Skip to main content

Functional In Vivo Imaging of Tumors

  • Chapter
  • First Online:
Tumor Microenvironment

Abstract

Noninvasive imaging of functional and molecular changes in cancer has become an indispensable tool for studying cancer in vivo. Targeting the functional and molecular changes in cancer imaging provides a platform for the in vivo analysis of the mechanisms such as gene expression, signal transduction, biochemical reactions, regulatory pathways, cell trafficking, and drug action underlying cancer noninvasively. The main focus of imaging in cancer is the development of new contrast methods/molecular probes for the early diagnosis and the precise evaluation of therapy response. In clinical setup, imaging modalities facilitate screening, prediction, staging, biopsy and therapy guidance, therapy response, therapy planning, and prognosis of cancer. In this book chapter, we review different established and emerging in vivo imaging modalities and their applications in monitoring functional, molecular, and metabolic changes in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel Razek AAK, Poptani H (2013) MR spectrsocopy of head and neck cancer. Eur J Radiol 82(6):982–989. https://doi.org/10.1016/j.ejrad.2013.01.025

    Article  PubMed  Google Scholar 

  2. Agnes RS, Broome A-M, Wang J, Verma A, Lavik K, Basilion JP (2012) An optical probe for noninvasive molecular imaging of orthotopic brain tumors overexpressing epidermal growth factor receptor. Mol Cancer Ther 11(10):2202–2211. https://doi.org/10.1158/1535-7163.mct-12-0211

    Article  CAS  PubMed  Google Scholar 

  3. Aide N, Kinross K, Cullinane C, Roselt P, Waldeck K, Neels O, Hicks RJ (2010) 18F-FLT PET as a surrogate marker of drug efficacy during mTOR inhibition by everolimus in a preclinical cisplatin-resistant ovarian tumor model. J Nucl Med 51(10):1559–1564. https://doi.org/10.2967/jnumed.109.073288

    Article  PubMed  Google Scholar 

  4. Albers MJ, Bok R, Chen AP, Cunningham CH, Zierhut ML, Zhang VY, Kurhanewicz J (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Can Res 68(20):8607–8615. https://doi.org/10.1158/0008-5472.can-08-0749

    Article  CAS  Google Scholar 

  5. Albers MJ, Krieger MD, Gonzalez-Gomez I, Gilles FH, McComb JG, Nelson MD, Blüml S (2004) Proton-decoupled 31P MRS in untreated pediatric brain tumors. Magn Reson Med 53(1):22–29. https://doi.org/10.1002/mrm.20312

    Article  Google Scholar 

  6. Alfke H, Stöppler H, Nocken F, Heverhagen JT, Kleb B, Czubayko F, Klose KJ (2003) In vitro MR imaging of regulated gene expression. Radiology 228(2):488–492. https://doi.org/10.1148/radiol.2282012006

    Article  PubMed  Google Scholar 

  7. Arena F, Singh JB, Gianolio E, Stefanìa R, Aime S (2011) β-gal gene expression MRI reporter in melanoma tumor cells. Design, synthesis, and in vitro and in vivo testing of a Gd(III) containing probe forming a high relaxivity, melanin-like structure upon β-gal enzymatic activation. Bioconjug Chem 22(12):2625–2635. https://doi.org/10.1021/bc200486j

  8. Arosio P, Levi S (2002) Ferritin, iron homeostasis, and oxidative damage1, 21Guest Editor: Mario Comporti2This article is part of a series of reviews on “Iron and Cellular Redox Status.” The full list of papers may be found on the homepage of the journal. Free Radical Biol Med 33(4):457–463. doi:https://doi.org/10.1016/S0891-5849(02)00842-0

  9. Artemov D, Mori N, Ravi R, Bhujwalla ZM (2003) Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res 63(11):2723

    Google Scholar 

  10. Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(Suppl 2):64S–80S. https://doi.org/10.2967/jnumed.107.046391

    Article  CAS  PubMed  Google Scholar 

  11. Baek HM, Chen JH, Nalcioglu O, Su MY (2008) Proton MR spectroscopy for monitoring early treatment response of breast cancer to neo-adjuvant chemotherapy. Ann Oncol Official J Eur Soc Med Oncol 19(5):1022–1024. https://doi.org/10.1093/annonc/mdn121

    Article  Google Scholar 

  12. Bagga P, Crescenzi R, Krishnamoorthy G, Verma G, Nanga RPR, Reddy D, Reddy R (2016) Mapping the alterations in glutamate with GluCEST MRI in a mouse model of dopamine deficiency. J Neurochem 139(3):432–439. https://doi.org/10.1111/jnc.13771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bagga P, Haris M, D’Aquilla K, Wilson NE, Marincola FM, Schnall MD, Reddy R (2017) Non-caloric sweetener provides magnetic resonance imaging contrast for cancer detection. J Transl Med 15(1):119–119. https://doi.org/10.1186/s12967-017-1221-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bai Y, Lin Y, Zhang W, Kong L, Wang L, Zuo P, Wang M (2016) Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas. Oncotarget 8(4):5834–5842. https://doi.org/10.18632/oncotarget.13970

  15. Bar-Shalom R, Valdivia AY, Blaufox MD (2000) PET imaging in oncology. Semin Nucl Med 30(3):150–185. https://doi.org/10.1053/snuc.2000.7439

    Article  CAS  PubMed  Google Scholar 

  16. Barentsz J, Berger-Hartog O, Witjes J, Hulsbergen-van der Kaa C, Oosterhof GON, Vanderlaak JAWM, Kondacki H, Ruijs SHJ (1998) Evaluation of chemotherapy in advanced urinary bladder cancer with fast dynamic contrast-enhanced MR imaging. Radiology 207:791–797

    Google Scholar 

  17. Barker PB (2014) Diagnosis and characterization of brain tumors: MR spectroscopic imaging. In: Pillai JJ (ed) Functional brain tumor imaging. Springer, New York, New York, NY, pp 39–55

    Chapter  Google Scholar 

  18. Becherer A, Karanikas G, Szabó M, Zettinig G, Asenbaum S, Marosi C, Kletter K (2003) Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 30(11):1561–1567. https://doi.org/10.1007/s00259-003-1259-1

    Article  CAS  PubMed  Google Scholar 

  19. Beer AJ, Kessler H, Wester H-J, Schwaiger M (2011) PET imaging of integrin αVβ3 expression. Theranostics 1:48–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beloueche-Babari M, Jamin Y, Arunan V, Walker-Samuel S, Revill M, Smith PD, Robinson SP (2013) Acute tumour response to the MEK1/2 inhibitor selumetinib (AZD6244, ARRY-142886) evaluated by non-invasive diffusion-weighted MRI. Br J Cancer 109(6):1562–1569. https://doi.org/10.1038/bjc.2013.456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bensch F, van der Veen E, Jorritsma A, Lub-de Hooge M, Boellaard R, Oosting S, Schröder C, Hiltermann J, de Vries E (2017) Abstract CT017: first-in-human PET imaging with the PD-L1 antibody 89 Zr-atezolizumab, vol 77

    Google Scholar 

  22. Bitencourt AGV, Andrade WP, da Cunha RR, Conrado JLFdA, Lima ENP, Barbosa PNVP, Chojniak R (2017) Detection of distant metastases in patients with locally advanced breast cancer: role of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography and conventional imaging with computed tomography scans. Radiologia brasileira 50(4):211–215. https://doi.org/10.1590/0100-3984.2015-0232

  23. Brandão LA, Castillo M (2016) Adult brain tumors. Mag Reson Imaging Clin 24(4):781–809. https://doi.org/10.1016/j.mric.2016.07.005

    Article  Google Scholar 

  24. Bremer C, Ntziachristos V, Weissleder R (2003) Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol 13(2):231–243. https://doi.org/10.1007/s00330-002-1610-0

    Article  PubMed  Google Scholar 

  25. Bremer C, Tung C-H, Bogdanov A, Weissleder R (2002) Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes. Radiology 222(3):814–818. https://doi.org/10.1148/radiol.2223010812

    Article  PubMed  Google Scholar 

  26. Bremer C, Tung C-H, Weissleder R (2001) In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat Med 7:743. https://doi.org/10.1038/89126

    Article  CAS  PubMed  Google Scholar 

  27. Bulik M, Jancalek R, Vanicek J, Skoch A, Mechl M (2013) Potential of MR spectroscopy for assessment of glioma grading. Clin Neurol Neurosurg 115(2):146–153. https://doi.org/10.1016/j.clineuro.2012.11.002

    Article  PubMed  Google Scholar 

  28. Burns JS, Manda G (2017) Metabolic pathways of the warburg effect in health and disease: perspectives of choice, chain or chance. Int J Mol Sci 18(12):2755. https://doi.org/10.3390/ijms18122755

    Article  CAS  PubMed Central  Google Scholar 

  29. Singer OC, Humpich MC, Fiehler J, Albers GW, Lansberg MG, Kastrup A, Rovira A, Liebeskind DS, Gass A, Rosso C, Derex L, Neumann-Haefelin T (2008) Risk for symptomatic intracerebral hemorrhage after thrombolysis assessed by diffusion-weighted magnetic resonance imaging. Ann Neurol 63:52–60

    Google Scholar 

  30. Cai K, Tain R-W, Zhou XJ, Damen FC, Scotti AM, Hariharan H, Reddy R (2017) Creatine CEST MRI for differentiating gliomas with different degrees of aggressiveness. Mol Imaging Biol 19(2):225–232. https://doi.org/10.1007/s11307-016-0995-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85. https://doi.org/10.1038/nrc2981

    Article  CAS  PubMed  Google Scholar 

  32. Canese R, Pisanu ME, Mezzanzanica D, Ricci A, Paris L, Bagnoli M, Iorio E (2012) Characterisation of in vivo ovarian cancer models by quantitative 1H magnetic resonance spectroscopy and diffusion-weighted imaging. NMR Biomed 25(4):632–642. https://doi.org/10.1002/nbm.1779

    Article  PubMed  Google Scholar 

  33. Castillo M, Smith JK, Kwock L (2000) Correlation of Myo-inositol levels and grading of cerebral astrocytomas. Am J Neuroradiol 21(9):1645

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Challapalli A, Aboagye EO (2016) Positron emission tomography imaging of tumor cell metabolism and application to therapy response monitoring. Front Oncol 6:44–44. https://doi.org/10.3389/fonc.2016.00044

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chan KWY, McMahon MT, Kato Y, Liu G, Bulte JWM, Bhujwalla ZM, van Zijl PCM (2012) Natural d-glucose as a biodegradable MRI contrast agent for detecting cancer. Magn Reson Med 68(6):1764–1773. https://doi.org/10.1002/mrm.24520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chaumeil MM, Larson PEZ, Woods SM, Cai L, Eriksson P, Robinson AE, Ronen SM (2014) Hyperpolarized [1-13C] glutamate: a metabolic imaging biomarker of IDH1 mutational status in glioma. Can Res 74(16):4247–4257. https://doi.org/10.1158/0008-5472.can-14-0680

    Article  CAS  Google Scholar 

  37. Chen H-Y, Larson PEZ, Bok RA, von Morze C, Sriram R, Delos Santos R, Vigneron DB (2017) Assessing prostate cancer aggressiveness with hyperpolarized dual-agent 3D dynamic imaging of metabolism and perfusion. Can Res 77(12):3207–3216. https://doi.org/10.1158/0008-5472.can-16-2083

    Article  CAS  Google Scholar 

  38. Chen L, Liu M, Bao J, Xia Y, Zhang J, Zhang L, Wang J (2013) The correlation between apparent diffusion coefficient and tumor cellularity in patients: a meta-analysis. PLoS ONE 8(11):e79008–e79008. https://doi.org/10.1371/journal.pone.0079008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen LQ, Howison CM, Jeffery JJ, Robey IF, Kuo PH, Pagel MD (2014) Evaluations of extracellular pH within in vivo tumors using acidoCEST MRI. Magn Reson Med 72(5):1408–1417. https://doi.org/10.1002/mrm.25053

    Article  PubMed  Google Scholar 

  40. Chen LQ, Randtke EA, Jones KM, Moon BF, Howison CM, Pagel MD (2015) Evaluations of tumor acidosis within in vivo tumor models using parametric maps generated with Acido CEST MRI. Mol Imaging Biol 17(4):488–496. https://doi.org/10.1007/s11307-014-0816-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen M, Chen C, Shen Z, Zhang X, Chen Y, Lin F, Ma X, Zhuang C, Mao Y, Gan H, Chen P, Wu R (2017) Extracellular pH is a biomarker enabling detection of breast cancer and liver cancer using CEST MRI. Oncotarget 8(28):45759–45767. https://doi.org/10.18632/oncotarget.17404

  42. Chenevert TL, Brunberg JA, Pipe JG (1990) Anisotropic diffusion in human white matter: demonstration with MR techniques in vivo. Radiology 177(2):401–405. https://doi.org/10.1148/radiology.177.2.2217776

    Article  CAS  PubMed  Google Scholar 

  43. Cho A, Lau JYC, Geraghty BJ, Cunningham CH, Keshari KR (2017) Noninvasive interrogation of cancer metabolism with hyperpolarized 13C MRI. J Nucl Med 58(8):1201–1206. https://doi.org/10.2967/jnumed.116.182170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cohen B, Dafni H, Meir G, Harmelin A, Neeman M (2005) Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia (New York, N.Y.) 7(2):109–117. https://doi.org/10.1593/neo.04436

  45. Cozzi A, Corsi B, Levi S, Santambrogio P, Albertini A, Arosio P (2000) Overexpression of wild type and mutated human ferritin H-chain in HeLa cells. J Biol Chem 275(33):25122–25129. https://doi.org/10.1074/jbc.m003797200

    Article  CAS  PubMed  Google Scholar 

  46. Day SE, Kettunen MI, Gallagher FA, Hu DE, Lerche M, Wolber J, Brindle KM (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13:1382. https://doi.org/10.1038/nm1650

  47. DeBrosse C, Nanga RPR, Bagga P, Nath K, Haris M, Marincola F, Reddy R (2016) Erratum: lactate chemical exchange saturation transfer (LATEST) imaging in vivo: a biomarker for LDH activity. Sci Rep 6:21813–21813. https://doi.org/10.1038/srep21813

  48. DeBrosse C, Nanga RPR, Bagga P, Nath K, Haris M, Marincola F, Reddy R (2016) Lactate chemical exchange saturation transfer (LATEST) imaging in vivo a biomarker for LDH activity. Sci Rep 6:19517–19517. https://doi.org/10.1038/srep19517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. DeVries AF, Griebel J, Kremser C, Judmaier W, Gneiting T, Kreczy A, Lukas P (2001) Tumor microcirculation evaluated by dynamic magnetic resonance imaging predicts therapy outcome for primary rectal carcinoma. Can Res 61(6):2513

    CAS  Google Scholar 

  50. Dijkhoff RAP, Beets-Tan RGH, Lambregts DMJ, Beets GL, Maas M (2017) Value of DCE-MRI for staging and response evaluation in rectal cancer: a systematic review. Eur J Radiol 95:155–168. https://doi.org/10.1016/j.ejrad.2017.08.009

    Article  PubMed  Google Scholar 

  51. Du W, Wang Y, Luo Q, Liu B-F (2006) Optical molecular imaging for systems biology: from molecule to organism. Anal Bioanal Chem 386(3):444–457. https://doi.org/10.1007/s00216-006-0541-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Duan C, Perez-Torres CJ, Yuan L, Engelbach JA, Beeman SC, Tsien CI, Garbow JR (2017) Can anti-vascular endothelial growth factor antibody reverse radiation necrosis? A preclinical investigation. J Neuro-Oncol 133(1):9–16. https://doi.org/10.1007/s11060-017-2410-3

    Article  CAS  Google Scholar 

  53. Dubey P, Su H, Adonai N, Du S, Rosato A, Braun J, Witte ON (2003) Quantitative imaging of the T cell antitumor response by positron-emission tomography. Proc Natl Acad Sci 100(3):1232. https://doi.org/10.1073/pnas.0337418100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Edinger M, Sweeney TJ, Tucker AA, Olomu AB, Negrin RS, Contag CH (1999) Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia (New York, N.Y.) 1(4):303–310

    Google Scholar 

  55. Essig M, Waschkies M, Wenz F, Debus J, Hentrich HR, Knopp MV (2003) Assessment of brain metastases with dynamic susceptibility-weighted contrast-enhanced MR imaging: initial results. Radiology 228(1):193–199. https://doi.org/10.1148/radiol.2281020298

    Article  PubMed  Google Scholar 

  56. Evangelista L, Zattoni F, Guttilla A, Saladini G, Zattoni F, Colletti PM, Rubello D (2013) Choline PET or PET/CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis. Clin Nucl Med 38(5):305–314. https://doi.org/10.1097/rlu.0b013e3182867f3c

    Article  PubMed  Google Scholar 

  57. Farwell MD, Pryma DA, Mankoff DA (2014) PET/CT imaging in cancer: current applications and future directions. Cancer 120(22):3433–3445. https://doi.org/10.1002/cncr.28860

    Article  CAS  PubMed  Google Scholar 

  58. Feng Y, Liu Q, Zhu J, Xie F, Li L (2012) Efficiency of ferritin as an MRI reporter gene in NPC cells is enhanced by iron supplementation. J Biomed Biotechnol 2012:434878–434878. https://doi.org/10.1155/2012/434878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fennessy FM, McKay RR, Beard CJ, Taplin M-E, Tempany CM (2014) Dynamic contrast-enhanced magnetic resonance imaging in prostate cancer clinical trials: potential roles and possible pitfalls. Transl Oncol 7(1):120–129

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fowler JS, Volkow ND, Wang G-J, Ding Y-S, Dewey SL (1999) PET and drug research and development. J Nucl Med 40(7):1154–1163

    CAS  PubMed  Google Scholar 

  61. Friedman KP, Wahl RL (2004) Clinical use of positron emission tomography in the management of cutaneous melanoma. Semin Nucl Med 34(4):242–253. https://doi.org/10.1053/j.semnuclmed.2004.06.001

    Article  PubMed  Google Scholar 

  62. Fueger BJ, Czernin J, Cloughesy T, Silverman DH, Geist CL, Walter MA, Chen W (2010) Correlation of 6-18F-Fluoro-l-Dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas. J Nucl Med 51(10):1532–1538. https://doi.org/10.2967/jnumed.110.078592

    Article  PubMed  Google Scholar 

  63. Fuss M, Wenz F, Essig M, Muenter M, Debus J, Herman TS, Wannenmacher M (2001) Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy. Int J Radiat Oncol Biol Phys 51(2):478–482. doi:https://doi.org/10.1016/S0360-3016(01)01691-1

  64. Gallagher FA, Kettunen MI, Day SE, Hu D-E, Ardenkjær-Larsen JH, Zandt R, Jensen PR, Karlsson M, Golman K, Lerche MH, Brindle KM (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453:940. https://doi.org/10.1038/nature07017

  65. García-Figueiras R, Baleato-González S, Padhani AR, Oleaga L, Vilanova JC, Luna A, Cobas Gómez JC (2016) Proton magnetic resonance spectroscopy in oncology: the fingerprints of cancer? Diagn Interv Radiol (Ankara, Turkey) 22(1):75–89. https://doi.org/10.5152/dir.2015.15009

    Article  Google Scholar 

  66. Gee MS, Upadhyay R, Bergquist H, Alencar H, Reynolds F, Maricevich M, Mahmood U (2008) Human breast cancer tumor models: molecular imaging of drug susceptibility and dosing during HER2/neu-targeted therapy. Radiology 248(3):925–935. https://doi.org/10.1148/radiol.2482071496

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Can Res 56(6):1194

    CAS  Google Scholar 

  68. Gilad AA, McMahon MT, Walczak P, Winnard Jr PT, Raman V, van Laarhoven HWM, van Zijl PC M (2007) Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 25:217. https://doi.org/10.1038/nbt1277

  69. Gilad AA, Winnard PT, van Zijl PCM, Bulte JWM (2007) Developing MR reporter genes: promises and pitfalls. NMR Biomed 20(3):275–290. https://doi.org/10.1002/nbm.1134

  70. Gilad AA, Ziv K, McMahon MT, van Zijl PCM, Neeman M, Bulte JWM (2008) MRI reporter genes. J Nucl Med 49(12):1905–1908. https://doi.org/10.2967/jnumed.108.053520

  71. Gillies RJ, Liu Z, Bhujwalla Z (1994) 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. Am J Physiol-Cell Physiol 267(1):C195–C203. https://doi.org/10.1152/ajpcell.1994.267.1.c195

    Article  CAS  Google Scholar 

  72. Glunde K, Artemov D, Penet M-F, Jacobs MA, Bhujwalla ZM (2010) Magnetic resonance spectroscopy in metabolic and molecular imaging and diagnosis of cancer. Chem Rev 110(5):3043–3059. https://doi.org/10.1021/cr9004007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Glunde K, Bhujwalla ZM (2011) Metabolic tumor imaging using magnetic resonance spectroscopy. Semin Oncol 38(1):26–41. https://doi.org/10.1053/j.seminoncol.2010.11.001

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gong H, Kovar J, Little G, Chen H, Olive DM (2010) In vivo imaging of xenograft tumors using an epidermal growth factor receptor-specific affibody molecule labeled with a near-infrared fluorophore. Neoplasia (New York, N.Y.) 12(2):139–149

    Google Scholar 

  75. Griffeth LK (2005) Use of PET/CT scanning in cancer patients: technical and practical considerations. Proceedings (Baylor University. Medical Center) 18(4):321–330

    Google Scholar 

  76. Griffiths JR, Tate AR, Howe FA, Stubbs M (2002) Magnetic Resonance Spectroscopy of cancer—practicalities of multi-centre trials and early results in non-Hodgkin’s lymphoma. Eur J Cancer 38(16):2085–2093. https://doi.org/10.1016/s0959-8049(02)00389-1

    Article  CAS  PubMed  Google Scholar 

  77. Guo Y, Cai Y-Q, Cai Z-L, Gao Y-G, An N-Y, Ma L, Gao J-H (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16(2):172–178. https://doi.org/10.1002/jmri.10140

    Article  PubMed  Google Scholar 

  78. Gutte H, Hansen AE, Johannesen HH, Clemmensen AE, Ardenkjær-Larsen JH, Nielsen CH, Kjær A (2015) The use of dynamic nuclear polarization (13)C-pyruvate MRS in cancer. Am J Nucl Med Mol Imaging 5(5):548–560

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hamakawa H, Murashita JUN, Yamada N, Inubushi T, Kato N, Kato T (2004) Reduced intracellular pH in the basal ganglia and whole brain measured by 31P-MRS in bipolar disorder. Psychiatry Clin Neurosci 58(1):82–88. https://doi.org/10.1111/j.1440-1819.2004.01197.x

    Article  CAS  PubMed  Google Scholar 

  80. Hara T, Kosaka N, Kishi H (2002) Development of 18F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 43(2):187–199

    CAS  PubMed  Google Scholar 

  81. Haris M, Nanga RPR, Singh A, Cai K, Kogan F, Hariharan H, Reddy R (2012) Exchange rates of creatine kinase metabolites: feasibility of imaging creatine by chemical exchange saturation transfer MRI. NMR Biomed 25(11):1305–1309. https://doi.org/10.1002/nbm.2792

    Article  CAS  PubMed  Google Scholar 

  82. Haris M, Singh A, Cai K, Kogan F, McGarvey J, Debrosse C, Reddy R (2014) A technique for in vivo mapping of myocardial creatine kinase metabolism. Nat Med 20(2):209–214. https://doi.org/10.1038/nm.3436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Haris M, Singh A, Mohammed I, Ittyerah R, Nath K, Nanga RPR, Reddy R (2014) In vivo magnetic resonance imaging of tumor protease activity. Sci Rep 4:6081. https://doi.org/10.1038/srep06081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Haris M, Yadav SK, Rizwan A, Singh A, Wang E, Hariharan H, Marincola FM (2015) Molecular magnetic resonance imaging in cancer. J Transl Med 13(1):313. https://doi.org/10.1186/s12967-015-0659-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hassan M, Chernomordik V, Zielinski R, Ardeshirpour Y, Capala J, Gandjbakhche A (2012) In vivo method to monitor changes in HER2 expression using near-infrared fluorescence imaging. Mol Imaging 11(3):177–186

    Article  CAS  PubMed  Google Scholar 

  86. He X, Gao J, Gambhir SS, Cheng Z (2010) Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends Mol Med 16(12):574–583. https://doi.org/10.1016/j.molmed.2010.08.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Helfer BM, Balducci A, Nelson AD, Janjic JM, Gil RR, Kalinski P, Mailliard RB (2010) Functional assessment of human dendritic cells labeled for in vivo (19)F magnetic resonance imaging cell tracking. Cytotherapy 12(2):238–250. https://doi.org/10.3109/14653240903446902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Henry RG, Vigneron DB, Fischbein NJ, Grant PE, Day MR, Noworolski SM, Nelson SJ (2000) Comparison of relative cerebral blood volume and proton spectroscopy in patients with treated gliomas. Am J Neuroradiol 21(2):357

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Herrmann K, Ott K, Buck AK, Lordick F, Wilhelm D, Souvatzoglou M, Krause BJ (2007) Imaging gastric cancer with PET and the radiotracers 18F-FLT and 18F-FDG: a comparative analysis. J Nucl Med 48(12):1945–1950. https://doi.org/10.2967/jnumed.107.044867

    Article  CAS  PubMed  Google Scholar 

  90. Heskamp S, Hobo W, Molkenboer-Kuenen JDM, Olive D, Oyen WJG, Dolstra H, Boerman OC (2015) Noninvasive imaging of tumor PD-L1 expression using radiolabeled anti–PD-L1 antibodies. Can Res 75(14):2928. https://doi.org/10.1158/0008-5472.can-14-3477

    Article  CAS  Google Scholar 

  91. Hettich M, Braun F, Bartholomä MD, Schirmbeck R, Niedermann G (2016) High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics 6(10):1629–1640. https://doi.org/10.7150/thno.15253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hicks RJ, Hofman MS (2012) Is there still a role for SPECT–CT in oncology in the PET–CT era? Nat Rev Clin Oncol 9:712. https://doi.org/10.1038/nrclinonc.2012.188

    Article  CAS  PubMed  Google Scholar 

  93. Higashikawa K, Yagi K, Watanabe K, Kamino S, Ueda M, Hiromura M, Enomoto S (2014) 64Cu-DOTA-Anti-CTLA-4 mAb enabled PET visualization of CTLA-4 on the T-cell infiltrating tumor tissues. PLoS ONE 9(11):e109866. https://doi.org/10.1371/journal.pone.0109866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hill DK, Kim E, Teruel JR, Jamin Y, Widerøe M, Søgaard CD, Moestue SA (2016) Diffusion-weighted MRI for early detection and characterization of prostate cancer in the transgenic adenocarcinoma of the mouse prostate model. J Magn Reson Imaging 43(5):1207–1217. https://doi.org/10.1002/jmri.25087

    Article  PubMed  Google Scholar 

  95. Hobbs SK, Shi G, Homer R, Harsh G, Atlas SW, Bednarski MD (2003) Magnetic resonance image–guided proteomics of human glioblastoma multiforme. J Magn Reson Imaging 18(5):530–536. https://doi.org/10.1002/jmri.10395

    Article  PubMed  Google Scholar 

  96. Horská A, Barker PB (2010) Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am 20(3):293–310. https://doi.org/10.1016/j.nic.2010.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  97. Hoskin PJ, Saunders MI, Goodchild K, Powell ME, Taylor NJ, Baddeley H (1999) Dynamic contrast enhanced magnetic resonance scanning as a predictor of response to accelerated radiotherapy for advanced head and neck cancer. Br J Radiol 72(863):1093–1098. https://doi.org/10.1259/bjr.72.863.10700827

    Article  CAS  PubMed  Google Scholar 

  98. Howe FA, Barton SJ, Cudlip SA, Stubbs M, Saunders DE, Murphy M, Griffiths JR (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49(2):223–232. https://doi.org/10.1002/mrm.10367

    Article  CAS  PubMed  Google Scholar 

  99. Hsiao J-K, Law B, Weissleder R, Tung CH (2006) In-vivo imaging of tumor associated urokinase-type plasminogen activator activity

    Google Scholar 

  100. Hu VW, Frank BC, Heine S, Lee NH, Quackenbush J (2006) Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genom 7:118–118. https://doi.org/10.1186/1471-2164-7-118

    Article  CAS  Google Scholar 

  101. Hume SP, Myers R (2002) Dedicated small animal scanners: a new tool for drug development? Curr Pharm Des 8(16):1497–1511. https://doi.org/10.2174/1381612023394412

    Article  CAS  PubMed  Google Scholar 

  102. Ichikawa T, Högemann D, Saeki Y, Tyminski E, Terada K, Weissleder R, Basilion JP (2002) MRI of transgene expression: correlation to therapeutic gene expression. Neoplasia 4(6):523–530. https://doi.org/10.1038/sj.neo.7900266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Iftimia N, Iyer AK, Hammer DX, Lue N, Mujat M, Pitman M, Amiji M (2011) Fluorescence-guided optical coherence tomography imaging for colon cancer screening: a preliminary mouse study. Biomed Opt Express 3(1):178–191. https://doi.org/10.1364/boe.3.000178

    Article  PubMed  PubMed Central  Google Scholar 

  104. Inoue T, Kim EE, Wong FCL, Yang DJ, Bassa P, Wong W-H, Podoloff DA (1996) Comparison of fluorine-18-fluorodeoxyglucose and carbon-11-methionine PET in detection of malignant tumors. J Nucl Med 37(9):1472–1476

    CAS  PubMed  Google Scholar 

  105. Jafari-Khouzani K, Emblem KE, Kalpathy-Cramer J, Bjørnerud A, Vangel MG, Gerstner ER, Stufflebeam SM (2015) Repeatability of cerebral perfusion using dynamic susceptibility contrast MRI in glioblastoma patients. Transl Oncol 8(3):137–146. https://doi.org/10.1016/j.tranon.2015.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jager GJ, Ruijter ET, van de Kaa CA, de la Rosette JJ, Oosterhof GO, Thornbury JR, Barentsz JO (1997) Dynamic TurboFLASH subtraction technique for contrast-enhanced MR imaging of the prostate: correlation with histopathologic results. Radiology 203(3):645–652. https://doi.org/10.1148/radiology.203.3.9169683

    Article  CAS  PubMed  Google Scholar 

  107. Jeremy CH, Simon RA, David TD (1997) Optical imaging in medicine: I. Experimental techniques. Phys Med Biol 42(5):825

    Google Scholar 

  108. Jiang S, Gnanasammandhan MK, Zhang Y (2010) Optical imaging-guided cancer therapy with fluorescent nanoparticles. J R Soc Interface 7(42):3–18. https://doi.org/10.1098/rsif.2009.0243

    Article  CAS  PubMed  Google Scholar 

  109. Jones KM, Randtke EA, Yoshimaru ES, Howison CM, Chalasani P, Klein RR, Pagel MD (2017) Clinical translation of tumor acidosis measurements with AcidoCEST MRI. Mol Imaging Biol 19(4):617–625. https://doi.org/10.1007/s11307-016-1029-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jones KM, Stuehm CA, Hsu CC, Kuo PH, Pagel MD, Randtke EA (2017). Imaging lung cancer by using chemical exchange saturation transfer MRI with retrospective respiration gating. Tomography (Ann Arbor, Mich.) 3(4):201–210. https://doi.org/10.18383/j.tom.2017.00017

  111. Jones T, Price P (2012) Development and experimental medicine applications of PET in oncology: a historical perspective. Lancet Oncol 13(3):e116–e125. https://doi.org/10.1016/s1470-2045(11)70183-8

    Article  PubMed  Google Scholar 

  112. Josefsson A, Nedrow JR, Park S, Banerjee SR, Rittenbach A, Jammes F, Sgouros G (2016) Imaging, biodistribution, and dosimetry of radionuclide-labeled PD-L1 antibody in an immunocompetent mouse model of breast cancer. Can Res 76(2):472. https://doi.org/10.1158/0008-5472.can-15-2141

    Article  CAS  Google Scholar 

  113. Joshi BP, Wang TD (2010) Exogenous molecular probes for targeted imaging in cancer: focus on multi-modal imaging. Cancers 2(2):1251–1287. https://doi.org/10.3390/cancers2021251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Karunanithi S, Sharma P, Kumar A, Khangembam BC, Bandopadhyaya GP, Kumar R, Bal C (2013) 18F-FDOPA PET/CT for detection of recurrence in patients with glioma: prospective comparison with 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 40(7):1025–1035. https://doi.org/10.1007/s00259-013-2384-0

    Article  CAS  PubMed  Google Scholar 

  115. Kato H, Kuwano H, Nakajima M, Miyazaki T, Yoshikawa M, Ojima H, Endo K (2002) Comparison between positron emission tomography and computed tomography in the use of the assessment of esophageal carcinoma. Cancer 94(4):921–928. https://doi.org/10.1002/cncr.10330

    Article  PubMed  Google Scholar 

  116. Ke S, Wen X, Gurfinkel M, Charnsangavej C, Wallace S, Sevick-Muraca EM, Li C (2003) Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Can Res 63(22):7870

    CAS  Google Scholar 

  117. Kemp WJM, Stehouwer BL, Boer VO, Luijten PR, Klomp DWJ, Wijnen JP (2016) Proton and phosphorus magnetic resonance spectroscopy of the healthy human breast at 7T. NMR Biomed 30(2):e3684. https://doi.org/10.1002/nbm.3684

    Article  CAS  PubMed Central  Google Scholar 

  118. Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 34(9):1339–1347. https://doi.org/10.1007/s00259-007-0379-4

    Article  PubMed  Google Scholar 

  119. Keshari KR, Kurhanewicz J, Bok R, Larson PEZ, Vigneron DB, Wilson DM (2011) Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proc Natl Acad Sci USA 108(46):18606–18611. https://doi.org/10.1073/pnas.1106920108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Keshari KR, Wilson DM, Chen AP, Bok R, Larson PEZ, Hu S, Kurhanewicz J (2009) Hyperpolarized [2-13C]-fructose: a hemiketal DNP substrate for in vivo metabolic imaging. J Am Chem Soc 131(48):17591–17596. https://doi.org/10.1021/ja9049355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kettunen MI, Hu D-E, Witney TH, McLaughlin R, Gallagher FA, Bohndiek SE, Brindle KM (2010) Magnetization transfer measurements of exchange between hyperpolarized [1-13C]pyruvate and [1-13C]lactate in a murine lymphoma. Magn Reson Med 63(4):872–880. https://doi.org/10.1002/mrm.22276

    Article  CAS  PubMed  Google Scholar 

  122. Kim HS, Cho HR, Choi SH, Woo JS, Moon WK (2010) In vivo imaging of tumor transduced with bimodal lentiviral vector encoding human ferritin and green fluorescent protein on a 1.5T clinical magnetic resonance scanner. Cancer Res 70(18):7315

    Google Scholar 

  123. Kircher MF, Hricak H, Larson SM (2012) Molecular imaging for personalized cancer care. Mol Oncol 6(2):182–195. https://doi.org/10.1016/j.molonc.2012.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Koh DM, Collins DJ, Wallace T, Chau I, Riddell AM (2012) Combining diffusion-weighted MRI with Gd-EOB-DTPA-enhanced MRI improves the detection of colorectal liver metastases. Br J Radiol 85(1015):980–989. https://doi.org/10.1259/bjr/91771639

    Article  PubMed  PubMed Central  Google Scholar 

  125. Koopmans KP, de Vries EGE, Kema IP, Elsinga PH, Neels OC, Sluiter WJ, Jager PL (2006) Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol 7(9):728–734. https://doi.org/10.1016/S1470-2045(06)70801-4

    Article  CAS  PubMed  Google Scholar 

  126. Korchinski DJ, Taha M, Yang R, Nathoo N, Dunn JF (2015) Iron Oxide as an MRI contrast agent for cell tracking. Magn Reson Insights 8(Suppl 1):15–29. https://doi.org/10.4137/mri.s23557

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kruchten V, Brown, E, Glaudemans EJM, Dierckx AAJO et al (2013) PET imaging of oestrogen receptors in patients with breast cancer. Lancet Oncol 14(11):e465–e475. https://doi.org/10.1016/s1470-2045(13)70292-4

  128. Kurhanewicz J, Vigneron DB, Ardenkjaer-Larsen JH, Bankson JA, Brindle K, Cunningham CH, Rizi R (2019) Hyperpolarized 13C MRI: path to clinical translation in oncology. Neoplasia 21(1):1–16. https://doi.org/10.1016/j.neo.2018.09.006

    Article  PubMed  Google Scholar 

  129. Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, DeBerardinis RJ, Green GG, Leach MO, Rajan SS, Rizi RR, Malloy CR (2011) Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia (New York, N.Y.) 13(2):81–97

    Google Scholar 

  130. Kurhanewicz J, Vigneron DB, Hricak H, Parivar F, Nelson SJ, Shinohara K, Carroll PR (1996) Prostate cancer: metabolic response to cryosurgery as detected with 3D H-1 MR spectroscopic imaging. Radiology 200(2):489–496. https://doi.org/10.1148/radiology.200.2.8685346

    Article  CAS  PubMed  Google Scholar 

  131. Kurhanewicz J, Vigneron DB, Nelson SJ (2000) Three-dimensional magnetic resonance spectroscopic imaging of brain and prostate cancer. Neoplasia (New York, N.Y.) 2(1–2):166–189

    Google Scholar 

  132. Kvistad KA, Bakken IJ, Gribbestad IS, Ehrnholm B, Lundgren S, Fjøsne HE, Haraldseth O (1999) Characterization of neoplastic and normal human breast tissues with in vivo 1H MR spectroscopy. J Magn Reson Imaging 10(2):159–164. https://doi.org/10.1002/(sici)1522-2586(199908)10:2%3c159:aid-jmri8%3e3.0.co;2-0

    Article  CAS  PubMed  Google Scholar 

  133. Kwee SA, Coel MN, Ly BH, Lim J (2009) 18F-choline PET/CT imaging of RECIST measurable lesions in hormone refractory prostate cancer. Ann Nucl Med 23(6):541–548. https://doi.org/10.1007/s12149-009-0273-1

    Article  CAS  PubMed  Google Scholar 

  134. Kwock L, Smith JK, Castillo M, Ewend MG, Cush S, Hensing T, Bouldin TW (2002) Clinical applications of proton MR spectroscopy in oncology. Technol Cancer Res Treat 1(1):17–28. https://doi.org/10.1177/153303460200100103

    Article  CAS  PubMed  Google Scholar 

  135. Lanzardo S, Conti L, Brioschi C, Bartolomeo MP, Arosio D, Belvisi L, Forni G (2011) A new optical imaging probe targeting αVβ3 integrin in glioblastoma xenografts. Contrast Media Mol Imaging 6(6):449–458. https://doi.org/10.1002/cmmi.444

    Article  CAS  PubMed  Google Scholar 

  136. Law B, Curino A, Bugge TH, Weissleder R, Tung C-H (2004) Design, synthesis, and characterization of urokinase plasminogen-activator-sensitive near-infrared reporter. Chem Biol 11(1):99–106. https://doi.org/10.1016/j.chembiol.2003.12.017

    Article  CAS  PubMed  Google Scholar 

  137. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2):497–505. https://doi.org/10.1148/radiology.168.2.3393671

    Article  PubMed  Google Scholar 

  138. Le Bihan D, Delannoy J, Levin RL (1989) Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia. Radiology 171(3):853–857. https://doi.org/10.1148/radiology.171.3.2717764

    Article  PubMed  Google Scholar 

  139. LeBeau AM, Sevillano N, King ML, Duriseti S, Murphy ST, Craik CS, VanBrocklin HF (2014) Imaging the urokinase plasminongen activator receptor in preclinical breast cancer models of acquired drug resistance. Theranostics 4(3):267–279. https://doi.org/10.7150/thno.7323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lecouvet FE, El Mouedden J, Collette L, Coche E, Danse E, Jamar F, Tombal B (2012) Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol 62(1):68–75. https://doi.org/10.1016/j.eururo.2012.02.020

    Article  PubMed  Google Scholar 

  141. Lee J-H, Springer CS Jr (2003) Effects of equilibrium exchange on diffusion-weighted NMR signals: the diffusigraphic “shutter-speed”. Magn Reson Med 49(3):450–458. https://doi.org/10.1002/mrm.10402

    Article  PubMed  Google Scholar 

  142. Leskinen-Kallio S, Någren K, Lehikoinen P, Ruotsalainen U, Teräs M, Joensuu H (1992) Carbon-11-methionine and PET is an effective method to image head and neck cancer. J Nucl Med 33(5):691–695

    CAS  PubMed  Google Scholar 

  143. Lesniak WG, Chatterjee S, Gabrielson M, Lisok A, Wharram B, Pomper MG, Nimmagadda S (2016) PD-L1 detection in tumors using [64Cu]atezolizumab with PET. Bioconjug Chem 27(9):2103–2110. https://doi.org/10.1021/acs.bioconjchem.6b00348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lev MH, Rosen BR (1999) Clinical applications of intracranial perfusion MR imaging. Neuroimaging Clin N Am 9(2):309–331

    CAS  PubMed  Google Scholar 

  145. Lewis DY, Soloviev D, Brindle KM (2015) Imaging tumor metabolism using positron emission tomography. Cancer J (Sudbury, Mass.) 21(2):129–136. https://doi.org/10.1097/ppo.0000000000000105

  146. Li B, Li Q, Nie W, Liu S (2014) Diagnostic value of whole-body diffusion-weighted magnetic resonance imaging for detection of primary and metastatic malignancies: a meta-analysis. Eur J Radiol 83(2):338–344. https://doi.org/10.1016/j.ejrad.2013.11.017

    Article  PubMed  Google Scholar 

  147. Li G, Wang X, Zong S, Wang J, Conti PS, Chen K (2014) MicroPET imaging of CD13 expression using a 64Cu-labeled dimeric NGR peptide based on sarcophagine cage. Mol Pharm 11(11):3938–3946. https://doi.org/10.1021/mp500354x

    Article  CAS  PubMed  Google Scholar 

  148. Li X, Liu Q, Wang M, Jin X, Liu Q, Yao S, Li J (2008) C-11 choline PET/CT imaging for differentiating malignant from benign prostate lesions. Clin Nucl Med 33(10):671–676. https://doi.org/10.1097/rlu.0b013e318184b3a0

    Article  CAS  PubMed  Google Scholar 

  149. Lin G, Chung Y-L (2014) Current opportunities and challenges of magnetic resonance spectroscopy, positron emission tomography, and mass spectrometry imaging for mapping cancer metabolism in vivo. Biomed Res Int 2014:13. https://doi.org/10.1155/2014/625095

    Article  CAS  Google Scholar 

  150. Liu F, Xu X, Zhu H, Zhang Y, Yang J, Zhang L, Yang Z (2018) PET imaging of 18F-(2S,4R)4-fluoroglutamine accumulation in breast cancer: from xenografts to patients. Mol Pharm 15(8):3448–3455. https://doi.org/10.1021/acs.molpharmaceut.8b00430

    Article  CAS  PubMed  Google Scholar 

  151. Lizarraga KJ, Allen-Auerbach M, Czernin J, DeSalles AAF, Yong WH, Phelps ME, Chen W (2014) 18F-FDOPA PET for differentiating recurrent or progressive brain metastatic tumors from late or delayed radiation injury after radiation treatment. J Nucl Med 55(1):30–36. https://doi.org/10.2967/jnumed.113.121418

    Article  CAS  PubMed  Google Scholar 

  152. Ma B, Blakeley JO, Hong X, Zhang H, Jiang S, Blair L, Zhou J (2016) Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas. J Magn Reson Imaging 44(2):456–462. https://doi.org/10.1002/jmri.25159

    Article  PubMed  PubMed Central  Google Scholar 

  153. Mayr NA, Yuh WTC, Arnholt JC, Ehrhardt JC, Sorosky JI, Magnotta VA, Buatti JM (2000) Pixel analysis of MR perfusion imaging in predicting radiation therapy outcome in cervical cancer. J Magn Reson Imaging 12(6):1027–1033. https://doi.org/10.1002/1522-2586(200012)12:6%3c1027:aid-jmri31%3e3.0.co;2-5

    Article  CAS  PubMed  Google Scholar 

  154. McIntyre JO, Matrisian LM (2003) Molecular imaging of proteolytic activity in cancer. J Cell Biochem 90(6):1087–1097. https://doi.org/10.1002/jcb.10713

    Article  CAS  PubMed  Google Scholar 

  155. McKnight TR (2004) Proton magnetic resonance spectroscopic evaluation of brain tumor metabolism. Semin Oncol 31(5):605–617. https://doi.org/10.1053/j.seminoncol.2004.07.003

    Article  CAS  PubMed  Google Scholar 

  156. Mehrkens JH, Pöpperl G, Rachinger W, Herms J, Seelos K, Tatsch K, Kreth FW (2008) The positive predictive value of O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment. J Neurooncol 88(1):27–35. https://doi.org/10.1007/s11060-008-9526-4

    Article  CAS  PubMed  Google Scholar 

  157. Meier R, Golovko D, Tavri S, Henning TD, Knopp C, Piontek G, Daldrup-Link H (2011) Depicting adoptive immunotherapy for prostate cancer in an animal model with magnetic resonance imaging. Magn Reson Med 65(3):756–763. https://doi.org/10.1002/mrm.22652

    Article  CAS  PubMed  Google Scholar 

  158. Meisamy S, Bolan PJ, Baker EH, Pollema MG, Le CT, Kelcz F, Lechner MC, Luikens BA, Carlson RA, Brandt KR, Amrami KK, Garwood M (2005) Adding in vivo quantitative 1H MR spectroscopy to improve diagnostic accuracy of breast MR imaging: preliminary results of observer performance study at 4.0 T. Radiology 236(2):465–475. https://doi.org/10.1148/radiol.2362040836

  159. Moon BF, Jones KM, Chen LQ, Liu P, Randtke EA, Howison CM, Pagel MD (2015) A comparison of iopromide and iopamidol, two acidoCEST MRI contrast media that measure tumor extracellular pH. Contrast Media Mol Imaging 10(6):446–455. https://doi.org/10.1002/cmmi.1647

    Article  CAS  PubMed  Google Scholar 

  160. Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, Norman D (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176(2):439–445. https://doi.org/10.1148/radiology.176.2.2367658

    Article  CAS  PubMed  Google Scholar 

  161. Mueller-Lisse UG, Swanson MG, Vigneron DB, Hricak H, Bessette A, Males RG, Kurhanewicz J (2001) Time-dependent effects of hormone-deprivation therapy on prostate metabolism as detected by combined magnetic resonance imaging and 3D magnetic resonance spectroscopic imaging. Magn Reson Med 46(1):49–57. https://doi.org/10.1002/mrm.1159

    Article  CAS  PubMed  Google Scholar 

  162. Narquin S, Ingrand P, Azais I, Delwail V, Vialle R, Boucecbi S, Tasu JP (2013) Comparison of whole-body diffusion MRI and conventional radiological assessment in the staging of myeloma. Diagn Interv Imaging 94(6):629–636. https://doi.org/10.1016/j.diii.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  163. Natarajan A, Mayer AT, Xu L, Reeves RE, Gano J, Gambhir SS (2015) Novel radiotracer for ImmunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjug Chem 26(10):2062–2069. https://doi.org/10.1021/acs.bioconjchem.5b00318

    Article  CAS  PubMed  Google Scholar 

  164. Neal A, Moffat BA, Stein JM, Nanga RPR, Desmond P, Shinohara RT, Davis KA (2019) Glutamate weighted imaging contrast in gliomas with 7 Tesla magnetic resonance imaging. NeuroImage Clin 22:101694–101694. https://doi.org/10.1016/j.nicl.2019.101694

    Article  PubMed  PubMed Central  Google Scholar 

  165. Nielsen T, Wittenborn T, Horsman MR (2012) Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in preclinical studies of antivascular treatments. Pharmaceutics 4(4):563–589. https://doi.org/10.3390/pharmaceutics4040563

    Article  PubMed  PubMed Central  Google Scholar 

  166. Niemeijer A-LN, Smit EF, Dongen GM, Windhorst AD, Huisman MC, Hendrikse NH, Leung DK, Smith RA, Hayes W, Velasquez LM, Bonacorsi SJ, De Langen J (2017) Whole body PD-1 and PD-L1 PET with 89Zr-nivolumab and 18F-BMS-986192 in pts with NSCLC. J Clin Oncol 35(15_suppl):e20047–e20047. https://doi.org/10.1200/jco.2017.35.15_suppl.e20047

  167. Norris D (2001) The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment. NMR Biomed 14:77–93

    Google Scholar 

  168. Notni J, Reich D, Maltsev OV, Kapp TG, Steiger K, Hoffmann F, Wester H-J (2017) In vivo PET imaging of the cancer integrin αvβ6 using 68 Ga-labeled cyclic RGD nonapeptides. J Nucl Med 58(4):671–677. https://doi.org/10.2967/jnumed.116.182824

    Article  CAS  PubMed  Google Scholar 

  169. Ntziachristos V (2006) Fluorescence molecular imaging. Annu Rev Biomed Eng 8(1):1–33. https://doi.org/10.1146/annurev.bioeng.8.061505.095831

    Article  CAS  PubMed  Google Scholar 

  170. O’Farrell AC, Shnyder SD, Marston G, Coletta PL, Gill JH (2013) Non-invasive molecular imaging for preclinical cancer therapeutic development. Br J Pharmacol 169(4):719–735. https://doi.org/10.1111/bph.12155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ocak I, Bernardo M, Metzger G, Barrett T, Pinto P, Albert PS, Choyke PL (2007) Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. Am J Roentgenol 189(4):W192–W201. https://doi.org/10.2214/ajr.06.1329

    Article  Google Scholar 

  172. Oyama N, Miller TR, Dehdashti F, Siegel BA, Fischer KC, Michalski JM, Welch MJ (2003) 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med 44(4):549–555

    CAS  PubMed  Google Scholar 

  173. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D, Hammoud DA, Choyke PL (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia (New York, N.Y.) 11(2):102–125

    Google Scholar 

  174. Padhani AR, van Ree K, Collins DJ, D’Sa S, Makris A (2013) Assessing the relation between bone marrow signal intensity and apparent diffusion coefficient in diffusion-weighted MRI. Am J Roentgenol 200(1):163–170. https://doi.org/10.2214/ajr.11.8185

    Article  Google Scholar 

  175. Pantel AR, Ackerman D, Lee S-C, Mankoff DA, Gade TP (2018) Imaging cancer metabolism: underlying biology and emerging strategies. J Nucl Med 59(9):1340–1349. https://doi.org/10.2967/jnumed.117.199869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Park GE, Jee W-H, Lee S-Y, Sung J-K, Jung J-Y, Grimm R, Ha K-Y (2018) Differentiation of multiple myeloma and metastases: use of axial diffusion-weighted MR imaging in addition to standard MR imaging at 3T. PLoS ONE 13(12):e0208860–e0208860. https://doi.org/10.1371/journal.pone.0208860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Petersen RK, Hess S, Alavi A, Høilund-Carlsen PF (2014) Clinical impact of FDG-PET/CT on colorectal cancer staging and treatment strategy. Am J Nucl Med Mol Imaging 4(5):471–482

    PubMed  PubMed Central  Google Scholar 

  178. Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, Franzoso G (2004) Ferritin heavy chain upregulation by NF-κB inhibits TNFα-induced apoptosis by suppressing reactive oxygen species. Cell 119(4):529–542. https://doi.org/10.1016/j.cell.2004.10.017

    Article  CAS  PubMed  Google Scholar 

  179. Provenzale JM, Wang GR, Brenner T, Petrella JR, Sorensen AG (2002) Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. Am J Roentgenol 178(3):711–716. https://doi.org/10.2214/ajr.178.3.1780711

    Article  Google Scholar 

  180. Rajendran R, Huang W, Tang AMY, Liang JM, Choo S, Reese T, Chuang KH (2014) Early detection of antiangiogenic treatment responses in a mouse xenograft tumor model using quantitative perfusion MRI. Cancer Med 3(1):47–60. https://doi.org/10.1002/cam4.177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Rao J, Dragulescu-Andrasi A, Yao H (2007) Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol 18(1):17–25. https://doi.org/10.1016/j.copbio.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  182. Ray P, Wu AM, Gambhir SS (2003) Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Can Res 63(6):1160

    CAS  Google Scholar 

  183. Reddick WE, Taylor JS, Fletcher BD (1999) Dynamic MR imaging (DEMRI) of microcirculation in bone sarcoma. J Magn Reson Imaging 10(3):277–285. https://doi.org/10.1002/(sici)1522-2586(199909)10:3%3c277:aid-jmri8%3e3.0.co;2-s

    Article  CAS  PubMed  Google Scholar 

  184. Rehemtulla A, Stegman LD, Cardozo SJ, Gupta S, Hall DE, Contag CH, Ross BD (2000) Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia (New York, N.Y.) 2(6):491–495

    Google Scholar 

  185. Rieber A, Brambs HJ, Gabelmann A, Heilmann V, Kreienberg R, Kühn T (2002) Breast MRI for monitoring response of primary breast cancer to neo-adjuvant chemotherapy. Eur Radiol 12(7):1711–1719. https://doi.org/10.1007/s00330-001-1233-x

    Article  CAS  PubMed  Google Scholar 

  186. Rivlin M, Navon G (2016) Glucosamine and N-acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors. Sci Rep 6:32648–32648. https://doi.org/10.1038/srep32648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Rivlin M, Navon G (2018) CEST MRI of 3-O-methyl-d-glucose on different breast cancer models. Magn Reson Med 79(2):1061–1069. https://doi.org/10.1002/mrm.26752

    Article  CAS  PubMed  Google Scholar 

  188. Rivlin M, Tsarfaty I, Navon G (2014) Functional molecular imaging of tumors by chemical exchange saturation transfer MRI of 3-O-Methyl-d-glucose. Magn Reson Med 72(5):1375–1380. https://doi.org/10.1002/mrm.25467

    Article  CAS  PubMed  Google Scholar 

  189. Roberts HC, Roberts TPL, Brasch RC, Dillon WP (2000) Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. Am J Neuroradiol 21(5):891

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Rodrigues TB, Serrao EM, Kennedy BWC, Hu D-E, Kettunen MI, Brindle KM (2014) Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C-labeled glucose. Nat Med 20(1):93–97. https://doi.org/10.1038/nm.3416

    Article  CAS  PubMed  Google Scholar 

  191. Rosenkrantz AB, Friedman K, Chandarana H, Melsaether A, Moy L, Ding Y-S, Jain R (2016) Current status of hybrid PET/MRI in oncologic imaging. AJR Am J Roentgenol 206(1):162–172. https://doi.org/10.2214/ajr.15.14968

    Article  PubMed  Google Scholar 

  192. Russo F, Mazzetti S, Grignani G, De Rosa G, Aglietta M, Anselmetti GC, Stasi M, Regge D (2011) In vivo characterisation of soft tissue tumours by 1.5-T proton MR spectroscopy. Eur Radiol 22:1131–1139

    Google Scholar 

  193. Sadikot RT, Blackwell TS (2005) Bioluminescence imaging. Proc Am Thorac Soc 2(6):537–512. https://doi.org/10.1513/pats.200507-067ds

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Sagiyama K, Mashimo T, Togao O, Vemireddy V, Hatanpaa KJ, Maher EA, Takahashi M (2014) In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc Natl Acad Sci USA 111(12):4542–4547. https://doi.org/10.1073/pnas.1323855111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Schneider MJ, Cyran CC, Nikolaou K, Hirner H, Reiser MF, Dietrich O (2014) Monitoring early response to anti-angiogenic therapy: diffusion-weighted magnetic resonance imaging and volume measurements in colon carcinoma xenografts. PLoS ONE 9(9):e106970–e106970. https://doi.org/10.1371/journal.pone.0106970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Schwamm Lee H, Koroshetz Walter J, Sorensen AG, Wang B, Copen William A, Budzik R, Gonzalez RG (1998) Time course of lesion development in patients with acute stroke. Stroke 29(11):2268–2276. https://doi.org/10.1161/01.str.29.11.2268

    Article  Google Scholar 

  197. Schwarz AJ, Maisey NR, Collins DJ, Cunningham D, Huddart R, Leach MO (2002) Early in vivo detection of metabolic response: a pilot study of 1H MR spectroscopy in extracranial lymphoma and germ cell tumours. Br J Radiol 75(900):959–966. https://doi.org/10.1259/bjr.75.900.750959

    Article  CAS  PubMed  Google Scholar 

  198. Seevinck PR, Deddens LH, Dijkhuizen RM (2010) Magnetic resonance imaging of brain angiogenesis after stroke. Angiogenesis 13(2):101–111. https://doi.org/10.1007/s10456-010-9174-0

    Article  PubMed  PubMed Central  Google Scholar 

  199. Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, Smith GT (2010) SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med 51(11):1813–1820. https://doi.org/10.2967/jnumed.110.082263

  200. Sherry AD, Woods M (2008) Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annu Rev Biomed Eng 10:391–411. https://doi.org/10.1146/annurev.bioeng.9.060906.151929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Siggelkow W, Zimny M, Faridi A, Petzold K, Buell U, Rath W (2003) The value of positron emission tomography in the follow-up for breast cancer. Anticancer Res 23(2C):1859–1867

    PubMed  Google Scholar 

  202. Singh A, Haris M, Rathore D, Purwar A, Sarma M, Bayu G, Gupta RK (2007) Quantification of physiological and hemodynamic indices using T1 dynamic contrast-enhanced MRI in intracranial mass lesions. J Magn Reson Imaging 26(4):871–880. https://doi.org/10.1002/jmri.21080

    Article  PubMed  Google Scholar 

  203. Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J (2008) 11C-l-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imag Biol 10(1):1–18. https://doi.org/10.1007/s11307-007-0115-2

    Article  Google Scholar 

  204. Sinha S, Lucas-Quesada FA, Sinha U, DeBruhl N, Bassett LW (2002) In vivo diffusion-weighted MRI of the breast: Potential for lesion characterization. J Magn Reson Imaging 15(6):693–704. https://doi.org/10.1002/jmri.10116

    Article  PubMed  Google Scholar 

  205. Sinkus R, Van Beers BE, Vilgrain V, DeSouza N, Waterton JC (2012) Apparent diffusion coefficient from magnetic resonance imaging as a biomarker in oncology drug development. Eur J Cancer 48(4):425–431. https://doi.org/10.1016/j.ejca.2011.11.034

    Article  CAS  PubMed  Google Scholar 

  206. Sokolov K, Follen M, Richards-Kortum R (2002) Optical spectroscopy for detection of neoplasia. Curr Opin Chem Biol 6(5):651–658. https://doi.org/10.1016/S1367-5931(02)00381-2

    Article  CAS  PubMed  Google Scholar 

  207. Solomon M, Liu Y, Berezin MY, Achilefu S (2011) Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring. Med Principles Pract 20(5):397–415. https://doi.org/10.1159/000327655

    Article  Google Scholar 

  208. Song KD, Choi D, Lee JH, Im GH, Yang J, Kim J-H, Lee WJ (2014) Evaluation of tumor microvascular response to brivanib by dynamic contrast-enhanced 7-T MRI in an orthotopic xenograft model of hepatocellular carcinoma. Am J Roentgenol 202(6):W559–W566. https://doi.org/10.2214/ajr.13.11042

    Article  Google Scholar 

  209. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292. https://doi.org/10.1063/1.1695690

    Article  CAS  Google Scholar 

  210. Su H, Forbes A, Gambhir SS, Braun J (2004) Quantitation of cell number by a positron emission tomography reporter gene strategy. Mol Imag Biol 6(3):139–148. https://doi.org/10.1016/j.mibio.2004.02.001

    Article  Google Scholar 

  211. Subhawong TK, Jacobs MA, Fayad LM (2014) Diffusion-weighted MR imaging for characterizing musculoskeletal lesions. Radiographics 34(5):1163–1177. https://doi.org/10.1148/rg.345140190

  212. Subhawong TK, Wang X, Durand DJ, Jacobs MA, Carrino JA, Machado AJ, Fayad LM (2012) Proton MR spectroscopy in metabolic assessment of musculoskeletal lesions. AJR Am J Roentgenol 198(1):162–172. https://doi.org/10.2214/ajr.11.6505

    Article  PubMed  PubMed Central  Google Scholar 

  213. Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I, Kira T, Takahashi M (2000) Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. Am J Neuroradiol 21(5):901

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Sumi M, Sakihama N, Sumi T, Morikawa M, Uetani M, Kabasawa H, Nakamura T (2003) Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer. Am J Neuroradiol 24(8):1627

    PubMed  PubMed Central  Google Scholar 

  215. Sun J, Zhang X-P, Li X-T, Tang L, Cui Y, Zhang X-Y, Sun Y-S (2014) Applicable apparent diffusion coefficient of an orthotopic mouse model of gastric cancer by improved clinical MRI diffusion weighted imaging. Sci Rep 4:6072–6072. https://doi.org/10.1038/srep06072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Sun Y, Schmidt NO, Schmidt K, Doshi S, Rubin JB, Mulkern RV, Kieran MW (2004) Perfusion MRI of U87 brain tumors in a mouse model. Magn Reson Med 51(5):893–899. https://doi.org/10.1002/mrm.20029

    Article  PubMed  Google Scholar 

  217. Sweeney TJ, Mailänder V, Tucker AA, Olomu AB, Zhang W, Cao Y, Negrin RS, Contag CH (1999). Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci U S A 96(21):12044–12049

    Google Scholar 

  218. Szwergold BS (1992) NMR spectroscopy of cells. Annu Rev Physiol 54(1):775–798. https://doi.org/10.1146/annurev.ph.54.030192.004015

    Article  CAS  PubMed  Google Scholar 

  219. Tatsumi M, Nakamoto Y, Traughber B, Marshall LT, Geschwind J-FH, Wahl RL (2003) Initial experience in small animal tumor imaging with a clinical positron emission tomography/computed tomography scanner using 2-[F-18]Fluoro-2-deoxy-d-glucose. Can Res 63(19):6252

    CAS  Google Scholar 

  220. Tehrani OS, Shields AF (2013) PET imaging of proliferation with pyrimidines. J Nucl Med 54(6):903–912. https://doi.org/10.2967/jnumed.112.112201

    Article  CAS  PubMed  Google Scholar 

  221. Thoeny HC, Ross BD (2010) Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J Magn Reson Imaging 32(1):2–16. https://doi.org/10.1002/jmri.22167

    Article  PubMed  PubMed Central  Google Scholar 

  222. Thukral A, Thomasson DM, Chow CK, Eulate R, Wedam SB, Gupta SN, Swain SM (2007) Inflammatory breast cancer: dynamic contrast-enhanced MR in patients receiving bevacizumab—initial experience. Radiology 244(3):727–735. https://doi.org/10.1148/radiol.2443060926

    Article  PubMed  Google Scholar 

  223. Tian M, Zhang H, Oriuchi N, Higuchi T, Endo K (2004) Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors. Eur J Nucl Med Mol Imaging 31(8):1064–1072. https://doi.org/10.1007/s00259-004-1496-y

    Article  CAS  PubMed  Google Scholar 

  224. Tsien RY (2004) Building and breeding molecules to spy on cells and tumors. FEBS Lett 579(4):927–932. https://doi.org/10.1016/j.febslet.2004.11.025

    Article  CAS  Google Scholar 

  225. Tumeh PC, Radu CG, Ribas A (2008) PET imaging of cancer immunotherapy. J Nucl Med 49(6):865–868. https://doi.org/10.2967/jnumed.108.051342

    Article  PubMed  Google Scholar 

  226. Tuncbilek N, Kaplan M, Altaner S, Atakan IH, Süt N, Inci O, Demir MK (2009) Value of dynamic contrast-enhanced MRI and correlation with tumor angiogenesis in bladder cancer. Am J Roentgenol 192(4):949–955. https://doi.org/10.2214/ajr.08.1332

    Article  Google Scholar 

  227. Twelves CJ, Porter DA, Lowry M, Dobbs NA, Graves PE, Smith MA, Richards MA (1994) Phosphorus-31 metabolism of post-menopausal breast cancer studied in vivo by magnetic resonance spectroscopy. Br J Cancer 69(6):1151–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. van der Veen EL, Bensch F, Glaudemans AWJM, Lub-de Hooge MN, de Vries EGE (2018) Molecular imaging to enlighten cancer immunotherapies and underlying involved processes. Cancer Treat Rev 70:232–244. https://doi.org/10.1016/j.ctrv.2018.09.007

    Article  CAS  PubMed  Google Scholar 

  229. van Dijken BRJ, van Laar PJ, Smits M, Dankbaar JW, Enting RH, van der Hoorn A (2019) Perfusion MRI in treatment evaluation of glioblastomas: clinical relevance of current and future techniques. J Magn Reson Imaging 49(1):11–22. https://doi.org/10.1002/jmri.26306

    Article  PubMed  Google Scholar 

  230. Vande Velde G, Raman Rangarajan J, Vreys R, Guglielmetti C, Dresselaers T, Verhoye M, Himmelreich U (2012) Quantitative evaluation of MRI-based tracking of ferritin-labeled endogenous neural stem cell progeny in rodent brain. NeuroImage 62(1):367–380. https://doi.org/10.1016/j.neuroimage.2012.04.040

    Article  CAS  PubMed  Google Scholar 

  231. Vandsburger MH, Radoul M, Addadi Y, Mpofu S, Cohen B, Eilam R, Neeman M (2013) Ovarian carcinoma: quantitative biexponential MR imaging relaxometry reveals the dynamic recruitment of ferritin-expressing fibroblasts to the angiogenic rim of tumors. Radiology 268(3):790–801. https://doi.org/10.1148/radiol.13122053

    Article  PubMed  PubMed Central  Google Scholar 

  232. Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, Van Laere K (2009) EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging 36(12):2103. https://doi.org/10.1007/s00259-009-1264-0

    Article  PubMed  Google Scholar 

  233. Vilanova JC, Barceló J (2007) Prostate cancer detection: magnetic resonance (MR) spectroscopic imaging. Abdom Imaging 32(2):253–261. https://doi.org/10.1007/s00261-007-9191-7

    Article  PubMed  Google Scholar 

  234. Villeirs GM, De Meerleer GO, De Visschere PJ, Fonteyne VH, Verbaeys AC, Oosterlinck W (2011) Combined magnetic resonance imaging and spectroscopy in the assessment of high grade prostate carcinoma in patients with elevated PSA: A single-institution experience of 356 patients. Eur J Radiol 77(2):340–345. https://doi.org/10.1016/j.ejrad.2009.08.007

    Article  PubMed  Google Scholar 

  235. Villeirs GM, Oosterlinck W, Vanherreweghe E, De Meerleer GO (2010) A qualitative approach to combined magnetic resonance imaging and spectroscopy in the diagnosis of prostate cancer. Eur J Radiol 73(2):352–356. https://doi.org/10.1016/j.ejrad.2008.10.034

    Article  PubMed  Google Scholar 

  236. Vinogradov E, Sherry AD, Lenkinski RE (2013) CEST: from basic principles to applications, challenges and opportunities. J Magn Reson (San Diego, Calif.: 1997) 229:155–172. https://doi.org/10.1016/j.jmr.2012.11.024

  237. von Eyben FE, Kairemo K (2014) Meta-analysis of 11C-choline and 18F-choline PET/CT for management of patients with prostate cancer. Nucl Med Commun 35(3):221–230. https://doi.org/10.1097/mnm.0000000000000040

    Article  Google Scholar 

  238. Vooijs M, Jonkers J, Lyons S, Berns A (2002) Noninvasive imaging of spontaneous retinoblastoma pathway-dependent tumors in mice. Can Res 62(6):1862

    CAS  Google Scholar 

  239. Walker-Samuel S, Ramasawmy R, Torrealdea F, Rega M, Rajkumar V, Johnson SP, Golay X (2013) In vivo imaging of glucose uptake and metabolism in tumors. Nat Med 19(8):1067–1072. https://doi.org/10.1038/nm.3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Wang J, Weygand J, Hwang K-P, Mohamed ASR, Ding Y, Fuller CD, Zhou J (2016) Magnetic resonance imaging of glucose uptake and metabolism in patients with head and neck cancer. Sci Rep 6:30618–30618. https://doi.org/10.1038/srep30618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Wang K-H, Wang Y-M, Chiu L-H, Chen T-C, Tsai Y-H, Zuo CS, Lai W-FT (2018) Optical imaging of ovarian cancer using a matrix metalloproteinase-3-sensitive near-infrared fluorescent probe. PLoS ONE 13(2):e0192047–e0192047. https://doi.org/10.1371/journal.pone.0192047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Wang S, Jarrett BR, Kauzlarich SM, Louie AY (2007) Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. J Am Chem Soc 129(13):3848–3856. https://doi.org/10.1021/ja065996d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Wang W, Larson SM, Fazzari M, Tickoo SK, Kolbert K, Sgouros G, Robbins RJ (2000) Prognostic value of[18F]fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab 85(3):1107–1113. https://doi.org/10.1210/jcem.85.3.6458

    Article  CAS  PubMed  Google Scholar 

  244. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309

    Article  CAS  PubMed  Google Scholar 

  245. Ward CS, Venkatesh HS, Chaumeil MM, Brandes AH, Vancriekinge M, Dafni H, Ronen SM (2010) Noninvasive detection of target modulation following phosphatidylinositol 3-kinase inhibition using hyperpolarized 13C magnetic resonance spectroscopy. Can Res 70(4):1296–1305. https://doi.org/10.1158/0008-5472.can-09-2251

    Article  CAS  Google Scholar 

  246. Wei SC, Duffy CR, Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8(9):1069. https://doi.org/10.1158/2159-8290.cd-18-0367

    Article  CAS  PubMed  Google Scholar 

  247. Weissleder R (2006) Molecular imaging in cancer. Science 312(5777):1168

    Article  CAS  PubMed  Google Scholar 

  248. Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca EA, Basilion JP (2000) In vivo magnetic resonance imaging of transgene expression. Nat Med 6:351. https://doi.org/10.1038/73219

    Article  CAS  PubMed  Google Scholar 

  249. Weissleder R, Tung C-H, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17:375. https://doi.org/10.1038/7933

    Article  CAS  PubMed  Google Scholar 

  250. Welsh DK, Kay SA (2005) Bioluminescence imaging in living organisms. Curr Opin Biotechnol 16(1):73–78. https://doi.org/10.1016/j.copbio.2004.12.006

    Article  CAS  PubMed  Google Scholar 

  251. Winter Patrick M, Morawski Anne M, Caruthers Shelton D, Fuhrhop Ralph W, Zhang H, Williams Todd A, Wickline Samuel A (2003) molecular imaging of angiogenesis in early-stage atherosclerosis with αvβ3-integrin–targeted nanoparticles. Circulation 108(18):2270–2274. https://doi.org/10.1161/01.cir.0000093185.16083.95

    Article  CAS  PubMed  Google Scholar 

  252. Wong JC, Provenzale JM, Petrella JR (2000) Perfusion MR imaging of brain neoplasms. Am J Roentgenol 174(4):1147–1157. https://doi.org/10.2214/ajr.174.4.1741147

    Article  CAS  Google Scholar 

  253. Woodhams R, Matsunaga K, Iwabuchi K, Kan S, Hata H, Kuranami M, Hayakawa K (2005) Diffusion-weighted imaging of malignant breast tumors: the usefulness of apparent diffusion coefficient (ADC) value and ADC map for the detection of malignant breast tumors and evaluation of cancer extension. J Comput Assist Tomogr 29(5):644–649. https://doi.org/10.1097/01.rct.0000171913.74086.1b

    Article  PubMed  Google Scholar 

  254. Xu X, Yadav NN, Knutsson L, Hua J, Kalyani R, Hall E, Laterra J, Blakeley J, Strowd R, Pomper M, Barker P, van Zijl PCM (2015) Dynamic glucose-enhanced (DGE) MRI: translation to human scanning and first results in glioma patients. Tomography (Ann Arbor, Mich.) 1(2):105–114. https://doi.org/10.18383/j.tom.2015.00175

  255. Yang G, Nie P, Kong Y, Sun H, Hou G, Han J (2015) MicroPET imaging of tumor angiogenesis and monitoring on antiangiogenic therapy with an 18F labeled RGD-based probe in SKOV-3 xenograft-bearing mice. Tumor Biology 36(5):3285–3291. https://doi.org/10.1007/s13277-014-2958-x

    Article  CAS  PubMed  Google Scholar 

  256. Yang L, Mao H, Cao Z, Wang YA, Peng X, Wang X, Nie S (2009) Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology 136(5):1514–1525.e1512. https://doi.org/10.1053/j.gastro.2009.01.006

    Article  CAS  PubMed  Google Scholar 

  257. Yang Y, Gong M-F, Yang H, Zhang S, Wang G-X, Su T-S, Zhang D (2016) MR molecular imaging of tumours using ferritin heavy chain reporter gene expression mediated by the hTERT promoter. Eur Radiol 26(11):4089–4097. https://doi.org/10.1007/s00330-016-4259-9

    Article  PubMed  PubMed Central  Google Scholar 

  258. Yang Y, Hong H, Zhang Y, Cai W (2009) Molecular imaging of proteases in cancer. Cancer Growth Metastsis 2:13–27

    CAS  Google Scholar 

  259. Yhee JY, Kim SA, Koo H, Son S, Ryu JH, Youn I-C, Kim K (2012) Optical imaging of cancer-related proteases using near-infrared fluorescence matrix metalloproteinase-sensitive and cathepsin B-sensitive probes. Theranostics 2(2):179–189. https://doi.org/10.7150/thno.3716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Yi X, Wang F, Qin W, Yang X, Yuan J (2014) Near-infrared fluorescent probes in cancer imaging and therapy: an emerging field. Int J Nanomed 9:1347–1365. https://doi.org/10.2147/ijn.s60206

    Article  Google Scholar 

  261. Yu J-X, Kodibagkar VD, Hallac RR, Liu L, Mason RP (2012) Dual 19F/1H MR gene reporter molecules for in vivo detection of β-galactosidase. Bioconjug Chem 23(3):596–603. https://doi.org/10.1021/bc200647q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Yue J, Liu S, Wang R, Hu X, Xie Z, Huang Y, Jing X (2012) Transferrin-conjugated micelles: enhanced accumulation and antitumor effect for transferrin-receptor-overexpressing cancer models. Mol Pharm 9(7):1919–1931. https://doi.org/10.1021/mp300213g

    Article  CAS  PubMed  Google Scholar 

  263. Zhang Q, Wang F, Wu Y-S, Zhang K-K, Lin Y, Zhu X-Q, Huang Y-P (2015) Dual-color labeled anti-mucin 1 antibody for imaging of ovarian cancer: a preliminary animal study. Oncology letters 9(3):1231–1235. https://doi.org/10.3892/ol.2014.2807

    Article  PubMed  Google Scholar 

  264. Zhao N, Zhang C, Zhao Y, Bai B, An J, Zhang H, Wu JB, Shi C (2016) Optical imaging of gastric cancer with near-infrared heptamethine carbocyanine fluorescence dyes. Oncotarget 7(35):57277–57289. https://doi.org/10.18632/oncotarget.10031

  265. Zheng C, Zheng M, Gong P, Jia D, Zhang P, Shi B, Sheng Z, Ma Y, Cai L (2012) Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Biomaterials 33:5603–5609

    Google Scholar 

  266. Zhou J, Payen J-F, Wilson DA, Traystman RJ, van Zijl PCM (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9:1085. https://doi.org/10.1038/nm907

    Article  CAS  PubMed  Google Scholar 

  267. Zhou J, Tryggestad E, Wen Z, Lal B, Zhou T, Grossman R, van Zijl PCM (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17(1):130–134. https://doi.org/10.1038/nm.2268

    Article  CAS  PubMed  Google Scholar 

  268. Zhou R, Bagga P, Nath K, Hariharan H, Mankoff DA, Reddy R (2018) Glutamate-weighted chemical exchange saturation transfer magnetic resonance imaging detects glutaminase inhibition in a mouse model of triple-negative breast cancer. Can Res 78(19):5521. https://doi.org/10.1158/0008-5472.can-17-3988

    Article  CAS  Google Scholar 

  269. Zhou R, Pantel AR, Li S, Lieberman BP, Ploessl K, Choi H, Mankoff DA (2017) [(18)F](2S,4R)4-fluoroglutamine PET detects glutamine pool size changes in triple-negative breast cancer in response to glutaminase inhibition. Can Res 77(6):1476–1484. https://doi.org/10.1158/0008-5472.can-16-1945

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Haris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haris, M. et al. (2020). Functional In Vivo Imaging of Tumors. In: Lee, P., Marincola, F. (eds) Tumor Microenvironment. Cancer Treatment and Research, vol 180. Springer, Cham. https://doi.org/10.1007/978-3-030-38862-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38862-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38861-4

  • Online ISBN: 978-3-030-38862-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics