Skip to main content

Fabrication and Characterization of Silicon Nanowire Hybrid Solar Cells

  • Chapter
  • First Online:
Energy Materials

Abstract

With the rising population and simultaneous increasing demand for energy to run the current lifestyle, there is an immense requirement to develop a method to sustain the non-renewable source of energy, solar cell is one of them. In the current book chapter, we aim to study the fabrication and characterization of SiNW’s hybrid solar cells. A hybrid solar cell consists of both organic and inorganic materials. In this book chapter, we have studied the methods to prepare SiNWs, reduced graphene oxide and reduced graphene oxide P Poly (3,4-ethylene dioxythiophene) Polystyrene Sulfonate composite for their application in the SiNWs hybrid solar cell. The morphological analysis of the samples has been done using scanning electron microscopy, and structural characterization of the samples was done using X-ray diffraction and Raman spectroscopy. Finally, the electrical characterization of the solar cells has been studied using the current-density voltage characteristic curves. This book chapter also provides the readers to understand of the fundamentals of a basic solar cell and the way to fabricate a hybrid solar cell most efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu HW, Emadi A, De Graaf G, Leijtens J, Wolffenbuttel RF (2011) Design and fabrication of an albedo insensitive analog sun sensor. Procedia Eng 25:527–530. https://doi.org/10.1016/j.proeng.2011.12.131

    Article  CAS  Google Scholar 

  2. No Title (2012)

    Google Scholar 

  3. 08- 267 (2002) 53706

    Google Scholar 

  4. Zhu M, Zhu M (2014) Silicon nanowires for hybrid solar cells to cite this version : HAL Id : tel-00945787 Silicon nanowires for hybrid solar cells Nanofils de silicium pour les cellules solaires hybrides

    Google Scholar 

  5. Shockley W, Shockley W, Queisser HJ (1961) The Shockley-Queisser limit 1–5

    Google Scholar 

  6. de Santiago F, Trejo A, Miranda A, Carvajal E, Pérez LA, Cruz-Irisson M (2017) Band-gap engineering of halogenated silicon nanowires through molecular doping. J Mol Model 23(11). https://doi.org/10.1007/s00894-017-3484-8

  7. Fonash SJ (2010) Solar cell device physics. Solar Cell Device Phys. https://doi.org/10.1016/C2009-0-19749-0

    Article  Google Scholar 

  8. Dittrich T (2018) Basic characteristics and characterization of solar cells. Mater Concepts Solar Cells 3–43. https://doi.org/10.1142/9781786344496_0001

  9. He LR, Jiang C, Wang H, Lai D (2011) Simple approach of fabricating high efficiency Si nanowire/conductive polymer hybrid solar cells. IEEE Electron Device Lett 32(10):1406–1408. https://doi.org/10.1109/LED.2011.2162222

  10. Liu R, Wang J, Sun T, Wang M, Wu C, Zou H, Song T, Zhang X, Lee ST, Wang ZL, Sun B (2017) Silicon nanowire/polymer hybrid solar cell-supercapacitor: a self-charging power unit with a total efficiency of 10.5%. Nano Lett 17(7):4240–4247. https://doi.org/10.1021/acs.nanolett.7b01154

  11. Liao SH, Jhuo HJ, Yeh PN, Cheng YS, Li YL, Lee YH, Sharma S, Chen SA (2014) Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer. Sci Rep 4:4–10. https://doi.org/10.1038/srep06813

    Article  CAS  Google Scholar 

  12. Eom SH, Senthilarasu S, Uthirakumar P, Yoon SC, Lim J, Lee C, Lim HS, Lee J, Lee SH (2009) Polymer solar cells based on inkjet-printed PEDOT:PSS layer. Org Electron 10(3):536–542. https://doi.org/10.1016/j.orgel.2009.01.015

    Article  CAS  Google Scholar 

  13. Thomas JP, Leung KT (2014) Defect-minimized PEDOT:PSS/planar-si solar cell with very high efficiency. Adv Func Mater 24(31):4978–4985. https://doi.org/10.1002/adfm.201400380

    Article  CAS  Google Scholar 

  14. Sun K, Zhang S, Li P, Xia Y, Zhang X, Du D, Isikgor FH, Ouyang J (2015) Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. J Mater Sci: Mater Electron 26(7):4438–4462. https://doi.org/10.1007/s10854-015-2895-5

    Article  CAS  Google Scholar 

  15. Uma DGV, Gopalakrishnan SR (2019) Supercapacitor behavior and characterization of RGO anchored ­ V 2 O 5 nanorods. J Mater Sci: Mater Electron 0123456789. https://doi.org/10.1007/s10854-019-01984-9

  16. Manuscript A (2010) Nanoscale 207890

    Google Scholar 

  17. Sarkar A, Chakraborty AK, Bera S (2018) NiS/rGO nanohybrid: an excellent counter electrode for dye sensitized solar cell. Solar Energy Mater Solar Cells, 182(August 2017):314–320. https://doi.org/10.1016/j.solmat.2018.03.026

  18. Ates M, Bayrak Y, Ozkan H, Yoruk O, Yildirim M, Kuzgun O (2019) Synthesis of rGO/TiO 2 /PEDOT nanocomposites, supercapacitor device performances and equivalent electrical circuit models. J Polym Res 26(2):1–16. https://doi.org/10.1007/s10965-018-1692-2

    Article  CAS  Google Scholar 

  19. Krishna R, Fernandes DM, Ventura J, Freire C, Titus E (2016) Novel synthesis of highly catalytic active Cu@Ni/RGO nanocomposite for efficient hydrogenation of 4-nitrophenol organic pollutant. Int J Hydrogen Energy 41(27):11608–11615. https://doi.org/10.1016/j.ijhydene.2015.12.027

    Article  CAS  Google Scholar 

  20. Yu H, Zhang B, Bulin C, Li R, Xing R (2016) High-efficient synthesis of graphene oxide based on improved hummers method. Sci Rep 6(November):1–7. https://doi.org/10.1038/srep36143

    Article  CAS  Google Scholar 

  21. Das S, Ghadai R, Krishna A, Trivedi A, Bhujel R, Rai S, Shivakoti I, Kalita K (2020) A comparative analysis of structural and electrochemical properties of graphene oxide (Go) and reduced graphene oxide (rgo) synthesized by using hummer’s and modified hummer’s method. Iranian J Mater Sci Eng 17(4):25–32. https://doi.org/10.22068/ijmse.17.4.25

  22. Ferrari AC (2007) Raman spectroscopy of graphene and graphite : disorder , electron – phonon coupling, doping and nonadiabatic effects 143:47–57. https://doi.org/10.1016/j.ssc.2007.03.052

  23. Rai S, Bhujel R, Swain BP (2018) Electrochemical analysis of graphene oxide and reduced graphene oxide for super capacitor applications. In: Proceedings of international conference on 2018 IEEE electron device Kolkata conference, EDKCON 2018, pp 489–492. https://doi.org/10.1109/EDKCON.2018.8770433

  24. Hilal M, Han JI (2018) Interface engineering of G-PEDOT: PSS hole transport layer via interlayer chemical functionalization for enhanced efficiency of large-area hybrid solar cells and their charge transport investigation. Sol Energy 174(September):743–756. https://doi.org/10.1016/j.solener.2018.09.031

    Article  CAS  Google Scholar 

  25. . Bhujel R, Rai S, Deka U, Sarkar G, Biswas J (2021) Bandgap engineering of PEDOT : PSS/rGO a hole transport layer for SiNWs hybrid solar cells. Bull Mater Sci 0123456789. https://doi.org/10.1007/s12034-021-02376-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabina Bhujel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhujel, R., Rai, S., Swain, B.P. (2023). Fabrication and Characterization of Silicon Nanowire Hybrid Solar Cells. In: Swain, B.P. (eds) Energy Materials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-99-3866-7_5

Download citation

Publish with us

Policies and ethics