Skip to main content

Higher-Order Modulation Formats – Concepts and Enabling Devices

  • Chapter
  • First Online:
Fibre Optic Communication

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 161))

Abstract

The chapter gives a general introduction to higher-order modulation (HOM) formats and reviews the current status of concepts of coherent transceivers applied in optical fiber communications. The chapter presents an overview on the major enablers of HOM formats in optical transmission: forward error correction, digital signal processing, data converter, DP-IQ modulator, receiver frontend and application-specific integrated circuit (ASIC) technology. Based on the examples of current and future 400 Gbit/s and 1 Tbit/s transceivers the chapter illustrates feasible transmission capacities and transmission reach with HOM formats based on EDFA repeated C-band transmission over dispersion uncompensated standard single mode fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html

  2. R.W. Tkach, Scaling optical communications for the next decade and beyond. Bell Labs Tech. J. 14(4), 3–10 (2010)

    Google Scholar 

  3. B. Wedding, W. Idler, B. Franz, W. Pöhlmann, E. Lach, 40 Gbit/s quaternary dispersion supported transmission over 31 km of standard single mode fibre without optical dispersion compensation, in Proc. 24th Europ. Conf. Opt. Commun. (ECOC’98), Madrid, Spain (1998), paper WdCO8

    Google Scholar 

  4. C. Xie, S. Spiga, P. Dong, P. Winzer, M. Bergmann, B. Koegel, C. Neumeyr, M. Amann, 400-Gb/s PDM-4PAM WDM system using a monolithic \(2\times4\) VCSEL array and coherent detection. J. Lightwave Technol. 33(3), 670–677 (2015)

    ADS  Google Scholar 

  5. J.M. Kahn, K. Ho, Spectral efficiency limits and modulation/detection techniques for DWDM systems. IEEE J. Sel. Top. Quantum Electron. 10, 259–279 (2004)

    ADS  Google Scholar 

  6. Y. Koizumi, K. Toyoda, M. Yoshida, M. Nakazawa, 1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km. Opt. Express 20(11), 12508–12514 (2012)

    ADS  Google Scholar 

  7. S. Beppu, K. Kasai, M. Yoshida, N. Nakazawa, 2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz. Opt. Express 23(4), 4960–4969 (2015)

    ADS  Google Scholar 

  8. Optical internetworking document: 100G ultra long haul DWDM framework document. OIF-FD-100G-DWDM-01.0.pdf

    Google Scholar 

  9. Dell’Oro Group, Optical transport market report 2Q16, Market summary and vendor information 18(2), O1A

    Google Scholar 

  10. http://www.lightwaveonline.com/articles/2016/01/100g-200g-wdm-to-drive-optical-transport-sales-growth-through-2020-delloro.html

  11. S.L. Jansen, I. Morita, K. Forozesh, S. Randel, D. van den Borne, H. Tanaka, Optical OFDM, a hype or is it for real? in Proc. 24th Europ. Conf. Opt. Commun. (ECOC’98), Madrid, Spain (1998), paper Mo.3.E.3

    Google Scholar 

  12. A. Bononi, N. Rossi, P. Serena, Transmission limitations due to fibre nonlinearity, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’11), Los Angeles, CA, USA (2011), Techn. Digest, paper OWO7

    Google Scholar 

  13. W. Yan, T. Tanaka, B. Liu, M. Nishihara, L. Li, T. Takahara, Z. Tao, J.C. Rasmussen, T. Drenski, 100 Gb/s optical IM-DD transmission with 10G-class devices enabled by 65 GSamples/s CMOS DAC core, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’13), Anaheim, CA, USA (2013), Techn. Digest, paper OM3H1

    Google Scholar 

  14. T. Tanaka, M. Nishihara, T. Takahara, W. Yan, L. Li, Z. Tao, M. Matsuda, K. Takabayashi, J.C. Rasmussen, Experimental demonstration of 448-Gbps DMT transmission over 30-km SMF, in Opt. Fiber Commun. Conf. (OFC’14), San Francisco, CA, USA (2014), Techn. Digest, paper M2I5

    Google Scholar 

  15. ITU-T recommendation G.694.2, Spectral grids for WDM applications: CWDM wavelength grid, published 12/2003

    Google Scholar 

  16. A. Sano, H. Masuda, T. Kobayashi, M. Fujiwara, K. Horikoshi, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, H. Yamazaki, Y. Sakamaki, H. Ishii, 69.1-Tb/s (432 × 171-Gb/s) C- and extended L-band transmission over 240 km using PDM-16-QAM modulation and digital coherent detection, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf., (OFC/NFOEC’10), San Diego, CA, USA (2010), Techn. Digest, paper PDPB7

    Google Scholar 

  17. S. Makovejs, C.C. Roberts, F. Palacios, H.B. Matthews, D.A. Lewis, D.T. Smith, P.G. Diehl, J.J. Johnson, J.D. Patterson, C.R. Towery, S.Y. Ten, Record-low (0.1460 dB/km) attenuation ultra-large \(A_{\mathit{eff}}\) optical fiber for submarine applications, in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), Techn. Digest, PDP Th5A2

    Google Scholar 

  18. S. Randel, Space-division multiplexed transmission, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’13), Anaheim, CA, USA (2013), Techn. Digest, paper OW4F1

    Google Scholar 

  19. K. Igarashi, D. Souma, Y. Wakayama, K. Takeshima, Y. Kawaguchi, T. Tsuritani, I. Morita, M. Suzuki, 114 space-division-multiplexed transmission over 9.8-km weakly-coupled-6-mode uncoupled-19-core fibers, in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), Techn. Digest, PDP Th5C.4

    Google Scholar 

  20. N.K. Fontaine, R. Ryf, H. Chen, A. Velazquez Benitez, J.E. Antonio-Lopez, R. Amezcua-Correa, B. Guan, B. Ercan, R.P. Scott, S.B. Yoo, L. Grueuner-Nielsen, Y. Sun, R. Lingle, \(30\times 30\) MIMO transmission over 15 spatial modes, in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), Techn. Digest, PDP Th5C.1

    Google Scholar 

  21. T.J. Xia, G. Wellbrock, B. Basch, S. Kotrla, W. Lee, T. Tajima, K. Fukuchi, M. Cvijetic, J. Sugg, Y. Ma, B. Turner, C. Coole, C. Urricariet, End-to-end native IP data 100G single carrier real time DSP coherent detection transport over 1520-km field deployed fiber, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’10), San Diego, CA, USA (2010), Techn. Digest, paper PDP D4

    Google Scholar 

  22. P.W. Hooijmans, Coherent Optical System Design (Wiley, Chichester, 1994)

    Google Scholar 

  23. L.G. Kazovsky, R. Welter, A.F. Elrefaie, W. Sessa, Wide-linewidth phase diversity homodyne receivers. J. Lightwave Technol. 6, 1527–1536 (1988)

    ADS  Google Scholar 

  24. S. Norimatsu, K. Iwashita, K. Noguchi, An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes. IEEE Photonics Technol. Lett. 4, 765–767 (1992)

    ADS  Google Scholar 

  25. L.G. Kazovsky, G. Kalogerakis, W.T. Shaw, Homodyne phase-shift-keying systems: past, challenges and future opportunities. J. Lightwave Technol. 24, 4876–4884 (2006)

    ADS  Google Scholar 

  26. J.H. Winters, Equalization in coherent lightwave systems using a fractionally spaced equalizer. J. Lightwave Technol. 8, 1487–1491 (1990)

    ADS  Google Scholar 

  27. B. Spinnler, P.M. Krummrich, E.-D. Schmidt, Chromatic dispersion tolerance of coherent optical communication systems with electrical equalization, in Opt. Fiber Commun. Conf. (OFC’06), Anaheim, CA, USA (2006), Techn. Digest, paper OWB2

    Google Scholar 

  28. T. Pfau, S. Hoffmann, R. Peveling, S. Bhandare, S.K. Ibrahim, O. Adamczyk, M. Porrmann, R. Noé, Y. Achiam, First real-time data recovery for synchronous QPSK transmission with standard DFB lasers. IEEE Photonics Technol. Lett. 18, 1907–1909 (2006)

    ADS  Google Scholar 

  29. www.lightwaveonline.com, Lightwave, 27(1) and 27(2) (2010)

  30. E. Lach, W. Idler, Modulation formats for 100G and beyond. Opt. Fiber Technol. 17(5), 377–386 (2011)

    ADS  Google Scholar 

  31. Optical Internetworking Forum (OIF): Implementation agreement for integrated polarization multiplexed quadrature modulated transmitters, doc. IA # OIF-PMQ-TX-01.0, March, 2010

    Google Scholar 

  32. Optical Internetworking Forum (OIF): Implementation agreement for integrated dual polarization intradyne coherent receivers, doc. IA#OIF-DPC-RX-01.1, Sept. 2011

    Google Scholar 

  33. IEEE Standard 802.3ba-2010, Amendment 4: Media access control parameters, physical layers and management parameters for 40 Gb/s and 100 Gb/s operation, June 2010

    Google Scholar 

  34. ITU-T recommendation G.709: Interfaces for the optical transport network (OTN), published Dec. 2009

    Google Scholar 

  35. J. D’Ambrosia, 100 Gigabit Ethernet and beyond. IEEE Commun. Mag. 48(3), S6–S13 (2010)

    Google Scholar 

  36. Optical Internetworking Forum (OIF) document,100G forward error correction, White Paper, May 2010, OIF-FEC-100G-01.0

    Google Scholar 

  37. F. Gray, Pulse code communication, US Patent 2632058, 1953

    Google Scholar 

  38. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 and 623–656 (1948)

    MathSciNet  MATH  Google Scholar 

  39. R. Hartley, Transmission of information, in Intern. Congress on Telegraphy and Telephony, Como, Italy (1927)

    Google Scholar 

  40. C.N. Campopiano, B.G. Glazer, A coherent digital amplitude and phase modulation system. IRE Trans. Commun. Syst. CS-10, 90–95 (1962)

    Google Scholar 

  41. G. Ungerboeck, Channel coding with multilevel/phase signals. IEEE Trans. Inf. Theory 28(1), 55–67 (1982)

    MathSciNet  MATH  Google Scholar 

  42. J.G. Proakis, Digital Communications, 4th edn. (McGraw–Hill, Singapore, 2001)

    MATH  Google Scholar 

  43. R.J. Essiambre, G. Kramer, P. Winzer, G. Foschini, B. Goebel, Capacity limits of optical fiber networks. J. Lightwave Technol. 28(4), 662–701 (2010)

    ADS  Google Scholar 

  44. A. Alvarado, E. Agrell, D. Lavery, P. Bayvel, LDPC codes for optical channels: is the FEC limit a good predictor of post-FEC BER? in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), Techn. Digest, paper Th3E.5

    Google Scholar 

  45. W.R. Peng, I. Morita, H. Tanaka, Hybrid QAM transmission techniques for single-carrier ultra-dense WDM systems, in Optoelectron. Commun. Conf. (OECC 2011), Taiwan, (2011), Techn. Digest, paper 8D2-4

    Google Scholar 

  46. Q. Zhuge, X. Xu, M. Morsy-Osman, M. Chagnon, M. Qiu, D.V. Plant, Time domain hybrid QAM based rate-adaptive optical transmissions using high speed DACs, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’13), Anaheim, CA, USA (2013), Techn. Digest, paper OTh4E6

    Google Scholar 

  47. F. Buchali, L. Schmalen, K. Schuh, W. Idler, Optimization of time-division hybrid-modulation and its application to rate adaptive 200 Gb transmission, in Proc. 40th Europ. Conf. Opt. Commun. (ECOC’14), Cannes, France (2014), paper Tu.4.3.1

    Google Scholar 

  48. W. Idler, F. Buchali, L. Schmalen, K. Schuh, H. Buelow, Hybrid modulation formats outperforming 16QAM and 8QAM in transmission distance and filtering with cascaded WSS, in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), Techn. Digest, paper M3G4

    Google Scholar 

  49. P.J. Winzer, A.H. Gnauck, 112-Gb/s polarization-multiplexed 16-QAM on a 25-GHz WDM grid, in Proc. 34th Europ. Conf. Opt. Commun. (ECOC’08), Brussels, Belgium (2008), PDP Th3.E.5

    Google Scholar 

  50. M. Nölle, J. Hilt, M. Seimetz, R. Freund, 8 × 224 Gb/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter, in Proc. 36th Europ. Conf. Opt. Commun. (ECOC’10), Torino, Italy (2010), paper We.8.C.4

    Google Scholar 

  51. A.H. Gnauck, P.J. Winzer, A. Konczykowska, F. Jorge, J. Dupuy, M. Riet, G. Charlet, B. Zhu, D.W. Peckham, Generation and transmission of 21.4 Gbaud PDM 64 QAM using a high power DAC driving a single I/Q modulator, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’11), Los Angeles, CA, USA (2011), Techn. Digest, paper PDPB2

    Google Scholar 

  52. H. Buelow, X. Lu, L. Schmalen, A. Klekamp, F. Buchali, Experimental performance of 4D optimized constellation – alternatives for PM-8QAM and PM-16QAM, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’14), San Francisco, CA, USA (2014), Techn. Digest, paper M2A.6

    Google Scholar 

  53. X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, L. Nelson, P. Magill, M. Birk, P.I. Borel, D.W. Peckham, R. Lingle, 64-Tb/s (\(640\times107\)-Gb/s) PDM-36QAM transmission over 320 km using both pre- and post-transmission digital equalization, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’10), San Diego, CA, USA (2010), Techn. Digest, paper PDPB9

    Google Scholar 

  54. A. Sano, T. Kobayashi, A. Matsuura, S. Yamamoto, S. Yamanaka, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, T. Mizuno, 100 × 120-Gb/s PDM 64-QAM transmission over 160 km using linewidth-tolerant pilotless digital coherent detection, in Proc. 36th Europ. Conf. Opt. Commun. (ECOC’10), Torino, Italy (2010), paper PD2.4

    Google Scholar 

  55. A. Sano, T. Kobayashi, K. Ishihara, H. Masuda, S. Yamamoto, K. Mori, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Yamada, H. Yamazaki, 240-Gb/s polarization-multiplexed 64-QAM modulation and blind detection using PLC-LN hybrid integrated modulator and digital coherent receiver, in Proc. 35th Europ. Conf. Opt. Commun. (ECOC’09), Vienna, Austria (2009), paper PD2.2

    Google Scholar 

  56. T. Kobayashi, A. Sano, A. Matsuura, Y. Miyamoto, K. Ishihara, High-order QAM transmission for spectrally-efficient and high-capacity transport, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’12), Los Angeles, CA, USA (2012), Techn. Digest, paper OM2A3

    Google Scholar 

  57. M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, M. Yoshida, 256 QAM (64 Gbit/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’10), San Diego, CA, USA (2010), Techn. Digest, paper OMJ5

    Google Scholar 

  58. S. Okamoto, K. Toyoda, T. Omiya, K. Kasai, M. Yoshida, M. Nakazawa, 512 QAM (54 Gb/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz, in Proc. 36th Europ. Conf. Opt. Commun. (ECOC’10), Torino, Italy (2010), paper PD2.3

    Google Scholar 

  59. D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, T. Wang, 101.7-Tb/s (\(370\times294\)-Gb/s) PDM-128QAM-OFDM Transmission over \(3\times 55\)-km SSMF using pilot-based phase noise mitigation, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’11), Los Angeles, CA, USA (2011), Techn. Digest, paper PDPB5

    Google Scholar 

  60. X. Liu, S. Chandrashekhar, Superchannel for next-generation optical networks, in Opt. Fiber Commun. Conf. (OFC’14), San Francisco, CA, USA (2014), Techn. Digest, tutorial WH1.5

    Google Scholar 

  61. ITU-T recommendation G.694.1: Spectral grids for WDM applications: DWDM frequency grid, published 2012

    Google Scholar 

  62. G. Raybon, A.L. Adamiecki, P. Winzer, C. Xie, A. Konczykowska, F. Jorge, J.-Y. Dupuy, L.L. Buhl, S. Chandrashekhar, S. Draving, M. Grove, K. Rush, Single-carrier 400G interface and 10-channel WDM transmission over 4,800 km using all-ETDM 107-Gbaud PDM-QPSK, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’13), Anaheim, CA, USA (2013), Techn. Digest, paper PDP5A.5

    Google Scholar 

  63. R. Rios-Müller, J. Renaudier, P. Brindel, H. Mardoyan, P. Jennevé, L. Schmalen, G. Charlet, 1-Terabit/s net data-rate transceiver based on single-carrier Nyquist-shaped 124 GBaud PDM-32QAM, in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), Techn. Digest, PDP Th5B.1

    Google Scholar 

  64. G. Raybon, A. Adamiecki, P. Winzer, S. Randel, L. Salamanca, A. Konczykowska, F. Jorge, J. Dupuy, L. Buhl, S. Chandrashekhar, C. Xie, S. Draving, M. Grove, K. Rush, R. Urbanke, High symbol rate coherent optical transmission systems: 80 and 107 Gbaud. J. Lightwave Technol. 32(4), 824–831 (2014)

    ADS  Google Scholar 

  65. G. Raybon, A. Adamiecki, P.J. Winzer, M. Montoliu, S. Randel, A. Umbach, M. Margraf, J. Stephan, S. Draving, M. Grove, K. Rush, All-ETDM 107-Gbaud PDM-16QAM (856-Gb/s) transmitter and coherent receiver, in Proc. 39th Europ. Conf. Opt. Commun. (ECOC’13), London, UK (2013), paper PD2D3

    Google Scholar 

  66. O. Bertran-Pardo, J. Renaudier, H. Mardoyan, P. Tran, R. Rios-Muller, A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, B. Duval, J. Godin, S. Randel, G. Charlet, S. Bigo, Transmission of 50-GHz-spaced single-carrier channels at 516 Gb/s over 600 km, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’13), Anaheim, CA, USA (2013), Techn. Digest, paper OTh4E2

    Google Scholar 

  67. J. Renaudier, R. Rios-Muller, L. Schmalen, M. Salsi, P. Tran, G. Charlet, S. Bigo, 1-Tb/s transceiver spanning over just three 50-GHz frequency slots for long-haul systems, in Proc. 39th Europ. Conf. Opt. Commun. (ECOC’13), London, UK (2013), paper PD2D5

    Google Scholar 

  68. S. Randel, O. Bertran-Pardo, H. Mardoyan, P. Tran, G. Charlet, S. Bigo, A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, J. Godin, Spectral efficiency long-haul transmission of 22 Tb/s using 40-Gbaud PDM-16QAM with coherent detection, in Opt. Fiber Commun. Conf. (OFC’14), San Francisco, CA, USA (2014), Techn. Digest, paper OW4C.2

    Google Scholar 

  69. J. Renaudier, R. Rios-Muller, L. Schmalen, M. Salsi, P. Tran, G. Charlet, S. Bigo, Spectrally efficient 1-Tb/s transceivers for long-haul optical systems. J. Lightwave Technol. 33(7), 1452–1458 (2015)

    ADS  Google Scholar 

  70. F. Buchali, K. Schuh, L. Schmalen, W. Idler, E. Lach, A. Leven, 1-Tbit/s dual-carrier DP-64QAM transmission at 64 GBaud with 40% overhead soft-FEC over 320 km SMF, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’13), Anaheim, CA, USA (2013), Techn. Digest, paper Th4E.3

    Google Scholar 

  71. G. Raybon, S. Randel, A. Adamieki, P. Winzer, L. Salamance, R. Urbanke, S. Chandrasekhar, A. Konczykowsla, F. Jorge, J. Dupuy, L. Buhl, M. Grove, K. Rush, 1-Tb/s dual-carrier 80-Gbaud PDM-16QAM WDM transmission at 5.2 b/s/Hz over 3200 km, in Proc. Photon. Conf. (IPC’12) (2012). doi:10.1109/IPCon.2012.6359319

    Chapter  Google Scholar 

  72. W. Idler, F. Buchali, K. Schuh, N. Cameron, T. Brast, S. Schmid, A. Steffan, 1 Tb/s−4 × 343 Gb/s subcarriers on 50 GHz grid – transmission over 480 km SMF with 22 GHz bandwidth semiconductor modulator, in Opt. Fiber Commun. Conf. (OFC’14), San Francisco, CA, USA (2014), Techn. Digest, paper Th4F.2

    Google Scholar 

  73. R. Dischler, L. Schmalen, Transmission of a 1.1 Tb/s super channel in 100 GHz optical bandwidth based on PM-256 QAM and spatially coupled FEC, in Proc. 40th Europ. Conf. Opt. Commun. (ECOC’14), Cannes, France (2014), paper We. 1.C.1

    Google Scholar 

  74. G. Raybon, A. Adamiecki, S. Randel, P.J. Winzer, Single-carrier and dual-carrier 400-Gb/s and 1.0-Tb/s transmission systems, in Opt. Fiber Commun. Conf. (OFC’14), San Francisco, CA, USA (2014), Techn. Digest, paper Th4F1

    Google Scholar 

  75. Fujitsu, OOLA 55-92 GSa/s 8-bit DAC family; online: www.fujitsu.com/cn/en/products/devices/semiconductor/fsp/asic/asic/ipmacro/networkingips/

  76. A. Carena, G. Bosco, V. Curri, P. Poggiolini, M. Tapia Taiba, F. Forghieri, Statistical characterization of PM-QPSK signals after propagation in uncompensated fiber links, in Proc. 36th Europ. Conf. Opt. Commun. (ECOC’10), Torino, Italy (2010), paper P4.07

    Google Scholar 

  77. P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, F. Forghieri, The GN-model of fiber non-linear propagation and its applications. J. Lightwave Technol. 32(4), 694–721 (2014)

    ADS  Google Scholar 

  78. A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, F. Forghieri, EGN model of non-linear fiber propagation. Opt. Express 22(13), 16335–16362 (2104)

    Google Scholar 

  79. ITU-T supplement 39 of G-Series: Optical system design and engineering considerations; published Sept. 2012

    Google Scholar 

  80. F. Buchali, G. Böcherer, W. Idler, L. Schmalen, P. Schulte, F. Steiner, Experimental demonstration of capacity increase and rate adaptation by probabilistically shaped 64-QAM, in Proc. 41st Europ. Conf. Opt. Commun. (ECOC’15), Cannes, France (2015), paper PDP 3.4

    Google Scholar 

  81. P.J. Winzer, A.H. Gnauck, A. Konczykowska, F. Jorge, J.-Y. Dupuy, Penalties from in-band crosstalk for advanced optical modulation formats, in Proc. 37th Europ. Conf. Opt. Commun. (ECOC’11), Geneva, Switzerland (2011), paper Tu. 5.B.7

    Google Scholar 

  82. F. Buchali, W. Idler, L. Schmalen, K. Schuh, H. Buelow, Performance and advantages of 100 Gb/s QPSK/8QAM hybrid modulation formats, in Opt. Fiber Commun. Conf. (OFC’15), Los Angeles, CA, USA (2015), Techn. Digest, paper Th2A.16

    Google Scholar 

  83. F. Buchali, F. Steiner, G. Boecherer, L. Schmalen, P. Schulte, W. Idler, Rate adaptation and reach increase by probabilistically shaped 64-QAM: an experimental demonstration. J. Lightwave Technol. 34(7), 1599–1609 (2016)

    ADS  Google Scholar 

  84. ITU-T recommendation G.975.1, Forward error correction for high bit-rate DWDM submarine systems, published Feb. 2004

    Google Scholar 

  85. ITU-T recommendation G.709, Interfaces for the Optical Transport Network (OTN), published Dec. 2009

    Google Scholar 

  86. G.D. Forney, Concatenated Codes (MIT Press, Cambridge, 1966)

    Google Scholar 

  87. T.K. Moon, Error Correction Coding: Mathematical Methods and Algorithms (Wiley, New York, 2005)

    MATH  Google Scholar 

  88. I.B. Djordjevic, M. Arabaci, L.L. Minkov, Next generation FEC for high capacity communication in optical transport network. J. Lightwave Technol. 27(16), 3518–3530 (2009)

    ADS  Google Scholar 

  89. Y. Miyata, K. Sugihara, W. Matsumoto, K. Onohara, T. Sugihara, K. Kubo, H. Yoshida, T. Mizuochi, A triple-concatenated FEC using soft-decision decoding for 100 Gb/s optical transmission, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’10), San Diego, CA, USA (2010), Techn. Digest, paper OThL3

    Google Scholar 

  90. Optical Internetworking Forum (OIF) document, 100G forward error correction. White Paper, May 2010. OIF-FEC-100G-01.0

    Google Scholar 

  91. R. Pyndiah, Near optimum decoding of product codes: block turbo codes. IEEE Trans. Commun. 46(8), 1003–1010 (1998)

    MATH  Google Scholar 

  92. R.G. Gallager, Low-Density Parity-Check Codes (MIT Press, Cambridge, 1963). www.ldpc-codes.com/papers/Robert_Gallager_LDPC_1963.pdf

    MATH  Google Scholar 

  93. A. Leven, L. Schmalen, Status and recent advances on forward error correction technologies for lightwave systems. J. Lightwave Technol. 32(16), 2735–2750 (2014)

    ADS  Google Scholar 

  94. Y. Miyata, K. Kubo, H. Yoshida, T. Mizuoch, Proposal for frame structure of optical channel transport unit employing LDPC codes for 100 Gb/s FEC, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’09), San Diego, CA, USA (2009), Techn. Digest, paper NThB2

    Google Scholar 

  95. L. Schmalen, D. Suikat, D. Rösener, A. Leven, Evaluation of left-terminated spatially coupled LDPC codes for optical communications, in Proc. 40th Europ. Conf. Opt. Commun. (ECOC’14), Cannes, France (2014), paper Th.2.3.4

    Google Scholar 

  96. L. Schmalen, V. Aref, J. Cho, D. Suikat, D. Roesener, A. Leven, Spatially coupled soft-decision error correction for future lightwave systems. J. Lightwave Technol. 33(5), 1109–1116 (2015)

    ADS  Google Scholar 

  97. A. Ghazisaeidi, L. Schmalen, I.F. de Jauregui Ruiz, P. Tran, C. Simonneau, P. Brindel, G. Charlet, Transoceanic transmission systems using adaptive multi-rate FECs. J. Lightwave Technol. 33(7), 1479–1487 (2015)

    ADS  Google Scholar 

  98. J.X. Cai, Y. Sun, H.G. Batshon, M. Mazurczyk, H. Zhang, D.G. Foursa, A.N. Pilipetski, 54 Tb/s transmission over 9,150 km with optimized hybrid Raman-EDFA amplification and coded modulation, in Proc. 40th Europ. Conf. Opt. Commun. (ECOC’14), Cannes, France (2014), paper PD.3.3

    Google Scholar 

  99. W.R. Bennett, Spectra of quantized signals. Bell Syst. Tech. J. 27, 446–472 (1948). https://archive.org/details/bstj27-3-446

    MathSciNet  Google Scholar 

  100. F. Buchali, A. Klekamp, L. Schmalen, T. Drenski, Implementation of 64QAM at 42.66 GBaud using 1.5 samples per symbol DAC and demonstration of up to 300 km fiber transmission, in Opt. Fiber Commun. Conf. (OFC’14), San Francisco, CA, USA (2014), Techn. Digest, paper M2A.1

    Google Scholar 

  101. W. Idler, F. Buchali, D. Roesener, E. Lach, A. Leven, Spectral pre-distortion with FPGA and DAC at 448-Gb/s DP-16QAM improving nonlinear threshold power (NLT), in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’13), Anaheim, CA, USA (2013), Techn. Digest, paper Oth3C.1

    Google Scholar 

  102. F.M. Gardner, A BPSK/QPSK timing-error detector for sampled receivers. IEEE Trans. Commun. COM-34, 423–429 (1986)

    ADS  Google Scholar 

  103. M. Oerder, H. Meyr, Digital filter and square timing recovery. IEEE Trans. Commun. COM-36, 605–612 (1988)

    ADS  Google Scholar 

  104. I. Fatadin, S. Savory, D. Ives, Compensation of quadrature imbalance in an optical QPSK coherent receiver. IEEE Photonics Technol. Lett. 20(20), 1733–1735 (2008)

    ADS  Google Scholar 

  105. A. Leven, L. Schmalen, Implementation aspects of coherent transmit and receive functions in application-specific integrated circuits, in Optical Fibre Telecommunications VIA, Systems and Networks, 6th edn., vol. 15 (Elsevier, Amsterdam, 2013), pp. 555–585

    Google Scholar 

  106. M. Kuschnerov, F.N. Hauske, K. Piyawanno, B. Spinnler, E.-D. Schmidt, B. Lankl, Joint equalization and timing recovery for coherent fiber optic receivers, in Proc. 34th Europ. Conf. Opt. Commun. (ECOC’08), Brussels, Belgium (2008), paper Mo3D3

    Google Scholar 

  107. S.J. Savory, Compensation of fibre impairments in digital coherent systems, in Proc. 34th Europ. Conf. Opt. Commun. (ECOC’08), Brussels, Belgium (2008), paper Mo3D1

    Google Scholar 

  108. B. Spinnler, Equalizer design and complexity for digital coherent receivers. IEEE J. Sel. Top. Quantum Electron. 16(5), 1180–1192 (2010)

    ADS  Google Scholar 

  109. G. Clark, S. Parker, S. Mitra, A unified approach to time- and frequency-domain realization of FIR adaptive digital filters. IEEE Trans. Acoust. Speech Signal Process. 31, 1073–1083 (1983)

    Google Scholar 

  110. S.J. Savory, G. Gavioli, R.I. Killey, P. Bayvel, Transmission of 42.8 Gbit/s polarization multiplexed NRZ-QPSK over 6400 km of standard fiber with no optical dispersion compensation, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’07), Anaheim, CA, USA (2007), Techn. Digest, paper OTuA1

    Google Scholar 

  111. D. Godard, Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Trans. Commun. 28, 1867–1875 (1980)

    Google Scholar 

  112. I. Fatadin, D. Ives, S.J. Savory, Blind equalization and carrier phase recovery in a 16-QAM optical coherent system. J. Lightwave Technol. 27(15), 3042–3049 (2009)

    ADS  Google Scholar 

  113. B. Widrow, Thinking about thinking: the discovery of the LMS algorithm. IEEE Signal Process. Mag. 22, 100–106 (2005)

    ADS  Google Scholar 

  114. S.J. Savory, Digital filters for coherent optical receivers. Opt. Express 16, 804–810 (2008)

    ADS  Google Scholar 

  115. A. Leven, N. Noriaki, U.V. Koc, Y.-K. Chen, Frequency estimation in intradyne reception. IEEE Photonics Technol. Lett. 19(6), 366–368 (2007)

    ADS  Google Scholar 

  116. M. Kuschnerov, D. Van den Borne, K. Piyawanno, F.N. Hauske, C.R.S. Fludger, T. Duthel, T. Wuth, J.C. Geyer, C. Schulien, B. Spinnler, E.-D. Schmidt, B. Lankl, Joint-polarization carrier phase estimation for XPM-limited coherent polarization-multiplexed QPSK transmission with OOK-neighbors, in Proc. 34th Europ. Conf. Opt. Commun. (ECOC’08), Brussels, Belgium (2008), paper Mo4D2

    Google Scholar 

  117. J.D. Proakis, M. Salehi, Digital Communications, 5th edn. (McGraw Hill, Singapore, 2008). ISBN 978-0-07-295716-7

    Google Scholar 

  118. A.J. Viterbi, A.M. Viterbi, Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission. IEEE Trans. Inf. Theory 29, 543–551 (1983)

    MATH  Google Scholar 

  119. E. Ip, J. Kahn, Feedforward carrier recovery for coherent optical communications. J. Lightwave Technol. 25(9), 2675–2692 (2007)

    ADS  Google Scholar 

  120. C. Laperle, A. Savchenko, C. Li, G. Mak, M. O’Sullivan, 5120 km RZ-DPSK transmission over G.652 fiber at 10 Gb/s with no optical dispersion compensation, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’05), Anaheim, CA, USA (2005), Techn. Digest, paper PDP27

    Google Scholar 

  121. T. Kupfer, C. Schulien, Maximum likelihood sequence estimation at 10 Gb/s, from concept to implementation, in 18th Ann. Meeting IEEE Lasers & Electro-Optics Soc. (LEOS’05), Sydney, Australia (2005), Techn. Digest, paper THU4

    Google Scholar 

  122. W. Kester, Analog-Digital Conversion, Analog Devices (2004), Chap. 2. Also available as The Data Conversion Handbook (Elsevier/Newnes, 2005), ISBN 0-7506-7841-0. Online: www.analog.com/library/analogDialogue/archives/39-06/data_conversion_handbook.html

    Google Scholar 

  123. W. Kester, Analog-Digital Conversion, Analog Devices (2004), Chap 3. Also available as The Data Conversion Handbook (Elsevier/Newnes, 2005), ISBN 0-7506-7841-0. Online: www.analog.com/library/analogDialogue/archives/39-06/data_conversion_handbook.html

    Google Scholar 

  124. Standard for terminology and test methods for analog-to-digital converters, IEEE Std 1241-2000, 2001

    Google Scholar 

  125. R.H. Walden, Performance trends for analog-to-digital converters. IEEE Commun. Mag. 37(2), 96–101 (1999)

    Google Scholar 

  126. W. Kester, Aperture time, aperture jitter, aperture delay time – removing the confusion, Analog Devices, Tutorial MT-07 (2009), online: www.analog.com/static/imported-files/tutorials/MT-007.pdf

  127. Y. Achiam, A.M. Kaplan, M. Seimetz, Systems with higher order modulation, in Fibre Optic Communication, ed. by H. Venghaus, N. Grote (Springer, Berlin, 2012), Chap. 8

    Google Scholar 

  128. H.T. Quynhanh, A. Suzuki, M. Yoshida, T. Hirooka, M. Nakazawa, A \(\lambda/4 \)-shifted distributed-feedback laser diode with a fiber ring cavity configuration having an OSNR of 85 dB and a linewidth of 7 kHz. J. Lightwave Technol. 20(18), 1578–1580 (2008)

    Google Scholar 

  129. P. Dong, C. Xie, L. Chen, L.L. Buhl, Y.-K. Chen, 112-Gb/s monolithic PDM-QPSK modulator in silicon. Opt. Express 20(26), 624–629 (2012)

    Google Scholar 

  130. C. Doerr, L. Chen, D. Vermeulen, T. Nielsen, S. Azemati, S. Stulz, G. McBrien, X.-M. Xu, B. Mikkelsen, M. Givehchi, C. Rasmussen, S.-Y. Park, Single-chip silicon photonics 100-Gb/s coherent transceiver, in Opt. Fiber Commun. Conf. (OFC’14), San Francisco, CA, USA (2014), Techn. Digest, paper Th5C.1

    Google Scholar 

  131. Fujitsu introduces World’s first DP-QPSK LN modulator for 100 Gbps optical networks (Sept. 2009), www.fujitsu.com/jp/group/foc/en/resources/news/press-releases/2009/0914.html

  132. S. Corzine, P. Evans, M. Kato, G. He, M. Fisher, M. Raburn, A. Dentai, I. Lyubomirsky, A. Nilsson, J. Rahn, R. Nagarajan, C. Tsai, J. Stewart, D. Christini, M. Missey, V. Lal, H. Dinh, A. Chen, J. Thomson, W. Williams, P. Chavarkar, S. Nguyen, D. Lambert, S. Agashe, J. Rossi, P. Liu, J. Webjorn, T. Butrie, M. Reffle, R. Schneider, M. Ziari, C. Joyner, S. Grubb, F. Kish, D. Welch, 10-Channel × 40 Gb/s per channel DQPSK monolithically integrated InP-based transmitter PIC, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’08), San Diego, CA, USA (2008), Techn. Digest, paper PDP18

    Google Scholar 

  133. P. Schvan, A 22 GS/s 5-b ADC in 0.13 μm SiGe BiCMOS, in Proc. IEEE Internat. Solid-State Circ. Conf. (ISSCC’06), San Francisco, CA, USA (2006), pp. 572–573

    Google Scholar 

  134. P. Schvan, D. Pollex, T. Bellingrath, A 22 GS/s 6b DAC with integrated digital ramp generator, in Proc. IEEE Internat. Solid-State Circ. Conf. (ISSCC’05), San Francisco, CA, USA (2005), pp. 122–123

    Google Scholar 

  135. M. Nagatani, H. Nosaka, S. Yamanaka, K. Sano, K. Murata, A 32-GS/s 6-bit double-sampling DAC in InP HBT technology, in Proc. IEEE Compound Semicond. Integr. Circuits Symp, Greensboro, NC, USA (2009), 10.1109/csics.2009.5315628

    Chapter  Google Scholar 

  136. S. Halder, H. Gustat, C. Scheytt, A. Thiede, A 20 GS/s 8-bit current steering DAC in 0.25 μm SiGe BiCMOS technology, in Proc. Eur. Microw. Integr. Circuits Conf., Amsterdam, The Netherlands (2008), pp. 147–150

    Google Scholar 

  137. T. Ellermeyer, R. Schmid, A. Bielik, J. Rupeter, M. Möller, DA and AD converters in SiGe technology: speed and resolution for ultra high data rate applications, in Proc. 36th Europ. Conf. Opt. Commun. (ECOC’10), Torino, Italy (2010), paper Th.10.A.6

    Google Scholar 

  138. Y.M. Greshishchev, D. Pollex, S.-C. Wang, M. Besson, P. Flemeke, S. Szilagyi, J. Aguirre, C. Falt, N. Ben-Hamida, R. Gibbins, P. Schvan, A 56 GS/s 6b DAC in 65 nm CMOS with \(256\times6 b\) memory, in Int. Solid-State Circ. Conf. (ISSCC’11), San Francisco, CA, USA (2011), pp. 194–196, Techn. Digest

    Google Scholar 

  139. M. Nagatani, H. Nosaka, K. Sano, K. Murata, K. Kurishima, M. Ida, A 60-GS/s 6-bit DAC in 0.5 μm InP HBT technology for optical communication systems, in Proc. Comp. Semicond. Integr. Circ. Symp. (CSICS’11), Waikoloa, HI, USA (2011), Techn. Digest, paper G.3

    Google Scholar 

  140. Fujitsu. Digital to analog converter. (Mar. 2012). [Online]. Available: www.fujitsu.com/downloads/MICRO/fme/documentation/c60.pdf

  141. Tektronix. Tektronix announces world’s fastest 10-bit commercial DAC. (Mar. 2013) http://component-solutions.tek.com/news-library/Tektronix%20Component%20Solutions%20Announces%20Worlds%20Fastest%2010-bit%20Commercial%20DAC%20-%20031813.pdf

  142. K. Poulton, R. Neff, B. Setterberg, B. Wuppermann, T. Kopley, R. Jewett, J. Pernillo, C. Tan, A. Montijo, A 20 GS/s 8b ADC with a 1 MB memory in 0.18 μm CMOS, in Proc. Int. Solid-State Circuits Conf. (ISSCC’03), San Francisco, CA, USA (2003), pp. 318–319

    Google Scholar 

  143. P. Schvan, D. Pollex, S.-C. Wang, C. Falt, N. Ben-Hamida, A 22 GS/s 5b ADC in 0.13 μm SiGe BiCMOS, in Proc. IEEE Internat. Solid-State Circ. Conf. (ISSCC’06), San Francisco, CA, USA (2006), pp. 572–573

    Google Scholar 

  144. J. Lee, J. Weiner, P. Roux, A. Leven, Y.-K. Chen, A 24 GS/s 5-b ADC with closed-loop THA in 0.18 μm SiGe BiCMOS, in Proc. IEEE Custom Integr. Circ. Conf. (CICC’08), San Jose, CA, USA (2008), pp. 313–316

    Google Scholar 

  145. P. Schvan, J. Bach, C. Falt, P. Flemke, R. Gibbins, Y. Greshishchev, N. Ben-Hamida, D. Pollex, J. Sitch, S.-C. Wang, J. Wolczanski, A 24 GS/s 6b ADC in 90 nm CMOS, in Proc. IEEE Internat. Solid-State Circ. Conf. (ISSCC’08), San Francisco, CA, USA (2008), pp. 544–545

    Google Scholar 

  146. I. Dedic, 56 GS/s ADC: enabling 100GbE, in Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC’10), San Diego, CA, USA (2010), Techn. Digest, paper OThT6

    Google Scholar 

  147. Fujitsu, Factsheet LUKE-ES55 – 65 GSa/s 8 bit ADC. Online: www.fujitsu.com/downloads/MICRO/fme/documentation/c63.pdf

  148. Fujitsu, ROTTA 37-92 GSa/s 8-bit ADC family. Online: www.fujitsu.com/cn/en/products/devices/semiconductor/fsp/asic/asic/ipmacro/networkingips/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Idler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Idler, W., Buchali, F. (2017). Higher-Order Modulation Formats – Concepts and Enabling Devices. In: Venghaus, H., Grote, N. (eds) Fibre Optic Communication. Springer Series in Optical Sciences, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-319-42367-8_7

Download citation

Publish with us

Policies and ethics