Skip to main content

4D Ultrafast TEM

  • Chapter
  • First Online:
In-Situ Transmission Electron Microscopy
  • 951 Accesses

Abstract

Ultrafast technology has demonstrated a profound impact in a wide range of applications including material diagnostics and processing, high-speed communication and biological signaling and sensing. In an attempt to illuminate the complexity of structure–dynamics–function relationships, the invention of 4D ultrafast TEM extends the ability to effectively explore such complexity with high resolutions in space, time and energy domains. This methodology combines the advantages of both TEM and ultrafast laser technologies, which possess the capabilities of performing 4D imaging, diffraction and spectroscopy with flexible modes including a stroboscopic mode for reversible processes and single-pulse mode for irreversible processes. Following an introductory section which outlines the historical development of ultrafast technologies from ultrafast optical probes to ultrafast electron diffraction and electron microscopy (UEM), the chapter goes on to describe the basic principle of 4D UEM and then cover a wide range of applications for the determination of transient, complex structures in material and biological systems with joint sub-nanometer spatial and femtosecond temporal resolutions. Finally, this chapter is concluded by summarizing the progress made so far, highlighting the challenges that should be overcome, and providing future trends and potentials in the UEM field. The interdisciplinary nature of 4D UEM opens perspectives for advancing the understanding of nonequilibrium complex dynamics in chemistry, physics, biology and materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zewail AH (2006) 4D ultrafast electron diffraction, crystallography, and microscopy. Annu Rev Phys Chem 57(1):65–103. https://doi.org/10.1146/annurev.physchem.57.032905.104748

    Article  CAS  Google Scholar 

  2. Zewail AH, Thomas JM (2009) 4D electron microscopy: imaging in space and time. Imperial College Press, London. https://doi.org/10.1142/P641

    Article  Google Scholar 

  3. Shank CV, Ippen EP (1974) Subpicosecond kilowatt pulses from a mode-locked cw dye laser. Appl Phys Lett 24(8):373–375. https://doi.org/10.1063/1.1655222

    Article  CAS  Google Scholar 

  4. Fork RL, Brito Cruz CH, Becker PC, Shank CV (1987) Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt Lett 12(7):483–485. https://doi.org/10.1364/ol.12.000483

    Article  CAS  Google Scholar 

  5. Spence DE, Kean PN, Sibbett W (1991) 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt Lett 16(1):42–44. https://doi.org/10.1364/ol.16.000042

    Article  CAS  Google Scholar 

  6. Abraham H, Lemoine J (1899) Disparition instantanée du phénomène de Kerr. Comptes Rendus de l’Académie des Sciences 129:206–208

    Google Scholar 

  7. Rentzepis PM (1968) Direct measurements of radiationless transitions in liquids. Chem Phys Lett 2(2):117–120. https://doi.org/10.1016/0009-2614(68)80066-1

    Article  CAS  Google Scholar 

  8. Kaufmann KJ, Rentzepis PM (1975) Picosecond spectroscopy in chemistry and biology. Acc Chem Res 8(12):407–412. https://doi.org/10.1021/ar50096a003

    Article  CAS  Google Scholar 

  9. Chuang TJ, Hoffman GW, Eisenthal KB (1974) Picosecond studies of the cage effect and collision induced predissociation of iodine in liquids. Chem Phys Lett 25(2):201–205. https://doi.org/10.1016/0009-2614(74)89117-7

    Article  CAS  Google Scholar 

  10. Hochstrasser RM, Lutz H, Scott GW (1974) The dynamics of populating the lowest triplet state of benzophenone following singlet excitation. Chem Phys Lett 24(2):162–167. https://doi.org/10.1016/0009-2614(74)85424-2

    Article  Google Scholar 

  11. von der Linde D, Laubereau A, Kaiser W (1971) Molecular vibrations in liquids: direct measurement of the molecular dephasing time; determination of the shape of picosecond light pulses. Phys Rev Lett 26(16):954–957. https://doi.org/10.1103/PhysRevLett.26.954

    Article  Google Scholar 

  12. Dantus M, Rosker MJ, Zewail AH (1987) Real-time femtosecond probing of “transition states” in chemical reactions. J Chem Phys 87(4):2395–2397. https://doi.org/10.1063/1.453122

    Article  CAS  Google Scholar 

  13. Zhong D, Douhal A, Zewail AH (2000) Femtosecond studies of protein–ligand hydrophobic binding and dynamics: human serum albumin. Proc Natl Acad Sci 97(26):14056–14061. https://doi.org/10.1073/pnas.250491297

    Article  CAS  Google Scholar 

  14. Mourou G, Williamson S (1982) Picosecond electron diffraction. Appl Phys Lett 41(1):44–45. https://doi.org/10.1063/1.93316

    Article  CAS  Google Scholar 

  15. Williamson S, Mourou G, Li JCM (1984) Time-resolved laser-induced phase transformation in aluminum. Phys Rev Lett 52(26):2364–2367. https://doi.org/10.1103/PhysRevLett.52.2364

    Article  CAS  Google Scholar 

  16. Elsayed-Ali HE, Mourou GA (1988) Picosecond reflection high-energy electron diffraction. Appl Phys Lett 52(2):103–104. https://doi.org/10.1063/1.99063

    Article  CAS  Google Scholar 

  17. Williamson JC, Zewail AH (1991) Structural femtochemistry: experimental methodology. Proc Natl Acad Sci 88(11):5021–5025. https://doi.org/10.1073/pnas.88.11.5021

    Article  CAS  Google Scholar 

  18. Williamson JC, Dantus M, Kim SB, Zewail AH (1992) Ultrafast diffraction and molecular structure. Chem Phys Lett 196(6):529–534. https://doi.org/10.1016/0009-2614(92)85988-M

    Article  CAS  Google Scholar 

  19. Williamson JC, Cao J, Ihee H, Frey H, Zewail AH (1997) Clocking transient chemical changes by ultrafast electron diffraction. Nature 386(6621):159–162. https://doi.org/10.1038/386159a0

    Article  CAS  Google Scholar 

  20. Ihee H, Lobastov VA, Gomez UM, Goodson BM, Srinivasan R, Ruan C-Y, Zewail AH (2001) Direct imaging of transient molecular structures with ultrafast diffraction. Science 291(5503):458–462. https://doi.org/10.1126/science.291.5503.458

    Article  CAS  Google Scholar 

  21. Lobastov VA, Srinivasan R, Vigliotti F, Ruan C-Y, Feenstra JS, Chen S, Park ST, Xu S, Zewail AH (2004) Ultrafast electron diffraction. In: Krausz F, Korn G, Corkum P, Walmsley I (eds) Ultrafast optics IV. Springer, New York, pp 419–435. https://doi.org/10.1007/978-0-387-34756-1_54

  22. Ruan C-Y, Vigliotti F, Lobastov VA, Chen S, Zewail AH (2004) Ultrafast electron crystallography: transient structures of molecules, surfaces, and phase transitions. Proc Natl Acad Sci USA 101(5):1123–1128. https://doi.org/10.1073/pnas.0307302101

    Article  CAS  Google Scholar 

  23. Haider M, Braunshausen G, Schwan E (1995) Correction of the spherical aberration of a 200 kV TEM by means of a hexapole-corrector. Optik 99(4):167–179

    Google Scholar 

  24. Krivanek OL, Dellby N, Lupini AR (1999) Towards sub-Å electron beams. Ultramicroscopy 78(1):1–11. https://doi.org/10.1016/S0304-3991(99)00013-3

    Article  CAS  Google Scholar 

  25. Batson PE, Dellby N, Krivanek OL (2002) Sub-ångstrom resolution using aberration corrected electron optics. Nature 418(6898):617–620. https://doi.org/10.1038/nature00972

    Article  CAS  Google Scholar 

  26. Morishita S, Ishikawa R, Kohno Y, Sawada H, Shibata N, Ikuhara Y (2018) Attainment of 40.5 pm spatial resolution using 300 kV scanning transmission electron microscope equipped with fifth-order aberration corrector. Microscopy 67(1):46–50. https://doi.org/10.1093/jmicro/dfx122

  27. Bostanjoglo O, Elschner R, Mao Z, Nink T, Weingärtner M (2000) Nanosecond electron microscopes. Ultramicroscopy 81(3):141–147. https://doi.org/10.1016/S0304-3991(99)00180-1

    Article  CAS  Google Scholar 

  28. Dömer H, Bostanjoglo O (2003) High-speed transmission electron microscope. Rev Sci Instrum 74(10):4369–4372. https://doi.org/10.1063/1.1611612

    Article  CAS  Google Scholar 

  29. Zewail AH (2005) Diffraction, crystallography and microscopy beyond three dimensions: structural dynamics in space and time. Philos Trans Roy Soc A: Math Phys Eng Sci 363(1827):315–329. https://doi.org/10.1098/rsta.2004.1513

    Article  CAS  Google Scholar 

  30. Lobastov VA, Srinivasan R, Zewail AH (2005) Four-dimensional ultrafast electron microscopy. Proc Natl Acad Sci 102(20):7069–7073. https://doi.org/10.1073/pnas.0502607102

    Article  CAS  Google Scholar 

  31. Piazza L, Cottet M, Carbone F, Masiel D, LaGrange T (2012) Principles and implementation of an ultrafast transmission electron microscope. Microsc Microanal 18(S2):600–601. https://doi.org/10.1017/S1431927612004850

    Article  Google Scholar 

  32. Plemmons DA, Suri PK, Flannigan DJ (2015) Probing structural and electronic dynamics with ultrafast electron microscopy. Chem Mater 27(9):3178–3192. https://doi.org/10.1021/acs.chemmater.5b00433

    Article  CAS  Google Scholar 

  33. Feist A, Echternkamp KE, Schauss J, Yalunin SV, Schäfer S, Ropers C (2015) Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521(7551):200–203. https://doi.org/10.1038/nature14463

    Article  CAS  Google Scholar 

  34. Ryabov A, Baum P (2016) Electron microscopy of electromagnetic waveforms. Science 353(6297):374–377. https://doi.org/10.1126/science.aaf8589

    Article  CAS  Google Scholar 

  35. Lee YM, Kim YJ, Kim Y-J, Kwon O-H (2017) Ultrafast electron microscopy integrated with a direct electron detection camera. Struct Dyn 4(4):044023. https://doi.org/10.1063/1.4983226

    Article  CAS  Google Scholar 

  36. Voss JM, Olshin PK, Charbonnier R, Drabbels M, Lorenz UJ (2019) In situ observation of coulomb fission of individual plasmonic nanoparticles. ACS Nano 13(11):12445–12451. https://doi.org/10.1021/acsnano.9b06664

    Article  CAS  Google Scholar 

  37. LaGrange T, Armstrong MR, Boyden K, Brown CG, Campbell GH, Colvin JD, DeHope WJ, Frank AM, Gibson DJ, Hartemann FV, Kim JS, King WE, Pyke BJ, Reed BW, Shirk MD, Shuttlesworth RM, Stuart BC, Torralva BR, Browning ND (2006) Single-shot dynamic transmission electron microscopy. Appl Phys Lett 89(4):044105. https://doi.org/10.1063/1.2236263

    Article  CAS  Google Scholar 

  38. Cao G, Sun S, Li Z, Tian H, Yang H, Li J (2015) Clocking the anisotropic lattice dynamics of multi-walled carbon nanotubes by four-dimensional ultrafast transmission electron microscopy. Sci Rep 5(1):8404. https://doi.org/10.1038/srep08404

    Article  CAS  Google Scholar 

  39. Yang D-S, Mohammed OF, Zewail AH (2010) Scanning ultrafast electron microscopy. Proc Natl Acad Sci 107(34):14993–14998. https://doi.org/10.1073/pnas.1009321107

    Article  Google Scholar 

  40. Mohammed OF, Yang D-S, Pal SK, Zewail AH (2011) 4D scanning ultrafast electron microscopy: visualization of materials surface dynamics. J Am Chem Soc 133(20):7708–7711. https://doi.org/10.1021/ja2031322

    Article  CAS  Google Scholar 

  41. Baum P (2013) On the physics of ultrashort single-electron pulses for time-resolved microscopy and diffraction. Chem Phys 423:55–61. https://doi.org/10.1016/j.chemphys.2013.06.012

    Article  CAS  Google Scholar 

  42. Aidelsburger M, Kirchner FO, Krausz F, Baum P (2010) Single-electron pulses for ultrafast diffraction. Proc Natl Acad Sci 107(46):19714–19719. https://doi.org/10.1073/pnas.1010165107

    Article  Google Scholar 

  43. Kirchner FO, Lahme S, Krausz F, Baum P (2013) Coherence of femtosecond single electrons exceeds biomolecular dimensions. New J Phys 15(6):063021. https://doi.org/10.1088/1367-2630/15/6/063021

    Article  CAS  Google Scholar 

  44. Gahlmann A, Tae Park S, Zewail AH (2008) Ultrashort electron pulses for diffraction, crystallography and microscopy: theoretical and experimental resolutions. Phys Chem Chem Phys 10(20):2894–2909. https://doi.org/10.1039/b802136h

    Article  CAS  Google Scholar 

  45. van Oudheusden T, de Jong EF, van der Geer SB, Root WPEMO, Luiten OJ, Siwick BJ (2007) Electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range. J Appl Phys 102(9):093501. https://doi.org/10.1063/1.2801027

  46. Michalik AM, Sherman EY, Sipe JE (2008) Theory of ultrafast electron diffraction: the role of the electron bunch properties. J Appl Phys 104(5):054905. https://doi.org/10.1063/1.2973157

    Article  CAS  Google Scholar 

  47. Grinolds MS, Lobastov VA, Weissenrieder J, Zewail AH (2006) Four-dimensional ultrafast electron microscopy of phase transitions. Proc Natl Acad Sci 103(49):18427–18431. https://doi.org/10.1073/pnas.0609233103

    Article  CAS  Google Scholar 

  48. Lobastov VA, Weissenrieder J, Tang J, Zewail AH (2007) Ultrafast electron microscopy (UEM): four-dimensional imaging and diffraction of nanostructures during phase transitions. Nano Lett 7(9):2552–2558. https://doi.org/10.1021/nl071341e

    Article  CAS  Google Scholar 

  49. Morin FJ (1959) Oxides which show a metal-to-insulator transition at the Neel temperature. Phys Rev Lett 3(1):34–36. https://doi.org/10.1103/PhysRevLett.3.34

    Article  CAS  Google Scholar 

  50. Cavalleri A, Chong HHW, Fourmaux S, Glover TE, Heimann PA, Kieffer JC, Mun BS, Padmore HA, Schoenlein RW (2004) Picosecond soft x-ray absorption measurement of the photoinduced insulator-to-metal transition in VO2. Phys Rev B 69(15):153106. https://doi.org/10.1103/PhysRevB.69.153106

    Article  CAS  Google Scholar 

  51. van der Veen RM, Kwon O-H, Tissot A, Hauser A, Zewail AH (2013) Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy. Nat Chem 5(5):395–402. https://doi.org/10.1038/nchem.1622

    Article  CAS  Google Scholar 

  52. Gawelda W, Pham V-T, Benfatto M, Zaushitsyn Y, Kaiser M, Grolimund D, Johnson SL, Abela R, Hauser A, Bressler C, Chergui M (2007) Structural determination of a short-lived excited iron(II) complex by picosecond x-ray absorption spectroscopy. Phys Rev Lett 98(5):057401. https://doi.org/10.1103/PhysRevLett.98.057401

  53. Cobo S, Ostrovskii D, Bonhommeau S, Vendier L, Molnár G, Salmon L, Tanaka K, Bousseksou A (2008) Single-laser-shot-induced complete bidirectional spin transition at room temperature in single crystals of (FeII(pyrazine)(Pt(CN)4)). J Am Chem Soc 130(28):9019–9024. https://doi.org/10.1021/ja800878f

    Article  CAS  Google Scholar 

  54. Flannigan DJ, Park ST, Zewail AH (2010) Nanofriction visualized in space and time by 4D electron microscopy. Nano Lett 10(11):4767–4773. https://doi.org/10.1021/nl103589p

    Article  CAS  Google Scholar 

  55. Sun S, Wei L, Li Z, Cao G, Liu Y, Lu WJ, Sun YP, Tian H, Yang H, Li J (2015) Direct observation of an optically induced charge density wave transition in 1T-TaSe2. Phys Rev B 92(22):224303. https://doi.org/10.1103/PhysRevB.92.224303

  56. Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449(7164):885–889. https://doi.org/10.1038/nature06181

    Article  CAS  Google Scholar 

  57. Chen B, Wang J, Gao Q, Chen Y, Liao X, Lu C, Tan HH, Mai Y-W, Zou J, Ringer SP, Gao H, Jagadish C (2013) Strengthening brittle semiconductor nanowires through stacking faults: insights from in situ mechanical testing. Nano Lett 13(9):4369–4373. https://doi.org/10.1021/nl402180k

    Article  CAS  Google Scholar 

  58. Barwick B, Park HS, Kwon O-H, Baskin JS, Zewail AH (2008) 4D imaging of transient structures and morphologies in ultrafast electron microscopy. Science 322(5905):1227–1231. https://doi.org/10.1126/science.1164000

    Article  CAS  Google Scholar 

  59. Kwon O-H, Barwick B, Park HS, Baskin JS, Zewail AH (2008) Nanoscale mechanical drumming visualized by 4D electron microscopy. Nano Lett 8(11):3557–3562. https://doi.org/10.1021/nl8029866

    Article  CAS  Google Scholar 

  60. Flannigan DJ, Samartzis PC, Yurtsever A, Zewail AH (2009) Nanomechanical motions of cantilevers: direct imaging in real space and time with 4D electron microscopy. Nano Lett 9(2):875–881. https://doi.org/10.1021/nl803770e

    Article  CAS  Google Scholar 

  61. Baskin JS, Park HS, Zewail AH (2011) Nanomusical systems visualized and controlled in 4D electron microscopy. Nano Lett 11(5):2183–2191. https://doi.org/10.1021/nl200930a

    Article  CAS  Google Scholar 

  62. Wilson JF, Henry JK, Clark RL (2000) Measured free vibrations of partially clamped, square plates. J Sound Vib 231(5):1311–1320. https://doi.org/10.1006/jsvi.1999.2732

    Article  Google Scholar 

  63. Blakslee OL, Proctor DG, Seldin EJ, Spence GB, Weng T (1970) Elastic constants of compression-annealed pyrolytic graphite. J Appl Phys 41(8):3373–3382. https://doi.org/10.1063/1.1659428

    Article  CAS  Google Scholar 

  64. Cremons DR, Plemmons DA, Flannigan DJ (2016) Femtosecond electron imaging of defect-modulated phonon dynamics. Nat Commun 7(1):11230. https://doi.org/10.1038/ncomms11230

    Article  CAS  Google Scholar 

  65. Valley DT, Ferry VE, Flannigan DJ (2016) Imaging intra- and interparticle acousto-plasmonic vibrational dynamics with ultrafast electron microscopy. Nano Lett 16(11):7302–7308. https://doi.org/10.1021/acs.nanolett.6b03975

    Article  CAS  Google Scholar 

  66. Kim Y-J, Jung H, Han SW, Kwon O-H (2019) Ultrafast electron microscopy visualizes acoustic vibrations of plasmonic nanorods at the interfaces. Matter 1(2):481–495. https://doi.org/10.1016/j.matt.2019.03.004

    Article  Google Scholar 

  67. McKenna AJ, Eliason JK, Flannigan DJ (2017) Spatiotemporal evolution of coherent elastic strain waves in a single MoS2 flake. Nano Lett 17(6):3952–3958. https://doi.org/10.1021/acs.nanolett.7b01565

    Article  CAS  Google Scholar 

  68. Park ST, Flannigan DJ, Zewail AH (2012) 4D electron microscopy visualization of anisotropic atomic motions in carbon nanotubes. J Am Chem Soc 134(22):9146–9149. https://doi.org/10.1021/ja304042r

    Article  CAS  Google Scholar 

  69. Hohlfeld J, Wellershoff SS, Güdde J, Conrad U, Jähnke V, Matthias E (2000) Electron and lattice dynamics following optical excitation of metals. Chem Phys 251(1):237–258. https://doi.org/10.1016/S0301-0104(99)00330-4

    Article  CAS  Google Scholar 

  70. Yoo B-K, Kwon O-H, Liu H, Tang J, Zewail AH (2015) Observing in space and time the ephemeral nucleation of liquid-to-crystal phase transitions. Nat Commun 6(1):8639. https://doi.org/10.1038/ncomms9639

    Article  CAS  Google Scholar 

  71. Kemsley J (2015) Illuminating crystal nucleation. Chem Eng News 93(2):28–29. https://doi.org/10.1021/cen-09302-scitech1

    Article  Google Scholar 

  72. Nielsen MH, Aloni S, De Yoreo JJ (2014) In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways. Science 345(6201):1158–1162. https://doi.org/10.1126/science.1254051

    Article  CAS  Google Scholar 

  73. Flannigan DJ, Lobastov VA, Zewail AH (2007) Controlled nanoscale mechanical phenomena discovered with ultrafast electron microscopy. Angew Chem Int Ed 46(48):9206–9210. https://doi.org/10.1002/anie.200704147

    Article  CAS  Google Scholar 

  74. Park ST, Flannigan DJ, Zewail AH (2011) Irreversible chemical reactions visualized in space and time with 4D electron microscopy. J Am Chem Soc 133(6):1730–1733. https://doi.org/10.1021/ja110952k

    Article  CAS  Google Scholar 

  75. van Smaalen S, de Boer JL, Haas C, Kommandeur J (1985) Anisotropic thermal expansion in crystals with stacks of planar molecules, such as tetracyanoquinodimethanide (TCNQ) salts. Phys Rev B 31(6):3496–3503. https://doi.org/10.1103/PhysRevB.31.3496

    Article  Google Scholar 

  76. Chen B, Fu X, Tang J, Lysevych M, Tan HH, Jagadish C, Zewail AH (2017) Dynamics and control of gold-encapped gallium arsenide nanowires imaged by 4D electron microscopy. Proc Natl Acad Sci 114(49):12876–12881. https://doi.org/10.1073/pnas.1708761114

    Article  CAS  Google Scholar 

  77. Chen B, Fu X, Lysevych M, Tan HH, Jagadish C (2019) Four-dimensional probing of phase-reaction dynamics in au/GaAs nanowires. Nano Lett 19(2):781–786. https://doi.org/10.1021/acs.nanolett.8b03870

    Article  CAS  Google Scholar 

  78. Liao H-G, Cui L, Whitelam S, Zheng H (2012) Real-time imaging of Pt3Fe nanorod growth in solution. Science 336(6084):1011–1014. https://doi.org/10.1126/science.1219185

    Article  CAS  Google Scholar 

  79. de Jonge N, Ross FM (2011) Electron microscopy of specimens in liquid. Nat Nanotechnol 6(11):695–704. https://doi.org/10.1038/nnano.2011.161

    Article  CAS  Google Scholar 

  80. Jonge N, Peckys DB, Kremers GJ, Piston DW (2009) Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci 106(7):2159–2164. https://doi.org/10.1073/pnas.0809567106

    Article  Google Scholar 

  81. Fu X, Chen B, Tang J, Hassan MT, Zewail AH (2017) Imaging rotational dynamics of nanoparticles in liquid by 4D electron microscopy. Science 355(6324):494–498. https://doi.org/10.1126/science.aah3582

    Article  CAS  Google Scholar 

  82. Fu X, Chen B, Tang J, Zewail AH (2017) Photoinduced nanobubble-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy. Sci Adv 3(8):e1701160. https://doi.org/10.1126/sciadv.1701160

    Article  CAS  Google Scholar 

  83. Li T, Kheifets S, Medellin D, Raizen MG (2010) Measurement of the instantaneous velocity of a Brownian particle. Science 328(5986):1673–1675. https://doi.org/10.1126/science.1189403

    Article  CAS  Google Scholar 

  84. Zheng H, Claridge SA, Minor AM, Alivisatos AP, Dahmen U (2009) Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett 9(6):2460–2465. https://doi.org/10.1021/nl9012369

    Article  CAS  Google Scholar 

  85. Hong L, Anthony SM, Granick S (2006) Rotation in suspension of a rod-shaped colloid. Langmuir 22(17):7128–7131. https://doi.org/10.1021/la061169e

    Article  CAS  Google Scholar 

  86. Lorenz UJ, Zewail AH (2014) Observing liquid flow in nanotubes by 4D electron microscopy. Science 344(6191):1496–1500. https://doi.org/10.1126/science.1253618

    Article  CAS  Google Scholar 

  87. De Rosier DJ, Klug A (1968) Reconstruction of three dimensional structures from electron micrographs. Nature 217(5124):130–134. https://doi.org/10.1038/217130a0

    Article  Google Scholar 

  88. Hart RG (1968) Electron microscopy of unstained biological material: the polytropic montage. Science 159(3822):1464. https://doi.org/10.1126/science.159.3822.1464

    Article  CAS  Google Scholar 

  89. Kwon O-H, Zewail AH (2010) 4D electron tomography. Science 328(5986):1668–1673. https://doi.org/10.1126/science.1190470

    Article  CAS  Google Scholar 

  90. Poncharal P, Wang ZL, Ugarte D, de Heer WA (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407):1513–1516. https://doi.org/10.1126/science.283.5407.1513

    Article  CAS  Google Scholar 

  91. Wei X-L, Liu Y, Chen Q, Wang M-S, Peng L-M (2008) The very-low shear modulus of multi-walled carbon nanotubes determined simultaneously with the axial young’s modulus via in situ experiments. Adv Func Mater 18(10):1555–1562. https://doi.org/10.1002/adfm.200701105

    Article  CAS  Google Scholar 

  92. Barwick B, Flannigan DJ, Zewail AH (2009) Photon-induced near-field electron microscopy. Nature 462(7275):902–906. https://doi.org/10.1038/nature08662

    Article  CAS  Google Scholar 

  93. Dravid VP, Lin X, Wang Y, Wang XK, Yee A, Ketterson JB, Chang RPH (1993) Buckytubes and derivatives: their growth and implications for buckyball formation. Science 259(5101):1601–1604. https://doi.org/10.1126/science.259.5101.1601

    Article  CAS  Google Scholar 

  94. Kawata S, Inouye Y, Verma P (2009) Plasmonics for near-field nano-imaging and superlensing. Nat Photonics 3(7):388–394. https://doi.org/10.1038/nphoton.2009.111

    Article  CAS  Google Scholar 

  95. Kim S, Jin J, Kim Y-J, Park I-Y, Kim Y, Kim S-W (2008) High-harmonic generation by resonant plasmon field enhancement. Nature 453(7196):757–760. https://doi.org/10.1038/nature07012

    Article  CAS  Google Scholar 

  96. Yurtsever A, van der Veen RM, Zewail AH (2012) Subparticle ultrafast spectrum imaging in 4D electron microscopy. Science 335(6064):59–64. https://doi.org/10.1126/science.1213504

    Article  CAS  Google Scholar 

  97. Piazza L, Lummen TTA, Quiñonez E, Murooka Y, Reed BW, Barwick B, Carbone F (2015) Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nat Commun 6(1):6407. https://doi.org/10.1038/ncomms7407

    Article  CAS  Google Scholar 

  98. Vanacore GM, Berruto G, Madan I, Pomarico E, Biagioni P, Lamb RJ, McGrouther D, Reinhardt O, Kaminer I, Barwick B, Larocque H, Grillo V, Karimi E, García de Abajo FJ, Carbone F (2019) Ultrafast generation and control of an electron vortex beam via chiral plasmonic near fields. Nat Mater 18(6):573–579. https://doi.org/10.1038/s41563-019-0336-1

    Article  CAS  Google Scholar 

  99. Flannigan DJ, Barwick B, Zewail AH (2010) Biological imaging with 4D ultrafast electron microscopy. Proc Natl Acad Sci 107(22):9933–9937. https://doi.org/10.1073/pnas.1005653107

    Article  Google Scholar 

  100. Kaplan M, Yoo B-K, Tang J, Karam TE, Liao B, Majumdar D, Baltimore D, Jensen GJ, Zewail AH (2017) Photon-induced near-field electron microscopy of eukaryotic cells. Angew Chem Int Ed 56(38):11498–11501. https://doi.org/10.1002/anie.201706120

    Article  CAS  Google Scholar 

  101. Lu Y, Yoo B-K, Ng AHC, Kim J, Yeom S, Tang J, Lin MM, Zewail AH, Heath JR (2019) 4D electron microscopy of T cell activation. Proc Natl Acad Sci 116(44):22014–22019. https://doi.org/10.1073/pnas.1914078116

    Article  CAS  Google Scholar 

  102. Liu H, Baskin JS, Zewail AH (2016) Infrared PINEM developed by diffraction in 4D UEM. Proc Natl Acad Sci 113(8):2041–2046. https://doi.org/10.1073/pnas.1600317113

    Article  CAS  Google Scholar 

  103. Pomarico E, Madan I, Berruto G, Vanacore GM, Wang K, Kaminer I, García de Abajo FJ, Carbone F (2018) meV resolution in laser-assisted energy-filtered transmission electron microscopy. ACS Photonics 5(3):759–764. https://doi.org/10.1021/acsphotonics.7b01393

    Article  CAS  Google Scholar 

  104. Hassan MT, Liu H, Baskin JS, Zewail AH (2015) Photon gating in four-dimensional ultrafast electron microscopy. Proc Natl Acad Sci 112(42):12944–12949. https://doi.org/10.1073/pnas.1517942112

    Article  CAS  Google Scholar 

  105. Hassan MT, Baskin JS, Liao B, Zewail AH (2017) High-temporal-resolution electron microscopy for imaging ultrafast electron dynamics. Nat Photonics 11(7):425–430. https://doi.org/10.1038/nphoton.2017.79

    Article  CAS  Google Scholar 

  106. Carbone F, Kwon O-H, Zewail AH (2009) Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy. Science 325(5937):181–184. https://doi.org/10.1126/science.1175005

    Article  CAS  Google Scholar 

  107. van der Veen RM, Penfold TJ, Zewail AH (2015) Ultrafast core-loss spectroscopy in four-dimensional electron microscopy. Struct Dyn 2(2):024302. https://doi.org/10.1063/1.4916897

    Article  CAS  Google Scholar 

  108. Su Z, Baskin JS, Zhou W, Thomas JM, Zewail AH (2017) Ultrafast elemental and oxidation-state mapping of hematite by 4D electron microscopy. J Am Chem Soc 139(13):4916–4922. https://doi.org/10.1021/jacs.7b00906

    Article  CAS  Google Scholar 

  109. Egerton RF (2011) Electron energy-loss spectroscopy in the electron microscope. Springer Science & Business Media, New York

    Book  Google Scholar 

  110. Tan H, Verbeeck J, Abakumov A, Van Tendeloo G (2012) Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 116:24–33. https://doi.org/10.1016/j.ultramic.2012.03.002

    Article  CAS  Google Scholar 

  111. Natali M, Campagna S, Scandola F (2014) Photoinduced electron transfer across molecular bridges: electron- and hole-transfer superexchange pathways. Chem Soc Rev 43(12):4005–4018. https://doi.org/10.1039/c3cs60463b

    Article  CAS  Google Scholar 

  112. Fitzpatrick AWP, Lorenz UJ, Vanacore GM, Zewail AH (2013) 4D cryo-electron microscopy of proteins. J Am Chem Soc 135(51):19123–19126. https://doi.org/10.1021/ja4115055

    Article  CAS  Google Scholar 

  113. Rizzo TR, Park YD, Peteanu LA, Levy DH (1986) The electronic spectrum of the amino acid tryptophan in the gas phase. J Chem Phys 84(5):2534–2541. https://doi.org/10.1063/1.450323

    Article  CAS  Google Scholar 

  114. Morel B, Varela L, Conejero-Lara F (2010) The thermodynamic stability of amyloid fibrils studied by differential scanning calorimetry. J Phys Chem B 114(11):4010–4019. https://doi.org/10.1021/jp9102993

    Article  CAS  Google Scholar 

  115. Fersht AR, Shi J-P, Knill-Jones J, Lowe DM, Wilkinson AJ, Blow DM, Brick P, Carter P, Waye MMY, Winter G (1985) Hydrogen bonding and biological specificity analysed by protein engineering. Nature 314(6008):235–238. https://doi.org/10.1038/314235a0

    Article  CAS  Google Scholar 

  116. Sheu S-Y, Yang D-Y, Selzle HL, Schlag EW (2003) Energetics of hydrogen bonds in peptides. Proc Natl Acad Sci 100(22):12683–12687. https://doi.org/10.1073/pnas.2133366100

    Article  CAS  Google Scholar 

  117. Lorenz UJ, Zewail AH (2013) Biomechanics of DNA structures visualized by 4D electron microscopy. Proc Natl Acad Sci 110(8):2822–2827. https://doi.org/10.1073/pnas.1300630110

    Article  Google Scholar 

  118. Fitzpatrick AWP, Park ST, Zewail AH (2013) Exceptional rigidity and biomechanics of amyloid revealed by 4D electron microscopy. Proc Natl Acad Sci 110(27):10976–10981. https://doi.org/10.1073/pnas.1309690110

    Article  Google Scholar 

  119. Gliserin A, Walbran M, Krausz F, Baum P (2015) Sub-phonon-period compression of electron pulses for atomic diffraction. Nat Commun 6(1):8723. https://doi.org/10.1038/ncomms9723

    Article  CAS  Google Scholar 

  120. Lassise A, Mutsaers P, Luiten O (2012) Compact, low power radio frequency cavity for femtosecond electron microscopy. Rev Sci Instruments 83(4):043705. https://doi.org/10.1063/1.3703314

  121. Wong LJ, Freelon B, Rohwer T, Gedik N, Johnson SG (2015) All-optical three-dimensional electron pulse compression. New J Phys 17(1):013051. https://doi.org/10.1088/1367-2630/17/1/013051

  122. Kealhofer C, Schneider W, Ehberger D, Ryabov A, Krausz F, Baum P (2016) All-optical control and metrology of electron pulses. Science 352(6284):429. https://doi.org/10.1126/science.aae0003

    Article  CAS  Google Scholar 

  123. Walbran M, Gliserin A, Jung K, Kim J, Baum P (2015) 5-femtosecond laser-electron synchronization for pump-probe crystallography and diffraction. Phys Rev Appl 4(4):044013. https://doi.org/10.1103/PhysRevApplied.4.044013

    Article  CAS  Google Scholar 

  124. Schulz S, Grguraš I, Behrens C, Bromberger H, Costello JT, Czwalinna MK, Felber M, Hoffmann MC, Ilchen M, Liu HY, Mazza T, Meyer M, Pfeiffer S, Prędki P, Schefer S, Schmidt C, Wegner U, Schlarb H, Cavalieri AL (2015) Femtosecond all-optical synchronization of an X-ray free-electron laser. Nat Commun 6(1):5938. https://doi.org/10.1038/ncomms6938

    Article  CAS  Google Scholar 

  125. Hoffmann MC, Fülöp JA (2011) Intense ultrashort terahertz pulses: generation and applications. J Phys D: Appl Phys 44(8):083001. https://doi.org/10.1088/0022-3727/44/8/083001

  126. GarcĂ­a de Abajo FJ, Kociak M (2008) Electron energy-gain spectroscopy. New J Phys 10(7):073035. https://doi.org/10.1088/1367-2630/10/7/073035

  127. Baum P, Zewail AH (2007) Attosecond electron pulses for 4D diffraction and microscopy. Proc Natl Acad Sci 104(47):18409–18414. https://doi.org/10.1073/pnas.0709019104

    Article  Google Scholar 

  128. Feist A, Bach N, Rubiano da Silva N, Danz T, Möller M, Priebe KE, Domröse T, Gatzmann JG, Rost S, Schauss J, Strauch S, Bormann R, Sivis M, Schäfer S, Ropers C (2017) Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam. Ultramicroscopy 176:63–73. https://doi.org/10.1016/j.ultramic.2016.12.005

    Article  CAS  Google Scholar 

  129. Zhu C, Zheng D, Wang H, Zhang M, Li Z, Sun S, Xu P, Tian H, Li Z, Yang H, Li J (2020) Development of analytical ultrafast transmission electron microscopy based on laser-driven Schottky field emission. Ultramicroscopy 209:112887. https://doi.org/10.1016/j.ultramic.2019.112887

  130. Mankowsky R, Subedi A, Först M, Mariager SO, Chollet M, Lemke HT, Robinson JS, Glownia JM, Minitti MP, Frano A, Fechner M, Spaldin NA, Loew T, Keimer B, Georges A, Cavalleri A (2014) Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516(7529):71–73. https://doi.org/10.1038/nature13875

  131. Hekstra DR, White KI, Socolich MA, Henning RW, Šrajer V, Ranganathan R (2016) Electric-field-stimulated protein mechanics. Nature 540(7633):400–405. https://doi.org/10.1038/nature20571

    Article  CAS  Google Scholar 

  132. Zewail AH (2010) Filming the invisible in 4-D. Sci Am 303(2):74–81. https://doi.org/10.1038/scientificamerican0810-74

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, B., Cao, J., Zhong, D. (2023). 4D Ultrafast TEM. In: Sun, L., Xu, T., Zhang, Z. (eds) In-Situ Transmission Electron Microscopy. Springer, Singapore. https://doi.org/10.1007/978-981-19-6845-7_10

Download citation

Publish with us

Policies and ethics