary sulfonyloxy groups: a simple method for introducing nonterminal unsaturation. Carbohydr Res 1:338–340

    CAS  Google Scholar 

  • Toda S, Nakagawa S, Naito T (1977) Aminoglycoside antibiotics. X. Chemical conversion of kanamycin B to kanamycin C and 6-deoxykanamycin C. J Antibiot (Tokyo) 30:1002–1003

    PubMed  CAS  Google Scholar 

  • Toda S, Nakagawa S, Naito T, Kawaguchi H (1978) Stucture determination of amikacin derivatives modified by enzymes from resistant S. aureus strains. Tetrahedron Lett 3917–3920

    Google Scholar 

  • Tomioka S, Mori Y (1976) Demethylation of aminoglycoside antibiotic. German patent2,550,168; Chem Abstr 85:47016e

    Google Scholar 

  • Tomioka S, Mori Y (1977) 3’-N-Demethyl analogs of l-N-(L-(-)-α-hydroxy-δ-amino-butyryl)sagamicin. Japan Kokai 77 83,515; Chem Abstr 88:7307f

    Google Scholar 

  • Tomioka S, Fukuhara T, Mori Y (1977) 3-Demethyl analogs of gentamicin C1 .Japan Kokai 77 83,516; Chem Abstr 88:7306e

    Google Scholar 

  • Tsuchiya T (1979) Deoxygenation of aminoglycosides. Jpn J Antibiot [Suppl] 32:S129-S135

    PubMed  CAS  Google Scholar 

  • Tsuchiya T, Watanabe I, Nakamura F, Hamada M, Umezawa S (1978 a) Synthesis of 3’,3”-dideoxybutirosin. J Antibiot (Tokyo) 31:933–935

    PubMed  CAS  Google Scholar 

  • Tsuchiya T, Watanabe I, Yoshida M, Nakamura F, Usui T, Kitamura M, Umezawa S (1978 b) 3-Deoxygenation of methyl α-D-glucopyranosides by treatment of their 3-O- (N,N-dimethylsulfamoyl) derivatives with sodium metal in liquid ammonia. Tetrahedron Lett 3365–3368

    Google Scholar 

  • Tsuchiya T, Jikihara T, Miyake T, Umezawa S, Hamada M, Umezawa H (1979 a) 3’- Deoxyamikacin and 3’,4’-dideoxy amikacin and their antibacterial activities. J Antibiot (Tokyo) 32:1351–1353

    PubMed  CAS  Google Scholar 

  • Tsuchiya T, Takagi Y, Umezawa S (1979 b) 1-V-Acylation of aminocyclitol antibiotics via zinc chelation and regiospecific TV-trifluoroacetylation. Tetrahedron Lett 4951–4954

    Google Scholar 

  • Tsuji S, Kusumoto S, Shiba T (1975) Synthesis of enduracididine, a component amino acid of antibiotic enduracidin. Chem Lett 1281–1284

    Google Scholar 

  • Tsukiura H, Saito K, Kobaru S, Konishi M, Kawaguchi H (1973) Aminoglycoside antibiotics. IV. BU-1709 Et and E2, new aminoglycoside antibiotics related to the butirosins. J Antibiot (Tokyo) 26:386–388

    PubMed  CAS  Google Scholar 

  • Umezawa H (1970) Mechanism of inactivation of aminoglycoside antibiotics by enzymes of resistant organisms of clinical origin. Progr Antimicrob Anticancer Chemother 2:567–571

    CAS  Google Scholar 

  • Umezawa H (1974) Biochemical mechanism of resistance to aminoglycosidic antibiotics.Adv Carbohyd Chem Biochem 30:183–225

    CAS  Google Scholar 

  • Umezawa H (1979) Studies on aminoglycoside antibiotics: enzymatic mechanism of resistance and genetics. Jpn J Antibiot [Suppl] 32:S1-S14

    PubMed  CAS  Google Scholar 

  • Umezawa H, Suhara Y (1976) Guanidino derivatives of kasugamycin. US patent 3,968,100

    Google Scholar 

  • Umezawa H, Hayano S, Ogata Y (1948) Classification of antibiotic strains of streptomyces and their antibiotic substances on the basis of their antibacterial spectra. Jpn Med J 1:504–511

    CAS  Google Scholar 

  • Umezawa H, Umezawa S, Tsuchiya T, Okazaki Y (1971) 3,4-Dideoxykanamycin B active against kanamycin-resistant Escherichia coli and Pseudomonas aeruginosa. J Antibiot (Tokyo) 24:485–487

    PubMed  CAS  Google Scholar 

  • Umezawa H, Nishimura Y, Tsuchiya T, Umezawa S (1972 a) Syntheses of 6,-AL-methylkana- mycin and 3’,4’-dideoxy-6’-N-methylkanamycin B active against resistant strains having 6’-Ar-acetylating enzymes. J Antibiot (Tokyo) 25:743–745

    PubMed  CAS  Google Scholar 

  • Umezawa H, Tsuchiya T, Muto R, Umezawa S (1972 b) The synthesis of 3’-O-methylkana-mycin. Bull Chem Soc Jpn 45:2842–2847

    CAS  Google Scholar 

  • Umezawa H, Iinuma K, Kondo S, Hamada M, Maeda K (1975 a) Synthesis of 1-N-acyl derivatives of 3’,4-dideoxy-6’-N-methylkanamycin B and their antibacterial activities. J Antibiot (Tokyo) 28:340–343

    PubMed  CAS  Google Scholar 

  • Umezawa H, Iinuma K, Kondo S, Maeda K (1975 b) Synthesis and antibacterial activity of 6-N-alkyl derivatives of l-TV-[(S)-4-amino-2-hydroxybutyryl]-kanamycin. J Antibiot (Tokyo) 28:483–485

    PubMed  CAS  Google Scholar 

  • Umezawa H, Ikeda D, Miyasaka T, Kondo S (1979) Syntheses and properties of the 6’-C-alkyl derivatives of 3,4’-dideoxykanamycin B. J Antibiot (Tokyo) 32:1360–1364

    PubMed  CAS  Google Scholar 

  • Umezawa S (1974) Structures and syntheses of aminoglycoside antibiotics. Adv Carbohydr Chem Biochem 30:111–182

    PubMed  CAS  Google Scholar 

  • Umezawa S (1976) Sugar-containing antibiotics. MTP (Med Tech Publ Co) Int Rev Sci Ser Two Org Chem 7:149–200

    CAS  Google Scholar 

  • Umezawa S (1979) Total synthesis of aminoglycoside antibiotics. Jpn J Antibiot [Suppl] Symp. 32:S60-S72

    PubMed  CAS  Google Scholar 

  • Umezawa S Synthesis of aminocyclitol antibiotics. ACS (Am Chem Soc) Symp Ser 125:15–41

    Google Scholar 

  • Umezawa S, Koto S (1966) The synthesis of paromamine. Bull Chem Soc Jpn 39:2014–2017

    PubMed  CAS  Google Scholar 

  • Umezawa S, Nishimura Y (1977) Total synthesis of neomycin C. J Antibiot (Tokyo) 30:189- 191

    PubMed  CAS  Google Scholar 

  • Umezawa S, Tsuchiya T, Fujita H (1966 a) Structure of (2-amino-2-deoxy-α-D-glucosyl)-deoxystreptamine produced by acid reversion. J Antibiot (Tokyo) A19:222–228

    PubMed  CAS  Google Scholar 

  • Umezawa S, Tsuchiya T, Tatsuta K (1966 b) Configurational studies of aminosugar glycosides and aminocyclitols by a copper complex method. Bull Chem Soc Jpn 39:1235- 1243

    CAS  Google Scholar 

  • Umezawa S, Tsuchiya T, Nakada S, Tatsuta K (1967 a) Studies of aminosugars. XIV. Synthesis of 6,6-diamino-6,6-dideoxy-trehalose. Bull Chem Soc Jpn 40:395–401

    CAS  Google Scholar 

  • Umezawa S, Tatsuta K, Muto R (1967 b) Synthesis of trehalosamine. J Antibiot (Tokyo) A20:388–389

    Google Scholar 

  • Umezawa S, Tatsuta K, Tsuchiya T, Kitazawa E (1967 c) Synthesis of neamine. J Antibiot (Tokyo) A20:53–54

    Google Scholar 

  • Umezawa S, Koto S, Tatsuta K, Tsumura T (1968 a) The total synthesis of kanamycin C. J Antibiot (Tokyo) 21:162–163

    PubMed  CAS  Google Scholar 

  • Umezawa S, Tatsuta K, Koto S (1968 b) The total synthesis of kanamycin A. J Antibiot (Tokyo) 21:367–368

    PubMed  CAS  Google Scholar 

  • Umezawa S, Koto S, Tatsuta K, Hineno H, Nishimura Y, Tsumura T (1968 c) The total synthesis of kanamycin B. J Antibiot (Tokyo) 21:424–425

    PubMed  CAS  Google Scholar 

  • Umezawa S, Tsuchiya T, Muto R, Nishimura Y, Umezawa H (1971a) Synthesis of 3’- deoxykanamycin effective against kanamycin-resistant Escherichia coli and Pseu- domonas aeruginosa. J Antibiot (Tokyo) 24:274–275

    PubMed  CAS  Google Scholar 

  • Umezawa S, Tsuchiya T, Jikihara T, Umezawa H (1971b) Synthesis of 3’,4’-dideoxynea- mine active against kanamycin-resistant E. coli andP. aeruginosa. J Antibiot (Tokyo) 24:711–712

    PubMed  CAS  Google Scholar 

  • Umezawa S, Takagi Y, Tsuchiya T (1971 c) A new method for the simultaneous protection of amino and hydroxyl groups in aminosugars and aminocyclitols. Bull Chem Soc Jpn 44:1411–1415

    CAS  Google Scholar 

  • Umezawa S, Miyazawa T, Tsuchiya T (1972 a) Synthesis of paromamine. J Antibiot (Tokyo) 25:530–534

    PubMed  CAS  Google Scholar 

  • Umezawa S, Tsuchiya T, Ikeda D, Umezawa H (1972 b) Synthesis of 3,4-dideoxy and 3,4’,5-trideoxyribostamycin active against kanamycin-resistant E.coli and P. aeruginosa. J Antibiot (Tokyo) 25:613–616

    PubMed  CAS  Google Scholar 

  • Umezawa S, Nishimura Y, Hineno H, Watanabe K, Koike S, Tsuchiya T, Umezawa H (1972c) The synthesis of 3’-deoxy kanamycin. Bull Chem Soc Jpn 45:2847–2851

    CAS  Google Scholar 

  • Umezawa S, Okazaki Y, Tsuchiya T (1972d) Synthesis of 3,4-dideoxy-3-enosides and the corresponding 3,4-dideoxy sugars. Bull Chem Soc Jpn 45:3619–3624

    CAS  Google Scholar 

  • Umezawa S, Umezawa H, Okazaki Y, Tsuchiya T (1972 e) Synthesis of 3’,4’-dideoxykana-mycin B. Bull Chem Soc Jpn 45:3624–3628

    CAS  Google Scholar 

  • Umezawa S, Ikeda D, Tsuchiya T, Umezawa H (1973) Synthesis of l-AT-[((S)-4-amino-2-hy- droxybutyryl]-3/,4/-dideoxyneamine. J Antibiot (Tokyo) 26:304–306

    PubMed  CAS  Google Scholar 

  • Umezawa S, Tsuchiya T, Yamasaki T, Sano H, Takahashi Y (1974 a) Total synthesis of di-hydrostreptomycin. J Am Chem Soc 96:920–921

    PubMed  CAS  Google Scholar 

  • Umezawa S, Nishimura Y, Hata Y, Tsuchiya T, Yagisawa M, Umezawa H (1974 b) Synthesis of 4-deoxykanamycin and its resistance to kanamycin phosphotransferase II. J Antibiot (Tokyo) 27:722–725

    PubMed  CAS  Google Scholar 

  • Umezawa S, Takahashi Y, Usui T, Tsuchiya T (1974c) Total synthesis of streptomycin. J Antibiot (Tokyo) 27:997–999

    PubMed  CAS  Google Scholar 

  • Umezawa S, Yamasaki T, Kubota Y, Tsuchiya T (1975) Total synthesis of dihydrostrepto-mycin. Bull Chem Soc Jpn 48:563–569

    CAS  Google Scholar 

  • Usui T, Tsuchiya T, Umezawa S (1978) 1- and 3-Deamidino derivatives of dihydrostrepto-mycin and some 1-N-acyl derivatives. J Antibiot (Tokyo) 31:991–996

    PubMed  CAS  Google Scholar 

  • Vass G, Rolland A, Cleophax J, Mercier D, Quiclet B, Gero SD (1979) Synthesis of α-linked 2’,3-dideoxy-2-fluoro-pseudo-disaccharides related to aminocyclitol-glycoside antibiotics. J Antibiot (Tokyo) 32:670–672

    PubMed  CAS  Google Scholar 

  • Voss E, Metzger K, Petersen U, Stadler P (1978) 1-N-Formylsisomicin. German patent 2,726,208; Chem Abstr 90:187285y

    Google Scholar 

  • Waitz J A, Miller GH, Moss E Jr, Chiu PJS (1978) Chemo therapeutic evaluation of 5-episi- somicin (Sch 22591), a new semisynthetic aminoglycoside. Antimicrob Agents Chemother 13:41–48

    PubMed  CAS  Google Scholar 

  • Waskman SA, Lechevalier HA (1949) Neomycin a new antibiotic active against streptomy-cin-resistant bacteria, including tuberculosis organisms. Science 109:305–307

    Google Scholar 

  • Watanabe I, Tsuchiya T, Umezawa S, Umezawa H (1973 a) Synthesis of l-N-[(S)-4-amino-2-hydroxybutyryl]lividomycin A. J Antibiot (Tokyo) 26:310–312

    PubMed  CAS  Google Scholar 

  • Watanabe I, Tsuchiya T, Umezawa S, Umezawa H (1973 b) Synthesis of 6’-amino-6’-deoxy- lividomycin B and 6’-deoxy-6’-methylamino- and 6’-deoxy-6’-(2-hydroxymethyla- mino)-lividomycin B. J Antibiot (Tokyo) 26:802–804

    PubMed  CAS  Google Scholar 

  • Watanabe I, Tsuchiya T, Umezawa S, Umezawa H (1975 a) Synthesis of l-N-[(S)-4-amino-2-hydroxybutyryl]lividomycin A. Bull Chem Soc Jpn 48:2124–2126

    CAS  Google Scholar 

  • Watanabe I, Ejima A, Tsuchiya T, Umezawa S, Umezawa H (1975 b) Synthesis of 6’-amino- l-N-[(S)-4-amino-2-hydroxybutyryl]-6-deoxylividomycin A. Bull Chem Soc Jpn 48:2303–2305

    CAS  Google Scholar 

  • Watanabe I, Ejima A, Tsuchya T, Ikeda D, Umezawa S (1977 a) A synthesis of 3’-deoxy-butirosin B. Bull Chem Soc Jpn 50:487–490

    CAS  Google Scholar 

  • Watanabe I, Tsuchiya T, Umezawa S (1977b) Improved syntheses of 3’-deoxy butirosin A and B. Bull Chem Soc Jpn 50:972–974

    CAS  Google Scholar 

  • Watanabe I, Tsuchiya T, Takase T, Umezawa S, Umezawa H (1977 c) Synthesis of a lividomycin B analogue, 5-O-[3-O-(2-amino-2-deoxy-α -D-glucopyranosyl)-β -D-ribo- furanosyl]-3’-deoxyparomamine. Bull Chem Soc Jpn 50:2369–2374

    CAS  Google Scholar 

  • Watanabe I, Tsuchiya T, Nakamura F, Hamada M, Umezawa S (1978) Synthesis of 5”-amino-3’-5”-dideoxybutirosin A. J Antibiot (Tokyo) 31:863–867

    PubMed  CAS  Google Scholar 

  • Watanakunakorn C (1978) Comparative in vitro activity of a semisynthetic derivative of gentamicin B (Sch 21420) and five other aminoglycosides. J Antibiot (Tokyo) 31:1063–1064

    PubMed  CAS  Google Scholar 

  • Weinstein MJ, Marquex JA, Testa RT, Wagman GH, Oden EM, Waitz JA (1970) Antibiotic 6640, a new Micromonospora-produced aminoglycoside antibiotic. J Antibiot (Tokyo) 23:551–554; see also 23:555–558 and 559–569

    PubMed  CAS  Google Scholar 

  • Weinstein MJ, Wagman GH, Marquez JA, Testa RT, Waitz JA (1975) Verdamicin, a new broad spectrum aminoglycoside antibiotic. Antimicrob Agents Chemother 7, 246–249

    PubMed  CAS  Google Scholar 

  • Weinstein MJ, Daniels PJL, Wagman GH, Testa RT, Mallams AK, Wright JJ, Nagab- hushan TL (1978) Pseudotrisaccharides. Swiss patent 601,340; Chem Abstr 89:215718p

    Google Scholar 

  • White DR, Birkenmeyer RD, Thomas RC, Mizsak SA, Wiley VH (1979) The stereospecific synthesis of spectinomycin. Tetrahedron Lett 2723–2740

    Google Scholar 

  • Wiley PF, Argoudelis AD, Hoeksema H (1963) The chemistry of actinospectacin. IV. The determination of the structure of actinospectacin. J Am Chem Soc 85:2652

    Google Scholar 

  • Wolfrom ML, Polglase WJ (1948) A synthesis of streptidine. J Am Chem Soc 70:1672–1673

    PubMed  CAS  Google Scholar 

  • Wolfrom ML, Olin SM, Polglase WJ (1950) Synthesis of streptidine. J Am Chem Soc 72:1724–1729

    CAS  Google Scholar 

  • Woo PWK (1975) 5-Amino-3,4’-5-trideoxybutirosin A, a new semisynthetic aminoglycoside antibiotic. J Antibiot (Tokyo) 28:522–529

    PubMed  CAS  Google Scholar 

  • Woo PWK, Dion HW, Bartz QR (1971) Butirosin A and B, aminoglycoside antibiotics. I.Structural units. Tetrahedron Lett 2617–2620; see also 2624, 2625–2628

    Google Scholar 

  • Wright J J (1976) Synthesis of l-N-ethylsisomicin: a broad-spectrum semisynthetic aminoglycoside antibiotic. J Chem Soc Chem Commun 206–208

    Google Scholar 

  • Wright JJ, Cooper A, Daniels PJL, Nagabhushan TL, Rane D, Turner WN, Weinstein J (1976) Selective N-acylation of gentamicin antibiotics - synthesis of 1-N-acyl derivatives. J Antibiot (Tokyo) 29:714–719

    PubMed  CAS  Google Scholar 

  • Yagisawa M, Yamamoto H, Naganawa H, Kondo S, Takeuchi T, Umezawa H (1972) A new enzyme in Escherichia coli carrying R-factor phosphorylating 3’-hydroxyl of butirosin A, kanamycin, neamine and ribostamycin. J Antibiot (Tokyo) 25:748–750

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Tsuchiya T, Umezawa S (1977 a) Syntheses of 6’-C-aminomethyl-3’-deoxy-paromamines. J Antibiot (Tokyo) 30:71–75

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Kamiya K, Mori T, Oda T (1977b) Deneosaminyllividomycin B. J Antibiot (Tokyo) 30:332–333

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Kyotani Y, Watanabe I, Sato S, Takahashi Y, Nagakura M, Mori T (1979) Synthesis of sporaricin analogues, 3-deoxy-4-N-glycyl-6-O-(α-nebrosaminyl)fortamine and its 3-de-O-methyl compound. J Antibiot (Tokyo) 32:1137–1146

    PubMed  CAS  Google Scholar 

  • Yamasaki T, Tsuchiya T, Umezawa S (1978) A synthesis of dihydrostreptomycin. J Antibiot (Tokyo) 31:1233–1237

    PubMed  CAS  Google Scholar 

  • Yasuda S, Ogasawara T, Kawabata S, Iwataki I, Matsumoto T (1969) A synthesis of a-diacetylmethylkasugaminide. Tetrahedron Lett 3969–3972

    Google Scholar 

  • Yasuda S, Ogasawara T, Kawabata S, Iwataki I, Matsumoto T (1973) Synthesis of methyl N,N-diacetyl-α-D-kasugaminide. Tetrahedron 29:3141–3147

    CAS  Google Scholar 

  • Yoneta T, Shibahara S, Matsuno T, Tohma S, Fukatsu S, Seki S, Umezawa H (1979) An improved synthesis of 3,4-dideoxy-kanamycin B. Bull Chem Soc Jpn 52:1131–1134

    Google Scholar 

  • Yoshimura J, Sato K, Hashimoto H, Shimizu K (1977) A facile synthesis of benzyl α- and ß-kasugaminidesvia the corresponding abequosides. Bull Chem Soc Jpn 50:3305–3309

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Umezawa, S., Tsuchiya, T. (1982). Total Synthesis and Chemical Modification of the Aminoglycoside Antibiotics. In: Umezawa, H., Hooper, I.R. (eds) Aminoglycoside Antibiotics. Handbook of Experimental Pharmacology, vol 62. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68579-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68579-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68581-1

  • Online ISBN: 978-3-642-68579-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics