Skip to main content

Processing of Polymeric Materials

  • Chapter
  • First Online:
Applied Polymer Science

Abstract

Polymeric materials can be readily processed to complex shaped with precise dimensions with a minimum of energy and environmental effect, which to a large extent is due to their thermal and rheological properties. Polymers in general have a low melting temperature, which for semicrystalline polymers is the crystal melting point (Tm) and for amorphous polymers is the glass transition temperature (Tg) (cf. Gedde and Hedenqvist 2019a, b). Thermoplastic processing is carried out at temperatures between the melting temperature (Tm or Tg) and the decomposition temperature, the latter being related to the ceiling temperature (Snow and Frey 1943). In some melt processing methods, the hot polymer melt has the access to oxygen, and in such cases, the polymer needs to be protected by antioxidant to avoid thermal oxidation. Most polymers are processed at 200 ± 50 °C, which is at a much lower temperature than the processing of competing materials, such as inorganic glass (1000–1200 °C), steel (1400–1600 °C), aluminium (>700 °C) and brass (1000 °C). Processing of polymers is more energy and environmentally (CO2) friendly than processing of the alternative materials (cf. Chap. 10), even though the heat capacities of polymeric materials are generally higher than those of the competitive materials. There are three basic steps in polymer processing: heating, shaping (involving shear and extensional flow) and cooling. Heating is usually accomplished externally from electric heaters or infrared radiation, but it occurs also by the heat released from the viscous flow of the polymer melt and the friction between the melt and the surrounding materials. The latter is more prevalent in certain processing methods, such as injection moulding and extrusion. Polymer processing is either carried out as a continuous process (e.g. extrusion) or through repeated cycles (e.g. injection moulding), and in both cases automation is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Åström, B. T. (1997). Manufacturing of polymer composites. London: Chapman & Hall.

    Google Scholar 

  • Barrie, I. (1978). In R. S. Lenk (Ed.), Polymer rheology. Barking: Applied Science Publisher.

    Google Scholar 

  • Beall, G. L. (1998). Rotational moulding: Design, materials, tooling, and processing. Munich: Carl Hanser-Verlag.

    Google Scholar 

  • Bertram, A., & Glüge, R. (2015). Solid mechanics: Theory, modeling, and problems. Cham: Springer.

    Book  MATH  Google Scholar 

  • Brandau, O. (2016). Stretch blow molding (3rd ed.). Oxford: Elsevier.

    Google Scholar 

  • Brandrup, J., Immergut, E. H., & Grulke, E. A. (2003). Polymer handbook (4th ed.). New York: Wiley–Interscience.

    Google Scholar 

  • Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of heat in solids. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Crank, J. C. (1979). The mathematics of diffusion. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Crawford, R. J. (1998). Plastics engineering (3rd ed.). Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Crawford, R. J., & Kearns, M. P. (2012). Practical guide to rotational moulding (2nd ed.). Shawbury: Smithers Rapra Technology.

    Google Scholar 

  • Criens, R. M., & Moslé, H.-G. (1986). In W. Bristow & R. D. Corneliussen (Eds.), Failure of plastics. Vienna: Carl Hanser-Verlag.

    Google Scholar 

  • Crompton, T. R. (2010). Thermo-oxidative degradation of polymers. Shawbury: Smithers Rapra Publishing.

    Google Scholar 

  • Dangel, R. (2020). Injection molds for beginners (2nd ed.). Munich: Carl Hanser-Verlag.

    Book  Google Scholar 

  • Davis, B., Gramann, P. J., Osswald, T. A., & Rios, A. C. (2003). Compression moulding. Munich: Carl Hanser-Verlag.

    Google Scholar 

  • de Gennes, P. G. (1979). Scaling concepts in polymer physics. Ithaca/London: Cornell University Press.

    Google Scholar 

  • Doi, M. & Edwards, S. F. (1986). The theory of polymer dynamics. Oxford: clarendon Press.

    Google Scholar 

  • Engberg, K., Knutsson, A., Werner, P.-E., & Gedde, U. W. (1990). Polymer Engineering and Science, 30, 1621.

    Article  Google Scholar 

  • Engberg, K., Ekblad, M., Werner, P.-E., & Gedde, U. W. (1994). Polymer Engineering and Science, 34, 1346.

    Article  Google Scholar 

  • Engelmann, S. (2012). Advanced thermoforming: Methods, machines and materials, applications and automation. Hoboken: Wiley.

    Book  Google Scholar 

  • Folkes, M. J. (1982). Short fibre reinforced composites. Hoboken: Wiley.

    Google Scholar 

  • Gedde, U. W. (2020). Essential classical thermodynamics. Cham: Springer Nature Switzerland AG.

    Book  Google Scholar 

  • Gedde, U. W., & Hedenqvist, M. S. (2019a). Chapter 7: Morphology of semicrystalline polymers. In Fundamental polymer science. Cham: Springer.

    Chapter  Google Scholar 

  • Gedde, U. W., & Hedenqvist, M. S. (2019b). Chapter 5: The glassy amorphous state. In Fundamental polymer science. Cham: Springer Nature Switzerland AG.

    Chapter  Google Scholar 

  • Gedde, U. W., & Hedenqvist, M. S. (2019c). Chapter 6: The molten state. In Fundamental polymer science. Cham: Springer Nature Switzerland AG.

    Chapter  Google Scholar 

  • Gedde, U. W., & Hedenqvist, M. S. (2019d). Chapter 8: Crystallization kinetics. In Fundamental polymer science. Cham: Springer Nature Switzerland AG.

    Chapter  Google Scholar 

  • Gedde, U. W., & Hedenqvist, M. S. (2019e). Chapter 9: Chain orientation. In Fundamental polymer science. Cham: Springer Nature Switzerland AG.

    Chapter  Google Scholar 

  • Gedde, U. W., & Hedenqvist, M. S. (2019f). Fundamental polymer science. Cham: Springer Nature Switzerland AG.

    Book  Google Scholar 

  • Gedde, U. W., Terselius, B., & Jansson, J.-F. (1981). Polymer Testing, 2, 85.

    Article  Google Scholar 

  • Graessley, W. W. (1984). Viscoelasticity and flow in polymer melts and concentrated solutions. In J. E. Mark, A. Eisenberg, W. S. Graessley, L. Mandelkern, & J. L. Koenig (Eds.), Physical properties of polymers. Washington, DC: American Chemical Society.

    Google Scholar 

  • Graessley, W. W. (2004). Polymeric liquids and networks: Structure and properties. London: Garland Science.

    Google Scholar 

  • Halim Hamid, S. (2000). Handbook of polymer degradation. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Jarecki, L., & Pecherski, R. B. (2018). Express Polymer Letters, 12, 330.

    Article  Google Scholar 

  • Jud, K., Kausch, H. H., & Williams, J. G. (1981). Journal of Materials Science, 16, 204.

    Article  ADS  Google Scholar 

  • Kim, Y. H., & Wool, R. P. (1983). Macromolecules, 16, 1115.

    Article  ADS  Google Scholar 

  • Lee, N. C. (2006). Practical guide to blow moulding. Shawbury: Smithers Rapra Publishing.

    Google Scholar 

  • Lienhard, J. H. (2019). A heat transfer textbook (5th ed.). Mineola: Dover Publ.

    Google Scholar 

  • Lorenzo, A. T., Arnal, M. L., Albuerne, J., & Müller, A. J. (2007). Polymer Testing, 26, 222.

    Article  Google Scholar 

  • Lubliner, J., & Papadopoulos, P. (2017). Introduction to solid mechanics: An integrated approach (2nd ed.). Cham: Springer.

    Book  MATH  Google Scholar 

  • Malguarnera, S. C., & Manisali, A. (1981). Society of Plastics Engineers Annual Technical Conference Technical Papers, 27, 775.

    Google Scholar 

  • Manus-Zloczower, I. (2005). Mixing and compounding of polymers. Munich: Hanser Publishers.

    Google Scholar 

  • Mendelson, R. A. (1968). Polymer Engineering and Science, 8, 235.

    Article  Google Scholar 

  • Mo, Z. (2008). Acta Polymerica Sinica, 7, 656.

    Article  Google Scholar 

  • Morton-Jones, D. H. (1989). Polymer processing. London/New York: Chapman and Hall.

    Book  Google Scholar 

  • Münstedt, H. (2020). Polymers, 12, 1512.

    Article  Google Scholar 

  • Nakamura, K., Watanabe, T., Katayama, K., & Amano, T. (1972). Journal of Applied Polymer Science, 16, 1077.

    Article  Google Scholar 

  • Ozawa, T. (1965). Bulletin of the Chemical Society of Japan, 38, 1881.

    Article  Google Scholar 

  • Ozawa, T. (1971). Polymer, 12, 150.

    Article  Google Scholar 

  • Rauwendaal, C. (1998). Polymer mixing: A self-study guide. Munich: Hanser Publishers.

    Google Scholar 

  • Rauwendaal, C. (2001). Polymer extrusion (4th ed.). Munich: Hanser Publishers.

    Google Scholar 

  • Rauwendaal, C. (2014). Polymer extrusion (5th ed.). Munich: Hanser Publishers.

    Book  Google Scholar 

  • Rubin, I. I. (1973). Injection molding: Theory and practice. Hoboken: Wiley.

    Google Scholar 

  • Rubinstein, M., & Colby, R. H. (2003). Polymer physics. Oxford: Oxford University Press.

    Google Scholar 

  • Saldívar-Guerra, E., & Vivaldo-Lima, E. (Eds.). (2013). Handbook of polymer synthesis, characterization, and processing. New York: Wiley.

    Google Scholar 

  • Schiller, G. F. (2018). A practical approach to scientific molding. Munich: Carl Hanser-Verlag.

    Book  Google Scholar 

  • Seyler, R., Erie, P., & Schenck, A. (2003). Proceedings of the 61st annual meeting of the Society of Plastic Engineers (pp. 3373–3377). USA: Nashville.

    Google Scholar 

  • Snow, R. D., & Frey, F. E. (1943). Journal of the American Chemical Society, 65, 2417.

    Article  Google Scholar 

  • Stokes, G. G. (1845). Transactions of the Cambridge philosophical. Society, 8, 287.

    Google Scholar 

  • Ticona. (2001). Vectra – Liquid crystal polymer (LCP). Summit: Ticona GmbH.

    Google Scholar 

  • Turng, L., & Chen, S. (2019). Advanced injection molding technologies. Munich: Carl Hanser-Verlag.

    Google Scholar 

  • Van Krevelen, D. W., & Te Nijenhuis, K. (2009). Properties of polymers: Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions (4th ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Wagner, J. R., Mount, E. M., III, & Giles, H. F. (2014). Extrusion: The definitive processing guide and handbook (2nd ed.). Oxford: Elsevier.

    Google Scholar 

  • Waxman, A., Narkis, M., Siegmann, A., & Kenig, S. (1991). Polymer Composites, 12, 161.

    Article  Google Scholar 

  • Wool, R. P., & Connor, K. H. (1981). Journal of Applied Physics, 52, 5953.

    Article  ADS  Google Scholar 

  • Wunderlich, B. (1980). Macromolecular physics: 3. Crystal melting. New York/London: Academic.

    Google Scholar 

  • Zheng, R., Tanner, R. I., & Fan, X.-J. (2011). Injection molding: Integration of theory and modeling methods. Berlin/Heidelberg: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf W. Gedde .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gedde, U.W., Hedenqvist, M.S., Hakkarainen, M., Nilsson, F., Das, O. (2021). Processing of Polymeric Materials. In: Applied Polymer Science. Springer, Cham. https://doi.org/10.1007/978-3-030-68472-3_8

Download citation

Publish with us

Policies and ethics