Skip to main content

Review of Low Power Techniques for Neural Recording Applications

  • Chapter
  • First Online:
Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough

Part of the book series: Studies in Computational Intelligence ((SCI,volume 885 ))

Abstract

Continual neural signals recording is very important in the design of an effective brain machine interface and also to interpret human neurophysiology. Advancements in technology made the electronics to be capable of recording signals from large number of neurons on a single device. The demand for data from large number of neurons is continuously increasing from day to day. It is required for near approximate estimation of a challenging tool for the design engineers to produce an efficient Neural Recording Front End (NRFE). For small implant size, area occupied per channel must be low. Dynamic range in NRFE varies with respect to time due to change in the distance between electrode and neuron or background noise which requires adaptability. In this work, techniques for reduction of power consumption per channel and reduction in area consumption per channel in a NRFE are studied, via new circuits and architectures, and compared for proper choice of sub-blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, K., Yang, Z., Hoang, L., Weiland, J., Humayun, M., Liu, W.: An integrated 256-channel epi-retinal prosthesis. Solid-State Circ. 45(9), 1946–1956 (2010)

    Article  Google Scholar 

  2. He, J., Ma, C., Herman, R.: Engineering neural interfaces for rehabilitation of lower limb function in spinal cord injured. Proc. IEEE 96(7), 1152–1166 (2008)

    Article  Google Scholar 

  3. Amar, A., Levy, M., Liu, C., Apuzzo, M.: Vagus nerve stimulation. Proc. IEEE 96(7), 1142–1151 (2008)

    Article  Google Scholar 

  4. Harrison, R., Kier, R., Chestek, C., Gilja, V., Nuyujukian, P., Ryu, S., Greger, B., Solzbacher, F., Shenoy, K.: Wireless neural recording with single low-power integrated circuit. Neural Syst. Rehabil. Eng. IEEE Trans. 17(4), 322–329 (2009)

    Article  Google Scholar 

  5. Chaturvedi, V., Amrutur, B.: An area-efficient noise-adaptive neural amplifier in 130 nm CMOS technology. Emerg. Sel. Top. Circ. Syst. PP(99), 1–10 (2011)

    Google Scholar 

  6. Tong, X., Wang, J.: A 1 V 10 bit 25kS/s VCO-based ADC for implantable neural recording. In: IEEE Conference (2017)

    Google Scholar 

  7. Yeon, P., Bakir, M.S., Ghovanloo, M.: Towards a 1.1 mm2 free-floating wireless implantable neural recording SoC. In: IEEE Conference (2018)

    Google Scholar 

  8. Shui, B., Keller, M., Kuhl, M., Manoli, Y.: A 70.8 dB 0.0045 mm2 low-power continuous-time incremental delta-sigma modulator for multi-site neural recording interfaces. In: IEEE Conference (2018)

    Google Scholar 

  9. Park, S.-Y., Cho, J., Lee, K., Yoon, E.: Dynamic power reduction in scalable neural recording interface using spatiotemporal correlation and temporal sparsity of neural signals. IEEE J. Solid State Circ. (2018)

    Google Scholar 

  10. Kim, C., Joshi, S., Courellis, H., Wang, J., Miller, C., Cauwenberghs, G.: Sub-μVrms-noise sub-μW/channel ADC-direct neural recording with 200-mV/ms transient recovery through predictive digital autoranging. IEEE J. Solid-State Circ. (2018)

    Google Scholar 

  11. Tong, X., Wang, R.: A 0.6 V 10 bit 120kS/s SAR ADC for implantable multichannel neural recording. In: IEEE Conference (2017)

    Google Scholar 

  12. Rehman, S.U., Kamboh, A.M., Yang, Y.: A 79 μW 0.24 mm2 8-channel neural signal recording front-end integrated circuit. In: IEEE Conference (2017)

    Google Scholar 

  13. Tang, T., Goh, W.L., Yao, L., Cheong, J.H., Gao, Y.: An integrated multichannel neural recording analog front-end ASIC with area-efficient driven right leg circuit. In: IEEE Conference (2017)

    Google Scholar 

  14. Luany, S., Liuy, Y., Williams, I., Constandinou, T.G.: An event-driven SoC for neural recording. In: IEEE Conference (2016)

    Google Scholar 

  15. Ando, H., Yoshida, T., Matsushita, K., Hirata, M., Suzuki, T.: Wireless multichannel neural recording ith a 128 Mbps UWB transmitter for an implantable brain-machine interfaces. IEEE Trans. (2015)

    Google Scholar 

  16. Bahr, A., Saleh, L.A., Hinsch, R., Schroeder, D., Isbrandt, D., Krautschneider, W.H.: Small area, low power neural recording integrated circuit in 130 nm CMOS technology for small ammalians. In: 2016 IEEE (2016)

    Google Scholar 

  17. Liu, X., Zhang, M., Xiong, T., Richardson, A.G., Lucas, T.H., Chin, P.S., Etienne-Cummings, R., Tran, T.D., Van der Spiegel, J.: A fully integrated wireless compressed sensing neural signal acquisition system for chronic recording and brain machine interface. IEEE Trans. 10(4), 874–883 (2016)

    Article  Google Scholar 

  18. Hsu, W.-Y., Cao, C., Schmid, A.: A time-based, digitally intensive circuit and system architecture for wireless neural recording with high dynamic range. In: 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS), 16–19 Oct. 2016, Abu Dhabi, UAE (2016)

    Google Scholar 

  19. Mendrela, A.E., Cho, J., Fredenburg, J.A., Nagaraj, V., Netoff, T.I., Flynn, M.P., Yoon, E.: A bidirectional neural interface circuit with active stimulation artifact cancellation and cross-channel common-mode noise suppression. IEEE J. Solid-State Circ. (2015)

    Google Scholar 

  20. Liu, X., Zhu, H., Zhang, M., Richardson, A.G., Lucas, T.H., Van der Spiegel, J.: Design of a low-noise, high power efficiency neural recording front-end with an integrated real-time compressed sensing unit. 2015 IEEE, pp. 2996–2999 (2015)

    Google Scholar 

  21. Tao, Y., Lian, Y.: A 0.8 V, 1MS/s, 10-bit SAR ADC for multi-channel neural recording. IEEE Trans. IEEE (2014)

    Google Scholar 

  22. Widge, A.S., Dougherty, D.D., Eskandar, E.N.: An implantable 64-channel neural interface with reconfigurable recording and stimulation. In: 2015 EU, pp. 7837–7840 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brundavani, P., Vishnu Vardhan, D. (2020). Review of Low Power Techniques for Neural Recording Applications. In: Gunjan, V., Zurada, J., Raman, B., Gangadharan, G. (eds) Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough. Studies in Computational Intelligence, vol 885 . Springer, Cham. https://doi.org/10.1007/978-3-030-38445-6_14

Download citation

Publish with us

Policies and ethics