Skip to main content

Inflammation and Epicardial Adipose Tissue in the Pathobiology of Atherogenesis and Neointimal Hyperplasia Following Coronary Intervention

  • Chapter
  • First Online:
Biochemistry of Cardiovascular Dysfunction in Obesity

Abstract

The global incidence of coronary heart diseases (CHDs) has been increasing at an alarmin rate that demands an increasing attention to develop more effective therapeutic interventions and preventive strategies. The basic and applied research have significantly advanced the understanding on the molecular pathology of CHDs and opened multiple translational avenues in the management. Despite the significant enhancement of knowledge in the underlying pathophysiology, atherosclerosis remains a leading cause of global death and disability which is mainly attributed to alterations in LDL phenotype, endothelial dysfunction, inflammation and neointimal hyperplasia. Also, the integration of multidisciplinary elements of medical sciences, immunobiology, nutritional science, intervention biology, molecular signaling, vascular cell biology, animal models and translational medicine are warranted in designing improved management strategies. The critical discussion in this article insights into the underlying mechanisms associated with the degenerative changes and inflammatory events leading to atheroma and subsequent CHDs. In addition, the current understanding on the influence of high calorie diets is highlighted in relation to the molecular pathology of CHDs. Also, the prospectus and novel opportunities are discussed regarding next generation management strategies to address the pathological challenges associated with CHDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal D, Swier V, Gunasekar P, et al (2018) Vitamin D deficiency induces pro-inflammatory phenotype of epicardial adipose tissue accelerating neointimal hyperplasia following coronary intervention. Atherosclerosis 275:e48. https://doi.org/10.1016/j.atherosclerosis.2018.06.126

    Article  Google Scholar 

  2. Agrawal DK, Siddique A (2019) Commentary: rejuvenation of “broken heart” with bioengineered gel. J Thoracic Cardiovasc Surg 157:1491–1493. https://doi.org/10.1016/j.jtcvs.2018.08.076

    Article  Google Scholar 

  3. Ahrens EH (1957) Dietary control of serum lipids in relation to atherosclerosis. JAMA 164:1905. https://doi.org/10.1001/jama.1957.62980170017007d

    Article  CAS  Google Scholar 

  4. Aikawa M, Sivam PN, Kuro-o M et al (1993) Human smooth muscle myosin heavy chain isoforms as molecular markers for vascular development and atherosclerosis. Circ Res 73:1000–1012. https://doi.org/10.1161/01.res.73.6.1000

    Article  CAS  PubMed  Google Scholar 

  5. Albanese I, Khan K, Barratt B et al (2018) Atherosclerotic calcification: Wnt is the hint. J Am Heart Assoc 7:e007356. https://doi.org/10.1161/JAHA.117.007356

  6. Alexopoulos N, Raggi P (2009) Calcification in atherosclerosis. Nat Rev Cardiol 6:681–688. https://doi.org/10.1038/nrcardio.2009.165

    Article  CAS  PubMed  Google Scholar 

  7. Amento EP, Ehsani N, Palmer H, Libby P (1991) Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb J Vasc Biol 11:1223–1230. https://doi.org/10.1161/01.ATV.11.5.1223

    Article  CAS  Google Scholar 

  8. Andersson J, Libby P, Hansson GK (2010) Adaptive immunity and atherosclerosis. Clin Immunol 134:33–46. https://doi.org/10.1016/j.clim.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  9. Andreeva ER, Pugach IM, Orekhov AN (1997) Collagen-synthesizing cells in initial and advanced atherosclerotic lesions of human aorta. Atherosclerosis 130:133–142. https://doi.org/10.1016/s0021-9150(96)06056-x

    Article  CAS  PubMed  Google Scholar 

  10. Atkins GB, Simon DI (2013) Interplay between NF-κB and Kruppel-like factors in vascular inflammation and atherosclerosis: location, location, location. J Am Heart Assoc 2:e000290. https://doi.org/10.1161/JAHA.113.000290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Atkins GB, Wang Y, Mahabeleshwar GH et al (2008) Hemizygous deficiency of Krüppel-like factor 2 augments experimental atherosclerosis. Circ Res 103:690–693. https://doi.org/10.1161/CIRCRESAHA.108.184663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bäck M, Yurdagul A, Tabas I et al (2019) Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol 16:389–406. https://doi.org/10.1038/s41569-019-0169-2

    Article  PubMed  PubMed Central  Google Scholar 

  13. Baker AR, Harte AL, Howell N et al (2009) Epicardial adipose tissue as a source of nuclear factor-kappaB and c-Jun N-terminal kinase mediated inflammation in patients with coronary artery disease. J Clin Endocrinol Metab 94:261–267. https://doi.org/10.1210/jc.2007-2579

    Article  CAS  PubMed  Google Scholar 

  14. Basatemur GL, Jørgensen HF, Clarke MCH et al (2019) Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. https://doi.org/10.1038/s41569-019-0227-9

    Article  PubMed  Google Scholar 

  15. Benjamin EJ, Muntner P, Alonso A et al (2019) Heart disease and stroke statistics—2019 update: a report from the American heart association. Circulation. https://doi.org/10.1161/CIR.0000000000000659

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bennett MR, Sinha S, Owens GK (2016) Vascular smooth muscle cells in atherosclerosis. Circ Res 118:692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Binder CJ, Chou M-Y, Fogelstrand L et al (2008) Natural antibodies in murine atherosclerosis. Curr Drug Targets 9:190–195

    Article  CAS  PubMed  Google Scholar 

  18. Bonatti J, Oberhuber A, Schachner T et al (2004) Neointimal hyperplasia in coronary vein grafts: pathophysiology and prevention of a significant clinical problem. Heart Surg Forum 7:72–87

    Article  PubMed  Google Scholar 

  19. Bonora E, Tessari R, Micciolo R et al (1997) Intimal-medial thickness of the carotid artery in nondiabetic and NIDDM patients: relationship with insulin resistance. Diab Care 20:627–631. https://doi.org/10.2337/diacare.20.4.627

    Article  CAS  Google Scholar 

  20. Booth J, Clayton T, Pepper J et al (2008) Randomized, controlled trial of coronary artery bypass surgery versus percutaneous coronary intervention in patients with multivessel coronary artery disease: six-year follow-up from the stent or surgery trial (SoS). Circulation 118:381–388. https://doi.org/10.1161/CIRCULATIONAHA.107.739144

    Article  PubMed  Google Scholar 

  21. Breen DM, Dhaliwall JK, Chan KK et al (2010) Insulin inhibits and oral sucrose increases neointimal growth after arterial injury in rats. JVR 47:412–422. https://doi.org/10.1159/000281581

    Article  CAS  Google Scholar 

  22. Brown JD, Lin CY, Duan Q et al (2014) NF-κB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell 56:219–231. https://doi.org/10.1016/j.molcel.2014.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Burster T, Macmillan H, Hou T et al (2010) Cathepsin G: roles in antigen presentation and beyond. Mol Immunol 47:658–665. https://doi.org/10.1016/j.molimm.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  24. Chellan B, Reardon CA, Getz GS, Hofmann Bowman MA (2016) Enzymatically modified low-density lipoprotein promotes foam cell formation in smooth muscle cells via macropinocytosis and enhances receptor-mediated uptake of oxidized low-density lipoprotein. Arterioscler Thromb Vasc Biol 36:1101–1113. https://doi.org/10.1161/ATVBAHA.116.307306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chenicheri S, Usha R, Ramachandran R, et al (2017) Insight into oral biofilm: primary, secondary and residual caries and phyto-challenged solutions. Open Dent J 11:312–333. https://doi.org/10.2174/1874210601711010312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chistiakov DA, Bobryshev YV, Orekhov AN (2016) Macrophage-mediated cholesterol handling in atherosclerosis. J Cell Mol Med 20:17–28. https://doi.org/10.1111/jcmm.12689

    Article  CAS  PubMed  Google Scholar 

  27. Cola C, Almeida M, Li D et al (2004) Regulatory role of endothelium in the expression of genes affecting arterial calcification. Biochem Biophys Res Commun 320:424–427. https://doi.org/10.1016/j.bbrc.2004.05.181

    Article  CAS  PubMed  Google Scholar 

  28. Combadière C, Potteaux S, Rodero M et al (2008) Combined inhibition of CCL2, CX3CR1, and CCR5 Abrogates Ly6C hi and Ly6C lo monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117:1649–1657. https://doi.org/10.1161/CIRCULATIONAHA.107.745091

    Article  CAS  PubMed  Google Scholar 

  29. Cornhill JF, Roach MR (1976) A quantitative study of the localization of atherosclerotic lesions in the rabbit aorta. Atherosclerosis 23:489–501. https://doi.org/10.1016/0021-9150(76)90009-5

    Article  CAS  PubMed  Google Scholar 

  30. Cybulsky MI, Gimbrone MA (1991) Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251:788–791. https://doi.org/10.1126/science.1990440

    Article  CAS  PubMed  Google Scholar 

  31. Dalen JE, Devries S (2014) Diets to prevent coronary heart disease 1957–2013: what have we learned? Am J Med 127:364–369. https://doi.org/10.1016/j.amjmed.2013.12.014

    Article  PubMed  Google Scholar 

  32. Davenport P, Tipping PG (2003) The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol 163:1117–1125. https://doi.org/10.1016/S0002-9440(10)63471-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. de Feyter PJ, de Jaegere PPT, Serruys PW (1994) Incidence, predictors, and management of acute coronary occlusion after coronary angioplasty. Am Heart J 127:643–651. https://doi.org/10.1016/0002-8703(94)90675-0

    Article  PubMed  Google Scholar 

  34. Do M, Lee E, Oh M-J et al (2018) High-glucose or -fructose diet cause changes of the gut microbiota and metabolic disorders in mice without body weight change. Nutrients 10:761. https://doi.org/10.3390/nu10060761

    Article  CAS  PubMed Central  Google Scholar 

  35. Doherty DG (2016) Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J Autoimmun 66:60–75. https://doi.org/10.1016/j.jaut.2015.08.020

    Article  CAS  PubMed  Google Scholar 

  36. Duffield JS, Lupher M, Thannickal VJ, Wynn TA (2013) Host responses in tissue repair and fibrosis. Annu Rev Pathol Mech Dis 8:241–276. https://doi.org/10.1146/annurev-pathol-020712-163930

    Article  CAS  Google Scholar 

  37. Dutour A, Achard V, Sell H et al (2010) Secretory type II phospholipase A2 is produced and secreted by epicardial adipose tissue and overexpressed in patients with coronary artery disease. J Clin Endocrinol Metab 95:963–967. https://doi.org/10.1210/jc.2009-1222

    Article  CAS  PubMed  Google Scholar 

  38. Elhage R (2003) Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res 59:234–240. https://doi.org/10.1016/S0008-6363(03)00343-2

    Article  CAS  PubMed  Google Scholar 

  39. Elices MJ, Osborn L, Takada Y et al (1990) VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 60:577–584. https://doi.org/10.1016/0092-8674(90)90661-w

    Article  CAS  PubMed  Google Scholar 

  40. Evrard SM, Lecce L, Michelis KC et al (2016) Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun 7:11853. https://doi.org/10.1038/ncomms11853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feng S, Bowden N, Fragiadaki M et al (2017) Mechanical activation of hypoxia-inducible factor 1α drives endothelial dysfunction at atheroprone sites. Arterioscler Thromb Vasc Biol 37:2087–2101. https://doi.org/10.1161/ATVBAHA.117.309249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ferder L, Ferder MD, Inserra F (2010) The role of high-fructose corn syrup in metabolic syndrome and hypertension. Curr Hypertens Rep 12:105–112. https://doi.org/10.1007/s11906-010-0097-3

    Article  CAS  PubMed  Google Scholar 

  43. Finosh GT, Jayabalan M (2012) Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure. Biomatter 2:1–14. https://doi.org/10.4161/biom.19429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Frostegård J, Ulfgren A-K, Nyberg P et al (1999) Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 145:33–43. https://doi.org/10.1016/S0021-9150(99)00011-8

    Article  PubMed  Google Scholar 

  45. Gao Z, Zhang X, Zuberi A et al (2004) Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol Endocrinol 18:2024–2034. https://doi.org/10.1210/me.2003-0383

    Article  CAS  PubMed  Google Scholar 

  46. Gerthoffer WT (2007) Mechanisms of vascular smooth muscle cell migration. Circ Res 100:607–621. https://doi.org/10.1161/01.RES.0000258492.96097.47

    Article  CAS  PubMed  Google Scholar 

  47. Giachelli CM (2004) Vascular Calcification Mechanisms. JASN 15:2959–2964. https://doi.org/10.1097/01.ASN.0000145894.57533.C4

    Article  PubMed  Google Scholar 

  48. Giddens DP, Zarins CK, Glagov S (1993) The role of fluid mechanics in the localization and detection of atherosclerosis. J Biomech Eng 115:588–594. https://doi.org/10.1115/1.2895545

    Article  CAS  PubMed  Google Scholar 

  49. Gimbrone MA, García-Cardeña G (2016) Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res 118:620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gisterå A, Robertson A-KL, Andersson J, et al (2013) Transforming growth factor–β signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17–dependent pathway. Sci Transl Med 5:196ra100–196ra100. https://doi.org/10.1126/scitranslmed.3006133

  51. Gnanaprakasam Thankam F, Muthu J (2013) Influence of plasma protein–hydrogel interaction moderated by absorption of water on long-term cell viability in amphiphilic biosynthetic hydrogels. RSC Adv 3:24509. https://doi.org/10.1039/c3ra43710h

    Article  CAS  Google Scholar 

  52. Grech ED (2003) ABC of interventional cardiology: pathophysiology and investigation of coronary artery disease. BMJ 326:1027–1030. https://doi.org/10.1136/bmj.326.7397.1027

    Article  PubMed  PubMed Central  Google Scholar 

  53. Grüntzig AR, Senning Å, Siegenthaler WE (1979) Nonoperative dilatation of coronary-artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med 301:61–68. https://doi.org/10.1056/NEJM197907123010201

    Article  PubMed  Google Scholar 

  54. Guo L, Akahori H, Harari E, et al (2018) CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis. J Clin Invest 128:1106–1124. https://doi.org/10.1172/JCI93025

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hanke H, Strohschneider T, Oberhoff M, et al (1990) Time course of smooth muscle cell proliferation in the intima and media of arteries following experimental angioplasty. Circ Res 67:651–659. https://doi.org/10.1161/01.RES.67.3.651

    Article  CAS  PubMed  Google Scholar 

  56. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695. https://doi.org/10.1056/NEJMra043430

    Article  CAS  PubMed  Google Scholar 

  57. Hansson GK, Robertson A-KL, Söderberg-Nauclér C (2006) Inflammation and atherosclerosis. Annu Rev Pathol Mech Dis 1:297–329. https://doi.org/10.1146/annurev.pathol.1.110304.100100

    Article  CAS  Google Scholar 

  58. Hashizume M, Mihara M (2012) Blockade of IL-6 and TNF-α inhibited oxLDL-induced production of MCP-1 via scavenger receptor induction. Eur J Pharmacol 689:249–254. https://doi.org/10.1016/j.ejphar.2012.05.035

    Article  CAS  PubMed  Google Scholar 

  59. Hergenreider E, Heydt S, Tréguer K et al (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14:249–256. https://doi.org/10.1038/ncb2441

    Article  CAS  PubMed  Google Scholar 

  60. Herman MA, Samuel VT (2016) The sweet path to metabolic demise: fructose and lipid synthesis. Trends Endocrinol Metab 27:719–730. https://doi.org/10.1016/j.tem.2016.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Higashi Y, Noma K, Yoshizumi M, Kihara Y (2009) Endothelial function and oxidative stress in cardiovascular diseases. Circ J 73:411–418. https://doi.org/10.1253/circj.CJ-08-1102

    Article  CAS  PubMed  Google Scholar 

  62. Houde M, Van Eck M (2018) Escaping the atherogenic trap: preventing LDL fusion and binding in the intima. Atherosclerosis 275:376–378. https://doi.org/10.1016/j.atherosclerosis.2018.05.032

    Article  CAS  PubMed  Google Scholar 

  63. Hutcheson JD, Goettsch C, Bertazzo S et al (2016) Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater 15:335–343. https://doi.org/10.1038/nmat4519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Iacobellis G, Bianco AC (2011) Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab 22:450–457. https://doi.org/10.1016/j.tem.2011.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ignarro LJ, Napoli C (2005) Novel features of nitric oxide, endothelial nitric oxide synthase, and atherosclerosis. Curr Diab Rep 5:17–23

    Article  CAS  PubMed  Google Scholar 

  66. Ioannou GN, Weiss NS, Boyko EJ et al (2006) Elevated serum alanine aminotransferase activity and calculated risk of coronary heart disease in the United States. Hepatology 43:1145–1151. https://doi.org/10.1002/hep.21171

    Article  CAS  PubMed  Google Scholar 

  67. Iozzo P (2011) Myocardial, perivascular, and epicardial fat. Diab Care 34:S371–S379. https://doi.org/10.2337/dc11-s250

    Article  CAS  Google Scholar 

  68. Itabe H (2009) Oxidative modification of LDL: its pathological role in atherosclerosis. Clinic Rev Allerg Immunol 37:4–11. https://doi.org/10.1007/s12016-008-8095-9

    Article  CAS  Google Scholar 

  69. Kawamura M, Heinecke JW, Chait A (1994) Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway. J Clin Invest 94:771–778. https://doi.org/10.1172/JCI117396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kijani S, Vázquez AM, Levin M, et al (2017) Intimal hyperplasia induced by vascular intervention causes lipoprotein retention and accelerated atherosclerosis. Physiol Rep 5. https://doi.org/10.14814/phy2.13334

  71. Kim DN, Imai H, Schmee J et al (1985) Intimal cell mass-derived atherosclerotic lesions in the abdominal aorta of hyperlipidemic swine. Part 1. Cell of origin, cell divisions and cell losses in first 90 days on diet. Atherosclerosis 56:169–188. https://doi.org/10.1016/0021-9150(85)90017-6

    Article  CAS  PubMed  Google Scholar 

  72. Kim M-S, Krawczyk SA, Doridot L et al (2016) ChREBP regulates fructose-induced glucose production independently of insulin signaling. J Clin Invest 126:4372–4386. https://doi.org/10.1172/JCI81993

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kini S, Bis KG, Weaver L (2007) Normal and variant coronary arterial and venous anatomy on high-resolution CT angiography. Am J Roentgenol 188:1665–1674. https://doi.org/10.2214/AJR.06.1295

    Article  Google Scholar 

  74. Klepchick PR, Sun H, Ozanich BA et al (2005) The contribution of systemic factors to intimal hyperplasia in type 2 diabetes mellitus. J Am Coll Surg 201:S105. https://doi.org/10.1016/j.jamcollsurg.2005.06.249

    Article  Google Scholar 

  75. Kolodgie FD, Gold HK, Burke AP et al (2003) Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 349:2316–2325. https://doi.org/10.1056/NEJMoa035655

    Article  CAS  PubMed  Google Scholar 

  76. Komeri R, Thankam FG, Muthu J (2015) Influence of matrix and bulk behaviour of an injectable hydrogel on the survival of encapsulated cardiac cells. RSC Adv 5:31439–31449. https://doi.org/10.1039/C4RA16254D

    Article  CAS  Google Scholar 

  77. Kronenberg M, Gapin L (2002) The unconventional lifestyle of NKT cells. Nat Rev Immunol 2:557–568. https://doi.org/10.1038/nri854

    Article  CAS  PubMed  Google Scholar 

  78. Kume N, Cybulsky MI, Gimbrone MA (1992) Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest 90:1138–1144. https://doi.org/10.1172/JCI115932

  79. Kyaw T, Peter K, Li Y, et al (2017) Cytotoxic lymphocytes and atherosclerosis: significance, mechanisms and therapeutic challenges. Br J Pharmacol. https://doi.org/10.1111/bph.13845. https://bpspubs.onlinelibrary.wiley.com. Accessed 3 Sept 2019

  80. Lam TKT, Yoshii H, Haber CA et al (2002) Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-δ. Am J Physiol Endocrinol Metab 283:E682–E691. https://doi.org/10.1152/ajpendo.00038.2002

    Article  CAS  PubMed  Google Scholar 

  81. Lamb DJ, Leake DS (1994) Acidic pH enables caeruloplasmin to catalyse the modification of low-density lipoprotein. FEBS Lett 338:122–126. https://doi.org/10.1016/0014-5793(94)80348-X

    Article  CAS  PubMed  Google Scholar 

  82. Lanzer P, Boehm M, Sorribas V et al (2014) Medial vascular calcification revisited: review and perspectives. Eur Heart J 35:1515–1525. https://doi.org/10.1093/eurheartj/ehu163

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lazar E, Benedek T, Korodi S et al (2018) Stem cell-derived exosomes: an emerging tool for myocardial regeneration. World J Stem Cells 10:106–115. https://doi.org/10.4252/wjsc.v10.i8.106

    Article  PubMed  PubMed Central  Google Scholar 

  84. Lech M, Anders H-J (2013) Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochimica et Biophysica Acta (BBA) Mol Basis Dis 1832:989–997. https://doi.org/10.1016/j.bbadis.2012.12.001

  85. Leibowitz JO (1970) The history of coronary heart disease. University of California Press

    Google Scholar 

  86. Li N, Cheng W, Huang T et al (2015) Vascular adventitia calcification and its underlying mechanism. PLoS ONE. https://doi.org/10.1371/journal.pone.0132506

    Article  PubMed  PubMed Central  Google Scholar 

  87. Libby P (2012) Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 32:2045–2051. https://doi.org/10.1161/ATVBAHA.108.179705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325. https://doi.org/10.1038/nature10146

    Article  CAS  PubMed  Google Scholar 

  89. Libby P, Theroux P (2005) Pathophysiology of coronary artery disease. Circulation 111:3481–3488. https://doi.org/10.1161/CIRCULATIONAHA.105.537878

    Article  PubMed  Google Scholar 

  90. Lin J, Li M, Wang Z, et al (2010) The role of CD4+CD25+ regulatory T cells in macrophage-derived foam-cell formation. J Lipid Res 51:1208–1217. https://doi.org/10.1194/jlr.D000497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lin Z, Natesan V, Shi H, et al (2010) Kruppel-like factor 2 regulates endothelial barrier function. Arterioscler Thromb Vasc Biol 30:1952–1959. https://doi.org/10.1161/ATVBAHA.110.211474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Loukas M, Sharma A, Blaak C, et al (2013) The clinical anatomy of the coronary arteries. J Cardiovasc Trans Res 6:197–207. https://doi.org/10.1007/s12265-013-9452-5

    Article  Google Scholar 

  93. Lu J, Ji J, Meng H, et al (2013) The protective effect and underlying mechanism of metformin on neointima formation in fructose-induced insulin resistant rats. Cardiovasc Diabetol 12:58. https://doi.org/10.1186/1475-2840-12-58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lustig RH (2013) Fructose: it’s “Alcohol Without the Buzz.” Adv Nutr 4:226–235. https://doi.org/10.3945/an.112.002998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Majesky MW, Dong XR, Hoglund V, et al (2011) The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol 31:1530–1539. https://doi.org/10.1161/ATVBAHA.110.221549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mallat Z, Gojova A, Brun V, et al (2003) Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apolipoprotein E-knockout mice. Circulation 108:1232–1237. https://doi.org/10.1161/01.CIR.0000089083.61317.A1

    Article  CAS  PubMed  Google Scholar 

  97. Marchio P, Guerra-Ojeda S, Vila JM, et al (2019) Targeting early atherosclerosis: a focus on oxidative stress and inflammation. Oxidative Med Cell Longevity. https://www.hindawi.com/journals/omcl/2019/8563845/. Accessed 16 Sept 2019

  98. Mauro CR, Tao M, Yu P, et al (2016) Pre-operative dietary restriction reduces intimal hyperplasia and protects from ischemia reperfusion injury. J Vasc Surg 63:500-509.e1. https://doi.org/10.1016/j.jvs.2014.07.004

    Article  PubMed  Google Scholar 

  99. Mayerl C, Lukasser M, Sedivy R, et al (2006) Atherosclerosis research from past to present—on the track of two pathologists with opposing views, Carl von Rokitansky and Rudolf Virchow. Virchows Arch 449:96–103. https://doi.org/10.1007/s00428-006-0176-7

    Article  PubMed  Google Scholar 

  100. Mazurek T, Zhang L, Zalewski A, et al (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108:2460–2466. https://doi.org/10.1161/01.CIR.0000099542.57313.C5

    Article  PubMed  Google Scholar 

  101. Methe H, Weis M (2007) Atherogenesis and inflammation–was Virchow right? Nephrol Dial Transplant 22:1823–1827. https://doi.org/10.1093/ndt/gfm112

    Article  PubMed  Google Scholar 

  102. Miao C-Y, Li Z-Y (2012) The role of perivascular adipose tissue in vascular smooth muscle cell growth. Br J Pharmacol 165:643–658. https://doi.org/10.1111/j.1476-5381.2011.01404.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Moreno K, Murray-Wijelath J, Yagi M, et al (2011) Circulating inflammatory cells are associated with vein graft stenosis. J Vasc Surg 54:1124–1130. https://doi.org/10.1016/j.jvs.2011.04.039

    Article  PubMed  PubMed Central  Google Scholar 

  104. Moroni F, Ammirati E, Norata GD, et al (2019) The role of monocytes and macrophages in human atherosclerosis, plaque neoangiogenesis, and atherothrombosis. Mediators Inflamm 2019:1–11. https://doi.org/10.1155/2019/7434376

    Article  CAS  Google Scholar 

  105. Mosse PR, Campbell GR, Wang ZL, Campbell JH (1985) Smooth muscle phenotypic expression in human carotid arteries. I. Comparison of cells from diffuse intimal thickenings adjacent to atheromatous plaques with those of the media. Lab Invest 53:556–562

    CAS  PubMed  Google Scholar 

  106. Murdaca G, Spanò F, Cagnati P, Puppo F (2013) Free radicals and endothelial dysfunction: Potential positive effects of TNF-α inhibitors. Redox Rep 18:95–99. https://doi.org/10.1179/1351000213Y.0000000046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Murphy WA, Nedden zur D, Gostner P, et al (2003) The iceman: discovery and imaging. Radiology 226:614–629. https://doi.org/10.1148/radiol.2263020338

    Article  PubMed  Google Scholar 

  108. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737. https://doi.org/10.1038/nri3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Muto A, Fitzgerald TN, Pimiento JM, et al (2007) Smooth muscle cell signal transduction: implications of vascular biology for vascular surgeons. J Vasc Surg 45 Suppl A:A15–A24. https://doi.org/10.1016/j.jvs.2007.02.061

  110. Muto A, Model L, Ziegler K et al (2010) Mechanisms of vein graft adaptation to the arterial circulation: Insights into the neointimal algorithm and management strategies. Circ J 74:1501–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Navab M, Berliner JA, Watson AD et al (1996) The Yin and Yang of oxidation in the development of the fatty streak: a review based on the 1994 George Lyman Duff memorial lecture. Arterioscler Thromb Vasc Biol 16:831–842. https://doi.org/10.1161/01.ATV.16.7.831

    Article  CAS  PubMed  Google Scholar 

  112. Ogobuiro I, Tuma F (2019) Anatomy, thorax, heart coronary arteries. StatPearls. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  113. Oörni K, Pentikäinen MO, Ala-Korpela M, Kovanen PT (2000) Aggregation, fusion, and vesicle formation of modified low density lipoprotein particles: molecular mechanisms and effects on matrix interactions. J Lipid Res 41:1703–1714

    PubMed  Google Scholar 

  114. Otsuka F, Byrne RA, Yahagi K et al (2015) Neoatherosclerosis: overview of histopathologic findings and implications for intravascular imaging assessment. Eur Heart J 36:2147–2159. https://doi.org/10.1093/eurheartj/ehv205

    Article  PubMed  Google Scholar 

  115. Otsuka F, Sakakura K, Yahagi K et al (2014) Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol 34:724–736. https://doi.org/10.1161/ATVBAHA.113.302642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ou H, Guo B, Liu Q et al (2018) Regulatory T cells as a new therapeutic target for atherosclerosis. Acta Pharmacol Sin 39:1249–1258. https://doi.org/10.1038/aps.2017.140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Owens GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75:487–517. https://doi.org/10.1152/physrev.1995.75.3.487

    Article  CAS  PubMed  Google Scholar 

  118. Panasenko OM, Briviba K, Klotz L-O, Sies H (1997) Oxidative modification and nitration of human low-density lipoproteins by the reaction of hypochlorous acid with nitrite. Arch Biochem Biophys 343:254–259. https://doi.org/10.1006/abbi.1997.0171

    Article  CAS  PubMed  Google Scholar 

  119. Papaharalambus CA, Griendling KK (2007) Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends Cardiovasc Med 17:48–54. https://doi.org/10.1016/j.tcm.2006.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Parthasarathy S (1987) Oxidation of low-density lipoprotein by thiol compounds leads to its recognition by the acetyl LDL receptor. Biochimica et Biophysica Acta (BBA) Lipids Lipid Metab 917:337–340. https://doi.org/10.1016/0005-2760(87)90139-1

  121. Parthasarathy S, Raghavamenon A, Garelnabi MO, Santanam N (2010) Oxidized low-density lipoprotein. In: Uppu RM, Murthy SN, Pryor WA, Parinandi NL (eds) Free radicals and antioxidant protocols. Humana Press, Totowa, NJ, pp 403–417

    Chapter  Google Scholar 

  122. Pelham CJ, Drews EM, Agrawal DK (2016) Vitamin D controls resistance artery function through regulation of perivascular adipose tissue hypoxia and inflammation. J Mol Cell Cardiol 98:1–10. https://doi.org/10.1016/j.yjmcc.2016.06.067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Plitt GD, Spring JT, Moulton MJ, Agrawal DK (2018) Mechanisms, diagnosis, and treatment of heart failure with preserved ejection fraction and diastolic dysfunction. Expert Rev Cardiovasc Ther 16:579–589. https://doi.org/10.1080/14779072.2018.1497485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pourcet B, Staels B (2018) Alternative macrophages in atherosclerosis: not always protective! Journal of Clinical Investigation 128:910–912. https://doi.org/10.1172/JCI120123

    Article  PubMed  PubMed Central  Google Scholar 

  125. Prati F, Arbustini E, Labellarte A et al (2003) Eccentric atherosclerotic plaques with positive remodelling have a pericardial distribution: a permissive role of epicardial fat? A three-dimensional intravascular ultrasound study of left anterior descending artery lesions. Eur Heart J 24:329–336. https://doi.org/10.1016/s0195-668x(02)00426-8

    Article  CAS  PubMed  Google Scholar 

  126. Pugliese G, Iacobini C, Fantauzzi CB, Menini S (2015) The dark and bright side of atherosclerotic calcification. Atherosclerosis 238:220–230. https://doi.org/10.1016/j.atherosclerosis.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  127. Qi X-Y, Qu S-L, Xiong W-H et al (2018) Perivascular adipose tissue (PVAT) in atherosclerosis: a double-edged sword. Cardiovasc Diabetol 17:134. https://doi.org/10.1186/s12933-018-0777-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rabkin SW (2007) Epicardial fat: properties, function and relationship to obesity. Obes Rev 8:253–261. https://doi.org/10.1111/j.1467-789X.2006.00293.x

    Article  CAS  PubMed  Google Scholar 

  129. Radwan MM, Radwan BM, Nandipati KC et al (2013) Immunological and molecular basis of nonalcoholic steatohepatitis and nonalcoholic fatty liver disease. Exp Rev Clin Immunol 9:727–738. https://doi.org/10.1586/1744666X.2013.816484

    Article  CAS  Google Scholar 

  130. Rajamäki K, Lappalainen J, Öörni K et al (2010) Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE 5:e11765. https://doi.org/10.1371/journal.pone.0011765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rattazzi M, Bennett BJ, Bea F et al (2005) Calcification of advanced atherosclerotic lesions in the innominate arteries of ApoE-deficient mice: potential role of chondrocyte-like cells. Arterioscler Thromb Vasc Biol 25:1420–1425. https://doi.org/10.1161/01.ATV.0000166600.58468.1b

    Article  CAS  PubMed  Google Scholar 

  132. Ray A, Khare A, Krishnamoorthy N et al (2010) Regulatory T cells in many flavors control asthma. Mucosal Immunol 3:216–229. https://doi.org/10.1038/mi.2010.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rectenwald JE, Moldawer LL, Huber TS et al (2000) Direct evidence for cytokine involvement in neointimal hyperplasia. Circulation 102:1697–1702. https://doi.org/10.1161/01.CIR.102.14.1697

    Article  CAS  PubMed  Google Scholar 

  134. Rekhi U, Piche JE, Immaraj L, Febbraio M (2019) Neointimal hyperplasia: are fatty acid transport proteins a new therapeutic target? Curr Opin Lipidol 30:377–382. https://doi.org/10.1097/MOL.0000000000000627

    Article  CAS  PubMed  Google Scholar 

  135. Rogacev KS, Cremers B, Zawada AM et al (2012) CD14++ CD16+ monocytes independently predict cardiovascular events. J Am Coll Cardiol 60:1512–1520. https://doi.org/10.1016/j.jacc.2012.07.019

    Article  CAS  PubMed  Google Scholar 

  136. Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362:801–809. https://doi.org/10.1038/362801a0

    Article  CAS  PubMed  Google Scholar 

  137. Roy-Chaudhury P, Wang Y, Krishnamoorthy M et al (2009) Cellular phenotypes in human stenotic lesions from haemodialysis vascular access. Nephrol Dial Transplant 24:2786–2791. https://doi.org/10.1093/ndt/gfn708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rutanen J, Puhakka H, Ylä-Herttuala S (2002) Post-intervention vessel remodeling. Gene Ther 9:1487–1491. https://doi.org/10.1038/sj.gt.3301866

    Article  CAS  PubMed  Google Scholar 

  139. Salgado-Somoza A, Teijeira-Fernández E, Fernández AL et al (2010) Proteomic analysis of epicardial and subcutaneous adipose tissue reveals differences in proteins involved in oxidative stress. Am J Physiol Heart Circ Physiol 299:H202-209. https://doi.org/10.1152/ajpheart.00120.2010

    Article  CAS  PubMed  Google Scholar 

  140. Samuel VT (2011) Fructose induced lipogenesis: from sugar to fat to insulin resistance. Trends Endocrinol Metab 22:60–65. https://doi.org/10.1016/j.tem.2010.10.003

    Article  CAS  PubMed  Google Scholar 

  141. Sata M, Saiura A, Kunisato A et al (2002) Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 8:403–409. https://doi.org/10.1038/nm0402-403

    Article  CAS  PubMed  Google Scholar 

  142. Satish M, Agrawal DK (2019) Atherothrombosis and the NLRP3 inflammasome—endogenous mechanisms of inhibition. Transl Res. https://doi.org/10.1016/j.trsl.2019.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  143. Satish M, Saxena SK, Agrawal DK (2019) Adipokine dysregulation and insulin resistance with atherosclerotic vascular disease: metabolic syndrome or independent sequelae? J Cardiovasc Trans Res. https://doi.org/10.1007/s12265-019-09879-0

    Article  Google Scholar 

  144. Saxton A, Manna B (2019) Anatomy, thorax, heart right coronary arteries. StatPearls. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  145. Schwartz BG, Economides C, Mayeda GS et al (2009) The endothelial cell in health and disease: its function, dysfunction, measurement and therapy. Int J Impot Res 22:77

    Article  PubMed  Google Scholar 

  146. Serruys PW, Kutryk MJB, Ong ATL (2006) Coronary-artery stents. N Engl J Med 354:483–495. https://doi.org/10.1056/NEJMra051091

    Article  CAS  PubMed  Google Scholar 

  147. Serruys PW, Morice M-C, Kappetein AP et al (2009) Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med 360:961–972. https://doi.org/10.1056/NEJMoa0804626

    Article  CAS  PubMed  Google Scholar 

  148. Shanahan CM (2007) Inflammation ushers in calcification: a cycle of damage and protection? Circulation 116:2782–2785. https://doi.org/10.1161/CIRCULATIONAHA.107.749655

    Article  PubMed  Google Scholar 

  149. Shankman LS, Gomez D, Cherepanova OA et al (2015) KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 21:628–637. https://doi.org/10.1038/nm.3866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sheedy FJ, Grebe A, Rayner KJ et al (2013) CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 14:812–820. https://doi.org/10.1038/ni.2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shoji M, Koba S, Kobayashi Y (2014) Roles of bone-marrow-derived cells and inflammatory cytokines in neointimal hyperplasia after vascular injury. Biomed Res Int 2014:1–8. https://doi.org/10.1155/2014/945127

    Article  CAS  Google Scholar 

  152. Sitia S, Tomasoni L, Atzeni F et al (2010) From endothelial dysfunction to atherosclerosis. Autoimmun Rev 9:830–834. https://doi.org/10.1016/j.autrev.2010.07.016

    Article  CAS  PubMed  Google Scholar 

  153. Smith JD, Bryant SR, Couper LL et al (1999) Soluble transforming growth factor-β type II receptor inhibits negative remodeling, fibroblast transdifferentiation, and intimal lesion formation but not endothelial growth. Circ Res 84:1212–1222. https://doi.org/10.1161/01.RES.84.10.1212

    Article  CAS  PubMed  Google Scholar 

  154. Smith SC, Feldman TE, Hirshfeld JW et al (2006) ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention. J Am Coll Cardiol 47:e1–e121. https://doi.org/10.1016/j.jacc.2005.12.001

    Article  PubMed  Google Scholar 

  155. Steinberg D (2009) The LDL modification hypothesis of atherogenesis: an update. J Lipid Res 50:S376–S381. https://doi.org/10.1194/jlr.R800087-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Steinberg D, Witztum JL (1990) Lipoproteins and atherogenesis. Current concepts. JAMA 264:3047–3052

    Article  CAS  PubMed  Google Scholar 

  157. Strøm A, Jensen RA, Oslo MD, Oslo MD (1951) Mortality from circulatory diseases in Norway 1940–1945. Lancet 257:126–129. https://doi.org/10.1016/S0140-6736(51)91210-X

    Article  Google Scholar 

  158. Suganami T, Tanimoto-Koyama K, Nishida J et al (2007) Role of the toll-like receptor 4/NF-κB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. ATVB 27:84–91. https://doi.org/10.1161/01.ATV.0000251608.09329.9a

    Article  CAS  Google Scholar 

  159. Sun Z (2014) Atherosclerosis and atheroma plaque rupture: normal anatomy of vasa vasorum and their role associated with atherosclerosis. Sci World J 2014:285058. https://doi.org/10.1155/2014/285058

    Article  Google Scholar 

  160. Sur S, Swier VJ, Radwan MM, Agrawal DK (2016) Increased expression of phosphorylated polo-like kinase 1 and histone in bypass vein graft and coronary arteries following angioplasty. PLoS ONE 11:e0147937. https://doi.org/10.1371/journal.pone.0147937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Swier VJ, Tang L, Krueger KD et al (2015) Coronary injury score correlates with proliferating cells and alpha-smooth muscle actin expression in stented porcine coronary arteries. PLoS ONE 10:e0138539. https://doi.org/10.1371/journal.pone.0138539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Swier VJ, Tang L, Radwan MM, et al (2016) The role of high cholesterol-high fructose diet on coronary arteriosclerosis. Histol Histopathol 31:167–176. https://doi.org/10.14670/HH-11-652

  163. Taleb S, Romain M, Ramkhelawon B et al (2009) Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med 206:2067–2077. https://doi.org/10.1084/jem.20090545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Taleb S, Tedgui A (2018) IL-17 in atherosclerosis: the good and the bad. Cardiovasc Res 114:7–9. https://doi.org/10.1093/cvr/cvx225

    Article  CAS  PubMed  Google Scholar 

  165. Taleb S, Tedgui A, Mallat Z (2015) IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles. Arterioscler Thromb Vasc Biol 35:258–264. https://doi.org/10.1161/ATVBAHA.114.303567

    Article  CAS  PubMed  Google Scholar 

  166. Tateya S, Kim F, Tamori Y (2013) Recent advances in obesity-induced inflammation and insulin resistance. Front Endocrinol. https://doi.org/10.3389/fendo.2013.00093

    Article  Google Scholar 

  167. Thankam FG, Chandra IS, Kovilam AN et al (2018) Amplification of mitochondrial activity in the healing response following rotator cuff tendon injury. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-35391-7

    Article  CAS  Google Scholar 

  168. Thankam FG, Roesch ZK, Dilisio MF et al (2018) Association of inflammatory responses and ECM disorganization with HMGB1 upregulation and NLRP3 inflammasome activation in the injured rotator cuff tendon. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-27250-2

    Article  CAS  Google Scholar 

  169. Theodorou K, Boon RA (2018) Endothelial cell metabolism in atherosclerosis. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2018.00082

    Article  PubMed  PubMed Central  Google Scholar 

  170. Tian Z, Miyata K, Tazume H et al (2013) Perivascular adipose tissue-secreted angiopoietin-like protein 2 (Angptl2) accelerates neointimal hyperplasia after endovascular injury. J Mol Cell Cardiol 57:1–12. https://doi.org/10.1016/j.yjmcc.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  171. Tse K, Tse H, Sidney J et al (2013) T cells in atherosclerosis. Int Immunol 25:615–622. https://doi.org/10.1093/intimm/dxt043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Vandergriff A, Huang K, Shen D et al (2018) Targeting regenerative exosomes to myocardial infarction using cardiac homing peptide. Theranostics 8:1869–1878. https://doi.org/10.7150/thno.20524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Vengrenyuk Y, Carlier S, Xanthos S et al (2006) A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. PNAS 103:14678–14683. https://doi.org/10.1073/pnas.0606310103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Virmani R, Kolodgie FD, Burke AP et al (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275. https://doi.org/10.1161/01.atv.20.5.1262

    Article  CAS  PubMed  Google Scholar 

  175. Waller BF, Orr CM, Slack JD et al (1992) Anatomy, histology, and pathology of coronary arteries: A review relevant to new interventional and imaging techniques-Part I. Clin Cardiol 15:451–457. https://doi.org/10.1002/clc.4960150613

    Article  CAS  PubMed  Google Scholar 

  176. Wang D, Wang Z, Zhang L, Wang Y (2017) Roles of cells from the arterial vessel wall in atherosclerosis. Mediators Inflamm 2017:1–9. https://doi.org/10.1155/2017/8135934

    Article  CAS  Google Scholar 

  177. Wang J, Sjöberg S, Tang T-T et al (2014) Cathepsin G activity lowers plasma LDL and reduces atherosclerosis. Biochimica et Biophysica Acta (BBA) Mol Basis Dis 1842:2174–2183. https://doi.org/10.1016/j.bbadis.2014.07.026

  178. Wang L, Luo J-Y, Li B et al (2016) Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature 540:579–582. https://doi.org/10.1038/nature20602

    Article  CAS  PubMed  Google Scholar 

  179. Welsh P, Polisecki E, Robertson M et al (2010) Unraveling the directional link between adiposity and inflammation: a bidirectional mendelian randomization approach. J Clin Endocrinol Metab 95:93–99. https://doi.org/10.1210/jc.2009-1064

    Article  CAS  PubMed  Google Scholar 

  180. Wick G, Knoflach M, Xu Q (2004) Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol 22:361–403. https://doi.org/10.1146/annurev.immunol.22.012703.104644

    Article  CAS  PubMed  Google Scholar 

  181. Windaus A (1910) Über den Gehalt normaler und atheromatöser Aorten an Cholesterin und Cholesterinestern. Hoppe-Seyler´s Zeitschrift für physiologische Chemie 67:174–176. https://doi.org/10.1515/bchm2.1910.67.2.174

  182. Witter K, Tonar Z, Schöpper H (2017) How many layers has the adventitia? Structure of the arterial tunica externa revisited. Anat Histol Embryol 46:110–120. https://doi.org/10.1111/ahe.12239

    Article  CAS  PubMed  Google Scholar 

  183. Xu L, Dai Perrard X, Perrard JL et al (2015) Foamy monocytes form early and contribute to nascent atherosclerosis in mice with hypercholesterolemia. Arterioscler Thromb Vasc Biol 35:1787–1797. https://doi.org/10.1161/ATVBAHA.115.305609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yahagi K, Kolodgie FD, Otsuka F et al (2016) Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat Rev Cardiol 13:79–98. https://doi.org/10.1038/nrcardio.2015.164

    Article  CAS  PubMed  Google Scholar 

  185. Yin K, Agrawal DK (2014) High-density lipoprotein: a novel target for antirestenosis therapy: HDL and antirestenosis therapy. Clin Transl Sci 7:500–511. https://doi.org/10.1111/cts.12186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yin K, You Y, Swier V et al (2015) Vitamin D protects against atherosclerosis via regulation of cholesterol efflux and macrophage polarization in hypercholesterolemic swine. Arterioscler Thromb Vasc Biol 35:2432–2442. https://doi.org/10.1161/ATVBAHA.115.306132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yoo S, Ahn H, Park YK (2016) High dietary fructose intake on cardiovascular disease related parameters in growing rats. Nutrients. https://doi.org/10.3390/nu9010011

    Article  PubMed  PubMed Central  Google Scholar 

  188. Yoshida H, Kisugi R (2010) Mechanisms of LDL oxidation. Clin Chim Acta 411:1875–1882. https://doi.org/10.1016/j.cca.2010.08.038

    Article  CAS  PubMed  Google Scholar 

  189. Yurdagul A, Finney AC, Woolard MD, Orr AW (2016) The arterial microenvironment: the where and why of atherosclerosis. Biochem J 473:1281–1295. https://doi.org/10.1042/BJ20150844

    Article  CAS  PubMed  Google Scholar 

  190. Zain MA, Jamil RT, Siddiqui WJ (2019) Neointimal hyperplasia. StatPearls. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  191. Zanoni I, Tan Y, Di Gioia M et al (2017) By capturing inflammatory lipids released from dying cells, the receptor CD14 induces inflammasome-dependent phagocyte hyperactivation. Immunity 47:697-709.e3. https://doi.org/10.1016/j.immuni.2017.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Zhou Y, Zhang H-W, Tian F, et al (2016) Influence of increased epicardial adipose tissue volume on 1-year in-stent restenosis in patients who received coronary stent implantation. J Geriatr Cardiol 13:768–775. https://doi.org/10.11909/j.issn.1671-5411.2016.09.012

Download references

Acknowledgements

This work was supported by the research funds of Western University of Health Sciences to FGT, and research Grants R01 HL144125 and R01HL147662 to DKA from the National Institutes of Health, USA. The contents of this chapter are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra K. Agrawal .

Editor information

Editors and Affiliations

Ethics declarations

All authors have read the Springer’s policy on disclosure of potential conflicts of interest. Author C (DKA) has received grants from the National Institutes of Health. Author A (FGT) received start-up funds from Western University of Health Sciences. Author B (MMR) has no relevant affiliations or financial or non-financial involvement with any organization or entity with financial or non-financial interest or conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. Author A (FGT), Author B (MMR), and Author C (DKA) declare that they have no conflict of interest. No writing assistance was utilized in the production of this manuscript.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thankam, F.G., Radwan, M.M., Agrawal, D.K. (2020). Inflammation and Epicardial Adipose Tissue in the Pathobiology of Atherogenesis and Neointimal Hyperplasia Following Coronary Intervention. In: Tappia, P.S., Bhullar, S.K., Dhalla, N.S. (eds) Biochemistry of Cardiovascular Dysfunction in Obesity. Advances in Biochemistry in Health and Disease, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-47336-5_13

Download citation

Publish with us

Policies and ethics