Skip to main content

Power-Efficient RF and mm-Wave VCOs/PLL

  • Chapter
  • First Online:
Analog and Mixed-Signal Circuits in Nanoscale CMOS

Abstract

Almost every electronic system demands a clock signal with high spectral purity. Wireless or wireline systems typically rely on two approaches to enhance the data rate: (1) employing a denser modulation scheme and (2) increasing the operating frequency to secure a large bandwidth. Both approaches impose stringent requirements on the phase noise or jitter of the clock signal. Also, the clock generator needs to be power-efficient in order to improve the battery life of a mobile terminal or save energy dissipation in the data center. This chapter elaborates VCO (voltage-controlled oscillator) and PLL (phase-locked loop) designs, two critical components of a clock generator. The first and third designs demonstrate how the harmonic shaping techniques help to improve the phase noise of the RF and mm-wave VCOs. The second presents an inductive mode-switching technique that can increase the frequency tuning range of the mm-wave VCO without compromising the phase noise. The fourth work is a 25.5–29.9 GHz subsampling (SS) PLL utilizing a master-slave isolated subsampling phase detector to simultaneously obtain low jitter and low reference spur. We verified all four designs with silicon results in 65 nm CMOS (complementary metal-oxide semiconductor).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreani, P., Wang, X., Vandi, L., & Fard, A. (2005). A study of phase noise in colpitts and LC-tank CMOS oscillators. IEEE Journal of Solid-State Circuits, 40(5), 1107–1118.

    Article  Google Scholar 

  2. Mazzanti, A., & Andreani, P. (2008). Class-C harmonic CMOS VCOs, with a general result on phase noise. IEEE Journal of Solid-State Circuits, 43(12), 2716–2729.

    Article  Google Scholar 

  3. Ahmadi-Mehr, S., Tohidian, M., & Staszewski, R. B. (2016). Analysis and design of a multi-core oscillator for ultra-low phase noise. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(4), 529–539.

    Article  Google Scholar 

  4. Hegazi, E., Sjoland, H., & Abidi, A. A. (2001). A filtering technique to lower LC oscillator phase noise. IEEE Journal of Solid-State Circuits, 36(12), 1921–1930.

    Article  Google Scholar 

  5. Hajimiri, A., & Lee, T. H. (1998). A general theory of phase noise in electrical oscillators. IEEE Journal of Solid-State Circuits, 33(2), 179–194.

    Article  Google Scholar 

  6. Murphy, D., Darabi, H., & Wu, H. (2015, February). A VCO with implicit common-mode resonance. In IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 442–443.

    Google Scholar 

  7. Shahmohammadi, M., Babaie, M., & Staszewski, R. B. (2015, February). A 1/f noise upconversion reduction technique applied to class-D and class-F oscillators. In IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 444–445.

    Google Scholar 

  8. Sjoland, H. (2002). Improved switched tuning of differential CMOS VCOs. IEEE Transactions on Circuits and Systems II: Express Briefs, 49(5), 352–355.

    Article  Google Scholar 

  9. Lim, C.-C., Yin, J., Mak, P.-I., Ramiah, H., & Martins, R. P. (2018, February). An inverse-class-F CMOS VCO with intrinsic-high-Q 1st- and 2nd-harmonic resonances for 1/f2-to-1/f3 phase noise suppression achieving 196.2dBc/Hz FoM. In IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 374–375.

    Google Scholar 

  10. Lim, C.-C., Ramiah, H., Yin, J., Mak, P.-I., & Martins, R. (2018). An inverse-class-F CMOS oscillator with intrinsic- high-Q 1st-harmonic and 2nd-harmonic resonances. IEEE Journal of Solid-State Circuits, 53(12), 3528–3593.

    Article  Google Scholar 

  11. Mortazavi, S. Y., & Koh, K.-J. (2016). Integrated inverse class-F silicon power amplifiers for high power efficiency at microwave and mm- wave. IEEE Journal of Solid-State Circuits, 51(10), 2420–2434.

    Article  Google Scholar 

  12. Bevilacqua, A., Pavan, F. P., Sandner, C., Gerosa, A., & Neviani, A. (2006, February). A 3.4-7 GHz transformer-based dual-mode wideband VCO. In Proceedings of the 32nd European Solid-State Circuits Conference, pp. 440–443.

    Google Scholar 

  13. Rong, S., & Luong, H. C. (2012). Analysis and design of transformer-based dual-band VCO for software-defined radios. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(3), 449–462.

    Article  MathSciNet  MATH  Google Scholar 

  14. Bevilacqua, A., & Andreani, P. (2012). An analysis of 1/f noise to phase noise conversion in CMOS harmonic oscillators. IEEE Transactions on Circuits and Systems I, 59(5), 938–945.

    Article  MathSciNet  MATH  Google Scholar 

  15. Cao, C. (2006). Millimeter-wave voltage-controlled oscillators in 0.13- m CMOS technology. IEEE Journal of Solid-State Circuits, 41(6), 1297–1304.

    Article  Google Scholar 

  16. Li, G., & Afshari, E. (2011). A distributed dual-band LC oscillator based on mode switching. IEEE Transactions on Microwave Theory and Techniques, 59(1), 99–107.

    Article  Google Scholar 

  17. Li, G., Liu, L., Tang, Y., & Afshari, E. (2012). A low-phase-noise wide-tuning-range oscillator based on resonant mode switching. IEEE Journal of Solid-State Circuits, 47(6), 1295–1308.

    Article  Google Scholar 

  18. Peng, Y., Yin, J., Mak, P.-I., & Martins, R. P. (2018). Low-phase-noise wideband mode-switching quad-Core-coupled mm-wave VCO using a single-center-tapped switched inductor. IEEE Journal of Solid-State Circuits, 53(11), 3232–3242.

    Article  Google Scholar 

  19. Murphy, D., et al. (2017). Implicit common-mode resonance in LC oscillators. IEEE Journal of Solid-State Circuits, 52(3), 812–821.

    Article  Google Scholar 

  20. Babaie, M., & Staszewski, R. (2015). An ultra-low phase noise class-F2 CMOS oscillator with 191 dBc/Hz FoM and long-term reliability. IEEE Journal of Solid-State Circuits, 50(3), 679–692.

    Article  Google Scholar 

  21. Babaie, M., & Staszewski, R. (2013). A Class-F CMOS Oscillator. IEEE Journal of Solid-State Circuits, 48(12), 3120–3133.

    Article  Google Scholar 

  22. Shahmohammadi, M., et al. (2016). A 1/f noise Upconversion reduction technique for voltage-biased RF CMOS oscillators. IEEE Journal of Solid-State Circuits, 51(11), 2610–2624.

    Article  Google Scholar 

  23. Guo, H., et al. (2018). A 0.083-mm2 25.2-to-29.5 GHz multi-LC-tank class-F234 VCO with a 189.6-dBc/Hz FoM. IEEE Solid-State Circuits Lett., 1(4), 86–89.

    Article  Google Scholar 

  24. Hu, Y., et al. (2018). A low-flicker-noise 30-GHz class-F23 oscillator in 28-nm CMOS using implicit resonance and explicit common-mode return path. IEEE Journal of Solid-State Circuits, 53(7), 1977–1987.

    Article  Google Scholar 

  25. Padovan, F., et al. (2018, February). A quad-Core 15GHz BiCMOS VCO with -124dBc/Hz phase noise at 1MHz offset, -189dBc/Hz FoM, and robust to multimode concurrent oscillations. In IEEE International Solid-State Circuits Conference- (ISSCC) Digest of Technical Papers, pp. 376–377.

    Google Scholar 

  26. Yoo, S., et al. (2017, February). A PVT-robust -39dBc 1kHz-to-100MHz integrated-phase-noise 29GHz injection-locked frequency multiplier with a 600μW frequency-tracking loop using the averages of phase deviations for mm-band 5G transceivers. In IEEE International Solid-State Circuits Conference- (ISSCC) Digest of Technical Papers, pp. 324–325.

    Google Scholar 

  27. Yoon, H., et al. (2018, February). A -31dBc integrated-phase-noise 29GHz fractional-N frequency synthesizer supporting multiple frequency bands for backward compatible 5G using a frequency Doubler and injection-locked frequency multipliers. In IEEE International Solid-State Circuits Conference- (ISSCC) Digest of Technical Papers, pp. 366–367.

    Google Scholar 

  28. Ek, S., et al. (2018). A 28-nm FD-SOI 115-fs Jitter PLL-based LO system for 24-30 GHz sliding-IF 5G transceivers. IEEE Journal of Solid-State Circuits, 53(7), 1988–2000.

    Article  Google Scholar 

  29. Gao, X., et al. (2009, February). A 2.2GHz 7.6mW sub-sampling PLL with -126dBc/Hz in-band phase noise and 0.15psrms Jitter in 0.18μm CMOS. In IEEE International Solid-State Circuits Conference- (ISSCC) Digest of Technical Papers, pp. 392–393.

    Google Scholar 

  30. Szortyka, V., et al. (2017, February). A 42mW 230fs-Jitter sub-sampling 60GHz PLL in 40nm CMOS. In IEEE International Solid-State Circuits Conference- (ISSCC) Digest of Technical Papers, pp. 366–367.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, H. et al. (2023). Power-Efficient RF and mm-Wave VCOs/PLL. In: Paulo da Silva Martins, R., Mak, PI. (eds) Analog and Mixed-Signal Circuits in Nanoscale CMOS. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-031-22231-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22231-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22230-6

  • Online ISBN: 978-3-031-22231-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics