Skip to main content

Structural Alterations in Non-enveloped Viruses During Disassembly

  • Chapter
  • First Online:
Physical Virology

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 24))

  • 304 Accesses

Abstract

The capsid shells of non-enveloped viruses can be categorized as large macromolecules constituted from protein building blocks, with the primary purpose of protecting and delivering the viral genome inside living cells during an infection. Non-enveloped virus capsids incorporate stability as well as dynamicity, which allows them to survive inhospitable conditions in the environment, and disassemble within host cells to ensure transfer of the genome for downstream replication and translation. In this chapter, we discuss the metastability of the non-enveloped capsids, ensured by molecular switches, that allow the highly stable assemblies to be destabilized under mild but specific physiological conditions. The structural alterations induced in non-enveloped capsids as well as in nucleocapsids of enveloped viruses during disassembly of the capsid shell, culminating in the release of genome, is extensively discussed. Disassembly is a key step in the establishment of infection and any spatiotemporal alteration in this step may diminish infectivity. Thus, a detailed understanding of the molecular pathways of disassembly may result in the development of more effective intervention methods and antiviral compounds.

Kimi Azad and Debajit Dey—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsai B (2007) Penetration of nonenveloped viruses into the cytoplasm. Annu Rev Cell Dev Biol 23:23–43. https://doi.org/10.1146/annurev.cellbio.23.090506.123454

    Article  CAS  PubMed  Google Scholar 

  2. Veesler D, Johnson JE (2012) Virus maturation. Annu Rev Biophys 41:473–496. https://doi.org/10.1146/annurev-biophys-042910-155407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Domitrovic T, Movahed N, Bothner B, Matsui T, Wang Q, Doerschuk PC et al (2013) Virus assembly and maturation: auto-regulation through allosteric molecular switches. J Mol Biol 425(9):1488–1496. https://doi.org/10.1016/j.jmb.2013.02.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Banerjee M, Johnson JE (2008) Activation, exposure and penetration of virally encoded, membrane-active polypeptides during non-enveloped virus entry. Curr Protein Pept Sci 9(1):16–27. https://doi.org/10.2174/138920308783565732

    Article  CAS  PubMed  Google Scholar 

  5. Kumar CS, Dey D, Ghosh S, Banerjee M (2018) Breach: host membrane penetration and entry by nonenveloped viruses. Trends Microbiol 26(6):525–537. https://doi.org/10.1016/j.tim.2017.09.010

    Article  CAS  PubMed  Google Scholar 

  6. Spriggs CC, Harwood MC, Tsai B (2019) How non-enveloped viruses hijack host machineries to cause infection. Adv Virus Res 104:97–122. https://doi.org/10.1016/bs.aivir.2019.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dupzyk A, Tsai B (2016) How polyomaviruses exploit the ERAD machinery to cause infection. Viruses 8(9). https://doi.org/10.3390/v8090242

  8. Das A, Barrientos R, Shiota T, Madigan V, Misumi I, McKnight KL et al (2020) Gangliosides are essential endosomal receptors for quasi-enveloped and naked hepatitis A virus. Nat Microbiol 5(9):1069–1078. https://doi.org/10.1038/s41564-020-0727-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tuthill TJ, Bubeck D, Rowlands DJ, Hogle JM (2006) Characterization of early steps in the poliovirus infection process: receptor-decorated liposomes induce conversion of the virus to membrane-anchored entry-intermediate particles. J Virol 80(1):172–180. https://doi.org/10.1128/JVI.80.1.172-180.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bubeck D, Filman DJ, Hogle JM (2005) Cryo-electron microscopy reconstruction of a poliovirus-receptor-membrane complex. Nat Struct Mol Biol 12(7):615–618. https://doi.org/10.1038/nsmb955

  11. Danthi P, Tosteson M, Li QH, Chow M (2003) Genome delivery and ion channel properties are altered in VP4 mutants of poliovirus. J Virol 77(9):5266–5274. https://doi.org/10.1128/jvi.77.9.5266-5274.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilts BD, Schaap IAT, Schmidt CF (2015) Swelling and softening of the cowpea chlorotic mottle virus in response to pH shifts. Biophys J 108(10):2541–2549. https://doi.org/10.1016/j.bpj.2015.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bond KM, Lyktey NA, Tsvetkova IB, Dragnea B, Jarrold MF (2020) Disassembly intermediates of the brome mosaic virus identified by charge detection mass spectrometry. J Phys Chem B 124(11):2124–2131. https://doi.org/10.1021/acs.jpcb.0c00008

    Article  CAS  PubMed  Google Scholar 

  14. Weis F, Beckers M, von der Hocht I, Sachse C (2019) Elucidation of the viral disassembly switch of tobacco mosaic virus. EMBO Rep 20(11):e48451. https://doi.org/10.15252/embr.201948451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qiu X (2012) Heat induced capsid disassembly and DNA release of bacteriophage lambda. PLoS ONE 7(7):e39793. https://doi.org/10.1371/journal.pone.0039793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Badia-Martinez D, Oksanen HM, Stuart DI, Abrescia NG (2013) Combined approaches to study virus structures. Subcell Biochem 68:203–246. https://doi.org/10.1007/978-94-007-6552-8_7

    Article  CAS  PubMed  Google Scholar 

  17. Kaelber JT, Hryc CF, Chiu W (2017) Electron cryomicroscopy of viruses at near-atomic resolutions. Annu Rev Virol 4(1):287–308. https://doi.org/10.1146/annurev-virology-101416-041921

    Article  CAS  PubMed  Google Scholar 

  18. Doerschuk PC, Gong Y, Xu N, Domitrovic T, Johnson JE (2016) Virus particle dynamics derived from CryoEM studies. Curr Opin Virol 18:57–63. https://doi.org/10.1016/j.coviro.2016.02.011

    Article  PubMed  Google Scholar 

  19. Buchta D, Fuzik T, Hrebik D, Levdansky Y, Sukenik L, Mukhamedova L et al (2019) Enterovirus particles expel capsid pentamers to enable genome release. Nat Commun 10(1):1138. https://doi.org/10.1038/s41467-019-09132-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Azad K, Banerjee M (2019) Structural dynamics of nonenveloped virus disassembly intermediates. J Virol 93(22). https://doi.org/10.1128/JVI.01115-19

  21. Hong Y, Song Y, Zhang Z, Li S (2022) Cryo-electron tomography: the resolution revolution and a surge of in situ virological discoveries. Annu Rev Biophys. https://doi.org/10.1146/annurev-biophys-092022-100958

    Article  Google Scholar 

  22. Borkotoky S, Dey D, Hazarika Z, Joshi A, Tripathi K (2022) Unravelling viral dynamics through molecular dynamics simulations—a brief overview. Biophys Chem 291:106908. https://doi.org/10.1016/j.bpc.2022.106908

    Article  CAS  PubMed  Google Scholar 

  23. Odegard A, Banerjee M, Johnson JE (2010) Flock house virus: a model system for understanding non-enveloped virus entry and membrane penetration. Curr Top Microbiol Immunol 343:1–22. https://doi.org/10.1007/82_2010_35

    Article  CAS  PubMed  Google Scholar 

  24. Schneemann A, Zhong W, Gallagher TM, Rueckert RR (1992) Maturation cleavage required for infectivity of a nodavirus. J Virol 66(11):6728–6734. https://doi.org/10.1128/JVI.66.11.6728-6734.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Maia LF, Soares MR, Valente AP, Almeida FC, Oliveira AC, Gomes AM et al (2006) Structure of a membrane-binding domain from a non-enveloped animal virus: insights into the mechanism of membrane permeability and cellular entry. J Biol Chem 281(39):29278–29286. https://doi.org/10.1074/jbc.M604689200

    Article  CAS  PubMed  Google Scholar 

  26. Zlotnick A, Reddy VS, Dasgupta R, Schneemann A, Ray WJ Jr, Rueckert RR et al (1994) Capsid assembly in a family of animal viruses primes an autoproteolytic maturation that depends on a single aspartic acid residue. J Biol Chem 269(18):13680–13684

    Article  CAS  PubMed  Google Scholar 

  27. Kearney BM, Johnson JE (2014) Assembly and maturation of a T = 4 quasi-equivalent virus is guided by electrostatic and mechanical forces. Viruses 6(8):3348–3362. https://doi.org/10.3390/v6083348

    Article  PubMed  PubMed Central  Google Scholar 

  28. Canady MA, Tihova M, Hanzlik TN, Johnson JE, Yeager M (2000) Large conformational changes in the maturation of a simple RNA virus, nudaurelia capensis omega virus (NomegaV). J Mol Biol 299(3):573–584. https://doi.org/10.1006/jmbi.2000.3723

    Article  CAS  PubMed  Google Scholar 

  29. Matsui T, Tsuruta H, Johnson JE (2010) Balanced electrostatic and structural forces guide the large conformational change associated with maturation of T = 4 virus. Biophys J 98(7):1337–1343. https://doi.org/10.1016/j.bpj.2009.12.4283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matsui T, Lander G, Johnson JE (2009) Characterization of large conformational changes and autoproteolysis in the maturation of a T=4 virus capsid. J Virol 83(2):1126–1134. https://doi.org/10.1128/JVI.01859-08

    Article  CAS  PubMed  Google Scholar 

  31. Matsui T, Lander GC, Khayat R, Johnson JE (2010) Subunits fold at position-dependent rates during maturation of a eukaryotic RNA virus. Proc Natl Acad Sci USA 107(32):14111–14115. https://doi.org/10.1073/pnas.1004221107

    Article  PubMed  PubMed Central  Google Scholar 

  32. Domitrovic T, Matsui T, Johnson JE (2012) Dissecting quasi-equivalence in nonenveloped viruses: membrane disruption is promoted by lytic peptides released from subunit pentamers, not hexamers. J Virol 86(18):9976–9982. https://doi.org/10.1128/JVI.01089-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Odegard AL, Kwan MH, Walukiewicz HE, Banerjee M, Schneemann A, Johnson JE (2009) Low endocytic pH and capsid protein autocleavage are critical components of Flock House virus cell entry. J Virol 83(17):8628–8637. https://doi.org/10.1128/JVI.00873-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Banerjee M, Khayat R, Walukiewicz HE, Odegard AL, Schneemann A, Johnson JE (2009) Dissecting the functional domains of a nonenveloped virus membrane penetration peptide. J Virol 83(13):6929–6933. https://doi.org/10.1128/JVI.02299-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bothner B, Schneemann A, Marshall D, Reddy V, Johnson JE, Siuzdak G (1999) Crystallographically identical virus capsids display different properties in solution. Nat Struct Biol 6(2):114–116. https://doi.org/10.1038/5799

    Article  CAS  PubMed  Google Scholar 

  36. Lin J, Lee LY, Roivainen M, Filman DJ, Hogle JM, Belnap DM (2012) Structure of the Fab-labeled “breathing” state of native poliovirus. J Virol 86(10):5959–5962. https://doi.org/10.1128/JVI.05990-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Basavappa R, Syed R, Flore O, Icenogle JP, Filman DJ, Hogle JM (1994) Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 A resolution. Protein Sci 3(10):1651–69. https://doi.org/10.1002/pro.5560031005

  38. Shukla A, Padhi AK, Gomes J, Banerjee M (2014) The VP4 peptide of hepatitis A virus ruptures membranes through formation of discrete pores. J Virol 88(21):12409–12421. https://doi.org/10.1128/JVI.01896-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Odegard AL, Chandran K, Zhang X, Parker JS, Baker TS, Nibert ML (2004) Putative autocleavage of outer capsid protein micro1, allowing release of myristoylated peptide micro1N during particle uncoating, is critical for cell entry by reovirus. J Virol 78(16):8732–8745. https://doi.org/10.1128/JVI.78.16.8732-8745.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nibert ML, Odegard AL, Agosto MA, Chandran K, Schiff LA (2005) Putative autocleavage of reovirus mu1 protein in concert with outer-capsid disassembly and activation for membrane permeabilization. J Mol Biol 345(3):461–474. https://doi.org/10.1016/j.jmb.2004.10.026

    Article  CAS  PubMed  Google Scholar 

  41. Zhang X, Tang J, Walker SB, O’Hara D, Nibert ML, Duncan R et al (2005) Structure of avian orthoreovirus virion by electron cryomicroscopy and image reconstruction. Virology 343(1):25–35. https://doi.org/10.1016/j.virol.2005.08.002

    Article  CAS  PubMed  Google Scholar 

  42. Zhang X, Ji Y, Zhang L, Harrison SC, Marinescu DC, Nibert ML et al (2005) Features of reovirus outer capsid protein mu1 revealed by electron cryomicroscopy and image reconstruction of the virion at 7.0 Angstrom resolution. Structure 13(10):1545–57. https://doi.org/10.1016/j.str.2005.07.012

  43. Sutton G, Sun D, Fu X, Kotecha A, Hecksel CW, Clare DK et al (2020) Assembly intermediates of orthoreovirus captured in the cell. Nat Commun 11(1):4445. https://doi.org/10.1038/s41467-020-18243-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wiethoff CM, Wodrich H, Gerace L, Nemerow GR (2005) Adenovirus protein VI mediates membrane disruption following capsid disassembly. J Virol 79(4):1992–2000. https://doi.org/10.1128/JVI.79.4.1992-2000.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dormitzer PR, Nason EB, Prasad BV, Harrison SC (2004) Structural rearrangements in the membrane penetration protein of a non-enveloped virus. Nature 430(7003):1053–1058. https://doi.org/10.1038/nature02836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Trask SD, Kim IS, Harrison SC, Dormitzer PR (2010) A rotavirus spike protein conformational intermediate binds lipid bilayers. J Virol 84(4):1764–1770. https://doi.org/10.1128/JVI.01682-09

    Article  CAS  PubMed  Google Scholar 

  47. Yoder JD, Trask SD, Vo TP, Binka M, Feng N, Harrison SC et al (2009) VP5* rearranges when rotavirus uncoats. J Virol 83(21):11372–11377. https://doi.org/10.1128/JVI.01228-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen JZ, Settembre EC, Aoki ST, Zhang X, Bellamy AR, Dormitzer PR et al (2009) Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM. Proc Natl Acad Sci USA 106(26):10644–10648. https://doi.org/10.1073/pnas.0904024106

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ludert JE, Michelangeli F, Gil F, Liprandi F, Esparza J (1987) Penetration and uncoating of rotaviruses in cultured cells. Intervirology 27(2):95–101. https://doi.org/10.1159/000149726

    Article  CAS  PubMed  Google Scholar 

  50. Sasaki M, Itakura Y, Kishimoto M, Tabata K, Uemura K, Ito N et al (2021) Host serine proteases TMPRSS2 and TMPRSS11D mediate proteolytic activation and trypsin-independent infection in group A rotaviruses. J Virol 95(11). https://doi.org/10.1128/JVI.00398-21

  51. Silvestry M, Lindert S, Smith JG, Maier O, Wiethoff CM, Nemerow GR et al (2009) Cryo-electron microscopy structure of adenovirus type 2 temperature-sensitive mutant 1 reveals insight into the cell entry defect. J Virol 83(15):7375–7383. https://doi.org/10.1128/JVI.00331-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ansardi DC, Morrow CD (1995) Amino acid substitutions in the poliovirus maturation cleavage site affect assembly and result in accumulation of provirions. J Virol 69(3):1540–1547. https://doi.org/10.1128/JVI.69.3.1540-1547.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hendrix RW, Johnson JE (2012) Bacteriophage HK97 capsid assembly and maturation. Adv Exp Med Biol 726:351–363. https://doi.org/10.1007/978-1-4614-0980-9_15

    Article  CAS  PubMed  Google Scholar 

  54. Gertsman I, Gan L, Guttman M, Lee K, Speir JA, Duda RL et al (2009) An unexpected twist in viral capsid maturation. Nature 458(7238):646–650. https://doi.org/10.1038/nature07686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lander GC, Evilevitch A, Jeembaeva M, Potter CS, Carragher B, Johnson JE (2008) Bacteriophage lambda stabilization by auxiliary protein gpD: timing, location, and mechanism of attachment determined by cryo-EM. Structure 16(9):1399–1406. https://doi.org/10.1016/j.str.2008.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dai X, Zhou ZH (2018) Structure of the herpes simplex virus 1 capsid with associated tegument protein complexes. Science 360(6384). https://doi.org/10.1126/science.aao7298

  57. Brown JC, Newcomb WW (2011) Herpesvirus capsid assembly: insights from structural analysis. Curr Opin Virol 1(2):142–149. https://doi.org/10.1016/j.coviro.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McPherson A, Gavira JA (2014) Introduction to protein crystallization. Acta Crystallogr F Struct Biol Commun 70(Pt 1):2–20. https://doi.org/10.1107/S2053230X13033141

    Article  CAS  PubMed  Google Scholar 

  59. Verdaguer N, Garriga D, Fita I (2013) X-ray crystallography of viruses. Subcell Biochem 68:117–144. https://doi.org/10.1007/978-94-007-6552-8_4

    Article  CAS  PubMed  Google Scholar 

  60. Hopper P, Harrison SC, Sauer RT (1984) Structure of tomato bushy stunt virus. V. Coat protein sequence determination and its structural implications. J Mol Biol 177(4):701–13. https://doi.org/10.1016/0022-2836(84)90045-7

  61. Jiang W, Tang L (2017) Atomic cryo-EM structures of viruses. Curr Opin Struct Biol 46:122–129. https://doi.org/10.1016/j.sbi.2017.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I et al (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157(1):38–46. https://doi.org/10.1016/j.jsb.2006.05.009

    Article  CAS  PubMed  Google Scholar 

  63. Scheres SH (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180(3):519–530. https://doi.org/10.1016/j.jsb.2012.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14(3):290–296. https://doi.org/10.1038/nmeth.4169

    Article  CAS  PubMed  Google Scholar 

  65. Bouchet-Marquis C, Hoenger A (2011) Cryo-electron tomography on vitrified sections: a critical analysis of benefits and limitations for structural cell biology. Micron 42(2):152–162. https://doi.org/10.1016/j.micron.2010.07.003

    Article  CAS  PubMed  Google Scholar 

  66. Wagner FR, Watanabe R, Schampers R, Singh D, Persoon H, Schaffer M et al (2020) Preparing samples from whole cells using focused-ion-beam milling for cryo-electron tomography. Nat Protoc 15(6):2041–2070. https://doi.org/10.1038/s41596-020-0320-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99(6):1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ode H, Nakashima M, Kitamura S, Sugiura W, Sato H (2012) Molecular dynamics simulation in virus research. Front Microbiol 3:258. https://doi.org/10.3389/fmicb.2012.00258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Martinez M, Cooper CD, Poma AB, Guzman HV (2020) Free energies of the disassembly of viral capsids from a multiscale molecular simulation approach. J Chem Inf Model 60(2):974–981. https://doi.org/10.1021/acs.jcim.9b00883

    Article  CAS  PubMed  Google Scholar 

  70. Zink M, Grubmuller H (2009) Mechanical properties of the icosahedral shell of southern bean mosaic virus: a molecular dynamics study. Biophys J 96(4):1350–1363. https://doi.org/10.1016/j.bpj.2008.11.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ghaemi Z, Gruebele M, Tajkhorshid E (2021) Molecular mechanism of capsid disassembly in hepatitis B virus. Proc Natl Acad Sci USA 118(36). https://doi.org/10.1073/pnas.2102530118

  72. Viso JF, Belelli P, Machado M, Gonzalez H, Pantano S, Amundarain MJ et al (2018) Multiscale modelization in a small virus: mechanism of proton channeling and its role in triggering capsid disassembly. PLoS Comput Biol 14(4):e1006082. https://doi.org/10.1371/journal.pcbi.1006082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Larsson DS, Liljas L, van der Spoel D (2012) Virus capsid dissolution studied by microsecond molecular dynamics simulations. PLoS Comput Biol 8(5):e1002502. https://doi.org/10.1371/journal.pcbi.1002502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Khaykelson D, Raviv U (2020) Studying viruses using solution X-ray scattering. Biophys Rev 12(1):41–48. https://doi.org/10.1007/s12551-020-00617-4

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chen J, Chevreuil M, Combet S, Lansac Y, Tresset G (2017) Investigating the thermal dissociation of viral capsid by lattice model. J Phys Condens Matter 29(47):474001. https://doi.org/10.1088/1361-648X/aa8d88

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chevreuil M, Lecoq L, Wang S, Gargowitsch L, Nhiri N, Jacquet E et al (2020) Nonsymmetrical dynamics of the HBV capsid assembly and disassembly evidenced by their transient species. J Phys Chem B 124(45):9987–9995. https://doi.org/10.1021/acs.jpcb.0c05024

    Article  CAS  PubMed  Google Scholar 

  77. Cuillel M, Berthet-Colominas C, Timmins PA, Zulauf M (1987) Reassembly of brome mosaic virus from dissociated virus. Eur Biophys J 15(3):169–176. https://doi.org/10.1007/BF00263681

    Article  CAS  Google Scholar 

  78. Tresset G, Chen J, Chevreuil M, Nhiri N, Jacquet E, Lansac Y (2017) Two-dimensional phase transition of viral capsid gives insights into subunit interactions. Phys Rev Appl 7(1):014005. https://doi.org/10.1103/PhysRevApplied.7.014005

    Article  Google Scholar 

  79. Castellanos M, Perez R, Carrillo PJ, de Pablo PJ, Mateu MG (2012) Mechanical disassembly of single virus particles reveals kinetic intermediates predicted by theory. Biophys J 102(11):2615–2624. https://doi.org/10.1016/j.bpj.2012.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ausar SF, Foubert TR, Hudson MH, Vedvick TS, Middaugh CR (2006) Conformational stability and disassembly of Norwalk virus-like particles. Effect of pH and temperature. J Biol Chem 281(28):19478–88. https://doi.org/10.1074/jbc.M603313200

  81. Greber UF, Singh I, Helenius A (1994) Mechanisms of virus uncoating. Trends Microbiol 2(2):52–56. https://doi.org/10.1016/0966-842x(94)90126-0

    Article  CAS  PubMed  Google Scholar 

  82. Suomalainen M, Greber UF (2013) Uncoating of non-enveloped viruses. Curr Opin Virol 3(1):27–33. https://doi.org/10.1016/j.coviro.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  83. Shah PNM, Filman DJ, Karunatilaka KS, Hesketh EL, Groppelli E, Strauss M et al (2020) Cryo-EM structures reveal two distinct conformational states in a picornavirus cell entry intermediate. PLoS Pathog 16(9):e1008920. https://doi.org/10.1371/journal.ppat.1008920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Butan C, Filman DJ, Hogle JM (2014) Cryo-electron microscopy reconstruction shows poliovirus 135S particles poised for membrane interaction and RNA release. J Virol 88(3):1758–1770. https://doi.org/10.1128/JVI.01949-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Strauss M, Levy HC, Bostina M, Filman DJ, Hogle JM (2013) RNA transfer from poliovirus 135S particles across membranes is mediated by long umbilical connectors. J Virol 87(7):3903–3914. https://doi.org/10.1128/JVI.03209-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tuthill TJ, Harlos K, Walter TS, Knowles NJ, Groppelli E, Rowlands DJ et al (2009) Equine rhinitis A virus and its low pH empty particle: clues towards an aphthovirus entry mechanism? PLoS Pathog 5(10):e1000620. https://doi.org/10.1371/journal.ppat.1000620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Snyder AJ, Danthi P (2018) Infectious subviral particle to membrane penetration active particle (ISVP-to-ISVP*) conversion assay for mammalian orthoreovirus. Bio Protoc 8(2). https://doi.org/10.21769/BioProtoc.2700

  88. Dryden KA, Wang G, Yeager M, Nibert ML, Coombs KM, Furlong DB et al (1993) Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. J Cell Biol 122(5):1023–1041. https://doi.org/10.1083/jcb.122.5.1023

    Article  CAS  PubMed  Google Scholar 

  89. Bostina M, Levy H, Filman DJ, Hogle JM (2011) Poliovirus RNA is released from the capsid near a twofold symmetry axis. J Virol 85(2):776–783. https://doi.org/10.1128/JVI.00531-10

    Article  CAS  PubMed  Google Scholar 

  90. Lin J, Cheng N, Chow M, Filman DJ, Steven AC, Hogle JM et al (2011) An externalized polypeptide partitions between two distinct sites on genome-released poliovirus particles. J Virol 85(19):9974–9983. https://doi.org/10.1128/JVI.05013-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Panjwani A, Asfor AS, Tuthill TJ (2016) The conserved N-terminus of human rhinovirus capsid protein VP4 contains membrane pore-forming activity and is a target for neutralizing antibodies. J Gen Virol 97(12):3238–3242. https://doi.org/10.1099/jgv.0.000629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Davis MP, Bottley G, Beales LP, Killington RA, Rowlands DJ, Tuthill TJ (2008) Recombinant VP4 of human rhinovirus induces permeability in model membranes. J Virol 82(8):4169–4174. https://doi.org/10.1128/JVI.01070-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang Y, Hogle JM, Chow M (2000) Is the 135S poliovirus particle an intermediate during cell entry? J Virol 74(18):8757–8761. https://doi.org/10.1128/jvi.74.18.8757-8761.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hogle JM (2002) Poliovirus cell entry: common structural themes in viral cell entry pathways. Annu Rev Microbiol 56:677–702. https://doi.org/10.1146/annurev.micro.56.012302.160757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lonberg-Holm K, Korant BD (1972) Early interaction of rhinoviruses with host cells. J Virol 9(1):29–40. https://doi.org/10.1128/JVI.9.1.29-40.1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Strauss M, Schotte L, Karunatilaka KS, Filman DJ, Hogle JM (2017) Cryo-electron microscopy structures of expanded poliovirus with VHHs sample the conformational repertoire of the expanded state. J Virol 91(3). https://doi.org/10.1128/JVI.01443-16

  97. Fricks CE, Hogle JM (1990) Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J Virol 64(5):1934–1945. https://doi.org/10.1128/JVI.64.5.1934-1945.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Agirre J, Goret G, LeGoff M, Sanchez-Eugenia R, Marti GA, Navaza J et al (2013) Cryo-electron microscopy reconstructions of triatoma virus particles: a clue to unravel genome delivery and capsid disassembly. J Gen Virol 94(Pt 5):1058–1068. https://doi.org/10.1099/vir.0.048553-0

    Article  CAS  PubMed  Google Scholar 

  99. Garriga D, Pickl-Herk A, Luque D, Wruss J, Caston JR, Blaas D et al (2012) Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid. PLoS Pathog 8(1):e1002473. https://doi.org/10.1371/journal.ppat.1002473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mullapudi E, Fuzik T, Pridal A, Plevka P (2017) Cryo-electron microscopy study of the genome release of the dicistrovirus israeli acute bee paralysis virus. J Virol 91(4). https://doi.org/10.1128/JVI.02060-16

  101. Walukiewicz HE, Johnson JE, Schneemann A (2006) Morphological changes in the T = 3 capsid of Flock House virus during cell entry. J Virol 80(2):615–622. https://doi.org/10.1128/JVI.80.2.615-622.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mellado MC, Mena JA, Lopes A, Ramirez OT, Carrondo MJ, Palomares LA et al (2009) Impact of physicochemical parameters on in vitro assembly and disassembly kinetics of recombinant triple-layered rotavirus-like particles. Biotechnol Bioeng 104(4):674–686. https://doi.org/10.1002/bit.22430

    Article  CAS  PubMed  Google Scholar 

  103. Ren J, Wang X, Hu Z, Gao Q, Sun Y, Li X et al (2013) Picornavirus uncoating intermediate captured in atomic detail. Nat Commun 4:1929. https://doi.org/10.1038/ncomms2889

    Article  CAS  PubMed  Google Scholar 

  104. Wang X, Peng W, Ren J, Hu Z, Xu J, Lou Z et al (2012) A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat Struct Mol Biol 19(4):424–429. https://doi.org/10.1038/nsmb.2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Coombs KM (1998) Stoichiometry of reovirus structural proteins in virus, ISVP, and core particles. Virology 243(1):218–228. https://doi.org/10.1006/viro.1998.9061

    Article  CAS  PubMed  Google Scholar 

  106. Liemann S, Chandran K, Baker TS, Nibert ML, Harrison SC (2002) Structure of the reovirus membrane-penetration protein, Mu1, in a complex with is protector protein, Sigma3. Cell 108(2):283–295. https://doi.org/10.1016/s0092-8674(02)00612-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang L, Chandran K, Nibert ML, Harrison SC (2006) Reovirus mu1 structural rearrangements that mediate membrane penetration. J Virol 80(24):12367–12376. https://doi.org/10.1128/JVI.01343-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chandran K, Farsetta DL, Nibert ML (2002) Strategy for nonenveloped virus entry: a hydrophobic conformer of the reovirus membrane penetration protein micro 1 mediates membrane disruption. J Virol 76(19):9920–9933. https://doi.org/10.1128/jvi.76.19.9920-9933.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ivanovic T, Agosto MA, Zhang L, Chandran K, Harrison SC, Nibert ML (2008) Peptides released from reovirus outer capsid form membrane pores that recruit virus particles. EMBO J 27(8):1289–1298. https://doi.org/10.1038/emboj.2008.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chandran K, Nibert ML (2003) Animal cell invasion by a large nonenveloped virus: reovirus delivers the goods. Trends Microbiol 11(8):374–382. https://doi.org/10.1016/s0966-842x(03)00178-1

    Article  CAS  PubMed  Google Scholar 

  111. Middleton JK, Severson TF, Chandran K, Gillian AL, Yin J, Nibert ML (2002) Thermostability of reovirus disassembly intermediates (ISVPs) correlates with genetic, biochemical, and thermodynamic properties of major surface protein mu1. J Virol 76(3):1051–1061. https://doi.org/10.1128/jvi.76.3.1051-1061.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gummersheimer SL, Snyder AJ, Danthi P (2021) Control of capsid transformations during reovirus entry. Viruses 13(2). https://doi.org/10.3390/v13020153

  113. Snyder AJ, Danthi P (2017) The loop formed by residues 340 to 343 of reovirus mu1 controls entry-related conformational changes. J Virol 91(20). https://doi.org/10.1128/JVI.00898-17

  114. Snyder AJ, Danthi P (2015) Lipid membranes facilitate conformational changes required for reovirus cell entry. J Virol 90(5):2628–2638. https://doi.org/10.1128/JVI.02997-15

    Article  CAS  PubMed  Google Scholar 

  115. Snyder AJ, Danthi P (2016) Lipids cooperate with the reovirus membrane penetration peptide to facilitate particle uncoating. J Biol Chem 291(52):26773–26785. https://doi.org/10.1074/jbc.M116.747477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang X, Settembre E, Xu C, Dormitzer PR, Bellamy R, Harrison SC et al (2008) Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc Natl Acad Sci USA 105(6):1867–1872. https://doi.org/10.1073/pnas.0711623105

    Article  PubMed  PubMed Central  Google Scholar 

  117. Settembre EC, Chen JZ, Dormitzer PR, Grigorieff N, Harrison SC (2011) Atomic model of an infectious rotavirus particle. EMBO J 30(2):408–416. https://doi.org/10.1038/emboj.2010.322

    Article  CAS  PubMed  Google Scholar 

  118. Ruiz MC, Aristimuno OC, Diaz Y, Pena F, Chemello ME, Rojas H et al (2007) Intracellular disassembly of infectious rotavirus particles by depletion of Ca2+ sequestered in the endoplasmic reticulum at the end of virus cycle. Virus Res 130(1–2):140–150. https://doi.org/10.1016/j.virusres.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  119. Abdelhakim AH, Salgado EN, Fu X, Pasham M, Nicastro D, Kirchhausen T et al (2014) Structural correlates of rotavirus cell entry. PLoS Pathog 10(9):e1004355. https://doi.org/10.1371/journal.ppat.1004355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Richards RM, Lowy DR, Schiller JT, Day PM (2006) Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci USA 103(5):1522–1527. https://doi.org/10.1073/pnas.0508815103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schelhaas M, Shah B, Holzer M, Blattmann P, Kuhling L, Day PM et al (2012) Entry of human papillomavirus type 16 by actin-dependent, clathrin- and lipid raft-independent endocytosis. PLoS Pathog 8(4):e1002657. https://doi.org/10.1371/journal.ppat.1002657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kremer EJ, Nemerow GR (2015) Adenovirus tales: from the cell surface to the nuclear pore complex. PLoS Pathog 11(6):e1004821. https://doi.org/10.1371/journal.ppat.1004821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Burckhardt CJ, Suomalainen M, Schoenenberger P, Boucke K, Hemmi S, Greber UF (2011) Drifting motions of the adenovirus receptor CAR and immobile integrins initiate virus uncoating and membrane lytic protein exposure. Cell Host Microbe 10(2):105–117. https://doi.org/10.1016/j.chom.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  124. Moyer CL, Besser ES, Nemerow GR (2016) A single maturation cleavage site in adenovirus impacts cell entry and capsid assembly. J Virol 90(1):521–532. https://doi.org/10.1128/JVI.02014-15

    Article  CAS  PubMed  Google Scholar 

  125. Ortega-Esteban A, Perez-Berna AJ, Menendez-Conejero R, Flint SJ, San Martin C, de Pablo PJ (2013) Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue. Sci Rep 3:1434. https://doi.org/10.1038/srep01434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. van Rosmalen MGM, Nemerow GR, Wuite GJL, Roos WH (2018) A single point mutation in precursor protein VI doubles the mechanical strength of human adenovirus. J Biol Phys 44(2):119–132. https://doi.org/10.1007/s10867-017-9479-y

    Article  CAS  PubMed  Google Scholar 

  127. Liu N, Chen Y, Peng B, Lin Y, Wang Q, Su Z et al (2013) Single-molecule force spectroscopy study on the mechanism of RNA disassembly in tobacco mosaic virus. Biophys J 105(12):2790–2800. https://doi.org/10.1016/j.bpj.2013.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lavelle L, Michel JP, Gingery M (2007) The disassembly, reassembly and stability of CCMV protein capsids. J Virol Methods 146(1–2):311–316. https://doi.org/10.1016/j.jviromet.2007.07.020

    Article  CAS  PubMed  Google Scholar 

  129. Speir JA, Munshi S, Wang G, Baker TS, Johnson JE (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3(1):63–78. https://doi.org/10.1016/s0969-2126(01)00135-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Arisaka F (2005) Assembly and infection process of bacteriophage T4. Chaos 15(4):047502. https://doi.org/10.1063/1.2142136

    Article  CAS  PubMed  Google Scholar 

  131. Ivanovska I, Wuite G, Jonsson B, Evilevitch A (2007) Internal DNA pressure modifies stability of WT phage. Proc Natl Acad Sci USA 104(23):9603–9608. https://doi.org/10.1073/pnas.0703166104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Purohit PK, Inamdar MM, Grayson PD, Squires TM, Kondev J, Phillips R (2005) Forces during bacteriophage DNA packaging and ejection. Biophys J 88(2):851–866. https://doi.org/10.1529/biophysj.104.047134

    Article  CAS  PubMed  Google Scholar 

  133. Sao-Jose C, de Frutos M, Raspaud E, Santos MA, Tavares P (2007) Pressure built by DNA packing inside virions: enough to drive DNA ejection in vitro, largely insufficient for delivery into the bacterial cytoplasm. J Mol Biol 374(2):346–355. https://doi.org/10.1016/j.jmb.2007.09.045

    Article  CAS  PubMed  Google Scholar 

  134. Evilevitch A, Lavelle L, Knobler CM, Raspaud E, Gelbart WM (2003) Osmotic pressure inhibition of DNA ejection from phage. Proc Natl Acad Sci USA 100(16):9292–9295. https://doi.org/10.1073/pnas.1233721100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kumar M, Blaas D (2013) Human rhinovirus subviral a particle binds to lipid membranes over a twofold axis of icosahedral symmetry. J Virol 87(20):11309–11312. https://doi.org/10.1128/JVI.02055-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Harutyunyan S, Kumar M, Sedivy A, Subirats X, Kowalski H, Kohler G et al (2013) Viral uncoating is directional: exit of the genomic RNA in a common cold virus starts with the poly-(A) tail at the 3’-end. PLoS Pathog 9(4):e1003270. https://doi.org/10.1371/journal.ppat.1003270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Seitsonen JJ, Shakeel S, Susi P, Pandurangan AP, Sinkovits RS, Hyvonen H et al (2012) Structural analysis of coxsackievirus A7 reveals conformational changes associated with uncoating. J Virol 86(13):7207–7215. https://doi.org/10.1128/JVI.06425-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fisher AJ, Johnson JE (1993) Ordered duplex RNA controls capsid architecture in an icosahedral animal virus. Nature 361(6408):176–179. https://doi.org/10.1038/361176a0

    Article  CAS  PubMed  Google Scholar 

  139. Venter PA, Schneemann A (2007) Assembly of two independent populations of flock house virus particles with distinct RNA packaging characteristics in the same cell. J Virol 81(2):613–619. https://doi.org/10.1128/JVI.01668-06

    Article  CAS  PubMed  Google Scholar 

  140. Wang JC, Mukhopadhyay S, Zlotnick A (2018) Geometric defects and icosahedral viruses. Viruses 10(1). https://doi.org/10.3390/v10010025

  141. Therkelsen MD, Klose T, Vago F, Jiang W, Rossmann MG, Kuhn RJ (2018) Flaviviruses have imperfect icosahedral symmetry. Proc Natl Acad Sci USA 115(45):11608–11612. https://doi.org/10.1073/pnas.1809304115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhao Z, Zhang H, Shu D, Montemagno C, Ding B, Li J et al (2017) Construction of asymmetrical hexameric biomimetic motors with continuous single-directional motion by sequential coordination. Small 13(1). https://doi.org/10.1002/smll.201601600

  143. Mukhamedova L, Fuzik T, Novacek J, Hrebik D, Pridal A, Marti GA et al (2021) Virion structure and in vitro genome release mechanism of dicistrovirus Kashmir bee virus. J Virol 95(11). https://doi.org/10.1128/JVI.01950-20

  144. Cilliers T, Nhlapo J, Coetzer M, Orlovic D, Ketas T, Olson WC et al (2003) The CCR5 and CXCR4 coreceptors are both used by human immunodeficiency virus type 1 primary isolates from subtype C. J Virol 77(7):4449–4456. https://doi.org/10.1128/jvi.77.7.4449-4456.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Leung HS, Li OT, Chan RW, Chan MC, Nicholls JM, Poon LL (2012) Entry of influenza A Virus with a alpha2,6-linked sialic acid binding preference requires host fibronectin. J Virol 86(19):10704–10713. https://doi.org/10.1128/JVI.01166-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wulan WN, Heydet D, Walker EJ, Gahan ME, Ghildyal R (2015) Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses. Front Microbiol 6:553. https://doi.org/10.3389/fmicb.2015.00553

    Article  PubMed  PubMed Central  Google Scholar 

  147. Rankovic S, Varadarajan J, Ramalho R, Aiken C, Rousso I (2017) Reverse transcription mechanically initiates HIV-1 capsid disassembly. J Virol 91(12). https://doi.org/10.1128/JVI.00289-17

  148. Christensen DE, Ganser-Pornillos BK, Johnson JS, Pornillos O, Sundquist WI (2020) Reconstitution and visualization of HIV-1 capsid-dependent replication and integration in vitro. Science 370(6513). https://doi.org/10.1126/science.abc8420

  149. Muller TG, Zila V, Peters K, Schifferdecker S, Stanic M, Lucic B et al (2021) HIV-1 uncoating by release of viral cDNA from capsid-like structures in the nucleus of infected cells. Elife 10. https://doi.org/10.7554/eLife.64776

  150. Burdick RC, Li C, Munshi M, Rawson JMO, Nagashima K, Hu WS et al (2020) HIV-1 uncoats in the nucleus near sites of integration. Proc Natl Acad Sci USA 117(10):5486–5493. https://doi.org/10.1073/pnas.1920631117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Banerjee I, Miyake Y, Nobs SP, Schneider C, Horvath P, Kopf M et al (2014) Influenza A virus uses the aggresome processing machinery for host cell entry. Science 346(6208):473–477. https://doi.org/10.1126/science.1257037

    Article  CAS  PubMed  Google Scholar 

  152. Wengler G, Wurkner D, Wengler G (1992) Identification of a sequence element in the alphavirus core protein which mediates interaction of cores with ribosomes and the disassembly of cores. Virology 191(2):880–888. https://doi.org/10.1016/0042-6822(92)90263-o

    Article  CAS  PubMed  Google Scholar 

  153. Ulmanen I, Soderlund H, Kaariainen L (1976) Semliki Forest virus capsid protein associates with the 60S ribosomal subunit in infected cells. J Virol 20(1):203–210. https://doi.org/10.1128/JVI.20.1.203-210.1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hasan SS, Sun C, Kim AS, Watanabe Y, Chen CL, Klose T et al (2018) Cryo-EM structures of eastern equine encephalitis virus reveal mechanisms of virus disassembly and antibody neutralization. Cell Rep 25(11):3136–47e5. https://doi.org/10.1016/j.celrep.2018.11.067

  155. Hernaez B, Guerra M, Salas ML, Andres G (2016) African Swine fever virus undergoes outer envelope disruption, capsid disassembly and inner envelope fusion before core release from multivesicular endosomes. PLoS Pathog 12(4):e1005595. https://doi.org/10.1371/journal.ppat.1005595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bauer DW, Huffman JB, Homa FL, Evilevitch A (2013) Herpes virus genome, the pressure is on. J Am Chem Soc 135(30):11216–11221. https://doi.org/10.1021/ja404008r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Newcomb WW, Booy FP, Brown JC (2007) Uncoating the herpes simplex virus genome. J Mol Biol 370(4):633–642. https://doi.org/10.1016/j.jmb.2007.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Serrero MC, Girault V, Weigang S, Greco TM, Ramos-Nascimento A, Anderson F et al (2022) The interferon-inducible GTPase MxB promotes capsid disassembly and genome release of herpesviruses. Elife 11. https://doi.org/10.7554/eLife.76804

  159. Cyrklaff M, Risco C, Fernandez JJ, Jimenez MV, Esteban M, Baumeister W et al (2005) Cryo-electron tomography of vaccinia virus. Proc Natl Acad Sci USA 102(8):2772–2777. https://doi.org/10.1073/pnas.0409825102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Cyrklaff M, Linaroudis A, Boicu M, Chlanda P, Baumeister W, Griffiths G et al (2007) Whole cell cryo-electron tomography reveals distinct disassembly intermediates of vaccinia virus. PLoS ONE 2(5):e420. https://doi.org/10.1371/journal.pone.0000420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pletan ML, Tsai B (2022) Non-enveloped virus membrane penetration: New advances leading to new insights. PLoS Pathog 18(12):e1010948. https://doi.org/10.1371/journal.ppat.1010948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kim KR, Lee AS, Kim SM, Heo HR, Kim CS (2022) Virus-like nanoparticles as a theranostic platform for cancer. Front Bioeng Biotechnol 10:1106767. https://doi.org/10.3389/fbioe.2022.1106767

    Article  PubMed  Google Scholar 

  163. Obozina AS, Komedchikova EN, Kolesnikova OA, Iureva AM, Kovalenko VL, Zavalko FA et al (2023) Genetically encoded self-assembling protein nanoparticles for the targeted delivery in vitro and in vivo. Pharmaceutics 15(1). https://doi.org/10.3390/pharmaceutics15010231

  164. Chung YH, Cai H, Steinmetz NF (2020) Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Deliv Rev 156:214–235. https://doi.org/10.1016/j.addr.2020.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shukla S, Hu H, Cai H, Chan SK, Boone CE, Beiss V et al (2020) Plant viruses and bacteriophage-based reagents for diagnosis and therapy. Annu Rev Virol 7(1):559–587. https://doi.org/10.1146/annurev-virology-010720-052252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bajaj S, Banerjee M (2015) Engineering virus capsids into biomedical delivery vehicles: structural engineering problems in nanoscale. J Biomed Nanotechnol 11(1):53–69. https://doi.org/10.1166/jbn.2015.1959

    Article  CAS  PubMed  Google Scholar 

  167. de Pablo PJ, San MC (2022) Seeing and touching adenovirus: complementary approaches for understanding assembly and disassembly of a complex virion. Curr Opin Virol 52:112–122. https://doi.org/10.1016/j.coviro.2021.11.006

    Article  CAS  PubMed  Google Scholar 

  168. Chen J, Lansac Y, Tresset G (2018) Interactions between the molecular components of the cowpea chlorotic mottle virus investigated by molecular dynamics simulations. J Phys Chem B 122(41):9490–9498. https://doi.org/10.1021/acs.jpcb.8b08026

    Article  CAS  PubMed  Google Scholar 

  169. Arkhipov A, Roos WH, Wuite GJ, Schulten K (2009) Elucidating the mechanism behind irreversible deformation of viral capsids. Biophys J 97(7):2061–2069. https://doi.org/10.1016/j.bpj.2009.07.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Tarasova E, Farafonov V, Taiji M, Nerukh D (2018) Details of charge distribution in stable viral capsid. J Mol Liq 265:585–591. https://doi.org/10.1016/j.molliq.2018.06.019

    Article  CAS  Google Scholar 

  171. Romantschuk M, Olkkonen VM, Bamford DH (1988) The nucleocapsid of bacteriophage phi 6 penetrates the host cytoplasmic membrane. EMBO J 7(6):1821–1829. https://doi.org/10.1002/j.1460-2075.1988.tb03014.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Singh S, Zlotnick A (2003) Observed hysteresis of virus capsid disassembly is implicit in kinetic models of assembly. J Biol Chem 278(20):18249–18255. https://doi.org/10.1074/jbc.M211408200

    Article  CAS  PubMed  Google Scholar 

  173. Rabe B, Delaleau M, Bischof A, Foss M, Sominskaya I, Pumpens P et al (2009) Nuclear entry of hepatitis B virus capsids involves disintegration to protein dimers followed by nuclear reassociation to capsids. PLoS Pathog 5(8):e1000563. https://doi.org/10.1371/journal.ppat.1000563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Cui X, Ludgate L, Ning X, Hu J (2013) Maturation-associated destabilization of hepatitis B virus nucleocapsid. J Virol 87(21):11494–11503. https://doi.org/10.1128/JVI.01912-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhirnov OP, Grigoriev VB (1994) Disassembly of influenza C viruses, distinct from that of influenza A and B viruses requires neutral-alkaline pH. Virology 200(1):284–291. https://doi.org/10.1006/viro.1994.1188

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manidipa Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azad, K., Dey, D., Banerjee, M. (2023). Structural Alterations in Non-enveloped Viruses During Disassembly. In: Comas-Garcia, M., Rosales-Mendoza, S. (eds) Physical Virology. Springer Series in Biophysics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-36815-8_9

Download citation

Publish with us

Policies and ethics