Skip to main content

Flexible Supercapacitors

  • Chapter
  • First Online:
Nanostructured Materials for Supercapacitors

Abstract

For decades, supercapacitors (SCs) have emerged as a promising technology providing the necessary power that was lacking to batteries and many efforts have been devoted to developing new materials, to design (nano) architectures that considerably improve their performances: energy, density, lifetime, decreased cost, renewable. This success pushes the supercapacitor technology to the next challenges, i.e. development of high-performing flexible SCs to power up imprinted, portable electronics and more recently wearable devices such as light-emitting diodes or flexible screens. This book chapter puts a focus on the strategies to develop electrode (nano-)materials, with help of chemistry, material science, and engineering tools. It will pave the way toward the development of flexible SCs with the perspectives of future research on stretchable SCs, which represents a new target and a real breakthrough in the field of energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    TBAPF6: tetrabutylammoniumhexafluorophosphate, PMMA: poly(methyl methacrylate), PC: propylene carbonate and ACN:acetonitrile.

  2. 2.

    PS = Polystyrene.

References

  1. J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010). https://doi.org/10.1021/cm901452z

    Article  CAS  Google Scholar 

  2. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008). https://doi.org/10.1038/nmat2297

    Article  CAS  Google Scholar 

  3. Z.S. Iro, C. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci. 11, 10628–10643 (2016). https://doi.org/10.20964/2016.12.50

  4. M. Vangari, T. Pryor, L. Jiang, Supercapacitors: review of materials and fabrication methods. J. Energy Eng. 139, 72–79 (2013). https://doi.org/10.1061/(asce)ey.1943-7897.0000102

    Article  Google Scholar 

  5. J. Cherusseri, D. Pandey, K. Sambath Kumar, J. Thomas, L. Zhai, Flexible supercapacitor electrodes using metal-organic frameworks. Nanoscale 12, 17649–17662 (2020). https://doi.org/10.1039/d0nr03549a

    Article  CAS  Google Scholar 

  6. Y. Sui, J. Zhou, X. Wang, L. Wu, S. Zhong, Y. Li, Recent advances in black-phosphorus-based materials for electrochemical energy storage. Mater. Today. 42, 117–136 (2021). https://doi.org/10.1016/j.mattod.2020.09.005

    Article  CAS  Google Scholar 

  7. M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012). https://doi.org/10.1126/science.1216744

    Article  CAS  Google Scholar 

  8. T. Chen, L. Dai, Flexible supercapacitors based on carbon nanomaterials. J. Mater. Chem. A. 2, 10756–10775 (2014). https://doi.org/10.1039/c4ta00567h

    Article  CAS  Google Scholar 

  9. J. Gamby, P.L. Taberna, P. Simon, J.F. Fauvarque, M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources. 101, 109–116 (2001). https://doi.org/10.1016/S0378-7753(01)00707-8

    Article  CAS  Google Scholar 

  10. S. Zhu, P.L. Taberna, N. Zhao, P. Simon, Salt-template synthesis of mesoporous carbon monolith for ionogel-based supercapacitors. Electrochem. Commun. 96, 6–10 (2018). https://doi.org/10.1016/j.elecom.2018.09.003

    Article  CAS  Google Scholar 

  11. L. Trognko, P. Lecante, N. Ratel-Ramond, P. Rozier, B. Daffos, P.L. Taberna, P. Simon, TiC-carbide derived carbon electrolyte adsorption study by ways of X-ray scattering analysis. Mater. Renew. Sustain. Energy. 4 (2015). https://doi.org/10.1007/s40243-015-0059-4

  12. M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012). https://doi.org/10.1021/nn204153h

    Article  CAS  Google Scholar 

  13. V. Presser, M. Heon, Y. Gogotsi, Carbide-derived carbons - from porous networks to nanotubes and graphene. Adv. Funct. Mater. 21, 810–833 (2011). https://doi.org/10.1002/adfm.201002094

    Article  CAS  Google Scholar 

  14. K. Xu, H. Shao, Z. Lin, C. Merlet, G. Feng, J. Zhu, P. Simon, Computational insights into charge storage mechanisms of supercapacitors. Energy Environ. Mater. 3, 235–246 (2020). https://doi.org/10.1002/eem2.12124

    Article  CAS  Google Scholar 

  15. E. Frackowiak, K. Metenier, V. Bertagna, F. Beguin, Supercapacitor electrodes from multiwalled carbon nanotubes. Appl. Phys. Lett. 77, 2421–2423 (2000). https://doi.org/10.1063/1.1290146

    Article  CAS  Google Scholar 

  16. B. Kim, H. Chung, W. Kim, High-performance supercapacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes, Nanotechnology. 23 (2012). https://doi.org/10.1088/0957-4484/23/15/155401

  17. M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9, 1872–1876 (2009). https://doi.org/10.1021/nl8038579

    Article  CAS  Google Scholar 

  18. H. Pan, J. Li, Y.P. Feng, Carbon nanotubes for supercapacitor. Nanoscale Res. Lett. 5, 654–668 (2010). https://doi.org/10.1007/s11671-009-9508-2

    Article  CAS  Google Scholar 

  19. M.R. Arcila-Velez, J. Zhu, A. Childress, M. Karakaya, R. Podila, A.M. Rao, M.E. Roberts, Roll-to-roll synthesis of vertically aligned carbon nanotube electrodes for electrical double layer capacitors. Nano Energy 8, 9–16 (2014). https://doi.org/10.1016/j.nanoen.2014.05.004

    Article  CAS  Google Scholar 

  20. P. Lv, P. Zhang, F. Li, Y. Li, Y. Feng, W. Feng, Vertically aligned carbon nanotubes grown on carbon fabric with high rate capability for super-capacitors. Synth. Met. 162, 1090–1096 (2012). https://doi.org/10.1016/j.synthmet.2012.04.029

    Article  CAS  Google Scholar 

  21. F. Nassoy, M. Pinault, J. Descarpentries, T. Vignal, P. Banet, P.E. Coulon, T.G. de Monsabert, H. Hauf, P.H. Aubert, C. Reynaud, M. Mayne-L’hermite, Single-step synthesis of vertically aligned carbon nanotube forest on aluminium foils. Nanomaterials 9, 1–18 (2019). https://doi.org/10.3390/nano9111590

    Article  CAS  Google Scholar 

  22. T. Vignal, P. Banet, M. Pinault, R. Lafourcade, J. Descarpentries, L. Darchy, H. Hauf, C. Reynaud, M. Mayne-L’Hermite, P.H. Aubert, Electropolymerized poly(3-methylthiophene) onto high density vertically aligned carbon nanotubes directly grown on aluminum substrate: application to electrochemical capacitors. Electrochim. Acta. 350 (2020). https://doi.org/10.1016/j.electacta.2020.136377

  23. J. Xia, F. Chen, J. Li, N. Tao, Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505–509 (2009). https://doi.org/10.1038/nnano.2009.177

    Article  CAS  Google Scholar 

  24. X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Preparation of novel 3D graphene networks for supercapacitor applications. Small 7, 3163–3168 (2011). https://doi.org/10.1002/smll.201100990

    Article  CAS  Google Scholar 

  25. J.J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B.G. Sumpter, A. Srivastava, M. Conway, A.L. Mohana Reddy, J. Yu, R. Vajtai, P.M. Ajayan, Ultrathin planar graphene supercapacitors. Nano Lett. 11, 1423–1427 (2011). https://doi.org/10.1021/nl200225j

    Article  CAS  Google Scholar 

  26. C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010). https://doi.org/10.1021/nl102661q

    Article  CAS  Google Scholar 

  27. S.R.C. Vivekchand, C.S. Rout, K.S. Subrahmanyam, A. Govindaraj, C.N.R. Rao, Graphene-based electrochemical supercapacitors. J. Chem. Sci. 120, 9–13 (2008). https://doi.org/10.1007/s12039-008-0002-7

    Article  CAS  Google Scholar 

  28. Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes—a review. J. Mater. 2, 37–54 (2016). https://doi.org/10.1016/j.jmat.2016.01.001

    Article  Google Scholar 

  29. Y. Cheng, S. Lu, H. Zhang, C.V. Varanasi, J. Liu, Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett. 12, 4206–4211 (2012). https://doi.org/10.1021/nl301804c

    Article  CAS  Google Scholar 

  30. J. Liu, L. Zhang, H. Bin Wu, J. Lin, Z. Shen, X.W. Lou, High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy Environ. Sci. 7, 3709–3719 (2014). https://doi.org/10.1039/c4ee01475h

    Article  CAS  Google Scholar 

  31. D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, Y. Chen, Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 9, 555–562 (2014). https://doi.org/10.1038/nnano.2014.93

    Article  CAS  Google Scholar 

  32. W.A. Wampler, K. Rajeshwar, R.G. Pethe, R.C. Hyer, S.C. Sharma, Composites of polypyrrole and carbon black: Part III. Chemical synthesis and characterization. J. Mater. Res. 10, 1811–1822 (1995). https://doi.org/10.1557/JMR.1995.1811

    Article  CAS  Google Scholar 

  33. A. Izadi-Najafabadi, D.T.H. Tan, J.D. Madden, Towards high power polypyrrole/carbon capacitors. Synth. Met. 152, 129–132 (2005). https://doi.org/10.1016/j.synthmet.2005.07.094

    Article  CAS  Google Scholar 

  34. D. Wang, F. Li, J. Zhao, W. Ren, Z. Chen, J. Tan, Z. Wu, I. Gentle, G.Q. Lu, H. Cheng, Fabrication of graphene/polyaniline performance flexible electrode electropolymerization for high- composite paper via in situ anodic. ACS Nano 3, 1745–1752 (2009). https://doi.org/10.1021/nn900297m

    Article  CAS  Google Scholar 

  35. H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Flexible graphene-polyaniline composite paper for high-performance supercapacitor. Energy Environ. Sci. 6, 1185–1191 (2013). https://doi.org/10.1039/c2ee24203f

    Article  CAS  Google Scholar 

  36. Y. Han, L. Dai, Conducting polymers for flexible supercapacitors. Macromol. Chem. Phys. 220, 1–14 (2019). https://doi.org/10.1002/macp.201800355

    Article  CAS  Google Scholar 

  37. J.H. Fan, M.X. Wan, D.B. Zhu, B.H. Chang, Z.W. Pan, S.S. Xe, Synthesis, characterizations, and physical properties of carbon nanotubes coated by conducting polypyrrole. J. Appl. Polym. Sci. 74, 2605–2610 (1999). Doi https://doi.org/10.1002/(Sici)1097-4628(19991209)74:11<2605::Aid-App6>3.0.Co;2-R

    Google Scholar 

  38. K.H. An, K.K. Jeon, J.K. Heo, S.C. Lim, D.J. Bae, Y.H. Lee, High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J. Electrochem. Soc. 149, A1058 (2002). https://doi.org/10.1149/1.1491235

    Article  CAS  Google Scholar 

  39. C. Zhou, S. Kumar, C.D. Doyle, J.M. Tour, Functionalized single wall carbon nanotubes treated with pyrrole for electrochemical supercapacitor membranes. Chem. Mater. 17, 1997–2002 (2005). https://doi.org/10.1021/cm047882b

    Article  CAS  Google Scholar 

  40. Y. Gao, Graphene and polymer composites for supercapacitor applications: a review. Nanoscale Res. Lett. 12, 1–17 (2017). https://doi.org/10.1186/s11671-017-2150-5

    Article  Google Scholar 

  41. K. Lota, V. Khomenko, E. Frackowiak, Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. J. Phys. Chem. Solids. 65, 295–301 (2004). https://doi.org/10.1016/j.jpcs.2003.10.051

    Article  CAS  Google Scholar 

  42. W.-C.C. Chen, T.-C.C. Wen, H. Teng, Polyaniline-deposited porous carbon electrode for supercapacitor. Electrochim. Acta. 48, 641–649 (2003). https://doi.org/10.1016/S0013-4686(02)00734-X

    Article  CAS  Google Scholar 

  43. W.C. Chen, T.C. Wen, Electrochemical and capacitive properties of polyaniline-implanted porous carbon electrode for supercapacitors. J. Power Sources. 117, 273–282 (2003). https://doi.org/10.1016/S0378-7753(03)00158-7

    Article  CAS  Google Scholar 

  44. C. Downs, J. Nugent, P.M. Ajayan, D.J. Duquette, K.S.V. Santhanam, Efficient polymerization of aniline at carbon nanotube electrodes. Adv. Mater. 11, 1028–1031 (1999). https://doi.org/10.1002/(SICI)1521-4095(199908)11:12%3c1028::AID-ADMA1028%3e3.0.CO;2-N

    Article  CAS  Google Scholar 

  45. R. Kötz, M. Hahn, P. Ruch, R. Gallay, Comparison of pressure evolution in supercapacitor devices using different aprotic solvents. Electrochem. Commun. 10, 359–362 (2008). https://doi.org/10.1016/j.elecom.2007.12.016

    Article  CAS  Google Scholar 

  46. R. Newell, J. Faure-Vincent, B. Iliev, T. Schubert, D. Aradilla, A new high performance ionic liquid mixture electrolyte for large temperature range supercapacitor applications (−70 to 80 °C) operating at 3.5V cell voltage. Electrochim. Acta. 267, 15–19 (2018). https://doi.org/10.1016/j.electacta.2018.02.067

    Article  CAS  Google Scholar 

  47. L. Dagousset, G. Pognon, G.T.M. Nguyen, F. Vidal, S. Jus, P.H. Aubert, Self-standing gel polymer electrolyte for improving supercapacitor thermal and electrochemical stability. J. Power Sour. 391, 86–93 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.073

    Article  CAS  Google Scholar 

  48. H. Ohno, Electrochemical aspects of ionic liquids (John Wiley, Wiley, Hoboken, NJ, USA, 2011)

    Book  Google Scholar 

  49. J.S. Wilkes, M.J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun. 13, 965–967 (1992). https://doi.org/10.1039/c39920000965

    Article  Google Scholar 

  50. M. Galiński, A. Lewandowski, I. Stępniak, Ionic liquids as electrolytes. Electrochim. Acta. 51, 5567–5580 (2006). https://doi.org/10.1016/j.electacta.2006.03.016

    Article  CAS  Google Scholar 

  51. Y. Huang, M. Zhong, Y. Huang, M. Zhu, Z. Pei, Z. Wang, Q. Xue, X. Xie, C. Zhi, A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat. Commun. 6, 1–8 (2015). https://doi.org/10.1038/ncomms10310

    Article  CAS  Google Scholar 

  52. E. Kovalska, C. Kocabas, Organic electrolytes for graphene-based supercapacitor: liquid, gel or solid. Mater. Today Commun. 7, 155–160 (2016). https://doi.org/10.1016/j.mtcomm.2016.04.013

    Article  CAS  Google Scholar 

  53. B. Asbani, C. Douard, T. Brousse, J. Le Bideau, High temperature solid-state supercapacitor designed with ionogel electrolyte. Energy Storage Mater. 21, 439–445 (2019). https://doi.org/10.1016/j.ensm.2019.06.004

    Article  Google Scholar 

  54. B.G. Choi, S.J. Chang, H.W. Kang, C.P. Park, H.J. Kim, W.H. Hong, S. Lee, Y.S. Huh, High performance of a solid-state flexible asymmetric supercapacitor based on graphene films. Nanoscale 4, 4983–4988 (2012). https://doi.org/10.1039/c2nr30991b

    Article  CAS  Google Scholar 

  55. K.B. Li, D.W. Shi, Z.Y. Cai, G.L. Zhang, Q.A. Huang, D. Liu, C.P. Yang, Studies on the equivalent serial resistance of carbon supercapacitor. Electrochim. Acta. 174, 596–600 (2015). https://doi.org/10.1016/j.electacta.2015.06.008

    Article  CAS  Google Scholar 

  56. E. Dauzon, X. Sallenave, C. Plesse, F. Goubard, A. Amassian, T.D. Anthopoulos, Pushing the limits of flexibility and stretchability of solar cells: a review. Adv. Mater. 33, 2101469 (2021). https://doi.org/10.1002/adma.202101469

    Article  CAS  Google Scholar 

  57. S. Wang, N. Liu, J. Su, L. Li, F. Long, Z. Zou, X. Jiang, Y. Gao, Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano 11, 2066–2074 (2017). https://doi.org/10.1021/acsnano.6b08262

    Article  CAS  Google Scholar 

  58. R. Jia, L. Li, Y. Ai, H. Du, X. Zhang, Z. Chen, G. Shen, Self-healable wire-shaped supercapacitors with two twisted NiCo2O4 coated polyvinyl alcohol hydrogel fibers. Sci. China Mater. 61, 254–262 (2018). https://doi.org/10.1007/s40843-017-9177-5

    Article  CAS  Google Scholar 

  59. W.K. Chee, H.N. Lim, Z. Zainal, N.M. Huang, I. Harrison, Y. Andou, Flexible graphene-based supercapacitors: a review. J. Phys. Chem. C. 120, 4153–4172 (2016). https://doi.org/10.1021/acs.jpcc.5b10187

    Article  CAS  Google Scholar 

  60. N.A. Echeverry-Montoya, J.J. Prías-Barragán, L. Tirado-Mejía, C. Agudelo, G. Fonthal, H. Ariza-Calderón, Fabrication and electrical response of flexible supercapacitor based on activated carbon from bamboo. Phys. Status Solidi Curr. Top. Solid State Phys. 14,1600258 (2017). https://doi.org/10.1002/pssc.201600258

  61. S. He, W. Chen, Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors. J. Power Sour. 294, 150–158 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.051

    Article  CAS  Google Scholar 

  62. Q. Wang, W. Ren, F. Gao, C. Qiu, Q. Wang, F. Gao, C. Zhao, Thermally activated multilayered carbon cloth as flexible supercapacitor electrode material with significantly enhanced areal energy density. Chem Electro Chem (2019). https://doi.org/10.1002/celc.201801642

    Article  Google Scholar 

  63. R. Yuksel, Z. Sarioba, A. Cirpan, P. Hiralal, H.E. Unalan, Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes. ACS Appl. Mater. Interfaces. 6, 15434–15439 (2014). https://doi.org/10.1021/am504021u

    Article  CAS  Google Scholar 

  64. S. Xi, Y. Kang, S. Qu, S. Han, Flexible supercapacitors on chips with interdigital carbon nanotube fiber electrodes. Mater. Lett. 175, 126–130 (2016). https://doi.org/10.1016/j.matlet.2016.03.143

    Article  CAS  Google Scholar 

  65. X.H. Zhong, Y.L. Li, Y.K. Liu, X.H. Qiao, Y. Feng, J. Liang, J. Jin, L. Zhu, F. Hou, J.Y. Li, Continuous multilayered carbon nanotube yarns. Adv. Mater. 22, 692–696 (2010). https://doi.org/10.1002/adma.200902943

    Article  CAS  Google Scholar 

  66. S. Hu, R. Rajamani, X. Yu, Flexible solid-state paper based carbon nanotube supercapacitor. Appl. Phys. Lett. 100, 1–5 (2012). https://doi.org/10.1063/1.3691948

    Article  CAS  Google Scholar 

  67. X. Lu, Y. Bai, R. Wang, J. Sun, A high-performance flexible and weavable asymmetric fiber-shaped solid-state supercapacitor enhanced by surface modifications of carbon fibers with carbon nanotubes. J. Mater. Chem. A. 4, 18164–18173 (2016). https://doi.org/10.1039/c6ta08233e

    Article  CAS  Google Scholar 

  68. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C. 113, 13103–13107 (2009). https://doi.org/10.1021/jp902214f

    Article  CAS  Google Scholar 

  69. Y. Han, Y. Ge, Y. Chao, C. Wang, G.G. Wallace, Recent progress in 2D materials for flexible supercapacitors. J. Energy Chem. 27, 57–72 (2018). https://doi.org/10.1016/j.jechem.2017.10.033

    Article  Google Scholar 

  70. M.R. Benzigar, V.D.B.C. Dasireddy, X. Guan, T. Wu, G. Liu, Advances on emerging materials for flexible supercapacitors: current trends and beyond. Adv. Funct. Mater. 30, 2002993 (2020). https://doi.org/10.1002/adfm.202002993

    Article  CAS  Google Scholar 

  71. D. Xu, C. Xuan, X. Li, Z. Luo, Z. Wang, T. Tang, J. Wen, M. Li, J. Xiao, Novel helical carbon nanotubes-embedded reduced graphene oxide in three-dimensional architecture for high-performance flexible supercapacitors. Electrochim. Acta. 339, 135912 (2020). https://doi.org/10.1016/j.electacta.2020.135912

    Article  CAS  Google Scholar 

  72. L. Jiang, L. Sheng, C. Long, Z. Fan, Densely packed graphene nanomesh-carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy 11, 471–480 (2015). https://doi.org/10.1016/j.nanoen.2014.11.007

    Article  CAS  Google Scholar 

  73. Z. Weng, Y. Su, D.W. Wang, F. Li, J. Du, H.M. Cheng, Graphene-cellulose paper flexible supercapacitors. Adv. Energy Mater. 1, 917–922 (2011). https://doi.org/10.1002/aenm.201100312

    Article  CAS  Google Scholar 

  74. G.H. Films, Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, Flexible solid-state supercapacitors based on three-dimensional 4042–4049 (2013)

    Google Scholar 

  75. P. Tamilarasan, S. Ramaprabhu, Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte. Energy 51, 374–381 (2013). https://doi.org/10.1016/j.energy.2012.11.037

    Article  CAS  Google Scholar 

  76. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 578–580 (1977). https://doi.org/10.1039/C39770000578

  77. H. Yoon, J. Jang, Conducting-polymer nanomaterials for high-performance sensor applications: issues and challenges. Adv. Funct. Mater. 19, 1567–1576 (2009). https://doi.org/10.1002/adfm.200801141

    Article  CAS  Google Scholar 

  78. M. Hamedi, R. Forchheimer, O. Inganäs, Towards woven logic from organic electronic fibres. Nat. Mater. 6, 357–362 (2007). https://doi.org/10.1038/nmat1884

    Article  CAS  Google Scholar 

  79. P.M. Beaujuge, J.R. Reynolds, Color control in pi-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 110, 268–320 (2010). https://doi.org/10.1021/cr900129a

    Article  CAS  Google Scholar 

  80. Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017). https://doi.org/10.1016/j.nanoen.2017.04.040

    Article  CAS  Google Scholar 

  81. G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sour. 196, 1–12 (2011). https://doi.org/10.1016/j.jpowsour.2010.06.084

    Article  CAS  Google Scholar 

  82. M.E. Abdelhamid, A.P. O’Mullane, G.A. Snook, Storing energy in plastics: a review on conducting polymers and their role in electrochemical energy storage. RSC Adv. 5, 11611–11626 (2015). https://doi.org/10.1039/c4ra15947k

    Article  CAS  Google Scholar 

  83. L. Pan, H. Qiu, C. Dou, Y. Li, L. Pu, J. Xu, Y. Shi, Conducting polymer nanostructures: template synthesis and applications in energy storage. Int. J. Mol. Sci. 11, 2636–2657 (2010). https://doi.org/10.3390/ijms11072636

    Article  CAS  Google Scholar 

  84. J. Yang, Y. Liu, S. Liu, L. Li, C. Zhang, T. Liu, Conducting polymer composites: Material synthesis and applications in electrochemical capacitive energy storage. Mater. Chem. Front. 1, 251–268 (2017). https://doi.org/10.1039/c6qm00150e

    Article  CAS  Google Scholar 

  85. A.G. MacDiarmid, Synthetic metals: a novel role for organic polymers. Synth. Met. 125, 11–22 (2001). https://doi.org/10.1016/S0379-6779(01)00508-2

    Article  Google Scholar 

  86. B.C. Kim, J.S. Kwon, J.M. Ko, J.H. Park, C.O. Too, G.G. Wallace, Preparation and enhanced stability of flexible supercapacitor prepared from Nafion/polyaniline nanofiber. Synth. Met. 160, 94–98 (2010). https://doi.org/10.1016/j.synthmet.2009.10.011

    Article  CAS  Google Scholar 

  87. H. Gleskova, S. Wagner, Z. Suo, Failure resistance of amorphous silicon transistors under extreme in-plane strain. Appl. Phys. Lett. 75, 3011–3013 (1999). https://doi.org/10.1063/1.125174

    Article  CAS  Google Scholar 

  88. L. Mao, Q. Meng, A. Ahmad, Z. Wei, Mechanical analyses and structural design requirements for flexible energy storage devices. Adv. Energy Mater. 7, 1–19 (2017). https://doi.org/10.1002/aenm.201700535

    Article  CAS  Google Scholar 

  89. J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, F. Wei, Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sour. 195, 3041–3045 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.028

    Article  CAS  Google Scholar 

  90. A.Y. Lo, L. Saravanan, C.M. Tseng, F.K. Wang, J.T. Huang, Effect of composition ratios on the performance of graphene/carbon nanotube/manganese oxide composites toward supercapacitor applications. ACS Omega 5, 578–587 (2020). https://doi.org/10.1021/acsomega.9b03163

    Article  CAS  Google Scholar 

  91. A. Ansaldo, P. Bondavalli, S. Bellani, A.E. Del Rio Castillo, M. Prato, V. Pellegrini, G. Pognon, F. Bonaccorso, High-power grapheneCarbon nanotube hybrid supercapacitors. Chem. Nano. Mat. 3, 436–446 (2017). https://doi.org/10.1002/cnma.201700093

    Article  CAS  Google Scholar 

  92. S. Wang, L. Ma, M. Gan, S. Fu, W. Dai, T. Zhou, X. Sun, H. Wang, H. Wang, Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors. J. Power Sour. 299, 347–355 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.018

    Article  CAS  Google Scholar 

  93. Q. Liu, J. Qiu, C. Yang, L. Zang, G. Zhang, E. Sakai, H. Wu, S. Guo, Robust quasi-solid-state integrated asymmetric flexible supercapacitors with interchangeable positive and negative electrode based on all-conducting-polymer electrodes. J. Alloys Compd. 887, 161362 (2021). https://doi.org/10.1016/j.jallcom.2021.161362

    Article  CAS  Google Scholar 

  94. D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Cheng, Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3, 1745–1752 (2009). https://doi.org/10.1021/nn900297m

    Article  CAS  Google Scholar 

  95. Y. Lin, H. Zhang, W. Deng, D. Zhang, N. Li, Q. Wu, C. He, In-situ growth of high-performance all-solid-state electrode for flexible supercapacitors based on carbon woven fabric/ polyaniline/ graphene composite. J. Power Sour. 384, 278–286 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.003

    Article  CAS  Google Scholar 

  96. Y. Zhou, X. Hu, Y. Shang, C. Hua, P. Song, X. Li, Y. Zhang, A. Cao, Highly flexible all-solid-state supercapacitors based on carbon nanotube/polypyrrole composite films and fibers. RSC Adv. 6, 62062–62070 (2016). https://doi.org/10.1039/c6ra07297f

    Article  CAS  Google Scholar 

  97. L. Chen, J. Huang, R. Zeng, Y. Xiong, J. Wei, K. Yuan, Y. Chen, Regulating voltage window and energy density of aqueous asymmetric supercapacitors by pinecone-like hollow Fe2O3/MnO2 nano-heterostructure. Adv. Mater. Interfaces. 7, 1–9 (2020). https://doi.org/10.1002/admi.201901729

    Article  CAS  Google Scholar 

  98. L. Ruiyi, H. Keyang, Y. Yongqiang, Z. Haiyan, L. Zaijun, Atomically dispersed RuO2-tryptophan functionalized graphene quantum dot-graphene hybrid with double Schottky heterojunctions for high performance flexible supercapacitors. Chem. Eng. J. 426, 130893 (2021). https://doi.org/10.1016/j.cej.2021.130893

    Article  CAS  Google Scholar 

  99. S. Prabhu, S. Sohila, D. Navaneethan, S. Harish, M. Navaneethan, R. Ramesh, Three dimensional flower-like CuO/Co3O4/r-GO heterostructure for high-performance asymmetric supercapacitors, Elsevier B.V., (2020) https://doi.org/10.1016/j.jallcom.2020.156439

  100. V.E. Gurenko, V.I. Popkov, A.A. Lobinsky, Synthesis of NiO granular nanospheres as a novel material for high-performance supercapacitors. Mater. Lett. 279, 128478 (2020). https://doi.org/10.1016/j.matlet.2020.128478

    Article  CAS  Google Scholar 

  101. B. Asbani, K. Robert, P. Roussel, T. Brousse, C. Lethien, Asymmetric micro-supercapacitors based on electrodeposited Ruo2 and sputtered VN films. Energy Stor. Mater. 37, 207–214 (2021). https://doi.org/10.1016/j.ensm.2021.02.006

    Article  Google Scholar 

  102. S. Cho, J. Kim, Y. Jo, A.T.A. Ahmed, H.S. Chavan, H. Woo, A.I. Inamdar, J.L. Gunjakar, S.M. Pawar, Y. Park, H. Kim, H. Im, Bendable RuO2/graphene thin film for fully flexible supercapacitor electrodes with superior stability. J. Alloys Compd. 725, 108–114 (2017). https://doi.org/10.1016/j.jallcom.2017.07.135

    Article  CAS  Google Scholar 

  103. V.K.A. Muniraj, C.K. Kamaja, M.V. Shelke, RuO2·nH2O nanoparticles anchored on carbon nano-onions: an efficient electrode for solid state flexible electrochemical supercapacitor. ACS Sustain. Chem. Eng. 4, 2528–2534 (2016). https://doi.org/10.1021/acssuschemeng.5b01627

    Article  CAS  Google Scholar 

  104. K. Brousse, S. Pinaud, S. Nguyen, P.F. Fazzini, R. Makarem, C. Josse, Y. Thimont, B. Chaudret, P.L. Taberna, M. Respaud, P. Simon, Facile and scalable preparation of ruthenium oxide-based flexible micro-supercapacitors. Adv. Energy Mater. 10, 1–9 (2020). https://doi.org/10.1002/aenm.201903136

    Article  CAS  Google Scholar 

  105. Y. Chang, W. Zhou, J. Wu, G. Ye, Q. Zhou, D. Li, D. Zhu, T. Li, G. Nie, Y. Du, J. Xu, High-performance flexible-film supercapacitors of layered hydrous RuO2/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) through vacuum filtration. Electrochim. Acta. 283, 744–754 (2018). https://doi.org/10.1016/j.electacta.2018.06.044

    Article  CAS  Google Scholar 

  106. M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L. Zhang, MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A. 3, 21380–21423 (2015). https://doi.org/10.1039/c5ta05523g

    Article  CAS  Google Scholar 

  107. Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, E. Xie, Freestanding three-dimensional graphene/Mno2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7, 174–182 (2013). https://doi.org/10.1021/nn304833s

    Article  CAS  Google Scholar 

  108. Q. Chen, Y. Meng, C. Hu, Y. Zhao, H. Shao, N. Chen, L. Qu, MnO2-modified hierarchical graphene fiber electrochemical supercapacitor. J. Power Sour. 247, 32–39 (2014). https://doi.org/10.1016/j.jpowsour.2013.08.045

    Article  CAS  Google Scholar 

  109. Y. Jin, H. Chen, M. Chen, N. Liu, Q. Li, Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 5, 3408–3416 (2013). https://doi.org/10.1021/am400457x

    Article  CAS  Google Scholar 

  110. Q. Wang, Y. Ma, X. Liang, D. Zhang, M. Miao, Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chem. Eng. J. 371, 145–153 (2019). https://doi.org/10.1016/j.cej.2019.04.021

    Article  CAS  Google Scholar 

  111. N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang, M.Q. Zhu, High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics. Adv. Energy Mater. 6, 1–9 (2016). https://doi.org/10.1002/aenm.201501458

    Article  CAS  Google Scholar 

  112. D. Zhou, H. Lin, F. Zhang, H. Niu, L. Cui, Q. Wang, F. Qu, Freestanding MnO2 nanoflakes/porous carbon nanofibers for high-performance flexible supercapacitor electrodes. Electrochim. Acta. 161, 427–435 (2015). https://doi.org/10.1016/j.electacta.2015.02.085

    Article  CAS  Google Scholar 

  113. X. Dong, X. Wang, J. Wang, H. Song, X. Li, L. Wang, M.B. Chan-Park, C.M. Li, P. Chen, Synthesis of a MnO 2-graphene foam hybrid with controlled MnO 2 particle shape and its use as a supercapacitor electrode. Carbon N. Y. 50, 4865–4870 (2012). https://doi.org/10.1016/j.carbon.2012.06.014

    Article  CAS  Google Scholar 

  114. F. Liao, X. Han, D. Cheng, Y. Zhang, X. Han, C. Xu, H. Chen, MnO2 hierarchical microspheres assembled from porous nanoplates for high-performance supercapacitors. Ceram. Int. 45, 1058–1066 (2019). https://doi.org/10.1016/j.ceramint.2018.09.285

    Article  CAS  Google Scholar 

  115. S. Sun, G. Jiang, Y. Liu, Y. Zhang, J. Zhou, B. Xu, Growth of MnO2 nanoparticles on hybrid carbon nanofibers for flexible symmetrical supercapacitors. Mater. Lett. 197, 35–37 (2017). https://doi.org/10.1016/j.matlet.2017.03.092

    Article  CAS  Google Scholar 

  116. Z. Fan, Y. Wang, Z. Xie, X. Xu, Y. Yuan, Z. Cheng, Y. Liu, A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale 10, 9642–9652 (2018). https://doi.org/10.1039/c8nr01550c

    Article  CAS  Google Scholar 

  117. N.K. Chaudhari, H. Jin, B. Kim, D. San Baek, S.H. Joo, K. Lee, MXene: an emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A. 5, 24564–24579 (2017). https://doi.org/10.1039/C7TA09094C

    Article  CAS  Google Scholar 

  118. M.R. Lukatskaya, S. Kota, Z. Lin, M.Q. Zhao, N. Shpigel, M.D. Levi, J. Halim, P.L. Taberna, M.W. Barsoum, P. Simon, Y. Gogotsi, Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy. 2, 1–6 (2017). https://doi.org/10.1038/nenergy.2017.105

    Article  CAS  Google Scholar 

  119. M.R. Lukatskaya, S.M. Bak, X. Yu, X.Q. Yang, M.W. Barsoum, Y. Gogotsi, Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 5, 2–5 (2015). https://doi.org/10.1002/aenm.201500589

    Article  CAS  Google Scholar 

  120. Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. U. S. A. 111, 16676–16681 (2014). https://doi.org/10.1073/pnas.1414215111

    Article  CAS  Google Scholar 

  121. Z. Wang, S. Qin, S. Seyedin, J. Zhang, J. Wang, A. Levitt, N. Li, C. Haines, R. Ovalle-Robles, W. Lei, Y. Gogotsi, R.H. Baughman, J.M. Razal, High-performance biscrolled MXene/Carbon nanotube yarn supercapacitors. Small 14, 1–9 (2018). https://doi.org/10.1002/smll.201802225

    Article  CAS  Google Scholar 

  122. C. Choi, K.M.K.J.K.M. Kim, K.M.K.J.K.M. Kim, X. Lepró, G.M. Spinks, R.H. Baughman, S.J. Kim, Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors. Nat. Commun. 7, 1–8 (2016). https://doi.org/10.1038/ncomms13811

    Article  CAS  Google Scholar 

  123. Q. Zhang, X. Wang, Z. Pan, J. Sun, J. Zhao, J. Zhang, C. Zhang, L. Tang, J. Luo, B. Song, Z. Zhang, W. Lu, Q. Li, Y. Zhang, Y. Yao, Wrapping aligned carbon nanotube composite sheets around vanadium nitride nanowire arrays for asymmetric coaxial fiber-shaped supercapacitors with ultrahigh energy density. Nano Lett. 17, 2719–2726 (2017). https://doi.org/10.1021/acs.nanolett.7b00854

    Article  CAS  Google Scholar 

  124. H. Yang, H. Xu, M. Li, L. Zhang, Y. Huang, X. Hu, Assembly of NiO/Ni(OH)2/PEDOT nanocomposites on contra wires for fiber-shaped flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 8, 1774–1779 (2016). https://doi.org/10.1021/acsami.5b09526

    Article  CAS  Google Scholar 

  125. W. Cai, T. Lai, J. Lai, H. Xie, L. Ouyang, J. Ye, C. Yu, Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density. Sci. Rep. 6, 1–9 (2016). https://doi.org/10.1038/srep26890

    Article  CAS  Google Scholar 

  126. J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 27, 1–10 (2017). https://doi.org/10.1002/adfm.201701264

    Article  CAS  Google Scholar 

  127. L.S. Xie, G. Skorupskii, M. Dincǎ, Electrically conductive metal-organic frameworks. Chem. Rev. 120, 8536–8580 (2020). https://doi.org/10.1021/acs.chemrev.9b00766

    Article  CAS  Google Scholar 

  128. Y. Qi, F. Luo, Y. Che, J. Zheng, Hydrothermal synthesis of metal-organic frameworks based on aromatic polycarboxylate and flexible bis(imidazole) ligands. Cryst. Growth Des. 8, 606–611 (2008). https://doi.org/10.1021/cg700758c

    Article  CAS  Google Scholar 

  129. W. Xuan, R. Ramachandran, C. Zhao, F. Wang, Influence of synthesis temperature on cobalt metal-organic framework (Co-MOF) formation and its electrochemical performance towards supercapacitor electrodes. J. Solid State Electrochem. 22, 3873–3881 (2018). https://doi.org/10.1007/s10008-018-4096-7

    Article  CAS  Google Scholar 

  130. N. Campagnol, E. Rezende Souza, D.E. De Vos, K. Binnemans, J. Fransaer, Luminescent terbium-containing metal–organic framework films: new approaches for the electrochemical synthesis and application as detectors for explosives. Chem. Commun. 50, 12680–12683 (2014). https://doi.org/10.1039/c4cc05742b

    Article  Google Scholar 

  131. M. Klimakow, P. Klobes, A.F. Thünemann, K. Rademann, F. Emmerling, Mechanochemical synthesis of metal-organic frameworks: a fast and facile approach toward quantitative yields and high specific surface areas. Chem. Mater. 22, 5216–5221 (2010). https://doi.org/10.1021/cm1012119

    Article  CAS  Google Scholar 

  132. D. Chen, J. Zhao, P. Zhang, S. Dai, Mechanochemical synthesis of metal–organic frameworks. Polyhedron 162, 59–64 (2019). https://doi.org/10.1016/j.poly.2019.01.024

    Article  CAS  Google Scholar 

  133. N.A. Khan, S.H. Jhung, Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction. Coord. Chem. Rev. 285, 11–23 (2015). https://doi.org/10.1016/j.ccr.2014.10.008

    Article  CAS  Google Scholar 

  134. D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dincǎ, Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 16, 220–224 (2017). https://doi.org/10.1038/nmat4766

    Article  CAS  Google Scholar 

  135. Z. Wang, Y. Liu, C. Gao, H. Jiang, J. Zhang, A porous Co(OH)2 material derived from a MOF template and its superior energy storage performance for supercapacitors. J. Mater. Chem. A. 3, 20658–20663 (2015). https://doi.org/10.1039/c5ta04663g

    Article  CAS  Google Scholar 

  136. R.R. Salunkhe, Y. Kamachi, N.L. Torad, S.M. Hwang, Z. Sun, S.X. Dou, J.H. Kim, Y. Yamauchi, Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J. Mater. Chem. A. 2, 19848–19854 (2014). https://doi.org/10.1039/c4ta04277h

    Article  CAS  Google Scholar 

  137. R. Díaz, M.G. Orcajo, J.A. Botas, G. Calleja, J. Palma, Co8-MOF-5 as electrode for supercapacitors. Mater. Lett. 68, 126–128 (2012). https://doi.org/10.1016/j.matlet.2011.10.046

    Article  CAS  Google Scholar 

  138. D. Sheberla, L. Sun, M.A. Blood-Forsythe, S. Er, C.R. Wade, C.K. Brozek, A. Aspuru-Guzik, M. Dincǎ, High electrical conductivity in Ni3(2,3,6,7,10,11- hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue. J. Am. Chem. Soc. 136, 8859–8862 (2014). https://doi.org/10.1021/ja502765n

    Article  CAS  Google Scholar 

  139. C.W. Kung, P.C. Han, C.H. Chuang, K.C.W. Wu, Electronically conductive metal-organic framework-based materials. APL Mater. 7, 110902 (2019). https://doi.org/10.1063/1.5125487

    Article  CAS  Google Scholar 

  140. L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen, B. Wang, Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J. Am. Chem. Soc. 137, 4920–4923 (2015). https://doi.org/10.1021/jacs.5b01613

    Article  CAS  Google Scholar 

  141. X. Xu, J. Tang, H. Qian, S. Hou, Y. Bando, M.S.A. Hossain, L. Pan, Y. Yamauchi, Three-dimensional networked metal-organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Appl. Mater. Interfaces. 9, 38737–38744 (2017). https://doi.org/10.1021/acsami.7b09944

    Article  CAS  Google Scholar 

  142. B. Wang, S. Liu, L. Liu, W.W. Song, Y. Zhang, S.M. Wang, Z.B. Han, MOF/PEDOT/HPMo-based polycomponent hierarchical hollow micro-vesicles for high performance flexible supercapacitors. J. Mater. Chem. A. 9, 2948–2958 (2021). https://doi.org/10.1039/d0ta10603h

    Article  CAS  Google Scholar 

  143. D. Mohanadas, M.A.A. Mohd Abdah, N.H.N. Azman, T.B.S.A. Ravoof, Y. Sulaiman, Facile synthesis of PEDOT-rGO/HKUST-1 for high performance symmetrical supercapacitor device. Sci. Rep. 11, 1–13 (2021). https://doi.org/10.1038/s41598-021-91100-x

    Article  CAS  Google Scholar 

  144. C. Zhu, Y. He, Y. Liu, N. Kazantseva, P. Saha, Q. Cheng, ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes. J. Energy Chem. 35, 124–131 (2019). https://doi.org/10.1016/j.jechem.2018.11.006

    Article  Google Scholar 

  145. K. Jayaramulu, M. Horn, A. Schneemann, H. Saini, A. Bakandritsos, V. Ranc, M. Petr, V. Stavila, C. Narayana, B. Scheibe, Š Kment, M. Otyepka, N. Motta, D. Dubal, R. Zbořil, R.A. Fischer, Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitors. Adv. Mater. 33, 2004560 (2021). https://doi.org/10.1002/adma.202004560

    Article  CAS  Google Scholar 

  146. S. Li, C. Shi, Y. Pan, Y. Wang, 2D/2D NiCo-MOFs/GO hybrid nanosheets for high-performance asymmetrical supercapacitor. Diam. Relat. Mater. 115, 108358s (2021). https://doi.org/10.1016/j.diamond.2021.108358

    Article  CAS  Google Scholar 

  147. J. Cheng, S. Chen, D. Chen, L. Dong, J. Wang, T. Zhang, T. Jiao, B. Liu, H. Wang, J.J. Kai, D. Zhang, G. Zheng, L. Zhi, F. Kang, W. Zhang, Editable asymmetric all-solid-state supercapacitors based on high-strength, flexible, and programmable 2D-metal-organic framework/reduced graphene oxide self-assembled papers. J. Mater. Chem. A. 6, 20254–20266 (2018). https://doi.org/10.1039/c8ta06785f

    Article  CAS  Google Scholar 

  148. W. Kim, S. Kwon, Y.C. Han, E. Kim, K.C. Choi, S.-H. Kang, B.-C. Park, Reliable actual fabric-based organic light-emitting diodes: toward a wearable display. Adv. Electron. Mater. 2, 1600220 (2016). https://doi.org/10.1002/aelm.201600220

    Article  CAS  Google Scholar 

  149. M.K. Choi, J. Yang, K. Kang, D.C. Kim, C. Choi, C. Park, S.J. Kim, S.I. Chae, T.-H. Kim, J.H. Kim, T. Hyeon, D.-H. Kim, Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 6, 7149 (2015). https://doi.org/10.1038/ncomms8149

    Article  CAS  Google Scholar 

  150. N. Zhang, J. Chen, Y. Huang, W. Guo, J. Yang, J. Du, X. Fan, C. Tao, A wearable all-solid photovoltaic textile. Adv. Mater. 28, 263–269 (2016). https://doi.org/10.1002/adma.201504137

    Article  CAS  Google Scholar 

  151. S.H. Chae, W.J. Yu, J.J. Bae, D.L. Duong, D. Perello, H.Y. Jeong, Q.H. Ta, T.H. Ly, Q.A. Vu, M. Yun, X. Duan, Y.H. Lee, Transferred wrinkled Al2O3 for highly stretchable and transparent graphene–carbon nanotube transistors. Nat. Mater. 12, 403–409 (2013). https://doi.org/10.1038/nmat3572

    Article  CAS  Google Scholar 

  152. T. An, W. Cheng, Recent progress in stretchable supercapacitors. J. Mater. Chem. A. 6, 15478–15494 (2018). https://doi.org/10.1039/C8TA03988G

    Article  CAS  Google Scholar 

  153. C. Yu, C. Masarapu, J. Rong, B.Q.M. Wei, H. Jiang, Stretchable supercapacitors based on buckled single-walled carbon nanotube macrofilms. Adv. Mater. 21, 4793–4797 (2009). https://doi.org/10.1002/adma.200901775

    Article  CAS  Google Scholar 

  154. Z. Niu, H. Dong, B. Zhu, J. Li, H.H. Hng, W. Zhou, X. Chen, S. Xie, Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 25, 1058–1064 (2013). https://doi.org/10.1002/adma.201204003

    Article  CAS  Google Scholar 

  155. G.B. Tsaeghi, B. Malengier, K.A. Fante, A.B. Nigusse, L. Van Langenhove, Integration of conductive materials with textile structures, an overview. Sensors 20, 6910 (2020). https://doi.org/10.3390/s20236910

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Henri Aubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guemiza, H., Pham-Truong, TN., Plesse, C., Vidal, F., Aubert, PH. (2022). Flexible Supercapacitors. In: Thomas, S., Gueye, A.B., Gupta, R.K. (eds) Nanostructured Materials for Supercapacitors. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-99302-3_26

Download citation

Publish with us

Policies and ethics