Skip to main content

Towards Integrating Formal Verification of Autonomous Robots with Battery Prognostics and Health Management

  • Conference paper
  • First Online:
Software Engineering and Formal Methods (SEFM 2019)

Abstract

The battery is a key component of autonomous robots. Its performance limits the robot’s safety and reliability. Unlike liquid-fuel, a battery, as a chemical device, exhibits complicated features, including (i) capacity fade over successive recharges and (ii) increasing discharge rate as the state of charge (SOC) goes down for a given power demand. Existing formal verification studies of autonomous robots, when considering energy constraints, formalise the energy component in a generic manner such that the battery features are overlooked. In this paper, we model an unmanned aerial vehicle (UAV) inspection mission on a wind farm and via probabilistic model checking in PRISM show (i) how the battery features may affect the verification results significantly in practical cases; and (ii) how the battery features, together with dynamic environments and battery safety strategies, jointly affect the verification results. Potential solutions to explicitly integrate battery prognostics and health management (PHM) with formal verification of autonomous robots are also discussed to motivate future work.

Supported by the UK EPSRC through the Offshore Robotics for Certification of Assets (ORCA) [EP/R026173/1], Robotics and Artificial Intelligence for Nuclear (RAIN) [EP/R026084] and Science of Sensor System Software (S4) [EP/N007565].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We have used the word “drone” interchangeably with the abbreviation UAV as a less formal naming convention throughout the paper.

  2. 2.

    https://epsrc.ukri.org/files/funding/calls/2017/raihubs.

  3. 3.

    https://www.prismmodelchecker.org/manual/.

  4. 4.

    https://x-y-zhao.github.io/files/VeriBatterySEFM19.prism.

  5. 5.

    Since we focus on the particular failure mode of out-off-battery in our model, rigorously this should be the probability of seeing no out-off-battery failures in a mission.

  6. 6.

    It is a first approximation in the sense of, e.g. the simplification of two levels of wind speed and the round estimations of battery consumption in Table 1.

References

  1. Andoni, M., Tang, W., Robu, V., Flynn, D.: Data analysis of battery storage systems. CIRED - Open Access Proc. J. 2017(1), 96–99 (2017)

    Article  Google Scholar 

  2. Barré, A., Suard, F., Gérard, M., Riu, D.: A real-time data-driven method for battery health prognostics in electric vehicle use. In: Proceedings of the 2nd European Conference of the Prognostics and Health Management Society, pp. 1–8 (2014)

    Google Scholar 

  3. Boker, U., Henzinger, T.A., Radhakrishna, A.: Battery transition systems. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2014, San Diego, California, USA, pp. 595–606. ACM (2014)

    Google Scholar 

  4. Daigle, M., Goebel, K.: Improving computational efficiency of prediction in model-based prognostics using the unscented transform. In: Annual Conference of the Prognostics and Health Management Society (2010)

    Google Scholar 

  5. Espada, A.R., del Mar Gallardo, M., Salmerón, A., Merino, P.: Runtime verification of expected energy consumption in smartphones. In: Fischer, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 132–149. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23404-5_10

    Chapter  Google Scholar 

  6. Farrell, M., Luckcuck, M., Fisher, M.: Robotics and integrated formal methods: necessity meets opportunity. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 161–171. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98938-9_10

    Chapter  Google Scholar 

  7. Filieri, A., Tamburrelli, G.: Probabilistic verification at runtime for self-adaptive systems. In: Cámara, J., de Lemos, R., Ghezzi, C., Lopes, A. (eds.) Assurances for Self-Adaptive Systems. LNCS, vol. 7740, pp. 30–59. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36249-1_2

    Chapter  Google Scholar 

  8. Fisher, M., et al.: Verifiable self-certifying autonomous systems. In: 2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), pp. 341–348 (2018)

    Google Scholar 

  9. Fisher, M., Dennis, L., Webster, M.: Verifying autonomous systems. Commun. ACM 56(9), 84–93 (2013)

    Article  Google Scholar 

  10. Gao, D., Huang, M., Xie, J.: A novel indirect health indicator extraction based on charging data for lithium-ion batteries remaining useful life prognostics. SAE Int. J. Altern. Powertrains 6(2), 183–193 (2017)

    Article  Google Scholar 

  11. Gerasimou, S., Calinescu, R., Banks, A.: Efficient runtime quantitative verification using caching, lookahead, and nearlyoptimal reconfiguration. In: Proceedings of the 9th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2014, pp. 115–124. ACM, New York (2014)

    Google Scholar 

  12. Giaquinta, R., Hoffmann, R., Ireland, M., Miller, A., Norman, G.: Strategy synthesis for autonomous agents using PRISM. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 220–236. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5_16

    Chapter  Google Scholar 

  13. Goebel, K., Celaya, J., Sankararaman, S., Roychoudhury, I., Daigle, M., Saxena, A.: Prognostics: The Science of Making Predictions. 1st edn. CreateSpace Independent Publishing Platform (2017)

    Google Scholar 

  14. Guiochet, J., Machin, M., Waeselynck, H.: Safety-critical advanced robots: a survey. Robot. Auton. Syst. 94, 43–52 (2017)

    Article  Google Scholar 

  15. Hariharan, K.S.: Mathematical Modeling of Lithium Batteries From Electrochemical Models to State Estimator Algorithms. Green Energy and Technology. Springer, New York (2018). https://doi.org/10.1007/978-3-319-03527-7

    Book  Google Scholar 

  16. He, W., Pecht, M., Flynn, D., Dinmohammadi, F.: A physics-based electrochemical model for lithium-ion battery state-of-charge estimation solved by an optimised projection-based method and moving-window filtering. Energies 11(8), 2120 (2018)

    Article  Google Scholar 

  17. He, W., Williard, N., Chen, C., Pecht, M.: State of charge estimation for electric vehicle batteries using unscented Kalman filtering. Microelectron. Reliab. 53(6), 840–847 (2013)

    Article  Google Scholar 

  18. Hoffmann, R., Ireland, M., Miller, A., Norman, G., Veres, S.: Autonomous agent behaviour modelled in PRISM – a case study. In: Bošnački, D., Wijs, A. (eds.) SPIN 2016. LNCS, vol. 9641, pp. 104–110. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32582-8_7

    Chapter  Google Scholar 

  19. Hogge, E.F., et al.: Verification of prognostic algorithms to predict remaining flying time for electric unmanned vehicles. Int. J. Prognostics Health Manag. 9(1), 1–15 (2018)

    Google Scholar 

  20. Ivanov, D., Larsen, K.G., Schupp, S., Srba, J.: Analytical solution for long battery lifetime prediction in nonadaptive systems. In: McIver, A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024, pp. 173–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2_11

    Chapter  Google Scholar 

  21. Kalra, N., Paddock, S.M.: Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp. Res. Part A: Policy Pract. 94, 182–193 (2016)

    Google Scholar 

  22. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilistic model checking. Robot. Auton. Syst. 60(2), 199–213 (2012)

    Article  Google Scholar 

  23. Koopman, P., Wagner, M.: Autonomous vehicle safety: an interdisciplinary challenge. IEEE Intell. Transp. Syst. Mag. 9(1), 90–96 (2017)

    Article  Google Scholar 

  24. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  25. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic model checking: advances and applications. In: Drechsler, R. (ed.) Formal System Verification, pp. 73–121. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-57685-5_3

    Chapter  Google Scholar 

  26. Lane, D., Bisset, D., Buckingham, R., Pegman, G., Prescott, T.: New foresight review on robotics and autonomous systems. Technical report, No. 2016.1, Lloyd’s Register Foundation, London, U.K. (2016)

    Google Scholar 

  27. Liu, W., Winfield, A.: Modeling and optimization of adaptive foraging in swarm robotic systems. Int. J. Robot. Res. 29(14), 1743–1760 (2010)

    Article  Google Scholar 

  28. Luckcuck, M., Farrell, M., Dennis, L., Dixon, C., Fisher, M.: Formal specification and verification of autonomous robotic systems: a survey. arXiv preprint arXiv:1807.00048 (2018)

  29. Märcker, S., Baier, C., Klein, J., Klüppelholz, S.: Computing conditional probabilities: implementation and evaluation. In: Cimatti, A., Sirjani, M. (eds.) SEFM 2017. LNCS, vol. 10469, pp. 349–366. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66197-1_22

    Chapter  Google Scholar 

  30. Norman, G., Parker, D., Zou, X.: Verification and control of partially observable probabilistic systems. Real-Time Syst. 53(3), 354–402 (2017)

    Article  Google Scholar 

  31. Paterson, C.A., Calinescu, R.: Observation-enhanced QoS analysis of component-based systems. IEEE Trans. Softw. Eng. (2019). https://doi.org/10.1109/TSE.2018.2864159. (Early Access)

    Article  Google Scholar 

  32. Paterson, C., Calinescu, R., Wang, D., Manandhar, S.: Using unstructured data to improve the continuous planning of critical processes involving humans. In: 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (2019)

    Google Scholar 

  33. Pathak, S., Pulina, L., Tacchella, A.: Verification and repair of control policies for safe reinforcement learning. Appl. Intell. 48(4), 886–908 (2018)

    Article  Google Scholar 

  34. Robu, V., Flynn, D., Lane, D.: Train robots to self-certify as safe. Nature 553(7688), 281 (2018)

    Article  Google Scholar 

  35. Saxena, A., Roychoudhury, I., Celaya, J., Saha, B., Saha, S., Goebel, K.: Requirements flowdown for prognostics and health management. In: Infotech@Aerospace. American Institute of Aeronautics and Astronautics (2012)

    Google Scholar 

  36. Spotnitz, R.: Simulation of capacity fade in lithium-ion batteries. J. Power Sources 113(1), 72–80 (2003)

    Article  Google Scholar 

  37. Stetco, A., et al.: Machine learning methods for wind turbine condition monitoring: a review. Renew. Energy 133, 620–635 (2019)

    Article  Google Scholar 

  38. Traub, L.W.: Calculation of constant power lithium battery discharge curves. Batteries 2(2), 17 (2016)

    Article  Google Scholar 

  39. Wognsen, E.R., Hansen, R.R., Larsen, K.G.: Battery-aware scheduling of mixed criticality systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014. LNCS, vol. 8803, pp. 208–222. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45231-8_15

    Chapter  Google Scholar 

  40. Zhang, C., Allafi, W., Dinh, Q., Ascencio, P., Marco, J.: Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique. Energy 142, 678–688 (2018)

    Article  Google Scholar 

  41. Zhang, F., Liu, G., Fang, L., Wang, H.: Estimation of battery state of charge with \({H}_{\infty }\) observer: applied to a robot for inspecting power transmission lines. IEEE Trans. Ind. Electron. 59(2), 1086–1095 (2012)

    Article  Google Scholar 

  42. Zhao, X., Robu, V., Flynn, D., Dinmohammadi, F., Fisher, M., Webster, M.: Probabilistic model checking of robots deployed in extreme environments. In: The 33rd AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, USA (2019, in Press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, X. et al. (2019). Towards Integrating Formal Verification of Autonomous Robots with Battery Prognostics and Health Management. In: Ölveczky, P., Salaün, G. (eds) Software Engineering and Formal Methods. SEFM 2019. Lecture Notes in Computer Science(), vol 11724. Springer, Cham. https://doi.org/10.1007/978-3-030-30446-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30446-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30445-4

  • Online ISBN: 978-3-030-30446-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics