Skip to main content

Rotator Cuff Tear

  • Chapter
  • First Online:
Shoulderology
  • 278 Accesses

Abstract

The rotator cuff is the name for a group of four muscles and their tendons attaching to the scapula as origins and the proximal humerus as insertions. They are the supraspinatus, infraspinatus, teres minor, and subscapularis. The tendinous portions of these four muscles unite and cover the entire humeral head except for a gap between the supraspinatus and the subscapularis, which is called the rotator interval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Minagawa H, et al. Humeral attachment of the supraspinatus and infraspinatus tendons: an anatomic study. Arthroscopy. 1998;14(3):302–6.

    Article  CAS  PubMed  Google Scholar 

  2. Mochizuki T, et al. Humeral insertion of the supraspinatus and infraspinatus. New anatomical findings regarding the footprint of the rotator cuff. J Bone Jt Surg Am. 2008;90(5):962–9.

    Article  Google Scholar 

  3. Minagawa H, Itoi E, Sato T, Konno N, Hongo M, Sato K. Morphology of the transitional zone of intramuscular to extramuscular tendons of the rotator cuff. Katakansetsu. 1996;20(1):103–10.

    Google Scholar 

  4. Kuechle DK, et al. Shoulder muscle moment arms during horizontal flexion and elevation. J Shoulder Elb Surg. 1997;6(5):429–39.

    Article  CAS  Google Scholar 

  5. Kuechle DK, et al. The relevance of the moment arm of shoulder muscles with respect to axial rotation of the glenohumeral joint in four positions. Clin Biomech (Bristol, Avon). 2000;15(5):322–9.

    Article  CAS  PubMed  Google Scholar 

  6. Chang YW, et al. Prediction of muscle force involved in shoulder internal rotation. J Shoulder Elb Surg. 2000;9(3):188–95.

    Article  CAS  Google Scholar 

  7. Itoi E, et al. Moment arms of the arm muscles at the glenohumeral joint using the tendon excursion method. J Musculoskelet Res. 2008;11(2):45–53.

    Article  Google Scholar 

  8. Omi R, et al. Function of the shoulder muscles during arm elevation: an assessment using positron emission tomography. J Anat. 2010;216(5):643–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Veeger HE, et al. Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism. J Biomech. 1991;24(7):615–29.

    Article  CAS  PubMed  Google Scholar 

  10. Townsend H, et al. Electromyographic analysis of the glenohumeral muscles during a baseball rehabilitation program. Am J Sports Med. 1991;19(3):264–72.

    Article  CAS  PubMed  Google Scholar 

  11. Greis PE, et al. Validation of the lift-off test and analysis of subscapularis activity during maximal internal rotation. Am J Sports Med. 1996;24(5):589–93.

    Article  CAS  PubMed  Google Scholar 

  12. Kurokawa D, et al. Muscle activity pattern of the shoulder external rotators differs in adduction and abduction: an analysis using positron emission tomography. J Shoulder Elb Surg. 2014;23(5):658–64.

    Article  Google Scholar 

  13. Matsuzawa G, et al. Muscle activity pattern of the shoulder internal rotators: an assessment using positron emission tomography. In: Read at 2016 Annual meeting of ORS, Orlando, March 5–8, 2016, 2016.

    Google Scholar 

  14. Itoi E, et al. Isokinetic strength after tears of the supraspinatus tendon. J Bone Jt Surg Br. 1997;79(1):77–82.

    Article  CAS  Google Scholar 

  15. Minagawa H, Itoi E, Abe H, Fukuta M, Yamamoto N, Seki N, Kikuchi K. Epidemiology of rotator cuff tears. J Jpn Orthop Assoc. 2006;80(3):S217.

    Google Scholar 

  16. Minagawa H, et al. Prevalence of symptomatic and asymptomatic rotator cuff tears in the general population: from mass-screening in one village. J Orthop. 2013;10(1):8–12.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yamamoto A, et al. Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elb Surg. 2010;19(1):116–20.

    Article  Google Scholar 

  18. Codman EA. The shoulder: rupture of the supraspinatus tendon and other lesions in and around the subacromial bursa. Boston: Thomas Todd Company; 1934.

    Google Scholar 

  19. Itoi E, et al. Tensile properties of the supraspinatus tendon. J Orthop Res. 1995;13(4):578–84.

    Article  CAS  PubMed  Google Scholar 

  20. Sano H, et al. Degeneration at the insertion weakens the tensile strength of the supraspinatus tendon: a comparative mechanical and histologic study of the bone-tendon complex. J Orthop Res. 1997;15(5):719–26.

    Article  CAS  PubMed  Google Scholar 

  21. Tuoheti Y, et al. Apoptosis in the supraspinatus tendon with stage II subacromial impingement. J Shoulder Elb Surg. 2005;14(5):535–41.

    Article  Google Scholar 

  22. Yuan J, et al. Apoptosis in rotator cuff tendonopathy. J Orthop Res. 2002;20(6):1372–9.

    Article  PubMed  Google Scholar 

  23. Wakabayashi I, et al. Mechanical environment of the supraspinatus tendon: a two-dimensional finite element model analysis. J Shoulder Elb Surg. 2003;12(6):612–7.

    Article  Google Scholar 

  24. Yamamoto N, et al. Contact between the coracoacromial arch and the rotator cuff tendons in nonpathologic situations: a cadaveric study. J Shoulder Elb Surg. 2010;19(5):681–7.

    Article  Google Scholar 

  25. Muraki T, et al. The effect of scapular position on subacromial contact behavior: a cadaver study. J Shoulder Elb Surg. 2017;26(5):861–9.

    Article  Google Scholar 

  26. Shiota Y, et al. Contact pressure of the coracoacromial arch in shoulders with joint contracture: a cadaveric study. J Orthop Sci. 2017;22(6):1031–41.

    Article  PubMed  Google Scholar 

  27. Neer CS 2nd. Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. J Bone Jt Surg Am. 1972;54(1):41–50.

    Article  Google Scholar 

  28. Neer CS 2nd, Welsh RP. The shoulder in sports. Orthop Clin North Am. 1977;8(3):583–91.

    Article  PubMed  Google Scholar 

  29. Neer CS 2nd. Impingement lesions. Clin Orthop Relat Res. 1983;173:70–7.

    Article  Google Scholar 

  30. Hawkins RJ, Kennedy JC. Impingement syndrome in athletes. Am J Sports Med. 1980;8(3):151–8.

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto N, et al. Impingement mechanisms of the Neer and Hawkins signs. J Shoulder Elb Surg. 2009;18(6):942–7.

    Article  Google Scholar 

  32. Bigliani LU, Morrison DS, April EW. The morphology of the acromion and its relationship to rotator cuff tears. Orthop Trans. 1986;10:228.

    Google Scholar 

  33. Bigliani LU, et al. The relationship of acromial architecture to rotator cuff disease. Clin Sports Med. 1991;10(4):823–38.

    Article  CAS  PubMed  Google Scholar 

  34. Getz JD, et al. Acromial morphology: relation to sex, age, symmetry, and subacromial enthesophytes. Radiology. 1996;199(3):737–42.

    Article  CAS  PubMed  Google Scholar 

  35. Gallino M, Santamaria E, Doro T. Anthropometry of the scapula: clinical and surgical considerations. J Shoulder Elb Surg. 1998;7(3):284–91.

    Article  CAS  Google Scholar 

  36. Oh JH, et al. Classification and clinical significance of acromial spur in rotator cuff tear: heel-type spur and rotator cuff tear. Clin Orthop Relat Res. 2010;468(6):1542–50.

    Article  PubMed  Google Scholar 

  37. Lee SB, et al. Contact geometry at the undersurface of the acromion with and without a rotator cuff tear. Arthroscopy. 2001;17(4):365–72.

    Article  CAS  PubMed  Google Scholar 

  38. Zuckerman JD, et al. The influence of coracoacromial arch anatomy on rotator cuff tears. J Shoulder Elb Surg. 1992;1(1):4–14.

    Article  CAS  Google Scholar 

  39. Sakoma Y, et al. Coverage of the humeral head by the coracoacromial arch: relationship with rotator cuff tears. Acta Med Okayama. 2013;67(6):377–83.

    PubMed  Google Scholar 

  40. Nyffeler RW, et al. Association of a large lateral extension of the acromion with rotator cuff tears. J Bone Jt Surg Am. 2006;88(4):800–5.

    Google Scholar 

  41. Moor BK, et al. Is there an association between the individual anatomy of the scapula and the development of rotator cuff tears or osteoarthritis of the glenohumeral joint? A radiological study of the critical shoulder angle. Bone Jt J. 2013;95-b(7):935–41.

    Article  CAS  Google Scholar 

  42. Spiegl UJ, et al. The critical shoulder angle is associated with rotator cuff tears and shoulder osteoarthritis and is better assessed with radiographs over MRI. Knee Surg Sports Traumatol Arthrosc. 2016;24(7):2244–51.

    Article  PubMed  Google Scholar 

  43. Gerber C, et al. Supraspinatus tendon load during abduction is dependent on the size of the critical shoulder angle: a biomechanical analysis. J Orthop Res. 2014;32(7):952–7.

    Article  PubMed  Google Scholar 

  44. Miyazaki AN, et al. Comparison between the acromion index and rotator cuff tears in the Brazilian and Japanese populations. J Shoulder Elb Surg. 2011;20(7):1082–6.

    Article  Google Scholar 

  45. Shinagawa K, et al. Critical shoulder angle in an East Asian population: correlation to the incidence of rotator cuff tear and glenohumeral osteoarthritis. J Shoulder Elb Surg. 2018;27(9):1602–6.

    Article  Google Scholar 

  46. Itoi E, Minagawa H, Konno N, Kobayashi T, Sato T, Sato K, Nishi T. Smoking habits in patients with rotator cuff tears. Katakansetsu. 1996;20(1):209–12.

    Google Scholar 

  47. Yamamoto N, et al. Risk factors for tear progression in symptomatic rotator cuff tears: a prospective study of 174 shoulders. Am J Sports Med. 2017;45(11):2524–31.

    Article  PubMed  Google Scholar 

  48. Baumgarten KM, et al. Cigarette smoking increases the risk for rotator cuff tears. Clin Orthop Relat Res. 2010;468(6):1534–41.

    Article  PubMed  Google Scholar 

  49. Ichinose R, et al. Alteration of the material properties of the normal supraspinatus tendon by nicotine treatment in a rat model. Acta Orthop. 2010;81(5):634–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hatta T, et al. Nicotine reduced MMP-9 expression in the primary porcine tenocytes exposed to cyclic stretch. J Orthop Res. 2013;31(4):645–50.

    Article  CAS  PubMed  Google Scholar 

  51. Sano H, Wakabayashi I, Itoi E. Stress distribution in the supraspinatus tendon with partial-thickness tears: an analysis using two-dimensional finite element model. J Shoulder Elb Surg. 2006;15(1):100–5.

    Article  Google Scholar 

  52. Sano H, et al. Stress distribution within rotator cuff tendons with a crescent-shaped and an L-shaped tear. Am J Sports Med. 2013;41(10):2262–9.

    Article  PubMed  Google Scholar 

  53. Goutallier D, et al. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res. 1994;304:78–83.

    Article  Google Scholar 

  54. Itoigawa Y, et al. Molecular mechanism of fatty degeneration in rotator cuff muscle with tendon rupture. J Orthop Res. 2011;29(6):861–6.

    Article  CAS  PubMed  Google Scholar 

  55. Itoigawa Y, et al. Hypoxia induces adipogenic differentiation of myoblastic cell lines. Biochem Biophys Res Commun. 2010;399(4):721–6.

    Article  CAS  PubMed  Google Scholar 

  56. Kuwahara Y, et al. Fatty degeneration and wnt10b expression in the supraspinatus muscle after surgical repair of torn rotator cuff tendon. J Orthop Surg (Hong Kong). 2019;27(3):2309499019864817.

    Article  PubMed  Google Scholar 

  57. Itoi E, Shimizu T, Minato T, Yamada S, Watanabe W, Sato K. Stiffness of the rotator cuff muscles: measurement and prediction. J East Jpn Orthop Traumatol. 2000;12(1):61–3.

    Google Scholar 

  58. Itoigawa Y, et al. Feasibility assessment of shear wave elastography to rotator cuff muscle. Clin Anat. 2015;28(2):213–8.

    Article  PubMed  Google Scholar 

  59. Hatta T, et al. Quantifying extensibility of rotator cuff muscle with tendon rupture using shear wave elastography: a cadaveric study. J Biomech. 2017;61:131–6.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Itoigawa Y, et al. Shear wave elastography can predict passive stiffness of supraspinatus musculotendinous unit during arthroscopic rotator cuff repair for presurgical planning. Arthroscopy. 2018;34(8):2276–84.

    Article  PubMed  Google Scholar 

  61. Itoi E, et al. Are pain location and physical examinations useful in locating a tear site of the rotator cuff? Am J Sports Med. 2006;34(2):256–64.

    Article  PubMed  Google Scholar 

  62. Gerber C, Galantay RV, Hersche O. The pattern of pain produced by irritation of the acromioclavicular joint and the subacromial space. J Shoulder Elb Surg. 1998;7(4):352–5.

    Article  CAS  Google Scholar 

  63. Koike Y, et al. Symptomatic rotator cuff tears show higher radioisotope uptake on bone scintigraphy compared with asymptomatic tears. Am J Sports Med. 2013;41(9):2028–33.

    Article  PubMed  Google Scholar 

  64. Shinozaki N, et al. Differences in muscle activities during shoulder elevation in patients with symptomatic and asymptomatic rotator cuff tears: analysis by positron emission tomography. J Shoulder Elb Surg. 2014;23(3):e61–7.

    Article  Google Scholar 

  65. Miyakoshi N, et al. Skin temperature of the shoulder: circadian rhythms in normal and pathologic shoulders. J Shoulder Elb Surg. 1998;7(6):625–8.

    Article  CAS  Google Scholar 

  66. Koike Y, et al. Shoulder surface temperature and bone scintigraphy findings in patients with rotator cuff tears. Ups J Med Sci. 2011;116(2):142–7.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Itoi E. Chapter 27: The shoulder. In: Itoi E, Yoshikawa H, Tsumura H, Tanaka S, Takagi M, editors. Standard textbook series: orthopedics. 14th ed. Tokyo: Igaku-Shoin; 2020. p. 426–50.

    Google Scholar 

  68. Itoi E, Tabata S. Conservative treatment of rotator cuff tears. Clin Orthop Relat Res. 1992;275:165–73.

    Article  Google Scholar 

  69. Tanaka M, et al. Factors related to successful outcome of conservative treatment for rotator cuff tears. Ups J Med Sci. 2010;115(3):193–200.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kobayashi M, et al. Expression of growth factors in the early phase of supraspinatus tendon healing in rabbits. J Shoulder Elb Surg. 2006;15(3):371–7.

    Article  Google Scholar 

  71. Itoigawa Y, et al. The role of an octacalcium phosphate in the re-formation of infraspinatus tendon insertion. J Shoulder Elb Surg. 2015;24(7):e175–84.

    Article  Google Scholar 

  72. Tuoheti Y, et al. Contact area, contact pressure, and pressure patterns of the tendon-bone interface after rotator cuff repair. Am J Sports Med. 2005;33(12):1869–74.

    Article  PubMed  Google Scholar 

  73. Sano H, et al. Stress distribution in the supraspinatus tendon after tendon repair: suture anchors versus transosseous suture fixation. Am J Sports Med. 2007;35(4):542–6.

    Article  PubMed  Google Scholar 

  74. Sano H, et al. Comparison of fixation properties between coil-type and screw-type anchors for rotator cuff repair: a virtual pullout testing using 3-dimensional finite element method. J Orthop Sci. 2016;21(4):452–7.

    Article  PubMed  Google Scholar 

  75. Nagamoto H, et al. Transosseous-equivalent repair with and without medial row suture tying: a cadaveric study of infraspinatus tendon strain measurement. JSES Open Access. 2017;1(2):104–8.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sano H, et al. Tight medial knot tying may increase retearing risk after transosseous equivalent repair of rotator cuff tendon. Biomed Mater Eng. 2017;28(3):267–77.

    PubMed  Google Scholar 

  77. Milano G, et al. Arthroscopic rotator cuff repair with and without subacromial decompression: a prospective randomized study. Arthroscopy. 2007;23(1):81–8.

    Article  PubMed  Google Scholar 

  78. Abrams GD, et al. Arthroscopic repair of full-thickness rotator cuff tears with and without acromioplasty: randomized prospective trial with 2-year follow-up. Am J Sports Med. 2014;42(6):1296–303.

    Article  PubMed  Google Scholar 

  79. Itoi E, Yamamoto N. Definition and classification of different forms of impingement. In: Imhoff AB, Savoie III FH, editors. Rotator cuff across the life span—ISAKOS Consensus Book. Berlin: Springer; 2019. p. 83–8.

    Chapter  Google Scholar 

  80. Rush LN, Savoie FH 3rd, Itoi E. Double-row rotator cuff repair yields improved tendon structural integrity, but no difference in clinical outcomes compared with single-row and triple-row repair: a systematic review. J ISAKOS. 2017;2:260–8.

    Article  Google Scholar 

  81. Mura N, et al. Biomechanical effect of patch graft for large rotator cuff tears: a cadaver study. Clin Orthop Relat Res. 2003;415:131–8.

    Article  Google Scholar 

  82. Itoi E, Tabata S. Incomplete rotator cuff tears. Results of operative treatment. Clin Orthop Relat Res. 1992;284:128–35.

    Article  Google Scholar 

  83. Sano H, et al. Tendon patch grafting using the long head of the biceps for irreparable massive rotator cuff tears. J Orthop Sci. 2010;15(3):310–6.

    Article  PubMed  Google Scholar 

  84. Hatakeyama Y, et al. Effect of arm elevation and rotation on the strain in the repaired rotator cuff tendon. A cadaveric study. Am J Sports Med. 2001;29(6):788–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Itoi .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Itoi, E. (2023). Rotator Cuff Tear. In: Shoulderology. Springer, Singapore. https://doi.org/10.1007/978-981-99-0345-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0345-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0344-3

  • Online ISBN: 978-981-99-0345-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics