Skip to main content

Regulation of Neurotransmitter Release by K+ Channels

  • Chapter
  • First Online:
Molecular Mechanisms of Neurotransmitter Release

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 33))

Abstract

K+ channels play potent roles in the process of neurotransmitter release by influencing the action potential waveform and modulating neuronal excitability and release probability. These diverse effects of K+ channel activation are ensured by the wide variety of K+ channel genes and their differential expression in different cell types. Accordingly, a variety of K+ channels have been implicated in regulating neurotransmitter release, including the Ca2+- and voltage-gated K+ channel Slo1 (also known as BK channel), voltage-gated K+ channels of the Kv3 (Shaw-type), Kv1 (Shaker-type), and Kv7 (KCNQ) families, G-protein-gated inwardly rectifying K+ (GIRK) channels, and SLO-2 (a Ca2+-. Cl, and voltage-gated K+ channel in C. elegans). These channels vary in their expression patterns, subcellular localization, and biophysical properties. Their roles in neurotransmitter release may also vary depending on the synapse and physiological or experimental conditions. This chapter summarizes key findings about the roles of K+ channels in regulating neurotransmitter release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4-AP:

4-Aminopyridine

AP:

Action potential

BDS-I:

Blood-depressing substance-I

EPSC:

Excitatory postsynaptic current

EPSP:

Excitatory postsynaptic potential

IPSC:

Inhibitory postsynaptic current

NMJ:

Neuromuscular junction

PPR:

Paired-pulse ratio

TEA:

Tetraethylammonium

VGCC:

Voltage-gated Ca2+ channel

References

  1. Schneggenburger R, Neher E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature. 2000;406:889–93. https://doi.org/10.1038/35022702.

    Article  CAS  PubMed  Google Scholar 

  2. Heidelberger R, Heinemann C, Neher E, Matthews G. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature. 1994;371:513–5. https://doi.org/10.1038/371513a0.

    Article  CAS  PubMed  Google Scholar 

  3. Lando L, Zucker RS. Ca2+ cooperativity in neurosecretion measured using photolabile Ca2+ chelators. J Neurophysiol. 1994;72:825–30. https://doi.org/10.1152/jn.1994.72.2.825.

    Article  CAS  PubMed  Google Scholar 

  4. Bollmann JH, Sakmann B, Borst JG. Calcium sensitivity of glutamate release in a calyx-type terminal. Science. 2000;289:953–7. https://doi.org/10.1126/science.289.5481.953.

    Article  CAS  PubMed  Google Scholar 

  5. Dodson PD, Forsythe ID. Presynaptic K+ channels: electrifying regulators of synaptic terminal excitability. Trends Neurosci. 2004;27:210–7. https://doi.org/10.1016/j.tins.2004.02.012.

    Article  CAS  PubMed  Google Scholar 

  6. Rowan MJ, DelCanto G, Yu JJ, Kamasawa N, Christie JM. Synapse-level determination of action potential duration by K+ channel clustering in axons. Neuron. 2016;91:370–83. https://doi.org/10.1016/j.neuron.2016.05.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alle H, Kubota H, Geiger JR. Sparse but highly efficient Kv3 outpace BKCa channels in action potential repolarization at hippocampal mossy fiber boutons. J Neurosci. 2011;31:8001–12. https://doi.org/10.1523/JNEUROSCI.0972-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang YM, Wang LY. Amplitude and kinetics of action potential-evoked Ca2+ current and its efficacy in triggering transmitter release at the developing calyx of Held synapse. J Neurosci. 2006;26:5698–708. https://doi.org/10.1523/JNEUROSCI.4889-05.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang LY, Kaczmarek LK. High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature. 1998;394:384–8. https://doi.org/10.1038/28645.

    Article  CAS  PubMed  Google Scholar 

  10. Awatramani GB, Price GD, Trussell LO. Modulation of transmitter release by presynaptic resting potential and background calcium levels. Neuron. 2005;48:109–21. https://doi.org/10.1016/j.neuron.2005.08.038.

    Article  CAS  PubMed  Google Scholar 

  11. Gutman GA, Chandy KG, Grissmer S, Lazdunski M, McKinnon D, Pardo LA, et al. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev. 2005;57:473–508. https://doi.org/10.1124/pr.57.4.10.

    Article  CAS  PubMed  Google Scholar 

  12. Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, et al. International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev. 2005;57:509–26. https://doi.org/10.1124/pr.57.4.11.

    Article  CAS  PubMed  Google Scholar 

  13. Goldstein SA, Bayliss DA, Kim D, Lesage F, Plant LD, Rajan S. International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev. 2005;57:527–40. https://doi.org/10.1124/pr.57.4.12.

    Article  CAS  PubMed  Google Scholar 

  14. Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD, Wulff H. International Union of Basic and Clinical Pharmacology. C. Nomenclature and properties of calcium-activated and sodium-activated potassium channels. Pharmacol Rev. 2017;69:1–11. https://doi.org/10.1124/pr.116.012864.

    Article  CAS  PubMed  Google Scholar 

  15. Hofmann F, Biel M, Kaupp UB. International Union of Pharmacology. LI. Nomenclature and structure-function relationships of cyclic nucleotide-regulated channels. Pharmacol Rev. 2005;57:455–62. https://doi.org/10.1124/pr.57.4.8.

    Article  CAS  PubMed  Google Scholar 

  16. Elkins T, Ganetzky B, Wu CF. A Drosophila mutation that eliminates a calcium-dependent potassium current. Proc Natl Acad Sci U S A. 1986;83:8415–9. https://doi.org/10.1073/pnas.83.21.8415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Atkinson NS, Robertson GA, Ganetzky B. A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science. 1991;253:551–5. https://doi.org/10.1126/science.1857984.

    Article  CAS  PubMed  Google Scholar 

  18. Adelman JP, Shen KZ, Kavanaugh MP, Warren RA, Wu YN, Lagrutta A, et al. Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron. 1992;9:209–16. https://doi.org/10.1016/0896-6273(92)90160-f.

    Article  CAS  PubMed  Google Scholar 

  19. Salkoff L, Butler A, Ferreira G, Santi C, Wei A. High-conductance potassium channels of the SLO family. Nat Rev Neurosci. 2006;7:921–31. https://doi.org/10.1038/nrn1992.

    Article  CAS  PubMed  Google Scholar 

  20. Hite RK, Yuan P, Li Z, Hsuing Y, Walz T, MacKinnon R. Cryo-electron microscopy structure of the Slo2.2 Na+-activated K+ channel. Nature. 2015;527:198–203. https://doi.org/10.1038/nature14958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu Y, Yang Y, Ye S, Jiang Y. Structure of the gating ring from the human large-conductance Ca2+-gated K+ channel. Nature. 2010;466:393–7. https://doi.org/10.1038/nature09252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuan P, Leonetti MD, Pico AR, Hsiung Y, MacKinnon R. Structure of the human BK channel Ca2+-activation apparatus at 3.0 A resolution. Science. 2010;329:182–6. https://doi.org/10.1126/science.1190414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tao X, Hite RK, MacKinnon R. Cryo-EM structure of the open high-conductance Ca2+-activated K+ channel. Nature. 2017;541:46–51. https://doi.org/10.1038/nature20608.

    Article  CAS  PubMed  Google Scholar 

  24. Tao X, MacKinnon R. Molecular structures of the human Slo1 K+ channel in complex with beta4. elife. 2019;8:e51409. https://doi.org/10.7554/eLife.51409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Budelli G, Geng Y, Butler A, Magleby KL, Salkoff L. Properties of Slo1 K+ channels with and without the gating ring. Proc Natl Acad Sci U S A. 2013;110:16657–62. https://doi.org/10.1073/pnas.1313433110.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xia XM, Zeng X, Lingle CJ. Multiple regulatory sites in large-conductance calcium-activated potassium channels. Nature. 2002;418:880–4. https://doi.org/10.1038/nature00956.

    Article  CAS  PubMed  Google Scholar 

  27. Brenner R, Jegla TJ, Wickenden A, Liu Y, Aldrich RW. Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem. 2000;275:6453–61. https://doi.org/10.1074/jbc.275.9.6453.

    Article  CAS  PubMed  Google Scholar 

  28. McManus OB, Helms LM, Pallanck L, Ganetzky B, Swanson R, Leonard RJ. Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron. 1995;14:645–50. https://doi.org/10.1016/0896-6273(95)90321-6.

    Article  CAS  PubMed  Google Scholar 

  29. Chen B, Ge Q, Xia XM, Liu P, Wang SJ, Zhan H, et al. A novel auxiliary subunit critical to BK channel function in Caenorhabditis elegans. J Neurosci. 2010;30:16651–61. https://doi.org/10.1523/JNEUROSCI.3211-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Uebele VN, Lagrutta A, Wade T, Figueroa DJ, Liu Y, McKenna E, et al. Cloning and functional expression of two families of beta-subunits of the large conductance calcium-activated K+ channel. J Biol Chem. 2000;275:23211–8. https://doi.org/10.1074/jbc.M910187199.

    Article  CAS  PubMed  Google Scholar 

  31. Xia XM, Ding JP, Lingle CJ. Molecular basis for the inactivation of Ca2+- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells. J Neurosci. 1999;19:5255–64. https://doi.org/10.1523/JNEUROSCI.19-13-05255.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xia XM, Ding JP, Zeng XH, Duan KL, Lingle CJ. Rectification and rapid activation at low Ca2+ of Ca2+-activated, voltage-dependent BK currents: consequences of rapid inactivation by a novel beta subunit. J Neurosci. 2000;20:4890–903. https://doi.org/10.1523/JNEUROSCI.20-13-04890.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li Q, Yan J. Modulation of BK channel function by auxiliary beta and gamma subunits. Int Rev Neurobiol. 2016;128:51–90. https://doi.org/10.1016/bs.irn.2016.03.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gonzalez-Perez V, Lingle CJ. Regulation of BK channels by beta and gamma subunits. Annu Rev Physiol. 2019;81:113–37. https://doi.org/10.1146/annurev-physiol-022516-034038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hite RK, Tao X, MacKinnon R. Structural basis for gating the high-conductance Ca2+-activated K+ channel. Nature. 2017;541:52–7. https://doi.org/10.1038/nature20775.

    Article  CAS  PubMed  Google Scholar 

  36. Tonggu L, Wang L. Structure of the human BK ion channel in lipid environment. Membranes (Basel). 2022;12:758. https://doi.org/10.3390/membranes12080758.

    Article  CAS  PubMed  Google Scholar 

  37. Knaus HG, Schwarzer C, Koch RO, Eberhart A, Kaczorowski GJ, Glossmann H, et al. Distribution of high-conductance Ca(2+)-activated K+ channels in rat brain: targeting to axons and nerve terminals. J Neurosci. 1996;16:955–63. https://doi.org/10.1523/JNEUROSCI.16-03-00955.1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tabti N, Bourret C, Mallart A. Three potassium currents in mouse motor nerve terminals. Pflugers Arch. 1989;413:395–400. https://doi.org/10.1007/BF00584489.

    Article  CAS  PubMed  Google Scholar 

  39. Katz E, Ferro PA, Cherksey BD, Sugimori M, Llinas R, Uchitel OD. Effects of Ca2+ channel blockers on transmitter release and presynaptic currents at the frog neuromuscular junction. J Physiol. 1995;486(Pt 3):695–706. https://doi.org/10.1113/jphysiol.1995.sp020845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yazejian B, DiGregorio DA, Vergara JL, Poage RE, Meriney SD, Grinnell AD. Direct measurements of presynaptic calcium and calcium-activated potassium currents regulating neurotransmitter release at cultured Xenopus nerve-muscle synapses. J Neurosci. 1997;17:2990–3001. https://doi.org/10.1523/JNEUROSCI.17-09-02990.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun XP, Yazejian B, Grinnell AD. Electrophysiological properties of BK channels in Xenopus motor nerve terminals. J Physiol. 2004;557:207–28. https://doi.org/10.1113/jphysiol.2003.060509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lindgren CA, Moore JW. Identification of ionic currents at presynaptic nerve endings of the lizard. J Physiol. 1989;414:201–22. https://doi.org/10.1113/jphysiol.1989.sp017684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Morita K, Barrett EF. Evidence for two calcium-dependent potassium conductances in lizard motor nerve terminals. J Neurosci. 1990;10:2614–25. https://doi.org/10.1523/JNEUROSCI.10-08-02614.1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sivaramakrishnan S, Bittner GD, Brodwick MS. Calcium-activated potassium conductance in presynaptic terminals at the crayfish neuromuscular junction. J Gen Physiol. 1991;98:1161–79. https://doi.org/10.1085/jgp.98.6.1161.

    Article  CAS  PubMed  Google Scholar 

  45. Wangemann P, Takeuchi S. Maxi-K+ channel in single isolated cochlear efferent nerve terminals. Hear Res. 1993;66:123–9. https://doi.org/10.1016/0378-5955(93)90133-l.

    Article  CAS  PubMed  Google Scholar 

  46. Ishikawa T, Nakamura Y, Saitoh N, Li WB, Iwasaki S, Takahashi T. Distinct roles of Kv1 and Kv3 potassium channels at the calyx of Held presynaptic terminal. J Neurosci. 2003;23:10445–53. https://doi.org/10.1523/JNEUROSCI.23-32-10445.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sclip A, Acuna C, Luo F, Sudhof TC. RIM-binding proteins recruit BK-channels to presynaptic release sites adjacent to voltage-gated Ca(2+)-channels. EMBO J. 2018;37:e98637. https://doi.org/10.15252/embj.201798637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hu H, Shao LR, Chavoshy S, Gu N, Trieb M, Behrens R, et al. Presynaptic Ca2+-activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci. 2001;21:9585–97. https://doi.org/10.1523/JNEUROSCI.21-24-09585.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sun XP, Schlichter LC, Stanley EF. Single-channel properties of BK-type calcium-activated potassium channels at a cholinergic presynaptic nerve terminal. J Physiol. 1999;518(Pt 3):639–51. https://doi.org/10.1111/j.1469-7793.1999.0639p.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Farley J, Rudy B. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes. Biophys J. 1988;53:919–34. https://doi.org/10.1016/S0006-3495(88)83173-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sailer CA, Kaufmann WA, Kogler M, Chen L, Sausbier U, Ottersen OP, et al. Immunolocalization of BK channels in hippocampal pyramidal neurons. Eur J Neurosci. 2006;24:442–54. https://doi.org/10.1111/j.1460-9568.2006.04936.x.

    Article  PubMed  Google Scholar 

  52. Misonou H, Menegola M, Buchwalder L, Park EW, Meredith A, Rhodes KJ, et al. Immunolocalization of the Ca2+-activated K+ channel Slo1 in axons and nerve terminals of mammalian brain and cultured neurons. J Comp Neurol. 2006;496:289–302. https://doi.org/10.1002/cne.20931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Robitaille R, Garcia ML, Kaczorowski GJ, Charlton MP. Functional colocalization of calcium and calcium-gated potassium channels in control of transmitter release. Neuron. 1993;11:645–55. https://doi.org/10.1016/0896-6273(93)90076-4.

    Article  CAS  PubMed  Google Scholar 

  54. Zhou Y, Schopperle WM, Murrey H, Jaramillo A, Dagan D, Griffith LC, et al. A dynamically regulated 14-3-3, Slob, and Slowpoke potassium channel complex in Drosophila presynaptic nerve terminals. Neuron. 1999;22:809–18. https://doi.org/10.1016/s0896-6273(00)80739-4.

    Article  CAS  PubMed  Google Scholar 

  55. Oh KH, Haney JJ, Wang X, Chuang CF, Richmond JE, Kim H. ERG-28 controls BK channel trafficking in the ER to regulate synaptic function and alcohol response in C. elegans. elife. 2017;6:e24733. https://doi.org/10.7554/eLife.24733.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Oh KH, Abraham LS, Gegg C, Silvestri C, Huang YC, Alkema MJ, et al. Presynaptic BK channel localization is dependent on the hierarchical organization of alpha-catulin and dystrobrevin and fine-tuned by CaV2 calcium channels. BMC Neurosci. 2015;16:26. https://doi.org/10.1186/s12868-015-0166-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen B, Liu P, Zhan H, Wang ZW. Dystrobrevin controls neurotransmitter release and muscle Ca(2+) transients by localizing BK channels in Caenorhabditis elegans. J Neurosci. 2011;31:17338–47. https://doi.org/10.1523/JNEUROSCI.3638-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Saheki Y, Bargmann CI. Presynaptic CaV2 calcium channel traffic requires CALF-1 and the alpha(2)delta subunit UNC-36. Nat Neurosci. 2009;12:1257–65. https://doi.org/10.1038/nn.2383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Richmond JE, Weimer RM, Jorgensen EM. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature. 2001;412:338–41. https://doi.org/10.1038/35085583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yazejian B, Sun XP, Grinnell AD. Tracking presynaptic Ca2+ dynamics during neurotransmitter release with Ca2+-activated K+ channels. Nat Neurosci. 2000;3:566–71. https://doi.org/10.1038/75737.

    Article  CAS  PubMed  Google Scholar 

  61. Protti DA, Uchitel OD. P/Q-type calcium channels activate neighboring calcium-dependent potassium channels in mouse motor nerve terminals. Pflugers Arch. 1997;434:406–12. https://doi.org/10.1007/s004240050414.

    Article  CAS  PubMed  Google Scholar 

  62. Berkefeld H, Sailer CA, Bildl W, Rohde V, Thumfart JO, Eble S, et al. BKCa-Cav channel complexes mediate rapid and localized Ca2+-activated K+ signaling. Science. 2006;314:615–20. https://doi.org/10.1126/science.1132915.

    Article  CAS  PubMed  Google Scholar 

  63. Issa NP, Hudspeth AJ. Clustering of Ca2+ channels and Ca(2+)-activated K+ channels at fluorescently labeled presynaptic active zones of hair cells. Proc Natl Acad Sci U S A. 1994;91:7578–82. https://doi.org/10.1073/pnas.91.16.7578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Roberts WM, Jacobs RA, Hudspeth AJ. Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci. 1990;10:3664–84. https://doi.org/10.1523/JNEUROSCI.10-11-03664.1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sakaba T, Ishikane H, Tachibana M. Ca2+ -activated K+ current at presynaptic terminals of goldfish retinal bipolar cells. Neurosci Res. 1997;27:219–28. https://doi.org/10.1016/s0168-0102(97)01155-3.

    Article  CAS  PubMed  Google Scholar 

  66. Raffaelli G, Saviane C, Mohajerani MH, Pedarzani P, Cherubini E. BK potassium channels control transmitter release at CA3-CA3 synapses in the rat hippocampus. J Physiol. 2004;557:147–57. https://doi.org/10.1113/jphysiol.2004.062661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang ZW, Saifee O, Nonet ML, Salkoff L. SLO-1 potassium channels control quantal content of neurotransmitter release at the C. elegans neuromuscular junction. Neuron. 2001;32:867–81. https://doi.org/10.1016/s0896-6273(01)00522-0.

    Article  CAS  PubMed  Google Scholar 

  68. Liu Q, Chen B, Ge Q, Wang ZW. Presynaptic Ca2+/calmodulin-dependent protein kinase II modulates neurotransmitter release by activating BK channels at Caenorhabditis elegans neuromuscular junction. J Neurosci. 2007;27:10404–13. https://doi.org/10.1523/JNEUROSCI.5634-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Niu L, Li Y, Zong P, Liu P, Shui Y, Chen B, et al. Melatonin promotes sleep by activating the BK channel in C. elegans. Proc Natl Acad Sci U S A. 2020;117:25128–37. https://doi.org/10.1073/pnas.2010928117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen B, Liu P, Hujber EJ, Li Y, Jorgensen EM, Wang ZW. AIP limits neurotransmitter release by inhibiting calcium bursts from the ryanodine receptor. Nat Commun. 2017;8:1380. https://doi.org/10.1038/s41467-017-01704-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Salkoff L, Wei AD, Baban B, Butler A, Fawcett G, Ferreira G, et al. Potassium channels in C. elegans. In: TheCelegansResearchCommunity, editors. Wormbook; 2005. https://doi.org/10.1895/wormbook.1.42.1., http://www.wormbook.org.

  72. Bargmann CI. Neurobiology of the Caenorhabditis elegans genome. Science. 1998;282:2028–33. https://doi.org/10.1126/science.282.5396.2028.

    Article  CAS  PubMed  Google Scholar 

  73. Roshchin MV, Matlashov ME, Ierusalimsky VN, Balaban PM, Belousov VV, Kemenes G, et al. A BK channel-mediated feedback pathway links single-synapse activity with action potential sharpening in repetitive firing. Sci Adv. 2018;4:eaat1357. https://doi.org/10.1126/sciadv.aat1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Warbington L, Hillman T, Adams C, Stern M. Reduced transmitter release conferred by mutations in the slowpoke-encoded Ca2(+)-activated K+ channel gene of Drosophila. Invertebr Neurosci. 1996;2:51–60. https://doi.org/10.1007/BF02336660.

    Article  CAS  Google Scholar 

  75. Xu JW, Slaughter MM. Large-conductance calcium-activated potassium channels facilitate transmitter release in salamander rod synapse. J Neurosci. 2005;25:7660–8. https://doi.org/10.1523/JNEUROSCI.1572-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pattillo JM, Yazejian B, DiGregorio DA, Vergara JL, Grinnell AD, Meriney SD. Contribution of presynaptic calcium-activated potassium currents to transmitter release regulation in cultured Xenopus nerve-muscle synapses. Neuroscience. 2001;102:229–40. https://doi.org/10.1016/s0306-4522(00)00453-x.

    Article  CAS  PubMed  Google Scholar 

  77. Abraham LS, Oh HJ, Sancar F, Richmond JE, Kim H. An alpha-catulin homologue controls neuromuscular function through localization of the dystrophin complex and BK channels in Caenorhabditis elegans. PLoS Genet. 2010;6:e1001077. https://doi.org/10.1371/journal.pgen.1001077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lyssand JS, Whiting JL, Lee KS, Kastl R, Wacker JL, Bruchas MR, et al. Alpha-dystrobrevin-1 recruits alpha-catulin to the alpha1D-adrenergic receptor/dystrophin-associated protein complex signalosome. Proc Natl Acad Sci U S A. 2010;107:21854–9. https://doi.org/10.1073/pnas.1010819107.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Baranauskas G, Tkatch T, Nagata K, Yeh JZ, Surmeier DJ. Kv3.4 subunits enhance the repolarizing efficiency of Kv3.1 channels in fast-spiking neurons. Nat Neurosci. 2003;6:258–66. https://doi.org/10.1038/nn1019.

    Article  CAS  PubMed  Google Scholar 

  80. Rudy B, McBain CJ. Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing. Trends Neurosci. 2001;24:517–26. https://doi.org/10.1016/s0166-2236(00)01892-0.

    Article  CAS  PubMed  Google Scholar 

  81. Kaczmarek LK, Zhang Y. Kv3 channels: enablers of rapid firing, neurotransmitter release, and neuronal endurance. Physiol Rev. 2017;97:1431–68. https://doi.org/10.1152/physrev.00002.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Elezgarai I, Diez J, Puente N, Azkue JJ, Benitez R, Bilbao A, et al. Subcellular localization of the voltage-dependent potassium channel Kv3.1b in postnatal and adult rat medial nucleus of the trapezoid body. Neuroscience. 2003;118:889–98. https://doi.org/10.1016/s0306-4522(03)00068-x.

    Article  CAS  PubMed  Google Scholar 

  83. Richardson A, Ciampani V, Stancu M, Bondarenko K, Newton S, Steinert JR, et al. Kv3.3 subunits control presynaptic action potential waveform and neurotransmitter release at a central excitatory synapse. elife. 2022;11:e75219. https://doi.org/10.7554/eLife.75219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chow A, Erisir A, Farb C, Nadal MS, Ozaita A, Lau D, et al. K(+) channel expression distinguishes subpopulations of parvalbumin- and somatostatin-containing neocortical interneurons. J Neurosci. 1999;19:9332–45. https://doi.org/10.1523/JNEUROSCI.19-21-09332.1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yeung SY, Thompson D, Wang Z, Fedida D, Robertson B. Modulation of Kv3 subfamily potassium currents by the sea anemone toxin BDS: significance for CNS and biophysical studies. J Neurosci. 2005;25:8735–45. https://doi.org/10.1523/JNEUROSCI.2119-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Martina M, Metz AE, Bean BP. Voltage-dependent potassium currents during fast spikes of rat cerebellar Purkinje neurons: inhibition by BDS-I toxin. J Neurophysiol. 2007;97:563–71. https://doi.org/10.1152/jn.00269.2006.

    Article  CAS  PubMed  Google Scholar 

  87. Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, et al. Molecular diversity of K+ channels. Ann N Y Acad Sci. 1999;868:233–85. https://doi.org/10.1111/j.1749-6632.1999.tb11293.x.

    Article  CAS  PubMed  Google Scholar 

  88. Goldberg EM, Watanabe S, Chang SY, Joho RH, Huang ZJ, Leonard CS, et al. Specific functions of synaptically localized potassium channels in synaptic transmission at the neocortical GABAergic fast-spiking cell synapse. J Neurosci. 2005;25:5230–5. https://doi.org/10.1523/JNEUROSCI.0722-05.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sekirnjak C, Martone ME, Weiser M, Deerinck T, Bueno E, Rudy B, et al. Subcellular localization of the K+ channel subunit Kv3.1b in selected rat CNS neurons. Brain Res. 1997;766:173–87. https://doi.org/10.1016/s0006-8993(97)00527-1.

    Article  CAS  PubMed  Google Scholar 

  90. Rowan MJ, Tranquil E, Christie JM. Distinct Kv channel subtypes contribute to differences in spike signaling properties in the axon initial segment and presynaptic boutons of cerebellar interneurons. J Neurosci. 2014;34:6611–23. https://doi.org/10.1523/JNEUROSCI.4208-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rowan MJM, Christie JM. Rapid state-dependent alteration in K(v)3 channel availability drives flexible synaptic signaling dependent on somatic subthreshold depolarization. Cell Rep. 2017;18:2018–29. https://doi.org/10.1016/j.celrep.2017.01.068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Trussell LO, Roberts MT. The role of potassium channels in the regulation of neurotransmitter release. In: Wang ZW, editor. Molecular mechanisms of neurotransmitter release. Totowa: Humana Press; 2008. p. 171–85.

    Chapter  Google Scholar 

  93. Wang H, Kunkel DD, Schwartzkroin PA, Tempel BL. Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain. J Neurosci. 1994;14:4588–99. https://doi.org/10.1523/JNEUROSCI.14-08-04588.1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sheng M, Tsaur ML, Jan YN, Jan LY. Subcellular segregation of two A-type K+ channel proteins in rat central neurons. Neuron. 1992;9:271–84. https://doi.org/10.1016/0896-6273(92)90166-b.

    Article  CAS  PubMed  Google Scholar 

  95. Sheng M, Liao YJ, Jan YN, Jan LY. Presynaptic A-current based on heteromultimeric K+ channels detected in vivo. Nature. 1993;365:72–5. https://doi.org/10.1038/365072a0.

    Article  CAS  PubMed  Google Scholar 

  96. Shu Y, Yu Y, Yang J, McCormick DA. Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proc Natl Acad Sci U S A. 2007;104:11453–8. https://doi.org/10.1073/pnas.0702041104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Goldberg EM, Clark BD, Zagha E, Nahmani M, Erisir A, Rudy B. K+ channels at the axon initial segment dampen near-threshold excitability of neocortical fast-spiking GABAergic interneurons. Neuron. 2008;58:387–400. https://doi.org/10.1016/j.neuron.2008.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gazula VR, Strumbos JG, Mei X, Chen H, Rahner C, Kaczmarek LK. Localization of Kv1.3 channels in presynaptic terminals of brainstem auditory neurons. J Comp Neurol. 2010;518:3205–20. https://doi.org/10.1002/cne.22393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Harvey AL. Twenty years of dendrotoxins. Toxicon. 2001;39:15–26. https://doi.org/10.1016/s0041-0101(00)00162-8.

    Article  CAS  PubMed  Google Scholar 

  100. Werkman TR, Gustafson TA, Rogowski RS, Blaustein MP, Rogawski MA. Tityustoxin-K alpha, a structurally novel and highly potent K+ channel peptide toxin, interacts with the alpha-dendrotoxin binding site on the cloned Kv1.2 K+ channel. Mol Pharmacol. 1993;44:430–6.

    CAS  PubMed  Google Scholar 

  101. Bartok A, Toth A, Somodi S, Szanto TG, Hajdu P, Panyi G, et al. Margatoxin is a non-selective inhibitor of human Kv1.3 K+ channels. Toxicon. 2014;87:6–16. https://doi.org/10.1016/j.toxicon.2014.05.002.

    Article  CAS  PubMed  Google Scholar 

  102. Dodson PD, Barker MC, Forsythe ID. Two heteromeric Kv1 potassium channels differentially regulate action potential firing. J Neurosci. 2002;22:6953–61. https://doi.org/10.1523/JNEUROSCI.22-16-06953.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Dodson PD, Billups B, Rusznak Z, Szucs G, Barker MC, Forsythe ID. Presynaptic rat Kv1.2 channels suppress synaptic terminal hyperexcitability following action potential invasion. J Physiol. 2003;550:27–33. https://doi.org/10.1113/jphysiol.2003.046250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Klug A, Trussell LO. Activation and deactivation of voltage-dependent K+ channels during synaptically driven action potentials in the MNTB. J Neurophysiol. 2006;96:1547–55. https://doi.org/10.1152/jn.01381.2005.

    Article  CAS  PubMed  Google Scholar 

  105. Zhou J, Brown AM, Lackey EP, Arancillo M, Lin T, Sillitoe RV. Purkinje cell neurotransmission patterns cerebellar basket cells into zonal modules defined by distinct pinceau sizes. elife. 2020;9:e55569. https://doi.org/10.7554/eLife.55569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. McNamara NM, Muniz ZM, Wilkin GP, Dolly JO. Prominent location of a K+ channel containing the alpha subunit Kv 1.2 in the basket cell nerve terminals of rat cerebellum. Neuroscience. 1993;57:1039–45. https://doi.org/10.1016/0306-4522(93)90047-j.

    Article  CAS  PubMed  Google Scholar 

  107. Wang H, Kunkel DD, Martin TM, Schwartzkroin PA, Tempel BL. Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. Nature. 1993;365:75–9. https://doi.org/10.1038/365075a0.

    Article  CAS  PubMed  Google Scholar 

  108. Southan AP, Robertson B. Electrophysiological characterization of voltage-gated K(+) currents in cerebellar basket and purkinje cells: Kv1 and Kv3 channel subfamilies are present in basket cell nerve terminals. J Neurosci. 2000;20:114–22. https://doi.org/10.1523/JNEUROSCI.20-01-00114.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Southan AP, Robertson B. Patch-clamp recordings from cerebellar basket cell bodies and their presynaptic terminals reveal an asymmetric distribution of voltage-gated potassium channels. J Neurosci. 1998;18:948–55. https://doi.org/10.1523/JNEUROSCI.18-03-00948.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kole MH, Letzkus JJ, Stuart GJ. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron. 2007;55:633–47. https://doi.org/10.1016/j.neuron.2007.07.031.

    Article  CAS  PubMed  Google Scholar 

  111. Yang Q, Chen SR, Li DP, Pan HL. Kv1.1/1.2 channels are downstream effectors of nitric oxide on synaptic GABA release to preautonomic neurons in the paraventricular nucleus. Neuroscience. 2007;149:315–27. https://doi.org/10.1016/j.neuroscience.2007.08.007.

    Article  CAS  PubMed  Google Scholar 

  112. Finnegan TF, Chen SR, Pan HL. Mu opioid receptor activation inhibits GABAergic inputs to basolateral amygdala neurons through Kv1.1/1.2 channels. J Neurophysiol. 2006;95:2032–41. https://doi.org/10.1152/jn.01004.2005.

    Article  CAS  PubMed  Google Scholar 

  113. Selyanko AA, Hadley JK, Wood IC, Abogadie FC, Jentsch TJ, Brown DA. Inhibition of KCNQ1-4 potassium channels expressed in mammalian cells via M1 muscarinic acetylcholine receptors. J Physiol. 2000;522(Pt 3):349–55. https://doi.org/10.1111/j.1469-7793.2000.t01-2-00349.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Leao RN, Tan HM, Fisahn A. Kv7/KCNQ channels control action potential phasing of pyramidal neurons during hippocampal gamma oscillations in vitro. J Neurosci. 2009;29:13353–64. https://doi.org/10.1523/JNEUROSCI.1463-09.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Miceli F, Cilio MR, Taglialatela M, Bezanilla F. Gating currents from neuronal K(V)7.4 channels: general features and correlation with the ionic conductance. Channels (Austin). 2009;3:274–83.

    Article  PubMed  Google Scholar 

  116. Brown DA, Passmore GM. Neural KCNQ (Kv7) channels. Br J Pharmacol. 2009;156:1185–95. https://doi.org/10.1111/j.1476-5381.2009.00111.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Huang H, Trussell LO. KCNQ5 channels control resting properties and release probability of a synapse. Nat Neurosci. 2011;14:840–7. https://doi.org/10.1038/nn.2830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Caminos E, Garcia-Pino E, Juiz JM. Loss of auditory activity modifies the location of potassium channel KCNQ5 in auditory brainstem neurons. J Neurosci Res. 2015;93:604–14. https://doi.org/10.1002/jnr.23516.

    Article  CAS  PubMed  Google Scholar 

  119. Zhang Y, Li D, Darwish Y, Fu X, Trussell LO, Huang H. KCNQ channels enable reliable presynaptic spiking and synaptic transmission at high frequency. J Neurosci. 2022;42:3305–15. https://doi.org/10.1523/JNEUROSCI.0363-20.2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Vervaeke K, Gu N, Agdestein C, Hu H, Storm JF. Kv7/KCNQ/M-channels in rat glutamatergic hippocampal axons and their role in regulation of excitability and transmitter release. J Physiol. 2006;576:235–56. https://doi.org/10.1113/jphysiol.2006.111336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tsentsevitsky AN, Khaziev EF, Kovyazina IV, Petrov AM. GIRK channel as a versatile regulator of neurotransmitter release via L-type Ca(2+) channel-dependent mechanism in the neuromuscular junction. Neuropharmacology. 2022;209:109021. https://doi.org/10.1016/j.neuropharm.2022.109021.

    Article  CAS  PubMed  Google Scholar 

  122. Vazquez-Vazquez H, Gonzalez-Sandoval C, Vega AV, Arias-Montano JA, Barral J. Histamine H(3) receptor activation modulates glutamate release in the corticostriatal synapse by acting at Ca(V)2.1 (P/Q-type) calcium channels and GIRK (K(IR)3) potassium channels. Cell Mol Neurobiol. 2022;42:817–28. https://doi.org/10.1007/s10571-020-00980-6.

    Article  CAS  PubMed  Google Scholar 

  123. Kaczmarek LK. Slack, slick and sodium-activated potassium channels. ISRN Neurosci. 2013;2013:354262. https://doi.org/10.1155/2013/354262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Yuan A, Santi CM, Wei A, Wang ZW, Pollak K, Nonet M, et al. The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron. 2003;37:765–73. https://doi.org/10.1016/s0896-6273(03)00096-5.

    Article  CAS  PubMed  Google Scholar 

  125. Bhattacharjee A, Gan L, Kaczmarek LK. Localization of the Slack potassium channel in the rat central nervous system. J Comp Neurol. 2002;454:241–54. https://doi.org/10.1002/cne.10439.

    Article  CAS  PubMed  Google Scholar 

  126. Bhattacharjee A, Joiner WJ, Wu M, Yang Y, Sigworth FJ, Kaczmarek LK. Slick (Slo2.1), a rapidly-gating sodium-activated potassium channel inhibited by ATP. J Neurosci. 2003;23:11681–91. https://doi.org/10.1523/JNEUROSCI.23-37-11681.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Budelli G, Hage TA, Wei A, Rojas P, Jong YJ, O’Malley K, et al. Na+-activated K+ channels express a large delayed outward current in neurons during normal physiology. Nat Neurosci. 2009;12:745–50. https://doi.org/10.1038/nn.2313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lu S, Das P, Fadool DA, Kaczmarek LK. The slack sodium-activated potassium channel provides a major outward current in olfactory neurons of Kv1.3−/− super-smeller mice. J Neurophysiol. 2010;103:3311–9. https://doi.org/10.1152/jn.00607.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Martinez-Espinosa PL, Wu J, Yang C, Gonzalez-Perez V, Zhou H, Liang H, et al. Knockout of Slo2.2 enhances itch, abolishes KNa current, and increases action potential firing frequency in DRG neurons. elife. 2015;4:e10013. https://doi.org/10.7554/eLife.10013.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Barcia G, Fleming MR, Deligniere A, Gazula VR, Brown MR, Langouet M, et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet. 2012;44:1255–9. https://doi.org/10.1038/ng.2441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Heron SE, Smith KR, Bahlo M, Nobili L, Kahana E, Licchetta L, et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet. 2012;44:1188–90. https://doi.org/10.1038/ng.2440.

    Article  CAS  PubMed  Google Scholar 

  132. Ishii A, Shioda M, Okumura A, Kidokoro H, Sakauchi M, Shimada S, et al. A recurrent KCNT1 mutation in two sporadic cases with malignant migrating partial seizures in infancy. Gene. 2013;531:467–71. https://doi.org/10.1016/j.gene.2013.08.096.

    Article  CAS  PubMed  Google Scholar 

  133. Martin HC, Kim GE, Pagnamenta AT, Murakami Y, Carvill GL, Meyer E, et al. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum Mol Genet. 2014;23:3200–11. https://doi.org/10.1093/hmg/ddu030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Vanderver A, Simons C, Schmidt JL, Pearl PL, Bloom M, Lavenstein B, et al. Identification of a novel de novo p.Phe932Ile KCNT1 mutation in a patient with leukoencephalopathy and severe epilepsy. Pediatr Neurol. 2014;50:112–4. https://doi.org/10.1016/j.pediatrneurol.2013.06.024.

    Article  PubMed  Google Scholar 

  135. Yuan A, Dourado M, Butler A, Walton N, Wei A, Salkoff L. SLO-2, a K+ channel with an unusual Cl dependence. Nat Neurosci. 2000;3:771–9. https://doi.org/10.1038/77670.

    Article  CAS  PubMed  Google Scholar 

  136. Liu P, Ge Q, Chen B, Salkoff L, Kotlikoff MI, Wang ZW. Genetic dissection of ion currents underlying all-or-none action potentials in C. elegans body-wall muscle cells. J Physiol. 2011;589:101–17. https://doi.org/10.1113/jphysiol.2010.200683.

    Article  CAS  PubMed  Google Scholar 

  137. Liu Q, Kidd PB, Dobosiewicz M, Bargmann CI. C. elegans AWA olfactory neurons fire calcium-mediated all-or-none action potentials. Cell. 2018;175:57–70. e17. https://doi.org/10.1016/j.cell.2018.08.018.

    Article  CAS  PubMed  Google Scholar 

  138. Gao S, Zhen M. Action potentials drive body wall muscle contractions in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 2011;108:2557–62. https://doi.org/10.1073/pnas.1012346108.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Jiang J, Su Y, Zhang R, Li H, Tao L, Liu Q. C. elegans enteric motor neurons fire synchronized action potentials underlying the defecation motor program. Nat Commun. 2022;13:2783. https://doi.org/10.1038/s41467-022-30452-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu Q, Hollopeter G, Jorgensen EM. Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction. Proc Natl Acad Sci U S A. 2009;106:10823–8. https://doi.org/10.1073/pnas.0903570106.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Liu P, Chen B, Wang ZW. Postsynaptic current bursts instruct action potential firing at a graded synapse. Nat Commun. 2013;4:1911. https://doi.org/10.1038/ncomms2925.

    Article  CAS  PubMed  Google Scholar 

  142. Liu P, Chen B, Mailler R, Wang ZW. Antidromic-rectifying gap junctions amplify chemical transmission at functionally mixed electrical-chemical synapses. Nat Commun. 2017;8:14818. https://doi.org/10.1038/ncomms14818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu P, Chen B, Wang ZW. SLO-2 potassium channel is an important regulator of neurotransmitter release in Caenorhabditis elegans. Nat Commun. 2014;5:5155. https://doi.org/10.1038/ncomms6155.

    Article  CAS  PubMed  Google Scholar 

  144. Lucchesi K, Moczydlowski E. Subconductance behavior in a maxi Ca2(+)-activated K+ channel induced by dendrotoxin-I. Neuron. 1990;4:141–8. https://doi.org/10.1016/0896-6273(90)90450-t.

    Article  CAS  PubMed  Google Scholar 

  145. Liu P, Jo S, Bean BP. Modulation of neuronal sodium channels by the sea anemone peptide BDS-I. J Neurophysiol. 2012;107:3155–67. https://doi.org/10.1152/jn.00785.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Imredy JP, Chen C, MacKinnon R. A snake toxin inhibitor of inward rectifier potassium channel ROMK1. Biochemistry. 1998;37:14867–74. https://doi.org/10.1021/bi980929k.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Supported by NIH grants R01MH085927 and R01NS109388 to ZWW, and R01DC004450 and R35NS116798 to LOT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Wen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, ZW., Trussell, L.O., Vedantham, K. (2023). Regulation of Neurotransmitter Release by K+ Channels. In: Wang, ZW. (eds) Molecular Mechanisms of Neurotransmitter Release. Advances in Neurobiology, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-031-34229-5_12

Download citation

Publish with us

Policies and ethics