Skip to main content

PPARα and δ Ligand Design: Honing the Traditional Empirical Method with a More Holistic Overview

  • Chapter
  • First Online:
Nuclear Receptors

Abstract

Peroxisome proliferator-activated receptor (PPAR) ligands have been used in clinical therapy to treat metabolic disease since the 1960s. However, these ligands have side effects that restrict their use, thought to be caused, in part, by their broad specificity. Efforts have been made to synthesize new ligands; however, most have failed to pass clinical trials. Here we examine the available crystal structures of PPAR in complex with ligands to identify common ligand design factors for selectivity towards a PPAR subtype. Methods to improve drug-lead identification and optimization and other factors that may contribute to design of a successful PPAR ligand are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal AK, Garg A. A novel heterozygous mutation in peroxisome proliferator-activated receptor-γ gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metabol. 2002;87:408. https://doi.org/10.1210/jcem.87.1.8290.

    Article  CAS  Google Scholar 

  2. Agoni C, Olotu FA, Ramharack P, Soliman ME. Druggability and drug-likeness concepts in drug design: are biomodelling and predictive tools having their say? J Mol Model. 2020;26:120. https://doi.org/10.1007/s00894-020-04385-6.

    Article  CAS  PubMed  Google Scholar 

  3. Agostini M, Schoenmakers E, Beig J, Fairall L, Szatmari I, Rajanayagam O, Muskett FW, Adams C, Marais AD, O’Rahilly S, Semple RK, Nagy L, Majithia AR, Schwabe JWR, Blom DJ, Murphy R, Chatterjee K, Savage DB. A pharmacogenetic approach to the treatment of patients with PPARG mutations. Diabetes. 2018;67:1086–92. https://doi.org/10.2337/db17-1236.

    Article  CAS  PubMed  Google Scholar 

  4. Al-Shali K, Cao H, Knoers N, Hermus AR, Tack CJ, Hegele RA. A single-base mutation in the peroxisome proliferator-activated receptor γ4 promoter associated with altered in vitro expression and partial lipodystrophy. J Clin Endocrinol Metabol. 2004;89:5655–60. https://doi.org/10.1210/jc.2004-0280.

    Article  CAS  Google Scholar 

  5. Armstrong EH, Goswami D, Griffin PR, Noy N, Ortlund EA. Structural basis for ligand regulation of the fatty acid-binding protein 5, peroxisome proliferator-activated receptor β/δ (FABP5-PPARβ/δ) signaling pathway. J Biol Chem. 2014;289:14941–54. https://doi.org/10.1074/jbc.M113.514646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Artis DR, Lin JJ, Zhang C, Wang W, Mehra U, Perreault M, Erbe D, Krupka HI, England BP, Arnold J, Plotnikov AN, Marimuthu A, Nguyen H, Will S, Signaevsky M, Kral J, Cantwell J, Settachatgull C, Yan DS, Fong D, Oh A, Shi S, Womack P, Powell B, Habets G, West BL, Zhang KYJ, Milburn MV, Vlasuk GP, Hirth KP, Nolop K, Bollag G, Ibrahim PN, Tobin JF. Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent. Proc Natl Acad Sci. 2009;106:262–7. https://doi.org/10.1073/pnas.0811325106.

    Article  PubMed  Google Scholar 

  7. Attianese GMG, Desvergne B. Integrative and systemic approaches for evaluating PPARβ/δ (PPARD) function. Nucl Recept Signal. 2015;13:e001. https://doi.org/10.1621/nrs.13001.

    Article  CAS  Google Scholar 

  8. Barroso I, Gurnell M, Crowley VEF, Agostini M, Schwabe JW, Soos MA, Maslen GL, Williams TDM, Lewis H, Schafer AJ, Chatterjee VKK, O’Rahilly S. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402:880–3. https://doi.org/10.1038/47254.

    Article  CAS  PubMed  Google Scholar 

  9. Batista FAH, Trivella DBB, Bernardes A, Gratieri J, Oliveira PSL, Figueira ACM, Webb P, Polikarpov I. Structural insights into human peroxisome proliferator activated receptor delta (PPAR-delta) selective ligand binding. PLoS One. 2012;7:e33643. https://doi.org/10.1371/journal.pone.0033643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berman HM. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–42. https://doi.org/10.1093/nar/28.1.235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bernardes A, Souza PCT, Muniz JRC, Ricci CG, Ayers SD, Parekh NM, Godoy AS, Trivella DBB, Reinach P, Webb P, Skaf MS, Polikarpov I. Molecular mechanism of peroxisome proliferator-activated receptor α activation by WY14643: a new mode of ligand recognition and receptor stabilization. J Mol Biol. 2013;425:2878–93. https://doi.org/10.1016/j.jmb.2013.05.010.

    Article  CAS  PubMed  Google Scholar 

  12. Broekema MF, Massink MPG, Donato C, de Ligt J, Schaarschmidt J, Borgman A, Schooneman MG, Melchers D, Gerding MN, Houtman R, Bonvin AMJJ, Majithia AR, Monajemi H, van Haaften GW, Soeters MR, Kalkhoven E. Natural helix 9 mutants of PPARγ differently affect its transcriptional activity. Mol Metab. 2019;20:115–27. https://doi.org/10.1016/j.molmet.2018.12.005.

    Article  CAS  PubMed  Google Scholar 

  13. Brown PJ, Smith-Oliver TA, Charifson PS, Tomkinson NCO, Fivush AM, Sternbach DD, Wade LE, Orband-Miller L, Parks DJ, Blanchard SG, Kliewer SA, Lehmann JM, Willson TM. Identification of peroxisome proliferator-activated receptor ligands from a biased chemical library. Chem Biol. 1997;4:909–18. https://doi.org/10.1016/S1074-5521(97)90299-4.

    Article  PubMed  Google Scholar 

  14. Bruning JB, Chalmers MJ, Prasad S, Busby SA, Kamenecka TM, He Y, Nettles KW, Griffin PR. Partial agonists activate PPARγ using a helix 12 independent mechanism. Structure. 2007;15:1258–71. https://doi.org/10.1016/j.str.2007.07.014.

    Article  CAS  PubMed  Google Scholar 

  15. Brunmeir R, Xu F. Functional regulation of PPARs through post-translational modifications. IJMS. 2018;19:1738. https://doi.org/10.3390/ijms19061738.

    Article  CAS  PubMed Central  Google Scholar 

  16. Bugge A, Holst D. PPAR agonists, − could tissue targeting pave the way? Biochimie. 2017;136:100–4. https://doi.org/10.1016/j.biochi.2016.10.017.

    Article  CAS  PubMed  Google Scholar 

  17. Bugge A, Mandrup S. Molecular mechanisms and genome-wide aspects of PPAR subtype specific transactivation. PPAR Res. 2010;2010:1–12. https://doi.org/10.1155/2010/169506.

    Article  CAS  Google Scholar 

  18. Burgermeister E, Schnoebelen A, Flament A, Benz J, Stihle M, Gsell B, Rufer A, Ruf A, Kuhn B, Märki HP, Mizrahi J, Sebokova E, Niesor E, Meyer M. A novel partial agonist of peroxisome proliferator-activated receptor-γ (PPARγ) recruits PPARγ-coactivator-1α, prevents triglyceride accumulation, and potentiates insulin signaling in vitro. Mol Endocrinol. 2006;20:809–30. https://doi.org/10.1210/me.2005-0171.

    Article  CAS  PubMed  Google Scholar 

  19. Capelli D, Cerchia C, Montanari R, Loiodice F, Tortorella P, Laghezza A, Cervoni L, Pochetti G, Lavecchia A. Structural basis for PPAR partial or full activation revealed by a novel ligand binding mode. Sci Rep. 2016;6:34792. https://doi.org/10.1038/srep34792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chan LSA, Wells RA. Cross-talk between PPARs and the partners of RXR: a molecular perspective. PPAR Res. 2009;2009:1–9. https://doi.org/10.1155/2009/925309.

    Article  CAS  Google Scholar 

  21. Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, Rastinejad F. Structure of the intact PPAR-γ–RXR-α nuclear receptor complex on DNA. Nature. 2008;456:350–6. https://doi.org/10.1038/nature07413.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen S, Li Y, Li S, Yu C. A Val227Ala substitution in the peroxisome proliferator activated receptor alpha (PPAR alpha) gene associated with non-alcoholic fatty liver disease and decreased waist circumference and waist-to-hip ratio. J Gastroenterol Hepatol. 2008;23:1415–8. https://doi.org/10.1111/j.1440-1746.2008.05523.x.

    Article  CAS  PubMed  Google Scholar 

  23. Cheng T, Low M, Lee T. Exploration and development of PPAR modulators in health and disease: an update of clinical evidence. IJMS. 2019;20:5055. https://doi.org/10.3390/ijms20205055.

    Article  CAS  PubMed Central  Google Scholar 

  24. Congreve M, Chessari G, Tisi D, Woodhead AJ. Recent developments in fragment-based drug discovery. J Med Chem. 2008;51:3661–80. https://doi.org/10.1021/jm8000373.

    Article  CAS  PubMed  Google Scholar 

  25. Connors RV, Wang Z, Harrison M, Zhang A, Wanska M, Hiscock S, Fox B, Dore M, Labelle M, Sudom A, Johnstone S, Liu J, Walker NPC, Chai A, Siegler K, Li Y, Coward P. Identification of a PPARδ agonist with partial agonistic activity on PPARγ. Bioorg Med Chem Lett. 2009;19:3550–4. https://doi.org/10.1016/j.bmcl.2009.04.151.

    Article  CAS  PubMed  Google Scholar 

  26. Costa V, Gallo MA, Letizia F, Aprile M, Casamassimi A, Ciccodicola A. PPARG: gene expression regulation and next-generation sequencing for unsolved issues. PPAR Res. 2010;2010:1–17. https://doi.org/10.1155/2010/409168.

    Article  CAS  Google Scholar 

  27. Cronet P, Petersen JFW, Folmer R, Blomberg N, Sjöblom K, Karlsson U, Lindstedt E-L, Bamberg K. Structure of the PPARα and -γ ligand binding domain in complex with AZ 242; ligand selectivity and agonist activation in the PPAR family. Structure. 2001;9:699–706. https://doi.org/10.1016/S0969-2126(01)00634-7.

    Article  CAS  PubMed  Google Scholar 

  28. Da’adoosh B, Marcus D, Rayan A, King F, Che J, Goldblum A. Discovering highly selective and diverse PPAR-delta agonists by ligand based machine learning and structural modeling. Sci Rep. 2019;9:1106. https://doi.org/10.1038/s41598-019-38508-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dassault Systèmes BIOVIA. Discovery Studio Visualizer, v20.1.0.19295. San Diego: Dassault Systèmes; 2019.

    Google Scholar 

  30. Davis A, Stgallay S, Kleywegt G. Limitations and lessons in the use of X-ray structural information in drug design. Drug Discov Today. 2008;13:831–41. https://doi.org/10.1016/j.drudis.2008.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: nuclear control of metabolism*. Endocr Rev. 1999;20:649–88. https://doi.org/10.1210/edrv.20.5.0380.

    Article  CAS  PubMed  Google Scholar 

  32. Devasthale P, Chen S, Jeon Y, Qu F, Ryono D, Wang W, Zhang H, Cheng L, Farrelly D, Golla R, Grover G, Ma Z, Moore L, Seethala R, Sun W, Doweyko A, Chandrasena G, Sleph P, Hariharan N, Cheng P. Discovery of tertiary aminoacids as dual PPARα/γ agonists-I. Bioorg. Med. Chem. Lett. 2007;17(8):2312–2316.

    Google Scholar 

  33. dos Santos JC, Bernardes A, Giampietro L, Ammazzalorso A, De Filippis B, Amoroso R, Polikarpov I. Different binding and recognition modes of GL479, a dual agonist of peroxisome proliferator-activated receptor α/γ. J Struct Biol. 2015;191:332–40. https://doi.org/10.1016/j.jsb.2015.07.006.

    Article  CAS  PubMed  Google Scholar 

  34. Ebdrup S, Pettersson I, Rasmussen HB, Deussen H-J, Frost Jensen A, Mortensen SB, Fleckner J, Pridal L, Nygaard L, Sauerberg P. Synthesis and biological and structural characterization of the dual-acting peroxisome proliferator-activated receptor α/γ agonist ragaglitazar. J Med Chem. 2003;46:1306–17. https://doi.org/10.1021/jm021027r.

    Article  CAS  PubMed  Google Scholar 

  35. Egawa D, Itoh T, Akiyama Y, Saito T, Yamamoto K. 17-OxoDHA is a PPARα/γ dual covalent modifier and agonist. ACS Chem Biol. 2016;11:2447–55. https://doi.org/10.1021/acschembio.6b00338.

    Article  CAS  PubMed  Google Scholar 

  36. Ehrt C, Brinkjost T, Koch O. Impact of binding site comparisons on medicinal chemistry and rational molecular design. J Med Chem. 2016;59:4121–51. https://doi.org/10.1021/acs.jmedchem.6b00078.

    Article  CAS  PubMed  Google Scholar 

  37. Elzahhar PA, Alaaeddine R, Ibrahim TM, Nassra R, Ismail A, Chua BSK, Frkic RL, Bruning JB, Wallner N, Knape T, von Knethen A, Labib H, El-Yazbi AF, Belal ASF. Shooting three inflammatory targets with a single bullet: novel multi-targeting anti-inflammatory glitazones. Eur J Med Chem. 2019;167:562–82. https://doi.org/10.1016/j.ejmech.2019.02.034.

    Article  CAS  PubMed  Google Scholar 

  38. Epple R, Azimioara M, Russo R, Xie Y, Wang X, Cow C, Wityak J, Karanewsky D, Bursulaya B, Kreusch A, Tuntland T, Gerken A, Iskandar M, Saez E, Martin Seidel H, Tian S-S. 3,4,5-Trisubstituted isoxazoles as novel PPARδ agonists. Part 2. Bioorg Med Chem Lett. 2006;16:5488–92. https://doi.org/10.1016/j.bmcl.2006.08.052.

    Article  CAS  PubMed  Google Scholar 

  39. Evans KA, Shearer BG, Wisnoski DD, Shi D, Sparks SM, Sternbach DD, Winegar DA, Billin AN, Britt C, Way JM, Epperly AH, Leesnitzer LM, Merrihew RV, Xu RX, Lambert MH, Jin J. Phenoxyacetic acids as PPARδ partial agonists: synthesis, optimization, and in vivo efficacy. Bioorg Med Chem Lett. 2011;21:2345–50. https://doi.org/10.1016/j.bmcl.2011.02.077.

    Article  CAS  PubMed  Google Scholar 

  40. Frkic RL, Marshall AC, Blayo A-L, Pukala TL, Kamenecka TM, Griffin PR, Bruning JB. PPARγ in complex with an antagonist and inverse agonist: a tumble and trap mechanism of the activation helix. iScience. 2018;5:69–79. https://doi.org/10.1016/j.isci.2018.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fyffe SA, Alphey MS, Buetow L, Smith TK, Ferguson MAJ, Sørensen MD, Björkling F, Hunter WN. Recombinant human PPAR-β/δ ligand-binding domain is locked in an activated conformation by endogenous fatty acids. J Mol Biol. 2006;356:1005–13. https://doi.org/10.1016/j.jmb.2005.12.047.

    Article  CAS  PubMed  Google Scholar 

  42. Gampe RT, Montana VG, Lambert MH, Miller AB, Bledsoe RK, Milburn MV, Kliewer SA, Willson TM, Xu HE. Asymmetry in the PPARγ/RXRα crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol Cell. 2000;5:545–55. https://doi.org/10.1016/S1097-2765(00)80448-7.

    Article  CAS  PubMed  Google Scholar 

  43. Gavzan H, Hashemi F, Babaei J, Sayyah M. A role for peroxisome proliferator-activated receptor α in anticonvulsant activity of docosahexaenoic acid against seizures induced by pentylenetetrazole. Neurosci Lett. 2018;681:83–6. https://doi.org/10.1016/j.neulet.2018.05.042.

    Article  CAS  PubMed  Google Scholar 

  44. GENFIT. GENFIT: announces results from interim analysis of RESOLVE-IT phase 3 trial of elafibranor in adults with NASH and fibrosis. https://ir.genfit.com/news-releases/news-release-details/genfit-announces-results-interim-analysis-resolve-it-phase-3/. Accessed 1 Sept 2020.

  45. Giampietro L, D’Angelo A, Giancristofaro A, Ammazzalorso A, De Filippis B, Fantacuzzi M, Linciano P, Maccallini C, Amoroso R. Synthesis and structure–activity relationships of fibrate-based analogues inside PPARs. Bioorg Med Chem Lett. 2012;22:7662–6. https://doi.org/10.1016/j.bmcl.2012.09.111.

    Article  CAS  PubMed  Google Scholar 

  46. Gou Q, Jiang Y, Zhang R, Xu Y, Xu H, Zhang W, Shi J, Hou Y. PPARδ is a regulator of autophagy by its phosphorylation. Oncogene. 2020;39:4844–53. https://doi.org/10.1038/s41388-020-1329-x.

    Article  CAS  PubMed  Google Scholar 

  47. Hegele RA, Cao H, Frankowski C, Mathews ST, Leff T. PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes. 2002;51:3586–90. https://doi.org/10.2337/diabetes.51.12.3586.

    Article  CAS  PubMed  Google Scholar 

  48. Hughes J, Rees S, Kalindjian S, Philpott K. Principles of early drug discovery: principles of early drug discovery. Br J Pharmacol. 2011;162:1239–49. https://doi.org/10.1111/j.1476-5381.2010.01127.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990;347:645–50. https://doi.org/10.1038/347645a0.

    Article  CAS  PubMed  Google Scholar 

  50. Itoh T, Fairall L, Amin K, Inaba Y, Szanto A, Balint B, Nagy L, Yamamoto K, Schwabe J. Structural basis for the activation of PPARγ by oxidized fatty acids. Nat. Str. Mol. Biol. 2008;15(9):924–931.

    Google Scholar 

  51. Janani C, Ranjitha Kumari BD. PPAR gamma gene – a review. Diabetes Metab Syndr Clin Res Rev. 2015;9:46–50. https://doi.org/10.1016/j.dsx.2014.09.015.

    Article  CAS  Google Scholar 

  52. Jin L, Lin S, Rong H, Zheng S, Jin S, Wang R, Li Y. Structural basis for iloprost as a dual peroxisome proliferator-activated receptor α/δ agonist. J Biol Chem. 2011;286:31473–9. https://doi.org/10.1074/jbc.M111.266023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kasuga J, Yamasaki D, Araya Y, Nakagawa A, Makishima M, Doi T, Hashimoto Y, Miyachi H. Design, synthesis, and evaluation of a novel series of α-substituted phenylpropanoic acid derivatives as human peroxisome proliferator-activated receptor (PPAR) α/δ dual agonists for the treatment of metabolic syndrome. Bioorg Med Chem. 2006;14:8405–14. https://doi.org/10.1016/j.bmc.2006.09.001.

    Article  CAS  PubMed  Google Scholar 

  54. Kasuga J, Nakagome I, Aoyama A, Sako K, Ishizawa M, Ogura M, Makishima M, Hirono S, Hashimoto Y, Miyachi H. Design, synthesis, and evaluation of potent, structurally novel peroxisome proliferator-activated receptor (PPAR) δ-selective agonists. Bioorg Med Chem. 2007;15:5177–90. https://doi.org/10.1016/j.bmc.2007.05.023.

    Article  CAS  PubMed  Google Scholar 

  55. Kasuga J, Oyama T, Hirakawa Y, Makishima M, Morikawa K, Hashimoto Y, Miyachi H. Improvement of the transactivation activity of phenylpropanoic acid-type peroxisome proliferator-activated receptor pan agonists: effect of introduction of fluorine at the linker part. Bioorg Med Chem Lett. 2008a;18:4525–8. https://doi.org/10.1016/j.bmcl.2008.07.046.

    Article  CAS  PubMed  Google Scholar 

  56. Kasuga J, Yamasaki D, Ogura K, Shimizu M, Sato M, Makishima M, Doi T, Hashimoto Y, Miyachi H. SAR-oriented discovery of peroxisome proliferator-activated receptor pan agonist with a 4-adamantylphenyl group as a hydrophobic tail. Bioorg Med Chem Lett. 2008b;18:1110–5. https://doi.org/10.1016/j.bmcl.2007.12.001.

    Article  CAS  PubMed  Google Scholar 

  57. Kaupang Å, Hansen TV. The PPAR Ω pocket: renewed opportunities for drug development. PPAR Res. 2020;2020:1–21. https://doi.org/10.1155/2020/9657380.

    Article  CAS  Google Scholar 

  58. Kawasaki M, Kambe A, Yamamoto Y, Arulmozhiraja S, Ito S, Nakagawa Y, Tokiwa H, Nakano S, Shimano H. Elucidation of molecular mechanism of a selective PPARα modulator, pemafibrate, through combinational approaches of X-ray crystallography, thermodynamic analysis, and first-principle calculations. IJMS. 2020;21:361. https://doi.org/10.3390/ijms21010361.

    Article  CAS  PubMed Central  Google Scholar 

  59. Keil S, Matter H, Schönafinger K, Glien M, Mathieu M, Marquette J-P, Michot N, Haag-Diergarten S, Urmann M, Wendler W. Sulfonylthiadiazoles with an unusual binding mode as partial dual peroxisome proliferator-activated receptor (PPAR) γ/δ agonists with high potency and in vivo efficacy. ChemMedChem. 2011;6:633–53. https://doi.org/10.1002/cmdc.201100047.

    Article  CAS  PubMed  Google Scholar 

  60. Khorasanizadeh S, Rastinejad F. Visualizing the architectures and interactions of nuclear receptors. Endocrinology. 2016;157:4212–21. https://doi.org/10.1210/en.2016-1559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors and. Proc Natl Acad Sci. 1997;94:4318–23. https://doi.org/10.1073/pnas.94.9.4318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kroker AJ, Bruning JB. Review of the structural and dynamic mechanisms of PPAR γ partial agonism. PPAR Res. 2015;2015:1–15. https://doi.org/10.1155/2015/816856.

    Article  CAS  Google Scholar 

  63. Lagu B, Kluge AF, Fredenburg RA, Tozzo E, Senaiar RS, Jaleel M, Panigrahi SK, Tiwari NK, Krishnamurthy NR, Takahashi T, Patane MA. Novel highly selective peroxisome proliferator-activated receptor δ (PPARδ) modulators with pharmacokinetic properties suitable for once-daily oral dosing. Bioorg Med Chem Lett. 2017;27:5230–4. https://doi.org/10.1016/j.bmcl.2017.10.037.

    Article  CAS  PubMed  Google Scholar 

  64. Lagu B, Kluge AF, Goddeeris MM, Tozzo E, Fredenburg RA, Chellur S, Senaiar RS, Jaleel M, Babu DRK, Tiwari NK, Takahashi T, Patane MA. Highly selective peroxisome proliferator-activated receptor δ (PPARδ) modulator demonstrates improved safety profile compared to GW501516. Bioorg Med Chem Lett. 2018a;28:533–6. https://doi.org/10.1016/j.bmcl.2017.11.006.

    Article  CAS  PubMed  Google Scholar 

  65. Lagu B, Kluge AF, Tozzo E, Fredenburg R, Bell EL, Goddeeris MM, Dwyer P, Basinski A, Senaiar RS, Jaleel M, Tiwari NK, Panigrahi SK, Krishnamurthy NR, Takahashi T, Patane MA. Selective PPARδ modulators improve mitochondrial function: potential treatment for Duchenne muscular dystrophy (DMD). ACS Med Chem Lett. 2018b;9:935–40. https://doi.org/10.1021/acsmedchemlett.8b00287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lazou A, Barlaka E. Peroxisome proliferator-activated receptor (PPAR). In: Choi S, editor. Encyclopedia of signaling molecules. New York: Springer; 2016. p. 1–7.

    Google Scholar 

  67. Lee SK, Chang GS, Lee IH, Chung JE, Sung KY, No KT. The PreADME: PC-BASED PROGRAM FOR BATCH PREDICTION OF ADME PROPERTIES. EuroQSAR 2004, Istanbul, Turkey. September 5–10, 2004.

    Google Scholar 

  68. Li Z, Chen Y, Zhou Z, Deng L, Xu Y, Hu L, Liu B, Zhang L. Discovery of first-in-class thiazole-based dual FFA1/PPARδ agonists as potential anti-diabetic agents. Eur J Med Chem. 2019;164:352–65. https://doi.org/10.1016/j.ejmech.2018.12.069.

    Article  CAS  PubMed  Google Scholar 

  69. Li Z, Xu Y, Cai Z, Wang X, Ren Q, Zhou Z, Xie R. Discovery of novel dual PPARα/δ agonists based on benzimidazole scaffold for the treatment of non-alcoholic fatty liver disease. Bioorg Chem. 2020;99:103803. https://doi.org/10.1016/j.bioorg.2020.103803.

    Article  CAS  PubMed  Google Scholar 

  70. Liu C, Feng T, Zhu N, Liu P, Han X, Chen M, Wang X, Li N, Li Y, Xu Y, Si S. Identification of a novel selective agonist of PPARγ with no promotion of adipogenesis and less inhibition of osteoblastogenesis. Sci Rep. 2015;5:9530. https://doi.org/10.1038/srep09530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lu I-L, Huang C-F, Peng Y-H, Lin Y-T, Hsieh H-P, Chen C-T, Lien T-W, Lee H-J, Mahindroo N, Prakash E, Yueh A, Chen H-Y, Goparaju CMV, Chen X, Liao C-C, Chao Y-S, Hsu JT-A, Wu S-Y. Structure-based drug design of a novel family of PPARγ partial agonists: virtual screening, X-ray crystallography, and in vitro/in vivo biological activities. J Med Chem. 2006;49:2703–12. https://doi.org/10.1021/jm051129s.

    Article  CAS  PubMed  Google Scholar 

  72. Luckhurst CA, Stein LA, Furber M, Webb N, Ratcliffe MJ, Allenby G, Botterell S, Tomlinson W, Martin B, Walding A. Discovery of isoindoline and tetrahydroisoquinoline derivatives as potent, selective PPARδ agonists. Bioorg Med Chem Lett. 2011;21:492–6. https://doi.org/10.1016/j.bmcl.2010.10.117.

    Article  CAS  PubMed  Google Scholar 

  73. Ludtke A, Buettner J, Schmidt HH-J, Worman HJ. New PPARG mutation leads to lipodystrophy and loss of protein function that is partially restored by a synthetic ligand. J Med Genet. 2007;44:e88. https://doi.org/10.1136/jmg.2007.050567.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Maddaford SP. A medicinal chemistry perspective on structure-based drug design and development. In: Tari LW, editor. Structure-based drug discovery. Totowa: Humana Press; 2012. p. 351–81.

    Chapter  Google Scholar 

  75. Majithia AR, Tsuda B, Agostini M, Gnanapradeepan K, Rice R, Peloso G, Patel KA, Zhang X, Broekema MF, Patterson N, Duby M, Sharpe T, Kalkhoven E, Rosen ED, Barroso I, Ellard S, Kathiresan S, O’Rahilly S, Chatterjee K, Florez JC, Mikkelsen T, Savage DB, Altshuler D, UK Monogenic Diabetes Consortium, Myocardial Infarction Genetics Consortium, UK Congenital Lipodystrophy Consortium. Prospective functional classification of all possible missense variants in PPARG. Nat Genet. 2016;48:1570–5. https://doi.org/10.1038/ng.3700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Miyachi H, Nomura M, Tanase T, Takahashi Y, Ide T, Tsunoda M, Murakami K, Awano K. Design, synthesis and evaluation of substituted phenylpropanoic acid derivatives as peroxisome proliferator-activated receptor (PPAR) activators: novel human PPARα-selective activators. Bioorg Med Chem Lett. 2002;12:77–80. https://doi.org/10.1016/S0960-894X(01)00672-2.

    Article  CAS  PubMed  Google Scholar 

  77. Montanari R, Saccoccia F, Scotti E, Crestani M, Godio C, Gilardi F, Loiodice F, Fracchiolla G, Laghezza A, Tortorella P, Lavecchia A, Novellino E, Mazza F, Aschi M, Pochetti G. Crystal structure of the peroxisome proliferator-activated receptor γ (PPARγ) ligand binding domain complexed with a novel partial agonist: a new region of the hydrophobic pocket could be exploited for drug design. J Med Chem. 2008;51:7768–76. https://doi.org/10.1021/jm800733h.

    Article  CAS  PubMed  Google Scholar 

  78. Nakamura M, Liu T, Husain S, Zhai P, Warren JS, Hsu C-P, Matsuda T, Phiel CJ, Cox JE, Tian B, Li H, Sadoshima J. Glycogen synthase kinase-3α promotes fatty acid uptake and lipotoxic cardiomyopathy. Cell Metab. 2019;29:1119–1134.e12. https://doi.org/10.1016/j.cmet.2019.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature. 1998;395:137–43. https://doi.org/10.1038/25931.

    Article  CAS  PubMed  Google Scholar 

  80. Oliver M. The clofibrate saga: a retrospective commentary: commentary. Br J Clin Pharmacol. 2012;74:907–10. https://doi.org/10.1111/j.1365-2125.2012.04282.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Oliver WR, Shenk JL, Snaith MR, Russell CS, Plunket KD, Bodkin NL, Lewis MC, Winegar DA, Sznaidman ML, Lambert MH, Xu HE, Sternbach DD, Kliewer SA, Hansen BC, Willson TM. A selective peroxisome proliferator-activated receptor agonist promotes reverse cholesterol transport. Proc Natl Acad Sci. 2001;98:5306–11. https://doi.org/10.1073/pnas.091021198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Oyama T, Toyota K, Waku T, Hirakawa Y, Nagasawa N, Kasuga J, Hashimoto Y, Miyachi H, Morikawa K. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures. Acta Crystallogr D Biol Crystallogr. 2009;65:786–95. https://doi.org/10.1107/S0907444909015935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Patil R, Mohanty B, Liu B, Chandrashekaran IR, Headey SJ, Williams ML, Clements CS, Ilyichova O, Doak BC, Genissel P, Weaver RJ, Vuillard L, Halls ML, Porter CJH, Scanlon MJ. A ligand-induced structural change in fatty acid–binding protein 1 is associated with potentiation of peroxisome proliferator–activated receptor α agonists. J Biol Chem. 2019;294:3720–34. https://doi.org/10.1074/jbc.RA118.006848.

    Article  CAS  PubMed  Google Scholar 

  84. Pettersson I, Ebdrup S, Havranek M, Pihera P, Kořínek M, Mogensen JP, Jeppesen CB, Johansson E, Sauerberg P. Design of a partial PPARδ agonist. Bioorg Med Chem Lett. 2007;17:4625–9. https://doi.org/10.1016/j.bmcl.2007.05.079.

    Article  CAS  PubMed  Google Scholar 

  85. Rakhshandehroo M, Knoch B, Müller M, Kersten S. Peroxisome proliferator-activated receptor alpha target genes. PPAR Res. 2010;2010:1–20. https://doi.org/10.1155/2010/612089.

    Article  CAS  Google Scholar 

  86. Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, Romero-Gomez M, Boursier J, Abdelmalek M, Caldwell S, Drenth J, Anstee QM, Hum D, Hanf R, Roudot A, Megnien S, Staels B, Sanyal A, Mathurin P, Gournay J, Nguyen-Khac E, De Ledinghen V, Larrey D, Tran A, Bourliere M, Maynard-Muet M, Asselah T, Henrion J, Nevens F, Cassiman D, Geerts A, Moreno C, Beuers UH, Galle PR, Spengler U, Bugianesi E, Craxi A, Angelico M, Fargion S, Voiculescu M, Gheorghe L, Preotescu L, Caballeria J, Andrade RJ, Crespo J, Callera JL, Ala A, Aithal G, Abouda G, Luketic V, Huang MA, Gordon S, Pockros P, Poordad F, Shores N, Moehlen MW, Bambha K, Clark V, Satapathy S, Parekh S, Reddy RK, Sheikh MY, Szabo G, Vierling J, Foster T, Umpierrez G, Chang C, Box T, Gallegos-Orozco J. Elafibranor, an agonist of the peroxisome proliferator−activated receptor−α and −δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150:1147–1159.e5. https://doi.org/10.1053/j.gastro.2016.01.038.

    Article  CAS  PubMed  Google Scholar 

  87. Ribeiro Filho HV, Guerra JV, Cagliari R, Batista FAH, Le Maire A, Oliveira PSL, Figueira ACM. Exploring the mechanism of PPARγ phosphorylation mediated by CDK5. J Struct Biol. 2019;207:317–26. https://doi.org/10.1016/j.jsb.2019.07.007.

    Article  CAS  PubMed  Google Scholar 

  88. Ricote M, Glass C. PPARs and molecular mechanisms of transrepression. Biochim Biophys Acta. 2007;1771:926–35. https://doi.org/10.1016/j.bbalip.2007.02.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rochel N, Krucker C, Coutos-Thévenot L, Osz J, Zhang R, Guyon E, Zita W, Vanthong S, Hernandez OA, Bourguet M, Badawy KA, Dufour F, Peluso-Iltis C, Heckler-Beji S, Dejaegere A, Kamoun A, de Reyniès A, Neuzillet Y, Rebouissou S, Béraud C, Lang H, Massfelder T, Allory Y, Cianférani S, Stote RH, Radvanyi F, Bernard-Pierrot I. Recurrent activating mutations of PPARγ associated with luminal bladder tumors. Nat Commun. 2019;10:253. https://doi.org/10.1038/s41467-018-08157-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sarraf P, Mueller E, Smith WM, Wright HM, Kum JB, Aaltonen LA, de la Chapelle A, Spiegelman BM, Eng C. Loss-of-function mutations in PPARγ associated with human colon cancer. Mol Cell. 1999;3:799–804. https://doi.org/10.1016/S1097-2765(01)80012-5.

    Article  CAS  PubMed  Google Scholar 

  91. Sauerberg P, Olsen GS, Jeppesen L, Mogensen JP, Pettersson I, Jeppesen CB, Daugaard JR, Galsgaard ED, Ynddal L, Fleckner J, Panajotova V, Polivka Z, Pihera P, Havranek M, Wulff EM. Identification and synthesis of a novel selective partial PPARδ agonist with full efficacy on lipid metabolism in vitro and in vivo. J Med Chem. 2007;50:1495–503. https://doi.org/10.1021/jm061202u.

    Article  CAS  PubMed  Google Scholar 

  92. Schäfer HL, Linz W, Falk E, Glien M, Glombik H, Korn M, Wendler W, Herling AW, Rütten H. AVE8134, a novel potent PPARα agonist, improves lipid profile and glucose metabolism in dyslipidemic mice and type 2 diabetic rats. Acta Pharmacol Sin. 2012;33:82–90. https://doi.org/10.1038/aps.2011.165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schmidt A, Endo N, Rutledge SJ, Vogel R, Shinar D, Rodan GA. Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids. Mol Endocrinol. 1992;6:1634–41. https://doi.org/10.1210/mend.6.10.1333051.

    Article  CAS  PubMed  Google Scholar 

  94. Schwarz R, Tänzler D, Ihling CH, Sinz A. Monitoring solution structures of peroxisome proliferator-activated receptor β/δ upon ligand binding. PLoS One. 2016;11:e0151412. https://doi.org/10.1371/journal.pone.0151412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shang J, Mosure SA, Zheng J, Brust R, Bass J, Nichols A, Solt LA, Griffin PR, Kojetin DJ. A molecular switch regulating transcriptional repression and activation of PPARγ. Nat Commun. 2020;11:956. https://doi.org/10.1038/s41467-020-14750-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shearer BG, Patel HS, Billin AN, Way JM, Winegar DA, Lambert MH, Xu RX, Leesnitzer LM, Merrihew RV, Huet S, Willson TM. Discovery of a novel class of PPARδ partial agonists. Bioorg Med Chem Lett. 2008;18:5018–22. https://doi.org/10.1016/j.bmcl.2008.08.011.

    Article  CAS  PubMed  Google Scholar 

  97. Sierra ML, Beneton V, Boullay A-B, Boyer T, Brewster AG, Donche F, Forest M-C, Fouchet M-H, Gellibert FJ, Grillot DA, Lambert MH, Laroze A, Le Grumelec C, Linget JM, Montana VG, Nguyen V-L, Nicodème E, Patel V, Penfornis A, Pineau O, Pohin D, Potvain F, Poulain G, Ruault CB, Saunders M, Toum J, Xu HE, Xu RX, Pianetti PM. Substituted 2-[(4-aminomethyl)phenoxy]-2-methylpropionic acid PPARα agonists. 1. Discovery of a novel series of potent HDLc raising agents. J Med Chem. 2007;50:685–95. https://doi.org/10.1021/jm058056x.

    Article  CAS  PubMed  Google Scholar 

  98. Sturm N, Desaphy J, Quinn RJ, Rognan D, Kellenberger E. Structural insights into the molecular basis of the ligand promiscuity. J Chem Inf Model. 2012;52:2410–21. https://doi.org/10.1021/ci300196g.

    Article  CAS  PubMed  Google Scholar 

  99. Sulimov VB, Kutov DC, Sulimov AV. Advances in docking. CMC. 2020;26:7555–80. https://doi.org/10.2174/0929867325666180904115000.

    Article  CAS  Google Scholar 

  100. Sznaidman ML, Haffner CD, Maloney PR, Fivush A, Chao E, Goreham D, Sierra ML, LeGrumelec C, Xu HE, Montana VG, Lambert MH, Willson TM, Oliver WR, Sternbach DD. Novel selective small molecule agonists for peroxisome proliferator-activated receptor δ (PPARδ)—synthesis and biological activity. Bioorg Med Chem Lett. 2003;13:1517–21. https://doi.org/10.1016/S0960-894X(03)00207-5.

    Article  CAS  PubMed  Google Scholar 

  101. Takada I, Yu RT, Xu HE, Lambert MH, Montana VG, Kliewer SA, Evans RM, Umesono K. Alteration of a single amino acid in peroxisome proliferator-activated receptor-α (PPARα) generates a PPARδ phenotype. Mol Endocrinol. 2000;14:733–40. https://doi.org/10.1210/mend.14.5.0456.

    Article  CAS  PubMed  Google Scholar 

  102. Tan NS, Vázquez-Carrera M, Montagner A, Sng MK, Guillou H, Wahli W. Transcriptional control of physiological and pathological processes by the nuclear receptor PPARβ/δ. Prog Lipid Res. 2016;64:98–122. https://doi.org/10.1016/j.plipres.2016.09.001.

    Article  CAS  PubMed  Google Scholar 

  103. Titus SA, Beacham D, Shahane SA, Southall N, Xia M, Huang R, Hooten E, Zhao Y, Shou L, Austin CP, Zheng W. A new homogeneous high-throughput screening assay for profiling compound activity on the human ether-a-go-go-related gene channel. Anal Biochem. 2009;394:30–8. https://doi.org/10.1016/j.ab.2009.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Torres PHM, Sodero ACR, Jofily P, Silva-Jr FP. Key topics in molecular docking for drug design. IJMS. 2019;20:4574. https://doi.org/10.3390/ijms20184574.

    Article  CAS  PubMed Central  Google Scholar 

  105. Umemoto T, Fujiki Y. Ligand-dependent nucleo-cytoplasmic shuttling of peroxisome proliferator-activated receptors, PPARα and PPARγ. Genes Cells. 2012;17:576–96. https://doi.org/10.1111/j.1365-2443.2012.01607.x.

    Article  CAS  PubMed  Google Scholar 

  106. Uppenberg J, Svensson C, Jaki M, Bertilsson G, Jendeberg L, Berkenstam A. Crystal structure of the ligand binding domain of the human nuclear receptor PPARγ. J Biol Chem. 1998;273:31108–12. https://doi.org/10.1074/jbc.273.47.31108.

    Article  CAS  PubMed  Google Scholar 

  107. Waku T, Shiraki T, Oyama T, Fujimoto Y, Maebara K, Kamiya N, Jingami H, Morikawa, K. Structural Insight into PPARγ Activation Through Covalent Modification with Endogenous Fatty Acids. J. Mol. Biol. 2009;385(1):188–199.

    Google Scholar 

  108. Wagner K-D, Wagner N. Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) acts as regulator of metabolism linked to multiple cellular functions. Pharmacol Ther. 2010;125:423–35. https://doi.org/10.1016/j.pharmthera.2009.12.001.

    Article  CAS  PubMed  Google Scholar 

  109. Wagner N, Wagner K-D. PPAR beta/delta and the hallmarks of cancer. Cell. 2020;9:1133. https://doi.org/10.3390/cells9051133.

    Article  CAS  Google Scholar 

  110. Wang W, Devasthale P, Farrelly D, Gu L, Harrity T, Cap M, Chu C, Kunselman L, Morgan N, Ponticiello R, Zebo R, Zhang L, Locke K, Lippy J, O’Malley K, Hosagrahara V, Zhang L, Kadiyala P, Chang C, Muckelbauer J, Doweyko AM, Zahler R, Ryono D, Hariharan N, Cheng PTW. Discovery of azetidinone acids as conformationally-constrained dual PPARα/γ agonists. Bioorg Med Chem Lett. 2008;18:1939–44. https://doi.org/10.1016/j.bmcl.2008.01.126.

    Article  CAS  PubMed  Google Scholar 

  111. Wang W, Zhang L, Wang X, Lin D, Pan Q, Guo L. Functional network analysis of gene phenotype connectivity based on pioglitazone. Exp Ther Med. 2019;18(6):4790–8. https://doi.org/10.3892/etm.2019.8162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Willson T, Brown P, Sternbach D, Henke, B. The PPARs: From Orphan Receptors to Drug Discovery. J. Med. Chem. 2000;43(4):527–550.

    Google Scholar 

  113. Wu C-C, Baiga TJ, Downes M, La Clair JJ, Atkins AR, Richard SB, Fan W, Stockley-Noel TA, Bowman ME, Noel JP, Evans RM. Structural basis for specific ligation of the peroxisome proliferator-activated receptor δ. Proc Natl Acad Sci U S A. 2017;114:E2563–70. https://doi.org/10.1073/pnas.1621513114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xu HE, Lambert MH, Montana VG, Parks DJ, Blanchard SG, Brown PJ, Sternbach DD, Lehmann JM, Wisely GB, Willson TM, Kliewer SA, Milburn MV. Molecular recognition of fatty acids by peroxisome proliferator–activated receptors. Mol Cell. 1999;3:397–403. https://doi.org/10.1016/S1097-2765(00)80467-0.

    Article  CAS  PubMed  Google Scholar 

  115. Xu HE, Lambert MH, Montana VG, Plunket KD, Moore LB, Collins JL, Oplinger JA, Kliewer SA, Gampe RT, McKee DD, Moore JT, Willson TM. Structural determinants of ligand binding selectivity between the peroxisome proliferator-activated receptors. Proc Natl Acad Sci. 2001;98:13919–24. https://doi.org/10.1073/pnas.241410198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Xu HE, Stanley TB, Montana VG, Lambert MH, Shearer BG, Cobb JE, McKee DD, Galardi CM, Plunket KD, Nolte RT, Parks DJ, Moore JT, Kliewer SA, Willson TM, Stimmel JB. Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARα. Nature. 2002;415:813–7. https://doi.org/10.1038/415813a.

    Article  CAS  PubMed  Google Scholar 

  117. Yamamoto Y, Takei K, Arulmozhiraja S, Sladek V, Matsuo N, Han S, Matsuzaka T, Sekiya M, Tokiwa T, Shoji M, Shigeta Y, Nakagawa Y, Tokiwa H, Shimano H. Molecular association model of PPARα and its new specific and efficient ligand, pemafibrate: structural basis for SPPARMα. Biochem Biophys Res Commun. 2018;499:239–45. https://doi.org/10.1016/j.bbrc.2018.03.135.

    Article  CAS  PubMed  Google Scholar 

  118. Yamauchi T, Kamon J, Waki H, Murakami K, Motojima K, Komeda K, Ide T, Kubota N, Terauchi Y, Tobe K, Miki H, Tsuchida A, Akanuma Y, Nagai R, Kimura S, Kadowaki T. The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance. J Biol Chem. 2001;276:41245–54. https://doi.org/10.1074/jbc.M103241200.

    Article  CAS  PubMed  Google Scholar 

  119. Yamazaki Y, Abe K, Toma T, Nishikawa M, Ozawa H, Okuda A, Araki T, Oda S, Inoue K, Shibuya K, Staels B, Fruchart J-C. Design and synthesis of highly potent and selective human peroxisome proliferator-activated receptor α agonists. Bioorg Med Chem Lett. 2007;17:4689–93. https://doi.org/10.1016/j.bmcl.2007.05.066.

    Article  CAS  PubMed  Google Scholar 

  120. Yi P, Wang Z, Feng Q, Pintilie GD, Foulds CE, Lanz RB, Ludtke SJ, Schmid MF, Chiu W, O’Malley BW. Structure of a biologically active Estrogen receptor-coactivator complex on DNA. Mol Cell. 2015;57:1047–58. https://doi.org/10.1016/j.molcel.2015.01.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yu S, Reddy J. Transcription coactivators for peroxisome proliferator-activated receptors. Biochim Biophys Acta. 2007;1771:936–51. https://doi.org/10.1016/j.bbalip.2007.01.008.

    Article  CAS  PubMed  Google Scholar 

  122. Yu K, Bayona W, Kallen CB, Harding HP, Ravera CP, McMahon G, Brown M, Lazar MA. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J Biol Chem. 1995;270:23975–83. https://doi.org/10.1074/jbc.270.41.23975.

    Article  CAS  PubMed  Google Scholar 

  123. Zheng J, Corzo C, Chang MR, Shang J, Lam VQ, Brust R, Blayo A-L, Bruning JB, Kamenecka TM, Kojetin DJ, Griffin PR. Chemical crosslinking mass spectrometry reveals the conformational landscape of the activation helix of PPARγ; a model for ligand-dependent antagonism. Structure. 2018;26:1431–1439.e6. https://doi.org/10.1016/j.str.2018.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John B. Bruning .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chua, B.S.K., Bruning, J.B. (2021). PPARα and δ Ligand Design: Honing the Traditional Empirical Method with a More Holistic Overview. In: Badr, M.Z. (eds) Nuclear Receptors. Springer, Cham. https://doi.org/10.1007/978-3-030-78315-0_6

Download citation

Publish with us

Policies and ethics