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Abstract. FutureForge is a strategic programme in the University of Strathclyde
Advanced Forming Research Centre (AFRC) to deliver a 2,000 Tonne hydraulic
press acting in three forging modes; open die, closed die and isothermal mode. A
key element of FutureForge relates to the development of a digital environment
and simulation capability. The forging environment has been designed, and the
principal aim of this research is to develop a nonlinear mathematical model of the
manipulator dynamics. Themanipulator is used to carry themetal ingots/bars from
storage to the furnaces and then feed them to the hydraulic press to undergo the
forging operation. This model is required for developing a VR capability which
can be used to train operators and engineers who will be required to use the system
in practice. It is also forming the basis of a new nonlinear control strategy for the
machine.

Keywords: Kinematics · Nonlinear · Constraints · Dynamics · Control · Digital
environment

1 Introduction

The manipulator design is based upon three coupled parallelogram linkage sub-systems
fitted with two independent hydraulic cylinders that are configured to provide decoupled
vertical and horizontal motions of the manipulator end-effector. The modelling is based
upon classical Lagrangian mechanics in which the mechanism is split into two separate
operational phases which physically share the three parallelogram linkages, operating
appropriately to drive the end-effector vertically or horizontally, as required. It is shown
that any combination of two-dimensional motion of the end-effector can be achieved,
from any starting point to any end point locationwithin the allowable configuration space
of themanipulator. The two-dimensional kinematics of the system are described in terms
of two generalised angular coordinates referred to an Earth fixed frame of reference, with
associated generalised forces that originate physically from the hydraulic cylinders, and
the system geometry. It is found that certain kinematic constraints imposed by the design
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are required to preserve the uniformity of the parallelogram linkage geometry during all
aspects of operation, and that some simplification of the mathematical expression of this
aspect of the kinematics is required for efficient computation.

2 Analysis of the Vertical Actuation Phase

From Fig. 1 it can be noted that there are three angles, α, β, γ required to specify fully
the position and orientation of the machine. This system has some of the kinematic
properties of a parallel robot, requiring careful geometrical analysis [1].

Fig. 1. Schematic side elevation of the FutureForgemanipulator with reference to an Earth-fixed
frame of reference.

As the vertical and horizontal operations have been designed to be completely sep-
arate it can be seen that during any vertical motion β and γ are constants and α = α(t),
where this is the generalised co-ordinate required to specify the motion of the machine
under vertical actuation. On that basis the vertical position of the end-effector is defined
by,

yee = hd + hA + lAJ sin α(t) + lJH sin β + lHG sin α(t) − lGW cos γ (1)

and the horizontal position of the end-effector is given by,

xee = xT + xTA + lAJ cosα(t) + lJH cosβ + lHG cosα(t) + lGW sin γ (2)

So, we can calculate the two-dimensional position of the end-effector, considered
here to be at a selectable and arbitrary location onW. By referring to Fig. 1, the linkages



300 M. P. Cartmell et al.

which move during vertical actuations are seen to be: AJK, DG, EF, TU, HJ, FGM, GW,
MN, and NW. We now need to evaluate the vertical positions above the OX datum of all
these linkages associated with vertical actuations. Link AJK is triangular so the centroid
of this link is located at

CAJK =
(
1

3
(xA + xJ + xK ),

1

3
(yA + yJ + yK )

)
. (3)

We can assume direct knowledge of (xA, yA) from Fig. 1, so from Fig. 2(a), we see
that the relative angular positions of A, J, and K are defined by means of α, η, μ, where
η(t) = μ − α(t), leading to,

xJ = xA + lAJ cosα(t) xK = xA + lAK cos η(t)

yJ = yA + lAJ sin α(t) yK = yA − lAK sin η(t). (4)

(a) (b) (c) 

Fig. 2. (a) The relationships between anglesα, η, μ on linkAJK.The argument t has been dropped
from α(t) and η(t) for clarity. (b) Location of position p below E, and centroid, on link CDE. (c)
Links CDE and DT and angles ν and ν1.

Also, we note from Fig. 1 that xA = xT + xTA and yA = hA + hd , so the absolute
two-dimensional location of CAJK (where here ‘absolute’ means with reference to the
origin of the Earth-fixed frame OXY) is given by,

CAJK =
⎛
⎜⎝

(
xT + xTA + lAJ

3
cosα(t) + lAK

3
cos η(t)

)
,

⎛
⎜⎝
hA + hd + lAJ

3
sin α(t)

− lAK
3

sin η(t)

⎞
⎟⎠

⎞
⎟⎠.

(5)

Substituting for η(t) gives the centroidal position in terms of α(t) and μ, and we just
take the vertical part of this,

yCAJK = hA + hd + lAJ
3

sin α(t) − lAK
3

sin(μ − α(t)). (6)

Link DG rotates around D and its centroid is at CDG . Link DG orientates through
α(t) irrespective of the instantaneous positions of β and γ , confirmed by the animated
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CAD. We note also that AD//JH. So, from Fig. 1, we have the following, on the basis
that the centroid is located half-way along the length of the link,

yCDG = hA + hd + lAD sin β + lDG
2

sin α(t). (7)

In the case of link EF we see again from Fig. 1 that EF//DG//TU. We also confirmed
from the designer’s animated CAD that CD remains horizontal throughout any vertical
motion, so,

yd = yC = hA + hd + lBC sin β, xD = xC + lCD = xT − xTB + lBC cosβ + lCD (8)

In order to deal with point E we consider the geometry of the triangular link CDE,
Fig. 2(b), where Ep ⊥ CD, so,

xE = xC + lCp = xT − xTB + lBC cosβ + lCp (9)

and from Fig. 2(b) we also get,

yE = hA + hd + lBC sin β + lEp. (10)

Now we know the coordinates of E we calculate the height of the centroid (taken
half-way along EF) from the OX datum,

yCEF = hA + hd + lBC sin β + lEp + lEF
2

sin α(t). (11)

Next, we take link TU and we see from the animated CAD that DT remains in a fixed
orientation during any vertical motion. Figure 2(c), shows the geometry of links CDE
and DT within the kinematically constraining rear-rocker. Proceeding on the basis that

ν � ν1, impliedby the animatedCAD, then trigonometry leads to, ν = sin−1
(
lpD
lED

)
� ν1.

So, as lDq = lDT cos
(
sin−1

(
lpD
lED

))
then we get the following for the vertical height of T

above the OX datum, yTT ,

yTT = hA + hd + lBC sin β − lDT cos

(
sin−1

(
lpD
lED

))
. (12)

This is a very minor approximation and has been substantiated by a general obser-
vation from the animated CAD that ν � ν1. Knowing yTT allows us to find the height
of the centroid CTU above the OX datum, as follows,

yCTU = hA + hd + lBC sin β − lDT cos

(
sin−1

(
lpD
lED

))
+ lTU

2
sin α(t). (13)

From this we move on to link JH and note that as we have dealt with link AJK we
already know yCAJK . But we also need yJ to be able to specify yCJH . We can obtain yJ
directly from Fig. 1, therefore,

yJ = hA + hd + lAJ sin α(t) (14)
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from which we can write,

yCJH = hA + hd + lAJ sin α(t) + lJH
2

sin β. (15)

Link FGM is another triangular component and the two-dimensional centroidal
location is defined by,

CFGM =
(
1

3
(xF + xG + xM ),

1

3
(yF + yG + yM )

)
. (16)

We already have yD and yE so we can immediately obtain yG and yF , respectively,
from Fig. 1, as follows,

yG = hA + hd + lBC sin β + lDG, yF = hA + hd + lBC sin β + lEp + lEF sin α(t).
(17)

Link FGM does not rotate during vertical motion so MG//OX and hence yM = yG,

for all vertical motion cases. So,

yM = hA + hd + lBC sin β + lDG sin α(t). (18)

We also need the x-coordinates for points F, G, and M, and these can be calculated
from the following. First of all, xG can be obtained directly from xee given in Eq. (2), up
to joint G, so,

xG = xT + xTA + lAJ cosα(t) + lJH cosβ + lHG cosα(t). (19)

Given that MG//OX then xM = xG − lGM ,

xM = xT + xTA + lAJ cosα(t) + lJH cosβ + lHG cosα(t) − lGM (20)

And then, as xF = xE + lEF cosα(t) we get,

xF = xT − xTB + lBC cosβ + lCp + lEF cosα(t). (21)

Finally, we can put the centroidal y-coordinate together for FGM using Eqs. (17)
and (18) to obtain,

yCFGM = hA + hd + lEp
3

+ lBC sin β + lEF
3

sin α(t) + 2lDG
3

sin α(t). (22)

We can also compute the centroidal x-coordinate for FGM, using Eqs. (19)–(21),

xCFGM = xT − xTB
3

+ lCp
3

+ lBC
3

cosβ + lEF
3

cosα(t) + 2xTA
3

+ 2lAJ
3

cosα(t)

+ 2lJH
3

cosβ + 2lHG
3

cosα(t) − lGM
3

. (23)

Moving on now to link GW. This link moves with a fixed orientation throughout
any vertical motion due to the geometry of the parallelogram linkage MGWN, but as
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G moves along a circular locus with respect to D then W also moves along this locus.
So, we can find (xW , yW ) by considering the orientation defined by γ . Proceeding from
G and using Eqs. (17) and (19) and from Fig. 1, we see that xW = xG + lGW sin γ and
yW = yG − lGW cos γ from which we get,

xW = xT + xTA + lAJ cosα(t) + lJH cosβ + lHG cosα(t) + lGW sin γ (24)

yW = hA + hd + lBC sin β + lDG sin α(t) − lGW cos γ. (25)

It is a simple step from here to find the centroidal coordinates for GW,

xCGW = xT + xTA + lAJ cosα(t) + lJH cosβ + lHG cosα(t) + lGW
2

sin γ (26)

yCGW = hA + hd + lBC sin β + lDG sin α(t) − lGW
2

cos γ. (27)

A similar procedure can be undertaken to obtain the coordinates for points M and N,
and then the centroidal coordinates forMN.We start from the premise thatMG//NW//OX
during all vertical motions, so yM = yG and yN = yW . Also, xM = xG − lMG and
xN = xW − lNW , so the following constructions emerge,

xM = xT + xTA + lAJ cosα(t) + lHG cosα(t) + lJH cosβ − lGM (28)

xN = xT + xTA + lAJ cosα(t) + lHG cosα(t) + lJH cosβ + lGW sin γ − lNW (29)

yM = hA + hd + lBC sin β + lDG sin α(t) (30)

yN = hA + hd + lBC sin β + lDG sin α(t) − lGW cos γ. (31)

The centroidal coordinates for MN are therefore,

xCMN = xT + xTA + lAJ cosα(t) + lHG cosα(t) + lJH cosβ − lGM + lMN

2
sin γ (32)

yCMN = hA + hd + lBC sin β + lDG sin α(t) − lMN

2
cos γ. (33)

The last link to be considered is NW and as we already have calculated yN and we
know that because MG//NW//OX then yN = yW , so the height of the centroid of NW
above OX is therefore yCNW = yN = yW , which is,

yCNW = hA + hd + lBC sin β + lDG sin α(t) − lGW cos γ. (34)

The x-coordinate of the centroid of NW is given by xW − lNW
2 , hence,

xCNW = xT + xTA + lAJ cosα(t) + lJH cosβ + lHG cosα(t) + lGW sin γ − lNW
2

. (35)
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We can write down the remaining centroidal x-coordinates, starting with link AJK
and returning to Eq. (5) to get,

xCAJK = xT + xTA + lAJ
3

cosα(t) + lAK
3

cos(μ − α(t)). (36)

In the case of link HJ we know xJ from Eqs. (4) so we can refer to Fig. 1, to complete
the expression for xCHJ ,

xCJH = xT + xTA + lAJ cosα(t) + lJH
2

cosβ. (37)

For link EF we get the centroidal x-coordinate by referring to E first from Eq. (9) and
then referring to Fig. 1,

xCEF = xT − xTB + lBC cosβ + lCp + lEF
2

cosα(t). (38)

In the case of link DG the simplest approach is to take xA then extend to D and then
on to the centroid of DG, therefore,

xCDG = xT + xTA + lAD cosβ + lDG
2

cosα(t). (39)

Finally, the rear-rocker configuration in Fig. 2c, provides the basis for an approx-
imation for the x-coordinate of T, building on from xD again to get xCTU . So, we can
write,

xCTU = xT + xTA + lAD cosβ + lDT sin

(
sin−1

(
lpD
lED

))
+ lTU

2
cosα(t). (40)

(a) (b)

Fig. 3. (a) Virtual work done by forceFv as linkAKL rotates through virtual angular displacement
δα. Note that the primes here specifically denote the displaced angular positions. (b) Rear-rocker
assembly geometry (coordinates relative to OXY in Fig. 1, and where xS > xZ > xC and
yZ > yC > yS ).
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In order to derive the equations of motion we need the generalised force due to
the action of the vertical hydraulic cylinder. The virtual work done by this force as it
moves because of a virtual displacement of the generalised co-ordinate is obtained from
Fig. 3(a), from which α(t) + η(t) = μ where μ is a constant, so if α′(t) = α(t) + δα(t)
then η′(t) = η(t) − δα(t) in order to maintain constant μ. The heavy orange line is
a grounded horizontal line taken through AB in Fig. 1 and simply extended to the
right. The heavy green line is a grounded horizontal line taken through the pin at the
bottom end of the cylinder. From this geometry we see that as link AK moves round
through δα(t), so α(t) → α′(t)where α′(t) = α(t)+δα(t), then the virtual work done is
δW = FvlAKδα(t) and so the generalised force isQα = FvlAK . This term appears within
the equation of motion by applying Lagrange’s equation, adding a suitable dissipation
term later,

d

dt

∂T

∂α̇
− ∂T

∂α
+ ∂U

∂α
= Qα (41)

The potential energy is entirely gravitational and the principal masses in the machine
for vertical motions are contained in nine components, so from Eqs. 6, 7, 11, 13, 15, 22,
27, 33, 34, the potential energy is,

U = (mAJKyCAJK + mJHyCJH + mEFyCEF + mDGyCDG + mTUyCTU + mFGM yCFGM

+ mMNyCMN + mGWyCGW + mNWyCNW )g. (42)

The kinetic energy terms contain all the two-dimensional translational velocities and
also the angular velocities,

T = 1

2
(mAJK ẋ

2
CAJK

+ mAJK ẏ
2
CAJK

+ mDGẋ
2
CDG

+ mDGẏ
2
CDG

+ mEF ẋ
2
CEF

+ mEF ẏ
2
CEF

+ mFGM ẋ2CFGM
+ mFGM ẏ2CFGM

+ mGW ẋ2CGW
+ mGW ẏ2CGW

+ mJH ẋ
2
CJH

+ mJH ẏ
2
CJH

+ mMN ẋ
2
CMN

+ mMN ẏ
2
CMN

+ mNW ẋ2CNW
+ mNW ẏ2CNW

+ mTU ẋ
2
CTU

+ mTU ẏ
2
CTU

+ IAJK α̇2 + IDGα̇2 + IEF α̇2 + ITU α̇2). (43)

Applying Eq. (41) by using Eqs. (42) and (43) and the generalised force defined
above, leads to a nonlinear ordinary differential equation expressed in terms of the gen-
eralised coordinate α(t). The Lagrangian derivation, and the formulation of the resulting
differential equation were performed symbolically within code written in Mathemat-
ica™ to guarantee algebraic accuracy. Note that J in Eq. (44) replaces I in Eq. (43) to
denote the mass moment of inertia quantities (in order to avoid confusions between I
and

√−1). There is a manually inserted classical linear viscous damping term of the
form Cd α̇(t) which operates as an aggregated dissipation term for the viscous joint
friction and aerodynamic drag for the machine. Equation of motion (44) is numerically
integrated using the Mathematica™ package NDSolve [2]. We can calculate the trans-
lational responses of virtually any point in the machine, as long as the transformational
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kinematics for that part are known in terms of α(t). Eq. (44) is as follows,

1
6

(
α̈(t)(lEFmFGM lHG

( 4
3 − 4

3 cos(2α(t))
) + l2HG

( 4
3 − 4

3 cos(2α(t))
)

(
mFGM + 9

4
mGW + 9

4
mMN + 9

4
mNW

)
+ 2

3
mAJK l

2
AK + 6JAJK + lDGlEFmFGM(

4

3
cos(2α(t)) + 4

3

)

+l2DG
( 3
2mDG + ( 4

3 cos(2α(t)) + 4
3

)(
mFGM + 9

4mGW + 9
4mMN + 9

4mNW
))

+6JDG +l2EF
( 3
2mEF + 2

3mFGM
) + 6JEF + 6JTU + 3

2 l
2
TUmTU

)
+lAJ

(
α̈(t)

( 4
3mAJK lAK cos(μ) + (sin(α(t)))2(α(t))( 8

3 lEFmFGM + lHG
( 16
3 mFGM + 12mGW + 12mMN + 12mNW

)))
+g(2mAJK + 6mJH ) cos(α(t)) + α̇(t)2 sin(2α(t))( 4

3 lEFmFGM + lHG
( 8
3mFGM + 6mGW + 6mMN + 6mNW

)))
+l2AJ

(
α̈(t)

( 2
3mAJK+ cos(2α(t))

(− 4
3mFGM − 3mGW − 3mMN − 3mNW

)
+ 4

3mFGM + 3mGW + 6mJH + 3mMN + 3mNW
)

+α̇(t)2 sin(2α(t))
( 4
3mFGM + 3mGW + 3mMN + 3mNW

))
+2gmAJK lAK cos(μ − α(t)) + 6Cd α̇(t)

− 4
3 lDGlEFmFGM α̇(t)2 sin(2α(t)) + 4glDGmFGM cos(α(t))

− 4
3 l

2
DGmFGM α̇(t)2 sin(2α(t)) + 6glDGmGW cos(α(t)) + 6glDGmMN cos(α(t))

+6glDGmNW cos(α(t)) + 3glDGmDG cos(α(t)) − 3l2DGmGW α̇(t)2 sin(2α(t))
−3l2DGmMN α̇(t)2 sin(2α(t)) − 3l2DGmNW α̇(t)2 sin(2α(t)) + 2glEFmFGM cos(α(t))

+ 4
3 lEFmFGM lHGα̇(t)2 sin(2α(t)) + 3glEFmEF cos(α(t))

+ 4
3mFGM l2HGα̇(t)2 sin(2α(t)) + 3glTUmTU cos(α(t)) + 3mGW l2HGα̇(t)2 sin(2α(t))

+3l2HGmMN α̇(t)2 sin(2α(t)) + 3l2HGmNW α̇(t)2 sin(2α(t))
) = 6lAKFv.

(44)

3 Analysis of Horizontal Actuation Defined by 2 Degrees
of Freedom

We refer once again to Fig. 1, to analysis the system in detail. In the horizontal scenario
the machine traverses left to right or vice versa. Assuming a left to right motion to
start with the animated CAD showed that once it reaches the far right position the
machine must then either move up or down. The actual choice depends on whether the
machine has just traversed in the upper horizontal configuration (UHC), which would
have occurred because of a previous vertical lift operation, or the other case where the
machine has traversed in the lower horizontal configuration (LHC) which would have
occurred because of a previous vertical descent. During UHC and LHC motions the
machine is orientated so that α is constant during this phase, and therefore α �= α(t). In
the case of UHC we find from the system geometry, available from the animated CAD,
that α = 17.5◦. This is the case for both the left-to-right and right-to-left variants. We
initially take the case of UHC left-to-right motion, as this can easily be generalised to
all other forms of horizontal motion (noting that α = −17.5◦ for LHC motions). There
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are essentially two angular coordinates associated with the UHC and LHC motions, and
these are β(t) and γ (t). Therefore, Eqs. (1) and (2) now take the following forms,

yee = hd + hA + lAJ sin α + lJH sin β(t) + lHG sin α − lGW cos γ (t) (45)

xee = xT + xTA + lAJ cosα + lJH cosβ(t) + lHG cosα + lGW sin γ (t). (46)

The kinematic relationships for horizontal motions have partly been established
previously, with further ones summarised in the following analysis. We note that the
equations that we need for this part of the analysis that have previously been estab-
lished require the revised generalised co-ordinates for the horizontal motion cases to be
implemented. These equations relate to the following links: EF (Eqs. (11) and (38)), DG
(Eqs. (7) and (39)), TU (Eqs. (13) and (40)), JH (Eqs. (15) and (37)), MN (Eqs. (32) and
(33)), GW (Eqs. (26) and (27)), and FGM (Eqs. (22) and (23)). Starting with link EF,

yCEF = hA + hd + lBC sin β(t) + lEp + lEF
2

sin α (47)

xCEF = xT − xTB + lBC cosβ(t) + lCp + lEF
2

cosα. (48)

Then moving on to link DG,

yCDG = hA + hd + lAD sin β(t) + lDG
2

sin α (49)

xCDG = xT + xTA + lAD cosβ(t) + lDG
2

cosα. (50)

The next link is TU,

yCTU = hA + hd + lBC sin β(t) − lDT cos

(
sin−1

(
lpD
lED

))
+ lTU

2
sin α (51)

xCTU = xT + xTA + lAD cosβ(t) + lDT sin

(
sin−1

(
lpD
lED

))
+ lTU

2
cosα. (52)

Then we consider link JH,

yCJH = hA + hd + lAJ sin α + lJH
2

sin β(t) (53)

xCJH = xT + xTA + lAJ cosα + lJH
2

cosβ(t). (54)

For link MN we have,

yCMN = hA + hd + lBC sin β(t) + lDG sin α − lMN

2
cos γ (t) (55)

xCMN = xT + xTA + lAJ cosα + lHG cosα + lJH cosβ(t) − lGM + lMN

2
sin γ (t). (56)
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In the case of link GW the equations are,

yCGW = hA + hd + lBC sin β(t) + lDG sin α − lGW
2

cos γ (t) (57)

xCGW = xT + xTA + lAJ cosα + lJH cosβ(t) + lHG cosα + lGW
2

sin γ (t). (58)

Then, we have link FGM for which we apply an identical procedure to that used for
link AJK, to locate the centroid,

yCFGM = hA + hd + lEp
3

+ lBC sin β(t) + lEF
3

sin α + 2lDG
3

sin α (59)

xCFGM = xT − xTB
3

+ lCp
3

+ lBC
3

cosβ(t) + lEF
3

cosα + 2xTA
3

+ 2lAJ
3

cosα

+ 2lJH
3

cosβ(t) + 2lHG
3

cosα − lGM
3

. (60)

Finally, we analyse link CDE using one more application of the general procedure
for triangular linkages, leading to,

xCCDE = xT − xTB + lCD
3

+ lCp
3

+ lBC cosβ(t) (61)

yCCDE = hA + hd + lEp
3

+ lBC sin β(t). (62)

Moving to the links that are associated just with horizontal motions, startingwith BC.
This link rotates about B when the machine undergoes horizontal motions. Therefore,

yCBC = hA + hd + lBC
2

sin β(t) (63)

xCBC = xT − xTB + lBC
2

cosβ(t). (64)

The next new link is AD, for which we have,

yCAD = hA + hd + lAD
2

sin β(t) (65)

xCAD = xT + xTA + lAD
2

cosβ(t). (66)

Finally, we have to consider link ST, noting that the upper end S (refer to Fig. 1)
moves by means of the partially hidden rear-rocker assembly. This assembly is based
on the coupled links CZ and ZS, interacting with link ST, as shown in Fig. 3(b). The
objective is to obtain results for the centroids defined by

(
xCCZ , yCCZ

)
and

(
xCZS , yCZS

)
.

By examining Fig. 3(b) we see that the knowns are lCZ , lZS , (xC , yC), and (xS , yS), and
from that information we can get the unknown position (xZ , yZ ), using the following,

l2CZ = (yZ − yC)2 + (xZ − xC)2 (67)
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l2ZS = (yZ − yS)
2 + (xS − xZ )2. (68)

From this we finally have sufficient information to calculate
(
xCCZ , yCCZ

)
and(

xCZS , yCZS

)
respectively, again from the geometries of Fig. 1, and Fig. 3(b),

xCCZ = xT − xTB + lBC cosβ(t) + lCZ
2

cos

(
sin−1 (yZ − yC)

lCZ

)
(69)

yCCZ = hA + hd + lBC sin β(t) + lCZ
2

sin

(
sin−1 (yZ − yC)

lCZ

)
(70)

xCZS = xT + xTA + lAD cosβ(t) + lDG cosα + lGU sin γ (t)

− lTU cosα − lST sin φ(t) − lZS
2

cos

(
sin−1 (yZ − yS)

lZS

)
(71)

yCZS = hA + hd + lAD sin β(t) + lDG sin α − lGU cos γ (t) − lTU sin α

+ lST cosφ(t) + lZS
2

sin

(
sin−1 (yZ − yS)

lZS

)
. (72)

Fig. 4. Local geometry of rear-rocker link ST and the definition of angle φ(t). (a) γ (t) =
−30◦, φ(t) = 0. (b) γ (t) = 0, φ(t) = 30◦. (c) γ (t) = 30◦, φ(t) = 60◦.

Where angle φ(t) is defined between link ST and the local vertical, shown in Fig. 4.
The last centroid we require is

(
xCST , yCST

)
, and this is represented by,

xCST = xT + xTA + lAD cosβ(t) + lDG cosα + lGU sin γ (t) − lTU cosα − lST
2

sin φ(t)

(73)

yCST = hA + hd + lAD sin β(t) + lDG sin α − lGU cos γ (t) − lTU sin α + lST
2

cosφ(t)

(74)

Analysis of the three principal geometries of Fig. 4, reveals that φ(t) = γ (t) +
30◦, and this can be substituted into Eqs. (71–74) inclusive. It is straightforward in
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principle to evaluate (xZ , yZ ) analytically but a problem arises in the complexity of the
expressions that evolve through the process of solving Eqs. (67) and (68), and even
symbolic computation using Mathematica™ is impractical as the code rapidly reaches
its recursion limit. The solution to this difficulty is to evaluate (xZ , yZ ) numerically
and then to proceed symbolically with the remaining derivation. This overcomes that
problem, but we once again find that recursion limits are approached during the full
derivation of the differential equations of motion when they include rear-rocker links
CZ, ZS, and ST, with the result that computation terminates. Fortunately, the significance
of the rear-rocker to the system energies is minimal so its dynamic presence will only
emerge strongly through specific resonances, and the machine operates non-resonantly
as designed. A numerical evaluation of the mass moments of inertia of the rear-rocker
components shows that the rear-rocker contains 1.136% of the overall mass and 0.143%
of the totalmassmoment of inertia of themovingparts of themachine. So the contribution
of the rear-rocker to the non-resonant dynamics of the machine is very small, but the
rear-rocker is still important because it provides the necessary kinematic constraint for
maintaining the upper parallelogram geometry. The generalised force for horizontal
cylinder action is obtained from the virtual work done by this force moving through a
virtual displacement β(t). We see from Fig. 5 that the virtual work done in this case is
given by δW = FH lPAδβ(t), and so the generalised force is given byQβ = FH lPA. There
is no generalised force associated with the generalised co-ordinate γ (t), so Qγ = 0.

Fig. 5. Virtual work done by force FH as link length PA rotates through virtual angular displace-
ment δβ where δβ = β(t)−β′(t). Note that the primes here denote the displaced angular position
of link PA.

Now we are able to state the Lagrange equations for the two generalised coordinates
defining horizontal motion,

d

dt

∂T

∂β̇
− ∂T

∂β
+ ∂U

∂β
= Qβ = FH lPA, (75)

d

dt

∂T

∂γ̇
− ∂T

∂γ
+ ∂U

∂γ
= Qγ = 0. (76)

From this point onwards the kinetic and potential energies are constructed symboli-
cally and then two nonlinear ordinary differential equations emerge by applyingEqs. (75)
and (76). This stage of the derivation has been explored in detail but the two differential
equations are unwieldy and long, and numerical solution has not been generally possible.
The relationship between β(t) and γ (t) can be exploited to reduce the horizontal model
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down to one generalised co-ordinate. The logical choice is β(t) because this is directly
actuated by FH which enters via the generalised force Qβ .

4 Analysis of Horizontal Actuation Defined by 1 Degree of Freedom

Figure 1, shows one of many discrete positions that can be examined for the manipulator
in the upper horizontal configuration (UHC) as it moves left-to-right. It can be deduced
from these configurations that in general γ (t) = π

2 − β(t) (radians) and hence γ̇ (t) =
−β̇(t), for both UHC and LHC. The potential energy is given by the following, noting
that we require Eqs. (34), (47), (49), (51), (53), (55), (57), (59), (62), (63), (65), (74),
where the last equation is modified appropriately so that α is constant and β(t) and γ (t)
are time variant,

U = (mBCyCBC + mADyCAD + mCDEyCCDE + mEFyCEF + mDGyCDG + mST yCST

+ mTUyCTU + mJHyCJH + mFGM yCFGM + mMNyCMN + mGWyCGW + mNWyCNW )g.

(77)

The kinetic energy requires Eqs. (64), (66), (61), (48), (50), (60), (52), (53), (56),
(58), (35), (73), (63), (65), (62), (47), (49), (59), (51), (53), (55), (57), (34), and (74),
respectively, where Eqs. (34) and (35) are modified appropriately so that α is constant
and β(t) and γ (t) are time variant. Therefore, the kinetic energy is as follows,

T = 1

2
(mBCẋ

2
CBC

+ mBCẏ
2
CBC

+ mADẋ
2
CAD

+ mADẏ
2
CAD

+ mCDEẋ
2
CCDE

+ mCDEẏ
2
CCDE

+ mEF ẋ
2
CEF

+ mEF ẏ
2
CEF

+ mDGẋ
2
CDG

+ mDGẏ
2
CDG

+ mFGM ẋ2CFGM

+ mFGM ẏ2CFGM
+ mTU ẋ

2
CTU

+ mTU ẏ
2
CTU

+ mJH ẋ
2
CJH

+ mJH ẏ
2
CJH

+ mMN ẋ
2
CMN

+ mMN ẏ
2
CMN

+ mGW ẋ2CGW
+ mGW ẏ2CGW

+ mNW ẋ2CNW

+ mNW ẏ2CNW
+ +mST ẋ

2
CST

+ mST ẏ
2
CST

+ IBC β̇2

+ IADβ̇2 + IJH β̇2 + IMN γ̇ 2 + IGW γ̇ 2 + IST γ̇ 2). (78)

We apply Eq. (75) using Eqs. (77) and (78) and the expression for the generalised
force Qβ . Then the nonlinear ordinary differential equation in β(t) representing all
horizontal motions is obtained. Another classical linear viscous damping term is added
in the governing equation, of the form Cd β̇(t). The equation of motion (79) is strongly
nonlinear,

− 1

4
cos(β(t))sin2(α) sin(β(t))l2DGmDGβ̇(t)2l2AD

+ 1

4
cos2(α) cos(β(t)) sin(β(t))l2DGmDGβ̇(t)2l2AD

+ cos(β(t)) sin(β(t))mTU β̇(t)2l2AD + 1

4
cos2(β(t))mADβ̈(t)l2AD + 1

4
sin2

(β(t))mADβ̈(t)l2AD + 1

4
cos2(β(t)) sin2(α)l2DGmDGβ̈(t)l2AD + 1

4
cos2(α) sin2
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(β(t))l2DGmDGβ̈(t)l2AD + sin2(β(t))mTU β̈(t)l2AD + 1

2
g cos(β(t))mADlAD

+ 1

2
g cos(β(t)) sin(α)lDGmDGlAD + cos(β(t)) sin(β(t))l2BCmEF β̇(t)2

− 1

4
cos(β(t)) sin2(α) sin(β(t))l2BCl

2
EF l

2
EpmEF β̇(t)2

− cos(β(t)) sin(β(t))l2BCmFGM β̇(t)2 + 1

4
cos2(α) cos(β(t)) sin(β(t))l2AJ l

2
JHmJH β̇(t)2

− 1

4
cos(β(t)) sin(β(t))l2JHmJH β̇(t)2 − cos(β(t)) sin(β(t))l2BCmTU β̇(t)2

+ 1

2
g cos(β(t))lBCmBC + g cos(β(t))lBCmCDE + 1

2
g cos(β(t)) sin(α)lBClEF lEpmEF

+ g cos(β(t))lBCmFGM + g

(
cos(β(t))lBC − 1

2
sin

(π

2
− β(t)

)
lGW

)
mGW

+ 1

2
g cos(β(t))lJHmJH + g

(
cos(β(t))lBC − 1

2
sin

(π

2
− β(t)

)
lMN

)
mMN

+ g
(
cos(β(t))lBC − sin

(π

2
− β(t)

)
lGW

)
mNW

+ g
(
cos(β(t))lAD − sin

(π

2
− β(t)

)
lGU

+1

2
sin

(
2π

3
− β(t)

)
lST

)
mST + g cos(β(t))lBCmTU + Cd β̇(t) + JADβ̈(t) + JBC β̈(t)

+ JGW β̈(t) + JJH β̈(t) + JMN β̈(t) + JST β̈(t) + 1

4
cos2(β(t))l2BCmBC β̈(t)

+ 1

4
sin2(β(t))l2BCmBC β̈(t) + cos2(β(t))l2BCmCDE β̈(t) + sin2(β(t))l2BCmCDE β̈(t)

+ sin2(β(t))l2BCmEF β̈(t) + 1

4
cos2(β(t)) sin2(α)l2BCl

2
EF l

2
EpmEF β̈(t)

+ cos2(β(t))l2BCmFGM β̈(t) + 1

4
cos2(β(t))l2JHmJH β̈(t)

+ 1

4
cos2(α) sin2(β(t))l2AJ l

2
JHmJH β̈(t) + cos2(β(t))l2BCmTU β̈(t) + (cos(β(t))lBC

− sin
(π

2
− β(t)

)
lGW

)
mNW

(
− sin(β(t))lBC β̇(t)2 + cos

(π

2
− β(t)

)
lGW β̇(t)2

+ cos(β(t))lBC β̈(t) − sin
(π

2
− β(t)

)
lGW β̈(t)

)
+

(
cos(β(t))lBC − 1

2
sin

(π

2

−β(t))lGW )mGW

(
− sin(β(t))lBC β̇(t)2 + 1

2
cos

(π

2
− β(t)

)
lGW β̇(t)2

+ cos(β(t))lBC β̈(t)−1

2
sin

(π

2
− β(t)

)
lGW β̈(t)

)

+
(

−1

2
cos

(π

2
− β(t)

)
lGW − sin(β(t))lJH

)
mGW

(
−1

2
sin

(π

2
− β(t))lGW β̇(t)2

− cos(β(t))lJH β̇(t)2 − 1

2
cos

(π

2
− β(t)

)
lGW β̈(t) − sin(β(t))lJH β̈(t)

)
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+
(

−1

3
sin(β(t))lBC − 2

3
sin(β(t))lJH

)
mFGM

(
−1

3
cos(β(t))lBC β̇(t)2

−2

3
cos(β(t))lJH β̇(t)2 − 1

3
sin(β(t))lBC β̈(t) − 2

3
sin(β(t))lJH β̈(t)

)

+(− sin(β(t))lJH − 1

2
cos

(π

2
− β(t)

)
lMN

)
mMN

(
− cos(β(t))lJH β̇(t)2 − 1

2
sin

(π

2
− β(t)

)
lMN β̇(t)2

− sin(β(t))lJH β̈(t) − 1

2
cos

(π

2
− β(t)

)
lMN β̈(t)

)
+

(
cos(β(t))lBC − 1

2
sin

(π

2

−β(t))lMN )mMN

(
− sin(β(t))lBC β̇(t)2 + 1

2
cos

(π

2
− β(t)

)
lMN β̇(t)2

+ cos(β(t))lBC β̈(t) − 1

2
sin

(π

2
− β(t)

)
lMN β̈(t)

)
+

(
1

2
cos(α) cos

(π

2

− β(t)) cos(β(t))lAJ lGW lJH lNW − cos(α) sin(β(t))lAJ lJH

(
cos(α)lHG − 1

2
sin

(π

2

−β(t))lGW lNW ))mNW

(
1

2
cos(α) cos(β(t)) sin
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2
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lAJ lGW lJH lNW β̇(t)2
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2
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2
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)
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2
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(π

2
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5 Results

The FutureForgemanipulator has been modelled in two dimensions as a system of cou-
pled parallelogram linkages which can move under the action of two independent forces
to be provided in practice by hydraulic cylinders. Themachine can operate independently
in its horizontal and vertical modes, so that several different operational sequences can
be accommodated. The mathematical modelling works in the same way, separating the
motion into horizontal and vertical phases. It has been shown that each phase can be
represented by one generalised coordinate, and given the geometrical construction of the
machine, and hence its kinematics, the position of any point on the machine within the
two-dimensional work-space can be calculated. Therefore, two generalised co-ordinates
have been shown to be sufficient to express the full range of operational motions of the
machine as a result of forces applied to it, these forces representing the operations of
the two hydraulic actuators. The full operation of the machine can be simulated under
similar protocols to those onwhich the designers’ animated CADoperates, namely serial
vertical and horizontal operations, and vice versa. A practical scenario is initially exam-
ined in which the manipulator is initially at the lower left-hand-side so that the machine
can execute a left-to-right sweep (this requires the top beam orientation to be − 17.5◦),
and then when the manipulator reaches the end of the sweep at the far right-hand-side
(having travelled horizontally for over 5 m) a vertical lift takes place of ∼ 2.3 m. This
is termed combined motion and is one example of the sort of operation that the machine
will undertake in practice. From the computational perspective the two separate models
are run sequentially as separate segments of Mathematica™ code using the NDSolve
package with accuracy controls implemented. The input data and the internal numerical
data of the first segment are all cleared before the second segment is evaluated, with the
exception of the output results from the first segment (as a parametric plot of the end-
effector motion) which are protected and therefore held over. These results are plotted
on the same graph as the results from the second segment. The specific solution data
for the two phases is given in the caption to Fig. 6. The solver code also contains all
the geometrical and mass property data for the machine, extracted at a very high level
of accuracy from the CAD. There is not enough room to list this data in full here, but
the overall height of the machine when link BC is vertical is 4.992 m, which gives some
indication of the size of this machine.

It is interesting to note that there is no discernible vertical lift associated with the
horizontal sweep in Fig. 6, at least at the plot scale of the graph, but this is not true for
the vertical lift for which there is a noticeable curvature, involving some very obvious
horizontal retraction. This occurs because of the kinematics of the design, which imposes
circular motion about a fixed centre as a fundamental constituent of the vertical motion
of the machine. It is also possible to simulate an imposed oscillation onto the constant
forces from either or both hydraulic cylinders, although this obviously has to be of a
peak amplitude similar to the static force to generate any noticeable effect in the motion
of the end-effector.

Figure 7, defines a horizontal return motion in which the machine travels back from
right to left. Figure 7(a), shows the starting orientation from where it begins when going
back to the left-hand-side after the combined motions of Fig. 6, and Fig. 7(b), confirms
that it is a pure horizontal motion, the difference being that the machine is in the upper
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Fig. 6. Combined horizontal and vertical motions plotted in a parametric plot of the motion of
the end-effector in time, xee and yee plotted in metres. Horizontal: α = −0.3054 rad (−17.5◦),
FH = −100 kN, Cd = 1000 Nms, and tend1 = 2.5 s. β(0) = 2.0944 rad (120◦), β(tend1) =
1.0472 rad (60◦). Vertical: β = 1.0472 rad (60◦), μ = 0.3490 rad (20◦), γ = 0.5236 rad (30◦),
Fv = 350 kN, Cd = 1000 Nms, and tends = 4.1 s, α(tend1) = −0.3054 rad (−17.5◦).
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Fig.7. (a) Top, showing starting orientation for horizontal right to left motion, plotted parametri-
cally in (b) below, for: α = 0.3054 rad (17.5◦). FH = 240 kN, Cd = 1000 Nms, and tend = 1.9
s, β(0) = 1.1042 rad (63.2◦), β(tend) = 2.0349 rad (116.6◦). xee and yee plotted in metres.

horizontal configuration (UHC) for the return sweep. Once again there is no discernible
vertical motion when the machine travels horizontally. In fact, this simulation predicts
a right-to-left horizontal (UHC) sweep of around 5.0 m, with < 0.01 mm drop.

6 Reduced OrderModelling for Nonlinear Control Implementation

Recent work has focused on trying to reduce the very lengthy differential equations to a
compact form, suitable for use in a nonlinear control procedure, as follows:

• Collect like-terms and arranging them into standard forms.
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• Evaluate the magnitude (or “significance”) of the constant coefficients of each of
these terms as well as their amplitudes and periods (in the case of trigonometric
nonlinearities).

• Introduce a small perturbation parameter in accordance with each term’s significance.
• Then determine an appropriate analytical solution procedure, noting that this has been

done for the generating problem.

Following this approach, the differential Eqs. (44) and (79) (in α(t), and β(t) respec-
tively) can be reduced to the following without loss of generality (removing the time
arguments for simplicity),

a1α̈ + a2cos(2α)α̈ + a3α̇ + a4sin(2α)(α̇)2 + a5cos(α) + a6sin(α) = a7 (80)

b1β̈ + b2 sin(2β)β̈ + b3 cos(2β)β̈ + b4β̇ + b5 cos(2β)
(
β̇
)2

+b6 sin(2β)
(
β̇
)2 + b7 cos(β) + b8 sin(β) = b9

(81)

The third and fourth terms in Eqs. (80) and (81) respectively are the assumed classical
linear viscous damping terms, representing themainmechanisms of joint friction, noting
that the aerodynamic damping is vanishingly small in practice. It can be seen that the
equations are strongly nonlinear in form. A numerical analysis allows us to see the
relative numerical scaling for the first four coefficients of Eq. (80) as an example, as
shown in tabulated form below.

Coefficient Value

a1 237.45 + 0.370cos(μ)

a2 0.0299

a3 Cd

a4 0.0299

We see that a2 anda4 are both (at least) 100-times smaller thana1 anda3, respectively.
Then we introduce a small perturbation parameter, and so insert a2 = εa2 and a4 = εa4
into the vertical equation of motion, noting that we could even argue numerically that
a2 = ε2a2 and a4 = ε2a4. However, for the time being, we persist with a2 = εa2 and
a4 = εa4. This ordering of terms is consistent with our physical understanding of the
system. So, the O(

ε0
)
problem becomes,

a1α̈ + ξjoint α̇ + R(α) = a7 (82)

whereR(α) is the restoring force. If we plot the potential energy,Ep = ∫
R(α)dα, against

the actuation angle,α, thenwe see the potential is near-linear across the operational range
of α.

We can generalise this to get the following for either the vertical or horizontal
operations of the actuator, to O(

ε0
)
,

ẍ + ξ ẋ + R(x) = Q (83)
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and as {−π/9 ≤ α ≤ π/9}, Uv(α) is approximately linear with no stationary points,
wells, or turning points. This indicates that the system is non-oscillating to O(

ε0
)
. The

excitation forces Q can accommodate a suitable static balancing force to counteract the
gravitational restoring force within R(x) and then a further time-variant force on top to
move the manipulator on a desired trajectory. Note that the work of [3] discusses the
possible use of gravity compensators in industrial robots, and that a generalisation of
the stiffness modelling approach through the technique of matrix structural analysis is
advocated in [4]. This relationship between Q and R(x) applies to both the horizontal
and vertical motions.Work continues on expressing the higher order equations correctly,
in reduced form, from which the nonlinear dynamics will be examined numerically for
all operational modes of motion. A nonlinear control strategy will then be synthesised
from that basis.

7 Conclusions

An analytical model of the nonlinear dynamics of a high load capacity manipulator has
been derived for the FutureForge hydraulic press at the Advanced Forming Research
Centre in Inchinnan, Renfrewshire, Scotland, UK. This model is capable of represent-
ing any two-dimensional motion that the machine is capable of and this includes the
small but important coupling inherent between the vertical and horizontal motions of
the end-effector, as seen in Fig. 6. This model is novel in that it preserves the uniformity
of perfect parallelogrammotion within the three sub-assemblies of the machine, without
any restrictions on the configuration space that the manipulator is potentially capable of
reaching. This form of modelling could be of interest for other large-scale manipulator
designs for these reasons. One could readily imagine actuation scenarios in which the
horizontal and vertical phases are interspersed in far more complex ways than shown in
Figs. 6 and 7, with specialised trajectories perfectly possible, both physically andmathe-
matically. The equations presented in this paper offer a complete basis for all imaginable
trajectories, and therefore further work is required on writing a fully generalised solution
code which allows any combinations of motion that might be required in practice. In
future the mathematical modelling will be integrated with the 3D animations created by
the digital team in AFRC for FutureForge simulator training within a visually and kine-
matically realistic environment, in which the machine works with specific operational
trajectories. In parallel with that work a nonlinear control investigation has been started
at the University of Strathclyde, based on reduced order modelling, typically as shown
in Eqs. (80)–(83) for the initialO(

ε0
)
case. This is work in progress and will be reported

on in detail in the future.
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