Skip to main content

Inorganic Photoelectrochemistry from Illumination Techniques to Energy Applications

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Part of the book series: Springer Handbooks ((SHB))

  • 4437 Accesses

Abstract

This chapter takes a glance at the evolutionary course of photoelectrochemistry. It is assumed that the reader is well familiarized with the alphabet of electrochemistry and the principles of thermodynamics and kinetics in classical electrochemistry. All the contents of this chapter, about the pure and applied photoelectrochemistry and their applications in different fields, have been designed proportional to the requirements and limitations of a concise handbook. The references at the end of the chapter provide the avid reader with the resources for more in-depth information. The first part of the chapter is dedicated to the history of photoelectrochemistry and the most important discoveries that laid the foundation for the innovative methods and applications in the recent years. This is followed by an introduction to the semiconductors and the electron energy levels and energy band model. In the third section, essential photoelectrochemical measurements have been outlined. Subsequently, the conditions for the presence of electrons in a solution and the main differences between a metal and a semiconductor are explained. Sections 9.4, 9.5, 9.6, 9.7, 9.8, and 9.10 cover equilibrium and the electrode-electrolyte interface, the traditional theories and calculation of the photocurrent (in the dark or under illumination), absolute electrode potential, and semiconductor electrodes. The following sections discuss practical applications of semiconductors and photoelectrochemistry by using the work of top researchers in photoelectrocatalysis, photoelectrochemical reduction of CO2, photoelectrolysis of H2S, water photosplitting, and waste treatment by photoelectrochemistry. In the last part of the chapter, the photoelectrochemical devices are briefly discussed.

Like your eyes, feed yourself with the light.

(Rumi, Persian Poet)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pleskov, Y.V., Gurevich, Y.Y., Rotenberg, Z.A.: Photoelectrochemistry. Consultants Bureau, New York (1980)

    Google Scholar 

  2. Rajeshwar, K.: Fundamentals of semiconductor electrochemistry and photoelectrochemistry. Encycl. Electrochem. 6, 1–53 (2007)

    Google Scholar 

  3. Nernst, W.: Über Elektrodenpotentiale. (Nach Versuchen Und Berechnungen Von Wilsmore.). Z. Elektrochem. 7, 253–257 (1900)

    CAS  Google Scholar 

  4. Sichling, K.: Über Die Natur Der Photochloride Des Silbers Und Deren Lichtpotentiale. Z. Phys. Chem. 77, 1–57 (1911)

    Article  CAS  Google Scholar 

  5. H. S. Allen: Photo-Electricity: The liberation of electrons by light with chapters of fluorescence, and photochemical actions and photography, Longmans, Green (1913)

    Google Scholar 

  6. Anand, H.L., Bhatnagar, S.S.: Z. Phys. Chem. 131, 22 (1928)

    Google Scholar 

  7. Guggenheim, E.: The conceptions of electrical potential difference between two phases and the individual activities of ions. J. Phys. Chem. 33, 842–849 (1929)

    Article  CAS  Google Scholar 

  8. Sheppard, S., Vancelow, W., Hall, V.: Photo-voltaic cells with silver-silver bromide electrodes. Part II. J. Phys. Chem. 33, 1403–1414 (1929)

    Article  Google Scholar 

  9. Fink, C.G., Alpern, D.K.: The engineering development of photovoltaic cells I. some operating characteristics. Trans. Am. Electrochem. Soc. 58, 275–298 (1930)

    Article  Google Scholar 

  10. Leermakers, J., Carroll, B., Staud, C.: Spectral sensitivity and light absorption of dye-sensitized photographic emulsions. J. Chem. Phys. 5, 878–888 (1937)

    Article  CAS  Google Scholar 

  11. Roulleau, J.: Couches De Barrage Et Effet Becquerel. J. Chim. Phys. 34, 227–235 (1937)

    Article  CAS  Google Scholar 

  12. Sheppard, S., Vanselow, W., Happ, G.: Photovoltaic cells with silver–silver bromide electrodes. III. Optical sensitizing by dyes. J. Phys. Chem. 44, 411–421 (1940)

    Article  CAS  Google Scholar 

  13. Copeland, A.W., Black, O.D., Garrett, A.B..: The photovoltaic effect. Chem. Rev. 31(1), 177–226 (1942)

    Article  CAS  Google Scholar 

  14. Hillson, P., Rideal, E.K.: On overpotential and the photovoltaic process at polarized electrodes. Proc. R. Soc. Lond. A. 199, 295–310 (1949)

    Article  CAS  Google Scholar 

  15. Pittman, R.: 176. The photochemistry of selenium. Part III. Photogalvanic effects with red selenium. J. Chem. Soc. (Resumed), 855–860 (1953)

    Google Scholar 

  16. Brattain, W., Garrett, C.: Experiments on the Interface between germanium and an electrolyte. Bell Syst. Tech. J. 34, 129–176 (1955)

    Article  Google Scholar 

  17. Randles, J.: The real hydration energies of ions. Trans. Faraday Soc. 52, 1573–1581 (1956)

    Article  CAS  Google Scholar 

  18. Gobrecht, H., Kuhnkies, R., Tausend, A.: Untersuchung Der Phasengrenzfläche Halbleiter/Elektrolyt Am System Selen/Schwefelsäure, Zeitschrift für Elektrochemie. Ber. Bunsenges. Phys. Chem. 63, 541–550 (1959)

    CAS  Google Scholar 

  19. Dewald, J.: The charge and potential distributions at the zinc oxide electrode. Bell Syst. Tech. J. 39, 615–639 (1960)

    Article  Google Scholar 

  20. Gatos, H.C.: The Surface Chemistry of Metals and Semiconductors: A Symposium Sponsored by the Office of Naval Research and the Electrochemical Society, Columbus, Ohio, 1959, (John Wiley & Sons, 1960)

    Google Scholar 

  21. Boddy, P., Brattain, W.: Effect of cupric ion on the electrical properties of the germanium-aqueous electrolyte interface. J. Electrochem. Soc. 109, 812–818 (1962)

    Article  CAS  Google Scholar 

  22. Lazorenko-Manevich, R.: Redistribution of potential at a semiconductor electrolyte interface under the influence of light. Russ. J. Phys. Chem. 36, 1110–1113 (1962)

    Google Scholar 

  23. Bolto, B.A., McNeill, R., Weiss, D.: Electronic conduction in polymers. III. Electronic properties of polypyrrole. Aust. J. Chem. 16, 1090–1103 (1963)

    Article  CAS  Google Scholar 

  24. Heilmeier, G.H., Zanoni, L.A.: Surface studies of α-copper phthalocyanine films. J. Phys. Chem. Solids. 25, 603–611 (1964)

    Article  CAS  Google Scholar 

  25. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, vol. 55. Courier Corporation (1965)

    Google Scholar 

  26. G. C. Barker, A. Gardner: Fundamental Problems in Contemporary Theoretical Electro- chemistry, Mir, Moscow (1965)

    Google Scholar 

  27. V. de Alfaro and T. Regge: Potential Scattering, North-Holland Publishing Company, Amsterdam (1965)

    Google Scholar 

  28. Gerischer, H.: Electrochemical behavior of semiconductors under illumination. J. Electrochem. Soc. 113, 1174–1182 (1966)

    Article  CAS  Google Scholar 

  29. Anbar, M., Neta, P.: A compilation of specific bimolecular rate constants for the reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals with inorganic and organic compounds in aqueous solution. Int. J. Appl. Radiat. Isot. 18, 493–523 (1967)

    Article  CAS  Google Scholar 

  30. Asmus, K.D., Fendler, J.H.: Reaction of sulfur hexafluoride with hydrated electrons. J. Phys. Chem. 72, 4285–4289 (1968)

    Article  CAS  Google Scholar 

  31. Boddy, P.: Oxygen evolution on semiconducting Tio2. J. Electrochem. Soc. 115, 199–203 (1968)

    Article  CAS  Google Scholar 

  32. Boddy, P., Kahng, D., Chen, Y.: Oxygen evolution on potassium tantalate anodes. Electrochim. Acta. 13, 1311–1328 (1968)

    Article  CAS  Google Scholar 

  33. Gerischer, H., Mindt, W.: The mechanisms of the decomposition of semiconductors by electrochemical oxidation and reduction. Electrochim. Acta. 13, 1329–1341 (1968)

    Article  CAS  Google Scholar 

  34. Adams, G., Willson, R.: Pulse radiolysis studies on the oxidation of organic radicals in aqueous solution. Trans. Faraday Soc. 65, 2981–2987 (1969)

    Article  CAS  Google Scholar 

  35. Beckmann, K., Memming, R.: Photoexcitation and luminescence in redox processes on gallium phosphide electrodes. J. Electrochem. Soc. 116, 368–373 (1969)

    Article  Google Scholar 

  36. Fujishima, A.: Photosensitized electrolytic oxidation at a Tio_2 electrode. J. Chem. Soc. Japan. 72, 108–113 (1969)

    CAS  Google Scholar 

  37. Gerischer, H.: Charge transfer processes at semiconductor-electrolyte interfaces in connection with problems of catalysis. Surf. Sci. 18, 97–122 (1969)

    Article  CAS  Google Scholar 

  38. Memming, R.: Mechanism of the electrochemical reduction of persulfates and hydrogen peroxide. J. Electrochem. Soc. 116, 785–790 (1969)

    Article  CAS  Google Scholar 

  39. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature. 238, 37–38 (1972)

    Article  CAS  PubMed  Google Scholar 

  40. Airey, P.: The effect of radiation on electrode processes, Tech. Rep. Australian Atomic Energy Commission Research Establishment, Lucas Heights. Isotope Div. (1974)

    Google Scholar 

  41. McGinness, J., Corry, P., Proctor, P.: Amorphous semiconductor switching in melanins. Science. 183, 853–855 (1974)

    Article  CAS  PubMed  Google Scholar 

  42. Frumkin, A., Damaskin, B.: Real free-energy of electron solvation under conditions of equilibrium of electrode with solution. Dokl. Akad. Nauk SSSR. 221, 395–398 (1975)

    CAS  Google Scholar 

  43. Ansone, I., Rotenberg, Z., Slaidin, G.Y., Pleskov, Y.V.: Elektrokhimiya. 12, 1552 (1976)

    Google Scholar 

  44. Miller, B., Heller, A.: Semiconductor liquid junction solar cells based on anodic sulphide films. Nature. 262, 680 (1976)

    Article  CAS  Google Scholar 

  45. Legg, K.D., Ellis, A.B.., Bolts, J.M., Wrighton, M.S.: N-type Si-based photoelectrochemical cell: new liquid junction photocell using a nonaqueous ferricenium/ferrocene electrolyte. Proc. Natl. Acad. Sci. 74, 4116–4120 (1977)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Parkinson, B., Heller, A., Miller, B.: Enhanced photoelectrochemical solar-energy conversion by gallium arsenide surface modification. Appl. Phys. Lett. 33, 521–523 (1978)

    Article  CAS  Google Scholar 

  47. Kohl, P.A., Bard, A.J.: Semiconductor electrodes XVIII. Liquid junction photovoltaic cells based on electrodes and acetonitrile solutions. J. Electrochem. Soc. 126, 603–608 (1979)

    Article  CAS  Google Scholar 

  48. Malpas, R.E., Itaya, K., Bard, A.J.: Semiconductor electrodes. 20. Photogeneration of solvated electrons on P-type gallium arsenide electrodes in liquid ammonia. J. Am. Chem. Soc. 101, 2535–2537 (1979)

    Article  CAS  Google Scholar 

  49. Wrighton, M.S.: Photoelectrochemical conversion of optical energy to electricity and fuels. Acc. Chem. Res. 12, 303–310 (1979)

    Article  CAS  Google Scholar 

  50. Bard, A.J., Bocarsly, A.B.., Fan, F.R.F., Walton, E.G., Wrighton, M.S.: The concept of Fermi level pinning at semiconductor/liquid junctions. Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices. J. Am. Chem. Soc. 102, 3671–3677 (1980)

    Article  CAS  Google Scholar 

  51. Bard, A.J., Fan, F.-R.F., Gioda, A.S., Nagasubramanian, G., White, H.S.: On the role of surface states in semiconductor electrode photoelectrochemical cells. Faraday Discuss. Chem. Soc. 70, 19–31 (1980)

    Article  Google Scholar 

  52. Kautek, W., Gerischer, H.: Photoelectrochemical reactions and formation of inversion layers at N-type Mos2-, Mose2-, and Wse2-electrodes in aprotic solvents. Ber. Bunsenges. Phys. Chem. 84, 645–653 (1980)

    Article  CAS  Google Scholar 

  53. Morrison, S.R.: Electrochemistry at Semiconductor and Oxidized Metal Electrodes. Springer US, Boston (1980)

    Book  Google Scholar 

  54. Nadjo, L.: The characterization and behaviour of N-and P-Cdte electrodes in acetonitrile solutions. J. Electroanal. Chem. Interfacial Electrochem. 108, 29–47 (1980)

    Article  CAS  Google Scholar 

  55. Schneemeyer, L.F., Wrighton, M.S., Stacy, A., Sienko, M.J.: N-type molybdenum-diselenide-based liquid-junction solar cells: a nonaqueous electrolyte system employing the chlorine/chloride couple. Appl. Phys. Lett. 36, 701–703 (1980)

    Article  CAS  Google Scholar 

  56. Singh, P., Rajeshwar, K., DuBow, J., Job, R.: Photoelectrochemical behavior of N-gallium arsenide electrodes in ambient-temperature molten-salt electrolytes. J. Am. Chem. Soc. 102, 4676–4681 (1980)

    Article  CAS  Google Scholar 

  57. Archer, M.D., Ferreira, M.I.C.: Photogalvanic cells and effects. In: Photochemical Conversion and Storage of Solar Energy, vol. 201, (1981)

    Google Scholar 

  58. Cahen, D., Hodes, G., Manassen, J., Tenne, R.: Stability of cadmium-chalcogenide-based photoelectrochemical cells. Proc. Photoeffects at Semiconductor-Electrolyte Interfaces, Am. Chem. Soc. Symp. Ser., (American Chemical Society Washington, DC, 1981) p. 369

    Google Scholar 

  59. Heller, A.: Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells. Acc. Chem. Res. 14, 154–162 (1981)

    Article  CAS  Google Scholar 

  60. Kline, G., Kam, K., Canfield, D., Parkinson, B.: Efficient and stable photoelectrochemical cells constructed with Wse2 and Mose2 photoanodes. Solar Energy Mater. 4, 301–308 (1981)

    Article  CAS  Google Scholar 

  61. Noufi, R., Tench, D., Warren, L.F.: Photoelectrochemical evaluation of the N-CdSe/methanol/ferro-ferricyanide system. J. Electrochem. Soc. 128, 2363–2366 (1981)

    Article  CAS  Google Scholar 

  62. Bard, A.J.: Design of semiconductor photoelectrochemical systems for solar energy conversion. J. Phys. Chem. 86, 172–177 (1982)

    Article  CAS  Google Scholar 

  63. Farrell, J.R., McTigue, P.: Precise compensating potential difference measurements with a voltaic cell: the surface potential of water. J. Electroanal. Chem. Interfacial Electrochem. 139, 37–56 (1982)

    Article  CAS  Google Scholar 

  64. Fornarini, L., Stirpe, F., Scrosati, B.: Electrochemical solar cells with layer-type semiconductor anodes-nonaqueous electrolyte cells. J. Electrochem. Soc. 129, 1155 (1982)

    Article  CAS  Google Scholar 

  65. Langmuir, M., Parker, M., Rauh, R.: Electrochemical photovoltaic cells based on N-GaAs and the triiodide/iodide redox couple in acetonitrile. J. Electrochem. Soc. 129, 1705–1710 (1982)

    Article  CAS  Google Scholar 

  66. Thapar, R., DuBow, J., Rajeshwar, K.: Photoelectrochemical characterization of the N-Inp/room temperature molten salt electrolyte interface. J. Electrochem. Soc. 129, 2009–2015 (1982)

    Article  CAS  Google Scholar 

  67. Gerischer, H., Ekardt, W.: Fermi levels in electrolytes and the absolute scale of redox potentials. Appl. Phys. Lett. 43, 393–395 (1983)

    Article  CAS  Google Scholar 

  68. Fornarini, L., Nozik, A., Parkinson, B.: The energetics of P/N photoelectrolysis cells. J. Phys. Chem. 88, 3238–3243 (1984)

    Article  CAS  Google Scholar 

  69. Gibbons, J.F., Cogan, G.W., Gronet, C.M., Lewis, N.S.: A 14% efficient nonaqueous semiconductor/liquid junction solar cell. Appl. Phys. Lett. 45, 1095–1097 (1984)

    Article  CAS  Google Scholar 

  70. Keita, B., Nadjo, L.: Electrochemistry and photoelectrochemistry of sodium 9, 10-anthraquinone-2, 6-disulfonate in aqueous media: application to rechargeable solar cells and to the synthesis of hydrogen peroxide. J. Electroanal. Chem. Interfacial Electrochem. 163, 171–188 (1984)

    Article  CAS  Google Scholar 

  71. Menezes, S.: 12% solar conversion efficiency by interphase restructuring. Appl. Phys. Lett. 45, 148–149 (1984)

    Article  CAS  Google Scholar 

  72. Parkinson, B.: On the efficiency and stability of photoelectrochemical devices. Acc. Chem. Res. 17, 431–437 (1984)

    Article  CAS  Google Scholar 

  73. Borazio, A., Farrell, J.R., McTigue, P.: Charge distribution at the gas-water interface the surface potential of water. J. Electroanal. Chem. Interfacial Electrochem. 193, 103–112 (1985)

    Article  CAS  Google Scholar 

  74. Licht, S., Tenne, R., Dagan, G., Hodes, G., Manassen, J., Cahen, D., Triboulet, R., Rioux, J., Levy-Clement, C.: High efficiency N-Cd (Se, Te)/S= photoelectrochemical cell resulting from solution chemistry control. Appl. Phys. Lett. 46, 608–610 (1985)

    Article  CAS  Google Scholar 

  75. Nozik, A., Thacker, B., Olson, J.: Quantization effects in the photoelectrochemistry of superlattice photoelectrodes. Nature. 316, 51–53 (1985)

    Article  CAS  Google Scholar 

  76. Tang, C.W.: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986)

    Article  CAS  Google Scholar 

  77. Trasatti, S.: Components of the absolute electrode potential. Conceptions and misinterpretations. Mater. Chem. Phys. 15, 427–438 (1986)

    Article  CAS  Google Scholar 

  78. Alpatova, N.M., Krishtalik, L.I., Pleskov, Y.V.: Electrochemistry of solvated electrons. In: Organolithium Compounds/Solvated Electrons, pp. 149–219. Springer (1987)

    Chapter  Google Scholar 

  79. Licht, S., Hodes, G., Tenne, R., Manassen, J.: A light-variation insensitive high efficiency solar cell. Nature. 326, 863 (1987)

    Article  CAS  Google Scholar 

  80. Tufts, B.J., Abrahams, I.L., Santangelo, P.G., Ryba, G.N., Casagrande, L.G., Lewis, N.S.: Chemical modification of N-GaAs electrodes with Os3+ gives a 15% efficient solar cell. Nature. 326, 861 (1987)

    Article  CAS  Google Scholar 

  81. Lewis, N.S.: Mechanistic studies of light-induced charge separation at semiconductor/liquid interfaces. Acc. Chem. Res. 23, 176–183 (1990)

    Article  CAS  Google Scholar 

  82. Licht, S., Peramunage, D.: Efficient photoelectrochemical solar cells from electrolyte modification. Nature. 345, 330 (1990)

    Article  CAS  Google Scholar 

  83. Peter, L.M.: Dynamic aspects of semiconductor photoelectrochemistry. Chem. Rev. 90, 753–769 (1990)

    Article  CAS  Google Scholar 

  84. Vogel, R., Pohl, K., Weller, H.: Sensitization of highly porous, polycrystalline Tio2 electrodes by quantum sized Cds. Chem. Phys. Lett. 174, 241–246 (1990)

    Article  CAS  Google Scholar 

  85. Kietzmann, R., Willig, F., Weller, H., Vogel, R., Nath, D., Eichberger, R., Liska, P., Lehnert, J.: Picosecond time resolved electron injection from excited Cresyl violet monomers and Cd3p2 quantum dots into Tio2. Mol. Cryst. Liq. Cryst. 194, 169–180 (1991)

    Article  CAS  Google Scholar 

  86. Lewis, N.S.: An analysis of charge transfer rate constants for semiconductor/ liquid interfaces. Annu. Rev. Phys. Chem. 42, 543–580 (1991)

    Article  CAS  Google Scholar 

  87. O’regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal Tio2 films. Nature. 353, 737 (1991)

    Article  Google Scholar 

  88. Ennaoui, A., Fiechter, S., Tributsch, H., Giersig, M., Vogel, R., Weller, H.: Photoelectrochemical energy conversion obtained with ultrathin organo-metallic-chemical-vapor-deposition layer of Fes2 (pyrite) on Tio2. J. Electrochem. Soc. 139, 2514–2518 (1992)

    Article  CAS  Google Scholar 

  89. Koval, C.A., Howard, J.N.: Electron transfer at semiconductor electrode-liquid electrolyte interfaces. Chem. Rev. 92, 411–433 (1992)

    Article  CAS  Google Scholar 

  90. Kumar, A., Wilisch, W.C.A., Lewis, N.S.: The electrical properties of semiconductor/metal, semiconductor/liquid, and semiconductor/conducting polymer contacts. Crit. Rev. Solid State Mater. Sci. 18, 327–353 (1993)

    Article  CAS  Google Scholar 

  91. Weller, H.: Quantized semiconductor particles: a novel state of matter for materials science. Adv. Mater. 5, 88–95 (1993)

    Article  CAS  Google Scholar 

  92. Tan, M.X., Laibinis, P.E., Nguyen, S.T., Kesselman, J.M., Stanton, C.E., Lewis, N.S.: Principles and applications of semiconductor photoelectrochemistry. Prog. Inorg. Chem. 41, 21–144 (1994)

    CAS  Google Scholar 

  93. Halls, J., Walsh, C., Greenham, N.C., Marseglia, E., Friend, R.H., Moratti, S., Holmes, A.: Efficient photodiodes from interpenetrating polymer networks. Nature. 376, 498 (1995)

    Article  CAS  Google Scholar 

  94. Hummelen, J.C., Knight, B.W., LePeq, F., Wudl, F., Yao, J., Wilkins, C.L.: Preparation and characterization of fulleroid and methanofullerene derivatives. J. Org. Chem. 60, 532–538 (1995)

    Article  CAS  Google Scholar 

  95. Tennakone, K., Kumara, G., Kumarasinghe, A., Wijayantha, K., Sirimanne, P.: A dye-sensitized Nano-porous solid-state photovoltaic cell. Semicond. Sci. Technol. 10, 1689 (1995)

    Article  Google Scholar 

  96. Greenham, N.C., Peng, X., Alivisatos, A.P.: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B. 54, 17628 (1996)

    Article  CAS  Google Scholar 

  97. Nozik, A.J., Memming, R.: Physical chemistry of semiconductor− liquid interfaces. J. Phys. Chem. 100, 13061–13078 (1996)

    Article  CAS  Google Scholar 

  98. Luque, A., Martí, A.: Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014 (1997)

    Article  CAS  Google Scholar 

  99. Siebentritt, S., Ernst, K., Fischer, C., Könenkamp, R., Lux-Steiner, M.: Cdte and Cds as extremely thin absorber materials in an Η-solar cell. Proc. 14th Eur. Photovolt. Sol. Energ. Conf. (1997)

    Google Scholar 

  100. Yoshino, K., Tada, K., Fujii, A., Conwell, E.M., Zakhidov, A.A.: Novel photovoltaic devices based on donor-acceptor molecular and conducting polymer systems. IEEE Trans. Electron Devices. 44, 1315–1324 (1997)

    Article  CAS  Google Scholar 

  101. Granström, M., Petritsch, K., Arias, A., Lux, A., Andersson, M., Friend, R.: Laminated fabrication of polymeric photovoltaic diodes. Nature. 395, 257 (1998)

    Article  Google Scholar 

  102. Kovalev, D., Heckler, H., Ben-Chorin, M., Polisski, G., Schwartzkopff, M., Koch, F.: Breakdown of the K-conservation rule in Si nanocrystals. Phys. Rev. Lett. 81, 2803 (1998)

    Article  CAS  Google Scholar 

  103. Lewis, N.S.: Progress in understanding electron-transfer reactions at semiconductor/liquid interfaces. J. Phys. Chem. B. 102(25), 4843–4855 (1998)

    Article  CAS  Google Scholar 

  104. Möller, J., Fischer, C.-H., Siebentritt, S., Könenkamp, R., Lux-Steiner, M.: Cuins2 as an extremely thin absorber in an eta solar cell. Proceedings of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion. Vienna (1998)

    Google Scholar 

  105. Zaban, A., Mićić, O., Gregg, B., Nozik, A.: Photosensitization of nanoporous Tio2 electrodes with Inp quantum dots. Langmuir. 14, 3153–3156 (1998)

    Article  CAS  Google Scholar 

  106. Peumans, P., Bulović, V., Forrest, S.R.: Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Appl. Phys. Lett. 76, 2650–2652 (2000)

    Article  CAS  Google Scholar 

  107. Krüger, J., Plass, R., Cevey, L., Piccirelli, M., Grätzel, M., Bach, U.: High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl. Phys. Lett. 79, 2085–2087 (2001)

    Article  CAS  Google Scholar 

  108. Nazeeruddin, M.K., Pechy, P., Renouard, T., Zakeeruddin, S.M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V.: Engineering of efficient panchromatic sensitizers for nanocrystalline Tio2-based solar cells. J. Am. Chem. Soc. 123, 1613–1624 (2001)

    Article  CAS  PubMed  Google Scholar 

  109. Shaheen, S.E., Brabec, C.J., Sariciftci, N.S., Padinger, F., Fromherz, T., Hummelen, J.C.: 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841–843 (2001)

    Article  CAS  Google Scholar 

  110. Brabec, C.J., Shaheen, S.E., Winder, C., Sariciftci, N.S., Denk, P.: Effect of Lif/metal electrodes on the performance of plastic solar cells. Appl. Phys. Lett. 80, 1288–1290 (2002)

    Article  CAS  Google Scholar 

  111. Ernst, K., Belaidi, A., Könenkamp, R.: Solar cell with extremely thin absorber on highly structured substrate. Semicond. Sci. Technol. 18, 475 (2003)

    Article  CAS  Google Scholar 

  112. Wienke, J., Krunks, M., Lenzmann, F.: Inx (Oh) Ysz as recombination barrier in Tio2/inorganic absorber heterojunctions. Semicond. Sci. Technol. 18, 876 (2003)

    Article  CAS  Google Scholar 

  113. Schaller, R.D., Klimov, V.I.: High efficiency carrier multiplication in Pbse nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004)

    Article  CAS  PubMed  Google Scholar 

  114. Nanu, M., Schoonman, J., Goossens, A.: Nanocomposite three-dimensional solar cells obtained by chemical spray deposition. Nano Lett. 5, 1716–1719 (2005)

    Article  CAS  PubMed  Google Scholar 

  115. Reyes-Reyes, M., Kim, K., Dewald, J., López-Sandoval, R., Avadhanula, A., Curran, S., Carroll, D.L.: Meso-structure formation for enhanced organic photovoltaic cells. Org. Lett. 7, 5749–5752 (2005)

    Article  CAS  PubMed  Google Scholar 

  116. Schmidt-Mende, L., Bach, U., Humphry-Baker, R., Horiuchi, T., Miura, H., Ito, S., Uchida, S., Grätzel, M.: Organic dye for highly efficient solid-state dye-sensitized solar cells. Adv. Mater. 17, 813–815 (2005)

    Article  CAS  Google Scholar 

  117. Taretto, K., Rau, U.: Influence of built-in voltage in optimized extremely thin absorber solar cells. Thin Solid Films. 480, 447–451 (2005)

    Article  CAS  Google Scholar 

  118. Baxter, J.B., Aydil, E.S.: Dye-sensitized solar cells based on semiconductor morphologies with Zno nanowires. Sol. Energy Mater. Sol. Cells. 90, 607–622 (2006)

    Article  CAS  Google Scholar 

  119. Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., Han, L.: Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45, L638 (2006)

    Article  CAS  Google Scholar 

  120. Durrant, J.R., Haque, S.A., Palomares, E.: Photochemical energy conversion: from molecular dyads to solar cells. Chem. Commun. (31), 3279–3289 (2006)

    Google Scholar 

  121. Fujishima, A., Zhang, X.-T.: Solid-state dye-sensitized solar cells. In: Nanostructured Materials for Solar Energy Conversion, pp. 255–273. Elsevier (2006)

    Chapter  Google Scholar 

  122. Ravirajan, P., Peiró, A.M., Nazeeruddin, M.K., Graetzel, M., Bradley, D.D., Durrant, J.R., Nelson, J.: Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented Zno nanorods and an amphiphilic molecular interface layer. J. Phys. Chem. B. 110, 7635–7639 (2006)

    Article  CAS  PubMed  Google Scholar 

  123. Soga, T.: Nanostructured Materials for Solar Energy Conversion. Elsevier, Amsterdam (2006)

    Google Scholar 

  124. Hodes, G.: When small is different: some recent advances in concepts and applications of nanoscale phenomena. Adv. Mater. 19, 639–655 (2007)

    Article  CAS  Google Scholar 

  125. Kamat, P.V.: Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C. 111, 2834–2860 (2007)

    Article  CAS  Google Scholar 

  126. Kim, J.Y., Lee, K., Coates, N.E., Moses, D., Nguyen, T.-Q., Dante, M., Heeger, A.J.: Efficient tandem polymer solar cells fabricated by all-solution processing. Science. 317, 222–225 (2007)

    Article  CAS  PubMed  Google Scholar 

  127. Licht, S.: Energy technology division research award address: photoelectrochemical storage of solar energy. ECS Trans. 2, 1–14 (2007)

    Article  Google Scholar 

  128. Mayer, A.C., Scully, S.R., Hardin, B.E., Rowell, M.W., McGehee, M.D.: Polymer-based solar cells. Mater. Today. 10, 28–33 (2007)

    Article  CAS  Google Scholar 

  129. Pan, K., Zhang, Q., Wang, Q., Liu, Z., Wang, D., Li, J., Bai, Y.: The photoelectrochemical properties of dye-sensitized solar cells made with Tio2 nanoribbons and nanorods. Thin Solid Films. 515, 4085–4091 (2007)

    Article  CAS  Google Scholar 

  130. Peet, J., Kim, J.Y., Coates, N.E., Ma, W.L., Moses, D., Heeger, A.J., Bazan, G.C.: Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6, 497 (2007)

    Article  CAS  PubMed  Google Scholar 

  131. Snaith, H.J., Moule, A.J., Klein, C., Meerholz, K., Friend, R.H., Grätzel, M.: Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Lett. 7, 3372–3376 (2007)

    Article  CAS  PubMed  Google Scholar 

  132. R. F. Service: Solar energy. Can the upstarts top silicon? Science (New York, N.Y.). 319, 718 (2008)

    Article  Google Scholar 

  133. Parsons, R.: The single electrode potential: its significance and calculation. In: Standard Potentials in Aqueous Solution, pp. 13–37. Routledge (2017)

    Chapter  Google Scholar 

  134. Audubert, R.: The effect of light on suspensions. Archiv Fur Psychiatrie Und Nervenkrankheiten. 67, 5–83 (1923)

    Google Scholar 

  135. Sihvonen, V.I.: Einwirkung Der Strahlung Auf Elektrolytische Strompotentialwerte. Suomalaisen tiedeakatemian kustantama (1926)

    Google Scholar 

  136. Clark, P.E., Garrett, A.B..: Photovoltaic cells: the spectral sensitivities of copper, silver and gold electrodes in solutions of electrolytes. J. Am. Chem. Soc. 61, 1805–1810 (1939)

    Article  CAS  Google Scholar 

  137. A. Ll. Hughes and Prof. L. A. DuBridge. Photoelectric phenomena. International Series in Physics. New York, McGraw-Hill Book Co., Inc., London, McGrawHill Publishing Co., Ltd., (1932)

    Google Scholar 

  138. M. Brodskii and Yu. Ya. Gurevich: Teoriya Elektronnoi Emissii iz Metallov, Nauka, Moscow, (1973)

    Google Scholar 

  139. L. N. Dobretsov, M. V. Goryunova: Emission electronics, Naukovadumka, Kyiv (1966)

    Google Scholar 

  140. Berg, H., Schweiss, H.: Photo-polarography with a flash-lamp. Nature. 191, 1270 (1961)

    Article  CAS  PubMed  Google Scholar 

  141. Heyrovský, M.: Ature of the Photoeffect in aqueous solutions. Nature. 206, 1356 (1965)

    Article  Google Scholar 

  142. Heyrovský, M.: Anodic photocurrent and the primary process in electrochemical photoeffect. Nature. 209, 708 (1966)

    Article  Google Scholar 

  143. Heyrovsky, M.: The electrochemical photoeffect. Proc. R. Soc. Lond. A. Math. Phys. Sci. 301, 411–431 (1967)

    CAS  Google Scholar 

  144. Grätzel, M.: Photoelectrochemical cells. Nature. 414, 338 (2001)

    Article  PubMed  Google Scholar 

  145. Li, J., Wu, N.: Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Cat. Sci. Technol. 5, 1360–1384 (2015)

    Article  CAS  Google Scholar 

  146. Airey, J., Wilson, J.: Chemical Reaction to Electromagnetic Wave Conversion Study, Tech. Rep. Avco Everett Research Lab Inc., Everett, (1967)

    Google Scholar 

  147. Myamlin, V., Pleskov, Y.V.: The electrochemistry of semiconductors. Russ. Chem. Rev. 32, 207–223 (1963)

    Article  Google Scholar 

  148. Young, L.: Anodic Oxide Films. Academic Press, London, New York (1961)

    Google Scholar 

  149. Mehl, W., Hale, J.M.: Insulator electrode reactions. Adv. Electrochem. Electrochem. Eng. 6, 399–458 (1967)

    CAS  Google Scholar 

  150. Bowden, F.P.: The acceleration of the electroc-deposition of hydrogen and oxygen by light of short wavelength. Trans. Faraday Soc. 27, 505–508 (1931)

    Article  CAS  Google Scholar 

  151. Ahmad, H., Kamarudin, S., Minggu, L., Kassim, M.: Hydrogen from photo-catalytic water splitting process: a review. Renew. Sust. Energ. Rev. 43, 599–610 (2015)

    Article  CAS  Google Scholar 

  152. Singh, R., Dutta, S.: A review on H 2 production through photocatalytic reactions using Tio 2/Tio 2-assisted catalysts. Fuel. 220, 607–620 (2018)

    Article  CAS  Google Scholar 

  153. Berg, H., Reissmann, P.: Photo-Polarographie: XXIII. Mitt. Über Die Ursachen Von Photo-Restströmen. J. Electroanal. Chem. Interfacial Electrochem. 24(2–3), 427–434 (1970)

    Article  CAS  Google Scholar 

  154. Veselovskii, V.I.: The fundamental photogalvanic effect. Zh Fiz Khim. 20, 1493–1495 (1946)

    CAS  Google Scholar 

  155. Pucciarelli, F., et al.: Photoelectric effect of sulphur deposited from a thiocyanate melt onto a platinum electrode. J Chem Soc Chem. Commun. 5, 154–155 (1973)

    Article  Google Scholar 

  156. Gurevich, L.E., Rumyantsev, A.A.: Theory of the photoelectric effect in finite crystals at high frequencies and in the presence of an external magnetic field. Soviet Phys Solid State. 9, 55 (1967)

    Google Scholar 

  157. Bolts, J.M., Wrighton, M.S.: Chemically derivatized N-type semiconducting gallium arsenide photoelectrodes. Thermodynamically uphill oxidation of surface-attached ferrocene centers. J. Am. Chem. Soc. 101, 6179–6184 (1979)

    Article  CAS  Google Scholar 

  158. Heller, A., Miller, B., Lewerenz, H., Bachmann, K.: An efficient photocathode for semiconductor liquid junction cells: 9.4% solar conversion efficiency with P-Inp/Vcl3-Vcl2-Hcl/C. J. Am. Chem. Soc. 102, 6555–6556 (1980)

    Article  CAS  Google Scholar 

  159. Heller, A., Miller, B., Thiel, F.: 11.5% solar conversion efficiency in the Photocathodically protected P-Inp/V3+-V2+-Hci/C semiconductor liquid junction cell. Appl. Phys. Lett. 38, 282–284 (1981)

    Article  CAS  Google Scholar 

  160. Fujishima, A., Honda, K.: Electrochemical evidence for the mechanism of the primary stage of photosynthesis. Bull. Chem. Soc. Jpn. 44, 1148–1150 (1971)

    Article  CAS  Google Scholar 

  161. Möllers, F., Memming, R.: Electrochemical studies of semiconducting Sno2-electrodes. Ber. Bunsenges. Phys. Chem. 76, 469–475 (1972)

    Google Scholar 

  162. Giraudeau, A., Fan, F.-R.F., Bard, A.J.: Semiconductor electrodes. 30. Spectral sensitization of the semiconductors titanium oxide (N-Tio2) and tungsten oxide (N-Wo3) with metal phthalocyanines. J. Am. Chem. Soc. 102, 5137–5142 (1980)

    Article  CAS  Google Scholar 

  163. Wheeler, B.L., Nagasubramanian, G., Bard, A.J., Schechtman, L.A., Kenney, M.E.: A silicon phthalocyanine and a silicon naphthalocyanine: synthesis, electrochemistry, and electrogenerated chemiluminescence. J. Am. Chem. Soc. 106, 7404–7410 (1984)

    Article  CAS  Google Scholar 

  164. Gerischer, H.: The role of semiconductor structure and surface properties in photoelectrochemical processes. J. Electroanal. Chem. Interfacial Electrochem. 150, 553–569 (1983)

    Article  CAS  Google Scholar 

  165. Fujishima, A., Honda, K.: Nature (London). 238, 37 (1972)

    Article  CAS  Google Scholar 

  166. Parkinson, B.A., Weaver, P.F.: Photoelectrochemical pumping of enzymatic Co2 reduction. Nature. 309, 148 (1984)

    Article  CAS  Google Scholar 

  167. Wahi, A., Engelhardt, R., Hoyer, P., Könenkamp, R.: Interface characterization of amorphous silicon on titanium dioxide: towards a solidstate sensitizer cell, Proc. Proc. 11th Photovoltaic Solar Energy Conference (Montreux, 1992), pp. 714À717, (1992)

    Google Scholar 

  168. Ashokkumar, M., Kudo, A., Saito, N., Sakata, T.: Semiconductor sensitization by Rus2 colloids on Tio2 electrodes. Chem. Phys. Lett. 229, 383–388 (1994)

    Article  CAS  Google Scholar 

  169. Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., Heeger, A.J.: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (Ch) X. J. Chem. Soc. Chem. Commun. (16), 578–580 (1977)

    Google Scholar 

  170. Bard, A.J.: Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem. 10, 59–75 (1979)

    Article  CAS  Google Scholar 

  171. Whitten, K.W., Davis, R.E., Peck, M.L., Peck, M.L.: General Chemistry. Cengage Learning, Boston (2000)

    Google Scholar 

  172. Hamnett, A.: Semiconductor electrochemistry. In: Comprehensive Chemical Kinetics, vol. 27, pp. 61–246. Elsevier (1988)

    Google Scholar 

  173. Newman, J.: Electrochemical Systems, 2nd edn, p. 378. Prentince-Hall, Englewood (1991)

    Google Scholar 

  174. Kröger, F., Vink, H., Seitz, F., Turnbull, D.: Solid State Physics, pp. 307–435. Academic, New York (1956)

    Google Scholar 

  175. Hannay, N.: Semiconductors, p. 401. Reinhold Publ, Corp., New York (1959)

    Google Scholar 

  176. Kröger, F.A.: The Chemistry of Imperfect Crystals., Tech. Rep. North-Holland Pub. Co. (1964)

    Book  Google Scholar 

  177. Smith, R.: Semiconductors. Cambridge University, Cambridge (1978)., Google Scholar, 72 (1974)

    Google Scholar 

  178. Cox, P.A.: The Electronic Structure and Chemistry of Solids. Oxford University Press, Oxford etc. (1987)

    Google Scholar 

  179. Hoffmann, R.: Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures, 544.2 HOF (1988)

    Google Scholar 

  180. Bockris, J.O.M., Khan, S.U.: Surface Electrochemistry: a Molecular Level Approach. Springer Science & Business Media (2013)

    Google Scholar 

  181. Bocarsly, A.B.., Bookbinder, D.C., Dominey, R.N., Lewis, N.S., Wrighton, M.S.: Photoreduction at illuminated P-type semiconducting silicon photoelectrodes. Evidence for Fermi level pinning. J. Am. Chem. Soc. 102, 3683–3688 (1980)

    Article  CAS  Google Scholar 

  182. Dominey, R.N., Lewis, N.S., Wrighton, M.S.: J. Am. Chem. Soc. 103, 1261 (1981)

    Article  CAS  Google Scholar 

  183. Heller, A., Miller, B.: Some recent progress in semiconductor-liquid junction solar cells. Electrochim. Acta. 25, 29–41 (1980)

    Article  CAS  Google Scholar 

  184. Morrison, S.: Roy the Chemical Physics of Surfaces. Plenum Press, New York and London (1977)

    Book  Google Scholar 

  185. Singh, P., Singh, R., Gale, R., Rajeshwar, K., DuBow, J.: Surface charge and specific ion adsorption effects in photoelectrochemical devices. J. Appl. Phys. 51, 6286–6291 (1980)

    Article  CAS  Google Scholar 

  186. Pelskov, Y.V., Sakharova, A.Y., Krotova, M., Bouilov, L., Spitsyn, B.: Photoelectrochemical properties of semiconductor diamond. J. Electroanal. Chem. Interfacial Electrochem. 228, 19–27 (1987)

    Article  Google Scholar 

  187. Memming, R.: Semiconductor Electrochemistry. Wiley, Weinheim (2015)

    Google Scholar 

  188. Bockris, J.O.M., Conway, B.E., White, R.E.: Modern Aspects of Electrochemistry, vol. 22. Springer Science & Business Media, New York (2012)

    Google Scholar 

  189. Madou, M.J., Cardon, F., Gomes, W.P.: Impedance measurements at the N- and P-type gap single crystal electrode. Electrochem. Soc. 124, 1623–1627 (1976)

    Article  Google Scholar 

  190. Tench, D.M., Gerischer, H.: The phototransition in Zno at 380 nm studied by anodic photocurrents. J. Electrochem. Soc. 124, 1612–1618 (1977)

    Article  CAS  Google Scholar 

  191. Wilhelm, S., Yun, K., Ballenger, L., Hackerman, N.: Semiconductor properties of iron oxide electrodes. J. Electrochem. Soc. 126, 419–424 (1979)

    Article  CAS  Google Scholar 

  192. Komaguchi, K., Maruoka, T., Nakano, H., Imae, I., Ooyama, Y., Harima, Y.: Electron-transfer reaction of oxygen species on Tio2 nanoparticles induced by sub-band-gap illumination. J. Phys. Chem. C. 114, 1240–1245 (2010)

    Article  CAS  Google Scholar 

  193. Chandrasekaran, K., Weichold, M., Gutmann, F., Bockris, J.O.M.: On the equivalent circuit for the illuminated semiconductor electrolyte interface. Electrochim. Acta. 30, 961–963 (1985)

    Article  CAS  Google Scholar 

  194. Ponomarev, E.A., Peter, L.M.: A comparison of intensity modulated photocurrent spectroscopy and photoelectrochemical impedance spectroscopy in a study of photoelectrochemical hydrogen evolution at P-Inp. J. Electroanal. Chem. 397, 45–52 (1995)

    Article  Google Scholar 

  195. Schlichthörl, G., Ponomarev, E., Peter, L.: An investigation of hydrogen evolution at P-Si by intensity modulated photocurrent spectroscopy and photomodulated microwave reflectivity. J. Electrochem. Soc. 142, 3062–3067 (1995)

    Article  Google Scholar 

  196. Uosaki, K., Shigematsu, Y., Kaneko, S., Kita, H.: Photoluminescence and impedance study of P-gallium arsenide/electrolyte interfaces under cathodic bias: evidence for flat-band potential shift during illumination and introduction of high-density surface states by platinum treatment. J. Phys. Chem. 93, 6521–6526 (1989)

    Article  CAS  Google Scholar 

  197. T. H. Gfroerer: Photoluminescence in analysis of surfaces and interfaces, Encyclopedia of analytical chemistry, eds R.A. Meyers and G.E. McGuire (2006) https://doi.org/10.1002/9780470027318.a2510

  198. Preda, L., Negrila, C., Lazarescu, M.F., Enache, M., Anastasescu, M., Toader, A.M., Ionescu, S., Lazarescu, V.: Ga and as competition for thiolate formation at P-Gaas (1 1 1) surfaces. Electrochim. Acta. 104, 1–11 (2013)

    Article  CAS  Google Scholar 

  199. Szklarczyk, M., Gonzalez-Martin, A., Velev, O., Bockris, J.O.'.M.: Stm studies of P-Si (111) substrate in air and in electrolytic environment. Surf. Sci. 237, 305–311 (1990)

    Article  CAS  Google Scholar 

  200. Szklarczyk, M., Gonzalez-Martin, A., Bockris, J.O.'.M.: In situ Stm studies of surface states at the P-Si (111)/propylene carbonate (Tbap) interface. Surf. Sci. 257, 307–318 (1991)

    Article  CAS  Google Scholar 

  201. Neddermeyer, H.: Scanning tunnelling microscopy of semiconductor surfaces. Rep. Prog. Phys. 59, 701 (1996)

    Article  CAS  Google Scholar 

  202. Gurevich, Y.Y., Pleskov, Y.V.: Photoelectrochemistry of semiconductors. Semicond. Semimet. 19, 255–328 (1983)

    Article  CAS  Google Scholar 

  203. Berg, H., Schweiss, H., Stutter, E., Weller, K.: Photo-polarographie: xx. systematik und problematik. J. Electroanal. Chem. Interfacial Electrochem. 15, 415–450 (1967)

    Article  CAS  Google Scholar 

  204. Barker, G.C., McKeown, D.: Residual photocurrent at a mercury electrode. J. Electroanal. Chem. Interfacial Electrochem. 62, 341–355 (1975)

    Article  CAS  Google Scholar 

  205. Delahay, P.: Double Layer and Electrode Kinetics. Interscience Publishers, New York (1965)

    Google Scholar 

  206. A. N. Frumkin, V. S. Bagotsky, Z. A. Iofa, B. N. Kabanov: Kinetics of the electrode processes, Moscow, Moscou Univ. Publ, (1952)

    Google Scholar 

  207. Scheller, P.R.: Chapter 1.6 – some aspects of electrochemistry of interfaces. In: Seetharaman, S. (ed.) Treatise on Process Metallurgy, pp. 79–93. Elsevier, Boston (2014). https://doi.org/10.1016/B978-0-08-096984-8.00023-9

    Chapter  Google Scholar 

  208. Stern, O.: Zur Theorie Der Elektrolytischen Doppelschicht. Z. Elektrochem. Angew. Phys. Chem. 30, 508–516 (1924)

    CAS  Google Scholar 

  209. A. N. Frumkin, V. S. Bagotsky, Z. A. Iofa, B. N. Kabanov, Kinetics of the electrode processes, Moscow, Moscou Univ. Publ. (1952)

    Google Scholar 

  210. Y. Y. Gurevich, Y. V. Pleskov, Z. A. Rotenberg: Photoelectrochemistry, Boston, MA, Springer US, 1 (1980)

    Google Scholar 

  211. Stock, J.T., Orna, M.V.: Electrochemistry, Past and Present, vol. 390. ACS Publications (1989)

    Google Scholar 

  212. Wahl, D.: A short history of electrochemistry – part I. Galvanotechnik. 96, 1600–1610 (2005)

    CAS  Google Scholar 

  213. Uosaki, K., Kita, H.: In: White, R.E., Bockris, J.O.’.M., Conway, B.E. (eds.) Modern Aspects of Electrochemistry, vol. 18, p. 1. Plenum Press, New York (1986)

    Chapter  Google Scholar 

  214. Reiss, H.: Photocharacteristics for electrolyte-semiconductor junctions. J. Electrochem. Soc. 125, 937–949 (1978)

    Article  CAS  Google Scholar 

  215. Trasatti, S.: The absolute electrode potential: an explanatory note (recommendations 1986). Pure Appl. Chem. 58, 955–966 (1986)

    Article  CAS  Google Scholar 

  216. Bockris, J.O.M., Argade, S.: Work function of metals and the potential at which they have zero charge in contact with solutions. J. Chem. Phys. 49, 5133–5134 (1968)

    Article  CAS  Google Scholar 

  217. (a) W. Schottky, Physics,113, 367 (1939) (b) Schottky, W.: Naturwis- senschaften 26, 843 (1938) (c) Mott, N.F.: Proc. R. Soc. London, Ser. A 171, 27 (1939) (d) Mott, N.F.: Proc. Cambridge Philos. Soc. 34, 568 (1938)

    Google Scholar 

  218. Seitz, F. and Turnbull, D., Eds., Solid State Physics, Volume 3, Academic Press, New York (1956)

    Google Scholar 

  219. Bruce Hannay, N.: Semiconductors. Phys. Today. 12, 40–42 (1959)

    Google Scholar 

  220. R. A. Smith: Semiconductors, Cambridge, New York, Cambridge University Press (1978)

    Google Scholar 

  221. Y. Pleskov: Semiconductor Photoelectrochemistry, Springer US (1986)

    Google Scholar 

  222. R. G. Compton: Comprehensive chemical kinetics. Vol. 27, Chapter 2 Semiconductor Electrochemistry, Elsevier, 61–246 (1987)

    Google Scholar 

  223. Hoffman, R.: Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures, Tech. Rep. Cornell Univ Ithaca Ny Baker Lab (1988)

    Google Scholar 

  224. West, A.R.: Solid State Chemistry and Its Applications. Wiley, Chichester (2014)

    Google Scholar 

  225. Frumkin, A., Damaskin, B.: Real free solvation energy of an electron in a solution in equilibrium with the electrode and its dependence on the solvent nature. J. Electroanal. Chem. Interfacial Electrochem. 79, 259–266 (1977)

    Article  CAS  Google Scholar 

  226. Gerischer, H.: Semiconductor electrode reactions. Adv. Electrochem. Electrochem. Eng. 1, 139 (1961)

    CAS  Google Scholar 

  227. Gerischer, H.: Electron-transfer kinetics of redox reactions at the semiconductor/electrolyte contact. A new approach. J. Phys. Chem. 95, 1356–1359 (1991)

    Article  CAS  Google Scholar 

  228. Halliwell, H., Nyburg, S.: Enthalpy of hydration of the proton. Trans. Faraday Soc. 59, 1126–1140 (1963)

    Article  CAS  Google Scholar 

  229. Hansen, W., Kolb, D.: The work function of emersed electrodes. J. Electroanal. Chem. Interfacial Electrochem. 100, 493–500 (1979)

    Article  CAS  Google Scholar 

  230. Marcus, R.: Reorganization free energy for electron transfers at liquid-liquid and dielectric semiconductor-liquid interfaces. J. Phys. Chem. 94, 1050–1055 (1990)

    Article  CAS  Google Scholar 

  231. Trasatti, S.: Comprehensive treatise of electrochemistry. In: The Electrode Potential. Plenum Press, New York (1980)

    Chapter  Google Scholar 

  232. Vetter, K.: Electrochemical Kinetics. Academic, New York (1967) Google Scholar, 115 (1981)

    Google Scholar 

  233. Gomer, R., Tryson, G.: An experimental determination of absolute half-cell EMF’s and single ion free energies of solvation. J. Chem. Phys. 66, 4413–4424 (1977)

    Article  CAS  Google Scholar 

  234. Gärtner, W.W.: Depletion-layer photoeffects in semiconductors. Phys. Rev. 116, 84–87 (1959)

    Article  Google Scholar 

  235. Laser, D., Bard, A.J.: Semiconductor electrodes: vii digital simulation of charge injection and the establishment of the space charge region in the absence and presence of surface states. J. Electrochem. Soc. 123, 1828–1832 (1976)

    Article  CAS  Google Scholar 

  236. Matsumura, M., Matsudaira, S., Tsubomura, H., Takata, M., Yanagida, H.: Dye sensitization and surface structures of semiconductor electrodes. Ind. Eng. Chem. Prod. Res. Dev. 19, 415–421 (1980)

    Article  CAS  Google Scholar 

  237. Wilson, R.: Electron transfer processes at the semiconductor-electrolyte interface. Crit. Rev. Solid State Mater. Sci. 10, 1–41 (1980)

    Article  CAS  Google Scholar 

  238. Gerischer, H.: The impact of semiconductors on the concepts of electrochemistry. Electrochim. Acta. 35, 1677–1699 (1990)

    Article  CAS  Google Scholar 

  239. Butler, M.A.: Photoelectrolysis and physical properties of the semiconducting electrode Wo2. J. Appl. Phys. 48, 1914–1920 (1977)

    Article  CAS  Google Scholar 

  240. Gonzales-Martin, A., Bhardwaj, R.C., Bockris, J.M.: Somein situ Stm contributions to the characterization of electrochemical systems. J. Appl. Electrochem. 23, 531–546 (1993)

    Article  Google Scholar 

  241. McCann, J.F., Badwal, S.P.S.: Equivalent circuit analysis of the impedance response of semiconductor/electrolyte/counterelectrode cells. J. Electrochem. Soc. 129, 551–559 (1982)

    Article  CAS  Google Scholar 

  242. Lemasson, P., Etcheberry, A., Gautron, J.: Analysis of photocurrents at the semiconductor—eletrolyte junction. Electrochim. Acta. 27, 607–614 (1982)

    Article  CAS  Google Scholar 

  243. Gutiérrez, M.T., Salvador, P.: Photoelectrochemical characterization and optimization of a liquid-junction photovoltaic cell based on electrodeposited CdSe thin films: influence of annealing and photoetching on the physical parameters determining the cell performance. Solar Energy Mater. 15, 99–113 (1987)

    Article  Google Scholar 

  244. Peter, L., Li, J., Peat, R.: Part I. Transient and steady-state photocurrents. Surf. Recombinat. Semicond. Electrod. 165, 29–40 (1984)

    CAS  Google Scholar 

  245. D. D. Macdonald, M. Mckubre, J. Bockris, B. Conway, R. White: Modern Aspects of Electrochemistry, 14, 151–189 (1982)

    Google Scholar 

  246. Nowotny, M.K., Sheppard, L.R., Bak, T., Nowotny, J.: Defect chemistry of titanium dioxide. Application of defect engineering in processing of Tio2-based photocatalysts. J. Phys. Chem. C. 112, 5275–5300 (2008)

    Article  CAS  Google Scholar 

  247. Nowotny, J., Sorrell, C., Bak, T., Sheppard, L.: Solar-hydrogen: unresolved problems in solid-state science. Sol. Energy. 78(5), 593–602 (2005)

    Article  CAS  Google Scholar 

  248. Uosaki, K., Kita, H.: Effects of the Helmholtz layer capacitance on the potential distribution at semiconductor/electrolyte interface and the linearity of the Mott-Schottky plot. J. Electrochem. Soc. 130, 895–897 (1983)

    Article  CAS  Google Scholar 

  249. Kar, S., Rajeshwar, K., Singh, P., DuBow, J.: On the design and operation of electrochemical solar cells. Sol. Energy. 23, 129–139 (1979)

    Article  CAS  Google Scholar 

  250. Murray, C., Norris, D.J., Bawendi, M.G.: Synthesis and characterization of nearly monodisperse Cde (E= sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)

    Article  CAS  Google Scholar 

  251. Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science. 271, 933–937 (1996)

    Article  CAS  Google Scholar 

  252. Rideout, V.: A review of the theory, technology and applications of metal-semiconductor rectifiers. Thin Solid Films. 48, 261–291 (1978)

    Article  CAS  Google Scholar 

  253. Rhoderick, E.H.: Metal-semiconductor contacts. IEE Proc. I-Solid-State Electr. Dev. 129, 1 (1982)

    CAS  Google Scholar 

  254. Horrocks, B.R., Mirkin, M.V., Bard, A.J.: Scanning electrochemical microscopy. 25. Application to investigation of the kinetics of heterogeneous electron transfer at semiconductor (Wse2 and Si) electrodes. J. Phys. Chem. 98, 9106–9114 (1994)

    Article  CAS  Google Scholar 

  255. Dimitriev, O., Fahlman, M., Braun, S.: Energy level alignment at the interface of cadmium sulphide single crystal and phthalocyanines: the role of the crystal surface states. Mater. Chem. Phys. 205, 102–112 (2018)

    Article  CAS  Google Scholar 

  256. Chopra, K., Bahl, S.: Amorphous versus crystalline GeTe films. I. Growth and structural behavior. J. Appl. Phys. 40, 4171–4178 (1969)

    Article  CAS  Google Scholar 

  257. Deringer, V.L., Dronskowski, R., Wuttig, M.: Microscopic complexity in phase-change materials and its role for applications. Adv. Funct. Mater. 25, 6343–6359 (2015)

    Article  CAS  Google Scholar 

  258. K. Chopra, R. Kainthla, D. Pandya, A. Thakoor, G. Hass, M. Farncombe, J. Vassen: Physics of Thin Films, 12, 217–230 (1982)

    Google Scholar 

  259. Parajuli, S., Alpuche-Aviles, M.A.: Electrochemical and optical characterization of materials band structure. In: Materials and Processes for Solar Fuel Production, pp. 75–95. Springer, New York (2014)

    Google Scholar 

  260. Wu, Y., Xiang, J., Yang, C., Lu, W., Lieber, C.M.: Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature. 430, 61 (2004)

    Article  CAS  PubMed  Google Scholar 

  261. Kukimoto, H.: MOCVD — current state and future. J. Cryst. Growth. 95, 360–362 (1989)

    Article  CAS  Google Scholar 

  262. Ruach-Nir, I., Zhang, Y., Popovitz-Biro, R., Rubinstein, I., Hodes, G.: Shape control in electrodeposited, epitaxial CdSe nanocrystals on (111) gold. J. Phys. Chem. B. 107, 2174–2179 (2003)

    Article  CAS  Google Scholar 

  263. Golan, Y., et al.: Epitaxial electrodeposition of cadmium selenide nanocrystals on gold. Langmuir. 8, 749–752 (1992)

    Article  CAS  Google Scholar 

  264. Xu, D., Guo, G., Guo, Y., Zhang, Y., Gui, L.: Nanocrystal size control by bath temperature in electrodeposited CdSe thin films. J. Mater. Chem. 13, 360–364 (2003)

    Article  CAS  Google Scholar 

  265. Kressin, A.M., et al.: Synthesis of stoichiometric cadmium selenide films via sequential monolayer electrodeposition. Chem. Mater. 3, 1015–1020 (1991)

    Article  CAS  Google Scholar 

  266. Barton, J.K., Vertegel, A.A., Bohannan, E.W., Switzer, J.A.: Epitaxial electrodeposition of copper(I) oxide on single-crystal copper. Chem. Mater. 13, 952–959 (2001)

    Article  CAS  Google Scholar 

  267. Yoshida, T., Tochimoto, M., Schlettwein, D., Wöhrle, D., Sugiura, T., Minoura, H.: Self-assembly of zinc oxide thin films modified with tetrasulfonated metallophthalocyanines by one-step electrodeposition. Chem. Mater. 11, 2657–2667 (1999)

    Article  CAS  Google Scholar 

  268. Lawrence, M.F., Dodelet, J.P., Dao, L.H.: Electrodeposited cadmium sulfide/salpc heterojunction cell: origin of the P-type semiconducting character of the surfactant aluminum phthalocyanine. J. Phys. Chem. 89, 1395–1401 (1985)

    Article  CAS  Google Scholar 

  269. Endres, F.: Electrodeposition of a thin germanium film on gold from a room temperature ionic liquid. Phys. Chem. Chem. Phys. 3, 3165–3174 (2001)

    Article  CAS  Google Scholar 

  270. Chen, R., Xu, D., Guo, G., Tang, Y.: Electrodeposition of silver selenide thin films from aqueous solutions. J. Mater. Chem. 12, 1437–1441 (2002)

    Article  CAS  Google Scholar 

  271. Kemell, M., Ritala, M., Leskelä, M.: Effects of post-deposition treatments on the photoactivity of cuinse thin films deposited by the induced co-deposition mechanism. J. Mater. Chem. 11, 668–672 (2001)

    Article  CAS  Google Scholar 

  272. Saloniemi, H., Kanniainen, T., Ritala, M., Leskelä, M., Lappalainen, R.: Electrodeposition of lead selenide thin films. J. Mater. Chem. 8, 651–654 (1998)

    Article  CAS  Google Scholar 

  273. Torimoto, T., Obayashi, A., Kuwabata, S., Yasuda, H., Mori, H., Yoneyama, H.: Preparation of size-quantized Zns thin films using electrochemical atomic layer epitaxy and their photoelectrochemical properties. Langmuir. 16, 5820–5824 (2000)

    Article  CAS  Google Scholar 

  274. Baranski, A.S., Fawcett, W.R.: The electrodeposition of metal chalcogenides. J. Electrochem. Soc. 127, 766–767 (1980)

    Article  CAS  Google Scholar 

  275. Baranski, A.S., Fawcett, W.R., Gatner, K., McDonald, A.C., MacDonald, J.R., Selen, M.: Structural and compositional characterization of mixed Cds - CdSe films grown by cathodic electrodeposition. J. Electrochem. Soc. 130, 579–583 (1983)

    Article  CAS  Google Scholar 

  276. Mastai, Y., Gal, D., Hodes, G.: Nanocrystal-size control of electrodeposited nanocrystalline semiconductor films by surface capping. J. Electrochem. Soc. 147, 1435–1439 (2000)

    Article  CAS  Google Scholar 

  277. Quinn, B.M., Ding, Z., Moulton, R., Bard, A.J.: Novel electrochemical studies of ionic liquids. Langmuir. 18, 1734–1742 (2002)

    Article  CAS  Google Scholar 

  278. Endres, F., El Abedin, S.Z.: Electrodeposition of stable and narrowly dispersed germanium nanoclusters from an ionic liquid. Chem. Commun. (2002). https://doi.org/10.1039/B110716J892-893

  279. Ngo, T.T., Chavhan, S., Kosta, I., Miguel, O., Grande, H.-J., Tena-Zaera, R.N.: Electrodeposition of antimony selenide thin films and application in semiconductor sensitized solar cells. ACS Appl. Mater. Interfaces. 6, 2836–2841 (2014)

    Article  CAS  PubMed  Google Scholar 

  280. Farinella, M., Inguanta, R., Spanò, T., Livreri, P., Piazza, S., Sunseri, C.: Electrochemical deposition of CZTS thin films on flexible substrate. Energy Procedia. 44, 105–110 (2014)

    Article  CAS  Google Scholar 

  281. Samu, G.F., Scheidt, R., Zaiats, G., Kamat, P.V., Janáky, C.: Electrodeposition of hole-transport layer on methylammonium lead iodide film: a new strategy to assemble perovskite solar cells. Chem. Mater. (2018). https://doi.org/10.1021/acs.chemmater.8b01521

  282. Qiu, J., Hajibabaei, H., Nellist, M.R., Laskowski, F.A., Oener, S.Z., Hamann, T.W., Boettcher, S.W.: Catalyst deposition on photoanodes: the roles of intrinsic catalytic activity, catalyst electrical conductivity, and semiconductor morphology. ACS Energy Lett. 3, 961–969 (2018)

    Article  CAS  Google Scholar 

  283. Wasna'a, M.A.: Synthesis and study the structure and optical properties of CdO polycrystalline thin film using electrochemical depositing method. Int. J. Nano. Chem. 2, 21–25 (2016)

    Article  Google Scholar 

  284. Chopra, K.L.: Thin Film Phenomena. McGraw-Hill, New York; London (1969)

    Google Scholar 

  285. O'Brien, P., McAleese, J.: Developing an understanding of the processes controlling the chemical bath deposition of Zns and Cds. J. Mater. Chem. 8, 2309–2314 (1998)

    Article  CAS  Google Scholar 

  286. Hodes, G.: Size-quantized nanocrystalline semiconductor films. Israel J. Chem. 33, 95–106 (1993)

    Article  CAS  Google Scholar 

  287. Sharma, N., Kainthla, R., Pandya, D., Chopra, K.: Electroless deposition of semiconductor films. Thin Solid Films. 60, 55–59 (1979)

    Article  CAS  Google Scholar 

  288. Schlesinger, M., Paunovic, M.: Modern Electroplating, vol. 55. Wiley, New York (2011)

    Google Scholar 

  289. Shacham-Diamand, Y., Osaka, T., Okinaka, Y., Sugiyama, A., Dubin, V.: 30 Years of electroless plating for semiconductor and polymer micro-systems. Microelectron. Eng. 132, 35–45 (2015)

    Article  CAS  Google Scholar 

  290. H. Kühnlein, J. Schulze, T. Voss: Metal plating composition and method for the deposition of copper—zinc—tin suitable for manufacturing thin film solar cell. Patent 6,885,550. 26 April 2005. International Publication Date 29 November 2007 (29.11.2007) International Publication Number WO 2007/134843 A3

    Google Scholar 

  291. Pratt, D.R., Langmuir, M.E., Boudreau, R.A., Rauh, R.D.: Chemically deposited CdSe thin films for photoelectrochemical cells. J. Electrochem. Soc. 128, 1627–1629 (1981)

    Article  CAS  Google Scholar 

  292. Chu, T.L., Chu, S.S., Schultz, N., Wang, C., Wu, C.Q.: Solution-grown cadmium sulfide films for photovoltaic devices. J. Electrochem. Soc. 139, 2443–2446 (1992)

    Article  CAS  Google Scholar 

  293. Breen, M.L., Woodward, D.K., Schwartz, A.W.: Apblett: direct evidence for an ion-by-ion deposition mechanism in solution growth of Cds thin films. Chem. Mater. 10, 710–717 (1998)

    Article  CAS  Google Scholar 

  294. Nicolau, Y.F., Dupuy, M., Brunel, M.: Zns, Cds, and Zn1 − X Cd X S thin films deposited by the successive ionic layer adsorption and reaction process. J. Electrochem. Soc. 137, 2915–2924 (1990)

    Article  CAS  Google Scholar 

  295. Sasagawa, M., Nosaka, Y.: The effect of chelating reagents on the layer-by-layer formation of Cds films in the electroless and electrochemical deposition processes. Electrochim. Acta. 48, 483–488 (2003)

    Article  CAS  Google Scholar 

  296. Haram, S.K., Santhanam, K.S.V.: Electroless deposition of orthorhombic copper (I) selenide and its room temperature phase transformation to cubic structure. Thin Solid Films. 238, 21–26 (1994)

    Article  CAS  Google Scholar 

  297. Haram, S.K., Santhanam, K.S.V., Neumann-Spallart, M., Lévy-Clément, C.: Electroless deposition on copper substrates and characterization of thin films of copper (I) selenide. Mater. Res. Bull. 27, 1185–1191 (1992)

    Article  CAS  Google Scholar 

  298. Kelly, J.J., Vanmaekelbergh, D.: Charge carrier dynamics in nanoporous photoelectrodes. Electrochim. Acta. 43, 2773–2780 (1998)

    Article  CAS  Google Scholar 

  299. Hodes, G., Albu-Yaron, A., Decker, F., Motisuke, P.: Three-dimensional quantum-size effect in chemically deposited cadmium selenide films. Phys. Rev. B. 36, 4215–4221 (1987)

    Article  CAS  Google Scholar 

  300. Hagfeldt, A., Walder, L., Graetzel, M.: Nanostructured Tio2 semiconductor electrodes modified with surface-attached viologens: applications for displays and smart windows. In: Spie’s 1995 International Symposium on Optical Science, Engineering, and Instrumentation, vol. 2531. SPIE (1995)

    Google Scholar 

  301. Lindström, H., Rensmo, H., Lindquist, S.-E., Hagfeldt, A., Henningsson, A., Södergren, S., Siegbahn, H.: Redox properties of nanoporous Tio2 (Anatase) surface modified with phosphotungstic acid. Thin Solid Films. 323, 141–145 (1998)

    Article  Google Scholar 

  302. McEvoy, A.J., Gratzel, M., Stratman, B.: Encyclopedia of Electrochemistry, vol. 6. Wiley-VCH, Weinheim (2002)

    Google Scholar 

  303. Zukalová, M., Zukal, A., Kavan, L., Nazeeruddin, M.K., Liska, P., Grätzel, M.: Organized mesoporous Tio2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett. 5, 1789–1792 (2005)

    Article  PubMed  CAS  Google Scholar 

  304. Liu, D., Kamat, P.V.: Photoelectrochemical behavior of thin cadmium selenide and coupled titania/cadmium selenide semiconductor films. J. Phys. Chem. 97, 10769–10773 (1993)

    Article  CAS  Google Scholar 

  305. Alperson, B., Demange, H., Rubinstein, I., Hodes, G.: Photoelectrochemical charge transfer properties of electrodeposited CdSe quantum dots. J. Phys. Chem. B. 103, 4943–4948 (1999)

    Article  CAS  Google Scholar 

  306. Zhao, X.K., McCormick, L., Fendler, J.H.: Electrical and photoelectrochemical characterization of cadmium sulfide particulate films by scanning electrochemical microscopy, scanning tunneling microscopy, and scanning tunneling spectroscopy. Chem. Mater. 3, 922–935 (1991)

    Article  CAS  Google Scholar 

  307. May, C., Strümpfel, J.: Ito coating by reactive magnetron sputtering–comparison of properties from Dc and Mf processing. Thin Solid Films. 351, 48–52 (1999)

    Article  CAS  Google Scholar 

  308. Tuna, O., Selamet, Y., Aygun, G., Ozyuzer, L.: High quality Ito thin films grown by dc and Rf sputtering without oxygen. J. Phys. D. Appl. Phys. 43, 055402 (2010)

    Article  CAS  Google Scholar 

  309. Lippens, P., Muehlfeld, U.: Indium tin oxide (ITO): sputter deposition processes. In: Handbook of Visual Display Technology, pp. 1–16. Springer, Berlin; Heidelberg (2014)

    Google Scholar 

  310. Haram, S.K.: Semiconductor Electrodes. In: Handbook of Electrochemistry, pp. 329–389. Elsevier, Amsterdam; Boston (2007)

    Chapter  Google Scholar 

  311. https://actu.epfl.ch/news/stained-glass-solar-windows-for-the-swiss-tech-con

  312. Grätzel, M.: Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovolt. Res. Appl. 8, 171–185 (2000)

    Article  Google Scholar 

  313. Zhang, S., Ye, H., Hua, J., Tian, H.: Recent advances in dye-sensitized photoelectrochemical cells for water splitting. EnergyChem. 1, 100015 (2019)

    Article  Google Scholar 

  314. Nelson, J.: The Physics of Solar Cells. World Scientific Publishing Company (2003)

    Book  Google Scholar 

  315. West, W.: Proceedings of vogel centennial symposium. Photogr. Sci. Eng. 18, 35 (1974)

    CAS  Google Scholar 

  316. Moser, J.: Note about the gain photoelectric currents by optical sensitization. Monatsh. Chem. 8, 373 (1887)

    Article  Google Scholar 

  317. Namba, S., Hishiki, Y.: Color sensitization of zinc oxide with cyanine dyes1. J. Phys. Chem. 69, 774–779 (1965)

    Article  CAS  Google Scholar 

  318. Gerischer, H., Tributsch, H.: Elektrochemische Untersuchungen Zur Spektralen Sensibilisierung Von Zno-Einkristallen. Ber. Bunsenges. Phys. Chem. 72, 437–445 (1968)

    Article  CAS  Google Scholar 

  319. O'regan, B., Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 353, 737–740 (1991)

    Article  CAS  Google Scholar 

  320. Manzoor, S., Yu, Z.J., Ali, A., Ali, W., Bush, K.A., Palmstrom, A.F., Bent, S.F., McGehee, M.D., Holman, Z.C.: Improved light management in planar silicon and perovskite solar cells using PDMS scattering layer. Sol. Energy Mater. Sol. Cells. 173, 59–65 (2017)

    Article  CAS  Google Scholar 

  321. Amadelli, R., Argazzi, R., Bignozzi, C.A., Scandola, F.: Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru (Bpy) 2 (Cn) 2] 2ru (Bpy (CoO) 2) 22. J. Am. Chem. Soc. 112, 7099–7103 (1990)

    Article  CAS  Google Scholar 

  322. Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Mü Ller, E., Liska, P., Vlachopoulos, N., Grätzel, M.: J. Am. Chem. Soc. 115, 6382 (1993)

    Article  CAS  Google Scholar 

  323. Tachibana, Y., Moser, J.E., Grätzel, M., Klug, D.R., Durrant, J.R.: Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films. J. Phys. Chem. 100, 20056–20062 (1996)

    Article  CAS  Google Scholar 

  324. Asbury, J.B., Ellingson, R.J., Ghosh, H.N., Ferrere, S., Nozik, A.J., Lian, T.: Femtosecond IR study of excited-state relaxation and electron-injection dynamics of Ru (dcbpy) 2 (NCS) 2 in solution and on nanocrystalline Tio2 and Al2o3 thin films. J. Phys. Chem. B. 103, 3110–3119 (1999)

    Article  CAS  Google Scholar 

  325. Nazeeruddin, M.K., Pechy, P., Grätzel, M.: Efficient panchromatic sensitization of nanocrystallinetio2 films by a black dye based on atrithiocyanato–ruthenium complex. Chem. Commun. (18), 1705–1706 (1997)

    Google Scholar 

  326. Polo, A.S., Itokazu, M.K., Iha, N.Y.M.: Metal complex sensitizers in dye-sensitized solar cells. Coord. Chem. Rev. 248, 1343–1361 (2004)

    Article  CAS  Google Scholar 

  327. Barbe, C.J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., Grätzel, M.: Nanocrystalline titanium oxide electrodes for photovoltaic applications. J. Am. Ceram. Soc. 80, 3157–3171 (1997)

    Article  CAS  Google Scholar 

  328. Shklover, V., Ovchinnikov, Y.E., Braginsky, L., Zakeeruddin, S., Grätzel, M.: Structure of organic/inorganic interface in assembled materials comprising molecular components. Crystal structure of the sensitizer bis [(4, 4′-carboxy-2, 2′-bipyridine)(thiocyanato)] ruthenium (II). Chem. Mater. 10, 2533–2541 (1998)

    Article  CAS  Google Scholar 

  329. Sokolský, M., Cirák, J.: Dye-sensitized solar cells: materials and processes. Acta Electrotech. Informat. 10, 78–81 (2010)

    Google Scholar 

  330. Wan, H.: Dye Sensitized Solar Cells, vol. 3. University of Alabama, Department of Chemistry (2004)

    Google Scholar 

  331. Youngblood, W.J., Lee, S.-H.A., Kobayashi, Y., Hernandez-Pagan, E.A., Hoertz, P.G., Moore, T.A., Moore, A.L., Gust, D., Mallouk, T.E.: Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J. Am. Chem. Soc. 131, 926–927 (2009)

    Article  CAS  PubMed  Google Scholar 

  332. Arakawa, H., Shiraishi, C., Tatemoto, M., Kishida, H., Usui, D., Suma, A., Takamisawa, A., Yamaguchi, T.: Solar hydrogen production by tandem cell system composed of metal oxide semiconductor film photoelectrode and dye-sensitized solar cell. Proc. Solar Hydrogen and Nanotechnology II, (International Society for Optics and Photonics, 2007) p. 665003

    Google Scholar 

  333. Van de Krol, R., Grätzel, M.: Photoelectrochemical Hydrogen Production, vol. 90. Springer, New York (2012)

    Book  Google Scholar 

  334. Nakato, Y., Tonomura, S., Tsubomura, H.: The catalytic effect of electrodeposited metals on the photo-reduction of water at P-type semiconductors. Ber. Bunsenges. Phys. Chem. 80, 1289–1293 (1976)

    Article  CAS  Google Scholar 

  335. Kautek, W., Gobrecht, J., Gerischer, H.: The applicability of semiconducting layered materials for electrochemical solar energy conversion. Ber. Bunsenges. Phys. Chem. 84, 1034–1040 (1980)

    Article  CAS  Google Scholar 

  336. Ohashi, K., McCann, J., Bockris, J.O.M.: Hydrogen and electricity from water and light. Int. J. Energy Res. 1, 259–277 (1977)

    Article  CAS  Google Scholar 

  337. Szklarczyk, M., Bockris, J.O.M.: Photoelectrochemical evolution of hydrogen on P-indium phosphide. J. Phys. Chem. 88, 5241–5245 (1984)

    Article  CAS  Google Scholar 

  338. Bockris, J.O.M., Szklarczyk, M., Contractor, A.Q., Khan, S.U.M.: On photoelectrocatalysis of hydrogen and oxygen evolution. Int. J. Hydrog. Energy. 9, 741–746 (1984)

    Article  CAS  Google Scholar 

  339. Contractor, A.Q., Bockris, J.O.M.: Photoelectrocatalysis of oxygen evolution on Ntio2. Electrochim. Acta. 32, 121–123 (1987)

    Article  CAS  Google Scholar 

  340. Szklarczyk, M., Contractor, A.Q., Bockris, J.O.M., Young, V.Y., Bernard, L.A., Sparrow, G.: Spectroscopic and microscopic studies of photoelectrode surfaces. Solar Energy Mater. 11, 105–121 (1984)

    Article  CAS  Google Scholar 

  341. Szklarczyk, M., Bockris, J.O.M.: Photoelectrocatalysis and electrocatalysis on P-silicon. J. Phys. Chem. 88, 1808–1815 (1984)

    Article  CAS  Google Scholar 

  342. Szklarczyk, M., Bockris, J.O.M.: Hydrogen production through photoelectrocatalysis on P-type molybdenum sulphide. Int. J. Hydrog. Energy. 9, 831–834 (1984)

    Article  CAS  Google Scholar 

  343. Garcia-Segura, S., Brillas, E.: Applied Photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J Photochem Photobiol C: Photochem Rev. 31, 1–35 (2017)

    Article  CAS  Google Scholar 

  344. Yang, J., Wang, D., Han, H., Li, C.: Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 1900–1909 (2013)

    Article  CAS  PubMed  Google Scholar 

  345. Zarei, E., Ojani, R.: Fundamentals and some applications of photoelectrocatalysis and effective factors on its efficiency: a review. J. Solid State Electrochem. 21, 305–336 (2017)

    Article  CAS  Google Scholar 

  346. Daghrir, R., Drogui, P., Robert, D.: Photoelectrocatalytic technologies for environmental applications. J. Photochem. Photobiol. A Chem. 238, 41–52 (2012)

    Article  CAS  Google Scholar 

  347. Özcan, A.S., Erdem, B., Özcan, A.: Adsorption of acid blue 193 from aqueous solutions onto Na–bentonite and DTMA–bentonite. J. Colloid Interface Sci. 280, 44–54 (2004)

    Article  PubMed  CAS  Google Scholar 

  348. Tahir, S.S., Rauf, N.: Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere. 63, 1842–1848 (2006)

    Article  CAS  PubMed  Google Scholar 

  349. Gogate, P.R., Pandit, A.B..: A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res. 8, 501–551 (2004)

    Article  CAS  Google Scholar 

  350. Ikehata, K., Jodeiri Naghashkar, N., Gamal El-Din, M.: Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci. Eng. 28, 353–414 (2006)

    Article  CAS  Google Scholar 

  351. Ikehata, K., El-Din, M.G.: Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review. J. Environ. Eng. Sci. 5, 81–135 (2006)

    Article  CAS  Google Scholar 

  352. Pera-Titus, M., Garcı́a-Molina, V., Baños, M.A., Giménez, J., Esplugas, S.: Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl. Catal. B Environ. 47, 219–256 (2004)

    Article  CAS  Google Scholar 

  353. Esquivel, K., Arriaga, L.G., Rodríguez, F.J., Martínez, L., Godínez, L.A.: Development of a Tio2 modified optical Fiber electrode and its incorporation into a photoelectrochemical reactor for wastewater treatment. Water Res. 43, 3593–3603 (2009)

    Article  CAS  PubMed  Google Scholar 

  354. Yu, Z., Chuang, S.S.C.: The effect of Pt on the photocatalytic degradation pathway of methylene blue over Tio2 under ambient conditions. Appl. Catal. B Environ. 83, 277–285 (2008)

    Article  CAS  Google Scholar 

  355. Lou, J.-C., Huang, S.-W.: Treating isopropyl alcohol by a regenerative catalytic oxidizer. Sep. Purif. Technol. 62, 71–78 (2008)

    Article  CAS  Google Scholar 

  356. Egerton, T.A.: Does photoelectrocatalysis by Tio2 work? J. Chem. Technol. Biotechnol. 86, 1024–1031 (2011)

    Article  CAS  Google Scholar 

  357. Waldner, G., Pourmodjib, M., Bauer, R., Neumann-Spallart, M.: Photoelectrocatalytic degradation of 4-chlorophenol and oxalic acid on titanium dioxide electrodes. Chemosphere. 50, 989–998 (2003)

    Article  CAS  PubMed  Google Scholar 

  358. Bandara, J., Wansapura, P.T., Jayathilaka, S.P.B.: Indium tin oxide coated conducting glass electrode for electrochemical destruction of textile colorants. Electrochim. Acta. 52, 4161–4166 (2007)

    Article  CAS  Google Scholar 

  359. Skoumal, M., Rodríguez, R.M., Cabot, P.L., Centellas, F., Garrido, J.A., Arias, C., Brillas, E.: Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton degradation of the drug ibuprofen in acid aqueous medium using platinum and boron-doped diamond anodes. Electrochim. Acta. 54, 2077–2085 (2009)

    Article  CAS  Google Scholar 

  360. Martínez-Huitle, C.A., Brillas, E.: Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl. Catal. B Environ. 87, 105–145 (2009)

    Article  CAS  Google Scholar 

  361. Rajeshwar, K., Ibanez, J.G., Swain, G.M.: Electrochemistry and the environment. J. Appl. Electrochem. 24, 1077–1091 (1994)

    Article  CAS  Google Scholar 

  362. Liu, Y., Gan, X., Zhou, B., Xiong, B., Li, J., Dong, C., Bai, J., Cai, W.: Photoelectrocatalytic degradation of tetracycline by highly effective Tio2 nanopore arrays electrode. J. Hazard. Mater. 171, 678–683 (2009)

    Article  CAS  PubMed  Google Scholar 

  363. Fujishima, A., Rao, T.N., Tryk, D.A.: Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev. 1, 1–21 (2000)

    Article  CAS  Google Scholar 

  364. Domı́nguez, C., Garcı́a, J., Pedraz, M.A., Torres, A., Galán, M.A.: Photocatalytic oxidation of organic pollutants in water. Catal. Today. 40, 85–101 (1998)

    Article  Google Scholar 

  365. Hoffmann, M.R., et al.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  366. Li, M.C., Shen, J.N.: Photoelectrochemical oxidation behavior of organic substances on Tio2 thin-film electrodes. J. Solid State Electrochem. 10, 980–986 (2006)

    Article  CAS  Google Scholar 

  367. Kumar, B., Llorente, M., Froehlich, J., Dang, T., Sathrum, A., Kubiak, C.P.: Photochemical and photoelectrochemical reduction of Co2. Annu. Rev. Phys. Chem. 63, 541–569 (2012)

    Article  CAS  PubMed  Google Scholar 

  368. Yu, S., Zhou, Y.: Photochemical decomposition of hydrogen sulfide. In: Advanced Catalytic Materials-Photocatalysis and Other Current Trends. IntechOpen (2016)

    Google Scholar 

  369. Kainthla, R.C., Bockris, J.O.M.: Photoelectrolysis of H2S using an N-CdSe photoanode. Int. J. Hydrog. Energy. 12, 23–26 (1987)

    Article  CAS  Google Scholar 

  370. Naman, S.A., Aliwi, S.M., Al-Emara, K.: Hydrogen production from the splitting of H2S by visible light irradiation of vanadium sulfides dispersion loaded with Ruo2. Int. J. Hydrog. Energy. 11, 33–38 (1986)

    Article  CAS  Google Scholar 

  371. Ma, W., Han, J., Yu, W., Yang, D., Wang, H., Zong, X., Li, C.: Integrating perovskite photovoltaics and Noble-metal-free catalysts toward efficient solar energy conversion and H2S splitting. ACS Catal. 6, 6198–6206 (2016)

    Article  CAS  Google Scholar 

  372. Qiao, L., Bai, J., Luo, T., Li, J., Zhang, Y., Xia, L., Zhou, T., Xu, Q., Zhou, B.: High yield of H2O2 and efficient S recovery from toxic H2S splitting through a self-driven photoelectrocatalytic system with a microporous GDE cathode. Appl. Catal. B Environ. 238, 491–497 (2018)

    Article  CAS  Google Scholar 

  373. Luo, T., Bai, J., Li, J., Zeng, Q., Ji, Y., Qiao, L., Li, X., Zhou, B.: Self-driven photoelectrochemical splitting of H2S for S and H2 recovery and simultaneous electricity generation. Environ. Sci. Technol. 51, 12965–12971 (2017)

    Article  CAS  PubMed  Google Scholar 

  374. Schoonman, J.: Production of hydrogen with solar energy. In: Handbook of Clean Energy Systems, pp. 1–23. Wiley, Chichester (2015)

    Google Scholar 

  375. E. Borgarello, K. Kalyanasundaram, M. Graetzel, E. Pelizzetti: Visible Light Induced Generation of Hydrogen from H2S in CdSDispersions, Hole Transfer Catalysis by RuO2, Helv. Chim. Acta, 243–248 (1982)

    Google Scholar 

  376. Maeda, K., Domen, K.: Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010)

    Article  CAS  Google Scholar 

  377. Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010)

    Article  CAS  PubMed  Google Scholar 

  378. Kudo, A., Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)

    Article  CAS  PubMed  Google Scholar 

  379. Villagra, A., Ranjbari, A., Assaud, L., Kudo, A., Millet, P.: Photo-electrochemical water dissociation using Rh-doped srtio3 surface-modified by nickel N,N – dimethylamminoethyl amine, Proc. ISE, (2017)

    Google Scholar 

  380. Villagra, A., Ranjbari, A., Kudo, A., Millet, P.: Surface modification of rhodium-doped strontium titanate by adsorption of cobalt clathrochelates for water photo-dissociation. Proc. 3rd South African Solar Energy Conference (SASEC 2015), (2015)

    Google Scholar 

  381. Hisatomi, T., Takanabe, K., Domen, K.: Photocatalytic water-splitting reaction from catalytic and kinetic perspectives. Catal. Lett. 145, 95–108 (2015)

    Article  CAS  Google Scholar 

  382. Hisatomi, T., Kubota, J., Domen, K.: Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014)

    Article  CAS  PubMed  Google Scholar 

  383. Mills, A., Le Hunte, S.: An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 108, 1–35 (1997)

    Article  CAS  Google Scholar 

  384. Fujishima, A., Zhang, X., Tryk, D.A.: Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int. J. Hydrog. Energy. 32, 2664–2672 (2007)

    Article  CAS  Google Scholar 

  385. Herrmann, J.-M.: Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today. 53, 115–129 (1999)

    Article  CAS  Google Scholar 

  386. Bahnemann, D.: Photocatalytic water treatment: solar energy applications. Sol. Energy. 77, 445–459 (2004)

    Article  CAS  Google Scholar 

  387. Zhao, J., Yang, X.: Photocatalytic oxidation for indoor air purification: a literature review. Build. Environ. 38, 645–654 (2003)

    Article  Google Scholar 

  388. Tryk, D.A., Fujishima, A., Honda, K.: Recent topics in photoelectrochemistry: achievements and future prospects. Electrochim. Acta. 45, 2363–2376 (2000)

    Article  CAS  Google Scholar 

  389. Khaselev, O., Turner, J.A.: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science. 280, 425–427 (1998)

    Article  CAS  PubMed  Google Scholar 

  390. Kondarides, D.I., Daskalaki, V.M., Patsoura, A., Verykios, X.E.: Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions. Catal. Lett. 122, 26–32 (2008)

    Article  CAS  Google Scholar 

  391. Zou, Z., Ye, J., Sayama, K., Arakawa, H.: Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature. 414, 625 (2001)

    Article  CAS  PubMed  Google Scholar 

  392. Sakata, T., Kawai, T.: Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water. Chem. Phys. Lett. 80, 341–344 (1981)

    Article  CAS  Google Scholar 

  393. Maeda, K., Teramura, K., Lu, D., Takata, T., Saito, N., Inoue, Y., Domen, K.: Photocatalyst releasing hydrogen from water. Nature. 440, 295 (2006)

    Article  CAS  PubMed  Google Scholar 

  394. Maeda, K., Wang, X., Nishihara, Y., Lu, D., Antonietti, M., Domen, K.: Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J. Phys. Chem. C. 113, 4940–4947 (2009)

    Article  CAS  Google Scholar 

  395. Rodrı́guez, S.M., Gálvez, J.B., Rubio, M.I.M., Ibáñez, P.F., Padilla, D.A., Pereira, M.C., Mendes, J.F., de Oliveira, J.C.: Engineering of solar photocatalytic collectors. Sol. Energy. 77, 513–524 (2004)

    Article  CAS  Google Scholar 

  396. Alfano, O.M., Bahnemann, D., Cassano, A.E., Dillert, R., Goslich, R.: Photocatalysis in water environments using artificial and solar light. Catal. Today. 58, 199–230 (2000)

    Article  CAS  Google Scholar 

  397. Patsoura, A., Kondarides, D.I., Verykios, X.E.: Enhancement of photoinduced hydrogen production from irradiated Pt/Tio2 suspensions with simultaneous degradation of azo-dyes. Appl. Catal. B Environ. 64, 171–179 (2006)

    Article  CAS  Google Scholar 

  398. Daskalaki, V.M., Kondarides, D.I.: Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions. Catal. Today. 144, 75–80 (2009)

    Article  CAS  Google Scholar 

  399. Patsoura, A., Kondarides, D.I., Verykios, X.E.: Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catal. Today. 124, 94–102 (2007)

    Article  CAS  Google Scholar 

  400. Strataki, N., Bekiari, V., Kondarides, D.I., Lianos, P.: Hydrogen production by photocatalytic alcohol reforming employing highly efficient nanocrystalline titania films. Appl. Catal. B Environ. 77, 184–189 (2007)

    Article  CAS  Google Scholar 

  401. Chen, X., Shen, S., Guo, L., Mao, S.S.: Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010)

    Article  CAS  PubMed  Google Scholar 

  402. Christoforidis, K.C., Fornasiero, P.: Photocatalytic hydrogen production: a rift into the future energy supply. ChemCatChem. 9, 1523–1544 (2017)

    Article  CAS  Google Scholar 

  403. Antoniadou, M., Kondarides, D.Ι., Labou, D., Neophytides, S., Lianos, P.: An efficient photoelectrochemical cell functioning in the presence of organic wastes. Sol. Energy Mater. Sol. Cells. 94, 592–597 (2010)

    Article  CAS  Google Scholar 

  404. Fox, M.A.: Selective Formation of Organic Compounds by Photoelectrosynthesis at Semiconductor Particles, Proc, pp. 71–99. Springer, Berlin Heidelberg (1987)

    Google Scholar 

  405. Al-Ekabi, H., Serpone, N.: Kinetics studies in heterogeneous Photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix. J. Phys. Chem. 92, 5726–5731 (1988)

    Article  CAS  Google Scholar 

  406. Izumi, I., et al.: Heterogeneous photocatalytic oxidation of hydrocarbons on platinized titanium dioxide powders. J. Phys. Chem. 84, 3207–3210 (1980)

    Article  CAS  Google Scholar 

  407. Hodes, G., Manassen, J., Cahen, D.: Photo-electrochemical energy conversion: electrocatalytic sulphur electrodes. J. Appl. Electrochem. 7, 181–182 (1977)

    Article  CAS  Google Scholar 

  408. Hodes, G., Manassen, J., Cahen, D.: Electrocatalytic electrodes for the polysulfide redox system. J. Electrochem. Soc. 127, 544–549 (1980)

    Article  CAS  Google Scholar 

  409. Jiang, C., Moniz, S.J., Wang, A., Zhang, T., Tang, J.: Photoelectrochemical devices for solar water splitting–materials and challenges. Chem. Soc. Rev. 46, 4645–4660 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This chapter is dedicated to Christophe Colbeau-Justin. I would like to thank Allen J. Bard, John O.M. Bockris, Michael Grätzel, and Louis Nadjo, the pioneers and pillars of electrochemistry, whose writing and work have always been my best guidance in this field. I am also grateful to Parviz Allazov, Sahand Vahedi, and Sanaz Keykhosravi for their help.

Alireza Ranjbari

April 19, 2020

Paris

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Ranjbari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranjbari, A. (2022). Inorganic Photoelectrochemistry from Illumination Techniques to Energy Applications. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_9

Download citation

Publish with us

Policies and ethics